Important information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

<table>
<thead>
<tr>
<th>DANGER</th>
<th>DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>NOTICE is used to address practices not related to physical injury.</td>
</tr>
</tbody>
</table>

Please note

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.
Notices

Legal information

The Schneider Electric brand and any registered trademarks of Schneider Electric Industries SAS referred to in this guide are the sole property of Schneider Electric SA and its subsidiaries. They may not be used for any purpose without the owner’s permission, given in writing. This guide and its content are protected, within the meaning of the French intellectual property code (Code de la propriété intellectuelle française, referred to hereafter as "the Code"), under the laws of copyright covering texts, drawings and models, as well as by trademark law. You agree not to reproduce, other than for your own personal, noncommercial use as defined in the Code, all or part of this guide on any medium whatsoever without Schneider Electric’s permission, given in writing. You also agree not to establish any hypertext links to this guide or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the guide or its content, except for a non-exclusive license to consult it on an “as is” basis, at your own risk. All other rights are reserved.

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

FCC

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures.

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The user is cautioned that any changes or modifications not expressly approved by Schneider Electric could void the user’s authority to operate the equipment.

This digital apparatus complies with CAN ICES-3 (B) /NMB-3(B).

This device complies with FCC radiation exposure limits set forth for general population. This device must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.
This equipment complies with Part 68 of the FCC rules and the requirements adopted by the Administrative Council for Terminal Attachments (ACTA). On the side of this equipment is a label that contains, among other information, a product identifier in the format US: AAAEQ##TXXXX. If requested, this number must be provided to the telephone company.

This equipment uses the following Universal Service Order Codes ("USOC") jacks: RJ11.

A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by the ACTA. A compliant telephone cord and modular plug or compliant modular jack is provided with this product.

The REN is used to determine the number of devices that may be connected to a telephone line. Excessive RENs on a telephone line may result in the devices not ringing in response to an incoming call. In most but not all areas, the sum of RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company. The REN for this product is part of the product identifier that has the format US: AAAEQ##TXXXX. The digits represented by ## are the REN without a decimal point (e.g., 03 is a REN of 0.3).

If this equipment, Digital Power Meter with Internal Modem, causes harm to the telephone network, the telephone company will notify you in advance that service may be temporarily discontinued. When advance notice is not practical, the telephone company will notify you as soon as possible. You will also be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures that could affect the operation of this equipment. If this happens, the telephone company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If you experience trouble with this equipment, Digital Power Meter with Internal Modem, please contact Schneider Electric at 615-287-3400. If this equipment is causing harm to the telephone network, the telephone company may request that you disconnect this equipment until the problem is resolved.

There are no user serviceable parts in this equipment.

Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information.

If your premises has specially wired alarm equipment connected to the telephone line, ensure that the installation of this Digital Power Meter with Internal Modem does not disable your alarm equipment. If you have questions about what will disable alarm equipment, consult your telephone company or a qualified installer.

Industry Canada

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna
type and its gain should not be so chosen that the equivalent isotropically radiated power (e.i.r.p) is not more than that necessary for successful communication. This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. This device complies with Industry Canada RF radiation exposure limits set forth for general population. This device must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

Network compatibility notice for the internal modem

The internal modem in meters equipped with this option is compatible with the telephone systems of most countries in the world, with the exception of Australia and New Zealand. Use in some countries may require modification of the internal modem’s initialization strings. If problems using the modem on your phone system occur, please contact Schneider Electric Technical Support.
Contents

Notices .. 4

Chapter 1 Safety precautions .. 9

Chapter 2 Introduction .. 11
ION8650 meters ... 12
ION8650 in enterprise energy management systems 13
Additional information .. 19

Chapter 3 Front panel .. 21
Front panel features .. 22
Display screen types ... 24
Modes of operation .. 27
Configuring the meter with the front panel .. 29

Chapter 4 Templates and firmware ... 39
Factory information ... 40
Updating or restoring the template .. 41
Upgrading your meter ... 44

Chapter 5 Basic setup .. 49
Introduction ... 50

Chapter 6 Security ... 53
Security overview .. 54
Device security configuration .. 61
Factory access .. 73
Additional revenue metering security .. 77
Scaled operational values ... 79

Chapter 7 Communications .. 81
Communications overview ... 82
Serial connections .. 86
Configuring Ethernet connections .. 93
Internal modem connections .. 99
Syslog .. 105
Ethernet protocol control ... 106
HTTPS outage alerts ... 108

Chapter 8 Third party protocols ... 109
Overview ... 110
The meter as Modbus slave ... 111
The meter as Modbus master ... 114
Using the DNP 3.0 protocol .. 118
Using the DLMS protocol .. 120
IEC 61850 .. 122
Configuring MV-90 ... 127

Chapter 9 Time ... 129
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Demand</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>11</td>
<td>Inputs / Outputs</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>12</td>
<td>Energy pulsing</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>13</td>
<td>Logging</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>14</td>
<td>Revenue</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>15</td>
<td>Power quality</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>16</td>
<td>Displays</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186</td>
</tr>
<tr>
<td></td>
<td></td>
<td>187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>17</td>
<td>TEST mode</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>18</td>
<td>Resets</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>19</td>
<td>Setpoints</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>20</td>
<td>Reports</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>217</td>
</tr>
</tbody>
</table>
Chapter 1 Safety precautions

Installation, wiring, testing and service must be performed in accordance with all local and national electrical codes.

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA, CSA Z462 or applicable local standards.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage-sensing device to confirm that all power is off.
- Treat communications and I/O wiring connected to multiple devices as hazardous live until determined otherwise.
- Do not exceed the device’s rating for maximum limits.
- Never short the secondary of a potential/voltage transformer (PT/VT).
- Never open circuit a current transformer (CT).
- Always use grounded external CTs for current inputs.
- Do not perform Dielectric (Hi-Pot) or Megger testing on this device.
- Connect protective ground (earth) before turning on any power supplying this device.
- Do not use the data from the meter to confirm the power is off.
- Replace all devices, doors and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

NOTE: Do not perform Dielectric (Hi-Pot) or Megger testing on the ION8650 because its internal surge protection circuitry starts functioning at levels below typical Hi-Pot voltages. Contact your local Schneider Electric representative for more information on device specifications and factory testing.

NOTE: See IEC 60950-1:2005, Annex W for more information on communications and I/O wiring connected to multiple devices.

WARNING

UNINTENDED OPERATION

Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

Failure to follow these instructions can result in death or serious injury or equipment damage.
WARNING

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

- Change default passwords to help prevent unauthorized access to device settings and information.
- Disable unused ports/services and default accounts, where possible, to minimize pathways for malicious attacks.
- Place networked devices behind multiple layers of cyber defenses (such as firewalls, network segmentation, and network intrusion detection and protection).
- Use cybersecurity best practices (for example: least privilege, separation of duties) to help prevent unauthorized exposure, loss, modification of data and logs, interruption of services, or unintended operation.

Failure to follow these instructions can result in death or serious injury or equipment damage.
Chapter 2 Introduction

PowerLogic™ ION8650 meters provide revenue-accurate, true RMS measurements of voltage, current, power and energy, and are complemented by extensive I/O capabilities, comprehensive logging, and advanced power quality measurement and compliance verification functions. The meters come with an extensive selection of preconfigured data screens and measurements, so you can use the meters with their default configuration after you perform basic setup. You can also customize the meter to fit your unique requirements.

ION8650 meters give you the tools to manage complex energy supply contracts that include commitments to power quality. You can also integrate the meters with energy management solutions such as StruxureWare™ Power Monitoring Expert (originally ION Enterprise), SCADA, automation and billing systems via Internet communications and multiple industry-standard communication channels and protocols including MV-90 and IEC 61850.

In this chapter

- ION8650 meters .. 12
- ION8650 in enterprise energy management systems 13
 - The meter is factory-configured and ready to operate 13
- Measured Parameters ... 13
 - Energy ... 14
 - Demand ... 14
 - Instantaneous ... 14
 - Harmonics ... 14
 - Min/Max recording .. 14
 - Power quality .. 15
- Data display and analysis tools 15
 - The front panel ... 15
 - WebMeter internal web server feature 15
 - Meter internal email server feature 16
 - XML compatibility .. 16
 - Power Monitoring Expert software 16
 - ION Setup device configuration tool 16
 - MV-90 .. 16
 - IEC 61850 .. 16
 - Alerting ... 17
- Communications methods .. 17
- Security .. 17
- Digital and analog I/O options 18
 - Onboard I/O ... 18
 - Expanded I/O .. 18
- Additional information .. 19
ION8650 meters

The meter is suited to a wide range of applications. The meters can be used as stand-alone devices, but their extensive capabilities are fully realized when used as part of an enterprise energy management (EEM) system. The ION8650 is available with the following feature sets:

<table>
<thead>
<tr>
<th>Model</th>
<th>Feature set</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION8650A</td>
<td>128MB memory, 50 data recorders (800 channels), 4-30 Class A + EN50160 power quality analysis (waveforms and transient detection)</td>
</tr>
<tr>
<td>ION8650B</td>
<td>64MB memory, 45 data recorders (720 channels), 4-30 Class S + EN50160 power quality monitoring</td>
</tr>
<tr>
<td>ION8650C</td>
<td>32MB memory, 5 data recorders (80 channels)</td>
</tr>
</tbody>
</table>

NOTE: For complete details of the ION8650 meter feature sets, see the ION8650 Datasheet available from www.schneider-electric.com.

ION8650 naming convention

In the serial number and ANSI bar code area of the meter’s front panel you can view the feature set, form factor and any special order options available with the meter. For example:

<table>
<thead>
<tr>
<th>S8650</th>
<th>Brand and model</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Feature set and form factor</td>
</tr>
<tr>
<td>C0</td>
<td>Voltage/current inputs</td>
</tr>
<tr>
<td>S8650A0C0H6E0B0A</td>
<td>Power supply and system frequency</td>
</tr>
<tr>
<td></td>
<td>E0 Communications</td>
</tr>
<tr>
<td></td>
<td>B0A I/O, security and special options</td>
</tr>
</tbody>
</table>

When there are differences between the models (such as a feature specific to one model), it is indicated with the appropriate model number in this document.
ION8650 in enterprise energy management systems

Applications that include the meter typically require additional equipment. Display and analysis software tools are almost always used to manage, interpret and distribute the data measured or logged by a meter. There are usually a variety of tools used, and often these tools are connected using different communications standards and protocols.

The meter can adapt to many situations. Advanced communications allow data to be shared simultaneously across multiple networks, built-in I/O provides monitoring and non-critical control capabilities, and a variety of display and analysis tools can be used to monitor your power system.

The meter is factory-configured and ready to operate

Your meter is preconfigured to provide most of the functionality needed in many applications. After you perform the installation and basic setup, all of the basic measurements, energy calculations and recording functions are ready to operate. The meter can also be fully customized if necessary to meet your needs.

Measured Parameters

The meter provides fully bi-directional, 4-quadrant, revenue accurate energy metering. The following sections list some of the parameters measured by the meter.
Energy

The meter provides all common active, reactive and apparent energy parameters.

- kWh, kVARh, kVAh delivered and received
- kWh, kVARh, kVAh net (delivered - received)
- kWh, kVARh, kVAh total (delivered + received)
- Volt-hours and amp-hours
- Integration of any instantaneous measurement

Energy registers can be logged automatically on a programmed schedule. All energy parameters represent the total for all three phases.

Demand

The meter supports standard demand calculation methods, including block, sliding window (rolling block), and predicted demand. It can measure demand on any instantaneous value and record peak (maximum) and minimum demand with date and timestamps to the second. Peak demand registers can be reset manually (password protected) or logged and reset automatically on a programmed schedule.

Measurements include:

- kW, kVAR, kVA demand, min/max
- Amps, Volts demand, min/max
- Demand on any instantaneous measurement

Instantaneous

The meter provides highly accurate, 1 second or 1/2 cycle measurements, including true RMS, per phase and total for:

- Voltage and current
- Active power (kW) and reactive power (kVAR)
- Apparent power (kVA)
- Power factor and frequency
- Voltage and current unbalance
- Phase reversal

Harmonics

Complete harmonic distortion metering, recording and real-time reporting, up to the 63rd harmonic for all voltage and current inputs.

- Individual harmonics (including magnitude, phase and inter-harmonics)
- Total even harmonics and total odd harmonics
- Total harmonics (even + odd)
- K-factor, Crest factor

Min/Max recording

The meter records each new minimum and new maximum value with date and time-stamp for the following parameters:

- Voltage and current min/max
• kW, kVAR, and kVA min/max
• Power factor
• Frequency
• Voltage unbalance
• Plus any measured value

Power quality

The meter measures and records the following parameters:

- Sag/Swells
- Transients (ION8650A only)

The meter also has the following power quality features:

- **Disturbance direction detection:** This allows the meter to analyze disturbance (sag/swell) information to help determine the direction of the disturbance relative to the meter.
- **EN50160:** ION8650A and ION8650B meters have a default framework that measures and presents EN50160 compliance according to guidelines defined by Eurelectric (UNIPEDE).
- **IEC 61000-4-30:** The meter complies with the IEC 61000-4-30 power quality standard as follows:
 - The ION8650A complies with IEC 61000-4-30 Class A.
 - The ION8650B complies with IEC 61000-4-30 Class S.
- **COMTRADE:** ION8650A meters can save waveform data in COMmon Format for TRAnsient Data Exchange (COMTRADE) format, which is then available for download via FTP. This is intended for use in conjunction with IEC 61850 and is only available on ION8650A meters with an Ethernet port.

Data display and analysis tools

The meter integrates seamlessly with display and analysis software available from Schneider Electric™, such as Power Monitoring Expert that lets you analyze and monitor your system and produce reports for any department in an organization. Power Monitoring Expert is designed to make use of your meter’s advanced capabilities. You can also use data acquired by the meter in a variety of third-party systems.

The front panel

Local monitoring and standalone applications are facilitated by the meter’s front panel interface. The front panel combines real-time display features with basic device configuration functions. The front panel is often used in combination with Power Monitoring Expert or ION Setup, providing an interface for field personnel.

WebMeter internal web server feature

WebMeter™ provides quick and easy access to real-time energy and basic power quality information without special software using an on-board web server combined with an Ethernet port. The built-in web pages display a range of energy and basic power quality information through the web-enabled device; these pages also support basic meter configuration tasks.
Meter internal email server feature

You can configure your meter to automatically email high-priority alarm notifications or scheduled system-status update messages to an external email address. Specify the type of event that triggers an email alert, such as power quality disturbances or logged data at any pre-determined interval, and have your Power Monitoring Expert or ION Setup administrator program the meter to respond with an email message when these events occur. Email messages from your meter can be received like any email message.

XML compatibility

The meters can exchange information using industry-standard XML format. This simple machine-readable format supports integration with custom reporting, spreadsheet, database, and other applications.

Power Monitoring Expert software

Power Monitoring Expert allows the meter to be part of a fully networked information system with other meters and local and wide-area computer networks. Power Monitoring Expert is recommended for all power monitoring systems where advanced analysis and non-critical control capabilities are required.

Power Monitoring Expert provides tools for managing your power monitoring network, logging data, analyzing real-time and logged data, generating power system reports, and creating custom functionality at the meter level.

Power Monitoring Expert also offers ways to remotely view information through a web browser: for example, through the WebReach and Web Reporter components of Power Monitoring Expert, and through Microsoft Terminal Services.

See the Power Monitoring Expert Help for more information.

ION Setup device configuration tool

ION Setup is a meter configuration tool designed specifically to configure and test meters. ION Setup offers a graphical interface for performing basic meter setup, installing templates into meters, upgrading firmware, viewing real-time and reset accumulated values, verifying meter accuracy and measurements, and setting up advanced security.

You can download ION Setup from www.schneider-electric.com. It is recommended that you always upgrade to the latest version of ION Setup to help properly configure the features available on your device.

MV-90

MV-90 software (by Utility Translation Systems) is a multi-vendor translation system that can collect and analyze data from a variety of different brands of meters, each with unique database formats. MV-90 manipulates this data without extensive knowledge of the device of origin.

For more information on using the meter in an MV-90 system, see the *MV-90 and ION Technology* technical note.

IEC 61850

IEC 61850 is an Ethernet-based protocol designed for electrical substations. It is a standard (vendor-independent) method of communications, developed to support
integrated systems composed of multi-vendor, self-describing devices. When properly configured, the meter acts as a server in an IEC 61850 system. This meter supports IEC 61850:2010 (Edition 2).

Alerting

The meter can be configured to send alerts in response to power system conditions that you define, such as a power quality problem (including surges, sags and swells), changes in relays, power outages or required equipment maintenance. This allows you to automatically advise key people of problems to allow quick remedial action, notify software so logs can be uploaded from the site that initiated the alert, or service equipment on schedule.

You can configure the meter to send alerts to email, pagers, outage notification servers or to software such as Power Monitoring Expert.

For more information on configuring alerting on the meter, see the ION meter alerts technical note and the Alert module description in the ION Reference. For more information on configuring alerting in Power Monitoring Expert, see the online Power Monitoring Expert help.

For more information on Ethernet outage notification, see the Outage notifications on the PowerLogic ION8650 product option document.

Communications methods

The meter can be integrated into various industry-standard networks. Data from the meter can be made available to other devices using the Modbus™ Master, Modbus RTU, Modbus TCP, DLMS and DNP 3.0 protocols, as well the MV-90 translation system. You can also configure the meter to import data from devices on these networks. With these advanced communications functions, the meter operates in most existing power monitoring systems. Any data display and analysis software that works with these protocols also functions with the meter.

The standard meter includes a selectable RS-232/RS-485 port, a high-speed RS-485 port, and an optical port for communications in the field. Order options include a 10/100Base-T Ethernet port, 57.6 kbps internal modem (both FCC and CTR-21 compliant) and an internal cellular modem. Depending on the hardware options purchased, up to four separate ports can communicate simultaneously.

Security

This meter offers standard and advanced security. Standard security is enabled by default from the factory, and advanced security allows you to configure specific security settings. These include features such as adding users with unique access privileges, and communications lockouts.

There are also additional features available on the meter that are based on the North American Electrical Reliability Corporation Critical Infrastructure Protection (NERC CIP) standards, allowing this meter to assist in making your facility NERC CIP compliant. These additional features include advanced security through the front panel, communications and network port enabling and disabling, Ethernet port number assignment and event log loss preventative measures.
Digital and analog I/O options

Onboard I/O

There are two optional onboard I/O configurations available, each providing different capabilities. The number and form of the digital inputs and outputs depend on the option you ordered; see your meter's Installation Guide to determine the configuration available on your meter.

Additionally, two infrared ports (and corresponding LEDs) on the front panel are configured by default for energy pulsing.

Digital inputs

The meter can be ordered with internally or externally-excited Form A digital inputs. They can be used for tariff inputs and other pulse counting applications.

Digital outputs

The meter can be ordered with both Form C and Form A solid-state outputs.

Expanded I/O

The I/O Expander option extends the meter’s I/O capabilities. The digital I/O Expander model provides four Form A digital outputs, four Form C digital outputs, and eight Form A digital inputs. The analog I/O Expander model replaces the four form A digital outputs with analog outputs.

Refer to the PowerLogic I/O Expander Installation Guide for details on the options and installation and operation instructions.
Additional information

The most up-to-date documentation about your meter is available for download from www.schneider-electric.com. Available documentation includes:

Installation guides

This document is shipped with each meter. It details the mounting, wiring and basic setup of the device. There is a separate installation guide for the socket and the switchboard versions of the meter.

I/O Expander installation guide

This document describes the optional external I/O device that you can connect to the meter, for additional digital I/O and analog output ports.

Product option documents

These documents provide option-specific information about the various product options you can order for the meter. They usually ship with the product.

Online ION Setup help

The online ION Setup help has in-depth information on installation, setup and security of ION Setup. It also contains instructions on using the Setup Assistant to configure devices.

ION Reference

This document describes ION architecture and provides detailed descriptions of all ION modules in all ION meters.

Online Power Monitoring Expert help

The Power Monitoring Expert online help system provides information and instructions on using Power Monitoring Expert components.

Technical notes

Technical notes such as the EN50160 technical note are available from the website, and provide instructions for using meter features and for creating custom configurations.

Protocol documents

Each protocol document contains information explaining how the product interacts with a protocol, such as DNP 3.0, DLMS, Modicon Modbus, IEC 61850 and MV-90.

ION device template reference

This document lists the default ION modules and their default configuration in the shipping template for the most recent firmware releases of ION meters.
Chapter 3 Front panel

The front panel provides a user-friendly interface from which you can view system data or configure basic meter settings. A scrollable display and three distinct modes (NORM, ALT and TEST) provide easy access to a range of functions through a simple three-button keypad.

This chapter describes the front panel and explains how to use it to display data, perform tests, and set up basic configuration options.

In this chapter

Front panel features .. 22
 LED pulsers ... 22
 Demand reset switch ... 22
 Navigation buttons .. 22
 Optical port ... 23
 Master reset button ... 23
 TEST mode button .. 23
Display screen types .. 24
 The status bar .. 24
 Numeric displays ... 24
 Nameplate display and event log 25
 Histogram displays .. 25
 Phasor diagram displays .. 25
 Disk simulator ... 25
 Time and date ... 26
 Time-stamped values .. 26
Modes of operation ... 27
 Basic operation (NORM mode) .. 27
 ALT mode ... 27
 TEST mode ... 27
Configuring the meter with the front panel ... 29
 Accessing the SETUP menu ... 29
 Navigating the front panel screens 31
 Configuring parameters using the navigation buttons 31
 Entering the front panel password with basic security enabled ... 31
 Advanced security username and password 32
 Confirming configuration changes 32
Setup menus .. 32
 BASIC SETUP menu .. 32
 COM port setup menus ... 33
 NETWORK SETUP menu ... 35
 CELL SETUP menu .. 36
 ENABLED COM PORTS menu (ION8650C only) 36
 FORMAT SETUP menu .. 36
 DISPLAY SETUP menu .. 37
 SECURITY menu .. 37
Front panel features

The front panel includes a liquid crystal display (LCD) with detailed graphics and text, up and down arrow buttons for screen navigation and basic setup procedures, as well as LED pulsers for testing the meter. This section outlines the features available on the front panel of the meter.

LED pulsers

Two LED pulsers located near the top of the front panel represent WATT (to the left) and VAR (to the right).

These LEDs are preconfigured for energy pulsing. The adjacent infrared outputs are connected to the LEDs and pulse at the same rate. Pulse rates can be adjusted by editing the settings of the Calibration Pulser module; for a detailed description of LED pulser operation, see “Energy pulsing with LEDs” on page 155.

Demand reset switch

Located on the front of the meter's external cover assembly, the demand reset switch resets the peak demand values logged in the meter. This switch can be activated with the cover on or off. When the meter is in TEST mode, the demand reset switch resets the test demand parameters.

In most applications, the demand reset switch is sealed with an anti-tamper mechanism; a through-hole in the switch can accommodate either an external seal or a locking mechanism. See “Anti-tamper sealing methods” on page 78 for more information on anti-tamper sealing.

A Demand Lockout Time register sets the minimum time allowed between consecutive demand resets; the meter ignores any attempts to reset the demand outside the bounds of the register. The default value for the Demand Lockout Time is 25 days (2160000s). For details on the Demand Lockout Time setup register, see “Configuring demand reset lockout time” on page 138.
Navigation buttons

The navigation buttons are the up and down arrow buttons and the round ALT/ENTER button. Press the up or down arrow buttons to manually scroll back or forth through the available displays and temporarily halt the display screen's automatic scrolling function. Press ALT/ENTER to toggle between NORM and ALT display modes. The automatic scrolling function restarts 60 seconds after a button was last pressed.

Hold the ALT/ENTER button for approximately three seconds to display the setup menu. You can then use the navigation buttons to view the device's configuration or edit basic settings. See “Setup menus” on page 32 for further instruction on modifying the device's configuration using the front panel buttons.

Optical port

An optical port facilitates infrared communication with the device. For details on how to configure and use this port, see “Configuring the optical port” on page 91.

Master reset button

You must remove the meter's cover as well as the front panel label to access the master reset button; it is located in the lower left of the faceplate. This button is recessed to prevent accidental activation. For instructions on removing the meter cover and performing a master reset, and information on what parameters are reset, see “Performing a master reset from the front panel” on page 207.

Use the master reset button to delete most accumulated values and all derived revenue measurements from the meter.

TEST mode button

The TEST mode button is located under the meter's external cover assembly; it places the meter into TEST mode. While in TEST mode, the meter stops accumulating billable quantities; energy and demand measurements are accumulated in TEST mode registers.

See “TEST mode” on page 27 for more details on this mode of operation.
Display screen types

The front panel displays measurements, event logs, phasor diagrams, bar graphs, harmonics histograms, configured settings and configuration data. The types of display screens are described below.

As shown in the graphics in the following sections, the display screen is divided into two sections: the main display area and the status bar. The main display area presents meter data and status information; the status bar provides time, date, phase, quadrant, and mode information. During normal operation, the main display area automatically cycles through a series of several displays. If you prefer, you can use the up or down arrow buttons to step manually through these displays. By default, the automatic scrolling resumes 60 seconds after you have pressed a button.

NOTE: To adjust the contrast, hold down the up and down arrow buttons simultaneously. When the contrast reaches the desired level, release the buttons.

For information on customizing the display on your meter, see “Configuring front panel displays” on page 187.

The status bar

The status bar runs along the bottom of the front panel display and contains information about the following settings:

- Date and time (in 24 hour format).
- Voltage phases present. The labels and rotation of phases correspond to the configuration of the power monitoring system.
- Quadrant where the system power factor resides.
- Mode (NORM, ALT or TEST).
- Time remaining in the sliding window (or rolling block) demand interval. If the interval has counted to zero the letters EOI (End Of Interval) appear on the status bar.

Numeric displays

All NORM mode data and some of the ALT mode display screens use numeric displays. Numeric displays show up to four parameters at a time. If no numeric values are available for a parameter, N/A is displayed.
By default, the front panel automatically scales the units for basic measurements (such as voltage, current and power parameters). For example, a measurement of 2,000 Watts is displayed as 2 kW. A measurement of 2,000,000 Watts is displayed as 2 MW. The meter makes these conversions using your PT and CT ratios.

The meter only performs automatic unit scaling if the displayed measurement is derived solely from the Power Meter module’s output and the display units are set to default. See “Displays” on page 185 for more information.

Nameplate display and event log

Nameplate displays and event logs appear in ALT mode and are organized in tabular format. Nameplate displays show owner, meter and power system details:

<table>
<thead>
<tr>
<th>OWNER</th>
<th>Best Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAG 1</td>
<td>Substation 13A</td>
</tr>
<tr>
<td>TAG 2</td>
<td>Main Feed 13kV</td>
</tr>
<tr>
<td>FW Rev, FEATURE SET</td>
<td>004.020.000, A</td>
</tr>
<tr>
<td>BATTERY LIFE</td>
<td>96.9%</td>
</tr>
<tr>
<td>DIAG NUM</td>
<td>41/999</td>
</tr>
<tr>
<td>9:36:54 12/09/2014</td>
<td>ABC Q1 ALT 11m</td>
</tr>
</tbody>
</table>

The Event Log displays recent high priority events (you must use software such as ION Setup to retrieve all logged event data):

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>EVENT</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/08/2014</td>
<td>10:23:45</td>
<td>Shutdown</td>
<td>SD25</td>
</tr>
<tr>
<td>12/08/2014</td>
<td>10:42:03</td>
<td>Power Up</td>
<td>SD25</td>
</tr>
<tr>
<td>12/08/2014</td>
<td>11:19:26</td>
<td>Changed Setup</td>
<td>SD25</td>
</tr>
<tr>
<td>ADDITIONAL LOGS - READ THROUGH COMMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:36:54 12/09/2014</td>
<td>ABC Q1 ALT 11m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Histogram displays

Harmonic content is displayed in histogram format. The 2nd to the 63rd harmonics (31st on the ION8650C meter) are displayed in the histogram. The total harmonic distortion (THD) is displayed above the histogram.

Phasor diagram displays

Phase information can be displayed in phasor diagram format. Phasor diagrams are accompanied by tables that show phase, voltage and current magnitudes. In cases
where a phase vector is too small to be represented graphically, it is shown as a table entry only.

<table>
<thead>
<tr>
<th>Vc</th>
<th>Va</th>
<th>84.6 KV</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vb</td>
<td>88.5 KV</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Vc</td>
<td>84.6 KV</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Ib</td>
<td>200.6 A</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>Ia</td>
<td>213.6 A</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Ic</td>
<td>204.5 A</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

9:36:54 12/09/2014 ABC Q1 ALT 11m

Disk simulator

This display simulates the behavior of a mechanical watt-hour meter indicating power received or delivered by the direction of the pulse.

Time and date

This display supports time and date formats, enabling displays with nothing but date and/or time and/or time remaining in the current interval.

9:36:54 12/09/2014 ABC Q1 NORM 11m

Time-stamped values

Up to three timestamped parameters can be displayed on the same screen. The timestamp indicates when the displayed parameter was last updated.

kW block peak deliver	000001 12/09/2010 7:30:00
kWh block peak deliver	000002 12/09/2010 7:30:00
kVAR block peak deliver	000001 12/09/2010 7:30:00
9:36:54 12/09/2014 ABC Q1 NORM 11m
Modes of operation

The meter has three modes of operation: NORM, ALT and TEST. Both NORM and ALT are display modes, providing various power system data and meter properties screens. TEST mode is used to perform diagnostics, verify the meter’s accuracy, and verify meter functions.

NOTE: You can customize the display screens and alter the front panel’s scrolling characteristics by editing the meter’s Display and Scroll modules – refer to “DISPLAY SETUP menu” on page 37 for information on changing display settings and “Displays” on page 185 for information on customizing the displays.

Basic operation (NORM mode)

The meter defaults to NORM mode when powered up, and remains in this mode until you manually switch to ALT or TEST.

NORM mode screens are described in “NORM mode display screens” on page 192.

Meter configuration and NORM mode

- For meters without the hardware lock, all of the settings available in the front panel SETUP menu can be changed while the meter is in NORM mode, provided you have the correct password.
- For meters with the hardware lock, only the basic communications parameters in the COM Setup menu can be changed in NORM mode. You must enter TEST mode to change other meter parameters on the hardware-locked meter — see “Additional revenue metering security” on page 77 for more details.

ALT mode

ALT mode provides scrolling display screens that show power system data, billing information and meter properties such as nameplate information.

ALT mode screens are described in “ALT mode default display screens” on page 192.

Switching to ALT mode

Press the **ALT/ENTER** button to switch to ALT mode. Press the **ALT/ENTER** button again to switch back to NORM mode at any time. If no buttons are pressed, the meter automatically reverts to NORM mode after five minutes. As with any mode, pressing any button temporarily suspends display screen scrolling, allowing you to press the up or down arrow buttons to manually browse the available screens.

TEST mode

NOTE: If your meter has the optional hardware lock, you must remove the meter’s cover to put it into TEST mode. See “Security overview” on page 54 for more information.

TEST mode is typically used for meter function verification. The meter is usually reading data from a test power supply while these functions are performed.

All of the billing quantities that are recorded when the meter is in NORM and ALT mode stop accumulating when the meter is switched to TEST mode — the data is sent to special TEST mode registers instead. The values accumulated in these test registers are displayed on the front panel (and in the Vista component of Power Monitoring Expert).
The regular NORM/ALT mode billing registers are unaffected while the meter is in TEST mode; accumulation of billing data resumes as soon as you exit TEST mode. All test registers are reset to zero when you exit TEST mode.

For detailed information on TEST mode, see “Switching to TEST mode” on page 199.

NOTE: The meter always returns to NORM mode when you exit TEST mode, even if you entered TEST mode from ALT mode.
Configuring the meter with the front panel

Using the meter’s front panel, you can navigate through different menus to perform basic setup on your meter.

NOTE: If you have a hardware-locked meter, only the basic communications parameters can be changed in NORM mode. You must enter TEST mode to change other meter parameters on the hardware-locked meter. See “Additional revenue metering security” on page 77 for more details.

Accessing the SETUP menu

To access the SETUP menu, press and hold the front panel’s ALT/ENTER button while the meter is displaying power system data. Within the SETUP menu is a list of sub menus that contain the meter’s configurable settings. The menu items are described in “Front panel features” on page 22.

Press the up or down arrow buttons to navigate through the menu. Highlight a menu item and press the ALT/ENTER button. When you select an item from the SETUP menu, you are presented with another menu of the settings in the meter. You may need to navigate several layers of menus to access the setting you want to change.

The following diagram shows how the buttons are used to navigate the menus:
The settings contained in the SETUP menu are:

Each of the main setup screens and the settings you can configure are discussed in “Setup menus” on page 32.

NOTE: Your display may appear differently than shown, depending on your meter’s model and configuration.

NOTE: The ENABLED COM PORTS setup menu only appears on the ION8650C.

<table>
<thead>
<tr>
<th>Setup Menu</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC SETUP</td>
<td>VOLTS MODE, PT PRIMARY, PT SECONDARY, CT PRIMARY, CT SECONDARY, VA POLARITY, VB POLARITY, VC POLARITY, IA POLARITY, IB POLARITY, IC POLARITY, PHASE ROTATION</td>
</tr>
<tr>
<td>COM1 SETUP</td>
<td>PROTOCOL, BAUD RATE, TRANSMIT DELAY, UNIT ID, SERIAL PORT, RS485 BIAS</td>
</tr>
<tr>
<td>COM2 SETUP</td>
<td>PROTOCOL, BAUD RATE, TRANSMIT DELAY, UNIT ID, SERIAL PORT</td>
</tr>
<tr>
<td>COM3 SETUP</td>
<td>PROTOCOL, BAUD RATE, TRANSMIT DELAY, UNIT ID, SERIAL PORT</td>
</tr>
<tr>
<td>COM4 SETUP</td>
<td>PROTOCOL, BAUD RATE, TRANSMIT DELAY, UNIT ID, SERIAL PORT, RS485 BIAS</td>
</tr>
<tr>
<td>ENABLED COM PORTS</td>
<td>COM1, COM2, COM3, COM4, ETHERNET, UNDO & RETURN, REBOOT</td>
</tr>
<tr>
<td>FORMAT SETUP</td>
<td>PHASE LABELS, PF SYMBOL, DIGIT GROUP, DATE FORMAT, SHOW DST, VOLTS DECIMAL, CURRENT DECIMAL, POWER DECIMAL</td>
</tr>
<tr>
<td>NETWORK SETUP</td>
<td>IP ADDRESS, MASK, GATEWAY, SMTP ADDRESS, MAC ADDRESS, PORT ENABLE</td>
</tr>
<tr>
<td>DISPLAY SETUP</td>
<td>UPDATE RATE, CONTRAST, BACKLIGHT TO, DMD LOCK TO, TEST MODE TO, DISPLAY SCALE, SCALING MODE, DELTA VECTORS</td>
</tr>
<tr>
<td>SECURITY</td>
<td>MODIFY PASSWORD, DISABLE SECURITY, WEB CONFIG</td>
</tr>
</tbody>
</table>
Navigating the front panel screens

Use the up and down arrow buttons to scroll through the menu items. When the setting you want to change is highlighted, press the ALT/ENTER button.

To return to a previous screen, use the up or down arrow button to highlight the RETURN menu item and then press the ALT/ENTER button.

Configuring parameters using the navigation buttons

Use the up or down arrow buttons to change the value (if numeric) or the setting (if enumerated) of the highlighted parameter.

To change the position of the cursor, press the up or down arrow buttons for about one second. The up arrow button moves the cursor one position to the left and the down arrow button moves the cursor one position to the right. Once you have the value you want, press the ALT/ENTER button to select it.

