Emergency Power Systems Design

OPOWEr

ASCO Power Technologies[™]

Dan Fischer- Regional Systems Architect nando – Product Manager – M Pete Rossomando – Product Manager Power Control Systems

Paralleling Switchgear Design Considerations

Paralleling/Synchronizing Switchgear refers to the controls and equipment required for connection of multiple sources, usually generators to a common bus and/or a Utility Source and the load control necessary for the specific application in the event of a power outage

- Multiple generators inherently provide redundancy by design vs a single larger generator
- Can provide N+1 configuration/capacity for maintainability. Ex: 1 Generator can be down for maintenance with full backup capacity available
- System Priority Load Control ensures the most critical loads are connected to backup power when necessary – *Life Safety*, *Critical*, *Equipment*
- Ensure a high level of reliability and resiliency
- Eliminate single points of failure

Emergency Power Systems - Applications

Government Facility 24 x 7 x 365

© 2021 Schneider Electric. All Rights Reserved. | Page 5 Confidential Property of Schneider Electric

ASCO Power Technologies[®]

Telecom

Industrial Buildings Code Driven – NEC, NFPA

Business Driven - \$\$\$

Life Is On

Emergency Paralleling System Network Architecture

Separate networks allow for easier maintenance, troubleshooting, enhances security & reliability Confidential Property of Schneider Electric | Page 6

Electric

Power Control Systems Generator Controls Architecture

Dedicated PLC for each generator with independent CPU – Increased Reliability

- Provides Engine start, monitoring, communication and circuit breaker control
- Communicates with System Master
- Control should be independent from the System Master PLC or HMI
- Starts engine independent of System Master PLC
- Independent PLC eliminates reliance
- Son other components and reduces points of failure
- Loss of communication to Master PLC or System HMI does not affect operation of Generator PLC

Generator Control Architecture – Automatic Synchronization Generator Generator Synchronization matchese

- - Generator synchronization matches generator speed/frequency with another source (Other generators and/or utility).
 - Voltage levels and phase relationships need to be considered.
- Why is synchronization needed?
 - Controls power surges. Avoids reverse power, overpower and mitigates transients when bringing additional power sources online.
 - Reduces electrical stress on generators and \sim 5 switchgear. Helps prevent high currents and breaker wear.
 - Reduces mechanical stress on generators and prime movers. Helps prevent bent drive shafts and broken couplings.
- What conditions must be met for two sources to be synchronized?
 - The number of phases must be the same.
 - 2. The direction of rotation must be the same.
 - 3. The voltage amplitudes must be closely matched.
 - The frequencies must be closely matched. 4.
 - 5. The phase angles must be closely matched.

Redundant Load Sharing

Internal

connection

- Hardwired Engine Start and Common Alarm with Engine Start Circuit Monitoring
- Independent Generator PLCs
 - No Reliance on Master PLC
 - Eliminates Point of Failure S
 - Engines can be started in absence of Master PLC(s)
- Hardwired Manual Control Station for supervised operation and engine interface
- Consider utilizing synchronizing devices that include a Load Share capability
- Redundant load sharing eliminates a single point of failure

Generator Control Architecture – Hardwired Backup Redundancy

Reduce Single Points of Failure

Communication to engine and some Status is unavailable

But.....

Synchronizer

- Full Automatic Control remains available Provides Redundancy
- CEliminates Single Point of Failure
- Provide Engine start, breaker close & trip with hardwired backup
- Common Shutdown, Engine running, Autostart, breaker status, PLC stopped & control voltage failure status lights are hardwired
- Synchronizer synchronizes oncoming generator and closes breaker connected the it to the bus
- No manual intervention required by the operator
- Hardwired Engine Control Switches allow operator to start or stop engine manually if needed

annunciate the alarm at an annunciator.

Life Is On

Schneider

Power Control Systems Architecture – System Master Controls Reduce Single Points of Failureching

A single Master PLC failure in a system with redundant Master PLCs results in no loss of automation.

