Modicon X80 Analoge Ein-/Ausgangsmodule Benutzerhandbuch

Schneider Gelectric

Übersetzung der Originalbetriebsanleitung

09/2020

Die Informationen in der vorliegenden Dokumentation enthalten allgemeine Beschreibungen und/oder technische Leistungsmerkmale der hier erwähnten Produkte. Diese Dokumentation dient keinesfalls als Ersatz für die Ermittlung der Eignung oder Verlässlichkeit dieser Produkte für bestimmte Verwendungsbereiche des Benutzers und darf nicht zu diesem Zweck verwendet werden. Jeder Benutzer oder Integrator ist verpflichtet, angemessene und vollständige Risikoanalysen, Bewertungen und Tests der Produkte im Hinblick auf deren jeweils spezifischen Verwendungszweck vorzunehmen. Weder Schneider Electric noch deren Tochtergesellschaften oder verbundene Unternehmen sind für einen Missbrauch der Informationen in der vorliegenden Dokumentation verantwortlich oder können diesbezüglich haftbar gemacht werden. Verbesserungs- und Änderungsvorschlage sowie Hinweise auf angetroffene Fehler werden jederzeit gern entgegengenommen.

Sie erklären, dass Sie ohne schriftliche Genehmigung von Schneider Electric dieses Dokument weder ganz noch teilweise auf beliebigen Medien reproduzieren werden, ausgenommen zur Verwendung für persönliche nichtkommerzielle Zwecke. Darüber hinaus erklären Sie, dass Sie keine Hypertext-Links zu diesem Dokument oder seinem Inhalt einrichten werden. Schneider Electric gewährt keine Berechtigung oder Lizenz für die persönliche und nichtkommerzielle Verwendung dieses Dokument oder seines Inhalts, ausgenommen die nichtexklusive Lizenz zur Nutzung als Referenz. Das Handbuch wird hierfür "wie besehen" bereitgestellt, die Nutzung erfolgt auf eigene Gefahr. Alle weiteren Rechte sind vorbehalten.

Bei der Montage und Verwendung dieses Produkts sind alle zutreffenden staatlichen, landesspezifischen, regionalen und lokalen Sicherheitsbestimmungen zu beachten. Aus Sicherheitsgründen und um die Übereinstimmung mit dokumentierten Systemdaten besser zu gewährleisten, sollten Reparaturen an Komponenten nur vom Hersteller vorgenommen werden.

Beim Einsatz von Geräten für Anwendungen mit technischen Sicherheitsanforderungen sind die relevanten Anweisungen zu beachten.

Die Verwendung anderer Software als der Schneider Electric-eigenen bzw. einer von Schneider Electric genehmigten Software in Verbindung mit den Hardwareprodukten von Schneider Electric kann Körperverletzung, Schäden oder einen fehlerhaften Betrieb zur Folge haben.

Die Nichtbeachtung dieser Informationen kann Verletzungen oder Materialschäden zur Folge haben!

© 2020 Schneider Electric. Alle Rechte vorbehalten.

Inhaltsverzeichnis

Teil I Kapitel 1	Sicherheitshinweise Über dieses Buch Physische Implementierung von Analogmodulen Allgemeine Regeln für die physikalische Implementierung	9 13 15
	von Analogmodulen	17
		18
	Anschluss analoger Ein-/Ausgangsmodule	20
		22
		25
	BMX FTW •015-Kabel	28
		31
	BMX FCW •01S-Kabel	34
	Montage eines 20-poligen Anschlussblock an einem Modul	38
		42
	Montage eines 40-poligen Steckverbinders vom Typ FCN an einem Modul	46
	Schirmanschlusskit	48
	Abmessungen der X80-E/A-Analogmodule	51
	Normen und Zertifizierungen	53
Kapitel 2	Diagnose für analoge Module	55 56
	Diagnose von Analogmodulen	57
Kapitel 3	BMX AMI 0410-Analogeingangsmodul	59
•	Auf einen Blick	60
	Technische Daten	62
	Funktionsbeschreibung	64
	Vorsichtsmaßnahmen bei der Verdrahtung	71
	Verdrahtungsschema	75
	Verwendung des TELEFAST-Verdrahtungszubehörs	76

