# HVAC&R

# How to select the appropriate motor starters for your HVAC&R\* equipments

4+++

SS

\* Heating, Ventilation, Air conditioning & Refrigeration

Control Panel Technical Guide

se.com/tesys

Life Is On Schneider

## Legal Information

The information provided in this Catalog contains description of Schneider Electric products, solutions and services ("Offer") with technical specifications and technical characteristics of the performance of the corresponding Offer.

#### The content of this document is subject to revision at any time without notice due to continued progress in methodology, design and manufacturing.

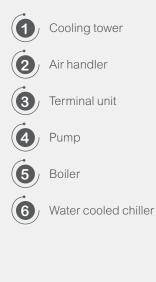
To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any type of damages arising out of or in connection with (i) informational content of this Catalog not conforming with or exceeding the technical specifications, or (ii) any error contained in this Catalog, or (iii) any use, decision, act or omission made or taken on basis of or in reliance on any information contained or referred to in this Catalog.

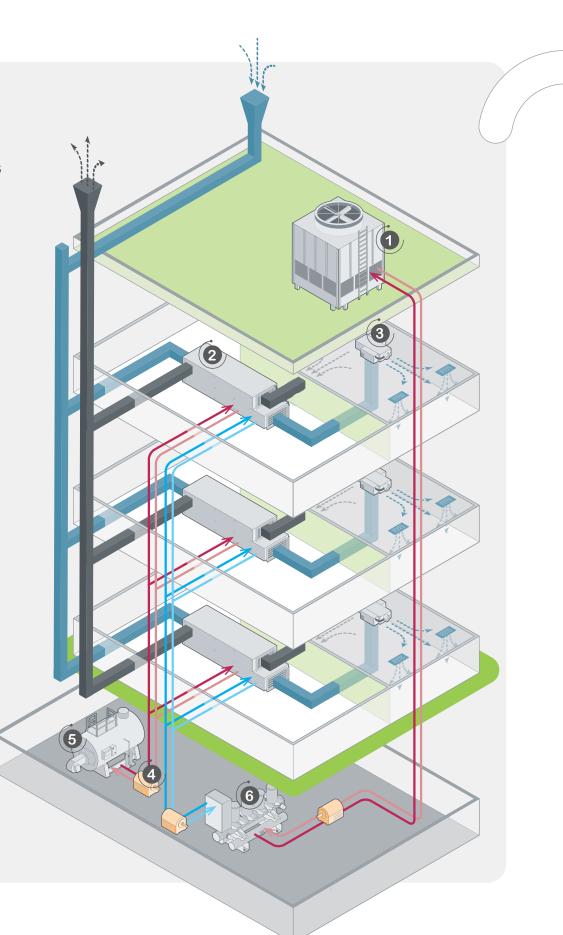
#### SCHNEIDER ELECTRIC MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO WHETHER THIS CATALOG OR ANY INFORMATION CONTAINED THEREIN SUCH AS PRODUCTS AND SERVICES WILL MEET REQUIREMENTS, EXPECTATIONS OR PURPOSE OF ANY PERSON MAKING USE THEREOF.

Schneider Electric brand and any trademarks of Schneider Electric and its subsidiaries referred to in this Catalog are property of Schneider Electric or its subsidiaries. All other brands are trademarks of their respective owners.

This Catalog and its content are protected under applicable copyright laws and provided for informative use only. No part of this Catalog may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Copyright, intellectual, and all other proprietary rights in the content of this Catalog (including but not limited to software, audio, video, text, and photographs) rests with Schneider Electric or its licensors. All rights in such content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.


Trademarks QR (


QR Code is a registered trademark of DENSO WAVE INCORPORATED in Japan and other countries.



# Many machines can be used in a HVAC&R installation

As an example, heating, cooling and ventilation of buildings may require, depending on the selected solution, the association of machines as various as chillers, boilers, cooling towers, air handling units, terminal units, etc.







All these machines embed electric motors for three kind of applications







Compressor

Fan

Pump

These motors must be protected and controlled by motor starters



provided by a motor

circuit breaker.

Protection is usually



Control is usually provided by a contactor, a Soft Starter or a Variable Speed Drive (VSD).



A guide to choose the right contactor-based motor starter solution for

> A "Standard" solution for general purpose application

An "HVAC&R Adapted" solution to definite purpose application

combines thermalmagnetic protection control by contactors.

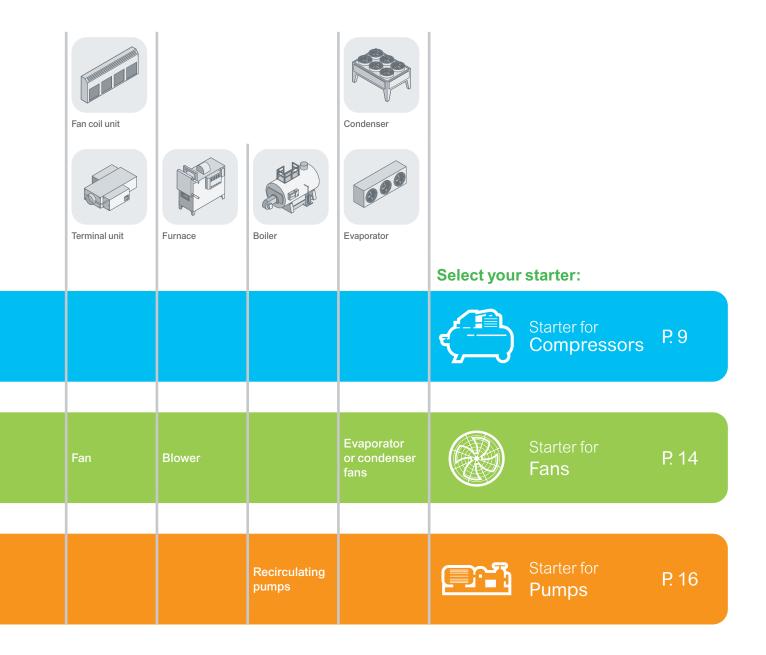
# Contents

|              | Condensing unit                           | Cold room                                 | Ice bank                                  |                        |                        | Packaged terminal<br>air conditioner            | Air handler               |
|--------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------|------------------------|-------------------------------------------------|---------------------------|
|              | Heat pump                                 | Showcase                                  | Ice maker                                 | Water cooled chiller   | Cooling tower          | Packaged unit /<br>rooftop                      | Evaporative cooler        |
| Composed of: |                                           |                                           |                                           |                        |                        |                                                 |                           |
|              | Compressors                               | Compressors                               | Compressors                               | Compressors            |                        | Compressors                                     |                           |
|              |                                           |                                           |                                           |                        |                        |                                                 |                           |
|              | Condenser<br>and/or<br>evaporator<br>fans | Condenser<br>and/or<br>evaporator<br>fans | Condenser<br>and/or<br>evaporator<br>fans |                        | Condenser<br>fans      | Exhaust,<br>supply blower,<br>condenser<br>fans | Exhaust/<br>supply blower |
|              |                                           |                                           |                                           |                        |                        |                                                 |                           |
|              | Recirculating<br>pumps                    | Recirculating<br>pumps                    | Recirculating<br>pumps                    | Recirculating<br>pumps | Recirculating<br>pumps | Recirculating<br>pumps                          |                           |

## How to read the table?



Select your HVAC&R machine


Eg.: Water Cooled Chiller



Eg.: Compressors + recirculating pumps

#### Go to correspondent motor starter selection pages

Eg.: page 6 for compressors and page 14 for pumps



- Glossary for HVAC&R machines
- Method for selection of circuit breakers and contactors
- Electrical diagrams for DOL and star-delta starters
- Products and catalogues that could also interest you

P.19

Appendix

# TeSys control and protection components compliance with the IEC 60335 standard

IEC 60335 series, published under the general title "Household and similar electrical appliances – Safety" is a product family standard dealing with the safety of appliances. Their rated voltage is not more than 250 V for single-phase appliances and 480 V for other appliances including direct current (DC) supplied appliances and battery operated appliances.

This International Standard is divided into two main parts:

- > Part 1 (IEC 60335-1): General requirements
- > Part 2 (IEC 60335-2-xx): Particular requirements for each type of appliance.

Part 1 is to be used in conjunction with the appropriate Part 2 of IEC 60335, which contains clauses to supplement or modify the corresponding clauses in Part 1, for providing the relevant requirements for each type of appliance.