- Generator PLCs are independent of the Master PLC – Loss of Master PLC(s) does not affect Generator PLCs
- Loss of Communication from Master PLC to Generator PLCs does not affect. Generator PLCs or Automation
- If both Master PLCs fail independent Generator PLC can *start engines* automatically and priority 1 loads are automatically added

Hard wired manual backup for Load control

Power Control Systems Master Control Architecture – Manual Paralleling

Include hardwired manual paralleling capability

- Eliminates Automatic Synchronizer Single Point of
- Provides a means to manually close the generator Wer Ter breakers in-phase if an automatic functioning properly – Alternate manual close path
- Manual Paralleling controls are grouped at the Master Control Section
- Controls include a Synchroscope, Selector Switch perty of ASL and Sync Check Relay to assist the operator and prevent out of phase closure
- Completely hard wired, no reliance on automation or touchscreen
- Manual operation not required in front of **Generator Circuit Breaker – Arc Flash** Consideration

Master Control Station property of ASCL

© 2021 Schneider Electric. All Rights Reserved. | Page 28

Power Control Systems – User Interface System Master Controls

POWE

Master Control Section

To BMS or BAS System

MESSAGES **Facility Manager Power Outage Alert**

HMI/Operator Interface Terminal

- Technologies Allows Operator to adjust some parameters – Ex: Load Priorities
- Allows Operator to perform some control operations Ex: System Test
- **Includes System Dynamic One Line**
- Generator and Total System Metering, Status, Alarms & Shutdowns
- **Historical Trending**
- Joint Commission Reporting if required
- **BMS/EPMS** Interface/Gateway
- Includes several levels of Password Protection
- **Email or Text Alarm Notifications**
- System Operation should not be dependent on Touchscreen

now

User Management & System Monitoring

An Operator Interface Panel is Provided for access to User-Adjustable Settings And System Monitoring And Control

Remote Monitoring Stations

24" OIT

Remote Wall Mount HMI

- Remote Monitoring Engines and gear less accessible
- Consider Additional Monitoring And Control Nodes To Allow User Interface Outside the Arc Flash Zone
- Monitoring and control are the same as the System Master OIT
- Connections from System Master Controls via Ethernet, Fiber or M Redundant Fiber
 Remote Workstation

Life Is Or

Confidential Property of Schneider Electric | Page 32

Paralleling System Control Network Single PLC, Single I/O, Ring Topology

Life Is On

Paralleling System Control Network Redundant PLC, Single I/O, Ring Topology

- Increased reliability and uptime for critical applications
- Minimizes single point of failure with redundant master PLC and ring configuration.
- Synchronized CPUs provide Bumpless transfer if one PLC fails – No interruption to program & process
 Additional layer of reliability &
 - protection for relatively low cost

Optional Redundant I/O

Paralleling System Control Network Redundant PLC, Redundant I/O, Ring Topology

Increased reliability and uptime for critical applications Eliminates single point of failure with redundant master PLC, redundant I/O, and ring

Paralleling System Control Network Redundant PLC, Redundant I/O, Ring Topology, Remote IO

Confidential Property of Schneider Electric

Paralleling System Control Network

Redundant PLC, Redundant I/O, Ring Topology, Remote IO, Redundant Communication Connections

Electric

Paralleling System Control Network

Redundant PLC, Redundant I/O, Ring Topology, Remote IO, Redundant Communication Connections, Redundant Switchgear LANs

Confidential Property of Schneider Electric

Electric

DC Power Considerations, ologies

- Reliable DC Power is Required for PLCs, controls, breaker operation
- Engine batteries experience a voltage drop during cranking that can be 24 VDC to less than 12 VDC
- Critical control components cannot function with voltages less than 18VDC. DC-DC convertors and a best battery selector are provided to keep these devices powered up during momentary voltage drops.
- The best battery circuit determines the best available DC voltage from the available battery sources (engine batteries and/or station batteries).
- DC-DC convertors act as a voltage regulator boosting the DC voltage
- A DC Bus Distributes DC power to the Generator and Master Controls
- Mission Critical Systems commonly utilize a combination of 24VDC engine start batteries and a dedicated station battery – 24VDC, 48VDC or 125VDC
- Provide DC DC Convertors in all Generator and Master Sections
- Redundant Station batteries commonly specified in Mission Critical Applications

Best Battery Selector

Station Battery System

DC-DC Convertor

Red, Blue, Black Wires are DC bus

Life Is On

ASCO Power Technologies[®]

Power Control System Automatic Priority Load Control

What happens when the lights go out?