NOTE: When setting Ethernet values (IP address, default gateway, etc.), press the up arrow button to insert additional digit spaces. Press the down arrow to remove digit spaces (see "NETWORK SETUP menu" on page 35 for more information).

OUT OF RANGE screen

When editing numeric data, the numbers displayed on the screen below MIN and MAX indicate valid entry bounds. If you enter a value outside valid bounds, you are presented with a message stating that the value is out of range. You can then either return to the register you were editing or choose to exit.

Entering the front panel password with basic security enabled

With basic security enabled on the meter, you are presented with the password screen when you attempt to change a setting on the front panel. After you enter the correct password, you do not have to re-enter it for other any other changes unless you exit the configuration session or the session has elapsed.

To enter the password:

1. Use the arrow buttons to change the value of the highlighted digit. The up arrow increments the number and the down arrow decrements it.
2. Hold down an arrow button for about one second to change the position of the cursor. The up arrow moves the cursor left one position and the down arrow moves the cursor right one position.
3. Press the **ALT/ENTER** button once you have the value that you want.

Advanced security username and password

If advanced security has been enabled on your meter, you are required to provide your username and password when changing the meter’s settings through the front panel. See “Entering advanced security username or password when accessing the device via the front panel” on page 58 for more information.

Confirming configuration changes

The CONFIRM CHANGE screen appears when you attempt to change the meter’s settings through the front panel. This allows you to cancel an unwanted configuration change. The front panel also informs you when an entry is out of range. Select YES to confirm your change or NO to cancel it, then press the **ALT/ENTER** button to return to the previous setup screen.

Setup menus

The following sections describe the setup menus in more detail.

BASIC SETUP menu

The BASIC SETUP menu lets you set volts mode, potential transformer (PT) and current transformer (CT) ratios and various other settings (such as voltage and current polarities) so that you can ensure that your meter is adequately set for your application.

To access the BASIC SETUP menu with the meter’s front panel:

1. Press and hold the **ALT/ENTER** button on the front panel of the meter. After about three seconds the SETUP screen appears.
2. Use the up or down arrow buttons to navigate to the BASIC SETUP menu. Press the **ALT/ENTER** button.
3. Press the up or down arrow buttons to navigate to the appropriate parameter, then press the **ALT/ENTER** button to edit the parameter.

Many of these settings are configured when the meter is initially put into service (the device will not operate properly until Volts mode and PT and CT ratios are set), but some settings may need to be changed to refine the device’s operation.

NOTE: If you have a hardware-lockable meter, you must put the device into TEST mode prior to making changes to the BASIC SETUP parameters. For TEST mode information, see “TEST mode” on page 27.

The BASIC SETUP menu has the following settings:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts mode</td>
<td>– 9S - 4 Wire Wye/Delta</td>
<td>*See note</td>
<td>The power system’s configuration and supported form factor. 36S - 4 Wire Wye is only available on the socket meter. Note: The default setting varies depending on the meter form factor. Ensure you verify that the correct option is selected for your power system before putting the meter into service.</td>
</tr>
<tr>
<td>PT Primary</td>
<td>1.0 to 999999.00</td>
<td>120</td>
<td>The Potential Transformer’s primary winding rating</td>
</tr>
<tr>
<td>PT Secondary</td>
<td>1.0 to 999999.00</td>
<td>120</td>
<td>The Potential Transformer’s secondary winding rating</td>
</tr>
<tr>
<td>CT Primary</td>
<td>1.0 to 999999.00</td>
<td>5</td>
<td>The Current Transformer’s primary winding rating</td>
</tr>
</tbody>
</table>
These registers are typically set when the device is commissioned. Changing the values of these registers while the device is in service is not recommended.

COM port setup menus

See “The following illustration shows the connections to the communications card.” on page 82 for more information on configuring meter communications.

To make changes to communications settings with the meter’s front panel, hold down the ALT/ENTER button for three seconds to enter the SETUP menu, then press the down arrow button to select the COM SETUP you want.

Depending on the communications options ordered with your meter, the following menu items are available:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Secondary<sup>1</sup></td>
<td>1.0 to 999999.00</td>
<td>5</td>
<td>The Current Transformer’s secondary winding rating</td>
</tr>
<tr>
<td>VA Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V1</td>
</tr>
<tr>
<td>VB Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V2</td>
</tr>
<tr>
<td>VC Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V3</td>
</tr>
<tr>
<td>IA Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I1</td>
</tr>
<tr>
<td>IB Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I2</td>
</tr>
<tr>
<td>IC Polarity</td>
<td>– Normal – Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I3</td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>– ABC – ACB</td>
<td>ABC</td>
<td>The expected rotation of the voltage phases (ABC or ACB)</td>
</tr>
</tbody>
</table>

¹ These registers are typically set when the device is commissioned. Changing the values of these registers while the device is in service is not recommended.

NOTE: For hardware-locked meters, you must be in TEST mode to alter these COM port settings.

Serial COM port settings

There are three main parameters that you must set or verify if your meter is connected to a serial network (including modem communications): *Unit ID, Baud Rate, and Protocol.*

NOTE: Other parameters such as TRANSMIT DELAY are used in advanced configuration or fine-tuning your system. The main parameters are the most common parameters required to get your meter communicating.
To configure the COM port settings:

1. Press and hold the **ALT/ENTER** button on the front panel of the meter. After about three seconds the SETUP screen appears.

2. Use the up or down arrow buttons to navigate to the COM port that you want to configure. Press the **ALT/ENTER** button.

3. Press the up or down arrow buttons to navigate to parameter you want to edit then press **ALT/ENTER**.

4. Use the up and down arrow buttons to change the value of the parameter then press **ALT/ENTER**.

The menu items, and their setting options and default configurations, are listed in the following table for COM1 (selectable RS-232 or RS-485), COM2 (modem), COM3 (optical port) and COM4 (RS-485).

<table>
<thead>
<tr>
<th>Applies to...</th>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Protocol</td>
<td>All COM ports: None, ION, Modbus RTU, DNP V3.00, DLMS, GPS: TrueTime/Datum, GPS Arbiter2, GPS Arbiter-Vorne2, Factory Additional protocols on COM1 and COM4: Modbus Master3, EtherGate4, ModemGate3</td>
<td>ION</td>
<td>Specifies the protocol used by the communications port.</td>
</tr>
<tr>
<td>All</td>
<td>Baud Rate</td>
<td>300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 bps</td>
<td>9600 bps</td>
<td>Specifies the baud rate of the serial port. Ensure all devices on the same loop are configured to use the same baud rate.</td>
</tr>
<tr>
<td>All</td>
<td>Transmit Delay</td>
<td>0.0 to 1.0 s.</td>
<td>0.01s (10ms)</td>
<td>The amount of time in seconds that the meter waits for communications acknowledgments.</td>
</tr>
<tr>
<td>All</td>
<td>Unit ID</td>
<td>1 to 9999</td>
<td>COM1: Unit ID is based on the serial number5. COM2: 101 COM3: 102 COM4: 103</td>
<td>Sets the meter Unit ID. A unique Unit ID is required for each device (including all the devices on a ModemGate or EtherGate serial loop).</td>
</tr>
<tr>
<td>COM1</td>
<td>RS232 OR RS485</td>
<td>RS232 or RS485</td>
<td>RS485</td>
<td>Specifies the communications mode used by COM1.</td>
</tr>
<tr>
<td>COM1 (RS-232 only)</td>
<td>RTS/CTS Handshake</td>
<td>RTS/CTS or RTS with Delay</td>
<td>RTS with Delay</td>
<td>Specifies the flow control used by the communications port.</td>
</tr>
<tr>
<td>COM1 (RS-485 only) and COM4</td>
<td>RS485 Bias</td>
<td>OFF or ON</td>
<td>OFF</td>
<td>Enables or disables RS485 biasing. See “RS-485 biasing” on page 89 for more information.</td>
</tr>
<tr>
<td>COM1, COM3 and COM4</td>
<td>Serial Port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
<td>Sets the parity and data format. For example, 8N1 is eight (8) data bits, no (N) parity bit and one (1) stop bit. Ensure that all devices on the same loop are set to the same format.</td>
</tr>
</tbody>
</table>

1 Select None from the Protocol setting options to disable the COM port.
2 See “Time synchronization” on page 131 for more details about GPS settings. See also the Time Synchronization & Timekeeping technical note for further details on using the meter’s time synchronization functions.
3 Modbus Master is not available on the ION8650C.
4 See “Configuring Ethernet connections” on page 93 and “Internal modem connections” on page 99 for more details.
5 Unit ID for COM1 is based on the meter’s serial number. For example, if the serial number is PA-0009B263-01, the Unit ID is set in the factory to 9263.
NETWORK SETUP menu

There are two main parameters that you must set or verify if your meter is connected to an Ethernet network: IP address and subnet mask address.

NOTE: There are other parameters, such as GATEWAY ADDRESS and SMTP ADDRESS, that are used in advanced configuration or in fine tuning your system. The main parameters are the most common parameters required to get your meter communicating.

The menu items, and their setting options and default configurations, are as follows:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>0.0.0.0 to 255.255.255</td>
<td>None</td>
<td>Sets the IP address for the meter.</td>
</tr>
<tr>
<td>Mask</td>
<td>0.0.0.0 to 255.255.255</td>
<td>None</td>
<td>Used if subnet masking applies to your network – see your network administrator to determine if subnet mask is used.</td>
</tr>
<tr>
<td>Gateway</td>
<td>0.0.0.0 to 255.255.255</td>
<td>None</td>
<td>Used in multiple network configurations – see your network administrator to determine if gateway is used.</td>
</tr>
<tr>
<td>SMTP Address</td>
<td>0.0.0.0 to 255.255.255</td>
<td>None</td>
<td>Sets the IP address for the SMTP mail server that is configured to forward mail from the meter to the final destination – see your network administrator to determine if the SMTP mail server is used.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Read-only factory-set hexadecimal value</td>
<td>The MAC address is read-only and provided for information purposes only.</td>
<td></td>
</tr>
<tr>
<td>Port Enable</td>
<td></td>
<td>Yes</td>
<td>Specifies whether the network ports are enabled or disabled.</td>
</tr>
</tbody>
</table>

Most network settings can be configured through the front panel; all network settings can be modified in Power Monitoring Expert or ION Setup. See “Configuring Ethernet connections” on page 93 for more information.

NOTE: Configuring the IP Address, Mask, Gateway, and Port Enable settings incorrectly can cause network disruptions. See your network administrator for more information.

NOTICE

DATA LOSS

Ensure you maintain sufficient access to communicate to and configure your device.

Failure to follow these instructions can result in data loss.

Typically, your network administrator provides you with the appropriate IP address for the meter. The subnet mask and gateway settings are only required if you have communications between multiple Ethernet networks and if subnetting is implemented.

Use the navigation buttons to edit the values of the network settings so that they match your system addresses. As you configure the network addresses, the front panel automatically discards unnecessary leading zeros from each three-digit grouping. The
hidden leading zeros appear (and disappear again) as you move the position of cursor across the network address.

89.123.40.056

In the example above, the highlighted zero is discarded as soon as you change the position of the cursor.

CELL SETUP menu

The CELL SETUP menu contains the following values that configure the cellular modem:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>0.0.0.0 to 255.255.255.255</td>
<td>Not configurable</td>
<td>Displays the IP address assigned to the cell modem by the network</td>
</tr>
<tr>
<td>MEID/CCID</td>
<td>Not configurable</td>
<td>Not configurable</td>
<td>Displays Mobile Equipment Identifier</td>
</tr>
<tr>
<td>Protocol 1-6</td>
<td>None, ION, Modbus TCP, DNP 3.0</td>
<td>None</td>
<td>Specifies the protocol used for connection 1–6</td>
</tr>
<tr>
<td>Port Number 1-6</td>
<td>1 - 65535</td>
<td>0</td>
<td>Specifies the port number to establish connection 1–6</td>
</tr>
</tbody>
</table>

NOTE: To disable the connection to a port, set the Protocol to None. This allows you to restrict the number of simultaneous connections to the meter through the cell modem.

ENABLED COM PORTS menu (ION8650C only)

Up to three COM ports can be active simultaneously on the ION8650C. COM3 (the front optical port) is always enabled. The ENABLED COM PORTS menu allows you to select the other two COM ports that you want enabled.

NOTE: A meter restart is required to change the enabled communications ports.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td>Specifies whether COM1 (RS-232/RS-485) is enabled or disabled.</td>
</tr>
<tr>
<td>COM2</td>
<td>Specifies whether COM2 (modem) is enabled or disabled.</td>
</tr>
<tr>
<td>COM3</td>
<td>COM3 (front optical port) is always enabled.</td>
</tr>
<tr>
<td>COM4</td>
<td>Specifies whether COM4 (RS-485) is enabled or disabled.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Specifies whether the Ethernet port is enabled or disabled.</td>
</tr>
<tr>
<td>Undo & Return</td>
<td>Exits the menu with no changes to the COM ports. No meter restart required.</td>
</tr>
<tr>
<td>Reboot</td>
<td>Restarts the meter. The changes are applied when the meter restarts.</td>
</tr>
</tbody>
</table>

The default settings vary depending on your order option. See your meter’s Installation guide for details.

See “ION8650C communications options” on page 84 for details on changing the enabled COM ports.

FORMAT SETUP menu

The FORMAT SETUP contains the following values that set labeling and formatting preferences:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Labels</td>
<td>ABC, 123, RWB, RYB, XYZ, or RST</td>
<td>ABC</td>
<td>Specifies how phases are labeled.</td>
</tr>
<tr>
<td>PF Symbol</td>
<td>LD/LG, +/-, or CAP/IND</td>
<td>LD/LG</td>
<td>Specifies the symbol pair used to indicate power factor.</td>
</tr>
</tbody>
</table>

NOTE: To disable the connection to a port, set the Protocol to None. This allows you to restrict the number of simultaneous connections to the meter through the cell modem.
DISPLAY SETUP menu

You can configure the following display preferences:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit Group</td>
<td>1000.0, 1,000.0 or 1 000.0</td>
<td>1000.0</td>
<td>Numbers of three digits or greater can be grouped in any of the following three formats: 1000.0 (no commas, no spaces) or 1,000.0 (commas, no spaces) or 1 000.0 (no commas, spaces).</td>
</tr>
<tr>
<td>Date Format</td>
<td>YYYY/MM/DD, MM/DD/YYYY or DD/MM/YYYY</td>
<td>MM/DD/YYYY</td>
<td>Specifies how dates are displayed.</td>
</tr>
<tr>
<td>Show DST</td>
<td>Do not display DST or Display DST</td>
<td>Display DST</td>
<td>You can choose to display Daylight Savings Time (DST) or not.</td>
</tr>
<tr>
<td>Volts Decimal</td>
<td>1. to 123456789.XXX</td>
<td>1.XX</td>
<td>Number of decimal places displayed for voltage values (up to 9 digits before the decimal place and up to 3 digits after the decimal place).</td>
</tr>
<tr>
<td>Current Decimal</td>
<td>1. to 123456789.XXX</td>
<td>1.XXX</td>
<td>Number of decimal places displayed for current values (up to 9 digits before the decimal place and up to 3 digits after the decimal place).</td>
</tr>
<tr>
<td>Power Decimal</td>
<td>1. to 123456789.XXX</td>
<td>1.XXX</td>
<td>Number of decimal places displayed for power values (up to 9 digits before the decimal place and up to 3 digits after the decimal place).</td>
</tr>
</tbody>
</table>

SECURITY menu

The settings in the front panel SECURITY menu allow you to:

- modify the existing meter password or reset it to the factory default.
- disable the basic password security check.
- enable web browser configuration on the meter.

A valid password is required in order to enter the SECURITY menu. The default password is 0 (zero).

See “Security” on page 53 for information on meter security, including security recommendations, password best practices and instructions on configuring security through the front panel.
If your device’s front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA LOSS</td>
</tr>
<tr>
<td>Record your device’s front panel and user password information in a secure location.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in data loss.</td>
</tr>
</tbody>
</table>
Chapter 4 Templates and firmware

Your meter comes installed with a preconfigured default template. This template contains various frameworks which provide all the power measuring and analyzing functionality of the meter. The default templates and frameworks can be used immediately without any user configuration. They can also be customized, reconfigured, and pasted from one meter to another.

For more information on templates, frameworks and ION modules, see the ION Reference.

Firmware is your meter’s operating system. When newer firmware is available for your meter, simply upgrade to the latest version for all the added features and functionality.

In this chapter

Factory information ... 40
 Factory Module settings ... 40
 How to TAG your meter .. 40

Updating or restoring the template 41
 Meter I/O module behavior ... 41
 Using the front panel ... 41
 Using ION Setup .. 41
 Using Designer ... 42

Upgrading your meter ... 44
 General upgrading considerations 44
 Upgrading to compatible firmware and template versions 44
 Recording your device’s usernames and passwords 44
 Using a laptop computer to upgrade 44
 Upgrading devices via a ModemGate connection 45
 Meter behavior when an upgrade fails 45
 Meter I/O module behavior .. 45
 Accumulated energy values and upgrades 45

Upgrading firmware using ION Setup 45
Upgrading firmware using Power Monitoring Expert 46
 Before using Device Upgrader 46
 Using Device Upgrader ... 46
 Editing accumulated energy values using ION Setup 47
Factory information

The Factory module displays firmware version, serial number and other device information in read-only setup registers (read-only registers can be viewed but not changed) or configurable information in read/write setup registers.

Factory Module settings

The device information provided is as follows:

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>A device type identifier (for example, “8650” for the ION8650)</td>
</tr>
<tr>
<td>Compliance</td>
<td>A statement of whether the device is ION compliant or not</td>
</tr>
<tr>
<td>Options</td>
<td>Shows model number of meter</td>
</tr>
<tr>
<td>Revision</td>
<td>The meter’s firmware version</td>
</tr>
<tr>
<td>Serial Num</td>
<td>The meter’s serial number</td>
</tr>
<tr>
<td>ION Version</td>
<td>The ION version supported by the device</td>
</tr>
<tr>
<td>Template</td>
<td>The name of the template (framework) installed on the device at the factory</td>
</tr>
<tr>
<td>Nom Freq</td>
<td>The expected frequency of the power system being monitored</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Media Access Control address¹</td>
</tr>
<tr>
<td>Feature Set</td>
<td>The feature set of the meter (ION8650A, ION8650B or ION8650C)</td>
</tr>
</tbody>
</table>

¹ The MAC address of your meter cannot be changed, and is for information only.

The Factory module also holds the alternate PT and CT values, which can scale operational values on revenue-locked meters (see “Scaled operational values” on page 79) and numerous read-only setup registers that hold the calibration constants used at the factory.

How to TAG your meter

Three configurable read/write setup registers are provided for you to enter your company name and other text information you want stored in the meter:

- Owner - This is a text register for storing user information (for example, company name). It can be up to 255 characters in length.
- Tag 1 - This is a text register for storing user information (for example, device location). It can be up to 15 characters in length.
- Tag 2 - This is a text register for storing user information (for example, device number or identifier). It can be up to 15 characters in length.

NOTE: Tag 2, if entered, it is used as the default MV-90 Device ID. Refer to the MV-90 and ION Technology technical note for more information.
Updating or restoring the template

You may need to update or restore the meter’s template:

• If there is a new template with additional features or if you have configured one meter and want to configure others with the same settings.

• If you have made changes and want to return to the original configuration. The basic setup of the device can be retained, so the meter does not need to be taken out of service for a long period of time.

If you restore the factory configuration, all recorded data and any custom features that you have created (such as custom alarms or custom data recorders) are lost.

DATA LOSS

• Ensure all important data from the device has been retrieved before you restore the factory configuration.

Failure to follow these instructions can result in data loss.

Use Power Monitoring Expert or ION Setup to upgrade or restore the template.

Meter I/O module behavior

Your meter’s I/O modules may change state during a firmware upgrade. The meter’s I/O behavior is determined by how it is configured in the new template that has been loaded.

WARNING

HAZARD OF UNINTENDED OPERATION

• Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

• Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Using the front panel

You cannot restore the factory configuration from the meter’s front panel.

Using ION Setup

1. Obtain the meter template that you want to update or restore:
 - Download your meter’s factory template or an update template from www.schneider-electric.com.
 - Save a template you have configured on another meter. See the ION Setup Help for instructions.

 Save the .DCF file. The default template file location is .../ION Setup/TEMPLATE.

2. Start ION Setup.
3. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

4. Select the Template screen.

5. Click the **Send to Meter** tab then click **Send**. The **Open ION8650 DCF file** dialog box appears. Navigate to the location where you saved the .DCF file.

6. Select the .DCF file and click **OK**. The **Template Paste Options** dialog box appears. Select the check boxes for the settings you want to retain (not overwrite) and click **OK**.

![Template Paste Options dialog box](image)

Rapid Meter Programming pastes the template onto your meter. A dialog box confirms the paste was successful.

Using Designer

See the *Power Monitoring Expert help* for detailed instructions on updating and restoring templates and frameworks.

NOTE: The time required to complete the steps in this procedure can vary depending on your connection and the meter configuration. Some steps may take several minutes to complete.

1. Open your meter in Designer. Ensure that the meter’s main Configuration screen is displayed.

2. Click **Edit > Select All** then press DELETE.

 A confirmation dialog box appears explaining that some modules will not be deleted (core modules cannot be deleted — scroll down in the dialog to see which standard modules will be deleted).

3. Click **OK** on the confirmation dialog box.

 The modules are deleted (other than persistent and core modules). You may get a message stating that persistent modules could not be deleted. Click **Continue**.

 The main meter Configuration screen is blank except for a folder that contains the modules which cannot be deleted.

4. Click **Edit > Select All** to select the Frameworks folder. This selects all sub-folders and modules within the folder.

5. Click **Edit > Paste from Framework**, then select the appropriate .fwn file from the folder \ION Enterprise\config\fmwk\nd\. Click **Open**.
NOTE: The Factory module’s Default Template register tells you the filename for the default factory framework. For details about framework files, contact Technical Support or visit www.schneider-electric.com.

The Paste Summary dialog box appears.

6. Click on the first module, scroll down to the last module, hold the SHIFT key and click on the last module. This selects all of the modules.

7. Continue holding the SHIFT key and click on the check box to the left of the module name. A lock icon with a green check mark appears; this performs a lock-paste of the modules.

NOTE: Persistent modules can be overwritten in Designer. When pasting a default framework onto a meter, use lock-paste on the Persistent modules, not free-paste. A list of Persistent modules is available from Technical Support.

8. Select the Maintain external inputs check box and click OK.

A message appears indicating that Designer is pasting modules. All modules are selected when the paste is complete. Click anywhere in the background of the node diagram to deselect all of the modules.

9. Click the Power Meter shortcut in the Basic Configuration area to select it. Click the Reset icon or select Edit > Reset. This reverts the Power Meter to the settings it had before you deleted any modules (retaining your original basic setup).

10. Click File > Send & Save. If you receive an message stating that the operation is incomplete, click Continue then click File > Send & Save again.
Upgrading your meter

You can upgrade the firmware (operating software) and template on your meter using either Power Monitoring Expert or ION Setup.

General upgrading considerations

Upgrading to compatible firmware and template versions

Ensure that the firmware version that you are upgrading to is compatible with your meter and that the version number is greater than your existing firmware (or else you will downgrade your meter).

Ensure that the template you are upgrading to matches the feature set of your meter (in other words, if your meter is an ION8650A, the template must be an A-variant template). The variant is indicated in the template filename.

You can download meter firmware and templates from www.schneider-electric.com.

Recording your device’s usernames and passwords

Ensure that you record your device’s usernames and passwords prior to upgrading the device firmware.

If your device’s front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA LOSS</td>
</tr>
<tr>
<td>Record your device’s front panel and user password information in a secure location.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in data loss.</td>
</tr>
</tbody>
</table>

See “Security” on page 53 for more information on the device’s security settings.

Using a laptop computer to upgrade

Laptop computers generally have different default power properties than desktop computers. Incorrect power options can adversely affect device upgrading because the connection between the laptop and the device must be maintained in order to complete the upgrade successfully. If the laptop’s hard disk shuts down or the laptop enters system standby mode, this connection is broken and the upgrade procedure must be restarted.

If you are upgrading a meter using a laptop computer, follow these guidelines:

- Plug the laptop computer into a wall outlet. Do not run the laptop on its battery.
- Configure the hard disks so that they do not shut down after a certain period of time (for example, set to “never”).
- Turn off power suspension (for example, system stand-by) and hibernate options.
- Disable options that power down the laptop when it is closed. This prevents a shut down if the laptop is accidentally closed.
- Disable the screen saver; screen savers can burden the CPU.
Upgrading devices via a ModemGate connection

The maximum acceptable baud rate for upgrading via ModemGate is 56.6 kbps. Ensure that the baud rate on the ModemGate communications port and the baud rate on the meter to be upgraded are set to this or lower.

Meter behavior when an upgrade fails

The meter allows three consecutive attempts to upgrade the meter. If the third attempt fails, an error is generated and you must power cycle the meter before you try again. Wait 30 seconds for the meter to reset after power cycling it before you try to upgrade again.

Meter I/O module behavior

Your meter’s I/O modules may change state during a firmware upgrade. The meter’s I/O behavior is determined by how it is configured in the new template that has been loaded.

Accumulated energy values and upgrades

The firmware upgrade process clears accumulated energy values in the meter. If you want to retain these values across a firmware upgrade, you can use the Register Edit feature in ION Setup to manually restore pre-upgrade values back to your meter.

Upgrading firmware using ION Setup

Performing a device upgrade in ION Setup involves:

• upgrading the device firmware, and
• upgrading the device template.

You can download your device’s latest firmware and template from www.schneider-electric.com. Save the files in the .../ION Setup/TEMPLATE folder for easy access.

Upgrading the device firmware and template

1. Open the Setup Assistant for your meter in ION Setup. See the ION Setup Help for instructions.
2. Select the Template screen.
3. Click the Firmware Upgrade tab, then click Upgrade. Enter your meter password (if prompted) and click OK.

WARNING
HAZARD OF UNINTENDED OPERATION

• Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

• Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.
NOTE: If you want to retain customized meter template settings, other than those listed in the Template Paste Options dialog box (see Step 6), click on the Save to PC tab and click Save. Save your template as a .DCF file. Select this file in Step 5 instead of the file obtained from the website.

4. Browse to the .UPG file (device firmware) that you downloaded from the website and click Open. Type your ION Setup password when prompted and click OK.

5. Browse to the .DCF file (device template) that you downloaded from the website (or saved from your meter in Step 3) and click Open. The Template Paste Options dialog box appears.

6. Select the options that you do want to be retained and clear any options that you do not want to retain then click OK.

7. Track the progress of the upgrade.

 After the firmware download is complete, ION Setup attempts to verify the firmware. If the verification fails, contact Technical Support.

8. Click Exit when you get a message that the upgrade is complete.

Upgrading firmware using Power Monitoring Expert

Power Monitoring Expert includes the Device Upgrader utility for upgrading devices.

NOTE: Supervisor-level access (level 5) is required to upgrade the device.

Before using Device Upgrader

Data stored in the meter’s memory is lost during the firmware upgrade. This includes waveforms, Min/Max values, and information stored in the Data Recorder and Integrator modules. Ensure you save your meter’s data before you upgrade your meter.

You need the applicable upgrade (.upg) files for your meter, which are available from www.schneider-electric.com. Save these files in a folder that is accessible from your Power Monitoring Expert computer.

For more information about using Device Upgrader, refer to the Power Monitoring Expert online help.

Using Device Upgrader

1. Stop the ION Log Inserter Service and the ION Virtual Processor Service.

2. Start Management Console.

3. Select Tools > System > Device Upgrader. Type your username and password in the login prompt.

 A dialog box displays recommendations and warnings regarding the upgrade operation. Make sure you read and understand these warnings before you click OK. If you need to implement any changes because of the recommendations and warnings, close Device Upgrader, make the changes then re-open Device Upgrader and continue.

 The Device Upgrader utility appears.

4. Select your meter type from the List Devices of Type box.
5. Select the appropriate meter from **Select Devices to Upgrade** box. To select multiple devices, hold down CTRL while clicking each device.

6. Click **Select File** in the **Select Revision** section. Locate and select the upgrade (.upg) file that you downloaded from the website, then click **Open**.

7. Select or clear the **Save/Restore Framework** check box (selected by default). If selected, this keeps a copy of your current framework template during the upgrade. After the firmware upgrade is complete, Device Upgrader restores your framework template.

NOTE: Device Upgrader loads new meter firmware that does not contain any framework templates. If you want to preserve customizations that you have made to your device framework, make sure you select **Save/Restore framework**. However, if you intend to replace the existing meter framework with a new one (for example, a new default meter template that you downloaded), clear **Save/Restore framework**.

If you intend to replace the meter’s framework configuration with a new template, it is recommended that you upgrade using ION Setup. See “Upgrading firmware using ION Setup” on page 45 for information.

8. Specify how Device Upgrader responds to an unsuccessful upgrade in the **Failure Handling** section (you only need to do this if you are upgrading multiple devices):

 – Select **Halt After**, then enter a number in the box to specify how many attempts you want Device Upgrader to make before stopping during an unsuccessful upgrade. By default, the utility is set to stop after the first unsuccessful upgrade.

 – Select **Ignore All** to attempt to upgrade all of the selected devices regardless of the number of devices that do not upgrade successfully.

NOTE: Firmware upgrade error codes are described in the Power Monitoring Expert online help.

9. Click **Select File** in the **Select Revision** section. Navigate to the upgrade (.upg) file that you want to use and click **Open**.

 This file will be downloaded to all the devices that are highlighted in the **Select Devices to Upgrade** list.

10. Click **Upgrade** to upgrade the selected device(s).

 The **Upgrade Status** box shows each stage in the upgrade process. The completed progress bar indicates what percentage of the upgrade is complete. Each completed upgrade is noted in the Upgrade Status box.

11. Restart the ION Log Inserter Service and the ION Virtual Processor Service.

NOTE: If connection to the device is lost, or if power to the device is interrupted during an upgrade, restart the Device Upgrade utility procedure.

Editing accumulated energy values using ION Setup

You can edit energy values such kWh and kVARh using ION Setup.

NOTE: Ensure you have recorded accumulated energy values before upgrading your meter’s firmware. You can then re-enter these values after the upgrade.

1. Start ION Setup.
2. Open the Setup Assistant for your meter.
3. Select the **Template** screen.
4. Click the **Register Edit** tab, click **Energy** then click **Display**. Enter your meter's password (if prompted) and click **OK**.
 The Register Editor screen displays.

5. Click **Edit** to enable editing.

6. Enter values for kWh, kVAh and kVARh as required. Click **Send** to finish. Only values that have the checkbox selected will be sent to the meter.

7. Click **Close** to close the Register Editor screen.
Chapter 5 Basic setup

This chapter explains how to perform basic meter setup using the front panel, Power Monitoring Expert or ION Setup.

In this chapter

Introduction ... 50
Basic setup parameters 50
Configuring basic setup 50
Using the front panel 51
Using ION Setup 51
Using Designer .. 51
Introduction

Basic configuration of the meter is provided by the Power Meter module. The Power Meter module is the main connection between the power system measurements and all other ION modules in the device. This module reports the values for all voltage, current and power measurements. The Power Meter module’s setup registers describe details of the power system being monitored.

Basic setup is typically performed when the meter is initially put into service, although the device cannot operate properly until the Volts Mode and PT and CT ratios are set. After this basic setup is performed the meter operates properly, and there is generally no need to make further changes to the basic setup.

Other advanced parameters can be configured, if needed. See the description of the Power Meter module in ION Reference for more information.

Basic setup parameters

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting options</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts mode¹</td>
<td>– 9S - 4 Wire Wye/Delta
– 29S - 4 Wire Wye
– 35S - 3 Wire
– 36S - 4 Wire Wye
– Demo</td>
<td>*See note
Note: The default setting varies depending on the meter form factor. Ensure you verify that the correct option is selected for your power system before putting the meter into service.</td>
<td>The power system’s configuration and supported form factor. 36S - 4 Wire Wye is only available on the socket meter.</td>
</tr>
<tr>
<td>PT Primary¹</td>
<td>1.0 to 999999.00</td>
<td>120</td>
<td>The Potential Transformer’s primary winding rating</td>
</tr>
<tr>
<td>PT Secondary</td>
<td>1.0 to 999999.00</td>
<td>120</td>
<td>The Potential Transformer’s secondary winding rating</td>
</tr>
<tr>
<td>CT Primary¹</td>
<td>1.0 to 999999.00</td>
<td>5</td>
<td>The Current Transformer’s primary winding rating</td>
</tr>
<tr>
<td>CT Secondary¹</td>
<td>1.0 to 999999.00</td>
<td>5</td>
<td>The Current Transformer’s secondary winding rating</td>
</tr>
<tr>
<td>VA Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V1</td>
</tr>
<tr>
<td>VB Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V2</td>
</tr>
<tr>
<td>VC Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Potential Transformer on V3</td>
</tr>
<tr>
<td>IA Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I1</td>
</tr>
<tr>
<td>IB Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I2</td>
</tr>
<tr>
<td>IC Polarity</td>
<td>– Normal
– Inverted</td>
<td>NORMAL</td>
<td>The polarity of the Current Transformer on I3</td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>– ABC
– ACB</td>
<td>ABC</td>
<td>The expected rotation of the voltage phases (ABC or ACB)</td>
</tr>
<tr>
<td>ScaleRevParam</td>
<td>– ON
– OFF</td>
<td>ON</td>
<td>Whether or not PT/CT correction is applied to displayed and recorded meter data</td>
</tr>
</tbody>
</table>

¹ These registers are typically set when the device is commissioned. Changing the values of these registers while the device is in service is not recommended.

Configuring basic setup

Use the front panel, Power Monitoring Expert or ION Setup to perform basic meter setup.
Using the front panel

Access the BASIC SETUP menu to configure the power system settings. See “BASIC SETUP menu” on page 32 for instructions.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

2. Select the Basic Setup screen and click the PT/CT Ratios tab.

3. Configure each register as required by selecting the parameter and clicking Edit.

NOTE: Scaled Rev Param determines if the PT/CT correction is applied to displayed and recorded meter data. By default, Scaled Rev Param is set to ON and PT/CT corrections are applied.

Using Designer

Open your meter in Designer and navigate to the Basic Configuration Framework. Right-click on the Power Meter module to edit.
Chapter 6 Security

ION8650 meters offer standard and advanced device security. Standard security is enabled by default from the factory. Advanced security allows you to configure more specific security settings, such as configuring advanced security through the front panel, communications lockouts to limit the number of invalid login attempts, and to add up to 50 users, each with unique access privileges. Procedures for changing these security settings using the front panel, Power Monitoring Expert or ION Setup are detailed in this chapter.

There are also security features available for revenue meters. The scaled operational values (SOV) feature, which allows scaling of non-revenue data on revenue-locked meters, is described in this chapter.

In this chapter

Security overview ... 54
Security features on your device .. 54
NERC CIP ... 55
Time synchronization security considerations 56
Recommended device security configuration 56
Password best practices ... 57
Additional security recommendations 57
Default security settings .. 57
Device security configuration ... 61
Security configuration overview .. 61
Configuring basic meter security using the front panel 62
Configuring meter security in ION Setup 65
Factory access .. 73
Configuring the factory access minutes setup register 73
Factory access and standard security 73
Factory access and advanced security 74
Factory access examples ... 75
Additional revenue metering security 77
Hardware-lock security option .. 77
Anti-tamper sealing methods .. 78
Scaled operational values ... 79
Configuring scaled operational values 80
Security overview

Your Schneider Electric product is equipped with security-enabling features. These features arrive in a default state and can be configured for your installation needs. Please note that disabling or modifying settings within the scope of these individual features can impact the overall security robustness of the device and ultimately the security posture of your network in either positive or negative ways.

