ther is the lad is too small, the chanel may shut down automatically. Only transformers
that are certified tor use with electronic switches thay are certified for
may be connected.

Universal dimming actuator REG-K

REG-K/2300/500 W Art. Ho . MTN649350

Universal dimming actuator REG-K/230/1000 W

Universal dimming actuator AEG-K/2x230/300 WT W

Universal dimming actuator REG-KK. $4 \times 230 / 150 \mathrm{~W}$

For your safety

A DANGER

injury from electrical current. All work on the device should only be carried out
by trained and skilled electricians. Observe the ountry-specificic regulations as well as the valid KNX guidelines.
$\triangle \begin{aligned} & \text { CAUTION } \\ & \text { Damage to the device. }\end{aligned}$
Only operate the device according to the specifications stated in the Technical data.
-All devicices that are installed next to the actuato must be equipped with at least basic insulation
$\widehat{\text { CAUTION }} \begin{aligned} & \text { Damage to }\end{aligned}$
Damage to the device.
Do not connect any yomination of capacitive
and inductive loads to one channel.
$\triangle{ }^{\text {caution }}$
Danger of device malfunctions.
Each dimming channel recuires a minimum load
tor operation (see technical datal It this is not Each dimming channel requires a minimum load
or operation see technical data). If this is not
reached, maltunctions may arise. reached, malfunctions may arise.
$\mathbf{1}$ In the case ef a mixed load combination of ohmic and inductive, or ohmic and capacitive loads) on
one channel, the ohmic load may not exceed one channel, the ohmic load may not exceed
30% of the total connected load of this channe Otherwise, the wrong load might be detected. Different loads may be connected to different channels.
i dimmed. The risk of overioading and the isk of uns.
being connected is too high.

When using inductive transformers, the lo	Meaning of the displays			
connected to the secondary circuit must be at east half the size of the nominal load of the transformer. If the load is too small, the channel may shut down automatically. Only transformers that are certified for use with electronic switche	Operat onal (green) (green)	Channel status LED (yellow)	Channel error LED (red)	
1 Socket-outlets may not be dimmed. The risk of overloading and the risk of unsuitable appliances being connected is too high	On			Universal dimming actuator ready for voltage and bus voltage available) and channel switched off
Universal dimming actuator introduction The universal dimming actuator REG-K (referred to as actuator below) allows you to connect the following loads to each channel and then switch and dim them	On	On		Universal dimming actuator ready for voltage and bus voltage available) channel switched on (switching object = "1") or load detection
(depending on the type of actuator you have, you will have one or more channels available): - ohmic loads (e.g. 230 V incandescent lamps) - inductive loads (e. g. inductive transformers with lowvoltage halogen lamps)	On		On	Overload or short circuit. The channe has been switched off. Mains and bus voltage available
- capacitive loads (e. g. electronic transformers with low-voltage halogen lamps) - a combination of ohmic and inductive loads - a combination of ohmic and capacitive loads The universal dimming actuator automatically	On	On	On	No load at output (idle). The channel has been switched off. s and bus voltage available
recognises the connected loads. You can connect up to ten extension TELE inserts (art. no. MTN573998). You can also connect any number of	-			No bus voltage and channel switched off, or no mains voltage
	-	On		No bus voltage and channel switched on
connected luminaires with the channel keys or us, push-buttons connected to the extension inputs. Dimming will be continuous (up or down) for as long as the key is pressed. The settings made via the ETS are not effective.	-		On	Overload or short circuit and no bus voltage. The channel has been switched off. off.
The actuator has a bus coupler. It is installed on a DIN rail acc. to EN 60715 , with the bus connection made via a bus connecting terminal. A data rail is not required.	-	On	On	No load at output (ide) and no bus voltage. The channel has been switched off. off.
Connections, displays and operating elements	Flashes	On/Off	All on	Excess temperature All channels that are switched on are dimmed to minimum brightness. Channels which are currently switched off cannot also the section "How to recognise potential faults".
	On	-		Universal dimming actuator ready for operation (mains voltage and bus voltage avaliable) and channel switched of