Power Control Systems Automatic Priority Load Control

- What happens next?
- All loads can't be connected immediately
- giestm Loads are connected to the emergency bus as the system connects generators
- The System Controls signal loads (ATS or CB) to connect to the emergency bus in priority order – User adjustable in Master OIT
- Load can be added in priority blocks
- Or in steps

Life Is On

Power Control Systems Automatic Priority Load Control Features

- What happens if an engine fails?
- It depends c
- Traditionally power systems will shed the lowest priority load block
- Current power system designs do nothing unless they have to
- Systems can provide a "load latch" function that compares remaining capacity to real time kW demand of online loads
- If sufficient capacity remains *loads will* If sufficient capacity remains *loads will remain online* preventing unnecessary disconnection and re-connection of loads

Power Control Systems- Automatic Priority Load Control Features

System Master Controls account for changes or failures in System configuration Spower

Load Demand

- Maximizes the efficient use of standby POWE generator capacity by adding or removing generators according to demand
- Calculates kW Demand On The **Emergency Bus**
- **Disconnects Unnecessary Generators And** Allows A Cooldown Period
- Highly specified feature

Bus Optimization Feature

- Controls the number of load blocks connected to the System
- Maximizes Load Connected to the system
- Calculates if the next Load Block can be connected Power Technologies TM
- Specify more often POWEI

Operates When Excess Capacity is Available

Operates When A Generator Fails

Bus Optimization Example

 Bus Optimization is Set to Allow Connection of 90% of Capacity

Each Generator

Is 1000kW

- For this Example, Each Load is 100kW
- The Utility Source is Available
- All ATSs are Connected to the Utility Source

Each Generator Is Signaled to Start

Proy Bus Optimization Example

- The Utility Source Fails and All ATSs are De-Energized
- All ATSs Issue a Start Signal to the Emergency Power System
- The Critical Load is Energized by the UPS

Bus Optimization Begins

Prov Bus Optimization Example

- After a Time Delay Expires, Bus Optimization Begins
- The System is Programmed to Allow Connection of 1800kW (previously set to 90% of online capacity)
- (2) Additional ATSs are Allowed to Connect to the Bus

Continuous Thermal Monitories Typically, NFPA 70E IR scans are performed once a year to

- check cable issues that can cause electrical fires
- Any issues between annual scans won't be detected and the risk remains until the next check up a calendar year later
- Monitors 24x7x365 and immediately notifies the facility **COPONE** With optional expert advisor services, ontine of the facility of the facility
- through more streamlined maintenance planning and scheduling

WITHOUT thermal monitoring

Wireless Temperature Sensors

Power Control Systems – Seismic Certification

ASCO Low Voltage Switchgear & Control Products - 300, 4000, 7000 Series

The Schneider Electric equipment referenced in this Certificate of Compliance has been qualified to the requirements of the listed regional building codes and/or seismic design standards identified below. This certification is based on tri-axial shake-table test results conducted in accordance with globally recognized equipment test protocols. Assessment of earthquake demands (EDS-equipment demand spectrum) and equipment seismic capacity (ECS-equipment capacity spectrum) follows the guidelines contained in ISO 3010 and ISO 13033 respectively. Earthquake demand at location of equipment installation must be less than equipment capacity shown in ECS table to validate seismic conformance.¹