Review the security intent and recommendations for the optimal use of your device’s security features.

Products are hardened to increase security robustness. This is an ongoing process consisting of secure development practices, inclusion of security features and testing at our security test facilities. Following system hardening best practices is also necessary to help ensure your overall system security.

See the Cybersecurity Hardening Best Practices white paper for suggested best practices.

Security features on your device

Your device comes with security features that you can configure to help protect against unauthorized configuration and access to your device’s data through its user interfaces or communications.

Standard meter security

Anytime you make configuration changes to your device, you must enter a password. Standard security is enabled by default from the factory. See “Standard meter security” on page 61.

Advanced meter security

Advanced security allows you to:

- Enable or disable Modbus programming.
- Configure communications lockouts to limit the number of invalid login attempts permitted for each protocol and set the priority of associated device events.
- Add up to 50 users, each with unique access privileges.
- Enable advanced security access through the front panel.

See “Advanced meter security” on page 62.

Revenue meter security

Your meter can be protected by hardware-lock security and anti-tamper sealing. See “Additional revenue metering security” on page 77.

Software security

Power Monitoring Expert or ION Setup add another layer of access-level security to the device. With Power Monitoring Expert or ION Setup, you can configure multiple users with different passwords and specify access rights. Power Monitoring Expert or ION Setup security only applies to users who are accessing the device using the software.
For more information on Power Monitoring Expert or ION Setup security, refer to the software’s online help.

Network port control

This feature provides you with the ability to enable and disable individual network ports and to change port numbers from their default values.

Leaving unused ports open provides additional attack surfaces for a potential attacker. Minimizing the number of ports open on the device reduces the likelihood of unauthorized intrusions by providing fewer entry points.

Once your meter is configured, all network ports related to unused protocols should be placed in the OFF state/position. Minimize the number of open ports, temporarily opening ports for activities such as periodic firmware / software downloads when required.

Network ports that remain open should be changed from their default values wherever possible.

Event logging

Your meter records meter functions, events and changes to meter parameters and logs them as entries in the event log.

Event logs entries are timestamped and user-related events are associated with the username that was logged into the meter. Security-related events such as resets, successful or unsuccessful login attempts, user lockout or meter configuration changes are also recorded in the event log along with a timestamp and the username associated with the event. The event log can be used to monitor system events, assist in confirming security compliance, or assist in tracking unauthorized intrusion attempts.

Syslog

This feature allows you to push event log information to a centralized syslog server.

When the event log of a meter is full, new log entries can overwrite existing entries. By pushing the event log information to a syslog server, older event log information can be preserved and used as part of an information storage and retrieval strategy.

NERC CIP

The North American Electric Reliability Corporation (NERC) has created Critical Infrastructure Protection (CIP), a set of standards that can assist in monitoring and protecting the assets that make up the power transmission system in North America. NERC CIP is made up of standards that cover aspects such as critical cyber asset identification, electronic security perimeters, and systems security management.

This meter has incorporated security features that can assist in making a facility NERC CIP compliant.

Related topics

For more information about NERC or the CIP standards, refer to the documentation located at http://www.nerc.com.
Time synchronization security considerations

Depending on the software security settings, a workstation that connects to the device may send a time synchronization signal to synchronize the device's internal clock with the workstation's clock. This can cause overlaps in the demand intervals, and timestamps in the data logs may not be accurate.

The Time Sync Source setup register, located in the Clock module, identifies the only communications port that will accept time synchronization broadcasts. You can configure this setup register through ION Setup or the Designer component of Power Monitoring Expert.

Refer to the Time synchronization & timekeeping technical note for more information on implementing time synchronization.

Recommended device security configuration

The following meter configuration is recommended to help improve security on your meter:

- Enable front panel security on your device.
- Enable advanced security on your device.
 - Disable web server programming to help prevent configuration access to your device over the web.
 - Disable Modbus programming to help prevent access to your device using Modbus. This disables write access to all Modbus registers, and only allows read access to the registers in the Modbus Slave modules.
 - Configure the protocol lockouts to help minimize access to your device.
 - Ensure that the Factory user is disabled.
 - Configure users and passwords to help minimize access to your device.
- Disable all unused network ports.
- Disable all unused communication ports.
- Configure the protocol controls to set the appropriate read/write access and change port numbers.
- Change connection ports from their default values wherever possible.
- Change the designated reader from USER0 to a different user.

If your device's front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA LOSS</td>
</tr>
<tr>
<td>Record your device’s front panel and user password information in a secure location.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in data loss.</td>
</tr>
</tbody>
</table>
Password best practices

- Change your device’s front panel password from the default factory value of 0 (zero).
- Make your meter’s front panel and user-specific passwords as complex as possible. For passwords created in ION Setup, there is a password strength indicator. Password strength ranges from Very weak to Very strong.
- Schedule regular changes to your device’s front panel and user passwords.
- Record the device’s front panel and user passwords in a secure location.

If your device’s front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

NOTICE

DATA LOSS

Record your device’s front panel and user password information in a secure location.

Failure to follow these instructions can result in data loss.

Additional security recommendations

- For the highest level of security, use a hardware-locked, sealed device with advanced security enabled and configured for minimum access.
- Protect all Ethernet devices with a properly configured firewall that prevents Telnet access over port 23.
- Save a copy of your device’s security configuration (.scf) file in a secure location in addition to the password and user information.
- Set device communication ports to the Factory protocol only when necessary to permit access by Schneider Electric Technical Support, and return the ports to their original settings as soon as possible.
- Set the device’s time synchronization source to a secure communications port, and disable time synchronization on all other ports. See the *Time synchronization & timekeeping* technical note for more information.

Default security settings

The meter ships from the factory with standard security enabled and a default password of 0 (zero). Default device security values for devices shipping from the factory are defined in the following table. If you upgrade an existing device to use the latest firmware, your device’s existing security values are not affected; the values will retain their current settings.

<table>
<thead>
<tr>
<th>Security setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Web Server programming</td>
<td>Disabled (not allowed)</td>
</tr>
<tr>
<td>Allow Modbus programming(^1)</td>
<td>Disabled (not allowed)</td>
</tr>
<tr>
<td>Protocol lockout attempts</td>
<td>Eight (for all protocols)</td>
</tr>
<tr>
<td>Session timeout</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Lockout duration</td>
<td>1440 minutes (24 hours)</td>
</tr>
<tr>
<td>Valid login event priority</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 6 - Security

ION8650 User Manual

This setting only applies to advanced security.

Unless otherwise noted, these security settings apply regardless of whether the device has standard or advanced security enabled; for example, if you change the lockout duration to 720 minutes (12 hours), that is the lockout duration for the device in standard security or in advanced security.

Entering the front panel password

When you attempt to change a setting on the front panel with basic security enabled, you are presented with the password screen. After you enter the correct password, you do not have to re-enter it for other any other changes unless you exit the configuration session or the session has elapsed.

To enter the password:

1. Use the arrow buttons to change the value of the highlighted digit. The up arrow increments the number and the down arrow decrements it.

2. Hold down an arrow button for about one second to change the position of the cursor. The up arrow moves the cursor left one position and the down arrow moves the cursor right one position.

3. Press the **ALT/ENTER** button once you have the value that you want.

Entering advanced security username or password when accessing the device via the front panel

When you attempt to change a setting through the front panel of a device that has advanced security enabled, you are prompted for a username and password. See “Configuring meter security in ION Setup” on page 65 for information regarding setting advanced security on your meter.

If the access level associated with the user is not sufficient to change the setting, the NOT AVAILABLE message is displayed.

NOTE: The printable ASCII character set is used when entering an advanced security password through the front panel. If a password created through ION Setup contains any of the extended ASCII character set, that password cannot be entered through the front panel.
To enter the username and password through the front panel:

1. Use the arrow buttons to change the highlighted character in the username. The up arrow moves the cursor forward through the list of available characters and the down arrow moves the cursor backward. Hold the up arrow to move the cursor one position to the left or hold the down arrow to move the cursor one position to the right.

 NOTE: Usernames are fixed as USER1 through USER50. USER0 is the designated front panel user and is not a valid user through advanced security. The meter ignores leading zeros. For example, USER1, USER01 or USER001 are all recognized by the meter as User1.

2. Press the **ALT/ENTER** button once you have the value that you want. The ENTER PASSWORD message appears.

3. Use the arrow buttons to change the value of the highlighted character. The up arrow increments the number and the down arrow decrements it. Hold the up arrow to move the cursor one position to the left or hold the down arrow to move the cursor one position to the right.

4. Press the **ALT/ENTER** button once you have the value that you want.

 If the username or password is not correct, the INVALID LOGIN message is displayed. All invalid access attempts are logged in the event log.

Entering a username or password when accessing the device via software

When you attempt make changes through software to a device that has security enabled, you are prompted for a username and password (if advanced security is enabled) or a password (if standard security is enabled).

1. Select a user or enter a valid username (if advanced security is enabled).

2. Enter the appropriate password and click **OK**.

 NOTE: Depending on your software’s security settings, you may also be prompted for a software username and password.
Allowing Power Monitoring Expert Windows services access to devices with Advanced security enabled

If you are using your device with Power Monitoring Expert, many Power Monitoring Expert Windows services need constant access to the device. These services include the ION Log Inserter Service, the ION Virtual Processor Service and ION Site Service.

When advanced security is enabled on the device, these services may not have sufficient access rights to perform their operations. You must specify a user with sufficient access rights for these services. These services can access devices with standard security enabled without further configuration. For more information on these services, see the online Power Monitoring Expert Help.

NOTE: You can configure a separate user for allowing services access.
If you encounter difficulties with Power Monitoring Expert accessing the device:
- these services may not have access rights to the device;
- the original username and password may have changed;
- the user configured to allow the services access to the device may be locked out as a result of invalid login attempts; see “Communications protocol lockout feature” on page 66.

2. Select the device (or select multiple devices) that has advanced security enabled, right-click and select Security. The Meter Security Settings dialog box appears.

3. Select the username you want from the dropdown list. The Change Password button becomes active. Select the check box if you want to allow this user to send time synchronization signals to the device. Click OK.

4. Enter the valid password, re-type the password to confirm and click OK.
Device security configuration

Security configuration overview

There are three main components in configuring device security:

1. Set basic security options:
 - Change the front panel password.
 - Disable Web Server programming.
 - Disable Modbus programming.
 See “Set basic security options” on page 65.

2. Configure communications protocol lockout options:
 2a. Select the protocols to configure.
 2b. Configure protocol-specific settings:
 – Set the number of attempts before the protocol is locked out.
 – Set the session timeout.
 2c. Configure global lockout settings:
 – Enter a lockout duration.
 – Set the priority of meter access events.
 See “Configuring communications protocol lockout” on page 67.

3. Configure users:
 – Determine user access.
 – Set user passwords.
 See “Configure users” on page 70.

Configure device security

Enable/disable factory access

1. Configure factory access minutes.
 See “Configuring the factory access minutes setup register” on page 73.

2. Enable/disable factory user (for devices with advanced security enabled).
 See “Configure users” on page 70.

Follow security best practices

1. Implement recommended device security configuration.
 See “Recommended device security configuration” on page 56

2. Follow password best practices.
 See “Password best practices” on page 57.

3. Follow the additional device security recommendations.
 See “Additional security recommendations” on page 57.

Use the front panel to configure basic security or use the ION Setup (version 3.0 and later) Setup Assistant security wizard to configure standard or advanced security.

You can also use ION Setup advanced mode or the Designer component of Power Monitoring Expert to configure security settings. See the software’s online Help for more information.

Standard meter security

Standard meter security is enabled by default on the meter; all configuration functions are password-protected.

- If you make configuration changes to the meter using the front panel, the meter prompts you for its password before accepting any configuration changes. You do not need to re-enter the password for each subsequent change. However, if you perform no additional configuration changes for five minutes, the meter exits setup mode; to make any further changes, you need to re-enter the Setup menu and provide the valid meter password.
If you make any configuration changes using ION Setup or Power Monitoring Expert software, you are prompted by the meter for its password (in addition to the password used to access the software).

After you enter the correct meter password and confirm the new configuration, the change is set on the meter.

Advanced meter security

Advanced security allows you to:

- Enable or disable Modbus programming. Disabling Modbus programming disables write access to all Modbus registers, and only allows read access to the registers in the Modbus Slave modules.
- Add up to 50 users, each with unique access privileges.
- Configure communications protocol lockouts to limit the number of invalid login attempts permitted for a user using a particular password, protocol and communications method combination and set the priority of login-related meter events.
- Enable advanced security functions through the front panel.

Configuring basic meter security using the front panel

This section describes the security configuration options available to front panel users. Instructions are provided on the following procedures:

- Changing the meter password.
- Disabling (and enabling) the basic security password security check.
- Resetting the meter password.
- Enabling and disabling web configuration.

Changing the basic security password

By default, the basic security password is set to 0 (zero). The password can be changed to any number up to eight digits long. It is highly recommended that you change the password from the default value. See “Password best practices” on page 57 for recommendations.

To change the basic security password:

1. Hold down the **ALT/ENTER** button to access the SETUP menu.
2. Use the up and down arrows to highlight SECURITY then press the **ALT/ENTER** button.
3. Use the up and down arrows to highlight MODIFY PASSWD then press the **ALT/ENTER** button.
4. Enter the current meter password when prompted (see “Entering the front panel password” on page 58). After you enter the current password, you are able to modify the password:

![Modify Password]

5. Use the up and down arrow buttons to change the value of the highlighted digit. The up arrow increments the number and the down arrow decrements it.

6. Hold down an arrow button for about one second to change the position of the cursor. The up arrow moves the cursor left one position and the down arrow moves the cursor right one position.

7. Press the ALT/ENTER button once you have the value that you want. You are prompted for your current password before the new password is saved.

If your device’s front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

NOTICE

DATA LOSS

Record your device’s front panel and user password information in a secure location.

Failure to follow these instructions can result in data loss.

Enabling and disabling the basic security password security check

Disabling the password security check allows changes to all the meter's settings through the front panel and software without a security check. This procedure is not recommended but may be necessary in some rare cases (for example, if the communications interface you are using does not support the meter’s security protocols).

The enable/disable password feature is used with basic security only. If advanced security has been enabled on your meter, a NOT AVAILABLE message is displayed on the meter’s front panel when you attempt to disable the basic security password.

NOTE: It is highly recommended that any devices in the field have the password security check enabled. Non-secure access to critical settings in the meter, such as PT and CT ratios, is not advisable.

Disabling the password security check

1. Press the ALT/ENTER button to enter the SETUP menu.
2. Use the arrow buttons to scroll down the menu and select SECURITY, then press ALT/ENTER.
3. Enter the valid meter password at the password prompt. You are then presented with the SECURITY menu.
4. Use the arrow buttons to scroll down the menu and select DISABLE SECURITY then press the ALT/ENTER button.

5. Select PROCEED, then select YES at the prompt to confirm the change.

Your meter’s password is now disabled; changes to settings in the meter do not require a valid password. To re-enable the password security check, see “Enabling the password security check”, below).

6. Press the ALT/ENTER button to return to the SETUP menu.

Enabling the password security check

When you re-enable the password security, you are required to enter a new password.

To re-enable password security:

1. Press the ALT/ENTER button to enter the SETUP menu.

2. Use the arrow buttons to scroll down the menu and select SECURITY, then press ALT/ENTER.

3. Select MODIFY PASSWD then press the ALT/ENTER button.

 The message FAC DEFAULT appears in the middle of the screen. If you want to use the factory default password, press the ALT/ENTER button. If you want to set the password to a different number, use the instructions in “Changing the basic security password” on page 62.

4. Press the ALT/ENTER button after you enter your new password.

5. Select YES to confirm the change and return to the SETUP menu.

The password security check is re-enabled. All changes to the device’s configuration require the new meter password.

Resetting the front panel password

In the event that you forget or lose your meter password, you can reset the meter’s front panel password to the factory default value of 0 (zero). Resetting the password requires that the meter be in TEST mode.

- If your meter has the password security check disabled, you can put the meter into TEST mode using Power Monitoring Expert or ION Setup.
- If your meter has the password security check enabled (or your meter has the hardware lock security option enabled), you must remove the meter’s outer cover to access the TEST mode button.

Refer to “Switching to TEST mode” on page 199 for details on putting the meter into TEST mode.

To reset the front panel password to the factory default:

1. Put your meter into TEST mode.

2. Press and hold down the ALT/ENTER button and the demand reset switch simultaneously.

 Continue to press and hold the button and switch until a message appears on screen stating that the password has been reset to the default (this might take a few seconds). Password security is now enabled and the front panel password is 0 (zero).
Enabling and disabling web configuration

To enable or disable the ability to configure your meter remotely via a web browser:

1. Press the **ALT/ENTER** button to enter the SETUP menu.

2. Use the arrow buttons to scroll down the menu and select **SECURITY**, then press **ALT/ENTER**.

3. Enter the valid meter password at the password prompt. You are then presented with the **SECURITY** menu.

4. Use the arrow buttons to scroll down the menu and select **WEB CONFIG**, then press the **ALT/ENTER** button.

5. Select **ENABLED** or **DISABLED** as appropriate then press **ALT/ENTER**.

6. Select **YES** to confirm the change and return to the SETUP menu.

Configuring meter security in ION Setup

You can fully configure standard and advanced security on your meter using ION Setup.

In order to change security settings, you must be logged into ION Setup with an appropriate ION Setup user level. You must also have the appropriate meter-level security access to configure meter security.

If your meter's display (front panel) or user passwords are lost, or if you disable front panel programming and then configure communications so that you cannot communicate to or configure your meter, you must return the meter to the factory, where your meter is reset to its factory defaults and all logged data is lost.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA LOSS</td>
</tr>
<tr>
<td>• Record your device's display and user password information in a secure location.</td>
</tr>
<tr>
<td>• Do not change communications ports settings with the Allow Front Panel Programming setting cleared (unchecked).</td>
</tr>
<tr>
<td>• Ensure you maintain sufficient access to communicate to and configure your device.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in data loss.

Set basic security options

1. Start ION Setup.

2. Open the Setup Assistant for your device.

3. Navigate to **Security**. Select Security Mode and click **Edit**. The open dialog box appears.

4. Select the appropriate security configuration file (*.scf) to configure your meter:
 - Standard: allows you to configure basic security, TCP/IP port settings, and communications protocol lockout.
--- Advanced: includes the standard security features and adds user access/password security settings.

NOTE: If a setting is not supported by the existing firmware, a message is displayed indicating some settings will not be programmed.

5. The standard options or advanced options configuration screen appears. Configure the security parameters as required, some parameters can only be configured using advanced security:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard/advanced</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter password</td>
<td>Standard/advanced</td>
<td>Default meter password is 0 (zero)</td>
</tr>
<tr>
<td>Allow front panel programming</td>
<td>Standard/advanced</td>
<td>This option allows you to enable or disable the ability to configure your device using the display.</td>
</tr>
<tr>
<td>Allow broadcasting time synchronization</td>
<td>Advanced only</td>
<td>This option can only be disabled in advanced security and is enabled for standard security.</td>
</tr>
</tbody>
</table>

NOTE: Changing communications port settings with **Allow Front Panel Programming** cleared (unchecked) may cause a loss of communications with your device, and render it inoperable.

Notice

DATA LOSS

- Record your device’s display and user password information in a secure location.
- Do not change communications ports settings with the **Allow Front Panel Programming** setting cleared (unchecked).
- Ensure you maintain sufficient access to communicate to and configure your device.

Failure to follow these instructions can result in data loss.

6. Click **Next** or **Finish**.

Click **Next** if you are configuring advanced security. The **Select protocol lockout options** screen appears; see “Configuring communications protocol lockout” on page 67.

Click **Finish** if you are configuring standard security. A prompt appears asking if you want to save your security settings in a file. Click **Yes** to save the settings or click **No** if you want do not want to save your security settings to a file.

Communications protocol lockout feature

The communications protocol lockout advanced security feature allows you to set the number of invalid login attempts that each user can make using a particular protocol and communications method before being locked out (a user is defined as a user login and password combination). For protocols that are not session-based (ION and HTTP), you can configure how often the device registers invalid login attempts. You can also configure the lockout duration for all configurable protocols. By default, all protocols are set to eight invalid attempts and a 24-hour lockout duration.

Once a user is locked out, the device will not accept login attempts from that user on that protocol and communications method until the lockout duration has passed. Invalid login attempts accumulate until the user has completed a valid login or been locked out.
For example, once USER01 has been locked out using ION over Ethernet, USER01 cannot access the device using ION over Ethernet until the lockout duration has passed, even if USER01 enters the correct password. However, if the user enters the correct USER/password combination before being locked out, the invalid attempt counter is reset to zero. Even if the user is locked out using ION over Ethernet, that user can still access the device by entering the correct USER/password combination over a different protocol and communications method (for example, connecting to the device’s front optical port using ION protocol).

You can also configure the event priority for device access and protocol lockout events, so they can be viewed in the device’s event log. By default, the invalid login event priority is set to 128 and the lockout event priority is set to 255. The device access event priorities can be configured by clicking Events on the protocol lockout screen.

Configuring communications protocol lockout

See “Communications protocol lockout examples” on page 68 for examples of how these settings affect login and communications.

NOTE: These settings apply regardless of whether standard or advanced security is enabled on your device.

1. Select the check boxes beside the protocols for which you want to enable communications protocol lockout.

2. Highlight a selected protocol and click **Edit** to modify the lockout values for that protocol.

 - **Protocol lockout** specifies the number of invalid login attempts allowed per user/password combination before access is denied to that user over that protocol and communications method. This value can range from 0 to 255.

 NOTE: If Protocol lockout attempts is set to 0, there is no limit to the number of invalid login attempts and that protocol will never be locked out. However, the invalid login attempt events are recorded if the meter access events are configured to record invalid access attempts.

 - **Session timeout** specifies the active duration for a protocol; during this time, repeated invalid login attempts using the same USER/password combination are not registered (repeated invalid attempts with different combinations are still registered). This only applies to protocol which are not session-based and send credentials with each packet. Configuring this setting prevents accidental lockouts and filling the device’s event log with protocol access events. This value can range from 1 minute to 43200 minutes (30 days).
Click **OK**. Repeat for all protocols on which you want to enable communications protocol lockout.

3. Type the lockout duration, in minutes. The lockout duration specifies how long the meter ignores communication attempts by a user that is locked out. The lockout duration value applies to all lockout-enabled protocols.

 Once a user is locked out, the user cannot access the meter using the same protocol and communications method, regardless of whether or not the user enters the correct USER/password combination.

4. Click **Events** to enter the event priority for valid login attempts, invalid login attempts and protocol lockouts. The event priorities apply to all lockout-enabled protocols. Enter 0 (zero) to disable event logging for a particular type of login attempt.

5. Click **Next**. The **Define individual users/passwords** screen appears. See “Configure users” on page 70 for the next step in configuring advanced security.

Communications protocol lockout examples

In the following examples:

- The configured users and their valid passwords are:

 - USER01/password 11

 - USER02/password 22

- For the ION protocol:

 - Protocol Lockout is configured to allow 3 invalid login attempts by a particular user/password combination before locking the user out.

 - Session timeout is set to 30 minutes.

- For all protocols that can be locked out:

 - Lockout duration is set to 1440 minutes (one day).

 - The meter is configured to log invalid event entries and lockouts.
Scenario 1

This example illustrates what happens when a user repeatedly enters the same incorrect password when attempting to access the meter.

1. An access attempt is made using ION over Ethernet by USER01 but with a password of 0.

 The user is informed of the invalid attempt and cannot access the meter. The invalid attempt is logged in the event log and the counter of invalid attempts is incremented to 1.

2. The user attempts to access the meter again 10 minutes later with USER01/password 0.

 The user cannot access the meter but the event is not logged and the counter of invalid attempts is not incremented, because the session timeout has not elapsed.

3. The user attempts to access the meter again with the invalid USER01/password 0 combination 30 minutes after the initial attempt.

 Because the session timeout has elapsed, the event is logged and the counter of invalid login attempts is incremented to 2.

4. The user attempts to login again after 30 minutes has elapsed with the same invalid USER01/password 0 combination, the event is logged and the counter of invalid attempts is incremented to 3.

 USER01 is locked out for the duration of the lockout time (1440 minutes), and cannot connect to the meter using ION over Ethernet, regardless of whether or not they subsequently try to login with the correct user/password combination. The lockout event is logged by the device. USER01 can access the meter through another communications method (for example, ION over serial) if they enter the correct USER/password combination.

Regardless of the invalid attempts of USER01, USER02 can access the meter using ION over Ethernet if they enter the correct password; they are not affected by the lockout.
Scenario 2

This example illustrates what happens when different invalid combinations of user and password are entered.

1. An access attempt is made using ION over Ethernet by USER01 but with a password of 0.

 The user is informed of the invalid attempt and cannot access the meter. The invalid attempt is logged in the event log and the counter of invalid attempts is incremented to 1.

2. The user attempts to access the meter again with USER01/password 3.

 The user is informed of the invalid attempt and cannot access the meter. In this case, this is considered a new invalid attempt because it is a different combination of user and password. It is logged in the event log and the counter of invalid attempts is incremented to 2.

3. The user attempts to access the meter again with USER01/password 4.

 The user is informed of the invalid attempt and cannot access the meter. This is considered a new invalid attempt because it is a different combination of user and password. It is logged in the event log and the counter of invalid attempts is incremented to 3. The device logs a lockout event.

 USER01 is locked out for the duration of the lockout time (1440 minutes), and cannot connect to the meter using ION over Ethernet, regardless of whether or not they subsequently try to login with the correct user/password combination. USER01 can access the meter through another communications method (for example, ION over serial) if they enter the correct USER/password combination.

Regardless of the invalid attempts of USER01, USER02 can access the meter using ION over Ethernet if they enter the correct password; they are not affected by the lockout.

Configure users

Advanced security allows configuration of up to 50 users, each with unique access rights to the meter.

NOTE: User names are fixed as USER01 through to USER50.
1. Select the check boxes of the users you want to configure (USER01 through USER50). Select the appropriate access for each user:

<table>
<thead>
<tr>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time sync</td>
<td>The user can set the meter’s time and time synchronization parameters.</td>
</tr>
<tr>
<td>Read</td>
<td>The user can view all parameters except the security configuration.</td>
</tr>
<tr>
<td>Peak demand reset</td>
<td>The user can reset peak demand values.</td>
</tr>
<tr>
<td>Comm Configure</td>
<td>The user can configure the communication settings.</td>
</tr>
<tr>
<td>Test mode</td>
<td>The user can put the meter into test mode.</td>
</tr>
<tr>
<td>Full meter config</td>
<td>The user can configure all aspects of the meter except demand resets, test mode or security.</td>
</tr>
<tr>
<td>Security config</td>
<td>The user can configure security.</td>
</tr>
</tbody>
</table>

Ensure that there is at least one user that can perform full meter security configuration.

NOTICE

DATA LOSS

Ensure you maintain sufficient access to communicate to and configure your device.

Failure to follow these instructions can result in data loss.

NOTE: Regardless of user permissions, a hardware-locked device can only be placed into test mode using the front panel. You cannot place a hardware-locked meter in TEST mode using Power Monitoring Expert or ION Setup.

When configuring users, in most cases, you must set Read Access to YES. However, you can set up a user without read access; for example, you can create a user who can only timesync the meter. In some cases (such as advanced security configuration access), you must set multiple access options to YES. When you are configuring advanced security, the software rejects unacceptable or unsecure user configurations.

2. Select a user, then click Password to set a password for that user. Type the password in the **New password** and **Confirm new password** fields and click **OK**. See “Password best practices” on page 57 for more information on setting passwords.

If your device’s front panel or user passwords are lost, you must return the device for factory reconfiguration, which resets your device to its factory defaults and destroys all logged data.

NOTE: Select **Show password when user selected** to display the password associated with that user. This feature is intended to help ensure that the correct password is entered for each user.

NOTICE

DATA LOSS

Record your device’s front panel and user password information in a secure location.

Failure to follow these instructions can result in data loss.
3. Click **Finish** when you are done configuring users to apply the security settings to the device. A prompt appears asking if you want to save your security settings in a file.

 – Click **Yes** to save your settings in a file.

 – Click **No** if you do not want to save your security settings in a file.

NOTE: Save your device’s security settings file under a descriptive name in a secure location, along with your device’s user and user password information. Your device’s security settings file can be used to configure additional devices with the same settings, and can also assist with device troubleshooting or password recovery.
Factory access

Factory access is restricted to Schneider Electric Technical Support, and should only be enabled when requested by Schneider Electric authorized personnel.

The factory access security feature interacts with standard and advanced security to enable factory-level access to the device for the specific period of time entered in the Factory Access Minutes setup register, located in the Security Options module. The Factory Access Minutes register value can range from one minute to 19 years. Setting it to 0 (zero) disables all factory access.

If the device uses standard security, when you press any of the device’s front panel buttons, power cycle the device, or edit the Factory Access Minutes setup register, factory-level access is enabled on the device for the duration specified in the Factory Access Minutes setup register. If the device has advanced security enabled, the Factory user must also be enabled. The device will only permit factory-level access, with the correct login credentials, for the period specified in the Factory Access Minutes setup register.

Configuring the factory access minutes setup register

You must use ION Setup in advanced mode to configure the Factory Access Minutes setup register, located in the Security Options module. In order to change security settings, you must be logged into ION Setup with a Supervisor level user account with permissions to change these settings.

1. Connect to your device in advanced mode in ION Setup. See the ION Setup Help for more information.
2. Navigate to the Security Options Modules folder and double-click on the module in the right-hand pane.
3. Select the Setup Registers tab.
5. Enter the desired duration (in minutes) for factory access to be enabled. Select Elapsed Interval Format from the dropdown list to enter day, hour and minute values.

You can also use the Designer component of Power Monitoring Expert to configure the register. See the Power Monitoring Expert Help for more information.

Factory access and standard security

If a user tries to login to factory-level access (using Telnet or Hyperterminal) on a device with standard security, both of the following conditions must be met before the device can proceed with subsequent checks:

1. Factory Access Minutes setup register is not 0 (zero).
2. The user and password information for factory-level access has been entered correctly.
If both conditions are met, the device checks the following to determine if access will be granted:

- Front panel button: if the time since one of the device’s front panel buttons was pushed is less than the *Factory Access Minutes* register value, the user is given access.

- Power cycle: if the time since the device was powered up is less than the *Factory Access Minutes* register value, the user is given access.

- *Factory Access Minutes* edit: if the time since the *Factory Access Minutes* register value was edited is less than the *Factory Access Minutes* value, the user is given access.

If any one of these conditions are met, the user is given access. If none of these conditions are met, the user is not given factory-level access on a device with standard security even if they entered appropriate user and password information.

Factory access and advanced security

If a user tries to login to factory-level access (using Telnet or Hyperterminal) on a device with advanced security, all three of the following conditions must be met before the device can proceed with subsequent checks:

1. *Factory Access Minutes* setup register is not 0 (zero).
2. The user and password information for factory-level access has been entered correctly.
3. The Factory user has been enabled. See “Configure users” on page 70 for instructions.

NOTE: The Factory user can be enabled and disabled on the user configuration screen of the ION Setup advanced security wizard.

If all three of these conditions are met, the device checks the following to determine if access will be granted:

- Front panel button: if the time since one of the device’s front panel buttons was pushed is less than the *Factory Access Minutes* register value, the user is given access.

- Power cycle: if the time since the device was powered up is less than the *Factory Access Minutes* register value, the user is given access.

- *Factory Access Minutes* edit: if the time since the *Factory Access Minutes* register value was edited is less than the *Factory Access Minutes* value, the user is given access.

If any one of these conditions are met, the user is given access. If none of these conditions are met, the user is not given factory-level access on a device with advanced security even if they entered appropriate user and password information.
Factory access examples

Scenario 1

This example illustrates how factory access functions on a device using standard security, with a *Factory Access Minutes* setup register value of 10, over a protocol that is not session-based.

NOTE: A protocol that is not session-based actively communicates login credentials while you are connected to the device (for example, ION and HTTP).

1. The user pushes a front panel button on the device (T=0). This starts the factory access duration of ten minutes.

2. Two minutes after the button press (T=2), Schneider Electric Technical Support requests factory-level access to the device, with the correct login credentials, over HTTP. Factory-level access is granted.

3. Ten minutes after the button press (T=10), factory-level access expires, and the user is automatically logged out.

Any attempt to connect to the device using factory-level access is now denied.

NOTE: With protocols that are not session-based (for example, ION and HTTP), the access expires when the time since the factory access was activated equals the duration specified in the *Factory Access Minutes* setup register.

Scenario 2

This example illustrates how factory access functions on a device using advanced security, with a *Factory Access Minutes* setup register value of 5, over a serial port (a session-based protocol).

1. The user connects to the device using ION Setup with Supervisor-level access.
 - In the advanced security wizard, he enables the Factory user.
 - In the Communications tab, he sets the protocol of the appropriate serial port to Factory.

2. The user power cycles the device (T=0). This starts the factory access duration of five minutes.

3. Two minutes after the power cycle (T=2), Schneider Electric Technical Support requests factory-level access to the device, with the correct login credentials, over the serial port. Factory-level access is granted.

4. An hour after the power cycle (T=60), Schneider Electric Technical Support logs off factory-level access.

NOTE: With protocols that are session-based, once factory-level access has been granted, it does not matter if the logged-in time exceeds the value of the *Factory Access Minutes* setup register.

 The factory-level access period has expired, and must be restarted by pushing one of the device’s front panel buttons, power cycling the device, or modifying the *Factory Access Minutes* setup register.

5. The user connects to the device using ION Setup with Supervisor-level access.
 - In the advanced security wizard, he disables the Factory user.
– In the Communications tab, he changes the serial port protocol from Factory back to its original setting.

Scenario 3

This example illustrates how remote factory access functions on a device using advanced security, over a protocol that is not session-based.

NOTE: A protocol that is not session-based actively communicates login credentials while you are connected to the device (for example, ION and HTTP).

1. The customer contacts Schneider Electric Technical Support to request that they connect to a device using factory-level access using the following information:
 – the username and password of an advanced security user that has device security configuration access, and the front panel password of the device.
 – the device’s Ethernet connection information.
2. Technical Support connects to the device using ION Setup, entering the advanced security username and password provided.
 – In the advanced security wizard, he enables the Factory user.
 – Using the advanced mode of ION Setup, he changes the **Factory Access Minutes** setup register from 0 (default) to 30 (T=0).
3. Two minutes after editing the **Factory Access Minutes** setup register (T=2), Schneider Electric Technical Support requests factory-level access to the device, with the correct login credentials, over HTTP. Factory-level access is granted.
4. Twenty minutes after editing the **Factory Access Minutes** setup register (T=20), Schneider Electric Technical Support finishes working on the device and logs off factory-level access.
5. Technical Support connects to the device using ION Setup, entering the advanced security username and password provided.
 – In the advanced security wizard, he disables the Factory user.
 – Using the advanced mode of ION Setup, he changes the **Factory Access Minutes** setup register back to 0 (zero).

Schneider Electric Technical Support contacts the customer to indicate they are finished working on the device and have restored the security settings, and recommends that the customer update their advanced user password information and store their password information and device security configuration file in a secure location.
Additional revenue metering security

To meet government regulations and utility security requirements, the ION8650 revenue meter incorporates additional security elements:

- a hardware-locked security system that prevents modification of revenue quantities after the meter is sealed.
- traditional anti-tamper mechanical seals on the meter base unit and reset switch.

Hardware-lock security option

The hardware-locked security feature is an ordering option for some meters that locks the ION module parameters specific to revenue data so that these parameters cannot be altered. This hardware lock is set at the factory. To make configuration changes to billing parameters on a hardware-locked meter, you must first place the meter into TEST mode. The TEST mode button is located under the anti-tamper sealed outer cover, and the cover must be removed to access the TEST mode button. You cannot switch a hardware-locked meter to test mode from software.