Kapitel 4	Analoges Eingangsmodul BMX AMI 0800	81 82
	Figenschaften	83
	Funktionsbeschreibung	85
	Vorsichtsmaßnahmen bei der Verdrahtung	92
	Verdrahtungsschema.	95
	Verwendung des TELEFAST-Verdrahtungszubehörs	96
Kapitel 5	Analoges Fingangsmodul BMX AMI 0810	107
rapitor o	Auf einen Blick	108
	Eigenschaften	109
	Funktionsbeschreibung	111
	Vorsichtsmaßnahmen bei der Verdrahtung	118
	Verdrahtungsschema	121
	Verwendung des TELEFAST-Verdrahtungszubehörs	122
Kapitel 6	BMX ART 0414/0814 Analogeingangsmodule	129
	Auf einen Blick	130
	Eigenschaften	131
	Analoge Eingangswerte	136
	Funktionsbeschreibung	139
	Vorsichtsmaßnahmen bei der Verdrahtung	144
	Verdrahtungsschema	148
	Verwendung des TELEFAST-Verdrahtungszubehörs	151
Kapitel 7	BMX AMO 0210-Analogausgangsmodul	155
•	Auf einen Blick	156
	Eigenschaften	157
	Funktionsbeschreibung	160
	Vorsichtsmaßnahmen bei der Verdrahtung	165
	Verdrahtungsschema	167
	Verwendung des TELEFAST-Verdrahtungszubehörs	168
Kapitel 8	Analoges Ausgangsmodul BMX AMO 0410	171
	Auf einen Blick	172
	Eigenschaften	173
	Funktionsbeschreibung	176
	Vorsichtsmaßnahmen bei der Verdrahtung	181
	Verdrahtungsschema	183
	Verwendung des TELEFAST-Verdrahtungszubehörs	184

Auf einen Blick Eigenschaften Funktionsbeschreibung	· 1 · 1 · 1 · 1 · 1
Eigenschaften Funktionsbeschreibung	· 1 · 1 · 1 · 1
Funktionsbeschreibung	· 1 · 1 · 1
Varajahtamal/nahman haj dar Vardrahtung	· 1 · 1 · 2
	· 1 · 2
	. 2
Verwendung des TELEFAST-Verdrahtungszubehörs	_
Kapitel 10 BMX AMM 0600 Analoges Eingangs-/Ausgangsmodul .	2
	• 2
	. 2
Funktionsbeschreibung	. 2
Vorsichtsmaßnahmen bei der Verdrahtung.	- 2
Verdrahtungsschema	. 2
Teil II Softwaretechnische Implementierung analoger	
Module	. 2
Kapitel 11 Allgemeiner Überblick über Analogmodule	2
Einführung in die Installationsphase	. 2
Kapitel 12 Konfigurieren der Analogmodule	2
12.1 Konfiguration von Analogmodulen: Übersicht	. 2
Beschreibung des Konfigurationsfensters der Analogmodule	. 2
12.2 Parameter der analogen Ein- und Ausgangskanäle	. 2
Parameter für analoge Eingangsmodule	. 2
Parameter für analoge Ausgangsmodule	. 2
12.3 Eingeben von Konfigurationsparametern mit Control Expert	. 2
Wählen des Bereichs für den Eingang oder Ausgang eines	
Analogmoduls	. 2
Auswählen eines mit einem analogen Kanal verbundenen Tasks	. 2
Wählen des Abfragezyklus des Eingangskanals	. 2
Wählen des Anzeigeformats für einen Strom- oder	
Spannungseingangskanal	. 2
Wahlen des Anzeigeformats für einen Thermoelement- oder RTD-	
⊏ingangskanal	. 4
Wählen der Fingangskanalnutzung	· 4
Auswahl der Eunstigen für die Überlaufsteuerung	· 4
Auswählen der Vergleichsstellenkompensation	
Wählen des Fehlermodus für Analogausgänge	· 4