Listing of Regional Codes/Standards				Assumed Maximum Demands (EDS) ² for Regional Codes/Standards					Tested Product Capacity (ECS) ³ for Regional Codes/Standards					
Country / Region	Code Identification	Exceedance Probability	Hazard Level Ground	EDS Horz A _{FLX-H} Ground	EDS Horz A _{RIG-H} Ground	Hazard Level Roof	EDS Horz A FLX-H Roof	EDS Horz A _{RIG-H} Roof	Hazard Level Ground	ECS Horz A _{FLX-H} Ground	ECS Horz A RIG-H Ground	Hazard Level Roof	ECS Horz A _{FLX-H} Roof	ECS Horz A _{RNG-H} Roof
Argentina	INPRES-CIRSOC103	10% in 50 yrs	Zone 4	1.05	0.35	Zone 4	1.89	1.05	Zone 4	2.52	0.84	Zone 4	3.56	1.98
Australia	AS 1170.4-2007	10% in 50 yrs	Z = 0.6	2.21	0.78	Z = 0.22	1.46	0.86	Z = 0.6	2.52	0.89	Z = 0.22	3.56	2.09
Canada*	2020 NBCC	2% in 50 yrs	$S_a = 2.00$	2.00	0.81	$S_a = 2.00$	3.20	2.42	$S_a = 2.54$	2.54	1.02	S _a = 2.05	3.28	2.48
Chile	NCh 433.0f1996	10% in 50 yrs	Zone 3	1.61	0.52	Zone 3	2.89	1.56	Zone 3	2.52	0.82	Zone 3	3.56	1.92
China	GB 50011-2010 (2016)	2% in 50 yrs	$\alpha_{Max} = 1.4$	1.40	0.63	$\alpha_{Max} = 1.4$	2.52	1.89	$\alpha_{Max} = 1.4$	2.52	1.14	$\alpha_{Max} = 1.4$	3.26	2.45
Colombia	NSR-10 Título A	10% in 50 yrs	A _a = 0.5	1.25	0.50	A _a = 0.5	2.25	1.50	A _a = 0.5	2.52	1.01	A _a = 0.5	3.56	2.37
Europe	Eurocode 8 EN1998-1	10% in 50 yrs	a _{Gr} = 0.5	2.25	0.90	a _{Gr} = 0.4	3.24	2.16	a _{Gr} = 0.5	2.52	1.01	a _{Gr} = 0.4	3.56	2.37
India	IS 1893 (Part 1) : 2016	10% in 50 yrs	Z = 0.36	0.90	0.36	Z = 0.36	1.62	1.08	Z = 0.36	2.52	1.01	Z = 0.36	3.56	2.37
Indonesia	SNI 1726:2019	2% in 50 yrs	$S_{s} = 2.5$	2.00	0.80	$S_{s} = 2.25$	3.24	2.16	$S_{s} = 2.5$	2.52	1.01	$S_{s} = 2.25$	3.56	2.37
Japan	Building Standard Law	10% in 50 yrs	Zone A	1.22	0.49	Zone A	2.20	1.47	Zone A	2.52	1.01	Zone A	3.56	2.37
Mexico	CFE MDOC-15	10% in 50 yrs	a ₀ ^r = 490	2.32	0.80	a ₀ ' = 299	3.42	1.97	$a_0' = 490$	2.52	0.87	a ₀ ' = 299	3.56	2.04
New Zealand	NZS 1170.5:2004+A1	10% in 50 yrs	Z = 0.6	1.80	0.80	Z = 0.6	3.24	2.39	Z = 0.6	2.52	1.12	Z = 0.6	3.30	2.44
Peru	N.T.E E.030	10% in 50 yrs	Zone 4	1.24	0.50	Zone 4	2.23	1.49	Zone 4	2.52	1.01	Zone 4	3.56	2.37
Russia	СП 14.13330.2018	10% in 50 yrs	MSK 10	2.04	0.82	MSK 9	1.84	1.22	MSK 10	2.52	1.01	MSK 9	3.56	2.37
Taiwan	CPA 2011 Seismic Design Code	10% in 50 yrs	$S_5^{D} = 0.8$	1.20	0.48	$S_{s}^{0} = 0.8$	2.16	1.44	$S_{s}^{D} = 0.8$	2.52	1.01	$S_{s}^{D} = 0.8$	3.56	2.37
Turkey	TBEC-2018	10% in 50 yrs	$S_{s} = 2.005$	2.41	0.96	$S_{s} = 1.5$	3.24	2.16	$S_{5} = 2.005$	2.52	1.01	$S_{s} = 1.5$	3.56	2.37
United States*	2018 IBC / ASCE 7-16	2% in 50 yrs	$S_{DS} = 2.00$	2.00	0.80	$S_{DS} = 2.00$	3.20	2.40	$S_{DS} = 2.54$	2.54	1.01	$S_{DS} = 2.07$	3.30	2.48

Page 1 of 3

Installation Restrictions⁵

Schneider Gelectric

Equipment ECS must exceed EDS at install location and be anchored per manufacturer's Instruction Bulletin to validate certification