![Press this button to enter TEST Mode](image)

The hardware-lock option, when combined with advanced security and physical anti-tamper sealing, offers the highest level of security. Hardware-locked meters operate as follows:

- With the meter in Normal mode, and with standard or advanced security applied, ION modules that generate revenue data are locked and cannot be altered. Users can modify unlocked ION modules depending on their level of password-protected access through software or the front panel.
- With the meter in TEST mode (which requires removing the cover and breaking any anti-tamper seals), users can modify ION modules depending on their level of password-protected access through Power Monitoring Expert, ION Setup or the front panel.

Typical values that are hardware locked include:

- kWh, kVARh, kVAh delivered, received, del-rec, del+rec.
- kW, kVAR, kVA Sliding Window demand min and max values.
- Digital Outputs controlling the energy pulsing applications.
- All Power system settings, including PT and CT ratios.
Locked module listings
For a complete list of locked modules specific to your meter and its firmware, see the ION Device Template Reference.

Anti-tamper sealing methods

The following sections describe the anti-tamper sealing methods used by the ION8650 revenue meter option.

Demand reset switch seal
The demand reset switch located on the front panel can be sealed by a wire seal or lock inserted through the side of the switch. This seal does not have to be broken to remove the meter's cover.

Socket seals
A standard ANSI C12.7 type socket-sealing ring can be used to hold the socket meter to the socket. When removing the outer cover, the sealing ring must first be removed. Some socket sealing rings facilitate wire seals.

Outer cover/case seals
For socket models, the outer cover of the meter is factory sealed to its backplate with a T-type seal. Depending on the installation, this seal may be inaccessible after the meter is installed until you remove the device from the socket.

For switchboard models, the outer case can be sealed by a wire seal or lock inserted through the sealing point.

In certain countries the meter is no longer revenue certified if the anti-tamper seals are broken.

NOTICE

LOSS OF COMPLIANCE
Ensure that you re-certify your meter with the appropriate revenue metering authorities if you remove the anti-tamper seals.

Failure to follow these instructions may render your device non-compliant for billing purposes.
Scaled operational values

The scaled operational values (SOV) feature is intended for hardware-locked meters where the Power Meter module’s PT and CT ratios are 1:1.

The SOV feature allows you to enter alternate PT and CT values through the Vista component of Power Monitoring Expert, in order to obtain scaled non-revenue data for analysis. The alternate scaling registers are stored in the Factory module and have a default value of 1.

The Power Meter module’s PT and CT primary and secondary values are compared against the Factory module’s alternate values by a series of Arithmetic modules. The Arithmetic modules determine if the SOV feature is enabled (the Power Meter module’s scaling ratios are all 1:1).

- If the SOV feature is disabled, the Arithmetic modules output the Power Meter module’s PT, CT, and kVA ratios.
- If the SOV feature is enabled, the Arithmetic modules output the alternate PT, CT, and kVA ratios. These ratios are applied to the outputs of the MU (Metering Units) Power Meter module to generate scaled operational values. The scaled operational values can be viewed and analyzed using the Vista and Web Reporter components of Power Monitoring Expert.

NOTE: Scaled operational data can only be accessed through Power Monitoring Expert.

The following diagram shows how scaled operational values are generated.

1. Alternate PT and CT primary and secondary values are loaded into the first series of Arithmetic modules.
 Example: Alternate PT Primary = 240, Alternate PT Secondary = 120

2. Power Meter PT and CT primary and secondary values are loaded into the first series of Arithmetic modules.
 Example: PT Primary = 120, PT Secondary = 120

 NOTE: All the Power Meter module’s ratios must equal 1:1 to enable the SOV feature.

3. Because the Power Meter module’s ratios are 1:1, the alternate scaling registers are used to generate the PT, CT, and kVA ratios, which are loaded into the second series of Arithmetic modules.
 Example: PT ratio = 2:1

 ![Diagram showing scaled operational values generation](image-url)
4. MU Power Meter module per phase voltage, current and energy values, and total/average voltage, current and energy values are loaded into the second series of Arithmetic modules.

Example: VLN a = 30 V

5. The second series of Arithmetic modules apply the PT, CT, and kVA ratios to the MU Power Meter values to output operational scaled values to your Power Monitoring Expert database.

Example: VLN a = 60 V

The following 1-second data values are scaled by the SOV feature:

<table>
<thead>
<tr>
<th>Vln a</th>
<th>Vln b</th>
<th>Vln c</th>
<th>Vln avg</th>
<th>Vll ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vll bc</td>
<td>Vll ca</td>
<td>Vll avg</td>
<td>I a</td>
<td>I b</td>
</tr>
<tr>
<td>I c</td>
<td>I avg</td>
<td>kW a</td>
<td>kW b</td>
<td>kW c</td>
</tr>
<tr>
<td>kW total</td>
<td>kVAR a</td>
<td>kVAR b</td>
<td>kVAR c</td>
<td>kVAR total</td>
</tr>
<tr>
<td>kVA a</td>
<td>kVA b</td>
<td>kVA c</td>
<td>kVA total</td>
<td></td>
</tr>
</tbody>
</table>

The following are derived from scaled operational data values:

- Maximum/minimum,
- Historic high/low/mean, and
- Waveforms.

NOTE: The Sag/Swell and Transient modules are not affected by the SOV feature. The nominal voltage register in the Sag/Swell module must be set to the unscaled voltage value.

The Harmonics Measurement module outputs are only scaled by the SOV feature when the Display Mode register is set to Engineering units. No other harmonics modules are affected.

Because total harmonic distortion (THD), total even harmonic distortion (TEHD) and total odd harmonic distortion (TOHD) are expressed as percentages, these values are not affected by the SOV feature.

Configuring scaled operational values

You can configure the alternate PT and CT values in the Vista component of Power Monitoring Expert.

1. Open your meter in Vista.

2. Select the Power Quality tab and click the Setup icon to open the Power Quality Setup screen.

 The Power Quality Setup screen contains fields where you can enter the alternate scaling register values, along with an indicator showing whether the SOV feature is enabled or disabled.

 NOTE: The alternate scaling registers are set to 1 by default.

3. Enter the alternate PT and CT values to provide the desired scaling.

When the SOV feature is enabled and the alternate PT and CT values are configured (no longer equal to 1), the Vista screens indicate if the data values displayed are scaled operational values or not.
Chapter 7 Communications

This chapter includes general instructions for connecting and configuring all the communication ports on your meter.

For specific installation steps and meter specifications, consult your ION8650 Installation Guide.

NOTE: If you cannot communicate as expected with an ION8650C, ensure that you have enabled the communications port that you are using and that you have power cycled the meter. See “ION8650C communications options” on page 84 for more information.

In this chapter

Communications overview .. 82
Communications options .. 82
ION8650C communications options .. 84
Serial connections ... 86
 RS-232 connections ... 86
 RS-485 connections ... 87
 Configuring RS-485 ... 90
 Configuring the optical port ... 91
Configuring Ethernet connections .. 93
 Domain name resolution (DNS) ... 95
 Configuring EtherGate connections 95
 Enabling and Disabling Ethernet ports 97
 Meter FTP server ... 97
Internal modem connections .. 99
 56k universal internal modem ... 99
 Internal cell modem ... 104
Syslog ... 105
 Configuring Syslog network settings using ION Setup 105
 Syslog Server ... 105
 Event log priority to syslog severity 105
Ethernet protocol control .. 106
 Default Ethernet ports ... 106
HTTPS outage alerts .. 108
 TLS certificate management .. 108
Communications overview

The following illustration shows the connections to the communications card.

Communications options

ION8650 meters have numerous communication possibilities depending on your ordering options and, in the case of the ION8650C, the enabled communications ports.
Not all models have exactly the same communications options available. Contact your Schneider Electric sales representative for the latest ordering options and documentation. You can use all communications ports simultaneously on the ION8650A and ION8650B; you can use the front optical port plus two other ordered communications ports simultaneously on the ION8650C.

Socket and switchboard meters communication options

<table>
<thead>
<tr>
<th>Port</th>
<th>Available options</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1</td>
<td>RS-232 / RS-485</td>
<td>User selectable RS-232 or RS-485</td>
</tr>
<tr>
<td>COM2</td>
<td>Internal Modem RJ11</td>
<td>Maximum 57.6 kbps baud rate modem RJ11 connection</td>
</tr>
<tr>
<td>COM3</td>
<td>Optical Port</td>
<td>ANSI Type II optical port located at front of meter</td>
</tr>
<tr>
<td>COM4</td>
<td>RS-485</td>
<td>—</td>
</tr>
<tr>
<td>Cell Modem</td>
<td>Internal cell modem</td>
<td>available on socket meter only</td>
</tr>
<tr>
<td>Network</td>
<td>Ethernet RJ45 (10/100Base-T)</td>
<td>—</td>
</tr>
<tr>
<td>IRIG-B</td>
<td>Captured wire connector</td>
<td>Format is unmodulated IRIG-B time code</td>
</tr>
</tbody>
</table>

Optional switchboard breakout panel communication options

See the *ION8650 switchboard installation* guide for wiring instructions.

Communications accessories

The following accessories are currently available as separate products:

I/O Expander

The I/O Expander connects with the male Molex connector on the meter to provide I/O capabilities as well as access to standard serial communications ports. Refer to the *I/O Expander Installation Guide* for details about this device.

Communications breakout cable

The communications breakout cable connects with the male Molex connector on the meter. This is a pre-made cable that provides access to the standard serial communications ports on the meter. Cable length is 5 feet (152 cm).

Molex extension cables

Molex extension cables can be ordered in both 5 and 15 feet (1.5 or 4.5 meter) lengths.

NOTE: The communications ports on an I/O Expander are not enabled when connected to a breakout panel. Use the RS-485 and RS-232 connectors provided on the breakout panel.
Optical probe

The optical probe attaches to the optical port on the front of the meter and allows on-site communications (for example, with a laptop computer).

ION8650C communications options

The ION8650C supports concurrent communications on the optical port (COM3) and a maximum of two other communications ports for a total of three simultaneous communications connections. If your ION8650C has three communications ports enabled, you must disable one of the active communications ports before you can enable another one in its place. For example, if you have an ION8650C with optional Ethernet enabled, you must disable the Ethernet port in order to communicate over both serial ports (COM1 and COM4).

The default settings vary depending on your order option. See your meter’s Installation guide for details.

NOTE: Switching the active communications ports requires a meter reboot before the changes can take effect.

Enabling and disabling ION8650C communications ports using the front panel

1. Press the ALT/ENTER button to enter the SETUP menu.
2. Use the arrow buttons to scroll down the menu and select ENABLED COM PORTS, then press ALT/ENTER. Select CONTINUE and press ALT/ENTER when prompted.
3. Select the active communications port you want to disable (for example, Ethernet) and press ALT/ENTER. Select DISABLED and press ALT/ENTER. If prompted, enter the meter password to confirm the change.
4. Select the communications port you want to enable (for example, COM1) and press ALT/ENTER. Select ENABLED and press ALT/ENTER. Confirm the change if prompted.
5. Select REBOOT and press ALT/ENTER. Enter the meter password and confirm the change if prompted. This power cycles the meter and applies the change.

NOTE: Select UNDO & RETURN to exit the ENABLED COM PORTS setup menu without making any changes. Your meter will not reboot.

Enabling and disabling ION8650C communications ports using ION Setup

NOTE: You must manually power cycle the meter to have the changes take effect.
1. Select **Communications > Enable/Disable** and click the **Enabled Ports** tab.

2. Select an available port to enable or disable.

 You can only enable or disable communications ports that were ordered with the meter. Ports that were not ordered appear in the list as Not Installed (in the graphic above, COM2 was not ordered).

 Click **Edit**. Enter the meter password, if prompted. The **Set Enabled Ports** dialog box appears.

3. Select a checkbox to enable a listed port or clear a checkbox to disable a listed port.

 You can enable a maximum of two of the ports listed in the dialog box.

4. Click **OK** to return to the Setup Assistant. Changes will take effect the next time the meter is power cycled, either manually or in a power outage.

WARNING

HAZARD OF UNINTENDED OPERATION

- Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

- Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.
Serial connections

The ION8650 provides RS-232 and RS-485 serial communications connections, located on the back of the meter, as well as an optical port, located on the front of the meter.

Refer to the *ION8650 Installation Guide* for information on determining the serial port options available on your meter.

If the meter’s COM1 port is set to RS-232, you can connect this port to a remote modem, which in turn is connected to a computer. You must use a null-modem RS-232 cable to connect the meter to an external modem. One end of the cable must be equipped with a Micro-Fit 3.0 Molex female connector for mating with the Molex male connector on the meter.

You can connect numerous meters’ COM1 ports by selecting RS-485 and using an RS-232 to RS-485 converter to create a serial network.

NOTE: You cannot use both RS-232 and RS-485 ports on the meter’s COM1 simultaneously.

You can configure your local and remote modems with Power Monitoring Expert or ION Setup. You can also use ION Setup or Power Monitoring Expert to schedule regular connection times to collect meter data.

Extension cables with Molex connectors are available for your meter. Pin assignments for the Molex connector are provided in the *ION8650 Installation Guide* that ships with the meter (also available at www.schneider-electric.com).

NOTE: The total number of possible serial connections is limited by the number of physical serial ports on the meter. The meter has two physical serial ports (not counting the front optical port).

RS-232 connections

Refer to the *ION8650 Installation Guide* for the meter’s RS-232 specifications and specific wiring instructions.

Because of the wiring configuration between pins 2 and 3, the meter is considered a DTE (Data Terminal Equipment) device in all RS-232 connections. Please see “Meter connections to single devices” on page 87.
Communications settings for the RS-232 port are accessible through the front panel SETUP menu, Power Monitoring Expert or ION Setup.

Meter connections to single devices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DB9 direct connect to computer</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>DB9 direct connect to external modem</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Molex direct connect to I/O Expander connected to computer</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Molex direct connect to I/O Expander connected to external modem</td>
<td></td>
</tr>
</tbody>
</table>

RS-485 connections

Refer to the *ION8650 Installation Guide* for RS-485 specifications and wiring instructions.

The breakout cable’s twisted pair provide connections for both of the meter’s RS-485 serial communications ports. The first set is for COM1 RS-485 connections. The second set is for COM4 RS-485 communications.
Up to 32 devices can be connected on a single RS-485 bus. Use a good quality shielded twisted pair cable for each RS-485 bus, AWG 22 (0.33 mm²) or larger. The overall length of the RS-485 cable connecting all devices cannot exceed 4000 feet (1219 m). The RS-485 bus can be configured in straight-line or loop topologies.

Straight-line topology

![Diagram of straight-line topology]

Loop topology

![Diagram of loop topology]

General bus wiring considerations

Devices connected on the bus, including the meter, converter(s) and other instrumentation, must be wired as follows:

- Connect the shield of each segment of the cable to ground at *one end only*.
- Isolate cables as much as possible from sources of electrical noise.
- Use an intermediate terminal strip to connect each device to the bus. This allows for easy removal of a device for servicing if necessary.
- Install a ¼ Watt termination resistor (Rt) between the (+) and (-) terminals of the device at each end point of a straight-line bus. The resistor should match the nominal impedance of the RS-485 cable (typically 120 ohms – consult the manufacturer’s documentation for the cable’s impedance value).

RS-485 connection methods to avoid

Avoid any device connection that causes a branch in the main RS-485 bus. This includes *star* and *tee (T)* methods. These wiring methods can cause signal reflections that can lead to interference. At any connection point on the RS-485 bus, no more than two cables should be connected. This includes connection points on instruments, converters, and terminal strips. Following this guideline ensures that both star and tee connections are avoided.
RS-485 biasing

The RS-485 +/- wires are floating (ungrounded) so there can be voltage signals on the wires even when there is no device communicating on the bus. The amount of floating voltage depends on many factors, such as capacitive effects in the RS-485 bus and noise in nearby systems. If the floating voltage is high enough, it can be incorrectly interpreted as an RS-485 signal and cause your meter to stop communicating. The meter has an RS-485 biasing option to prevent the RS-485 bus from floating when devices are not sending data.

Setting RS-485 biasing using the front panel

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the navigation buttons to highlight the RS-485 COM port that you want to configure (COM1 or COM4) and press ALT/ENTER to select.
3. Use the navigation buttons to highlight RS-485 BIAS and press ALT/ENTER to select.
4. Select either ON (RS-485 biasing applied) or OFF (RS-485 biasing not applied).

Setting RS-485 biasing using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions
2. Select Communications > Serial Settings.
3. Click the COM1 or COM4 tab. Select RS485 Bias and click Edit.
4. Select ON to apply RS-485 biasing or OFF to not apply RS-485 biasing.
5. Click OK.

Communications breakout cable

Refer to the ION8650 Installation Guide for the DB9 serial pin assignments for the optional breakout cable female DB9 connector. A communications breakout cable facilitates communications connections by connecting to the Molex male connector on your meter. The cable splits to a standard DB9 female connector and two RS-485 shielded, twisted pairs.
Configuring RS-485

Using the front panel
1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.

2. Use the navigation buttons to highlight the RS-485 COM port that you want to configure (COM1 or COM4) and press ALT/ENTER to select.

3. Configure the settings (for example, Protocol, Baud Rate and Unit ID) to match your communication system.

Disabling the COM port using the front panel
You have the option of disabling the COM port through the front panel when the port is not being used.

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.

2. Use the navigation buttons to highlight the RS-485 COM port that you want to configure (COM1 or COM4) and press ALT/ENTER to select.

3. Use the navigation buttons to highlight the Protocol setting and press ALT/ENTER to select.

4. Select None from the list of available protocols.

5. Select YES to confirm the change.

Using ION Setup
1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

2. Select Communications > Serial Settings.

3. Click the COM1 or COM4 tab and configure the settings (for example, Protocol, Baud Rate, and Unit ID) to match your communications system.
Disabling the COM port using ION Setup

You have the option of disabling the COM port through ION Setup when the port is not being used.

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select Communications > Serial Settings.
3. Click the COM1 or COM4 tab, select Protocol from the list and click Edit.
4. Select None from the dropdown list and click OK.

Configuring the optical port

Refer to the ION8650 Installation Guide for optical port specifications.

The optical port available on ION8650 meters is compatible with standard magnetic optical communications couplers, or optical probes (ANSI Type II). Optical probes are available both from Schneider Electric and other suppliers as a separate product; contact Schneider Electric for a list of suppliers. The original equipment manufacturer’s warranty applies. See the Optical Magnetic Couplers technical note for more detailed information.

Optical probes can communicate real-time measurements via the ION, RTU, DLMS, DNP 3.0, Factory, or GPS protocols. You can configure the optical port communications settings with the front panel, Power Monitoring Expert or ION Setup.

Using the front panel

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the up or down arrow buttons to select COM3 SETUP.
3. Press the ALT/ENTER button to access COM3 SETUP parameters.
4. Configure the settings (for example, Baud Rate, Unit ID, and Protocol) to match your communications system.

Disabling the COM port using the front panel

You have the option of disabling the COM port through the front panel when the port is not being used.

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the navigation buttons to highlight the optic port (COM3) and press ALT/ENTER to select.
3. Use the navigation buttons to highlight the Protocol setting and press ALT/ENTER to select.
4. Select None from the list of available protocols.
5. Select YES to confirm the change.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select Communications > Serial Settings.
3. Click the **COM3** tab and configure the settings (for example, Baud Rate, Unit ID, and Protocol) to match your communications system.

To enable communications from the optical port, you must configure the COM3 communications. The Protocol, Baud Rate and Unit ID settings must properly match your system. When creating a site, ensure RTS Control setting is disabled for the COM3 serial site.

Disabling the COM port using ION Setup

You have the option of disabling the COM port through ION Setup when the port is not being used.

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > Serial Settings**.
3. Click the **COM3** tab, select Protocol from the list and click **Edit**.
4. Select **None** from the dropdown list and click **OK**.

Using Power Monitoring Expert

1. Open Management Console and add a Direct Site.
2. Set the Serial Port to COM3 and ensure that the settings properly match your system. Ensure that RtsCts is disabled for the optical port site in Management Console. Refer to the Management Console section of the online Power Monitoring Expert help for details.
Configuring Ethernet connections

This section only applies if your meter has the Ethernet option. Refer to the ION8650 Installation Guide for Ethernet port specifications and information on determining the options available on your meter.

Ethernet connections are made via the RJ45 modular jack on the rear of the unit. Use high quality Category 3, 4 or 5 UTP cable (RJ45 female to RJ45 male) if you require an extension. The optional Ethernet port is capable of data rates up to 10 Mbps and supports TCP/IP, FTP, ION, Telnet, and Modbus/TCP protocols. The meter supports a maximum of eight simultaneous Ethernet connections with additional dedicated connections for Modbus master over TCP/IP and IEC 61850.

NOTE: Some features, such as IEC 61850, COMTRADE and Ethernet outage notification, require that your meter has an Ethernet connection.

You can configure Ethernet communications using the front panel, Power Monitoring Expert or ION Setup. In each case, you must configure the IP Address, Subnet Mask, Gateway, SMTP Server and SMTP Connection Timeout to properly match your system. You must also ensure that the network ports are either enabled or disabled, depending on your system configuration.

NOTE: The MAC address of your meter cannot be changed, and is provided for information only.

Using the front panel

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.

2. Use the up or down arrow buttons to select NETWORK SETUP and press ALT/ENTER.
3. Configure the Ethernet Communications settings (for example, IP Address, Mask, Gateway, SMTP Address and Port Enable) to match your communications system.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

2. Select **Communications > Basic Ethernet** and click the **IPv4** and **TCP/IP** tabs.

3. Select a setting and then click **Edit**. Configure the settings as required.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Address</td>
<td>Contact your local network administrator for parameter values.</td>
<td>Specifies TCP/IP Ethernet address.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Contact your local network administrator for parameter values.</td>
<td>The subnet IP address of your network.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Contact your local network administrator for parameter values.</td>
<td>The gateway IP address of your network.</td>
</tr>
<tr>
<td>Rx Timeout</td>
<td>Contact your local network administrator for parameter values.</td>
<td>Specifies the number of seconds the meter will wait for communication acknowledgements.</td>
</tr>
<tr>
<td>Modbus Gateway</td>
<td>7801, 7802, 502</td>
<td>Specifies the port on which the Modbus Gateway will send and receive requests.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Read-only</td>
<td>Your meter’s media access control (MAC) address.</td>
</tr>
</tbody>
</table>

4. Select **Communications > Advanced Ethernet** and click the **DNS** and **SMTP** tabs.

5. Select a setting and then click **Edit**. Configure the settings as required.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary DNS</td>
<td>Contact your local network administrator for parameter values.</td>
<td>The IP address of your network’s primary DNS server, if your network uses DNS.</td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>Contact your local network administrator for parameter values.</td>
<td>The IP address of your network’s primary DNS server, if your network uses DNS.</td>
</tr>
<tr>
<td>SMTP Server</td>
<td>Contact your local network administrator for parameter values.</td>
<td>The IP address of your SMTP server.</td>
</tr>
<tr>
<td>SMTP Connection Timeout</td>
<td>Contact your local network administrator for parameter values.</td>
<td>Specifies the number of seconds the meter will wait for communication from the SMTP server.</td>
</tr>
</tbody>
</table>

Using Power Monitoring Expert

After you wire your meter to the Ethernet network and perform basic setup, add the meter to your Power Monitoring Expert network using Management Console.

To enable communications through the Ethernet port, you must configure the Ethernet Communications module. Start Designer and configure the IP Address, Subnet Mask, Gateway, SMTP Server and SMTP Connection Timeout registers to match your system.
Adding an Ethernet device to your Power Monitoring Expert network

In Management Console, the Ethernet Device Options screen appears when you add an Ethernet device (meter). Use this screen to describe your meter’s Ethernet address and other communications information. Be sure to include:

- the server computer that communicates with the Ethernet device.
- the Ethernet device TCP/IP address.

Domain name resolution (DNS)

You can configure the meter as a DNS client in systems using a DNS server.

A DNS server maps domain names to IP addresses. If you configure the meter to use a DNS server, the meter can communicate with other network resources using their domain names, rather than their IP addresses, and vice versa. For example, if your network has an SMTP server with the domain name of smtp.company.com, you can enter smtp.company.com as the SMTP Server address in the meter’s communications settings.

Configuring EtherGate connections

The meter can function as an Ethernet gateway (EtherGate). EtherGate is a powerful communications tool that lets you communicate *through* a gateway meter to a serial network connected to the meter. When a meter installed on the Ethernet network has EtherGate enabled, a master device (such as a workstation running Power Monitoring Expert) can communicate *through* the gateway meter to a serial network of devices wired to the gateway meter’s COM port. The transfer of data between protocols is handled automatically. EtherGate is available on serial ports COM1 and COM4 in place of the ION, Modbus Master, Modbus RTU, or DNP 3.00 protocols. With EtherGate enabled, the meter permits the direct transfer of data from up to 62 devices (31 devices per COM port).

Install the serial devices, configure them and connect them to your Ethernet-connected gateway meter. Ensure that each serial device is configured with the same baud rate and has a unique Unit ID. Then use the meter’s front panel, Power Monitoring Expert or ION Setup to change the COM1 or COM4 Protocol setting to **EtherGate**. You must then create an EtherGate site in Power Monitoring Expert or ION Setup, and add the serial devices to the EtherGate site. See *The ION meter as an Ethernet gateway* technical note for more information on setting up an Ethernet gateway.
Using the front panel to set the EtherGate protocol
1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the up or down arrow buttons to select the COM port that you want to configure (COM1 or COM4) and press ALT/ENTER.
3. Scroll to PROTOCOL and press ALT/ENTER. Change the port’s PROTOCOL setting to ETHERGATE.
4. Press ALT/ENTER to set the protocol.

Using ION Setup to create an EtherGate site
Follow the instructions below to communicate to the devices on the RS-485 loop with ION Setup.

In ION Setup:
1. Right-click on your workstation icon and select Insert Item. The New Network Item dialog box appears.
2. Select Site and click OK. The New Site dialog box appears.
3. Click the General tab.
4. Configure the site as follows:
 – Type a site name.
 – Select Ethernet from the Comm Link options.
 – Select the Gateway check box.
 – Type the meter’s IP address and select a port in the Gateway Info fields. For the port, select either 7801 for COM1 or 7802 for COM4.
 Click OK.
5. Right-click on your newly created site and select Insert Item. The New Network Item dialog box appears.
6. Select Meter and click OK. The New Device dialog box appears.
7. Enter serial device information here and click OK. Your new device appears under your newly created site
8. Repeat steps 5 to 7 to enter each device on your serial network.

NOTE: Use a standard Ethernet connection in ION Setup to connect to and read data from your EtherGate meter.

Using Power Monitoring Expert to create an EtherGate site
Follow the instructions below to communicate to the devices on the RS-485 loop with Power Monitoring Expert.

In Management Console:
1. Create an Ethernet gateway site.
2. Configure your Ethernet gateway site with the IP address of the gateway meter. Select the IP Port that matches the gateway meter’s COM port that is connected to the RS-485 loop (select 7801 for COM1 or 7802 for COM4).
3. Add each of the devices on the RS-485 loop to the Ethernet Gateway site (you do not need to add the gateway meter as a device).

NOTE: Use a standard Ethernet connection in Power Monitoring Expert to connect to and read data from your EtherGate meter.

Enabling and Disabling Ethernet ports

Through the front panel, you can enable or disable the Ethernet ports on your meter. Changing Ethernet configuration parameters without another method of configuration enabled may cause loss of communications with your device.

NOTICE

<table>
<thead>
<tr>
<th>DATA LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure you maintain sufficient access to communicate to and configure your device.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in data loss.

Follow the instructions below to enable and disable the Ethernet ports on your meter.

Using the front panel

1. Press and hold the **ALT/ENTER** button for a few seconds. The SETUP menu appears.
2. Use the up or down arrow buttons to select NETWORK SETUP and press **ALT/ENTER**.
3. Scroll to PORT ENABLE and press **ALT/ENTER**.
4. Select the port you want to change and press **ALT/ENTER**. Select Yes to enable the port and No to disable.
5. Select YES to confirm the change. Enter the meter password if prompted.

Using ION Setup

See “Ethernet protocol control” on page 106 for instructions regarding enabling and disabling Ethernet ports through ION Setup.

Meter FTP server

The meter can function as an FTP server, supporting IEC 61850 protocols, COMTRADE formatted waveform files and TLS certificates. The FTP timeout period is 90 seconds on a control port. Only one simultaneous FTP transfer connection is permitted. To connect to your meter, ensure that your FTP software is configured to only use a single FTP connection. The recommended FTP software is Windows Explorer or WinSCP running on a Windows-based machine.

NOTE: To connect to your meter using Windows Explorer, you must include the login and password in the FTP connection string. For example, with standard meter security (no user configured) and the a front panel password of 2, to connect to a meter with an IP address of **123.45.6.78**, the Windows Explorer connection string would be `ftp://0:2@123.45.6.78`.

Ensure you maintain sufficient access to communicate to and configure your device. Failure to follow these instructions can result in data loss.
The meter communicates via FTP on the following ports:

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Incoming commands connections</td>
</tr>
<tr>
<td>20</td>
<td>Active data connections</td>
</tr>
<tr>
<td>3000-3020</td>
<td>Passive data connections</td>
</tr>
</tbody>
</table>

File names are limited to ASCII characters that do not contain a blank space or /, \, ", *, ?, <, >, and have a maximum length of 64 characters.

FTP folder structure

Your meter has the following FTP folder structure:

- **CASTORE**: you can add and delete TLS certificates in this folder.
- **COMTRADE**: you can read COMTRADE files from these folders, but you cannot delete or add files.
- **IEC61850**: you can add an IEC 61850 configuration (CID) file to this folder to activate the IEC 61850 protocol functions of your meter.

For more information about using FTP for IEC 61850 or COMTRADE, refer to the *IEC 61850 protocol and ION Technology* protocol document or the *COMTRADE and ION Technology* technical note.
Internal modem connections

This section only applies if your meter has the internal 56k modem or cell modem option. Refer to the ION8650 Installation Guide for internal modem specifications and information on determining the options available on your meter.

NOTE: The internal cellular modem option is only available on the ION8650 socket meter.

56k universal internal modem

The 56k universal internal modem is accessed through COM2, supports all standard modem protocols at transmission rates from 300 bps to 57600 bps (300 bps is only recommended for paging applications) and can be shared by up to 31 devices on an RS-485 chain. It is available with a standard six-pin RJ-11 phone plug. If you have multiple meters linked on an RS-485 loop, only the first meter requires a 56k modem. This setup is referred to as a ModemGate (see “Configuring ModemGate connections” on page 101). You can configure the settings of the 56k modem with the front panel, Power Monitoring Expert or ION Setup.

To enable communications through the meter’s 56k modem, configure the COM2 communications Baud Rate, Unit ID, Protocol, and ModemInit setup registers as required for your system. See “ModemInit setup register” on page 99 for more information on this register.

NOTE: When the meter is equipped with the Alert module, the modem can initiate calls. Paging is supported through numeric paging and the TAP1 protocol. See the Power Monitoring Expert online help for details on managing modem connections, setting up periodic dial-out and configuring remote site event notification.

ModemInit setup register

The ModemInit setup register defines the initialization string for the internal modem with a maximum of 47 characters. Edit the ModemInit register and enter the desired initialization string. The string is sent to the modem as soon as you download the COM2 module. Note that the string is also sent to the modem whenever the meter is powered up or the baud rate in the COM2 Communications module is changed.

NOTE: Changing the ModemInit or Baud Rate setup registers while the internal modem is online causes the modem to disconnect from the phone line.

Modem initialization strings

Refer to the Modem AT Commands technical note for a complete list of AT commands for meter modems.
NOTE: The *Modem AT Commands* technical note also contains instructions on how you can determine your meter’s modem type based on the meter’s serial number.

Adjusting the modem initialization string for CTR-21 compliant modems

The table below shows the strings to add to the end of your modem configuration string setup register for each of three possible scenarios.

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Add to modem initialization string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not answer (modem does not detect ring tone)</td>
<td>*NC70</td>
</tr>
<tr>
<td>Does not dial (modem does not detect dial tone)</td>
<td>In order of preference: *NC70, *NC70X0, *NC8 (Italy only)</td>
</tr>
<tr>
<td>Does not detect busy signal</td>
<td>*NC70</td>
</tr>
</tbody>
</table>

If your *local* modem (not the internal modem) is not already set up, configure it with the Remote Modem Setup utility in Power Monitoring Expert according to the instructions in the online help. After the meter is installed and the internal modem is connected to the telephone network, the COM2 module can be configured using the meter’s front panel, Power Monitoring Expert or ION Setup. For information on how to connect the internal modem to the telephone network, refer to your *ION8650 Installation Guide*.

Configuring COM2 through the front panel

1. Press and hold the **ALT/ENTER** button for a few seconds. The SETUP menu appears.

2. Use the up or down arrow buttons to select COM2 SETUP and press **ALT/ENTER**.

3. Configure the COM2 settings (for example, Baud Rate, Unit ID, and Protocol) to match your communications system.

Disabling the COM2 port using the front panel

You have the option of disabling the COM port through the front panel when the port is not being used.

1. Press and hold the **ALT/ENTER** button for a few seconds. The SETUP menu appears.

2. Use the navigation buttons to highlight the COM2 port and press **ALT/ENTER** to select.

3. Use the navigation buttons to highlight the Protocol setting and press **ALT/ENTER** to select.

4. Select None from the list of available protocols.

5. Select Yes to confirm the change.

Configuring the meter and modem site using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

2. Select **Communications > Serial Settings** and click the **COM2** tab.

3. Select the setting that you want to configure and click **Edit**.

4. Configure the COM2 settings (for example, Baud Rate, Unit ID, and Protocol) to match your communications system.
Disabling the COM2 port using ION Setup

You have the option of disabling the COM port through ION Setup when the port is not being used.

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > Serial Settings**.
3. Click the **COM2** tab, select Protocol from the list and click **Edit**.
4. Select **None** from the dropdown list and click **OK**.

Configuring the COM2 module using Designer

Before you can configure the COM2 module in Designer, you must add the meter (with the internal modem) and a modem site to your Power Monitoring Expert network.

Adding a meter and a modem site to your Power Monitoring Expert network

In Management Console, add the meter with the internal modem and a modem site to your Power Monitoring Expert network. Describe how your remote modem is wired and other communications information on the options screens.

Either before or after adding the modem site, you must add a dialout modem to the server computer. The server computer dialout modem communicates to the modem at the modem site.

On the Modem Site Options screen, ensure that:

- you select the server computer that you want to communicate with the remote modem and that the server computer dialout modem is configured.
- you enter the remote modem telephone number.
- you set the baud rate of the modem site to the baud rate of the COM2 port to avoid communications errors.

See the *Power Monitoring Expert* online help for more information.

Configuring the COM2 Communications module in Designer

Start Designer and configure the COM2 Communications module **Baud Rate**, **Unit ID**, and **Protocol** setup registers to match your communications system. Configure the initialization string for the internal modem using the **ModemInit** register. Refer to “ModemInit setup register” on page 99.

Configuring ModemGate connections

ModemGate is a powerful feature that creates a communications connection between the telephone network and an RS-485 serial network of devices. When you specify the protocol for a meter’s COM port as MODEMGATE, all data received by the meter’s internal modem is automatically transferred to the serial network. ModemGate is available on either the COM1 or COM4 port; you cannot use the feature on both ports.
simultaneously. The meter must have the COM2 modem option to function as a modem gateway.