In this guide we will focus on the TeSys components compliance with IEC 60335-1 Section 30: "Resistance to heat and fire" and with the IEC 60335-2-40: "Particular requirements for electrical heat pumps, air-conditioners and dehumidifiers", shown in the tables below:

| Standard                        | Test Item                                                        | GV2ME        | GV2P          | GV3P/L       | LRK           | LRD0135       | LRD313380    | LRD33/43      |
|---------------------------------|------------------------------------------------------------------|--------------|---------------|--------------|---------------|---------------|--------------|---------------|
| IEC 60335-1<br>Resistance to he | at and fire                                                      | ~            | Under Testing | ✓            | ✓             | Under Testing | ×            | ~             |
|                                 | R32                                                              | $\checkmark$ | ✓             | $\checkmark$ | Under Testing | ✓             | $\checkmark$ | Under Testing |
| IEC 60335-2-40                  | R1234ze(E)                                                       | $\checkmark$ | ✓             | $\checkmark$ | Under Testing | $\checkmark$  | $\checkmark$ | Under Testing |
| Conformity to                   | R1234yf                                                          | ✓            | ×             | ✓            | Under Testing | ×             | ✓            | Under Testing |
| flammable<br>refrigerants       | Other A2L<br>refrigerants with<br>burning velocity<br>≤ 6.7 cm/s | <b>v</b>     | $\checkmark$  | ✓            | Under Testing | $\checkmark$  | $\checkmark$ | Under Testing |

| Standard                        | Test Item                                                        | LC1K0616     | LC1D0938      | LC1D40A65A <sup>(1)</sup> | LC1D4095      | LC1D115150   | LC1G115800    |
|---------------------------------|------------------------------------------------------------------|--------------|---------------|---------------------------|---------------|--------------|---------------|
| IEC 60335-1<br>Resistance to he | at and fire                                                      | ~            | Under Testing | Under Testing             | Under Testing | ~            | Under Testing |
|                                 | R32                                                              | ×            | ✓             | $\checkmark$              | Under Testing | ✓            | Under Testing |
| IEC 60335-2-40                  | R1234ze(E)                                                       | ×            | ×             | $\checkmark$              | ✓             | $\checkmark$ | ✓             |
| Conformity to                   | R1234yf                                                          | $\checkmark$ | $\checkmark$  | ~                         | $\checkmark$  | $\checkmark$ | ✓             |
| flammable<br>refrigerants       | Other A2L<br>refrigerants with<br>burning velocity<br>≤ 6.7 cm/s | $\checkmark$ | ✓             | $\checkmark$              | Under Testing | $\checkmark$ | Under Testing |

(1) Power connections by  $EverLink^{(B)}$ , BTR screw connectors.

The use of TeSys components compliant with the IEC 60335 standard offers to our customers important benefits:

> It allows the replacement of the refrigerants with a high GWP (Global Warming Potential) with new refrigerants with a low GWP (more "Environmental Friendly") and/or a low flammability (A2L refrigerants), for answering the European and International directives and for more safety. In Household Appliances these refrigerants can be found in heat pumps, airconditioners, or dehumidifiers.

> Stock optimization: as the standard TeSys control and protection components are certified (not special design ones), no need to manage an additional stock of special products.

Nota: Variable Speed Drives ATV320 and ATV212 mentionned in this guide are compliant with the IEC 60335-2-40 standard.

# **COMPRESSOR PROTECTION AND CONTROL**



Starter type selection

#### Direct **On-Line** Constant speed

**ON-OFF** control

### Star-Delta

Constant speed **ON-OFF** control Inrush current limitation Inrush current

## Soft Starter

Constant speed Soft start/stop limitation

#### Variable **Speed Drive**

Variable speed Soft start/stop Fine control Inrush current limitation



Thermal-Magnetic motor circuit breakers TeSys: GV2ME, GV2P, GV3P, GV4P, GV5P Compact NSX, NSXm

Contactors: TeSys LC1K or LC1D,

LC1D or LC1G Assembly

Soft Starter Altistart ATS01, ATS22

Variable Speed Drive Altivar ATV212, ATV320, ATV600

Product selectors: see next pages

**Other Schneider Electric** components for building your Control Panels

More information on page 27



#### COMPRESSOR PROTECTION AND CONTROL **Direct On-line starters**

**1** Your need: select the type of solution for your DOL Starter regarding your constraints

| Operating specifications      |                         |                                           |                                |                                           |                                        | > Solution        |
|-------------------------------|-------------------------|-------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------------|-------------------|
| Ambient temp.<br>in the panel | Motor inrush<br>current | Starting time                             | Electrical durability (cycles) | Mini. interval between motor stop & start | Compacity requirements between devices | Туре              |
| ≤ 60°C                        | ≤ 6 x RLA*              | ≤ 5 s (RLA ≤ 40 A)<br>≤ 10 s (RLA > 40 A) | ≈ 1 million                    | ≥1s                                       | Close or separate mounting             | Standard          |
| ≤ 45°C                        | ≤4 x RLA*               | ≤ 1 s (RLA ≤ 40 A)<br>≤ 5 s (RLA > 40 A)  | ≤ 300,000                      | ≥ 15 min                                  | Separate mounting                      | HVAC&R<br>Adapted |

For understanding your Use Case conditions and choosing the suitable Starter Solution: refer to page 12. For other specifications, please contact Schneider Electric support.

\*RLA = Rated Load Amperage ( $\sim$ )

#### (2) Our TeSys solution: find references for a Standard or Adapted solution

The main input for selection is the current which will go through the circuit breaker (Rated Load Amperage). Corresponding nominal power (Pn) is given as information for 400 V – 50 Hz.

| Motor                                           |                                                                 | Thermal-magnetic CB | Contactor         |                               |
|-------------------------------------------------|-----------------------------------------------------------------|---------------------|-------------------|-------------------------------|
| CC                                              |                                                                 | (1)<br>(Q1)         | (KM1)             | (KM1)                         |
| Rated Load or Amperage (RLA), 400 V (A $\sim$ ) | Corresponding average<br>nominal power (Pn)<br>under 400 V (kW) |                     | Standard solution | HVAC&R<br>Adapted<br>solution |
| 0.2                                             | 0.06                                                            | GV2ME02             | LC1D09••          | LC1K06••                      |
| 0.3                                             | 0.09                                                            | GV2ME02<br>GV2ME03  |                   |                               |
| 0.4                                             | 0.12                                                            | GV2ME00             | -                 |                               |
| 0.6                                             | 0.18                                                            | GV2ME04             |                   |                               |
| 0.9                                             | 0.25                                                            | GV2ME05             | -                 |                               |
| 1.1                                             | 0.37                                                            | GV2ME06             | -                 |                               |
| 1.5                                             | 0.55                                                            | GV2ME06             | -                 |                               |
| 1.9                                             | 0.75                                                            | GV2ME07             |                   |                               |
| 2.7                                             | 1.1                                                             | GV2ME08             |                   |                               |
| 3.6                                             | 1.5                                                             | GV2ME08             |                   |                               |
| 4.9                                             | 2.2                                                             | GV2ME10             |                   |                               |
| 6.5                                             | 3                                                               | GV2ME14             |                   |                               |
| 8.5                                             | 4                                                               | GV2ME14             |                   | LC1K09••                      |
| 11.5                                            | 5.5                                                             | GV2ME16             | LC1D12••          | LC1K12••                      |
| 15.5                                            | 7.5                                                             | GV2ME20             | LC1D18••          | LC1D12••                      |
| 22                                              | 11                                                              | GV2ME22             | LC1D25••          | LC1D18••                      |
| 29                                              | 15                                                              | GV2ME32             | LC1D32••          | LC1D25••                      |
| 35                                              | 18.5                                                            | GV3P40              | LC1D40A••         | LC1D32••                      |
| 41                                              | 22                                                              | GV3P50              | LC1D50A••         | LC1D40A••                     |
| 55                                              | 30                                                              | GV3P65              | LC1D65A••         | LC1D50A••                     |
| 66                                              | 37                                                              | GV3P73              | LC1D80A····       | LC1D65A••                     |
| 80                                              | 45                                                              | GV4P115             | LC1D95••          | LC1D80A•••                    |
| 97                                              | 55                                                              | GV4P115             | LC1D115••         | LC1D95••                      |
| 132                                             | 75                                                              | GV5P150F            | LC1D150••         | LC1D115••                     |

(1) Check circuit breaker breaking capacity (Icu) from TeSys Catalogue ref. MKTED210011EN. Refer to page 18, for details as how to access TeSys Catalogue.