Kapitel 13	IODDTs und gerätespezifische DDTs für Analogmodule.	249
	T_ANA_IN_BMX.	250
	Detaillierte Beschreibung von IODDT-Objekten des Typs	050
	I_ANA_IN_I_BMX	253
	T ANA OUT BMX	256
	Detaillierte Beschreibung der IODDT-Objekte des Typs	
	T_ANA_IN_GEN	259
	Detaillierte Beschreibung der IODDT-Objekte des Typs	260
	I_ANA_OUT_GEN Beschreibung der Sprachobiekte des IODDT vom Tvp T_GEN_MOD	200
	Analoggeräte-DDT	201
	Beschreibung des Bytes MOD FLT	269
	Forcierungsmodus für die dezentralen Ethernet-E/A von	200
	Analoggeräten	270
Kapitel 14	Debugging von Analogmodulen	273
	Beschreibung der Debug-Funktion eines Analogmoduls	274
	Beschreibung des Debug-Fensters des Analogmoduls	275
	Auswählen der Anpassungswerte für die Eingabekanäle und	077
	Anderung von Einstellwerten von Ausgangskanälen	277
Konital 15		2/9
Rapiler 15		201
	Detaillierte Diagnose nach Analogkanal	202
Kanitel 16	Betrieb der Module aus der Anwendung	204
16.1	Zugreifen auf Messung und Status	286
	Adressierung der Analogmodulobiekte	287
	Modulkonfiguration	289
16.2	Zusätzliche Programmierungsfunktionen	292
	Beschreibung der mit Analogmodulen verbundenen Sprachobjekte.	293
	Mit Analogmodulen verbundene Sprachobjekte mit implizitem	
	Austausch	294
	Mit Analogmodulen verbundene Sprachobjekte mit explizitem	205
	Austauscii	290
	Objekten	298
	Konfigurationsspezifische Sprachobjekte	302

Teil III	Kurzanleitung: Beispiel für die Implementierung von analogen E/A-Modulen
Kapitel 17	Beschreibung der Anwendung Überblick über die Anwendung
Kapitel 18	Installation der Anwendung mit Control Expert.
18.1	Beschreibung der verwendeten Lösung
	Ausgewählte technische Lösungen
	Die verschiedenen Prozessschritte mit Control Expert
18.2	Entwicklung der Anwendung
	Erstellung des Projekts
	Auswählen des Analogmoduls
	Variablendeklaration
	Erstellen und Verwenden der DFBs
	Erstellen des Programms in SFC zum Verwalten des Tanks
	Erstellung eines Programms in LD zur Anwendungsausführung
	Erstellung eines Programms in LD zur Anwendungssimulation
	Erstellen einer Animationstabelle
	Erstellen des Bedienerfensters
Kapitel 19	Starten der Anwendung
•	Ausführung der Anwendung im Simulationsmodus
	Ausführung der Anwendung im Standardmodus
Kapitel 20	Aktionen und Transitionen
•	Transitionen
	Aktionen
Anhang	
Anhang A	Merkmale der RTD- und Thermoelementbereiche des
,	BMX ART 0414/0814
	Eigenschaften der RTD-Bereiche für die Module BMX ART 0414/0814
	Eigenschaften der BMX ART 0414/814 Thermoelementbereiche in
	Grad Celsius
	Eigenschaften der BMX ART 0414/0814-Thermoelementbereiche in Grad Fahrenheit
Anhang B	Topologische/Signalspeicher-Adressierung von Modulen
-	Topologische/Signalspeicher-Adressierung der Modicon X80- Analogmodule
Index	

Sicherheitshinweise

Wichtige Informationen

HINWEISE

Lesen Sie sich diese Anweisungen sorgfältig durch und machen Sie sich vor Installation, Betrieb, Bedienung und Wartung mit dem Gerät vertraut. Die nachstehend aufgeführten Warnhinweise sind in der gesamten Dokumentation sowie auf dem Gerät selbst zu finden und weisen auf potenzielle Risiken und Gefahren oder bestimmte Informationen hin, die eine Vorgehensweise verdeutlichen oder vereinfachen.