NOTE: The baud rate used between connected modems is independent of the internal baud rate used for communication between the meter and its modem.

Wire a serial connection between one or more meters and the meter COM port hosting the ModemGate (COM1 or COM4). You can make ModemGate connections through an RS-232 cable to a single device or through an RS-485 shielded twisted pair cable to multiple devices. ModemGate connections do not connect a workstation running Power Monitoring Expert (or other master device) to the gateway meter’s COM1 or COM4 port, but rather to the gateway meter’s internal modem port (COM2); the meter then transfers the data to the serial devices connected to COM1 or COM4.

Configuring the meter for ModemGate

1. Install the meter and connect the internal modem.
2. Use the front panel, Power Monitoring Expert or ION Setup to set up the internal modem and the serial communications port (COM1 or COM4) that is the ModemGate. You can enable ModemGate on either COM1 or COM4, not both simultaneously.
3. Set the internal modem COM2 Baud Rate, Unit ID and Protocol. The baud rate must be the same as the port hosting the gateway and all the devices connected to the gateway.
4. Set the protocol of the port connected to the RS-485 loop to MODEMGATE (either COM1 or COM4). For each device on the RS-485 loop, you must also:
 - Set the baud rate to the same value as the modem baud rate (COM2).
 - Configure each device, including the gateway meter, with a unique Unit ID.

Configuring devices connected to the ModemGate meter

1. Use Power Monitoring Expert, ION Setup or the front panel to change and configure settings. Ensure each device connected to the meter has the same baud rate as the meter ModemGate port (either COM1 or COM4).
2. Ensure each device connected on the RS-485 network (including the meter modem) has a unique Unit ID. Record the serial baud rate of the modem site and

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Workstation with Power Monitoring Expert and modem</td>
</tr>
<tr>
<td>B</td>
<td>Telephone network</td>
</tr>
<tr>
<td>C</td>
<td>ModemGate meter equipped with optional internal modem</td>
</tr>
<tr>
<td>D</td>
<td>Devices on RS-485 loop</td>
</tr>
</tbody>
</table>
the Unit IDs for every device in order to add the ModemGate and its meters to your network.

NOTE: Ensure RS-485 is selected for connections to multiple devices along the same bus.

Using ION Setup to create a ModemGate site

1. Right-click on your workstation icon and select **Insert Item**. The **New Network Item** dialog box appears.
2. Select **Site** and click **OK**. The **New Site** dialog box appears.
3. Click the **General** tab.
4. Configure the site as follows:
 - Type a site name.
 - Select Modem from the Comm Link options.
 - Click **Modem configuration** to access the Modem configuration wizard, which configures your local and remote modems.
 - Enter the phone number of the modem you are connecting to in the Phone Number field.

 Click **OK**.
5. Right-click on your newly created site and select **Insert Item**. The **New Network Item** dialog box appears.
6. Select **Meter** and click **OK**. The **New Device** dialog box appears.
7. Enter serial device information and click **OK**. Your new device appears under your newly created site.
8. Repeat steps 5 to 7 to enter each device on your serial network.

Using Power Monitoring Expert to create a ModemGate site

To communicate to the devices on the RS-485 loop using Power Monitoring Expert:

1. Start Management Console and create a Modem Site.
2. Configure your modem site by typing in the appropriate fields or using the dropdown menus. Include the meter’s internal modem telephone number and ensure that the server computer’s dialout modem is configured. Refer to the online Power Monitoring Expert Help for information on adding a dialout modem.

Adding ModemGate meters to the Power Monitoring Expert network

1. Start Management Console and click **Devices**. Right-click in the Devices display window and select **New > Serial Device on Direct Site**.
2. Enter the information by typing in the appropriate fields or using the dropdown menus, remembering that:
 - Unit ID: The value in the UNIT ID field identifies the meter on the RS-485 loop.
 - Site: The ModemGate site that you created.
Internal cell modem

Configuration of the internal cell modem is accessible through the front panel and ION Setup.

Two modems are available: CDMA and LTE. The CDMA modem supports the EV-DO Rev. A and CDMA2000 1xRTT standards at transmission rates up to 3.1 Mbps downlink/1.8 Mbps uplink. The LTE modem supports Cat 1 LTE standards at transmission rates up to 10 Mbps downlink/5 Mbps uplink. Both modems allow for up to six simultaneous protocol data connections.

The cell modem requires network activation. For information regarding the network activation for your region and modem, refer to the PowerLogic ION8650 cell modem product option document.

NOTE: The 56k modem and cell modem exist as separate ordering options. You cannot have a 56k modem and a cell modem on the same device.
Syslog

Syslog uses the User Datagram Protocol (UDP) to transport event log information from the meter directly to a centralized syslog server. The server can receive logs from many devices, then store and filter the logs as needed. You can use ION Setup to modify the syslog network settings for your device. Syslog is a useful feature to help maintain meter log information for extended periods of time.

NOTE: Ethernet is required to use the Syslog feature.

Configuring Syslog network settings using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > Advanced Ethernet** and click the **SysLog** tab.
3. Select **Enable Syslog** and click **Edit**. Select Yes to enable the syslog server or select No to disable. Click **OK**.
4. Select **Syslog Server** and click **Edit**. Enter the location for the syslog server. This value is entered as an IP address in the format aaa.bbb.ccc.ddd. Click **OK**.
5. Verify that the syslog server is receiving log information from the meter.

NOTE: If the **Enable Syslog** register is enabled but the **Syslog Server** register does not contain an IP address, an event is created in the event log that informs you that syslog is enabled with no server IP.

Syslog Server

Syslog is an open standard allowing you to use any one of a number of syslog servers applications currently available. The decision regarding which syslog server solution to use can be based on budget and your technical requirements. See the individual syslog server’s documentation for more information.

Event log priority to syslog severity

The table below shows the mapping between ION event priorities (0-255) and the Syslog severities. Only four of the syslog severities are used in the mapping.

<table>
<thead>
<tr>
<th>ION event priority range</th>
<th>ION event priority name</th>
<th>Syslog severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-63</td>
<td>None</td>
<td>6 - Informational</td>
</tr>
<tr>
<td>64-127</td>
<td>Low</td>
<td>5 - Normal but significant condition</td>
</tr>
<tr>
<td>128-191</td>
<td>Medium</td>
<td>4 - Warning condition</td>
</tr>
<tr>
<td>192-255</td>
<td>High</td>
<td>2 - Critical condition</td>
</tr>
</tbody>
</table>
Ethernet protocol control

The Ethernet protocol control feature allows you to enable, disable, or change the port number of the Ethernet protocols supported on your meter.

If you are connected to your device over Ethernet, changing Ethernet configuration parameters without another method of configuration enabled may cause loss of communications with your device and render it inoperable. In this case a factory reconfiguration of your device is required, which resets your device to its factory defaults and all logged data is lost.

NOTICE

<table>
<thead>
<tr>
<th>DATA LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure you maintain sufficient access to communicate to and configure your device.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in data loss.

NOTE: The protocol port number may not be configurable on all protocols.

Using the front panel

You cannot change the Ethernet port number assignments through the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > Advanced Ethernet** and click the **Protocols** tab.
3. Select a protocol from the list and click **Edit**.
4. Select the **Enabled** checkbox to enable the port.

NOTE: The IEC61850 port is enabled when a valid CID file is uploaded to the meter. The port is disabled by removing the CID file.

NOTE: The EtherGate port is enabled if the applicable serial port is set to **EtherGate**. If the serial port is set to a different protocol, the EtherGate port is closed.

5. Select a port number from the Port Number dropdown list or by clicking in the Port Number field and entering a port number. Existing connections are not affected by the change, but any new connections must comply with the meter’s latest settings.

6. Click **OK**. If multiple ports are set to the same number, ION Setup responds with a message indicating that the port is already in use by another protocol.

NOTE: When configuring the FTP ports, the data connection port is automatically assigned to the command connection port number minus 1. For example, if the command connection port number is 21, the data connection port number is 20.

Default Ethernet ports

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Default port</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION</td>
<td>7700</td>
</tr>
<tr>
<td>DNP</td>
<td>200000</td>
</tr>
<tr>
<td>DLMS</td>
<td>4059</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>502</td>
</tr>
<tr>
<td>Protocol</td>
<td>Default port</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Modbus RTU over Ethernet</td>
<td>7701</td>
</tr>
<tr>
<td>EtherGate (COM1)</td>
<td>7801</td>
</tr>
<tr>
<td>EtherGate (COM4)</td>
<td>7802</td>
</tr>
<tr>
<td>FTP</td>
<td>20 & 21</td>
</tr>
<tr>
<td>SMTP</td>
<td>161</td>
</tr>
<tr>
<td>NTP</td>
<td>123</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>102</td>
</tr>
<tr>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>HHTP</td>
<td>80</td>
</tr>
</tbody>
</table>
HTTPS outage alerts

Your meter supports HTTPS for alert messages sent to outage notification servers. HTTPS uses Transport Layer Security (TLS) encryption to secure the communications channel and protect exchanged data between the client and the server. When configured to use HTTPS, the meter uses the self-signed certificate installed on its FTP server.

For more information on Ethernet outage notification, see the Outage notifications on the PowerLogic ION8650 product option document and the Alert module description in the ION Reference.

TLS certificate management

Only Privacy-Enhanced Mail (PEM) files are supported.

The meter supports a maximum of 10 certificates with a maximum total file size of 12 kB for all certificates.

Managing certificates - using both ION Setup and FTP - requires the FTP protocol on the meter be enabled and the FTP server be accessible.

NOTE: The certificates on the meter cannot be read, only added or deleted.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select Communications > Basic Ethernet and click the Certificates tab.
3. Click Add to add a new certificate to the meter.
4. Select a certificate and click Delete to remove a certificate from the meter.

Using FTP

1. Start your FTP software.
2. Connect to your meter via FTP by entering your meter’s IP address. Depending on your FTP software and meter security settings, you may be prompted for login credentials.
 With standard meter security (no user configured), enter login credentials of 8650 and the meter password to connect to the meter. For advanced meter security, enter a valid user and password.
3. Navigate to the CASTORE folder on your meter.
4. Add and delete certificates as required.
5. Close your FTP software to disconnect from the meter. The FTP connection automatically disconnects once the FTP timeout period has elapsed.
Chapter 8 Third party protocols

This chapter explains how Modbus, DNP 3.0 and IEC 61850 protocols are implemented on the meter.

It also contains brief instructions for configuring your meter to work with MV-90 systems.

For additional instructions on using the meter with Modbus, DLMS, IRIG-B, IEC 61850 and MV-90 protocols, see the following documents:

- Modbus protocol and register map for ION devices protocol document
- Modbus and ION Technology technical note
- DLMS/COSEM and ION technology protocol document
- IRIG-B GPS Time Synchronization technical note
- IEC 61850 and ION technology protocol document
- MV90 and ION technology technical note

In this chapter

Overview ... 110
Communications protocol configuration ... 110
The meter as Modbus slave .. 111
 Using the Modbus RTU protocol .. 111
 Configuring the meter as a Modbus slave 112
 Modbus Slave modules ... 112
 Using the Modbus/TCP protocol .. 113
The meter as Modbus master .. 114
 Configuring the meter as a Modbus master 114
Using the DNP 3.0 protocol ... 118
 Configuring DNP 3.0 .. 118
Using the DLMS protocol ... 120
 DLMS configuration ... 120
IEC 61850 ... 122
 Implementation ... 122
 Configuring IEC 61850 .. 122
Configuring MV-90 .. 127
Overview

The meter supports DNP 3.0, DLMS, Modbus RTU and Modbus/TCP, and IEC 61850 protocols.

Most Modbus, IEC 61850 and DNP modules that send meter data using these protocols are factory configured and only require basic configuration, such as communications setup.

- Your meter is preconfigured to send Modbus data (acting as Modbus slave). It is not ready to receive data as a Modbus master until you set up the necessary framework.
- Your meter is preconfigured to send DNP 3.0 data to a DNP master.
- You must use an IEC 61850 configuration tool and ICD file to configure the IEC 61850 aspects of your meter, with the exception of I/O and additional data values, which must be done through ION Setup.

NOTE: Changing the default third-party protocol frameworks (or creating new frameworks to enable receive functionality) is an advanced procedure that requires an understanding of the protocol and the meter's internal operation before you proceed. Refer to the descriptions in the ION Reference of the DNP, IEC 61850 and Modbus modules. Refer to the Multiport DNP 3.0 and ION Technology, DNP 3.0 Device Profile, IEC 61850 and ION Technology, and Modbus and ION Technology documents for information on these protocols.

Communications protocol configuration

In order to use the pre-configured Modbus or DNP slave configuration, you must first assign the communications protocol that you want to use to the applicable port. By default, all communications ports are configured to use the ION protocol. Select the third-party protocol that you want from the list of available protocols for the communications port you are configuring. See “Communications” on page 81 for instructions. You do not have to assign a communications channel for IEC 61850 but your meter must have an Ethernet connection.

NOTE: Modbus RTU is available on each of the meter’s communications ports, and multiple ports can communicate using Modbus simultaneously. Modbus TCP is available on the meter’s optional Ethernet connection. Up to three ports can use the DNP 3.00 protocol at any one time.
The meter as Modbus slave

Your meter can act as a Modbus slave, using both the Modbus RTU and Modbus/TCP protocols.

The meter can act as a Modbus slave device, making any real-time data available through the Modbus protocol. Modbus master devices connected to the meter can read this data or write data to your meter’s ION registers (for example, to make configuration changes).

NOTE: If you encounter issues reading or writing to the device using Modbus, ensure that your device’s security settings allow Modbus programming. See “Security” on page 53 for more information on device security.

Using the Modbus RTU protocol

The factory Modbus slave configuration

The meter makes data available to Modbus master devices using pre-configured Modbus Slave modules. These modules are linked to other modules in the meter that provide the energy, power and demand data. Once a communications channel is configured to use Modbus RTU protocol, the data is available to Modbus master devices.

NOTE: Connect to IP port 7701 for Modbus RTU communications over Ethernet. The Modbus unit ID of the meter over Ethernet has a default value of 100.

As the data available through the Modbus Slave modules is in a specific format, knowledge of the Modbus protocol and an understanding of the settings used in the meter are required to interpret the data provided.

Changing the Modbus configuration

If the factory Modbus configuration does not suit your needs, the existing Modbus Slave modules can be relinked to other parameters that you want to access through Modbus.

If your Modbus master device requires data in a format different than that provided by the factory Modbus configuration, you can edit the setup registers in the Modbus Slave modules. These setup registers specify the Modbus format, scaling and base address settings. Refer to the *ION Reference* for complete details on the Modbus Slave module.
Configuring the meter as a Modbus slave

You cannot configure Modbus through the meter’s front panel; you can only assign the Modbus protocol to communication ports (see "Communications" on page 81 for details).

Use Power Monitoring Expert or ION Setup to perform full Modbus configuration.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > 3rd Party Protocols**.
3. Click the **Modbus Slave** tab.
4. Select the map name (for example, Default) and click **Edit**. The Modbus map editor appears.

5. Edit, add, or delete the Modbus Slave module registers or the name of the Modbus map.

6. Click **OK**.

Modbus Slave modules

All ION8650 meters have nine Modbus Slave modules. Meters with EN51060 support (ION8650A and ION8650B) have 11 additional modules. For a detailed Modbus map,

Importing data using Modbus RTU

It is possible to bring data into the meter using Modbus. Various ION registers can be written to by Modbus master devices by correlating the Modbus register number with the address of the ION register you want to write to. When a Modbus register is written with a value, the corresponding ION register is written, provided the Modbus RTU protocol is active on the communications port that connects the Modbus master to the meter.

You can use the Modbus RTU protocol to write values into ION external numeric, pulse and Boolean registers, allowing you to enable, disable and reset meter functions. You can also use the Modbus protocol to change setup register values in various ION modules to configure the meter’s operation.

To bring data into the meter with Modbus RTU, you must disable the meter’s password security.

Using the Modbus/TCP protocol

Modbus/TCP is an open Modbus protocol variant (formerly called MBAP). It defines the packet structure and connection port (port 502) for the industry standard TCP/IP protocol. The structure of Modbus/TCP is very similar to the Modbus RTU packet except that it has an extra six-byte header and does not use the cyclic redundancy check (CRC). Modbus/TCP retains the Modbus RTU limit of 256 bytes per packet.

NOTE: For Modbus RTU communications over Ethernet, connect to IP port 7701.

Modbus TCP communications

You can communicate to the meter using Modbus TCP. Your meter must have the optional Ethernet port. Configure the meter to connect using connection port 502 to use Modbus TCP communications protocols.

NOTE: You cannot form an EtherGate connection to the Modbus TCP network. The Modbus unit ID of the meter over Ethernet has a default value of 100.
The meter as Modbus master

ION8650 meters can act as a Modbus master using the Modbus RTU and Modbus/TCP protocols:

- The meter can Modbus master using Modbus RTU over serial connections between the meter’s COM1 or COM4 ports and the Modbus slave devices. It can Modbus master over both COM1 and COM4 simultaneously.
- Meters with an Ethernet connection can Modbus master over TCP/IP using up to ten available TCP connections. These TCP connections are dedicated to Modbus mastering, and are not included in the maximum of eight (8) Ethernet connections.

The meter acting as Modbus master can write data to (export) and read data from (import) Modbus slave devices. The data can be processed by the meter and sent out using other communications methods (email, Power Monitoring Expert, etc.). The meter can also send data directly to other devices on a Modbus network.

NOTE: Modbus master functionality is not available on the ION8650C.

For more information on Modbus mastering, see the *Modbus and ION Technology* technical note.

NOTE: If you encounter issues reading or writing to the device using Modbus, ensure that your device’s security settings allow Modbus programming. See “Security” on page 53 for more information on device security.

Configuring the meter as a Modbus master

This sections describes the ION modules involved in using the meter as a Modbus master and using ION Setup or Power Monitoring Expert.

The Modbus master configuration

There is no preconfigured Modbus master framework on your meter. This functionality must be enabled by configuring the following modules in your meter’s framework.

Modbus master ION modules

Several ION modules work together to create Modbus master functionality on the meter. Your meter has some or all of these modules, depending on the model and firmware version. See the *ION Reference* for more information on these and other ION modules:

- **Modbus Master Device module**: reads data from a Modbus slave, which can be an ION meter or third-party device. This imported data can be used by other ION modules. The Modbus Master Device module references a Modbus Master Map module setup register to specify the Modbus format, scaling, and base address settings.
- **Modbus Master Map module**: provides a common place to hold setup information (used to decode a Modbus response) for specific device types. This information can be referenced by multiple Modbus Master Device modules.
- **Modbus Master Options module**: maps any serial connection or Ethernet TCP socket from the Modbus Import, Modbus Export and Modbus Master Device modules to any serial communications port or unique IP address and port number.
- **Modbus Export module**: provides write functionality.
- **Modbus Import module**: provides read functionality. This data can then be used by other ION modules.
NOTE: Modbus Export and Modbus Import modules are legacy modules and are provided for backwards compatibility.

See the Modbus and ION Technology technical note for more information on configuring Modbus master an the ION Reference for more information on the modules used in Modbus mastering.

Using the front panel

You cannot configure Modbus through the meter’s front panel. You can only assign the Modbus protocol to communication ports. See “Communications” on page 81 for details.

Use Power Monitoring Expert or ION Setup to perform full Modbus configuration.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
3. Click on the Modbus Master tab.
4. Click Add to add a Modbus slave device. The Modbus Device dialog box appears.

5. Type the slave device’s name and a label suffix (if applicable). Select the device type of the slave device from the Device Type list (in this example, an ION6200).
6. Type the unit ID of the slave device in the Slave ID box.
7. Select the serial or TCP connection you want to configure from the Connected via list. This is the connection used by the Modbus master to connect to that slave device. Click Connections. The Modbus Master Connections dialog box appears.
8. Select the tab that corresponds to the connection you are configuring (for example, if you selected TCP Connection 1 from the **Connected via** list, select the **TCP 1** tab), and edit the text boxes as follows:

- **Serial Connections**: Select the port that is connected to the Modbus slave devices from the **Assigned Port** dropdown list.
- **TCP Connections**: Type the IP address of the Modbus slave device. Ensure that the IP port is 502. You can enter up to ten (10) Modbus slave device IP addresses.

NOTE: For Modbus mastering over RTU, the total number of possible serial connections is limited by the number of physical serial ports on the meter that can Modbus master. The meter has two physical serial ports that support Modbus master (COM1 and COM4). To Modbus master over Ethernet, the meter must have the optional Ethernet connection.

Click **OK** when you have finished configuring connections to return to the **Modbus Device** dialog box.

9. Click **OK** to add the slave device. The device now appears in the list. Continue adding devices by clicking **Add** until all of your devices are entered.

NOTE: The meter as Modbus master over TCP/IP will attempt to communicate to a slave for up to 100 seconds (as per the RFC1122 standard) before moving on to the next slave device.

See the **Modbus and ION Technology** technical note for more information.

Using Power Monitoring Expert

Use Designer to configure Modbus master functionality on your meter.

1. Open the master meter in Designer.
2. Navigate to the Modbus Master Options module. Right-click on the center of the module icon to access the ION Module Setup dialog box.

3. Configure the setup registers by selecting the setup register you want to change and clicking **Modify**, or by double-clicking on the register.
 - Serial Connections: Select the appropriate port from the dropdown list.
 - TCP Connections: Enter the IP address of the Modbus slave device, followed by a colon (:) and the IP port (502), for example, 192.168.0.1:502. You can enter up to 10 unique IP addresses.

NOTE: For Modbus mastering over RTU, the total number of possible serial connections is limited by the number of physical serial ports on the meter that can Modbus master. The meter has two physical serial ports that support Modbus master (COM1 and COM4).
To Modbus master over Ethernet, the meter must have the optional Ethernet connection.

4. Create a new Modbus Master Map module for each slave device. The Modbus Master Map module has two setup registers:
 - Device Type: Enter the type of device that you want to map. This value is referenced by the Modbus Master Device module.
 - Device Map: This is the data that you want to access from the Modbus slave device, in the form of text strings containing the parameter label, register value, data format, etc.

5. Create a new Modbus Master Device module for each slave device. Configure the following setup registers in the Modbus Master Device module:
 - Connection: Select the serial or TCP connection being used to communicate with the slave device.
 - Slave Addr: Type the unit ID of the slave device.
 - Device type: Type a device type string. Ensure that this is the same as the device type entered in the Modbus Master Map module.
 - Slave name: Type a name for the slave device.

6. Link the module inputs and outputs as required.

7. Select **File > Send & Save** when you are finished.

See the online *Power Monitoring Expert Help* for more information on creating, modifying and linking modules in Designer and the *ION Reference* for details of module setup and output registers.
Using the DNP 3.0 protocol

The Distributed Network Protocol Version 3.0 (DNP 3.0) is an open protocol used in the electric utility industry for communications and interoperability among substation computers, remote terminal units (RTUs), intelligent electronic devices (IEDs; for example, meters), and master stations.

Your meter can be integrated into a DNP network as a DNP slave, using the DNP Slave Import, DNP Slave Export and DNP Slave Options modules. For more information on the various DNP modules, see the ION Reference.

Your meter supports a maximum of three concurrent connections (or "sessions") using the DNP 3.0 protocol; one for each serial port, up to three using Ethernet, or a combination of both. Combinations available depend on the meter's communications options. A session consists of all incoming and outgoing DNP master/slave traffic on one of the meter's communications ports.

In addition to the standard DNP Slave Export modules with update rates of once per second, high-speed versions of these modules with typical update rates of once per 8 milliseconds are available. Additionally, millisecond time-stamping is supported for DNP events.

Consult the DNP User’s Group at http://www.dnp.org/ to learn more about the protocol.

The factory DNP 3.0 configuration

Your meter is preconfigured with a DNP framework that allows for basic DNP slave functionality. DNP Slave Export modules are used to send data to the DNP master while DNP Slave Options modules provide per-session settings such as communications options. Although some minor setup of the framework is necessary before it is enabled (assigning the DNP protocol to the communications ports, for example), most module settings should not require alteration.

For information on your meter's default DNP map and factory configuration, see the ION8650 DNP 3.0 Device Profile.

Importing data using DNP 3.0

Data can be imported into the meter from a DNP control relay or analog output device. DNP Slave Import modules are used to take a DNP Analog output or Binary output object and map them into ION registers.

NOTE: DNP Slave Import modules are not part of the factory DNP framework and must be added manually. Refer to the DNP Slave Import module description in the ION Reference for details. Refer to the DNP 3.0 Device Profile protocol document for a description on the DNP 3.0 communications protocol used by the meter.

Configuring DNP 3.0

If the factory DNP configuration does not suit your needs, you can relink the existing DNP Slave Export modules to access a different set of parameters through DNP. Alternately, you can add additional DNP Slave Export modules and link the desired parameters to them.

If your DNP network requires data in a format different than that provided by the factory DNP configuration, you can edit the setup registers in the DNP Slave Export modules and the DNP Slave Options modules. Do not make any changes to the DNP Slave
Options modules’ setup registers unless you understand the effects each change will cause. Refer to the ION Reference for complete details on DNP Slave Export and DNP Slave Options module function.

For detailed information on configuring your meter to use DNP, see the Multiport DNP 3.0 and ION Technology technical note.

Using the front panel

You cannot configure DNP through the meter’s front panel. You can only assign the DNP 3.0 protocol to communication ports. See “Communications” on page 81.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Communications > 3rd Party Protocols** and click on the **DNP 3.0** tab.
3. Select the DNP feature you want to configure (for example, Parameter Map) and click **Edit**.

![Setup Assistant](image)

The Setup Assistant wizard guides you through DNP configuration. See the ION Setup Help for more information.
Using the DLMS protocol

The Device Language Message Specification (DLMS) provides an interoperable environment for structured modeling and meter data exchange. DLMS supports applications such as remote meter reading, remote control, and value-added services for metering different kinds of energy, such as electricity, water, gas or heat.

DLMS is an international standard published as IEC 62056.

DLMS configuration

DLMS-enabled meters come preconfigured with frameworks that allow the meter to provide selected values to a DLMS master. You need to configure the meter’s communication settings before you can access values using DLMS master software.

DLMS is available on Ethernet and all serial ports, including the front optical port. Use the front panel or ION Setup to set the protocol for the serial communication port you want to use for DLMS. Use ION Setup to enable DLMS over Ethernet and assign the port.

Serial configuration using the front panel

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the navigation buttons to highlight the COM port that you want to configure (COM1 SETUP - COM4 SETUP) and press ALT/ENTER to select.
3. Use the navigation buttons to highlight the Protocol setting and press ALT/ENTER to select.
4. Select DLMS from the list of available protocols.
5. Select YES to confirm the change.

Serial configuration using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select Communications > Serial Settings and click on the COM tab that corresponds to the communication port you want to configure.
3. Select the Protocol parameter and click Edit.
4. Select DLMS from the dropdown list and click OK.

Ethernet configuration using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select Communications > Advanced Ethernet and click on the Protocols tab.
3. Select DLMS in the Protocols list and click Edit.
4. Select the Enabled checkbox to enable DLMS over Ethernet, enter the port you want to use and click OK.

Changing the data exported to DLMS client software

You can configure your meter to export the values from the Data Recorder modules to DLMS client software. To do this, you need to map the applicable data recorder to a
DLMS Log Export module and configure that module’s setup registers with the appropriate OBIS codes.

NOTE: Changing these modules and any of their inputs from the default template is an advanced setup procedure that requires an understanding of the protocol and your meter’s internal operations.

1. **Start ION Setup and open your meter in Advanced mode. See the online ION Setup help for more information.**

2. **Navigate to the DLMS Log Export Module Modules folder.**

3. **Create a new module or edit an existing module. Double-click the module to edit its configuration.**

4. **Select the Inputs tab to link the module to a Data Recorder module.**
 - Select the input and double-click (or click `Edit`).
 - Navigate to the Data Recorder module that you want to link to the DLMS Log Export module and click `OK`.

NOTE: You can link a Data Recorder module to multiple DLMS Log Export modules but you can only link each DLMS Log Export module to one Data Recorder module.

5. **Select the Setup Registers tab and double-click a register to edit it:**

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Generic OBIS</td>
<td>Enter the Profile Generic OBIS code you want to assign to the values associated with the module.</td>
</tr>
<tr>
<td>Status Register</td>
<td>Setting this register to ENABLED includes the status field in the Profile Generic object. If the Record input of the associated Data Recorder module is linked to a Periodic Timer, the status of the DLMS Log Export module is updated at that recording interval. If the Data Recorder Record input is not linked to a Periodic Timer, the value of the status register is 0xFFFF.</td>
</tr>
<tr>
<td>OBIS Code Source 1 – OBIS Code Source 16</td>
<td>Enter the register attribute OBIS codes for each input of the linked Data Recorder module that you want to export. Each OBIS Code Source setup register maps to the equivalent input register of the linked Data Recorder module. If you do not want to export a particular value, enter NONE for that OBIS Code Source setup register (this is the default value for a newly created DLMS Log Export module).</td>
</tr>
</tbody>
</table>

6. **Click **Send** to save your changes to the meter. Use your DLMS client software to validate that you are receiving the expected values.**

Related topics

- See the DLMS User Association website at www.dlms.com for information about the DLMS protocol.
- See *DLMS/COSEM and ION technology* for more information about how DLMS is implemented on your meter.
- See *ION reference* for module settings and operation.
IEC 61850

IEC 61850 is an Ethernet-based protocol designed for electrical substations. It is a standardized method of communications, developed to support integrated systems composed of multi-vendor, self-describing IEDs (intelligent electronic devices) that are networked together to perform monitoring, metering, and real-time, non-critical protection and control.

Your meter can be integrated into an IEC 61850 system as an IED (or server), supporting concurrent IEC 61850 client connections and an FTP connection (used for transferring data or configuration files).

IEC 61850 configuration assumes that you have an advanced understanding of IEC 61850 protocol, your communications network and the power system that your meter is connected to.

Related topics

- See the IEC (International Electrotechnical Commission) website at www.iec.ch for general information about the IEC 61850 protocol.
- See the IEC 61850 and ION Technology protocol document for more information about how IEC 61850 is implemented on your meter.
- See the ION Reference for a description of the IEC 61850 ION modules.

Implementation

Your meter comes configured with a default set of meter data available to IEC 61850. This default set of meter data is used in the default data sets and reports in the ICD file(s) available for download at www.schneider-electric.com.

NOTE: Select the ICD file that matches your meter’s option module configuration, and either Edition 1 or Edition 2 of the IEC 61850 protocol.

You must load a valid IEC 61850 configuration (CID) file into the meter in order to activate the IEC 61850 features of your meter.

NOTE: Your meter can have only one IEC 61850 configuration (CID) file loaded onto its internal FTP site. If additional CID files are loaded, IEC 61851 functions are deactivated until the additional files are removed.

Your meter has five dedicated IEC 61850 client connections.

You can load the IEC 61850 configuration file and configure the IEC 61850 custom modules using ION Setup.

Configuring IEC 61850

No meter port configuration is required for IEC 61850, but the meter must have an operating Ethernet connection for IEC 61850 client connections and for FTP transmission of configuration and data files.

Configuring additional ION data into IEC 61850

The IEC 61850 ICD file for your meter contains a comprehensive set of default data values. Additional meter data values can be made available in IEC 61850 by mapping the ION data to the GGIO Custom Analog or GGIO Custom Digital modules.
Using the front panel

You cannot configure IEC 61850 through the meter’s front panel.

Using ION Setup

1. Start ION Setup.
2. Open the Setup Assistant for your meter.
3. Navigate to **Communications > 3rd Party Protocols** and select the **IEC 61850** tab.

 The CID status line indicates whether the meter has received and validated an IEC 61850 CID file and is operating as an IEC 61850 server:

 - **IEC 61850 stack running**: the meter has received and validated an IEC 61850 CID file and is operating as an IEC 61850 server.
 - **Missing CID file**: no IEC 61850 CID file is loaded into the meter.
 - **Invalid CID file**: the IEC 61850 CID file is invalid

4. Select the information type that corresponds to the data you want to map and click **Edit**. Custom Analog and Custom Digital allow you to map additional numeric (analog) or Boolean/binary (digital) values into IEC 61850.

 NOTE: Because Custom Analog and Custom Digital are ION modules, they can be configured at any time, regardless of CID status.

5. Expand the Available registers list and select the custom analog or digital value that you want to map into IEC 61850. Highlight the IEC 61850 leaf you want to map onto and click the >> button to map the value. Click the << button to remove the value. Select **Show all available registers** to show all the ION modules and their registers. Click **OK** to send your changes to the meter.
Configuring meter digital I/O control via IEC 61850

By default, your meter’s I/O status values are available via IEC 61850. You can configure the meter to provide IEC 61850 control of the meter’s optional digital output hardware ports by configuring the GGIO Onboard ION module and the Digital Output module.

NOTE: Refer to “Inputs / Outputs” on page 143 for details on how to configure your meter’s digital inputs and outputs.

To control your meter’s digital outputs via IEC 61850, you must configure the Digital Output module’s *Source* register to be the IEC 61850 digital status value (*SPCS.stVal*) output register. This output register is written by the IEC 61850 system into the IEC 61850 GGIO Onboard module. You must also disconnect the Digital Input module’s *Status* output register from the IEC 61850 GGIO Onboard Digital Output *Status* input register or else you will create a circular reference and the modules will go offline. Refer to the ION Reference for details of the IEC 61850 GGIO Onboard module.

WARNING

HAZARD OF UNINTENDED OPERATION

- Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.
- Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Using ION Setup

1. Start ION setup.
2. Connect to your meter in Advanced Mode.
3. Navigate to the GGIO Onboard folder and double-click on the module in the right-hand pane.
4. Select the **Setup Registers** tab.

5. Select the *SPCS Control Mode* register that corresponds to the digital output you want to control through IEC 61850 and click **Edit**. A dialog box appears.

6. Select IEC 61850 **CTLVAL** from the dropdown list and click **OK**.

![Selecting SPCS Control Mode](image)

7. Select the **Inputs** tab.

8. Select the digital output *Status* register for the digital output that you want to control through IEC 61850. Click **Delete**.

NOTE: This digital input register must be deleted in order to prevent a circular reference that will cause the affected modules to go offline.

9. Click **Send** to send your changes to the meter.

10. Select the Setup Registers tab and confirm that the Digital Output module’s setup registers are appropriately configured.

13. Select the **Setup Registers** tab and confirm that the Digital Output module’s setup registers are appropriately configured.

14. Select the **Inputs** tab.

15. Select the *Source* register and click **Edit**.

16. Navigate to the IEC 61850 G Gio Onboard module and select the *SPCS.stVal* output register that corresponds to the digital output.
17. Click OK and Send to save your changes to the meter.
Configuring MV-90

ION8650 meters can provide energy values to an MV-90 data management system. In order to recognize and communicate with your meter, the MV-90 software requires meter configuration data to create a master (master.dat) file for your meter.

Use ION Setup to:

- generate a meter configuration (master.dat) file for your meter that can be imported directly into your MV-90 system or printed for manual data entry.
- configure your meter's revenue data in MV-90 E-File or P-File data formats.
- export an .hhf file to transfer revenue data from your meter to your MV-90 system using a handheld device.

For more information, see the MV-90 and ION Technology technical note, available from the website.
Chapter 9 Time

This chapter covers the meter's clock and time synchronization, including IRIG-B GPS time synchronization.

NOTE: References to NTP in ION devices or documentation should be interpreted as SNTP.