(A) Under the cable cover: Bus connecting terminal,
programming button and programming LED (red) (8) Bus connecting terminal
© Programming button
(©) Programming LED (red)
(E) Operating LED "RUN" (green)
© Channel status LED (yellow) for the corresponding
© Channel error LED (red) for the corresponding
\oplus Channel Channel keys for manually controlling the channel in
\oplus Channel keys for manually controlling the chann
question
(1) Channel terminals for loads and extension unit
(1) Supply voltage

(3) Connect the bus voltage

A RANGER
ko fatal injury from electrical current. he outputs may cariy an electrical voltage even hen the dimmer is switched off. Always he supply before working on connected loads
$\Delta \begin{aligned} & \text { WARNING } \\ & \text { Risk of fatal injury from electrical current. The }\end{aligned}$ device could become damaged. Saiety clearance must be guaranteed in
accordance with 1 ICC $60664-1$. There must be a
 330 V supply cable and the KNX line.

$24 \mathrm{Km!}$

1. The installation site must provide sufficient cooling and unimpeded air circulation through the

CAUTION
The extension inputs must be connected to the
same phase as the power supoply of the dimming same phase as the power supply of the dimming
actuator.
i The two L and N connections are each bridged internally. When several devices are connected series, bridges must also be inserted in the
connecting terminals so that when the termina are removed from one device, the next devices the series are not damaged by power supp
surges.

4) Connect the load and extension uni (5) Connect the load voltage

Putting the actuator into operation

(1) Press the programming button.
(2) Load the physical address and application into the device from the ETS.
The program ming LED goes out.
The operating LED lights up: The application was loaded successtully, the device is ready for operation.

Operating the actuator

Operate th
$-K N X$

- KNX
mechanical extension units (conventional p
button) and/or electronic extension units
Channel buttons on the actuator
If bus voltage is available, operation via the extension units and channel keys depends on the parameters o the application (see the separate application

If there is no bus voltage, you can do th
the extension units and channel keys:

- Switch on/off: press the button briefly
- Dim brighter/darker: press the button and hold it
down
down
Activate/deactivate memory function (switch on a
last brightess last brightness value): press the button briefly 10

Load detection

The fist ime a channel is switched after the mains voltage is switched on, after a load is connected or a tite a shor circuit or overload at the output has been
rectified, load detection will be carried out automation (to determine whether an inductive, capacaitivi or ohmmic
load is connected). When this hapopens, to e channel switches on for approx. 5 seconds at the maximum brightness value, is then extinguished briefly, and then parameterised brightness.

What should I do if there is a problem? The brightness of the connected lamps is reduced to a minimum (the lamps might then switch of
the actuator is too high, all the channels which are switched on will be dimmed to he channels off - you can no longer switch them on dim them.
the temperature decreases again within
approx. 15 minutes, the previous values will be rehannels will be switched off automatically. You can then only switch the channels on again when ommands received in the intervening period will be lost.
i Excessive temperature in the universal dimming actuator is normally caused by veveroading the
outputs, or insufficienen heat dissipation from the uputs, or insufficient heat
universal dimming actuator.
When several dimming actuators are installed next to one another, they might cause each other to heat up.
Make sure that an electrician detects and temperature before putting the device back into operation.

The connected lamps switch off automatill and an no longer be switched or dimmed

In the case of a short circuit, an overload or open circuit, the corresponding chan
eror display lights up.
When using inductive transformers, the the secondary circuit must be at least hall the size of he nominal load of the transformer. If the load is too mall, the channel may shut down automatically. Have an electrician rectify the cause. The first time the
channel is switched after the fault is rectified, load detection will be carried out automatically.
Aterwards, you can use the actuator as normal again.