Seismic Certificate of Compliance

- IBC is current seismic certification
 - IBC certification *requires* shake table testing
 - IBC replaced UBC in 2000

Specify IBC seismic label if seismic certification is required

Applies to Low & Medium Voltage Switchgear

Certificate Number: 0-01000000

Arc Flash Considerations

NEC Specified Methods – Article 240.87(B)

"One of the following means shall be provided and shall be set to operate at less than the available arcing current"

- **Energy-Reducing maintenance switching with local** status indication
- **Energy Reducing active arc flash mitigation**
- **Differential Relaying**
- **Zone Selective Interlocking**
- An Instantaneous trip that is less than the available arc current
- An Instantaneous override that is less than the available arcing current – Temporary Adjustment of the Instantaneous trip setting to achieve arc energy reduction shall not be permitted
- An approved equivalent means

2020 NEC added Article 240.87(C) – Performance testing requiring:

- 1. Documents that show the implemented arc reduction method operates below the arcing current.
- 2. Documented field tests that prove the installed method performs as intended.

Differential Relaying

Paralleling Switchgear Design Considerations

Multiple Operational Modes Emergency Standby Power

In Customizable bus configurations

Confidential Property of Schneider Electric

Power System Modes of Operation

- <u>Open transition</u> is the transfer of load from one power source to another power source by interrupting one power source before the other power source can feed the load (Break before Make).
- <u>Closed Transition</u> is the transfer of load between two power sources without interruption of power (Make before Break). Typically, closed transition is 100ms or less. Closed transition is typically used on retransfers to utility power or during transfer tests of emergency equipment so that load is not interrupted.
- <u>Closed Transition/Soft-load</u> like closed transition, soft-load transition parallels two power sources. In this mode the sources can be paralleled for extended periods. This method is used to decrease loading on the original source while increasing loading on the alternate source.
- Extended Parallel with Utility is the connection of the normal (utility) power source with another power source (Generator Paralleling Switchgear) for an extended period of time hours, days, etc. Used for peak shaving, curtailment, storm modes, etc.

Segmented Bus Configuration

- Concurrently connect generators to isolated segments to bring multiple gensets online within the 10 second timeframe required for critical power applications NEC 517.32-34
- Distribute remaining generation capacity to the loads on each bus when segments are tied together – this increases overall capacity to maximize availability if a generator fails
- Isolate faults if one bus is lost, keeping the series remainder of the facility powered
- Can shut down one section completely for maintenance.
- Requires synchronization across tie breaker and voltage sensing on each segment
- More Complex Sequence
- Consider tie breaker failure modes Ex: Tie fails to automatically close

Load Bank

- **Provides Redundancy via** separate utility feeds
- Allows for maintenance
- **Open & Closed transition**, Soft Load or Extended **Parallel With Utility** Operation
- Load Control via Electrically **Operated Circuit Breakers**
- More complex sequence of operation
- **Requires additional** components for utility breakers and parallel with utility operation
- Utility Main and Gen Main act as transfer pairs -**Electrically Interlocked**
- Consider main breaker failure modes
- Utility Breaker 52UM fail to open inhibits transfer to its respective bus
- Load Bank on Gen Bus

Confidential Property of Schneider Electric

Ring Bus Configuration

- **High Reliability**
- Two available paths to supply critical loads
- Isolate faults via bus differential if one bus is lost, keeping the remainder of the facility powered
- Can shut down one section completely for maintenance.
- Typically used in Medium **Voltage Applications with** large power requirements -**Ex: Data Center**
- **Complex Sequence Typically Soft Load Parallel** with utility operation
- Multiple Configurations N+1, N+2, etc

Footprint Support Jogies Many variables can affect the switchgear sizing

ASCO[®]

0

52F12

DISTRIBUTION

SECTION 5

00

00

00

52G2

GENERATOR 2

SECTION 6

32.00

SECTION 4

OVER-ALL FRONT DOOR VIEW

Power System Sequence of Operation

SECTION 26 13 24, PAGE 1

MEDIUM VOLTAGE SWITCHGEAR

SECTION 26 13 24 - MEDIUM VOLTAGE SWITCHGEAR

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Provide pricing and documentation per the instruction within the Request for Proposal (RFP) associated with this specification section. Alternate bids are described in Part 4 of this document.
- B. Drawings and general provisions of the Contract, including General Conditions and Division 1 Specification Sections, apply to this and other Sections of Division 26.