In this chapter

- Meter clock configuration .. 130
- Time synchronization ... 131
 - IRIG-B time synchronization ... 131
- Configuring the meter clock ... 132
 - Using the front panel .. 132
 - Using ION Setup .. 132
 - Using Designer .. 132
- Clock module settings .. 132
- Replacing the battery ... 134
Meter clock configuration

The Clock module controls the meter’s internal clock, which provides timestamps for data logged by the device. The clock needs to be configured properly to ensure that internally logged data has accurate timestamp information. The clock settings do not affect any data logs that are stored external to the meter. The Clock module also receives the time synchronization signals sent to it by a workstation running Power Monitoring Expert or ION Setup, updating the device’s clock when required.

The Clock module’s *Clock Source* setup register defines how the meter’s internal clock auto-corrects drift from its internally calculated time. A separate time source (such as a GPS receiver or a DNP Master) can be used to synchronize the clock through a communications channel. By default, the clock is set to synchronize from the line frequency.

See the *ION Reference* for more information on the Clock module and the *Time Synchronization & Timekeeping* technical note for more information about time and ION meters.
Time synchronization

Time synchronization lets you synchronize your meter’s internal clock with all of the other meters, devices, and software in a network. After the meter is synchronized, all the data logs stored on the meter have timestamps that are relative to a uniform time base. This allows you to achieve precise sequence-of-events and power quality analyses using the data logged on the meter. Use Power Monitoring Expert or ION Setup to broadcast time signals across the network, or utilize an external source (such as a DNP Master or IRIG-B) to synchronize your meter’s clock.

Refer to the *Time Synchronization & Timekeeping* technical note for more information on implementing time synchronization.

Refer to the *DLMS/COSEM and ION technology* protocol document for information on time synchronization with DLMS.

IRIG-B time synchronization

ION8650 meters come with an IRIG-B connection for GPS time synchronization using unmodulated IRIG-B time code data. The meter is configured to synchronize via IRIG-B GPS, after you wire the meter to a GPS receiver and set the clock *Time Sync Source* and *Clock Source* parameters.

Any GPS receiver that outputs unmodulated IRIG-B time code data can be used as a time synchronization source.

You can configure IRIG-B time synchronization to update if the GPS receiver is locked onto a satellite source or to update regardless of whether or not the GPS receiver is locked onto a satellite source. Refer to the Clock module description in the *ION Reference* for more information on this setting.

NOTE: When using a GPS receiver for time synchronization, the recommended setting for baud rate and 8N1 for stop bits/parity.

IRIG-B standard and specifications

The standard is outlined in the IRIG-STANDARD 200-04 “IRIG Serial Time Code Formats” prepared by the Timing Committee, Telecommunications and Timing Group, Range Commanders Council.

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>+/- 1 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>IRIG-B00x¹ format (unmodulated IRIG-B time code)</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>5 Vdc +/- 10%</td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td>8 Vdc</td>
</tr>
</tbody>
</table>

¹Coded expressions 0 to 7 are supported but the year data is not used by the meters.

Diagnostic module outputs and event log entries

The Diagnostic module output registers and event log entries update as described in the *Time Synchronization & Timekeeping* technical note, with the following exceptions:

- The GPS Receiver Status output register in the Diagnostics module is set to N/A.
- The GPS locked and GPS unlocked event log entries are not generated.
Configuring the meter clock

Use Power Monitoring Expert or ION Setup to change the meter’s clock settings.

Using the front panel

You cannot configure the time using the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Clock screen.

![Setup Assistant Window](image)

3. Click the Timezone tab to configure your meter’s clock settings. Select a parameter and click Edit to change.

NOTE: For IRIG-B, set the Time Sync Source to IRIG-B and the Clock Source to COMM.

4. Click on the DST Settings tab to configure your meter’s daylight savings periods for up to 20 years. Select a parameter and click Edit to change.

5. Connect the meter to the time sync source (such as a GPS receiver output) if applicable.

Using Designer

Open your meter in Designer and navigate to the Meter Clock Setup framework. Right-click on the Clock module to edit.

Clock module settings

The setup registers in the Clock module specify timezone and Daylight Savings Time (DST) parameters and time synchronization functions. Refer to the Clock module description in the ION Reference for information on advanced settings you can configure.
When modifying setup registers of the Clock module in Designer, use the Format option to convert between UNIX and conventional time. Refer to the description of the Clock module in the online ION Reference for more details.

Typically, the DST Start and DST End registers do not need to be reconfigured for users in North America. The factory defaults are the DST start and end dates for 20 years, in UNIX time (the number of seconds since 00:00:00 UTC on Jan. 1, 1970).

Refer to the Time Synchronization & Timekeeping technical note for further details on using the meter’s time synchronization functions. Refer to the ION Reference for more information on the Clock module and its registers.

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timezone</td>
<td>Sets the timezone the device is in, relative to Greenwich Mean Time.</td>
<td>0</td>
</tr>
<tr>
<td>DST Start 1 … DST Start 20</td>
<td>The date and time when DST begins for 20 separate years.</td>
<td>Refer to the ION Device Template Reference for the DST Start and DST End defaults for the twenty separate years.</td>
</tr>
<tr>
<td>DST End … DST End 20</td>
<td>The date and time when DST ends for 20 separate years.</td>
<td>DST End defaults for the twenty separate years.</td>
</tr>
<tr>
<td>DST Offset</td>
<td>The amount of time the clock is changed when DST begins or ends.</td>
<td>3,600 seconds</td>
</tr>
<tr>
<td>Time Sync Source</td>
<td>Specifies the communications port that receives time sync signals. For Ethernet, it also specifies which protocol can time sync the meter.</td>
<td>COM3</td>
</tr>
<tr>
<td>Time Sync Type</td>
<td>Specifies the type of time sync signal (Local or Universal time).</td>
<td>UTC</td>
</tr>
<tr>
<td>Clock Source</td>
<td>Specifies the clock’s time synchronization signal source (line frequency, communications signals, or internal crystal).</td>
<td>Line Frequency</td>
</tr>
<tr>
<td>Percent Battery</td>
<td>The setting displays the approximate percentage of battery life remaining. You should only need to edit this parameter if you have replaced the battery.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Remaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Set Count</td>
<td>This setting displays the number of instances that the meter time has been updated.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Time Sync Count</td>
<td>This setting displays the number of time update requests received via communications.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Local Time</td>
<td>The parameter is shown for information purposes only. It displays the current local time on the meter. To change this, you must time sync the meter.</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Replacing the battery

See the ION8600/ION8650 battery replacement instructions for more information.
Chapter 10 Demand

This chapter explains how to configure and view demand values on your meter.

In this chapter

Introduction ... 136
 Sliding window demand ... 136
 Peak demand ... 136
 Illustration of the basic demand framework 136
Configuring demand .. 137
 Using the front panel ... 137
 Using ION Setup .. 137
 Using Designer ... 137
 Sliding Window Demand module settings 137
Configuring demand reset lockout time 138
Demand Forgiveness ... 139
 Additional Information .. 140
Configuring Demand Forgiveness 141
 Using the Front Panel .. 141
 Using ION Setup .. 141
Introduction

Demand is a measure of average power consumption over a fixed time interval. Peak (or maximum) demand is the highest demand level recorded over the billing period. Demand is measured using Sliding Window Demand modules. These modules are configured to calculate the average current demand and kW, kVAR and kVA demand. The setup registers in the demand module defines time intervals for demand calculations, setting the sensitivity of the module’s operation.

The meter has a default demand framework that is suitable for most utility applications. However, if needed, you can customize it for your specific application.

Sliding window demand

Sliding window demand is often referred to as rolling block demand. To compute sliding window demand values, the meter uses the sliding window averaging (or rolling interval) technique which divides the demand interval into sub-intervals.

The demand is measured electronically based on the average load level over the most recent set of sub-intervals. This method offers better response time than fixed interval methods.

The meter uses the Sliding Window Demand module to calculate sliding window demand.

Peak demand

Power utilities generally bill commercial customers based on their peak usage levels, called peak demand (in kW) and energy consumption (in kWh). Demand is a measure of average power consumption over a fixed time interval, typically 15 minutes. Peak (or maximum) demand is the highest demand level recorded over the billing period. Sliding window demand is one method of measuring demand.

Illustration of the basic demand framework

In the following diagram, the Sliding Window Demand module labeled “Demand” calculates demand from the power input by measuring and averaging the power over a set interval. The demand value is then output to a Maximum module labeled “Peak Demand” that records the highest demand value over time (peak demand).

For more information on ION modules, refer to the online ION Reference.
Configuring demand

Use Power Monitoring Expert or ION Setup to change your meter’s demand settings.

Using the front panel

You cannot use the front panel to configure demand.

Using ION Setup

The Demand screen in the Setup Assistant helps you configure sliding window (or rolling block) demand. This screen also contains two registers used for configuring sliding window demand while the meter is in TEST mode.

In ION Setup:

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the **Demand** screen.

3. Select a register and click **Edit** to configure.

Using Designer

Open your meter in Designer and navigate to the Demand Setup framework. Click on Demand Setup to access the Sliding Window Demand modules. Right-click on a module to edit.

Sliding Window Demand module settings

The following table outlines the sliding window demand settings. See the *ION Reference* for more information about the Sliding Window Demand module.

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Intvl</td>
<td>The time, in seconds, in the sliding window demand sub-interval.</td>
<td>900</td>
</tr>
<tr>
<td>#SubIntvl</td>
<td>The number of sub-intervals in the sliding window.</td>
<td>1</td>
</tr>
<tr>
<td>Pred Resp</td>
<td>The speed of Predicted Demand calculations; use higher values for faster prediction (70 to 99 recommended).</td>
<td>70</td>
</tr>
<tr>
<td>Update Rate</td>
<td>Defines the update rate of the SWinDemand output register</td>
<td>Varies depending on the module</td>
</tr>
</tbody>
</table>
Configuring demand reset lockout time

The demand reset lockout time sets the minimum time allowed between consecutive demand resets; the meter ignores any attempts to reset demand that occur within the lockout time. The default demand lockout time is 25 days (2160000 seconds).

Using the front panel
1. Hold down the ALT/ENTER button to access the SETUP menu.
2. Use the up and down arrows to highlight DISPLAY SETUP then press the ALT/ENTER button.
3. Use the up and down arrows to highlight DMD LOCK TO then press the ALT/ENTER button.
4. Use the up and down arrows to enter a demand lockout time in seconds. Press ALT/ENTER to apply the value.

Using ION Setup
1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Demand screen and click the Rolling Block tab.
3. Select Demand Lockout and click Edit. Enter a demand lockout time in days (in Elapsed Interval Format) or seconds (in Numeric Bounded Format). Click OK.
Demand Forgiveness

Demand Forgiveness is the time programmed to the meter during which demand (and therefore peak demand) will not be calculated in the power restoration period following a total power outage.

During power-up following a complete power outage, customer equipment consumes a higher than normal amount of power. Demand Forgiveness lets a utility forgive the customer for peak demand penalties that can arise from power-up following a power outage (should the outage exceed a user-specified period of time).

Demand and Peak Demand module behavior during Demand Forgiveness

A peak demand value is the highest demand value since the last peak demand reset. The Demand Forgiveness framework sets the Sliding Window Demand module inputs to zero during a Demand Forgiveness period. This method allows demand interval data to accurately reflect a complete interval that includes data:

- prior to an outage
- during the Demand Forgiveness period (zero values)
- after the Demand Forgiveness period

NOTE: During a Demand Forgiveness period, Sliding Window Demand module inputs are set to zero and do not reflect actual demand. These values should not be used to calculate energy for billing purposes. Energy values are not affected and reflect actual energy consumption during the Demand Forgiveness period.

The settings listed below must be made configured for Demand Forgiveness functionality. These settings can be accessed from ION Setup; refer to “Using ION Setup” on page 141.

- **Minimum Outage Duration** lets you specify the amount of time (in seconds) that the power must be out before the Demand Forgiveness period begins.
- **Demand Forgiveness Duration** lets you specify the amount of time (in seconds) that demand is forgiven (demand inputs are zero).
- **Update Rate** lets you define the update rate of the SWinDemand output register. It is set to Every Second by default for revenue-related demand modules; with this setting, demand value measured is updated once per second.
- **Outage Voltage** (line-to-line average in unscaled meter units) lets you define a voltage level that is considered an outage. This is set to 20 volts by default.
The preceding diagram shows an example of a meter that is set up for Demand Forgiveness. The Sliding Window Demand module is averaging demand values at 15 minute intervals. During interval #1, the meter has a power outage that lasts for 18 minutes. The power outage is defined by a system voltage of 20 volts which is specified in the Outage Voltage setting. The Minimum Outage Duration setting is specified as 10 minutes, so this is the amount of time that the power must be out before demand can be forgiven. The Demand Forgiveness Duration setting is specified as 1800 seconds (30 minutes), so for 30 minutes following power restoration, demand inputs are zero. The power is restored during interval #2, where the surge of power consumption during power-up is included in the Demand Forgiveness period and has a value of zero.

Additional Information

The following points are important to note:

- The following demand input values are zero for kQ, kW, kVA, and kVAR during the Demand Forgiveness period:
 - Delivered
 - Received
 - Delivered + received
 - Delivered – received
 - Q1, Q2, Q3, Q4
- If a new peak is set prior to a power outage, it persists.
- Even though demand is zero during the Demand Forgiveness period, a new peak can be set if the demand was very high prior to the power outage or after the Demand Forgiveness period ends.
- Demand Forgiveness works for auxiliary and blade powered meters.
- All ION modules in the Demand Forgiveness framework are fully locked.
- If a Demand Forgiveness period is initiated, and another power outage occurs that is less than the time specified in the Minimum Outage Duration setting, the Demand...
Forgiveness period continues. If a second outage is greater than the time specified in the *Minimum Outage Duration* setting, the Demand Forgiveness period restarts.

- Both the power outage downtime and the Demand Forgiveness downtime are stored within the Demand Forgiveness framework. The Store modules preserve a timestamp that is viewable in Vista.
- The Sliding Window Demand module *Update Rate* setup register must be set to EVERY SECOND (this is the default for revenue-related demand modules).
- If Demand Forgiveness is enabled on an auxiliary-powered meter and there is no power on the blades, the meter assumes that this is an outage. When power is applied to the blades, demand is forgiven for the specified time.
- If Demand Forgiveness is enabled and the meter is unplugged for servicing or other reasons, the Demand Forgiveness framework assumes there was an outage and demand is forgiven for the specified time.
- For meters where Demand Forgiveness is enabled at the factory (for example, certain certified revenue-sealed meters), demand is not measured when the meter is first put into service. Instead demand is forgiven for the specified time.

Configuring Demand Forgiveness

Demand Forgiveness is disabled by default. Use ION Setup to enable Demand Forgiveness.

NOTE: If Demand Forgiveness is enabled, do not use demand values to calculate energy for billing purposes. Energy values are not affected and reflect actual energy consumption during the Demand Forgiveness period.

Using the Front Panel

You cannot enable or edit Demand Forgiveness settings using the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the **Demand** screen and click the **Demand Forgiveness** tab.
3. Select **Demand Forgiveness Enable**. Click **Edit** and select ON. This enables Demand Forgiveness.
4. Select **Min Outage Duration** and click **Edit**.

 Type the amount of time (in seconds) that the power must be out before the Demand Forgiveness period starts. Click **OK**.
5. Select **Demand Forgiveness Duration** and click **Edit**.

 Type the amount of time (in seconds) that demand is forgiven (demand inputs are zero). Click **OK**.
6. Select **Outage Voltage** if required and click **Edit**.

 Type the minimum voltage (line-to-line average in unscaled meter units) that is considered an outage; this is set to 20 V by default but you can adjust this. Click **OK**.
Chapter 11 Inputs / Outputs

This chapter provides information on the meter's various digital and analog inputs and outputs (I/O).

Refer to your *ION8650 Installation Guide* for instructions on wiring inputs and outputs and for the general meter I/O specifications.

You can use the ION8650's onboard I/O for a variety of applications.

For example, you can use a Form A digital input to monitor a breaker to verify how many times the breaker trips. When the breaker reaches its limit for the number of trips, you can use the digital output to light an LED next to the breaker so field personnel are alerted. You can also use a Form C digital output to send KYZ pulsing information to third-party system equipment.

NOTE: The Ethernet outage notification card uses the same physical slot as the I/O option board, which means that you cannot have both optional I/O and outage notification on the same meter.

In this chapter

- Introduction .. 144
- Specifying an I/O port in a module 145
- Using the onboard digital outputs 146
- Using the optional onboard digital inputs 148
- Using the optional analog outputs 149
- Configuring inputs and outputs 150
Introduction

The meter’s digital and analog I/O ports simplify data gathering by importing a variety of data types into a single, common system. You need to configure the following modules in order to use the meter’s for digital and analog I/O capabilities.

- **Digital Input**: Digital (status) inputs can be used for monitoring external contacts or pulse counting applications, and are controlled by Digital Input modules. This module tells the meter how to interpret incoming signals.

- **Digital Output**: Digital outputs are used for hardware relay control or pulse counting applications. The outputs can be controlled by Digital Output modules, Pulser modules, or Calibration Pulser modules, depending on the application (relay switching or energy pulsing). An example of a commonly used application for each module is listed below.
 - **Digital Output module**: monitors a change of state to control relay operation via a hardware output device.
 - **Pulser module**: transfers high-speed pulses to a hardware pulse counting device that is used to track energy usage.
 - **Calibration Pulser module**: integrates instantaneous power inputs, then outputs high-speed pulses to an LED that can be monitored to verify revenue meter calibration.

All of these modules can act as intermediaries between the hardware port and the other modules in the meter. They define the characteristics of outgoing signals.

- **Analog Output**: Analog outputs can deliver a continuous DC signal, and are controlled by the Analog Output modules.

See the *ION8650 Installation guide* for I/O wiring instructions.
I/O Expander for ION8650 meters

For analog or additional digital I/O with the meter, you can use an external I/O Expander. Information for the analog and digital I/O Expander options is available in the I/O Expander Installation Guide.

Specifying an I/O port in a module

For detailed information and instructions on configuring Analog and Digital I/O modules, see the ION Reference.
Configure the Digital Output, Digital Input, Analog Output, Pulser, and Calibration Pulser modules to specify which port handles the outgoing or incoming signals. To assign a port to one of these modules, simply modify the Port setup register by picking a port from the enumerated list. This can be done with both ION Setup and the Designer component of Power Monitoring Expert.

The following table describes the ports that can be configured (in the Digital Output, Digital Input, Analog Output, and Calibration Pulser modules) to handle outgoing or incoming signals.

NOTE: You must confirm the meter I/O options (onboard and/or I/O Expander) to determine which of the following apply to your meter.

<table>
<thead>
<tr>
<th>ION module type</th>
<th>ION module name</th>
<th>Hardware port (device label)</th>
<th>Port setup register name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard digital output ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Output (DO)</td>
<td>DO Onbrd RA-1</td>
<td>A1</td>
<td>On-Board FormA Out 1</td>
<td>Digital Output port 1 (Form A Solid State)</td>
</tr>
<tr>
<td></td>
<td>DO Onbrd RC-1 to RC-4</td>
<td>C1 to C4</td>
<td>On-Board FormC 1 to FormC 4</td>
<td>Digital Output port 1 to 4 (Form C Relay)</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>VARh Pulse LED¹</td>
<td>Watt LED</td>
<td>WATT LED</td>
<td>LED Output</td>
</tr>
<tr>
<td></td>
<td>Wh Pulse LED¹</td>
<td>VAR LED</td>
<td>VAR LED</td>
<td>LED Output</td>
</tr>
<tr>
<td>Onboard digital input ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Input (DI)</td>
<td>DI-S9</td>
<td>S1</td>
<td>On-Board FormA 1</td>
<td>Digital Input port 1 (Form A)</td>
</tr>
<tr>
<td></td>
<td>DI-S10, DI-S11</td>
<td>S2, S3</td>
<td>On-Board FormA2 to FormA3</td>
<td>Digital Input port 2 to 3 (Form A)</td>
</tr>
<tr>
<td>I/O Expander digital output ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Output (DO)</td>
<td>DO RC-1 to RC-4</td>
<td>C-1 to C-4</td>
<td>I/O Exp FormC 1 to FormC 4</td>
<td>Digital Output port 1 to 4 (Form C)</td>
</tr>
<tr>
<td></td>
<td>DO RA-1 to RA-4</td>
<td>A-1 to A-4</td>
<td>I/O Exp FormA 1 to FormA 4</td>
<td>Digital Output port 1 to 4 (Form A)</td>
</tr>
<tr>
<td>I/O Expander digital input ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Input (DI)</td>
<td>DI-S1 to DI-S8</td>
<td>A-1 to A-4</td>
<td>I/O Exp In 1 to In 8</td>
<td>Digital Input port 1-8 (Form A)</td>
</tr>
<tr>
<td>I/O Expander analog output ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Output (AO)</td>
<td>Analog Out 1 to Analog Out 4</td>
<td>A1 to A4</td>
<td>I/O Exp AnOut 1 to AnOut 4</td>
<td>Analog Output port 1 to 4</td>
</tr>
</tbody>
</table>

Configuring energy pulsing applications

To configure the LED outputs for energy pulsing applications (for example, kVAh), see “Energy pulsing” on page 153.

Using the onboard digital outputs

Digital outputs are used for hardware relay control or pulse counting applications. For example, the meter’s digital outputs can provide on/off control signals for capacitor banks, generators, and other equipment. The digital output ports can also send out status signals or kWh pulses, if the receiving device determines energy usage by counting pulses.

A meter with the optional onboard I/O provides four Form C digital outputs and a Form A digital output. All digital outputs can deliver a continuous signal or a pulse.

Contact Schneider Electric for complete information regarding relay applications.
Digital Output modules

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARD OF UNINTENDED OPERATION</td>
</tr>
<tr>
<td>• Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.</td>
</tr>
<tr>
<td>• Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in death, serious injury or equipment damage.

These outputs can be controlled with Digital Output modules, Pulser modules, or Calibration Pulser modules, depending on the application. For relay and control, the Digital Output module is used. For pulsing applications, the Pulser or Calibration Pulser modules are generally used.

You must configure these modules in order to use the output ports.

• **Calibration Pulser modules** allow you to generate high accuracy energy pulses for verifying meter accuracy. They integrate instantaneous power inputs.

• **Digital Output modules** accept Boolean inputs, and output a continuous signal or pulses.

• **Pulser modules** convert instantaneous pulses to pulses or transitions.

Configure the settings of the controlling module to match your requirements. Ensure that the module’s Port setup register matches the meter’s output that you want to control.

For detailed information and instructions on configuring these modules, see the ION Reference. For information on the default settings for the modules, see the ION Device Template Reference.
The available settings for these modules are as follows:

<table>
<thead>
<tr>
<th>ION module</th>
<th>Setup registers</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Output</td>
<td>Port</td>
<td>Not Used WATT LED VAR LED I/O Exp FormC 1 I/O Exp FormC 2 I/O Exp FormC 3 I/O Exp FormC 4 I/O Exp FormA 1 I/O Exp FormA 2 I/O Exp FormA 3 I/O Exp FormA 4 On-Board Form C 1 On-Board Form C 2 On-Board Form C 3 On-Board Form C 4 On-Board FormA Out 1</td>
<td>Determines the output hardware channel</td>
</tr>
<tr>
<td>Pulser</td>
<td>Port</td>
<td>As per Digital Output, above</td>
<td>Determines the output hardware channel</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>Port</td>
<td>As per Digital Output, above</td>
<td>The output hardware channel</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>Pulse Width</td>
<td>0.010 to 1.000</td>
<td>Pulse Width, in seconds</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>Kt</td>
<td>0.01 to 100000000</td>
<td>Watts per pulse</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>Int Mode</td>
<td>Forward, Reverse, Absolute, or Net</td>
<td>Integration modes that can be selected</td>
</tr>
<tr>
<td>Calibration Pulser</td>
<td>OutputMode</td>
<td>Pulse or KYZ</td>
<td>Full pulse or KYZ (transition pulse)</td>
</tr>
</tbody>
</table>

Using the optional onboard digital inputs

Digital inputs are used for status monitoring or pulse counting applications. Status monitoring can help you prevent equipment damage, improve maintenance, or track security breaches. Common status monitoring applications include monitoring:

- closed/open positions of breakers.
- on/off status of generators.
- armed/unarmed conditions in a building alarm system.
- over/under pressures of transformers.
The function of each status input is controlled by a Digital Input module; this module tells the meter how to interpret incoming signals. Digital Input modules can be linked with other modules for counting status changes.

NOTICE

VOLTAGES OVER 130 VDC CAN DAMAGE DIGITAL INPUTS

Do not use digital inputs for voltage sensing applications.

Failure to follow these instructions can result in equipment damage.

For detailed information and instructions on configuring these modules, see the ION Reference. For information on the default settings for the modules, see the ION Device Template Reference.

The available settings in the Digital Input modules are as follows:

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Mode</td>
<td>Pulse, KYZ</td>
<td>Specifies complete pulse or KYZ transition pulse</td>
</tr>
<tr>
<td>EvLog Mode</td>
<td>Log On, Log Off</td>
<td>Specifies whether or not to log status changes. Digital Input status changes have an event priority of 20.</td>
</tr>
<tr>
<td>Debounce</td>
<td>numeric</td>
<td>Setting for the mechanical contact bounce, in seconds</td>
</tr>
<tr>
<td>Polarity</td>
<td>Fixed at NON-INVERTING</td>
<td>Specifies a non-inverted (or level) pulse</td>
</tr>
<tr>
<td>Port</td>
<td>I/O MODULE IN1 to I/O MODULE IN 8, NOT USED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O Exp In 1 to 8</td>
<td>Specifies which hardware port the module controls</td>
</tr>
<tr>
<td></td>
<td>On-Board FormA 1 to 3</td>
<td></td>
</tr>
</tbody>
</table>

Using the optional analog outputs

Analog outputs let you output real-time power to an RTU or perform equipment control operations. The analog outputs provide industry standard 0 to 20 mA current signals. These outputs are only available with the optional I/O Expander.

WARNING

HAZARD OF UNINTENDED OPERATION

Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

The electrical signal on the output is DC. Make sure proper polarity is observed when wiring external devices to the analog output ports.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Four Analog Output modules control the optional I/O Expander’s analog outputs. These modules are not linked by default. Link the numeric output of another ION module to the Source input of the Analog Output module—this value is represented on the I/O Expander’s analog output port. Setup the Zero Scale and Full Scale setup registers of the Analog Output module to the numeric range you want to emulate.

For detailed information and instructions on configuring these modules, see the ION Reference. For information on the default settings for the modules, see the ION Device Template Reference.
The available settings in the Analog Output module is as follows:

<table>
<thead>
<tr>
<th>Setup registers</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>I/O EXP AnOut 1 to I/O EXP AnOut 4, NOT USED</td>
<td>Specifies the output hardware channel.</td>
</tr>
<tr>
<td>Full Scale</td>
<td>-1 x 10⁹ to 1 x 10⁹</td>
<td>Sets the measured value that will create the maximum possible output on the analog output hardware port.</td>
</tr>
<tr>
<td>Zero Scale</td>
<td>-1 x 10⁹ to 1 x 10⁹</td>
<td>Sets the measured value that will create the minimum possible output on the analog output hardware port.</td>
</tr>
</tbody>
</table>

Ensure that the module’s Port setup register matches the I/O Expander’s output that you want to control. If the port you want to use does not appear in the Port setup register list, that port is in use by another module. Edit the Port setup register of the module using that port and set it to NOT USED – the port is then available to other modules.

See the I/O Expander Installation Guide for more information on the I/O Expander and the ION Reference for more information on the Analog Output module, including details on setting the zero and full scales. Both documents are available from www.schneider-electric.com.

Configuring inputs and outputs

Use Power Monitoring Expert or ION Setup to configure the meter’s I/O framework.

Using the front panel

You cannot configure I/O using the meter’s front panel.

Using ION Setup

The Setup Assistant helps you configure your meter’s optional (onboard and I/O Expander) analog and digital inputs and outputs.

NOTE: See “Energy pulsing” on page 153 for information on configuring the Calibration Pulser modules in ION Setup.

In ION Setup:

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select either the **Onboard I/O** or the **Expander I/O** folder and select the screen for the I/O type that you want to configure.
The tabs on the I/O screens correspond to the associated modules (for example, **Onboard I/O > Digital Outputs > A1**) allows you to configure Digital Output module RA-1). Click the tab you want to edit.

3. Select the parameter and click **Edit** to edit a value.

4. Select Source and click **Edit** to link a module to a source. Navigate to the source register you require and click **OK**.

Using Designer

Open your meter in Designer and navigate to the Advanced Setup framework. Click on the appropriate grouping object (Digital Inputs, Digital Outputs or Analog I/O) and right-click the module that you want to edit.
Chapter 12 Energy pulsing

This chapter provides instructions for configuring energy pulsing on your meter.

In this chapter

Introduction ... 154
Energy pulsing with LEDs ... 155
Configuring energy pulsing ... 156
 Using the front panel ... 156
 Using ION Setup .. 156
 Using Designer ... 157
Calibration Pulser module settings 157
Pulser module settings ... 157
Introduction

Your meter uses Calibration Pulser modules and Pulser modules for energy pulsing.

- **Pulser module**: The Pulser module serves as an intermediary between other modules’ pulse output registers (accepting them as pulse inputs) and a hardware output channel on the device. These modules are capable of sending pulses or pulse transitions to any hardware output channel.

- **Calibration Pulser module**: The Calibration Pulser module is a highly accurate energy pulser used for verifying accuracy on meters employed in billing applications. This module type serves as an intermediary between the power (kW, kVAR or kVA) outputs of the Power Meter module and a device’s hardware output channel. Refer to the *PowerLogic ION8650 accuracy verification* technical note for instructions on verifying the accuracy of your meter. By default, two Calibration Pulser modules are configured and linked to the front panel LEDs.

See the *ION Reference* for more information on these modules.
Energy pulsing with LEDs

The two LEDs on the front panel are preconfigured for energy pulsing. The adjacent smaller infrared outputs are connected to the LEDs and pulse at the same rate.

The pulse rate of the LEDs can be adjusted by modifying the Kt setup register in the associated Calibration Pulser module. The value entered defines how much energy the module accumulates before a pulse is sent to the hardware channel. The front panel WATT and VAR LEDs are factory set to the same pulse rate. The Kt value is shown on your meter's front panel label; the default setting for Kt depends on the form factor of your meter.

WATT – LED and VAR – LED

The WATT – LED is controlled by a Calibration Pulser module that has its Source input linked to the kW del+rec output of the Arithmetic module labeled “KW del, rec”.

The VAR – LED is controlled by a Calibration Pulser module that has its Source input linked to the kVAR del+rec output of the Arithmetic module labeled “kVAR del, rec”.

- For meters with 9S, 36S and 29S form factors, the default pulse rate of the front panel WATT LED is 1.8 (1.8 Watt-hours per pulse). The Kt value of the VAR LED is also 1.8.
- For Form Factor 35S meters, the default pulse rate of the front panel WATT LED is set at 1.2 (1.2 Watt-hours per pulse). The Kt value for the VAR LED is also 1.2.

Customizing energy pulsing

Changing the value for the Kt setup register of the associated Calibration Pulser module lets you modify the pulsing rate of either channel. If you want to configure the LED port for a different pulsing application, you must re-link the Source input to the output register of a different instantaneous power quantity in one of the Arithmetic modules. Ensure that the quantity you select originates from the MU (meter units) Power Meter module.
Configuring energy pulsing

Use Power Monitoring Expert or ION Setup to change your meter’s energy pulsing settings.

⚠️ WARNING

HAZARD OF UNEXPECTED DIGITAL OUTPUT PULSE

- Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.
- Be aware that an unexpected pulse on the digital outputs can result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Using the front panel

You cannot configure energy pulsing using the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select LED Pulsing.
3. Click on the tab that corresponds to the LED that you want to configure.
4. Configure the settings as required. See “Calibration Pulser module settings” on page 157 for more information on the settings other than Pulser Mode.

Pulser Mode determines whether the LED pulsing occurs always or only when the meter is in TEST mode.

The appropriate Kt value depends on Scaled Rev Param (located on the Basic Setup tab).
- If Scaled Rev Param is OFF, the Kt value must be the primary value and the Calibration Pulser module pulses based on primary kWh and kVARh.
– If *Scaled Rev Param* is ON, the Kt value must be the secondary value, and the Calibration Pulser module pulses based on secondary kWh and kVARh.

5. Select the **Energy Pulsing** screen to configure the other default Calibration Pulser modules for energy pulsing applications, if required. By default, these modules are not linked to an output.

6. Click the **End of Interval** tab to configure the end of energy pulsing.

Using Designer

Open your meter in Designer and navigate to the Energy Pulsing Setup folder. Right-click a module to edit.

Calibration Pulser module settings

The setup registers available in the Calibration Pulser module are listed in the table below. The defaults listed are for the two pre-configured Calibration Pulser modules that control the front panel LEDs (these modules are labelled Wh Pulse LED and VARh Pulse LED).

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Width</td>
<td>This register specifies the width of the pulses sent to the hardware channel (in seconds). The Calibration Pulser module maintains a minimum duty cycle of 50% on the output pulse train.</td>
<td>0.05</td>
</tr>
<tr>
<td>Kt</td>
<td>The numeric bounded register defines how much energy the module accumulates before a pulse is sent to the hardware channel. An industry standard for energy pulsing is 1.8, or one pulse per 1.8 energy-hours.</td>
<td>varies¹</td>
</tr>
<tr>
<td>Int Mode</td>
<td>Specifies the modes of integration that can be selected.</td>
<td>Absolute</td>
</tr>
<tr>
<td>OutputMode</td>
<td>This register specifies whether the output is a complete pulse (Pulse) or a change of state transition (KYZ).</td>
<td>Pulse</td>
</tr>
<tr>
<td>Port</td>
<td>This register specifies which hardware port the pulse/KYZ transition appears on. Only those hardware channels that are still available appear in this list.</td>
<td>Not Used</td>
</tr>
</tbody>
</table>

¹ The default Kt value varies depending on the template. For meters with the 9S/29S/36S template, the default is 1.8. For meters with the 35S template, the default is 1.2.

Pulser module settings

Only the End of Interval Pulser module is available by default. The defaults below reflect the defaults in this module.

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Width</td>
<td>This register specifies the width of the pulses sent to the hardware channel (in seconds).</td>
<td>0.1</td>
</tr>
<tr>
<td>OutputMode</td>
<td>This register specifies whether the output is a complete pulse (Pulse) or a change of state transition (KYZ).</td>
<td>Pulse</td>
</tr>
<tr>
<td>Port</td>
<td>This register specifies which hardware port the pulse/KYZ transition appears on.</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
The ION8650 meter has powerful data logging and event recording capabilities. Data and event logs recorded by the meter are prioritized and stored onboard. Data is retrieved periodically by Power Monitoring Expert (or another third party application).

If you use Power Monitoring Expert, all retrieved data from your system is stored in an ODBC-compliant database. The information in the database can be viewed and analyzed using Power Monitoring Expert components such as Vista (for viewing) or Web Reporter (for organizing and presenting data).

In this chapter

- Data logging ... 160
 - Configuring data logging ... 160
 - The default logging framework 162
 - Viewing data log information 167
- Event logging .. 168
 - Displaying events .. 169
- Logging and recording capacity 170
Data logging

The meter has a default, comprehensive data-logging configuration. Information regarding the default logging capacity and default logging configuration can be found in “Default logging capacity” on page 163.

To learn more about the Data Recorder modules in your meter, refer to the ION Reference.

Configuring data logging

Use Power Monitoring Expert or ION Setup to change your meter’s logging settings.

Using the front panel

You cannot configure logging using the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Logging folder.

 Use the Memory, Load Profile and Event Log screens to configure your logging settings.

Memory screen

1. Select the Memory screen to re-allocate meter memory.

 ![Memory screen]

2. Select the log you want to configure and click Edit. You can change both the Log Duration (days) and the Log Size (records). Changing these parameters affects the meter memory allocated to that log.