KUE

Nota: Dots in the contactor reference should be replaced by the coil code. Example: 0.55 kW motor - 230 Vac / 50/60 Hz

| C | control voltage > GV | 2ME14 circu | iit break | er + LC1 | К06 <b>Р7</b> с | ontactor |
|---|----------------------|-------------|-----------|----------|-----------------|----------|
|   |                      |             |           |          |                 |          |

| Coil codes          | 12 V              | 24 V   | 230 V  | 400 V | 415 V  |
|---------------------|-------------------|--------|--------|-------|--------|
| AC (50/60 Hz)       | -                 | B7     | P7     | V7    | N7     |
| DC                  | JD                | BD     | -      | -     | -      |
| DC low consumption  | JL <sup>(1)</sup> | BL     | -      | -     | -      |
| Coil codes for 24 V | 2                 | 4-60 V | 48-130 | V 100 | -250 V |

LC1D80A (DC only) AC (50/60 Hz) / DC BBE BNE EHE

(1) JL coil not available for TeSys K.

References given relatively to

Contactors references selected for the HVAC&R solution have been optimized for this application and should not be used for another application.

Warning:

power diagram A page 25



COMPRESSOR PROTECTION AND CONTROL Star-Delta starters

(1) Your need: select the type of solution for your Star-Delta Starter regarding your constraints

| Operating specifications      |                         |                                              |                                |                                            |                                        | > Solution        |
|-------------------------------|-------------------------|----------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------|-------------------|
| Ambient temp.<br>in the panel | Motor inrush<br>current | Starting time                                | Electrical durability (cycles) | Mini. interval between motor stop & start  | Compacity requirements between devices | Туре              |
| ≤ 60°C                        | ≤8 x RLA*               | ≤ 30 s (RLA ≤ 230 A)<br>≤ 20 s (RLA ≤ 280 A) | ≈ 1 million                    | ≥ 2 min Deca range<br>≥ 5 min Giga range   | Close or separate mounting             | Standard          |
| ≤ 45°C                        | ≤6 x RLA*               | ≤ 5 s (RLA ≤ 97 A)<br>≤ 10 s (RLA > 97 A)    | ≤ 300,000                      | ≥ 15 min Deca range<br>≥ 60 min Giga range | Separate mounting                      | HVAC&R<br>Adapted |

For understanding your Use Case conditions and choosing the suitable Starter Solution: refer to page 12. For other specifications, please contact Schneider Electric support.

\*RLA = Rated Load Amperage ( $\sim$ )

#### (2) Our TeSys solution: find references for a Standard solution

The main input for selection is the current which will go through the circuit breaker (Rated Load Amperage). Corresponding nominal power (Pn) is given as information for 400 V – 50 Hz.

| Motor           |                                                                 | > Thermal-magnetic CB | > Contactors        | >                         | Interloc                                       | k                    |
|-----------------|-----------------------------------------------------------------|-----------------------|---------------------|---------------------------|------------------------------------------------|----------------------|
| Amperage (RLA), | Corresponding average<br>nominal power (Pn)<br>under 400 V (kW) | (1)<br>(Q1)           | Line > Delta >      | KM1)<br>Star<br>Contactor | Electrical<br>interlock /<br>Connection<br>kit | Mechanical interlock |
|                 |                                                                 |                       | Standard solution   |                           | Standard solution                              |                      |
| 55              | 30                                                              | GV3P65                | LC1D40A•• LC1D40A•• | LC1D40A••                 | Customer cabling                               | LAD4CM               |
| 66              | 37                                                              | GV3P73                | LC1D40A•• LC1D40A•• | LC1D40A••                 | Customer cabling                               | LAD4CM               |
| 80              | 45                                                              | GV4P115               | LC1D50A•• LC1D50A•• | LC1D40A••                 | Customer cabling                               | LAD4CM               |
| 97              | 55                                                              | GV4P115               | LC1D50A•• LC1D50A•• | LC1D40A••                 | Customer cabling                               | LAD4CM               |
| 132             | 75                                                              | GV5P150F              | LC1D80A•• LC1D80A•• | LC1D80A••(2)              | Customer cabling                               | LAD4CM               |
| 160 9           | 90                                                              | GV5P220F              | LC1D115•• LC1D115•• | LC1D115••(3)              | LA9D                                           | 11502                |
| 195             | 110                                                             | GV5P220F              | LC1D115•• LC1D115•• | LC1D115••(3)              | LA9D                                           | 11502                |
| 230             | 132                                                             | GV6P320F              | LC1D150•• LC1D150•• | LC1D115••                 | LA9D                                           | 11502                |
| 280             | 160                                                             | GV6P320F              | LC1G185•• LC1G185•• | LC1G115••                 | LA9GQQ330                                      | LA9G970              |

(1) Check circuit breaker breaking capacity (Icu) from TeSys Catalogue ref. MKTED210011EN.

(2) The Star Contactor LC1D80A can be replaced by LC1D50A, but without mechanical interlocking.

(3) The Star Contactor LC1D115 can be replaced by LC1D80A, but without mechanical interlocking.

Nota: Dots in the contactor reference should be replaced by the coil code.

Example: 30 kW motor under 400 V - 230 Vac / 50/60 Hz control voltage > GV3P65 circuit breaker + 3 x LC1D40AP7 contactor

| Coil codes         | 12 V | 24 V | 230 V | 400 V | 415 V |
|--------------------|------|------|-------|-------|-------|
|                    | 12 V |      | 230 V |       |       |
| AC (50/60 Hz)      | -    | B7   | P7    | V7    | N7    |
| DC                 | JD   | BD   | -     | -     | -     |
| DC low consumption | JL   | BL   | -     | -     | -     |

Those coil references correspond to most common contactors. Please, refer to catalogue for more details.

|                    | 24 V<br>(DC only) | 2460 V | 48130 V | 100250 V |
|--------------------|-------------------|--------|---------|----------|
| AC (50/60 Hz) / DC | BBE               | BNE    | EHE     | KUE      |



| "Coil codes for TeSys<br>Giga contactors" |                    |         |          |
|-------------------------------------------|--------------------|---------|----------|
| Advanced version - "A"                    | 2448 V             | 48130 V | 200500 V |
| AC (50/60 Hz) / DC                        | BEE <sup>(4)</sup> | EHE     | LSE      |
| Standard version - "S"                    |                    | 48130 V | 100250 V |
| AC (50/60 Hz) / DC                        |                    | EHE     | KUE      |

Example:

LC1G400LSEA: TeSys Giga Contactor Advanced version 400 A, 3-pole, 200...500 V AC/DC coil, with PLC control. LC1G1854EHEN: TeSys Giga Contactor Standard version 185 A, 4-pole, 48...130 V AC/DC coil, without PLC control.

(4) 24...48 V AC/DC control voltage option is available for LC1G115...LC1G500 ratings.



COMPRESSOR PROTECTION AND CONTROL

Star-Delta starters

#### 2 Our TeSys solution: find references for an HVAC&R Adapted solution

The main input for selection is the current which will go through the circuit breaker (Rated Load Amperage). Corresponding nominal power (Pn) is given as information for 400 V - 50 Hz.