1.2 SUMMARY

A. Provide an overall price ("base bid") for the complete equipment package specified; complete with all accessories and services specified and required in the RFP document.

Base Bid	Description	Quantity	
Complete Package	Provide 12.0kV Medium Voltage Indoor Switchgear as shown on the drawings.	As Noted in RFP	
Complete Package	Provide 12.0kV Medium Voltage Outdoor Switchgear as shown on the drawings.	As Noted in RFP	

- B. Equipment Supplier shall be responsible for the following:
 - Switchgear specified under this section shall consist of 15kV, indoor and outdoor metal-clad, switchgear lineups associated with the main distribution utility and generator power. The equipment will be placed on "skids" to minimize installation requirements in the field. These Switchgear lineups are designated as follows:
 - "SMV-AX", "SMV-BX", "SMV-AV", and "SMV-BY" contain the utility/generator transfer pairs and load distribution feeder breakers as indicated on the drawings. This equipment will be NEMA 1 type construction and will be controlled by the main PLC for the electrical infrastructure.
 - b. "SMV-GPX" and "SMV-GPY" is the generator paralleling switchgear and contain the generator distribution for the electrical system. This equipment will be NEMA 3R type construction and houses the paralleling controls of the system.
 - c. There will be a Remote Annunciating Panel (RCP) located inside the building. The RCP shall house a touchscreen that will allow an operator to remotely monitor and control the medium voltage infrastructure.
 - d. The medium voltage infrastructure equipment described herein is designed to automatically control the utility service feeders and (16)-3500KW standby generators to provide critical, essential and house power to the data center facility.
 - Provide all the required settings, logic and functionality required for the protective relaying.
 Equipment supplier will be required to have this completed prior to shipment. All protective settings shall be provided by the engineer.

ISSUED FOR OFE PRICING - REVIEW

DATE: 01/31/2020

Project Specification

SECTION 26 13 24, PAGE 1 MEDIUM VOLTAGE SWITCHGEAR – APPENDIX A

Appendix A

SEQUENCE OF OPERATION

Table of Contents

1		Genera	al		
	1.1	1 Overall System One-line			
1.	1.2	Switch	haear Lineups	ő	
		1.2.1	SMV-GPX (Generator Control Switchgear)	6	
		1.2.2	SMV-GPY (Generator Control Switchgear)	7	
		1.2.3	SMV-AX (Utility Main Distribution Switchgear)		
		1.2.4	SMV-AY (Utility Main Distribution Switchgear)		
		1.2.5	SMV-BY (Utility Main Distribution Switchgear)		
		1.2.6	SMV-BX (Utility Main Distribution Switchgear)		
	1.3	Contro	ols		
	1.4	Remo	te Annunciators		
	1.5	Contro	ol Power		
	1.6	UPS In	iterface		
	1.7	Contra	ol Switches		
		1.7.1	Master Control Station		
		1.7.2	Generator Controls		
		1.7.3	Circuit Breaker Control Switches	14	
3		Altern	ate Utility Mode	1	
	3.1	Load			
	3.2	Auton			
		3.2.1	Loss of Utility Source on Bus AX (with Alternate as Preferred Backup)		
		3.2.2	Return from Loss of Utility Source with Bus AX fed from Utility BY		
		3.2.3	Loss of Utility Source on Bus BY (with Alternate as Preferred Backup)		
		3.2.4	Return from Loss of Utility Source with Bus BY fed from Utility AX		
		3.2.5	Loss of Utility Source on Bus AY (with Alternate as Preferred Backup)		
		3.2.6	Return from Loss of Utility Source with Bus AY fed from Utility BX		
		3.2.7	Loss of Utility Source on Bus BX (with Alternate as Preferred Backup)		
		3.2.8	Return from Loss of Utility Source with Bus BX fed from Utility AY		
4		Genera	3		
	4.1	Gener	ator Mode with Both Tie Circuit Breakers Closed		
		4.1.1	Possible Failure Modes		
		4.1.2	Block Load Control		
	4.2	Gener	ator Mode with One or Both Tie Circuit Breakers Open		
	100111	ED EOR O		DATE: 01/21/2020	