Load Profile screen

1. Select the Load Profile screen to configure the Revenue Log.
2. Click the **Channels** tab to access the Revenue Log sources. Select a source.
 - Click **Unlink** to unlink the parameter from the source.
 - Click **Edit** to edit the parameter. The **Parameter Selection** dialog box appears, showing source register groupings. Click on the ‘+’ symbol beside the register group to view the individual registers. Select the register that you want to connect to the source and click **OK**.

3. Click the **Interval/Depth** tab to edit the Revenue Log interval and duration and missing record handling.

Events screen

1. Select the **Event Log** screen to configure what events are logged and the notification settings.

2. Click the **Events** tab, select a parameter and click **Edit**:
 - Depth: This parameter sets the number of events the event log contains.
Chapter 13 - Logging

- **Cutoff**: This parameter determines the minimum priority level for events to be logged; events with a lower priority are not logged.

- **EvPriority**: This parameter sets the event priority of Sag/Swell events. See “Configuring power quality event logging” on page 182 for more information.

- **PhaseLossEnable**: This parameter enables or disables phase loss event recording.

3. Click the **Notifications** tab to configure the event log notification settings based on the number of unread entries. These settings allow you to define the designated reader and set a limit to the number of unread event log entries. Select a parameter and click **Edit** to change.

- **Designated Reader**: This parameter allows you to select a user to be the designated reader of the event log. An entry in the event log is designated unread until reviewed or backed up to external storage by the designated reader. This feature can assist in ensuring that event log entries are not overwritten before they can be reviewed.

- **SMTP Server**: This parameter displays the IP address of the SMTP Server. The value can only be displayed under this tab. Navigate to **Communications > Advanced Ethernet > SMTP** to change this setting. See “Configuring Ethernet connections” on page 93 for information on configuring network settings.

- **Depth**: This parameter displays the number of events the event log can contain. The value can only be displayed under this tab. Navigate to **Logging > Event Log > Events** to change this setting.

- **Unread Events**: This parameter displays the number of event log entries that have not been reviewed or backed up to external storage by the designated reader. When the designated reader reviews the event log, this value returns to zero. If any user other than the designated reader reviews the event log, the unread events value does not change. This value is not configurable.

Changing waveform recording

The Waveform Recorder modules do not require changes to their default settings. If you want to change the format of the recorded waveforms, refer to the Waveform Recorder module description in the ION Reference.

NOTE: If you are generating COMTRADE waveform data records, the associated Waveform Recorder modules cannot be modified unless the COMTRADE module’s **Module Enable** register is set to **DISABLED**. If the Waveform Recorder modules are not configured identically (have the same setup register values) the COMTRADE module will not go online.

The default logging framework

The following sections outline the default logging capacity and configuration.

NOTE: The default logging configuration may be used by other components of your power monitoring system (for example, the reporting components of Power Monitoring Expert). Before you change the default configuration of any of the logs, ensure you understand the impact on the change on these components and the data they display.
Default logging capacity

The following table summarizes the default recording depths and recording intervals of the various Data recorders and Waveform recorders in the meter.

<table>
<thead>
<tr>
<th>Log types</th>
<th>ION8650A default depth</th>
<th>ION8650B default depth</th>
<th>ION8650C default depth</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Logs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue Log</td>
<td>9120</td>
<td>6240</td>
<td>3360</td>
<td>900 seconds</td>
</tr>
<tr>
<td>Loss Log</td>
<td>9120</td>
<td>6240</td>
<td>N/A</td>
<td>900 seconds</td>
</tr>
<tr>
<td>EgyDmd Log</td>
<td>9120</td>
<td>6240</td>
<td>N/A</td>
<td>900 seconds</td>
</tr>
<tr>
<td>Daily nominal log</td>
<td>DailyNom Log</td>
<td>450</td>
<td>450</td>
<td>Daily</td>
</tr>
<tr>
<td>Daily nominal log</td>
<td>DailyNom Log</td>
<td>450</td>
<td>N/A</td>
<td>Daily</td>
</tr>
<tr>
<td>Historic Logs</td>
<td>Hist Logs</td>
<td>9120</td>
<td>6240</td>
<td>900 seconds</td>
</tr>
<tr>
<td>Harmonic Logs</td>
<td>Harm Logs</td>
<td>2280</td>
<td>1560</td>
<td>3600</td>
</tr>
<tr>
<td>Disturbance Recorders</td>
<td>Transient Log</td>
<td>3000</td>
<td>N/A</td>
<td>Triggered on demand</td>
</tr>
<tr>
<td></td>
<td>Sag/Swell Log</td>
<td>3000</td>
<td>3000</td>
<td>Triggered on demand</td>
</tr>
<tr>
<td></td>
<td>SagSwellState Log</td>
<td>3000</td>
<td>3000</td>
<td>Triggered on demand</td>
</tr>
<tr>
<td></td>
<td>COMTRADE</td>
<td>1</td>
<td>N/A</td>
<td>Triggered by Waveform Recorder</td>
</tr>
<tr>
<td></td>
<td>EN50160 Logs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 Data Recorders</td>
<td>Varies²</td>
<td>Varies²</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>8 Data Recorders</td>
<td>Varies³</td>
<td>Varies³</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 See the COMTRADE and ION Technology technical note for more details.
2 See the Power Quality: ION Meters and EN50160 technical note for more details.
3 See the IEC 61000-4-30 Compliance and ION meters technical note for more details.

Changing the log depths

Change the value in a Data Recorder module’s Depth setup register to increase the number of records stored in the recorder. The RecordMode setup register controls how the Data Recorder overwrites old records; refer to the Data Recorder module description in the ION Reference before changing this setup register.

Changing the frequency of logging

The five Periodic Timer modules that control the frequency of different data recording are as follows:

- “Revenue Log Trg” controls the frequency of the logging of revenue values
- “Loss Log Trg” controls the frequency of Loss Compensation Data logging
- “EgyDmd Log Trg” controls the frequency of logging for the Energy and Demand Log (this log is used for generating reports using Web Reporter)
- “Hist Log Trg” controls the frequency of Historic Data logging
- “Harm Log Trg” controls the frequency of Harmonics logging
Programming your meter to write to any data recorder at continuous intervals lower than 60 seconds (heavy logging configuration) can cause loss of data in the event of a power failure.

NOTICE

DATA LOSS

Use an uninterruptible power supply (UPS) if you program your meter for heavy logging.

Failure to follow these instructions can result in data loss.

Change the value in the *Period* setup register to change the frequency of data logging (in seconds). Do not change the *Sync Mode* setup register.

Default logging configuration

The following sections describe each Data Recorder module and the parameters they log. Your meter may not have all of the logs described and the settings may vary depending on the meter, its firmware and its template.

Revenue logging

The *Revenue Log* is configured for use with UTS MV-90 billing software. The default values logged by the *Revenue Log* are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh del int</td>
<td>Interval kWh delivered</td>
</tr>
<tr>
<td>kWh rec int</td>
<td>Interval kWh received</td>
</tr>
<tr>
<td>kVARh del int</td>
<td>Interval kVARh delivered</td>
</tr>
<tr>
<td>kVARh rec int</td>
<td>Interval kVARh received</td>
</tr>
</tbody>
</table>

Historic data logging

Three data recorders are used to record standard power system quantities, such as phase current, phase voltage and power factor. By default, they log the following output register values:

<table>
<thead>
<tr>
<th>Hist Mean Log</th>
<th>Hist High Log</th>
<th>Hist Low Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vll ab mean</td>
<td>Vll ab high</td>
<td>Vll ab low</td>
</tr>
<tr>
<td>Vll bc mean</td>
<td>Vll bc high</td>
<td>Vll bc low</td>
</tr>
<tr>
<td>Vll ca mean</td>
<td>Vll ca high</td>
<td>Vll ca low</td>
</tr>
<tr>
<td>Vll avg mean</td>
<td>Vll avg high</td>
<td>Vll avg low</td>
</tr>
<tr>
<td>V unbal mean</td>
<td>V unbal high</td>
<td>V unbal low</td>
</tr>
<tr>
<td>Ia mean</td>
<td>Ia high</td>
<td>Ia low</td>
</tr>
<tr>
<td>Ib mean</td>
<td>Ib high</td>
<td>Ib low</td>
</tr>
<tr>
<td>Ic mean</td>
<td>Ic high</td>
<td>Ic low</td>
</tr>
<tr>
<td>V ll ab mean</td>
<td>V ll ab mean</td>
<td>V ll ab mean</td>
</tr>
<tr>
<td>V ll bc mean</td>
<td>V ll bc mean</td>
<td>V ll bc mean</td>
</tr>
<tr>
<td>V ll ca mean</td>
<td>V ll ca mean</td>
<td>V ll ca mean</td>
</tr>
<tr>
<td>V ll avg mean</td>
<td>V ll avg mean</td>
<td>V ll avg mean</td>
</tr>
<tr>
<td>V unbal mean</td>
<td>V unbal high</td>
<td>V unbal low</td>
</tr>
<tr>
<td>Ia mean</td>
<td>Ia high</td>
<td>Ia low</td>
</tr>
<tr>
<td>Ib mean</td>
<td>Ib high</td>
<td>Ib low</td>
</tr>
<tr>
<td>Ic mean</td>
<td>Ic high</td>
<td>Ic low</td>
</tr>
<tr>
<td>PF lag mean</td>
<td>PF lag high</td>
<td>PF lag low</td>
</tr>
<tr>
<td>PF lead mean</td>
<td>PF lead high</td>
<td>PF lead low</td>
</tr>
<tr>
<td>PF lag high</td>
<td>PF lag low</td>
<td>PF lag low</td>
</tr>
<tr>
<td>Freq mean</td>
<td>Freq high</td>
<td>Freq low</td>
</tr>
<tr>
<td>Freq high</td>
<td>Freq low</td>
<td>Freq low</td>
</tr>
</tbody>
</table>

Loss Log

One *Loss Log* recorder is configured to record loss values. By default, it logs the following parameters – note that the parameters differ depending on the meter template:

<table>
<thead>
<tr>
<th>Template</th>
<th>Loss Log parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>MU Ia^2h int</td>
<td>Phase A interval current squared hours</td>
</tr>
<tr>
<td>All</td>
<td>MU Ib^2h int</td>
<td>Phase B interval current squared hours</td>
</tr>
</tbody>
</table>
Harmonics logging

Two recorders provide various harmonics logs, including K-factor and Total Harmonics Distortion (THD). These recorders are labeled *Harm Mean Log* and *Harm High Log*. By default, they log the following values:

<table>
<thead>
<tr>
<th>Harm Mean log</th>
<th>Harm High log</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 THD mean</td>
<td>V1 THD high</td>
</tr>
<tr>
<td>I1 K Fac mean</td>
<td>I1 K Fac high</td>
</tr>
<tr>
<td>V2 THD mean</td>
<td>V2 THD high</td>
</tr>
<tr>
<td>I2 K Fac mean</td>
<td>I2 K Fac high</td>
</tr>
<tr>
<td>V3 THD mean</td>
<td>V3 THD high</td>
</tr>
<tr>
<td>I3 K Fac mean</td>
<td>I3 K Fac high</td>
</tr>
<tr>
<td>I1 THD mean</td>
<td>I1 THD high</td>
</tr>
<tr>
<td>I2 THD mean</td>
<td>I2 THD high</td>
</tr>
<tr>
<td>I3 THD mean</td>
<td>I3 THD high</td>
</tr>
</tbody>
</table>

Energy Demand Log

One data recorder is configured to provide power system data for the Web Reporter component of Power Monitoring Expert.

<table>
<thead>
<tr>
<th>EgyDmd Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh del</td>
</tr>
<tr>
<td>kWh rec</td>
</tr>
<tr>
<td>kWh del-rec</td>
</tr>
<tr>
<td>kVARh del</td>
</tr>
<tr>
<td>kVARh rec</td>
</tr>
<tr>
<td>kVARh del-rec</td>
</tr>
</tbody>
</table>

Sag/Swell and Transient logging

Three data recorders provide details of these power quality events. The Sag/Swell and Transient data recorders, by default, log the following values:

<table>
<thead>
<tr>
<th>Sag/Swell log (ION8650A and ION8650B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistDur</td>
</tr>
<tr>
<td>DistV1Min</td>
</tr>
<tr>
<td>DistV1Max</td>
</tr>
<tr>
<td>DistV1Avg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sag/Swell log (ION8650C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistDur</td>
</tr>
<tr>
<td>DistV1Min</td>
</tr>
<tr>
<td>DistV1Max</td>
</tr>
<tr>
<td>DistV2Min</td>
</tr>
</tbody>
</table>
The SagSwellState data recorder provides additional information required by the Sag/Swell and Transient logs.

See "Configuring power quality event logging" on page 182 for enabling or disabling Sag/Swell and Transient events from being recorded in the Event Log.

NOTE: Modification of the Sag/Swell, Transient and SagSwellState logs is an advanced procedure that should only be performed by experienced users familiar with ION and the interaction of these data recorders.

See the COMTRADE and ION Technology technical note for information about COMTRADE records.

EN50160 compliance logging (ION8650A and ION8650B only)

By default, 14 Data Recorder modules are used for logging EN50160 compliance parameters.

<table>
<thead>
<tr>
<th>Data Recorder</th>
<th>EN50160 component logged</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN50160 Frq/Mg</td>
<td>Power Frequency and Supply Magnitude</td>
</tr>
<tr>
<td>EN50160 Flicker</td>
<td>Flicker</td>
</tr>
<tr>
<td>EN50160 Vlt Dp1</td>
<td>Supply Voltage Dips</td>
</tr>
<tr>
<td>EN50160 Vlt Dp2</td>
<td></td>
</tr>
<tr>
<td>EN50160 Intrp</td>
<td>Short/Long Interruptions</td>
</tr>
<tr>
<td>EN50160 Swell</td>
<td>Temporary Overvoltages</td>
</tr>
<tr>
<td>EN50160 Vunbal</td>
<td>Voltage Unbalance</td>
</tr>
</tbody>
</table>

The meter logs EN50160 counter data for present and previous observation periods as well as EN50160 events. Enable or disable EN50160 Parameter Logging via the default Power Quality diagram in the Vista component of Power Monitoring Expert.

For more information about EN50160 data logging, see the *Power Quality: ION Meters and EN50160* technical note.

IEC 61000-4-30 logging (ION8650A and ION8650B only)

Eight data recorders are used to log parameters related to 4-30 compliance and to create reports.

<table>
<thead>
<tr>
<th>Data Recorder</th>
<th>4-30 parameters logged</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-30 3s THD Log</td>
<td>Voltage Disturbances</td>
</tr>
<tr>
<td>4-30 3s RMS Log</td>
<td>V1-RMS (Root-Mean-Square)</td>
</tr>
<tr>
<td>4-30 10mRMS Log</td>
<td>V2-RMS</td>
</tr>
<tr>
<td>4-30 10mTHD Log</td>
<td>V3-RMS</td>
</tr>
<tr>
<td>4-30 2hTHD Log</td>
<td>THD (Total Harmonic Distortion)</td>
</tr>
<tr>
<td>4-30 2hRMS Log</td>
<td>Vneg/Vpos</td>
</tr>
<tr>
<td>4-30 10s Freq</td>
<td>Vzero/Vpos</td>
</tr>
<tr>
<td>4-30 Intrap Log (disabled by default)</td>
<td>V-Overdeviation</td>
</tr>
<tr>
<td></td>
<td>V-Underdeviation</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Flicker (only available on A feature set)</td>
</tr>
<tr>
<td></td>
<td>Unbalance</td>
</tr>
</tbody>
</table>
For more information on 4-30 compliance, see the *IEC 61000-4-30 Compliance and ION meters* technical note.

Viewing data log information

Viewing data in ION Setup

In ION Setup:

1. Select your meter.
2. Select **View > Data Screens > Data Recorders**. The following logs are available for viewing, depending on your meter:
 - Average Harmonics
 - Energy & Demand
 - Historic Average, Historic Highs, Historic Lows
 - Maximum Harmonics
 - Revenue Log
 - Sags & Swells
 - Transformer Losses
 - Transients (ION8650A only)

See “Reports” on page 215 for information on running basic reports in ION Setup.

Viewing data in Power Monitoring Expert

You can view information from the data logs in the Vista, WebReach and Web Reporter components of Power Monitoring Expert. See the online Power Monitoring Expert Help for more information.
Event logging

Events produced by the meter’s various ION modules are prioritized and grouped to facilitate custom logging. Each event is assigned a priority group number based on its type and severity.

Event priority groups

Some event groups are preset with a priority number as shown in the table below. You can also define your own priority number for some modules. Priority numbers from 128-191 appear in the global event log viewer in the Vista component of Power Monitoring Expert. Priority numbers from 192-255 are also logged, initiate a beep and cause the window to flash. You can customize these responses to display messages or perform `netsend` messages, for example.

The Event Log Controller module allows you to set a priority cutoff for event logging. Any events with a priority number greater than the cutoff value are logged, and events with lower priorities are discarded. Refer to the individual module descriptions and the Event Log Controller module description in the ION Reference for more details.

Events external to the module

Some events are not produced by a specific module. These events are generated internally by the meter. Their associated priority levels are shown in the table below.

User triggered events

When a user produces an event, such as a reset, successful or unsuccessful login attempts, user lockout or setup change, the event log displays the username associated with the event. Events created in basic security through the front panel have the username USER0. Events created in advanced security through the front panel or...
ION Setup are associated with the username that was logged into the meter (USER1 - USER50).

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Cause</th>
<th>Value</th>
<th>Effect</th>
<th>Value</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/29/2015 10:12:21:265 AM</td>
<td>Ethernet</td>
<td>Changed Setup</td>
<td>SEC2 Correlation Config Access</td>
<td>No</td>
<td>USER0</td>
</tr>
<tr>
<td>4/29/2015 10:13:54:981 AM</td>
<td>Front Panel</td>
<td>Written Control Action</td>
<td>Norm / All Disp</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>4/29/2015 10:14:06:355 AM</td>
<td>Front Panel</td>
<td>Changed Setup</td>
<td>CMI Protocol</td>
<td>EtherCone</td>
<td>USER1</td>
</tr>
<tr>
<td>4/29/2015 10:14:25:148 AM</td>
<td>Front Panel</td>
<td>Written Control Action</td>
<td>Norm / All Disp</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Displaying events

View events in the following locations:

<table>
<thead>
<tr>
<th>Application</th>
<th>Menu / screen</th>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel</td>
<td>Event Log</td>
<td>ALT display mode</td>
</tr>
<tr>
<td>ION Setup</td>
<td>Event Log</td>
<td>Setup Assistant > Reports > Event Log</td>
</tr>
<tr>
<td>Vista</td>
<td>Meter Events</td>
<td>Volts/Amps tab > Meter events object</td>
</tr>
</tbody>
</table>
Logging and recording capacity

The meter provides both data and event logs. The amount of memory required to store these logs depends on the number of parameters being logged and the frequency with which these parameters are logged.

The following equation can help determine the amount of memory required to store data and event logs:

\[
\text{each record consumes (in Bytes)} = \left[(\text{number of parameters} \times 5) + 8\right]
\]

The meter can also perform waveform recording. To calculate the waveform memory usage use the following formula:

\[
\text{waveform memory usage (in Bytes)} = \left[2 \times (\text{number of samples per cycle}) + 10\right] \times \left(\text{number of cycles in waveform}\right) + 30
\]

NOTE: Round up to the nearest kilobyte after each of the above calculations.

In ION Setup, the Memory tab in the Logging folder of the Setup Assistant displays the memory allocated to each log and the meter’s total in-use and available logging memory.
Chapter 14 Revenue

This chapter provides instructions for configuring PT/CT correction, transformer line loss compensation and time of use.

In this chapter

PT/CT correction ... 172
 Configuring PT/CT correction 172
Transformer Line Loss Compensation 174
 Configuring TLC .. 174
 Using the front panel 174
 Using ION Setup 174
 Using Vista .. 175
Time of Use .. 176
 Configuring Time of Use 176
 Using the front panel 176
 Using ION Setup 176
 Time Of Use settings 176
 Seasonal settings 176
 Time of Use module settings 177
 Displaying Time of Use 177
PT/CT correction

The primary application for PT/CT correction is to apply correction factors for ratio errors and phase angle errors to instrument transformers. Instrument transformer correction reduces or eliminates the need to replace transformers in installations where high accuracy is required.

PT/CT correction is done using the Instrument Transformer Correction (*Instr Xformer*) module. There is an ITC module for each current input (I1, I2, I3) and for each voltage input (V1, V2, V3) to the meter. Note that the correction affects only the 1-second values in the Power Meter module. No high-speed, harmonics, or waveform values are affected by the correction. For more information, see the ITC (*Instr Xformer*) module description in the *ION Reference*.

Configuring PT/CT correction

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Revenue > PT/CT Correction**.
3. Select Active Correction on the ITC Correction tab then click **Edit**. The Transformer Correction Setup wizard appears.
4. Select the checkbox beside the Voltage Inputs or Current Inputs and click **Next**. The first correction screen appears.

5. Select a test point and click **Edit** to edit the test points. Click **OK** to return to the correction wizard then click **Next** to move to the next correction screen. Go through all the correction screens then click **Finish**.

NOTE: You can select a maximum of eight (8) test points.

6. Select Active Correction on the ITC Correction tab and click **Analyze** to access screens where you can input your wiring configuration and power system information.
Transformer Line Loss Compensation

Transformer Loss Compensation (TLC) is used when a meter’s actual location is different from the electrical location where change of ownership occurs; for example, where meters are connected on the low-voltage side of power transformers when the ownership change occurs on the high-side of the transformer. This physical separation between meter and actual billing point results in measurable losses. Compensating for this loss - Loss Compensation - is the means of correcting this meter reading. Losses may be added to or subtracted from the meter registration.

Meters are usually installed on the low-voltage side of a transformer because it is more cost-effective. There are also cases where change of ownership can occur halfway along a transmission line where it is impractical to install a meter. In this case, power metering must again be compensated.

NOTE: Due to the variation in installations, **advanced knowledge of power systems and connection methods is required before transformer loss compensation can be properly implemented.** Data parameters should only be programmed by qualified personnel that have appropriate training and experience with Transformer Loss Compensation calculations.

For more information, see the *Transformer Line Loss Calculations* technical note.

Configuring TLC

Use Power Monitoring Expert or ION Setup to change your meter’s TLC settings.

Using the front panel

You cannot configure Transformer Line Loss Compensation using the front panel.

Using ION Setup

The Transformer Loss screen allows you to enable/disable TLC, choose which method you prefer (1 or 2) and configure TLC settings.

In ION Setup:

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Revenue > Transformer Loss**. Click the **Method Selection** tab.
3. Select **Loss Comp Enable** to enable TLC, then click **Edit**.
4. Select Comp Enabled from the dropdown list and click OK.

5. Select **Comp Mthd Slt** and click **Edit** to choose the TLC method you want to use. Select Method 1 to use the Test Sheet method and Method 2 to use the %Loss Constants method.

 Click OK.

6. Click the tab of the TLC method you chose in the previous step and configure the settings for that method.

Using Vista

1. Open your meter in Vista.
2. Click the **Revenue** tab.
3. Click the **Loss Compensation** object. The **Loss Compensation** window appears:

 Click here to enable Loss Compensation calculations.

 Choose either the Test Sheet or %Loss Constants compensation method.

 These are the true instrument transformer ratios. Normally they coincide with the Power Meter module's setup.

4. Configure your values as required.

 See the **Transformer Line Loss Calculations** technical note for more details on this feature.
Time of Use

The Time of Use module may only be important if you are using the meter in a billing application (for example, you are a power provider), as the module contains the meter’s seasonal rate schedules. Typically, power consumers do not require Time Of Use configuration.

See the ION Reference for more information on the Time of Use module.

Configuring Time of Use

Use Power Monitoring Expert or ION Setup to change your meter’s Time of Use settings.

Using the front panel

You cannot configure Time of Use using the front panel.

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions
2. Select Revenue > Time of Use.

3. Select a Time of Use program from the list (for example, Sample TOU) and click Edit.
4. Follow the Time of Use Wizard to configure your program. Click Send to save the TOU program on your meter.

Time Of Use settings

The Time of Use module’s setup registers define your seasons’ start and end dates, the day types where your rates differ, and the rate schedules for each season’s day types. The module compares the meter’s internal clock with the season, day, and time of day settings in these registers and changes its output registers to reflect the current state of these settings.

Seasonal settings

The Time of Use module supports up to four separate seasons. Each seasons’ start and end dates are set into the appropriate Season setup register.
NOTE: Ensure that there is no date overlapping when defining seasons and that every day of the year is covered by your seasons. If there are gaps between seasons, the module returns an exception message and will not function.

If your rates do not change between seasons, you do not need to configure the Season setup registers — by default, all Season 1 rates are in effect all year.

If you have different seasons, enter their start and end dates into the appropriate setup registers. If your season is active on the same dates every year, you only need to enter a single range of dates in the appropriate Season setup register. If the active dates are different each year (for example, Season 3 becomes active every first Monday in August), the start dates must be individually specified for each year.

NOTE: Changes to the TOU seasons are noted in the meter’s event log.

Time of Use module settings

The Time of Use module is partially configured at the factory. Check the setup registers to ensure that the settings match your Time of Use schedules.

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season 1-4</td>
<td>These setup registers define the dates for each active season. When a season is active, the Time of Use module uses the applicable rate schedules.</td>
</tr>
<tr>
<td>Season 1-4 Weekday Rates</td>
<td>These setup registers specify seasonal weekday rates.</td>
</tr>
<tr>
<td>Season 1-4 Weekend Rates</td>
<td>These setup registers specify seasonal weekend rates.</td>
</tr>
<tr>
<td>Season 1-4 Alt 1 Rates</td>
<td>These setup registers specify a season's daily rates during the days specified in the Alt 1 Days setup register.</td>
</tr>
<tr>
<td>Season 1-4 Alt 2 Rates</td>
<td>These setup registers specify a season's daily rates during the days specified in the Alt 2 Days setup register.</td>
</tr>
<tr>
<td>Season 1-4 Holiday Rates</td>
<td>These setup registers specify a season's daily rates during the days specified in the Holidays setup register.</td>
</tr>
<tr>
<td>Weekdays</td>
<td>This register defines the days of the week for all seasons. The rates in the Season (1, 2, 3, or 4) Weekday Rates setup registers are used on these days.</td>
</tr>
<tr>
<td>Weekends</td>
<td>This register defines the weekend days for all seasons. The rates in the Season (1, 2, 3, or 4) Weekend Rates setup registers are used on these days.</td>
</tr>
<tr>
<td>Alt 1 Days</td>
<td>This register defines a set of alternative dates for all seasons. These dates generally have different rates from weekdays, weekends, or holidays.</td>
</tr>
<tr>
<td>Alt 2 Days</td>
<td>This register is similar in function to Alt 1 Days, but contains a different set of dates.</td>
</tr>
<tr>
<td>Holidays</td>
<td>This register defines the holidays for all seasons. The rates defined in the Season (1, 2, 3, or 4) Holiday Rates setup registers are used on these days.</td>
</tr>
<tr>
<td>Self Read Days</td>
<td>This setup register defines the dates and times that the Self Read output register pulses. If no time is entered in this register, the Self Read output register pulses on the date specified at 12:00 AM.</td>
</tr>
</tbody>
</table>

Displaying Time of Use

View Time of Use values in the following locations:

<table>
<thead>
<tr>
<th>Application</th>
<th>Menu</th>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel</td>
<td>Active TOU Rate and Active TOU Season screens</td>
<td>ALT Display mode</td>
</tr>
<tr>
<td>Vista</td>
<td>Time of Use Screen</td>
<td>Revenue tab > Time of use object</td>
</tr>
</tbody>
</table>
Chapter 15 Power quality

This chapter explains how to configure your meter’s power quality functionality.

NOTE: To help ensure meter accuracy:
Your meter must have adequate power; for power quality applications with inadequate line power, an auxiliary power supply for the meter is recommended.
Your meter must have a properly connected protective earth ground since insufficient earth grounding of the meter can adversely affect meter accuracy.

In this chapter

Power quality configuration ... 180
 Configuring power quality settings 180
 Using the front panel .. 180
 Using ION Setup ... 180
 Using Designer .. 181
 Sag/Swell module settings .. 181
 Transient module settings (ION8650A only) 181
 Configuring power quality event logging 182
 Using the front panel .. 182
 Using ION Setup ... 182
 Using Designer .. 183
 Power quality standards compliance 183
 EN50160 settings (ION8650A and ION8650B) 183
 4-30 settings (ION8650A and ION8650B only) 183
 COMTRADE settings (ION8650A only) 183
 Disturbance Direction Detection 183
 Viewing disturbance direction detection events 184
Power quality configuration

Power quality configuration is provided by a number of modules and frameworks, depending on your meter type, such as the Sag/Swell module, the Transient module, the Mains Signalling Evaluation module, and the IEC 61000-4-30 framework, among others.

See the ION Reference for more information on these modules.

For a description of the scaled operational values (SOV) feature and the alternate scaling registers on the Power Quality page in the Vista component of Power Monitoring Expert, refer to “Scaled operational values” on page 79.

Configuring power quality settings

Use Power Monitoring Expert or ION Setup to change your meter’s power quality settings.

NOTE: The Sag/Swell module’s Nom Volts setting is used by the Transient module, as well as in other power quality features such as EN50160 and 4-30 calculations. You must set this register to enable these power quality features. If the Sag/Swell module’s Nom Volts setup register is set to zero, these functions are disabled. Nom Volts is typically set when the meter is put into service. If Nom Volts has not been set, enter a value for your system’s nominal voltage (i.e., 120, 277, or 347).

Using the front panel

You cannot configure power quality from the front panel.

Using ION Setup

NOTE: COMTRADE must be DISABLED in order to configure Sag/Swell or Transients.
1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Power Quality > Sag/Swell.
3. Select a setting and then click Edit. Configure the settings as required.
4. Click the Transient tab to set the voltage deviation threshold, set the transient waveform recorder depth and frequency, enable COMTRADE waveform records and set other transient settings.

NOTE: The ION8650A features dual waveform capture: Sags are recorded at 32 samples x 54 cycles. Transients waveform capture at 512 samples x 4 cycles.
5. Re-enable COMTRADE, if necessary.

Using Designer

Open your meter in Designer and navigate to the Power Quality folder. Right-click a module to edit.

Sag/Swell module settings

The Sag/Swell module monitors voltage waveforms for sags and swells (i.e., ITI [CBEMA] Type 2 and Type 3 disturbances). It then reports each disturbance’s
magnitude and duration. The Sag/Swell module can also detect sub-disturbances during a Sag/Swell event. Settings are as follows:

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swell Lim</td>
<td>This is the magnitude above which a voltage deviation is considered a swell.</td>
<td>110</td>
</tr>
<tr>
<td>Sag Lim</td>
<td>This is the magnitude below which a voltage deviation is considered a sag.</td>
<td>90</td>
</tr>
<tr>
<td>Change Crit</td>
<td>This is the amount a voltage signal must change during a disturbance to be considered a new sub-disturbance.</td>
<td>10</td>
</tr>
<tr>
<td>Nom Volts¹</td>
<td>This is the nominal power system voltage (used for all power quality functions). Set Nom Volts to 0 (zero) to disable power quality monitoring.</td>
<td>0</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>This is the difference in magnitude between the start and end limits for a Sag/Swell. For example, if the sag limit is set to 90% and the hysteresis is set to 2%, the voltage needs to reach 92% before the sag is considered over.</td>
<td>2</td>
</tr>
<tr>
<td>EvPriority</td>
<td>The priority assigned to Sag/Swell module events (0 to 255, 255 is highest).</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ The primary power system voltage is sometimes different than the PT Primary setup register value (for example, when the PT Primary is used to indicate winding ratio rather than primary voltage).

You also need to set the EvPriority register value if you want Sag/Swell events to be recorded in the Event Log. To enable Sag/Swell events, the EvPriority value must be greater than the Event Log Controller module’s Cutoff value (the recommended Sag/Swell EvPriority value is 200). To disable Sag/Swell events so they are not recorded in the Event Log, set EvPriority to 0 (zero).

You can change Swell Lim and Sag Lim, but most applications are served by the default values entered into these registers. The Change Crit setup register does not need to be changed for normal operation.

Transient module settings (ION8650A only)

The Transient module monitors voltage waveforms for transient activity (i.e. ITI [CBEMA] Type 1 disturbances). The Threshold setup register defines what voltage disturbance magnitude is considered as transient activity. Threshold is interpreted as a percentage of the nominal system voltage, plus 100. For example, if you want transients recorded when voltage deviates from nominal by 20%, enter 120 into the Threshold setup register.

<table>
<thead>
<tr>
<th>Setup register</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>This is the magnitude at which a voltage deviation is considered a transient.</td>
<td>125</td>
</tr>
<tr>
<td>EvPriority¹</td>
<td>The priority assigned Transient module events (0 to 255, 255 is highest).</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ By default, Transient events are not recorded in the Event Log.

You also need to set the EvPriority register value if you want Transient events to be recorded in the Event Log. To enable Transient events, the EvPriority value must be greater than the Event Log Controller module’s Cutoff value (the recommended Transient EvPriority value is 200). To disable Transient events so they are not recorded in the Event Log, set EvPriority to 0 (zero).
Configuring power quality event logging

Use Power Monitoring Expert or ION Setup to change your meter’s power quality event log settings.

NOTE: By default, Power Quality events are not included in the Event Log.

Using the front panel
You cannot configure Power Quality event logging from the front panel.

Using ION Setup
1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select **Logging > Event Log**.
3. Select Sag/Swell Event Priority (**SS1 EvPriority**) or Transient Event Priority (**TR1 EvPriority**) on the Event tab and click **Edit**.
 - To stop Sag/Swell or Transient events from being recorded in the Event Log, set event priority to zero (0).
 - To include Sag/Swell or Transient events in the Event Log, the event priority must be greater than the Event Log Cutoff (**EL1 Cutoff**) value. The recommended **EvPriority** value for enabling event logging is 200.

Using Designer
Open your meter in Designer and navigate to the Power Quality Setup Framework. Right-click the Sag/Swell or Transient module to edit.

Power quality standards compliance

The ION8650 has additional frameworks and settings related to the power quality standards below.

EN50160 settings (ION8650A and ION8650B)
The EN50160 framework is composed of numerous ION modules including: Mains Signaling Evaluation, Harmonics Evaluation, Voltage Harmonics, Flicker, and more.

NOTE: To avoid missing data in your EN50160 reports, use a meter with an auxiliary power option connected to a UPS (Uninterruptible Power Supply) so that the EN50160 framework continues to operate during power outage situations.
See “EN50160 compliance logging (ION8650A and ION8650B only)” on page 166 for information on EN50160 parameter logging.

See the Power Quality: ION Meters and EN50160 technical note for details.

4-30 settings (ION8650A and ION8650B only)

IEC 61000-4-30 power quality standard compliance is provided by a variety of ION modules including: Power Quality Aggregator, Harmonics Measurement, Disturbance Analyzer, Symmetrical Components, Mains Signaling Evaluation, Sag/Swell and more.

See the IEC 61000-4-30 Compliance and ION Meters technical note for details.

COMTRADE settings (ION8650A only)

The meter can provide waveforms in COMmon format for TRAnsient Data Exchange (COMTRADE) format. COMTRADE records are created from the existing Waveform Recorder modules, which are connected to the COMTRADE module.

See the COMTRADE and ION Technology technical note for details.