An connected lamps switch off automaicaly

 an no longer be switched or dimmed.switched on again, the channels remain switched off. The first time the channel is switched after the mains oltage is switched on, load detection will be carried

If there is no bus voltage, the lamp will not be
switched to its full brightness if it is switched on via The extension unit or the channel key.
is switched on. The lamp is memory function on//off), press the key briefly ten

Technical data		The changes in power relative to the ambient temperature can be seen in the diagram which follows.		
Supply from KNX:	DC 24 V , approx. 5 mA	T		
Insulation voltage:	AC 4 kV bus/mains voltage			
Nominal voltage:	AC $220-230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$			
Fuse:	The actuator must be fused			
	using a 10 A automatic circuit			
Minimum nominal power per channel:				
ohmic loads	> 30 W			
inductive loads	$>50 \mathrm{VA}$			
capacitive loads	$>50 \mathrm{VA}$		-1-1	
		-5 0	$20 \quad 30354045^{\circ} \mathrm{C}$	
Maximum nominal power lohmic loads/				
		Ambient temperature		
mTN649310:	1000 WNA	Operation:	$-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	
MTN649350: 500 WNA		Storage: $\quad-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
mTN649330:		Transport: $\quad-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$		
2 channels	Channel 1: 300 WNA	Max. humidity:	93% relative humidity, no moisture condensation	
	Channel 2: 300 WNA			
1 channel	Channel 1: 500 WNA	Environment:	The device is designed for use at a height up to 2000 m	
		Type of protection:	IP 20	
MTN649315:		Connections		
4 channels	Channel 1: 150 WNA	Inputs, outputs:	Screw terminals $1.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$	
	Channel 2: 150 WNA	Single-core:		
	Channel 3 : 150 WNA	finely stranded (with	$1.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$	
	Channel 4: 150 WNA	core end sleeve):		
		kNX:	two 1 mm pins for bus connecting terminal	
3 channels	Channel 1: 300 WNA	Maximum cable length between extension unit input and extension unit:		
	Channel 2 : -*			
	Channel 3: 150 WNA			
	Channel 4: 150 WNA	mechanical extension units:		
	Channel 1: 150 W NA	electronic extension units:	20 m (max. 10 items with max. total cable length 20 m)	
	Channel 2: 150 WNA			
	Channel 3 : -*			
	Channel 4: 300 WNA	Nominal voltage Extension units:	AC 220-230 V, $50 / 60 \mathrm{~Hz}$ (identical phase to mains connection)	
2 channels	Channel 1: 300 WNA	Protective functions:	Electronic load detection, short-circuit, overload and idling detection, excess temperature detection (dimming actuator temperature)	
	Channel 2 : -*			
	Channel 3 : -*			
	Channel 4: 300 WNA			
1 channel	Channel 1: 300 WNA	Guidelines:	73/23/EEC Low-Voltage Directive, 85/336/EEC EMC Directive	
	Channel 2: -*			
	Channel 3 : -*			
	Channel 4 : -*	Device width: MTN649350 MTN649310: MTN649330 MTN649315:	$\begin{aligned} & 4 \text { modules }=\text { approx. } 72 \mathrm{~mm} \\ & 4 \text { modules }=\text { approx } \\ & 42 \mathrm{~mm} \\ & 4 \text { modules }=\text { approx. } 72 \mathrm{~mm} \\ & 6 \text { modulues }=\text { approx. } 108 \mathrm{~mm} \end{aligned}$	
	Channel 1:-*			
	Channel 2: 300 WNA			
	Channel 3 : -*			
	Channel 4 : -*			
	Channel 1: -*		$6 \text { modules }=\text { approx. } 108 \mathrm{~mm}$	
	Channel 2 : -*			
	Channel 3: 300 WNA			
	Channel 4:-*			
	Channel 1:-*			
	Channel 2: -*			
	Channel 3 : -*			
	Channel 4: 300 WNA			
* No loads may be connected.				
The maximum pow frequency of 50 Hz approx. 35° C. Whe of 60 Hz , the maxi	values specified presume a mains d an ambient temperature up to perating with a mains frequency m power values are reduced by			