| Motor                                                |                                                               |                                                    | > Thermal-magnetic CB | or Fuse + Thermal relay                                                       | Conta                                              | ctors                |                     | > Interlo                                                                                                            | ock                                          |
|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|----------------------------------------------------|----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| ĊĊ                                                   |                                                               |                                                    | (1)<br>(Q1)           | (F1)                                                                          | (KM2)                                              | (KM3)                | (KM1)               |                                                                                                                      |                                              |
| Rated or<br>Load Amps<br>(RLA),<br>400 V (A $\sim$ ) | Corresp.<br>average nom.<br>power (Pn)<br>under 400 V<br>(kW) | Delta<br>contactor<br>current (A)<br>(informative) |                       | Thermal protection<br>ref. <sup>(4)</sup> + Independent<br>mounting accessory | Line<br>Contactor<br>HVAC&R<br>Adapted<br>solution | > Delta<br>Contactor | > Star<br>Contactor | <ul> <li>Electrical :<br/>interlock /<br/>Connection<br/>kit</li> <li>HVAC&amp;R<br/>Adapted<br/>solution</li> </ul> | <ul> <li>Mechanical<br/>interlock</li> </ul> |
| 55                                                   | 30                                                            | 31.8                                               | GV3P65                | LRD35 + LAD7B106                                                              | LC1D32                                             | LC1D32••             | LC1D25••            | LAD9V1                                                                                                               | LAD9V2                                       |
| 66                                                   | 37                                                            | 38.1                                               | GV3P73                | LRD350 + LAD96560                                                             | LC1D38                                             | LC1D38••             | LC1D32              | LAD9V1                                                                                                               | LAD9V2                                       |
| 80                                                   | 45                                                            | 46.2                                               | GV4P115               | LRD350 + LAD96560                                                             | LC1D40A••                                          | LC1D40A••            | LC1D40A ••(2)       | Customer cabling                                                                                                     | LAD4CM                                       |
| 97                                                   | 55                                                            | 56                                                 | GV4P115               | LRD365 + LAD96560                                                             | LC1D40A••                                          | LC1D40A••            | LC1D40A ••(2)       | Customer cabling                                                                                                     | LAD4CM                                       |
| 132                                                  | 75                                                            | 76.2                                               | GV5P150F              | LRD3363 + LA7D3064                                                            | LC1D65A••                                          | LC1D65A••            | LC1D40A••           | Customer cabling                                                                                                     | LAD4CM                                       |
| 160                                                  | 90                                                            | 92.4                                               | GV5P220F              | LRD4367 + LA7D3064                                                            | LC1D95••                                           | LC1D95••             | LC1D80              | LA9D                                                                                                                 | 8018 <sup>(3)</sup>                          |
| 195                                                  | 110                                                           | 112.6                                              | GV5P220F              | LRD4367 + LA7D3064                                                            | LC1D95••                                           | LC1D95**             | LC1D80••            | LA9D                                                                                                                 | 8018 <sup>(3)</sup>                          |
| 230                                                  | 132                                                           | 132.8                                              | GV6P320F              | LRD4369 + LA7D3064                                                            | LC1D115.                                           | LC1D115.             | LC1D115••           | LA9D                                                                                                                 | 11502                                        |
| 280                                                  | 160                                                           | 161.7                                              | GV6P320F              | LR9G225                                                                       | LC1G150••                                          | LC1G150••            | LC1G115••           | LA9GQQ33                                                                                                             | 30 LA9G970                                   |

(1) Check circuit breaker breaking capacity (Icu) from TeSys Catalogue ref. MKTED210011EN.

Refer to page 18, for details as how to access TeSys Catalogue.

(2) The Star Contactor LC1D40A can be replaced by LC1D32, but without mechanical interlocking.

(3) The Star Contactor LC1D80 can be replaced by LC1D80A, but without electrical or mechanical interlocking.

(4) Trip class for type LRD: 10A

References given relatively to power diagram page 25: B1 for Thermal-magnetic circuit breaker solution B2 for fuse + relay solution

Nota: Dots in the contactor reference should be replaced by the coil code.

Example: 0.55 kW motor - 230 Vac / 50/60 Hz control voltage > GV2ME14 circuit breaker + LC1K06**P7** contactor

| Coil codes         | 12 V | 24 V | 230 V | 400 V | 415 V |
|--------------------|------|------|-------|-------|-------|
| AC (50/60 Hz)      | -    | B7   | P7    | V7    | N7    |
| DC                 | JD   | BD   | -     | -     | -     |
| DC low consumption | JL   | BL   | -     | -     | -     |

| Coil codes for<br>LC1D80A | 24 V<br>(DC only) | 24-60 V | 48-130 V | 100-250 V |
|---------------------------|-------------------|---------|----------|-----------|
| AC (50/60 Hz) / DC        | BBE               | BNE     | EHE      | KUE       |

#### Warning:

**Electrical and mechanical interlocking** between star and delta contactor should always be recommended for improved reliability.

#### Warning:

Contactors references selected for the HVAC&R solution **have been optimized for this application** and should not be used for another application.

#### Understand your Use Case conditions and choose the suitable Starter Solution

Example: COMPRESSOR PROTECTION AND CONTROL - Direct On-line starters - page 10 - 2<sup>nd</sup> line:

#### If your Use Case is as below:

- > The Ambient temperature inside the panel is  $\leq$  45 °C and
- > Your compressor motor inrush current is  $\leq 4 \ x \ RLA^*$  and
- > Your motor starting time is  $\leq$  1 s (for RLA  $\leq$  40 A) or  $\leq$  5 s (for RLA > 40 A) and
- > The requested Electrical durability is  $\leq 300~000$  cycles and
- > The minimum interval between motor stop & start is  $\ge 15$  min and
- > Your motor starter components are mounted separately

Then you can choose a "HVAC&R Adapted solution" Direct On-line starter for your compressor.

\*RLA = Rated Load Amperage ( $\sim$ )



Green Premium

Green Premium is

and promote an

business policy.

compliance with

more than this.

environmental policy

whilst preserving your

This ecolabel guarantees

up-to-date environmental

regulations, but it does

the only label that allows

you to effectively develop

COMPRESSOR PROTECTION AND CONTROL Variable speed drive starters

Choice of variable speed drives for compressor motor applications Open loop speed control for synchronous and asynchronous motors.



 Energy efficient · Low harm. level · Pump status and energy • IP21 – IP55 management • Embedded pump functions

#### More information about variable speed drives

#### ATV320



Scan or click on QR code





Scan or click on QR code



• IP 21 – IP55



Scan or click on QR code

#### For association with the TeSys offer, use the Ecostruxure Motor Control Configurator:



# FAN PROTECTION AND CONTROL



Starter type selection

### Direct On-Line

Constant speed ON-OFF control



**Thermal-magnetic motor circuit breaker:** TeSys GV2ME

Contactor: TeSys LC1K or LC1D

Product selectors: see next pages

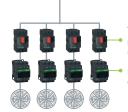
# Other Schneider Electric components for building your Control panels

More information on page 27

#### Variable speed drive

- Variable speed
- Soft start
- Inrush current limitation
  Fine control
- Significant energy savings

Products to be chosen in the product ranges:




Thermal-magnetic motor circuit breaker: TeSys GV2L Alternative protection: fuse holder TeSys DF

Variable Speed Drive (VSD): Altivar

#### Incremental air flow adjustment Cascading control with contactor

Products to be chosen in the product ranges:

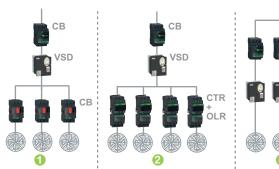


Thermal-magnetic motor circuit breaker GV2. GV3

LC1K••, LC1D•• type contactor

#### Two-speed air flow adjustment Dahlander motor with Dahlander coupling

Products to be chosen in the product ranges:


Magnetic motor circuit breaker GV2



LC1K or LC1D type • contactor with mechanical interlock

LR2K or LRD type thermal relay

#### Fine air flow adjustment Variable control with Variable Speed Drive





Products to be chosen in the product ranges:

- > GV2 or GV3 motor circuit breakers (CB)
- > LC1K•• or LC1D•• contactors (CTR)
- > LR2K or LRD type thermal relays (OLR)> Altivar variable speed drives (VSD)
- Identical variable speed for all the fans in operation simultaneously.
- Identical variable speed for all the motors, with possibility of starting and stopping the fans according to the load.
- Separate variable speed for each motor, with possibility of starting and stopping the fans according to the load.



# FAN PROTECTION AND CONTROL Direct On-line starters

(1) Your need: select the type of solution for your Star-delta starter regarding your constraints

| Operating specif                 | Operating specifications |                  |                                      |                                              |                                              |                   |  |  |  |  |
|----------------------------------|--------------------------|------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|-------------------|--|--|--|--|
| Ambient temperature in the panel | Motor inrush current     | Starting<br>time | Electrical<br>durability<br>(cycles) | Mini. interval between<br>motor stop & start | Compacity<br>requirements between<br>devices | Туре              |  |  |  |  |
| ≤ 60°C                           | ≤ 6 x RLA*               | ≤10s             | ≈ 1.5 million                        | ≥1s                                          | Close or separate mounting                   | Standard          |  |  |  |  |
| ≤ 45°C                           | ≤6xRLA*                  | ≤1s              | ≤ 500,000                            | ≥ 5min                                       | Separate mounting                            | HVAC&R<br>Adapted |  |  |  |  |

For understanding your Use Case conditions and choosing the suitable Starter Solution: refer to page 12.

For other specifications, please contact Schneider Electric support.