Wird dieses Symbol zusätzlich zu einem Sicherheitshinweis des Typs "Gefahr" oder "Warnung" angezeigt, bedeutet das, dass die Gefahr eines elektrischen Schlags besteht und die Nichtbeachtung der Anweisungen unweigerlich Verletzung zur Folge hat.

Dies ist ein allgemeines Warnsymbol. Es macht Sie auf mögliche Verletzungsgefahren aufmerksam. Beachten Sie alle unter diesem Symbol aufgeführten Hinweise, um Verletzungen oder Unfälle mit Todesfälle zu vermeiden.

▲ GEFAHR

GEFAHR macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge hat.**

A WARNUNG

WARNUNG macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, Tod oder schwere Verletzungen **zur Folge haben kann.**

VORSICHT macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, leichte Verletzungen **zur Folge haben kann**.

HINWEIS

HINWEIS gibt Auskunft über Vorgehensweisen, bei denen keine Verletzungen drohen.

BITTE BEACHTEN

Elektrische Geräte dürfen nur von Fachpersonal installiert, betrieben, bedient und gewartet werden. Schneider Electric haftet nicht für Schäden, die durch die Verwendung dieses Materials entstehen.

Als qualifiziertes Fachpersonal gelten Mitarbeiter, die über Fähigkeiten und Kenntnisse hinsichtlich der Konstruktion und des Betriebs elektrischer Geräte und deren Installation verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

BEVOR SIE BEGINNEN

Dieses Produkt nicht mit Maschinen ohne effektive Sicherheitseinrichtungen im Arbeitsraum verwenden. Das Fehlen effektiver Sicherheitseinrichtungen im Arbeitsraum einer Maschine kann schwere Verletzungen des Bedienpersonals zur Folge haben.

WARNUNG

UNBEAUFSICHTIGTE GERÄTE

- Diese Software und zugehörige Automatisierungsgeräte nicht an Maschinen verwenden, die nicht über Sicherheitseinrichtungen im Arbeitsraum verfügen.
- Greifen Sie bei laufendem Betrieb nicht in das Gerät.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Dieses Automatisierungsgerät und die zugehörige Software dienen zur Steuerung verschiedener industrieller Prozesse. Der Typ bzw. das Modell des für die jeweilige Anwendung geeigneten Automatisierungsgeräts ist von mehreren Faktoren abhängig, z. B. von der benötigten Steuerungsfunktion, der erforderlichen Schutzklasse, den Produktionsverfahren, außergewöhnlichen Bedingungen, behördlichen Vorschriften usw. Für einige Anwendungen werden möglicherweise mehrere Prozessoren benötigt, z. B. für ein Backup-/Redundanzsystem.