Disturbance Direction Detection

Your meter has disturbance direction detection capabilities to help you determine the location of a power system disturbance. When a disturbance occurs, the meter analyzes the disturbance information to determine the direction of the disturbance relative to the meter. This analysis includes a confidence level indicating the level of certainty that the disturbance is in the determined direction, and is stored in your meter’s event log.

Disturbance direction detection can help locate the source of a disturbance when used in a system of disturbance direction detection devices, as shown in the diagram below.

The arrows show the direction the meters have determined for the disturbance. With this information, you can focus on the section between meter #1 and meter #2 to find the cause of the disturbance.
NOTE: The disturbance direction detection feature is only available on the ION8650A and ION8650B meter models.

Viewing disturbance direction detection events

The results of the disturbance direction detection algorithm appear in the meter's event log. The image below shows an example of how the Disturbance Direction Detection event appears in your meter's event log when viewed using ION Setup.

NOTE: You can view your meter's event log through the display, ION Setup or using the meter's webpages.

![Event Log Example](image)

Related topics

- See the *ION Reference* for more detailed information about the Disturbance Direction Detection module.
- See “Event logging” on page 168 for more information about your meter’s event log.
Chapter 16 Displays

This chapter explains the available front panel displays. It also includes procedures for customizing displays using Power Monitoring Expert or ION Setup.

In this chapter

Introduction ... 186
Configuring front panel displays 187
 Using the front panel ... 187
 Using ION Setup .. 187
 Using Designer .. 189
Default front panel display screens 192
 NORM mode display screens 192
 ALT mode default display screens 192
 TEST mode default display screens 194
Display brightness control 196
Introduction

The meter ships with preconfigured front panel display screens designed to suit the data needs of most users. Different types of screens are available depending on the meter’s current mode of operation (see "Modes of operation" on page 27 for details).

Front panel displays can also be customized on your meter to show virtually any measurement or calculation. For example, you can:

- change displayed parameters, such as from V_{ll} to V_{ln} or V_{lab} to V_{lna}
- adjust character size to be different on each screen
- change data display settings such as backlight timeout, automatic display scrolling, parameter update rate, display mode and display units.
Configuring front panel displays

Using the front panel
You cannot configure displays from the front panel.

Using ION Setup
The following sections explain how to add or edit a display screen, and how to set up scaling for a display.

Adding or editing a display screen
1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Displays screen.
3. Select Displays on the Front Panel tab and click Edit.
ION Setup uploads your meter’s display information to the Display Editor. This can take a few moments.

4. Edit, rename, delete or rearrange displays as needed.
5. Click New to add a new display or click Edit to change an existing display. The Display Setup wizard appears. There are three basic steps for creating or editing display screens.
Select a Screen Type: Choose the screen type you want from the dropdown list.

Select Parameters: Link or unlink the parameters available for your chosen screen type. Assign your preferred display units (if required); see “Considerations when assigning display units” on page 188 for considerations and examples of display unit scaling.

Select Digit Display Properties: Select your display qualities, including digit resolution and truncated or rounded last digits.

6. Click Send to save the changes in the meter.

Considerations when assigning display units

NOTE: If you want to scale all front panel values by the same scaling factor, you do not need to assign display units to individual parameters. Instead configure the display scaling settings under the DISPLAY SETUP menu on the front panel; see “DISPLAY SETUP menu” on page 37. You can also configure the display scaling settings by accessing the Display Options module; see the ION Reference for more information.

For most values, the meter determines and displays the correct units for the source measurement, and automatically scales displayed values for readability. If these units meet your needs, you do not need to configure display unit scaling. Assigning display units allows you to: 1) override the default units and force a certain scaling or 2) to display units when the meter cannot determine the correct units (for example, when the source is an output from an Arithmetic module).

For the purposes of the display units, the source parameter is assumed to be in the base units of the Power Meter module (in other words, V, A, kW, etc.). If the source parameter is not in the base units of the Power Meter module, the parameter may be scaled incorrectly or display incorrect units.

NOTE: You can only assign display units to One, Two, Three and Four Parameter screens and One, Two and Three Parameter with Timestamp screens.

The available units are:

- Default: V, kV, MV
- kVAR, MVAR, GVAR: kVA, MVA, GVA
- A, kA, MA: Vh, kVh, MVh
- kw, MW, GW: Ah, kAh, MAh
The following example illustrates display unit scaling on a three parameter screen, including the case when the parameter is not in the base units from the Power Meter module. In the example, the kW tot value from the Power Meter module is 10000.

- Parameter 1 = kW tot directly from the Power Meter module
- Parameter 2 = kW tot from an Arithmetic module that has divided the Power Meter module value by 1000, converting it to MW.
- Parameter 3 = kW tot from an Arithmetic module that does not scale the value from the Power Meter module.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Displayed value</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Default | Parameter 1 = 10000 kW
Parameter 2 = 10
Parameter 3 = 10000 | Parameter 2 and 3 do not display units because they come from Arithmetic modules |
| kW | Parameter 1 = 10000 kW
Parameter 2 = 10 kW
Parameter 3 = 10000 kW | Parameter 2 and 3 do not change since they are assumed to be in the base units of the Power Meter module. However, parameter 2 is shown as 10 kW when it has already been scaled to 10 MW. |
| MW | Parameter 1 = 10 MW
Parameter 2 = 0.01 MW
Parameter 3 = 10 MW | All three parameters are scaled. However, parameter 2 has been scaled twice. |

Using Designer

NOTE: Before you reconfigure or delete a framework, it is recommended that you make a copy. This ensures that you can restore the framework, if necessary, without having to reinitialize the factory configuration.

To remove a data display screen

1. Open your meter in Designer.
2. Select the Display module responsible for the screen.
3. Press DELETE. This also deletes all links to that particular Display module.

If the display screen you are deleting is part of the automatic scrolling cycle, you must reconfigure the links from the Scroll module’s *Trigger* outputs to the remaining Display modules so that the following considerations hold true:

- The first Display module in the scrolling cycle is linked to the *Trigger 1* output of the Scroll module.
- The last Display module in the scrolling cycle (module *n*) is linked to the *Trigger n* output of the Scroll module. For example, if your scrolling cycle consists of 5 screens, *Trigger 5* should be linked to the fifth module in the cycle.
- The *Wraparound* setup register of the Scroll module designates the last trigger output (*Trigger n*). Expanding on the previous example, since *Trigger 5* is the last trigger, the Scroll module’s *Wraparound* setup register would have a value of 5.

To add a new display screen

1. Create a Display module.
Define the modules characteristics (display format) by adjusting its setup registers. Link any required data to the Source inputs of the Display module.

If you want your new screen to appear in the automatic scrolling cycle, you must link the Show input of the Display module to a Trigger output of a Scroll module.

To create a Disk Simulator screen

1. Create a new Display module and set the type as Disk Simulator.
2. Connect the new Display module’s first input to the Calibration Pulser module’s Disk Position output that you want to monitor for its pulsing interval.
3. To include the newly added screen to the ALT screen list, connect the Display module’s Show1 and Show2 inputs to the Scroll module’s last available Trigger outputs in ALT SCROLL UP and ALT SCROLL DOWN (respectively).

 You can determine the last available Trigger by right-clicking on the output to discover the Triggers’ owners.
4. Increase the Scroll module’s Wraparound setup register by 1 to include the new screen.
5. Configure the remaining display settings according to your needs.

Although the Disk Simulator display is intended to show the disk behavior of mechanical watt-hour meters, this feature can be used to monitor any accumulated meter quantity over the time. To do this, connect the Display module’s first input to the meter quantity and connect the second input to the maximum value that you expect the displayed quantity to be bounded by (this can be any output register or an External Numeric module register). In a case where the Display module is not connected to a Calibration Pulser module, the Disk Simulator revolves from left to right.

If the associated Calibration Pulser module is set for net accumulation, and a negative value is accumulated and sent to the Disk Simulator display, the negative number on the display will be a negative accumulation, but the display disk will still go from left to right (forwards). To make the display disk go from right to left (backwards), set the associated Calibration Pulser module’s Int Mode register to reverse.

NOTE: The inputs to the Disk Simulator display are always positive. If the value exceeds the maximum scale value assigned in the second input, nothing is displayed except labels and the disk rectangle.

To configure leading zeros

The leading zeros and decimal point in a numeric display can be configured with the Display module setup register Screen Resolution. For example, the number 276.3443 can be configured in one of the following ways, depending on the selection you make in the Screen Resolution setup register:

<table>
<thead>
<tr>
<th>Value</th>
<th>Screen resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>276.3443</td>
<td>1.x = 276.3</td>
</tr>
<tr>
<td></td>
<td>1234.xx = 0276.34</td>
</tr>
<tr>
<td></td>
<td>123456. = 000276.</td>
</tr>
</tbody>
</table>

If the Screen Resolution setup register is set to DEFAULT, the Display module uses the resolutions defined in the Display Options module.
Last digit mode

The Display module setup register Last Digit Mode lets you specify whether to truncate or round a value’s last digit. Numbers round up at 5 or greater and round down from 1 to 4. A truncated value disposes of any digits after the number of decimal places that you specified in the Screen Resolution setup register.

Screen resolution = 1.xxx

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>276.35192</td>
</tr>
<tr>
<td>Rounded</td>
<td>276.352</td>
</tr>
<tr>
<td>Truncated</td>
<td>276.351</td>
</tr>
</tbody>
</table>

To configure parameter titles

The parameter value on a display screen is the value of an output connected to the Display module Source input register. By default, the displayed parameter’s title is the name of the output connected to the Source input. The Display module Source Title setup register lets you change the default to a title that better describes your system. For example, if “KWh Net” is linked to the first Source input, you can change its display name by setting Source 1 Title to “KWh Net West”. A maximum of 25 characters is permitted.

See “Changing TEST mode timeout” on page 201 for information on configuring TEST mode display timeouts.
Default front panel display screens

Each mode of operation (NORM, ALT and TEST) has its own display screens, providing various power system data and meter properties screens.

NORM mode display screens

The meter comes factory-configured with the NORM mode displays detailed below. If the settings in the Scroll module have not been altered, each screen is displayed for five seconds (if no front panel buttons are pressed).

Display scrolling is suspended when a front panel button is pressed, allowing you to manually scroll through the display screens using the up or down arrow buttons. If required, refer to “Front panel features” on page 22 for more instructions on using the front panel buttons.

- kWh: This screen displays kWh delivered and received values.
- kVARh: This screen displays kVARh delivered and received values.
- kVAh: This screen displays kVAh delivered and received values.
- Peak Demand Delivered: This screen displays the maximum delivered kW, kVAR, kVA values and a timestamp of when the peak occurred. These values are sliding window (rolling block) demand calculations.
- Peak Demand Reset Count: This screen displays a count of the number of demand resets executed as well as a timestamp of the latest peak demand reset.
- Q Metering: This screen displays approximated VARh measurements, one phase (60 degrees) behind the normal watthour connection (90° - 330° and 150° - 270°).
- Disk Simulator: This display simulates the behavior of a mechanical watt-hour meter indicating power received or delivered by the direction of the pulse.
- All Segments: This is a screen test where a black screen showing all segments (all pixels on) indicates that the display is functioning properly.

ALT mode default display screens

The meter comes factory-configured with the ALT mode displays detailed below. If the settings in the Scroll module have not been altered, each screen is displayed for five seconds if no front panel buttons are pressed (until five minutes have elapsed).

Viewing ALT display modes

1. Press the Alt/Enter button once to toggle between the NORM and ALT display modes.
2. Press the up or down arrow buttons to scroll back or forth through the displays.

If no buttons are pressed, the meter reverts back to NORM mode after five minutes.

NOTE: These screens vary depending on the firmware version on the meter and custom display configuration.

- Name Plate 1: The Name Plate 1 screen contains information on owner, TAG1, TAG2, battery life, and firmware version and feature set of the meter. TAG1 and TAG2 typically identify the meter's user and installed location. The Owner and TAG registers are located in the Factory module and are configurable with Power Monitoring Expert or ION Setup. See “How to TAG your meter” on page 40.
• Name Plate 2: This screen displays the following information for the current sliding window (rolling block) demand settings:

<table>
<thead>
<tr>
<th>Sliding Window (Rolling Block)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
</tr>
<tr>
<td>UPDATE</td>
</tr>
<tr>
<td>SYNC</td>
</tr>
<tr>
<td>MAX (kW)</td>
</tr>
</tbody>
</table>

1 The MAX (kW) value is a maximum allowable demand level based on installed transformer configurations and nominal voltages and currents.

• Event Log: The Event Log screen displays up to four of the most recent, high priority events (priority 255 only). The date, a timestamp, an event description, and an event code are provided for each event displayed. If more than four high priority events have been recorded, the Event Log screen indicates additional logs exist. Refer to “Data logging” on page 160 for more details.

• Phasor Diagram: This screen shows phasors and numeric values for each phase current and phase voltage measurement.

• Instantaneous Voltage: This screen shows the phase voltage and average voltage (line-to-neutral or line-to-line voltage, depending on the meter’s service type).

• Instantaneous Current: This screen shows the phase current and average current values.

• Instantaneous Power: This screen shows kW total, kVAR total, kVA total and signed Power Factor total values.

• Instantaneous Demand: This screen shows kW delivered and received from the sliding window (rolling block) demand calculation.

• Voltage Harmonics: These screens show per-phase voltage harmonic histograms.

• Current Harmonics: These screens show per-phase current harmonic histograms.

• Instantaneous Demand: This screen shows kW delivered and received.

• Flicker (ION8650A and ION8650B only): This screen displays flicker measurements from V1, V2 and V3.

• Frequency: This screen displays frequency information.

ALT mode Time of Use (TOU) display screens

The ALT mode TOU display screens are factory-configured to show Time of Use (TOU) data. The measurements displayed originate from frameworks of modules that are linked to a TOU module. By default, only one season is configured in the sample TOU schedule; until you configure other seasons, all data appears under that one season. For details about the TOU module, refer to the ION Reference.

By default, all demand values result from sliding window (rolling block) calculations.

NOTE: The following abbreviations are used on the TOU display screens:

PB = Past Billing period. A billing period is the time between two consecutive meter readings for billing purposes by a utility.

PS = Previous Season. Billing Seasons are defined in the TOU module description in the ION Reference.

• Active TOU Rate: This screen shows which of the valid TOU billing rates is active.
• Active TOU Season: This screen shows which TOU billing season is currently active.

• TOU Energy by Rate: This screen shows kWh delivered values for each TOU rate.

• kW Peak Demand: These screens display the maximum kW delivered value for each TOU rate. These values result from sliding window (rolling block) demand calculations.

• Past Billing Energy: This screen displays the kWh delivered values for each TOU rate in the previous billing period.

• Past Billing Peak Demand: These screens display the maximum kW delivered value for each TOU rate in the previous billing period. These values result from sliding window (rolling block) demand calculations.

• Past Season Energy: This screen displays the kWh delivered for each TOU rate in the past billing season. These values result from sliding window (rolling block) demand calculations.

• Past Season Peak Demand: These screens display the maximum kW delivered for each TOU rate in the past billing season.

• Past Billing/Season Energy: These screens display the kWh delivered and received values in the past billing period and billing season.

• Past Bill/ Season Pk Demand: These screens show the maximum kW received values in the past billing period and billing season. These values result from a sliding window (rolling block) demand calculation.

• Past Billing/Season Energy: These screens display the kVARh delivered and received values in the past billing period and billing season.

• Past Bill/Season Pk Demand: These screens display the maximum kVAR delivered and received values in the past billing period and billing season. These values result from a sliding window (rolling block) demand calculation.

• Past Billing/Season Energy: These screens display the kVAh delivered and received values in the past billing period and billing season.

• Past Bill/Season Pk Demand: These screens display the maximum kVA delivered and received values in the past billing period and billing season. These values result from a sliding window (rolling block) demand calculation.

TEST mode default display screens

The values shown in the TEST mode display screens represent different accumulators than those shown in NORM mode (although they perform some of the same basic measurements). The TEST mode display values are for the purpose of checking accuracy; they only accumulate while the meter is in TEST mode.

Viewing TEST mode

There are two ways to switch the meter into TEST mode depending on the type of meter you have:

• Standard meter (without hardware lock): You must use Power Monitoring Expert or ION Setup; refer to “Switching to TEST mode” on page 199.

• Standard hardware-locked meter: You must remove the cover from the meter and press the TEST mode button; refer to “Performing a master reset from the front panel” on page 207 for detailed instructions on removing the meter’s cover.
When the meter is in TEST mode, the front panel cycles through four TEST mode display screens:

- kWh Test: This screen shows TEST mode kWh delivered and received values.
- kVARh/KVAh Test: This screen shows TEST mode kVARh/KVAh delivered and received values.
- Instantaneous Demand Test: This screen shows TEST mode kW delivered and received values. Both quantities are produced from a sliding window (rolling block) demand calculation. This value is reset if the demand reset switch is turned while the device is in TEST mode.
Display brightness control

The Brightness setup register in the Display Options module allows you to set the display to one of four different brightness levels. The brightness level is controlled through ION Setup.

1. Start ION Setup.
2. Connect to your meter in Advanced Mode.
3. Navigate to the Display Option Modules folder and double-click on the Display Option module in the right-hand pane.
4. Select the Setup Register tab.
5. Select the Brightness register and click Edit.
6. Select a brightness level (Dim, Standard, Bright, Extra Bright) from the dropdown list and click OK.

7. Click Send to save your changes to the meter.
Chapter 17 TEST mode

This chapter describes your meter's TEST mode and explains how to switch from Normal mode to TEST mode.

In this chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>198</td>
</tr>
<tr>
<td>Switching to TEST mode</td>
<td>199</td>
</tr>
<tr>
<td>Using the front panel</td>
<td>199</td>
</tr>
<tr>
<td>Using ION Setup</td>
<td>199</td>
</tr>
<tr>
<td>Using Vista</td>
<td>200</td>
</tr>
<tr>
<td>Changing TEST mode timeout</td>
<td>201</td>
</tr>
<tr>
<td>Using the front panel</td>
<td>201</td>
</tr>
<tr>
<td>Using ION Setup</td>
<td>201</td>
</tr>
<tr>
<td>Using Designer</td>
<td>201</td>
</tr>
<tr>
<td>TEST mode default display screens</td>
<td>203</td>
</tr>
<tr>
<td>TEST mode LED energy pulsing</td>
<td>204</td>
</tr>
</tbody>
</table>
Introduction

TEST mode is typically used for verifying meter function. The meter is usually reading data from a test power supply while these functions are performed.

Several things to note about TEST mode:

- All of the billing quantities that are recorded when the meter is in Normal mode stop accumulating when the meter is switched to TEST mode — the data is sent to special TEST mode registers instead.
- The values accumulated in these test registers are displayed on the front panel and in Power Monitoring Expert or ION Setup.
- The regular normal mode billing registers are unaffected while the meter is in TEST mode; accumulation of this data continues as soon as you exit TEST mode.
- All test registers are reset to zero when you exit TEST mode.

NOTE: The meter always returns to NORM mode when you exit TEST mode, even if you entered TEST mode from ALT mode.

You cannot place a hardware-locked meter in TEST mode using Power Monitoring Expert or ION Setup. The meter must be placed in TEST mode using the front panel.

Refer to the *PowerLogic ION8650 accuracy verification* technical note for final accuracy verification test details and procedure.
Switching to TEST mode

Place the meter into TEST mode using the front panel, ION Setup or Vista. The meter’s front panel informs you when the meter is in TEST mode with a special display screen.

Using the front panel

The TEST mode button on the meter is located beneath the outer cover. You must first remove the cover to access the button. Refer to the ION8650 Installation guide for instructions and safety precautions.

WARNING
HAZARD OF ELECTRIC SHOCK
Wear PPE and take precautions not to touch the meter’s lever contact switches if accessing the front panel buttons of a switchboard meter.
Failure to follow these instructions will result in death or serious injury.

After you remove the outer cover, press the TEST mode button.

NOTE: If you have a hardware-locked meter, only the basic communications parameters can be changed in NORM mode. You must enter TEST mode to change other meter parameters on the hardware-locked meter. See “Additional revenue metering security” on page 77 for more details.

Using ION Setup

NOTE: You cannot place a hardware-locked meter in TEST mode using ION Setup. The meter must be placed in TEST mode using the front panel. See “Using the front panel” above.

In ION Setup:

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the Verification screen.

3. Select Test Mode on the Verification tab and click Edit. Enter your meter password if prompted. A dialog box informs you that the meter is in Test mode. Click OK.

The Test Mode screen appears and test values are displayed.
Click on the tabs to perform various test-related tasks. See the ION Setup online help for more information.

4. Click **Scaling** on the **Energy** tab if you want to apply PT/CT scaling to the values displayed in Test mode. The default is OFF (no scaling is applied).

5. Click **Loss Mode** on the **Volts, Amps and Power** tab if you want any transformer loss compensation that you have configured applied to values in TEST mode.

6. Click **Close**. A dialog box informs you that the meter is back in Normal mode.

Using Vista

NOTE: You cannot place a hardware-locked meter in TEST mode using Power Monitoring Expert. The meter must be placed in TEST mode using the front panel. See “Using the front panel” on page 199.

1. Open your meter in Vista.

2. Select the **Setup/Diagnostics** tab and click **General Setup**.

3. Select the Test Mode option for Meter Mode. You are prompted for the Power Monitoring Expert user password. If meter security is enabled, you are also prompted for the meter password. For more information see the Vista section of the online *Power Monitoring Expert Help*.
Changing TEST mode timeout

If no front panel buttons are pressed, the meter exits TEST mode after 30 minutes (1800 seconds) by default, if the default TEST mode timeout value has not been changed. The timeout value resets to 30 minutes each time you press any front panel button. While in TEST mode, the value on the bottom right of the status bar indicates the amount of time before TEST mode times out. The meter always returns to NORM mode when the TEST mode timeout elapses.

You can change the value of the TEST mode timeout using Power Monitoring Expert, ION Setup or the front panel.

Using the front panel

Follow these steps to change the TEST mode timeout using the front panel:

NOTE: You must be in TEST mode to change the TEST mode timeout if your meter is hardware-locked.

1. Enter the SETUP menu by holding down the ALT/ENTER button.

2. Scroll through the menu items, highlight DISPLAY OPTIONS, and press the ALT/ENTER button.

3. Scroll down and highlight the TEST MODE TO menu item. Press ALT/ENTER. The current TEST mode timeout is displayed.

4. Enter the new value of the TEST mode timeout in seconds. Use the up or down arrow buttons to change the value of the highlighted digit. Press the up or down arrow button to change the position of the highlight cursor. Press the ALT/ENTER button.

5. Select YES to confirm the change. Enter the meter password if prompted.

Using ION Setup

1. Connect to the meter in Advanced Mode. See the ION Setup Help for instructions.

2. Locate the Display Options module in the module list and double-click to open the module.

3. Click the Setup Registers tab and double-click the Test Mode Timeout setup register.

4. Set the Test Mode Timeout to the desired time. You can choose from a numeric bounded format or an elapsed interval format.

5. Click Send to save the changes to the meter.

Using Designer

1. Open your meter in Designer.

2. Double-click the Display Setup folder.
3. Right-click on the Display Options module to access the setup registers. Select the
 Test Mode Timeout setup register and click **Modify** to edit.

4. Set the *Test Mode Timeout* to the desired time.

5. Click **OK** to send the changes to the meter.
TEST mode default display screens

The values shown in the TEST mode display screens represent different accumulators than those shown in NORM mode (although they perform some of the same basic measurements). The TEST mode display values are for accuracy checking purposes; they only accumulate while the meter is in TEST mode.

In TEST mode, the front panel cycles through four TEST mode display screens:

- kWh TEST: This screen shows TEST mode kWh delivered and received values.
- kVARh/KVAh TEST: This screen shows TEST mode kVARh/KVAh delivered and received values.
- Instantaneous Demand TEST: This screen shows TEST mode kW delivered and received values. Both quantities are produced from a sliding window (rolling block) demand calculation. This value is reset if the demand reset switch is turned while the device is in TEST mode.
TEST mode LED energy pulsing

Above the display screen are two pairs of energy pulsing LEDs and infrared outputs. The LEDs and IR outputs are factory-configured to pulse while the meter is in TEST mode.

The energy pulsing LEDs provide an interface for accuracy checking instruments. The Kt label indicates the factory-configured pulsing rate. (You can change the energy pulsing frequency with Power Monitoring Expert or ION Setup.) See “Configuring energy pulsing” on page 156 for more information on configuring the LED settings.
Chapter 18 Resets

This chapter provides instructions for performing various meter resets.

In this chapter

Performing a reset ... 206
Performing a master reset .. 206
Parameters affected by a master reset 206
Performing a demand reset .. 207
Parameters affected by a demand reset 207
Demand Lockout Time .. 207
Using the front panel .. 207
Performing a master reset from the front panel 207
Performing a demand reset from the front panel 207
Using ION Setup ... 208
Using Vista .. 209
Master resets and hardware-locked meters 209
Performing a reset

Resets allow you to clear various accumulated parameters stored by the meter.

Performing a master reset

To perform a master reset on a hardware-locked meter, you must remove the front cover and press the master reset button. See “Master resets and hardware-locked meters” on page 209 for more information.

With a meter that is not hardware-locked, you can perform a master reset via software. It does not have to be in TEST mode.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA LOSS</td>
</tr>
<tr>
<td>Ensure all important data from the device has been retrieved before you perform a master reset.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in data loss.</td>
</tr>
</tbody>
</table>

Parameters affected by a master reset

The master reset deletes most accumulated values and all derived revenue measurements from the meter, clears the meters event and waveform logs, and clears COMTRADE waveform records from the meter’s internal FTP server. The mode that the meter is in (NORM mode or TEST mode - see "Modes of Operation" on page 31) defines the values that are reset.

NORM or ALT mode

In NORM or ALT mode, the following parameters are reset to zero:

- Energy and Demand
- Peak Demand
- Loss Calculation
- Long-term Min/Max
- Power Quality disturbance counters
- Time of Use

The following are cleared:

- Event Log
- All Data Recorders
- All Waveform Recorders
- All COMTRADE files

TEST mode

All TEST mode Energy and Demand measurements are set to zero.
Performing a demand reset

Parameters affected by a demand reset

The mode that the meter is in (for example, NORM mode or TEST mode) defines the values that will be reset.

- NORM mode: resets the peak demand values logged in the meter.
- TEST mode: resets the test demand parameters to zero.

Demand Lockout Time

The setup register labeled Demand Lockout Time (Display Options module) sets the minimum time allowed between consecutive demand resets; the meter ignores any attempts to reset the demand outside the bounds of the register.

The default value for the Demand Lockout time is 25 days. For details on the Demand Lockout Time setup register, refer to “Configuring demand reset lockout time” on page 138.

For more details on the Display Options module, see the ION Reference.

Using the front panel

Performing a master reset from the front panel

The master reset button is recessed to avoid accidental activation. You must first remove the meter’s cover before you can perform a master reset.

1. Remove the front cover of the meter. Refer to the ION8650 Installation guide for instructions and safety precautions.

2. Using a pin or similar instrument, press and hold the master reset button. The message All recorded data will be lost HOLD TO CONTINUE is displayed. Hold the master reset button for 5 seconds to continue with the reset.

NOTE: Do not configure or power down your meter until the meter’s front panel displays a message stating that the master reset is complete. If you configure or power down your meter during a master reset, the affected parameters may not be completely reset.

Performing a demand reset from the front panel

The demand reset switch can be activated with the cover on or off.

DANGER

HAZARD OF ELECTRIC SHOCK

Wear PPE and take precautions not to touch the meter’s lever contact switches if accessing the front panel buttons of a switchboard meter.

Failure to follow these instructions will result in death or serious injury.
In most applications, the demand reset switch is sealed with an anti-tamper mechanism; a through-hole in the switch can accommodate either an external seal or a locking mechanism. See "Demand reset switch seal" on page 78 for details of anti-tamper sealing.

NOTE: A Demand Lockout Time register sets the minimum time allowed between consecutive demand resets; the meter ignores any attempts to reset the demand outside the bounds of the register. The default value for the Demand Lockout Time is 25 days (2160000s).

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.
2. Select the **Verification** screen.
3. Select Normal Mode and click **Display**.
4. Select the desired tab in the Normal Mode dialog box. Two resets are available: Peak Reset and Master Reset. Click the appropriate button to perform the reset (Peak Demand in the example below).
A dialog box informs you when the reset is complete.

NOTE: Do not configure or power down your meter until a message appears stating that the master reset is complete. If you configure or power down your meter during a master reset, the affected parameters may not be completely reset.

Using Vista

Open your meter in Vista. You can perform several resets from within Vista.

Performing a master reset

NOTE: The master reset is not accessible via software in a hardware-locked meter, whether the meter is in TEST, ALT or NORM mode. A master reset on a hardware-locked meter can only be performed from the front panel. See “Master resets and hardware-locked meters” on page 209 for details.

With a meter that is not hardware-locked, you can perform a master reset via software. It does not need to be in TEST mode.

1. Click the **Setup/Diagnostics** tab and click the **General** icon.
2. Click the **Master Reset** icon.

NOTE: Do not configure or power down your meter until a message appears stating that the master reset is complete. If you configure or power down your meter during a master reset, the affected parameters may not be completely reset.

Performing a peak demand reset

1. Click the **Revenue** tab and click the **Demand Max** icon.
2. Click the **Peak demand reset** icon.

Performing a Min/Max reset

1. Click the **Volts/Amps** tab and click the **Long-term min/max** icon.
2. Click the **Reset Min/Max** icon.

Performing a Sag/Swell or Harmonics Min/Max reset

1. Click the **Power Quality** tab
2. Click **Reset counters** to reset the disturbance counters. Click the **Harmonics Details** icon then click **Reset Min/Max** to reset the harmonics min/max values.

NOTE: The master reset is not accessible via software in a hardware-locked meter, whether the meter is in TEST, ALT or NORM mode. A master reset on a hardware-locked meter can only be performed from the front panel. See “Master resets and hardware-locked meters” on page 209 for details.

With a meter that is not hardware-locked, you can perform a master reset via software. It does not need to be in TEST mode.

Master resets and hardware-locked meters

The master reset is not accessible via software in a hardware-locked meter, whether the meter is in TEST, ALT or NORM mode. A complete master reset on a hardware-locked meter can only be performed by pressing the master reset button on the meter’s front panel. See “Performing a master reset from the front panel” on page 207.
TEST mode

In TEST mode, a screen is displayed stating that the master reset is unavailable:

![MASTER RESET UNAVAILABLE IN TEST MODE]

19:36:54 12/09/2014 Q1 TEST EXIT: 29:55

Normal mode, Locked

In this case the meter attempts the master reset, but revenue and event logs are not cleared. The rest of the master reset is successful.

![LOCKED METER PARTIAL RESET IN PROGRESS]

13:36:54 12/09/2014 Q1 NORM 0:46m

![LOCKED METER PARTIAL RESET COMPLETED]

13:36:54 12/09/2014 Q1 NORM 0:49m
Chapter 19 Setpoints

This chapter provides instructions for configuring meter setpoints.

In this chapter

- Introduction .. 212
- Configuring setpoints .. 213
 - Using the front panel ... 213
 - Using ION Setup ... 213
 - Using Vista ... 213
- Relative Setpoint module settings 213
 - Fine tuning over condition monitoring 213
Introduction

The Relative Setpoint module provides extensive non-critical control, secondary protection, and analysis capabilities by allowing you to initiate an action in response to a specific condition. It is particularly useful for performing actions based on differences between a value (for example, kW on phase A) relative to a reference value (for example, kW demand for all three phases). Use this module’s outputs for demand control of equipment or any other applications requiring setpoint activity relative to a varying value. See the ION Reference for more information on the Relative Setpoint module.

⚠️ WARNING

HAZARD OF UNINTENDED OPERATION

- Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.
- Be aware that an unexpected change of state of the digital outputs may result when the supply power to the meter is interrupted or after a meter firmware or template upgrade.

Failure to follow these instructions can result in death, serious injury or equipment damage.
Configuring setpoints

Use Power Monitoring Expert or ION Setup to change your meter’s setpoints.

Using the front panel

You cannot configure setpoints using the front panel.

Using ION Setup

1. Connect to your meter in Advanced Mode.
2. Click on the Relative Setpoint module you want to configure.

Using Vista

Open your meter in Vista and click on the Setpoints tab. Click the Setup icon. Use the switches to turn various monitoring on and off (see circled below). Click the numeric boxes to edit condition settings.

Relative Setpoint module settings

By default, the following Relative Setpoint modules are configured:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over KW sd</td>
<td>When active, this annunciates when the total kW sliding window demand exceeds a specified amount.</td>
</tr>
<tr>
<td>Over I a</td>
<td>When active, this annunciates when the current on phase A exceeds a specified amount.</td>
</tr>
<tr>
<td>Over I b</td>
<td>When active, this annunciates when the current on phase B exceeds a specified amount.</td>
</tr>
<tr>
<td>Over I c</td>
<td>When active, this annunciates when the current on phase C exceeds a specified amount.</td>
</tr>
<tr>
<td>Over V unbal</td>
<td>When active, this annunciates if the voltage unbalance exceeds a specified amount.</td>
</tr>
<tr>
<td>Phase 1 loss, Phase 2 loss, Phase 3 loss</td>
<td>When active, these announce if the phase voltage drops below the Sag/Swell module’s Nom Volts register by a specified amount.</td>
</tr>
<tr>
<td>V1, V2, V3 (+/- 15%) for 10m, 10s, 3s</td>
<td>When active, these announce when the phase voltage deviates from the Sag/Swell module’s Nom Volts register by a specified amount.</td>
</tr>
</tbody>
</table>

NOTE: There is usually no need to change any of the Relative Setpoint modules’ setup registers for normal operation of the meter.

See the ION Reference for more information on the Relative Setpoint module.

Fine tuning over condition monitoring

If you want to fine-tune over condition monitoring, the only setup registers you should change are SusUntlON and SusUntlOFF.

SusUntlON determines how long the modules wait after an over condition is detected before reporting it. This gives the monitored value a short period to correct itself before the event is registered with the module so that very brief over conditions are ignored. Similarly, SusUntlOFF is the amount of time a normal value must be present before the module considers normal operation to be restored. Both SusUntlON and SusUntlOFF values are entered in seconds.
Chapter 20 Reports

This chapter provides instructions for viewing various meter reports and logs.

In this chapter

Introduction ... 216
Viewing meter logs ... 217
 Using the front panel ... 217
 Using ION Setup ... 217
 Using Vista ... 218
Introduction

Accumulated meter values are saved in logs. These logs can be acquired by your energy management software and saved in its database for analysis and reporting.

The Web Reporter component of Power Monitoring Expert is a database reporting application that lets you define, generate, and manage comprehensive reports based on the information in your system database. It processes selected data and generates a finished report.

For more information on reports, see the Web Reporter section of the online *Power Monitoring Expert Help*.
Viewing meter logs

View meter logs using Power Monitoring Expert, ION Setup or the front panel.

Using the front panel

The front panel only displays recent high priority events (Event Log).

Using ION Setup

1. Open the Setup Assistant for your meter. See the ION Setup Help for instructions.

2. Select the Reports screen.

3. Select one of the logs or comparisons in the list and click Display to view the associated log.

Below is an example of an Events Log.
4. You can view, save or print the log. Click Close to exit.

See also “Viewing data log information” on page 167 for information on viewing data log information in ION Setup.

Using Vista

Open your meter in Vista and click on the various tabs available. Click an icon to view the associated logs. The following logs are available in Vista:

- **Volts/Amps tab:**
 - Meter Events
 - Voltage
 - Current
 - Power
 - Frequency/PF

- **Revenue tab:**
 - Logged Interval data

- **Power Quality tab:**
 - Harmonics Trending
 - Transient & Sag/Swell Statistics CBEMA
 - Waveforms/Sequence of Events
 - EN50160