\*RLA = Rated Load Amperage ( $\sim$ )

### (2) Our TeSys solution: find references for a Standard or Adapted solution

The main input for selection is the current which will go through the circuit breaker (Rated Load Amperage). Corresponding nominal power (Pn) is given as information for 400 V - 50 Hz.

| Motor                                        |                                                                 | Thermal-magnetic CB | Contactor         |                               |
|----------------------------------------------|-----------------------------------------------------------------|---------------------|-------------------|-------------------------------|
| CC                                           |                                                                 | (1)<br>(Q1)         | (KM1)             | (км1)                         |
| Rated Load Amperage (RLA), 400 V (A $\sim$ ) | Corresponding average<br>nominal power (Pn)<br>under 400 V (kW) |                     | Standard solution | HVAC&R<br>Adapted<br>solution |
| 0.2                                          | 0.06                                                            | GV2ME02             | LC1D09••          | LC1K06••                      |
| 0.3                                          | 0.09                                                            | GV2ME03             |                   |                               |
| 0.4                                          | 0.12                                                            | GV2ME04             |                   |                               |
| 0.6                                          | 0.18                                                            | GV2ME04             |                   |                               |
| 0.9                                          | 0.25                                                            | GV2ME05             |                   |                               |
| 1.1                                          | 0.37                                                            | GV2ME06             |                   |                               |
| 1.5                                          | 0.55                                                            | GV2ME06             |                   |                               |
| 1.9                                          | 0.75                                                            | GV2ME07             |                   |                               |
| 2.7                                          | 1.1                                                             | GV2ME08             |                   |                               |
| 3.6                                          | 1.5                                                             | GV2ME08             |                   |                               |
| 4.9                                          | 2.2                                                             | GV2ME10             |                   |                               |
| 6.5                                          | 3                                                               | GV2ME14             |                   | LC1K09••                      |
| 8.5                                          | 4                                                               | GV2ME14             |                   | LC1K09••                      |

(1) Check circuit breaker breaking capacity (Icu) from TeSys Catalogue ref. MKTED210011EN. Refer to page 18, for details as how to access TeSys Catalogue.



Contactors references selected for the HVAC&R solution **have been optimized for this application** and should not be used for another application.

Warning:

**Nota:** Dots in the contactor reference should be replaced by the coil code.

Example: 0.55 kW motor - 230 Vac / 50/60 Hz control voltage > GV2ME14 circuit breaker + LC1K06**P7** contactor

| Coil codes         | 12 V   | 24 V | 230 V | 400 V | 415 V |
|--------------------|--------|------|-------|-------|-------|
| AC (50/60 Hz)      | -      | B7   | P7    | V7    | N7    |
| DC                 | JD     | BD   | -     | -     | -     |
| DC low consumption | JL (2) | BL   | -     | -     | -     |

(2) JL coil not available for TeSys K.

# PUMP PROTECTION AND CONTROL



Starter type selection

### **Direct On-Line**

Constant speed ON-OFF control



Thermal-magnetic motor circuit breaker: TeSys GV2ME, GV3P

Contactor: TeSys LC1K or LC1D

Product selectors: see next pages

# Other Schneider Electric components for building your Control panels

More information on page 27

- Constant speed
- ON-OFF control
- Inrush current limitation
- Soft start and/or stop
- Soft Starter

Products to be chosen in the product ranges:

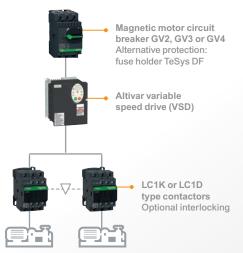


- Variable speed
- Inrush current limitation
- Soft start and/or stop
- Fine control
- Significant energy savings
- Variable Speed Drive (VSD)

Products to be chosen in the product ranges:



Magnetic motor circuit breaker GV2, GV3 or GV4 Alternative protection: fuse holder TeSys DF








#### Motor redundancy (eg.: twin pumps) 2 mechanically interlocked contactors alternately driven by a Variable Speed Drive

Products to be chosen in the product ranges:





#### PUMP PROTECTION AND CONTROL Direct-On-Line starter

#### (1) Your need: select the type of solution for your DOL starter regarding your constraints

| Operating specifications         |                      |               |                                |                                           |                                        |                   |  |  |  |
|----------------------------------|----------------------|---------------|--------------------------------|-------------------------------------------|----------------------------------------|-------------------|--|--|--|
| Ambient temperature in the panel | Motor inrush current | Starting time | Electrical durability (cycles) | Mini. interval between motor stop & start | Compacity requirements between devices | Туре              |  |  |  |
| ≤ 60°C                           | ≤6 x RLA*            | ≤5s           | ≈ 1 million                    | ≥1s                                       | Close or separate mounting             | Standard          |  |  |  |
| ≤ 45°C                           | ≤6 x RLA*            | ≤1s           | ≤ 300,000                      | ≥5min                                     | Separate mounting                      | HVAC&R<br>Adapted |  |  |  |

For understanding your Use Case conditions and choosing the suitable Starter Solution: refer to page 12.

For other specifications, please contact Schneider Electric support.

\*RLA = Rated Load Amperage ( $\sim$ )

#### (2) Our TeSys solution: find references for a Standard or Adapted solution

The main input for selection is the current which will go through the circuit breaker (Rated Load Amperage). Corresponding nominal power (Pn) is given as information for 400 V - 50 Hz.

| Motor                                        |                                                                 | Thermal-magnetic CB | Contactor         |                               |
|----------------------------------------------|-----------------------------------------------------------------|---------------------|-------------------|-------------------------------|
| CC                                           |                                                                 | (1)<br>(Q1)         | (КМ1)             | (KM1)                         |
| Rated Load Amperage (RLA), 400 V (A $\sim$ ) | Corresponding average<br>nominal power (Pn)<br>under 400 V (kW) |                     | Standard solution | HVAC&R<br>Adapted<br>solution |
| 2.7                                          | 1.1                                                             | GV2ME08             | LC1D09••          | LC1K06••                      |
| 3.6                                          | 1.5                                                             | GV2ME08             |                   |                               |
| 4.9                                          | 2.2                                                             | GV2ME10             |                   |                               |
| 6.5                                          | 3                                                               | GV2ME14             |                   |                               |
| 8.5                                          | 4                                                               | GV2ME14             |                   | LC1K09••                      |
| 11.5                                         | 5.5                                                             | GV2ME16             | LC1D12••          | LC1K12••                      |
| 15.5                                         | 7.5                                                             | GV2ME20             | LC1D18••          | LC1D12••                      |
| 22                                           | 11                                                              | GV2ME22             | LC1D25••          | LC1D18••                      |
| 29                                           | 15                                                              | GV2ME32             | LC1D32••          | LC1D25••                      |
| 35                                           | 19                                                              | GV3P40              | LC1D40A••         | LC1D32••                      |
| 41                                           | 22                                                              | GV3P50              | LC1D50A••         | LC1D40A••                     |
| 55                                           | 30                                                              | GV3P65              | LC1D65A••         | LC1D50A••                     |

(1) Check circuit breaker breaking capacity (Icu) from TeSys Catalogue ref. MKTED210011EN. Refer to page 18, for details as how to access TeSys Catalogue.



Contactors references selected for the HVAC&R solution **have been optimized for this application** and should not be used for another application.

Warning:

**Nota:** Dots in the contactor reference should be replaced by the coil code.

Example: 0.55 kW motor - 230 Vac / 50/60 Hz control voltage > GV2ME14 circuit breaker + LC1K06**P7** contactor

| Coil codes         | 12 V   | 24 V | 230 V | 400 V | 415 V |
|--------------------|--------|------|-------|-------|-------|
| AC (50/60 Hz)      | -      | B7   | P7    | V7    | N7    |
| DC                 | JD     | BD   | -     | -     | -     |
| DC low consumption | JL (2) | BL   | -     | -     | -     |

(2) JL coil not available for TeSys K.

# For detailed electrical characteristics and dimensions, please consult:

#### Schneider Electric - TeSys web portal

www.se.com/tesys



#### HVAC control solutions web portal





Scan or click on QR code to reach the portal

Scan or click on QR code to reach the portal

#### More questions, contact Schneider Electric Customer Care Center



#### EcoStruxure Motor Control Configurator





Scan or click on QR code to reach

the portal

Scan or click on QR code to reach the configurator

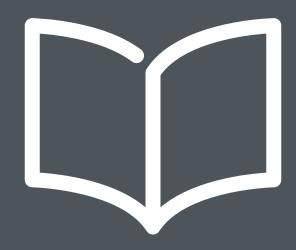
Innovative and connected solutions for motor starters Catalogue

(Ref. MKTED210011EN)





Scan or click on QR code to download the catalog


Control Panel Technical Guide - How to quickly design optimized contactor assemblies (Ref. CPTG011\_EN)







# Appendix



# HVAC&R machine definitions

## Components for refrigeration



#### Compressor

In a refrigeration cycle, a compressor is a device which compresses the refrigerant gas up to a high pressure and temperature.