Project Specific Sequence of Operation

Project Specific Sequence of Operation

- Most critical element of system design
- Can impact equipment/component selection
 - Can affect system short circuit rating
- Can impact pricing/bid leveling
- Eliminate Single points of failure
- More efficient Startup/Commissioning process
- Consider failure modes Ex: What happens if a Generator or Tie Circuit Breaker fails to close (or open)

Power Systems Low Voltage Standards

UL 891	- Nel '	
Switchboards		Powe

- Based on NEMA Standards Dead Front Switchboard Construction in accordance with NEC
- Molded Case, Panelboards, Insulated case breakers as defined in UL 489 allowed
- Fusible Switches allowed
- ANSI Rated Breakers as defined by ANSI 37.16, ANSI 37.13 and UL1066
- 3 cycle short circuit rating/test
- No barriers or compartmentalization required
- Typical AIC ratings 42KAIC, 50KAIC, 65KAIC, 100KAIC 150KAIC, 200KAIC
- Defines an interrupting current rating for the breaker

- Based on ANSI Standard C37.20.1 for Metal Enclosed Low Voltage Circuit Breaker switchgear
- Drawout Power circuit breakers as defined in UL 1066 and ANSI are the only type allowed
- 4 cycle short circuit rating/test, 30 or optional 60 cycle short time test
- Heat Rise Test
- Complete breaker compartmentalization required

UL 1558

Metal-Enclosed Low-Voltage Power Circuit Breaker Switchgear

- Typical AIC ratings 65KAIC, 85KAIC, 100KAIC, 200KAIC
- Defines an interrupting current rating and short time rating (30 cycle rating) for circuit breakers
 Life Is On

Power Systems Medium Voltage Standards – ANSI **Common in Mission Critical Applications due to safety and maintenance features** -M

- Drawout circuit breaker
- Compartmentalized construction with **Grounded metal barriers**
- Instrument/control compartment isolated from Property of ASC primary voltage
- Automatic shutters
- Insulated bus
- Drawout/Disconnect type voltage transformers Control power transformers (CPT) and voltage transformers (VT)
- Grounded breaker truck in and between test/disconnected and connected positions
- Voltages range 5kV class to 38kV class
- Arc Resistant per ANSI 37.20.7

			1	
	IEEE Std C	37.20.2-1999 Staniston of ad C37.20.2-1993)		
tandard for Metal gear	-Clad			
mmittee				
gineering Society				
uber 1999 ards Board				
clad (MC) medium-voltage switchgear that co covered. MC switchgear is compartmentalize main tax, and both incoming and outgoing outs current ratings of 1200 A, 2000 A, and 3 0, instruments, netering, relaying, prote ce conditions, natings, temperature imitatio of (dietectric) withstand voltage requirement rol, cumulative loading, current transformers	ntains drawout electr id to isolate all compu- sar range from 4.76 k 000 A. MC switchgea ctive, and regulating res and classification s, test procedures, ar s, drawout, indoor, in	ically operated onents such as rounded metal V to 38 KV with r also contains g devices, as n of insulating n d applications estrumentation,	dif	STM
ing, metal-clad (MC) switchgear, metal-enclor ing terms, switchgear assemblies, transforms	ied (ME) power switcl er accuracy, voltage t	hgear, outdoor, ransformers	09.	
cal and Electronics Engineers, Inc. prk, NY 10016-5997, USA			*	
to installe or Electrical and Electronics Engineers, Inc. bished 7 July 2000. Printed in the United States of American 1-1826-X SUH64797	0ra			
1-1630-3 SIS94797 fron may be reproduced in any form, in an elect				
		∲IEEE		
	20.7	IEEE Guide fo Switchgear I Internal Arci IEEE Power Engin Spensored by the Switchgear Committee	or Testing Me Rated Up to 3 ng Faults eering Society	tal-Enclosed 38 kV for
	C37.2	555 3 7 A Annua Nair Yok Y, Yok A 4 January 205		IEEE Skd C37,20,7**-2007 (Peeper d IEEE Skd C37,20,7**-2007
		18 January 2008		naaa wax coraan r 4001)

IEEE S

Switch

et the EEE Power E

at ISBN 0-71