#### Condenser

A condenser or condensing coil is a heat exchanger incorporated in a refrigeration cycle. It is designed to enable the liquid refrigerant to lose energy (heat) to the outside in order to cool, while it condenses into its liquid phase.



#### Evaporator

An evaporator or evaporating coil is a heat exchanger incorporated in a refrigeration cycle. It is designed to enable the liquid refrigerant to absorb energy (heat) from the outside in order to warm up, while it evaporates into its gas phase.

## Commercial and industrial refrigeration



#### Condensing unit

The function of a condensing unit is to cool down the incoming refrigerant vapour and condense it into liquid. A condensing unit embeds a compressor and a condenser fan.



#### Cold room

A cold room is a sealed box which is used to store goods in a fresh or frozen ambient atmosphere. It contains an evaporator. Either an integrated or remote condensing unit is connected to the evaporator.

#### Refrigerated/low-temperature showcase

A refrigerated (or low-temperature) showcase/display cabinet is used for sale of chilled (or frozen) foodstuffs. It can be self-refrigerated or connected to a remote condensing unit.



#### Ice-maker machine

An ice-maker machine produces ice for industrial processes. It can be self-refrigerated or connected to a remote condensing unit.



#### Ice bank

An ice bank produces and stores ice in order to increase cooling power for peak loads. This device has three benefits: **1-** Generation of ice at low night tariffs

2- Limitation of max. electricity peaks

**3-** Use of smaller refrigeration machines, designed for average demand only. It can be self-refrigerated or connected to a remote condensing unit.



#### Chiller



A chiller is a device forming part of an air conditioning system, that removes heat from a liquid via a vapourcompression or absorption refrigeration cycle. The cooled liquid usually supplies coils in air handlers, fan-coil units, or other systems. Chillers are of two types:



Air-cooled chillers are usually outdoors and consist of a condenser coil cooled by fan-driven air.

> Water-cooled chillers are usually located inside a building, and heat from these chillers is carried by recirculating water to a heat sink such as an outdoor cooling tower.



#### **Cooling tower**

A cooling tower is a heat discharge device installed outside of the building envelope. It is used to cool water that has been heated in the condenser of a water-cooled chiller (in a refrigerant/water fluid exchanger).

# HVAC&R machine definitions

## 🔶 Heating



#### Heat pump

A heat pump is a device that warms or cools a building by transferring heat from a relatively low-temperature reservoir to one at a higher temperature (air to water or water to water or direct expansion circuit).



### Boiler

A boiler is a closed vessel in which water or another fluid is heated. The heated or vaporized fluid leaves the boiler for use in various processes or heating applications, including central heating in a hydronic system.



#### Furnace

A furnace is a heating system component designed to heat air for distribution in a building.

## Ventilation and air conditioning



#### Air handler / Air Handling Unit (AHU)

An air handler is a device used to condition and circulate air as part of a Heating, Ventilation and Air Conditioning (HVAC) system, to meet environmental requirements. It includes cooling coils and possibly heating coils to cool and/or warm air. Cold/warm water is supplied by a remote chiller and/or heater.

#### Terminal Unit (TU)

A Terminal Unit is an outlet in ductwork to allow air delivery to an environment such as a room. Terminal units may have built-in heating and cooling coils connected to central heating and/or cooling systems.



#### Fan Coil Unit (FCU)

A Fan Coil Unit is a Terminal Unit which is not connected to air ductwork but to a hydronic system.



#### Packaged Unit (PU)

A Packaged Unit is an AHU equipped with its own heating and cooling sources. It can be classified according to the place of installation:

- > Roof Top Unit (RTU), installed on the roof and completely weatherproof
- > Indoor Packaged Unit, installed indoors, usually connected to a cooling tower



#### Packaged Terminal Air Conditioner (PTAC)

A Packaged Terminal Air Conditioner is a Packaged Unit dedicated to a single room. It consists of a wall sleeve and a separate encased combination of heating units (by hot water, steam, or electric resistance) and cooling units (includes refrigeration components) for mounting through the wall.



#### **Evaporative cooler**

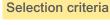
An evaporative cooler (also called swamp cooler, desert cooler, and wet air cooler) is a device that cools air through the evaporation of water. This method uses far less energy than refrigeration, but once evaporated, the water is lost. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

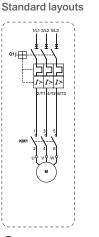
# Method for selection of the circuit breaker and contactor

The selection of control and protection components requires a good knowledge of the application data but, above all, a knowledge of the components' characteristics.

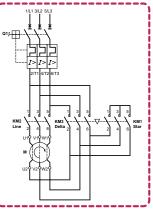


These characteristics are available in the Schneider Electric **"TeSys -Innovative and connected solutions for motor starters" catalogue"** catalogue.


(Ref. MKTED210011EN)


### Choice of the contactor, based on the type of motor starting:

Examples of project data


Squirrel Cage Induction Motor Starting shall be *quick*, while the Starting torque shall be at the *nominal value*.

Q Squirrel Cage Induction Motor Starting must be gradual to avoid peak currents. Starting torque is lower than one-third of nominal torque.



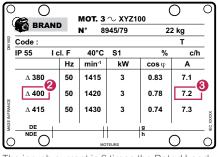


• Direct-On-Line starting: The motor starts quickly, with its natural characteristics (nominal torque), creating a current peak on the network.



#### 2 Star-Delta starting:

Condition: starting torque must be lower than one-third of nominal torque. The motor starts gradually, at reduced voltage. Low current peak (one-third) at starting. 3 contactors are used, 2 of which are mechanically interlocked.


## 2 Choice of motor circuit breaker

#### Examples of project data

#### Data concerning the electrical network:

50 kA 1 short-circuit current at the motor level

#### Data concerning the motor:



The inrush current is 6 times the Rated Load Amperage (or nominal current): 6 x 7.2 = **43.2 A** 

#### Selection criteria

| To select your motor protection properly, you must check that:                                            |              |             |          |          |            |            |        |          |              |           |         |       |
|-----------------------------------------------------------------------------------------------------------|--------------|-------------|----------|----------|------------|------------|--------|----------|--------------|-----------|---------|-------|
| Motor circuit-breakers from 0.06 to 15 kW / 400 V, with screw clamp terminals                             |              |             |          |          |            |            |        |          |              |           |         |       |
| GV2 ME with pushbutton control                                                                            |              |             |          |          |            |            |        |          |              |           |         |       |
| Standard power ratings of 3-phase motors Setting Magnetic Refer<br>50/60 Hz ir tegory AC-3 range tripping |              |             |          |          |            |            |        |          | Reference    | Weight    |         |       |
| 400/                                                                                                      | 415 V        | 9           | 500      | V        |            | 690        | /      |          | of thermal   | Id ± 20 % |         |       |
| Р                                                                                                         | lcu          | lcs<br>(1)  | Р        | lcu      | lcs (1)    | Р          | lcu    | lcs (1)  | trips<br>(2) | Id 1 20 % |         |       |
| kW                                                                                                        | kA           | %           | kW       | kA       | %          | kW         | kA     | %        | Α            | Α         |         | kg    |
| 2.2                                                                                                       |              | •           | 3        | 50       | 100        | 4          | 3      | 75       | 46.3         | 78        | GV2ME10 | 0.260 |
| 3<br>4                                                                                                    | >100<br>>100 | /00<br>>100 | 4<br>5.5 | 10<br>10 | 100<br>100 | 5.5<br>7.5 | 3<br>3 | 75<br>75 | 610          | 138       | GV2ME14 | 0.260 |

> The maximum operating voltage of the CB is greater than the motor nominal voltage;

- > The short-circuit current does not exceed the circuit breaker's breaking capacity (Icu);
- > The inrush current does not exceed the magnetic tripping current;

> The motor's nominal current is within the thermal trip setting range of the overload protection system.

# Method for selection of the circuit breaker and contactor

## 3 Choice of contactor

#### Examples of project data

The max. temperature of the panel in operation must not exceed **35°C** 



#### To select your contactor properly, you must check that:

| Contactor type                                       | Contactor type |  |    | D09D18           | D25D38           | D40AD65A           | D80D95 | D115 and |
|------------------------------------------------------|----------------|--|----|------------------|------------------|--------------------|--------|----------|
|                                                      | -              |  |    | DT20 and<br>DT25 | DT32 and<br>DT40 | DT60A and<br>DT80A |        | D150     |
| Environment                                          |                |  |    |                  |                  |                    |        |          |
| Ambient air temperature Storage<br>around the device |                |  | °C | - 60+ 80         |                  |                    |        |          |
|                                                      | Operation      |  | °C | - 5+ 60          |                  |                    |        |          |
|                                                      | Permissible    |  | °C | - 40+ 70, for o  | peration at Uc   |                    |        |          |

The panel temperature acceptable by the selected contactor must be compatible with the project data.

| Contactor type                 |                            | .C1 | D09    | DT20 | D12    | DT25 | D18    | DT32 | D25    | DT40 |
|--------------------------------|----------------------------|-----|--------|------|--------|------|--------|------|--------|------|
|                                |                            |     | (3P)   | D098 | (3P)   | D128 | (3P)   | D188 | (3P)   | D258 |
| Pole characteristics           |                            |     |        |      |        |      |        |      |        |      |
| Rated operational current (le) | In AC-3, θ ≤ 60 °C         | A   | 9      |      | 12     |      | 18     |      | 25     |      |
| (Ue y 440 V)                   | In AC-1, θ ≤ 60 °C         | A   | 25 (1) | 1    | 25 (1) | 25   | 32 (1) | 32   | 40 (1) | 40   |
| Rated operational voltage (Ue) | Up to                      | v   | 690    |      | 690    |      | 690    |      | 690    |      |
| Frequency limits               | Of the operational current | Hz  | 25 400 |      | 25 400 |      | 25 400 |      | 25 400 |      |

The maximum voltage (Ue) that can be withstood by each pole of the contactor must be greater than the motor's working voltage Un.

| Contactor type                        | LC1                        |    | D09<br>(3P) | DT20<br>D098 | D12<br>(3P) | DT25<br>D128 | D18<br>(3P) | DT32<br>D188 | D25<br>(3P) | DT40<br>D258 |
|---------------------------------------|----------------------------|----|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|
| Pole characteristics                  |                            |    |             |              |             |              |             |              |             |              |
| Rated operational current (le)        | In AC-3, θ ≤ 60 °C         | A  | 9           |              | 12          |              | 18          |              | 25          |              |
| (Ue y 440 V)                          | In AC-1, θ ≤ 60 °C         | A  | 25 (1)      | 20           | 25 (1)      | 25           | 32 (1)      | 32           | 40 (1)      | 40           |
| Rated operational voltage (Ue)        | Up to                      | V  | 690         |              | 690         |              | 690         |              | 690         |              |
| Frequency limits                      | Of the operational current | Hz | 2540        |              | 25400       |              | 25400       |              | 25400       |              |
| Conventional thermal<br>current (Ith) | θ ≤ 60 °C                  | A  | 25 (1)      | 20           | 25 (1)      | 25           | 32 (1)      | 32           | 40 (1)      | 40           |

The maximum continuous current (Ith) that can be withstood by each pole of the contactor must be greater than the RLA of the motor.

| Contactor type                                                                  | LC                         | :1 | D09    | DT20 | D12    | DT25  | D18    | DT32  | D25    | DT40  |  |
|---------------------------------------------------------------------------------|----------------------------|----|--------|------|--------|-------|--------|-------|--------|-------|--|
|                                                                                 |                            |    | (3P)   | D098 | (3P)   | D128  | (3P)   | D188  | (3P)   | D258  |  |
| Pole characteristics                                                            |                            |    |        |      |        |       |        |       |        |       |  |
| Rated operational current (le)                                                  | In AC-3, θ ≤ 60 °C         |    | 9      | 9    |        | 12    |        | 18    |        | 25    |  |
| (Ue y 440 V)                                                                    | In AC-1, θ ≤ 60 °C         | A  | 25 (1) | 20   | 25 (1) | 25    | 32 (1) | 32    | 40 (1) | 40    |  |
| Rated operational voltage (Ue)                                                  | Up to \                    |    | 690    |      | 690    |       | 690    |       | 690    |       |  |
| Frequency limits                                                                | Of the operational current | Hz | 25400  |      | 25400  | 25400 |        | 25400 |        | 25400 |  |
| Conventional thermal<br>current (lth)                                           | θ ≤ 60 °C                  | A  | 25 (1) | 20   | 25 (1) | 25    | 32 (1) | 32    | 40 (1) | 40    |  |
| Rated making capacity (440 V)                                                   | Conforming to IEC 60947    | A  | 250    | 1    | 250    | 250   |        | 300   |        | 450   |  |
| Rated breaking capacity (440 V)                                                 | Conforming to IEC 60947    | A  | 250    |      | 250    | 250   |        |       | 450    |       |  |
| Permissible short time rating                                                   | For 1 s                    | A  | 210    | 210  |        |       | 240    |       | 380    |       |  |
| No current flowing for preceding<br>15 minutes with $\theta \le 40 \ ^{\circ}C$ | For 10 s                   | A  | 105    |      | 105    | 105   |        |       | 240    |       |  |
| 15 minutes with 0 \$ 40 °C                                                      | For 1 min                  | A  | 61     |      | 61     | 61    |        |       | 120    |       |  |
|                                                                                 | For 10 min                 | A  | 30     |      | 30     | 30    |        | 40    |        | 50    |  |

The Rated Making Capacity (RMC) and Rated Breaking Capacity (RBC) of the contactor must be greater than the maximum starting current (expressed as a multiple of the motor's nominal current (A): coef. 6 in the example).

| Contactor type                                                |                          | LC1 |    | D09    | DT20<br>D098 | D12<br>(3P) | DT25<br>D128 | D18    | DT32<br>D188 | D25<br>(3P) | DT4<br>D25 |
|---------------------------------------------------------------|--------------------------|-----|----|--------|--------------|-------------|--------------|--------|--------------|-------------|------------|
|                                                               |                          |     |    | (3P)   | D098         | (3P)        | D128         | (3P)   | D 100        | (3P)        | DZ5        |
| Pole characteristics                                          |                          |     |    |        |              |             |              |        |              |             |            |
| Rated operational current (le)                                | In AC-3, θ ≤ 60 °C       |     | A  | 9      |              | 12          |              | 18     |              | 25          |            |
| (Ue y 440 V)                                                  | In AC-1, θ ≤ 60 °C       |     | A  | 25 (1) | 20           | 25 (1)      | 25           | 32 (1) | 32           | 40 (1)      | 40         |
| Rated operational voltage (Ue)                                | Up to                    |     | V  | 690    |              | 690         |              | 690    |              | 690         |            |
| Frequency limits                                              | Of the operational curre | nt  | Hz | 25400  |              | 25400       |              | 25400  |              | 25400       |            |
| Conventional thermal<br>current (lth)                         | θ ≤ 60 °C                |     | A  | 25 (1) | 20           | 25 (1)      | 25           | 32 (1) | 32           | 40 (1)      | 40         |
| Rated making capacity (440 V)                                 | Conforming to IEC 6094   | 7   | A  | 250    |              | 250         |              | 300    |              | 450         |            |
| Rated breaking capacity (440 V)                               | Conforming to IEC 6094   | 7   | A  | 250    |              | 250         |              | 300    |              | 450         |            |
| Permissible short time rating                                 | For 1 s                  |     | A  | 210    |              | 210         |              | 240    |              | 380         |            |
| No current flowing for preceding<br>15 minutes with θ ≤ 40 °C | For 10 s                 |     | A  | 105    |              | 105         |              | 145    |              | 240         |            |
| is minutes with 0 \$ 40 C                                     | For 1 min                |     | A  | 61     |              | 61          |              | 84     |              | 120         |            |
|                                                               | For 10 min               |     | A  | 30     |              | 30          |              | 40     |              | 50          |            |

Check that the starting current value and the maximum starting time are compatible with the contactor's thermal constraint.

Minimum interval between two cycles: 15 min (2)

For short times, a contactor (e.g. star contactor) can be used above its design current, provided one check that:

- > the current does not exceed the maximum permissible current for the given operating time
- > the minimum interval between two cycles is complied with.

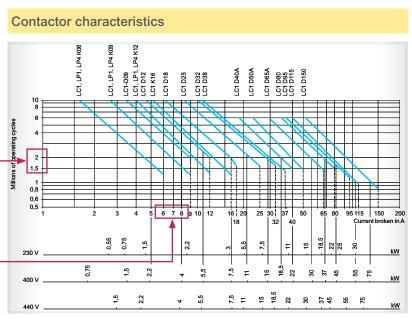


Nominal voltage (Un) in delta cabling = **400 V 1** Rated Load Amperage (RLA) for this voltage = **7.2 A 2** 



Maximum starting time: 5 sec 1

# Method for selection of the circuit breaker and contactor


## (3) Choice of contactor (continuation)

#### Examples of project data

The motor shall perform at most 11 starts per hour during 15 years, i.e.:  $11 \times 24 \times 365 \times 15 = 1.5 m$  cycles

|              |       | мот. з            | $\sim$ XYZ1 | 00 (            | ) C  | ି            |
|--------------|-------|-------------------|-------------|-----------------|------|--------------|
| BRAN         | D     | N° 8              | 945/79      | 22              | 2 kg |              |
| Code :       |       |                   |             |                 | т    |              |
| ືIP55 Io     | ol. F | 40°C              | S1          | %               | c/h  |              |
|              | Hz    | min <sup>-1</sup> | kW          | <b>cos</b> φ    | Α    |              |
| ∆ <b>380</b> | 50    | 1415              | 3           | 0.83            | 7.1  |              |
| ∆ <b>400</b> | 50    | 1420              | 3           | 0.78            | 7.2  | $\mathbb{H}$ |
| ∆ 415<br>    | 50    | 1430              | 3           | 0.74            | 7.3  | ×            |
|              |       |                   |             | g               |      | IEC X000X    |
|              |       | мо                | TEURS       | <sup> h</sup> ( | ) C  | 0            |

Following thermal sizing of the cables, it was decided to use **2.5 mm<sup>2</sup> flexible cable** to connect the contactor.



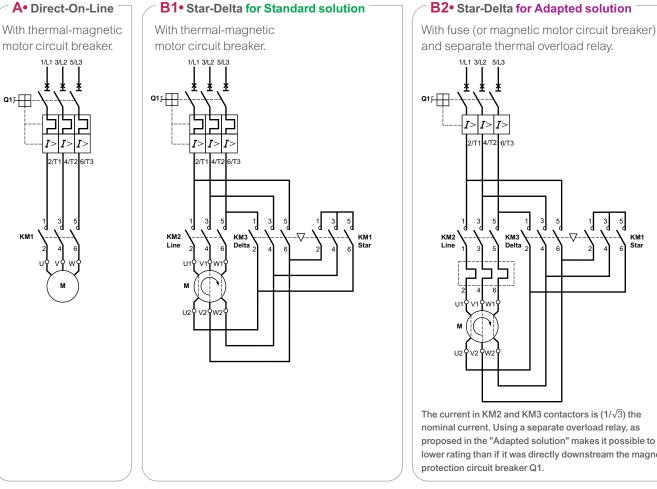
When a contactor has been selected, you must check that its durability will be greater than or equal to the required value.

The contactor's durability depends on the current that it will have to shut off (generally the operating current).

| Contactor type       | I            | LC1             | D09<br>and D12<br>DT20<br>and DT25 | D18<br>(3P) | D25<br>(3P) | D32 | D38 | D18 and<br>D25 (4P)<br>DT32 and<br>DT40 | D40A to<br>D65A<br>DT60A<br>and<br>DT80A (1) | D80<br>and D95       | D115<br>and D150      |
|----------------------|--------------|-----------------|------------------------------------|-------------|-------------|-----|-----|-----------------------------------------|----------------------------------------------|----------------------|-----------------------|
| Power circuit con    | nections     |                 |                                    |             |             |     |     |                                         |                                              |                      |                       |
| Screw clamp terminal | connections  |                 |                                    |             |             |     |     |                                         |                                              |                      |                       |
| Tightening           |              |                 | Screw clar                         | np termir   | nals        |     |     | Connector<br>2 inputs                   | Screw<br>clamp<br>terminals                  | Connector<br>1 input | Connector<br>2 inputs |
| Flexible cable       | 1 conductor  | mm <sup>2</sup> | 14                                 | 1.56        | 2.510       |     |     | 2.510                                   | 135                                          | 450                  | 10120                 |
| without cable end    | 2 conductors | mm <sup>2</sup> | 14                                 | 1.56        | 2.510       |     |     | 2.510                                   | 125<br>and 135                               | 425                  | 10120<br>+ 1050       |
| Flexible cable       | 1 conductor  | mm <sup>2</sup> | 14                                 | 16          | 110         |     |     | 2.510                                   | 135                                          | 450                  | 10120                 |
| with cable end       | 2 conductors | mm²             | 12.5                               | 14          | 1.56        |     |     | 2.510                                   | 125<br>and 135                               | 416                  | 10120<br>+ 1050       |

The selected contactor must be able to receive the specified cables.

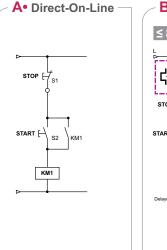
| Mechanical interlocks            |                            |           |       |  |
|----------------------------------|----------------------------|-----------|-------|--|
| Mechanical interlock with        | LC1 D80 and D95 ( $\sim$ ) | LA9D4002  | 0.17  |  |
| integral electrical interlocking | LC1 D80 and D95 ()         | LA9D8002  | 0.170 |  |
|                                  | LC1 D115 and D150          | LA9D11502 | 0.290 |  |
| Mechanical interlock without     | LC1 D09 o D38              | LAD9V2    | 0.04  |  |
|                                  | LOI DOU O DOU              |           | 0.040 |  |
| integral electrical interlocking | LC1 D40A to D65A           | LAD4CM    | 0.040 |  |
|                                  |                            |           |       |  |


In star-delta configuration, the selected contactor must be capable of mechanical and electrical interlocking.

If electrical interlocking equipment does not exist for the selected contactor, the interlocking system must be cabled by the user (see next page).

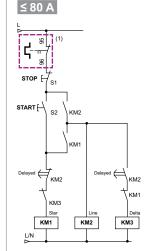
Star-delta starting with *mechanical* and electrical interlocking of the contactors is required.

# **Electrical diagrams**


### Power diagrams

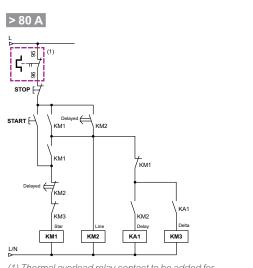


#### **B2•** Star-Delta for Adapted solution




#### Control diagrams




Push button S2 instantaneously activates contactor KM1, which is then self-maintained. When activated, push-button S1 opens the line.

B• Star-Delta – Electrical interlocking



Push button S2 instantaneously activates contactor KM1 (Star contactor), which is self-maintained.

- > KM1 activates KM2 (Line contactor), which is
- self-maintained, and locks KM3 (Delta contactor) open. > KM2 activates the time delay.
- > Once the time delay is over, KM1 is deactivated and KM3 (Delta contactor) is activated.



(1) Thermal overload relay contact to be added for the Adapted solution.

Same principle as beside, except KA1.

This relay provides a short extra delay before KM3 is closed, thereby avoiding the risk of short-circuit during Star-Delta transition.





Acti9 iC60, Multi9 for OEMs **Circuit breakers** 



TeSys Deca, Giga **GV Motor Motor circuit breakers** 



Harmony Push buttons and switches



Spacial **Enclosures** 



Climasys Enclosure thermal management (fans, heating elements, thermostats)



TeSys Vario Switch disconnectors



Linergy DS **Distribution blocks** 



Linergy TR **Terminal blocks** 



Modicon **DC** power supplies



Harmony Relays



TeSys K, Deca, Giga Contactors, relays, thermal overload relays



Altivar & Altistart Variable speed drives and soft starters



Modicon M171/M172 Logic controllers





Acti 9 iEM3000 **Energy meters** 

Harmony HMI

Details of these components are in Digi-Cat, a complete library of periodically updated catalogues available in just one download.



http://digi-cat.schneider-electric.com/download.html

Did you know that Schneider Electric provides

of the components you need to build your Control panels simply and efficiently?

# Note



#### Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 92506 Rueil Malmaison Cedex (France

RCS Nanterre 954 503 439 Capital social 896 313 776 € www.se.com

07-2023 CPTG007\_EN

© 2023 - Schneider Electric - All rights reserved. All trademarks are owned by Schneider Electric Industries SAS or its affiliated companies.