Nur Sie als Benutzer, Maschinenbauer oder -integrator sind mit allen Bedingungen und Faktoren vertraut, die bei der Installation, der Einrichtung, dem Betrieb und der Wartung der Maschine bzw. des Prozesses zum Tragen kommen. Demzufolge sind allein Sie in der Lage, die Automatisierungskomponenten und zugehörigen Sicherheitsvorkehrungen und Verriegelungen zu identifizieren, die einen ordnungsgemäßen Betrieb gewährleisten. Bei der Auswahl der Automatisiesierungs- und Steuerungsgeräte sowie der zugehörigen Software für eine bestimmte Anwendung sind die einschlägigen örtlichen und landesspezifischen Richtlinien und Vorschriften zu beachten. Das National Safety Council's Accident Prevention Manual (Handbuch zur Unfallverhütung; in den USA landesweit anerkannt) enthält ebenfalls zahlreiche nützliche Hinweise. Für einige Anwendungen, z. B. Verpackungsmaschinen, sind zusätzliche Vorrichtungen zum Schutz des Bedienpersonals wie beispielsweise Sicherheitseinrichtungen im Arbeitsraum erforderlich. Diese Vorrichtungen werden benötigt, wenn das Bedienpersonal mit den Händen oder anderen Körperteilen in den Quetschbereich oder andere Gefahrenbereiche gelangen kann und somit einer potenziellen schweren Verletzungsgefahr ausgesetzt ist. Software-Produkte allein können das Bedienpersonal nicht vor Verletzungen schützen. Die Software kann daher nicht als Ersatz für Sicherheitseinrichtungen im Arbeitsraum verwendet werden.

Vor Inbetriebnahme der Anlage sicherstellen, dass alle zum Schutz des Arbeitsraums vorgesehenen mechanischen/elektronischen Sicherheitseinrichtungen und Verriegelungen installiert und funktionsfähig sind. Alle zum Schutz des Arbeitsraums vorgesehenen Sicherheitseinrichtungen und Verriegelungen müssen mit dem zugehörigen Automatisierungsgerät und der Softwareprogrammierung koordiniert werden.

HINWEIS: Die Koordinierung der zum Schutz des Arbeitsraums vorgesehenen mechanischen/elektronischen Sicherheitseinrichtungen und Verriegelungen geht über den Umfang der Funktionsbaustein-Bibliothek, des System-Benutzerhandbuchs oder andere in dieser Dokumentation genannten Implementierungen hinaus.

START UND TEST

Vor der Verwendung elektrischer Steuerungs- und Automatisierungsgeräte ist das System zur Überprüfung der einwandfreien Funktionsbereitschaft einem Anlauftest zu unterziehen. Dieser Test muss von qualifiziertem Personal durchgeführt werden. Um einen vollständigen und erfolgreichen Test zu gewährleisten, müssen die entsprechenden Vorkehrungen getroffen und genügend Zeit eingeplant werden.

A WARNUNG

GEFAHR BEIM GERÄTEBETRIEB

- Überprüfen Sie, ob alle Installations- und Einrichtungsverfahren vollständig durchgeführt wurden.
- Vor der Durchführung von Funktionstests sämtliche Blöcke oder andere vorübergehende Transportsicherungen von den Anlagekomponenten entfernen.
- Entfernen Sie Werkzeuge, Messgeräte und Verschmutzungen vom Gerät.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Führen Sie alle in der Dokumentation des Geräts empfohlenen Anlauftests durch. Die gesamte Dokumentation zur späteren Verwendung aufbewahren.

Softwaretests müssen sowohl in simulierten als auch in realen Umgebungen stattfinden.

Sicherstellen, dass in dem komplett installierten System keine Kurzschlüsse anliegen und nur solche Erdungen installiert sind, die den örtlichen Vorschriften entsprechen (z. B. gemäß dem National Electrical Code in den USA). Wenn Hochspannungsprüfungen erforderlich sind, beachten Sie die Empfehlungen in der Gerätedokumentation, um eine versehentliche Beschädigung zu verhindern.

Vor dem Einschalten der Anlage:

- Entfernen Sie Werkzeuge, Messgeräte und Verschmutzungen vom Gerät.
- Schließen Sie die Gehäusetür des Geräts.
- Alle temporären Erdungen der eingehenden Stromleitungen entfernen.
- Führen Sie alle vom Hersteller empfohlenen Anlauftests durch.

BETRIEB UND EINSTELLUNGEN

Die folgenden Sicherheitshinweise sind der NEMA Standards Publication ICS 7.1-1995 entnommen (die Englische Version ist maßgebend):

- Ungeachtet der bei der Entwicklung und Fabrikation von Anlagen oder bei der Auswahl und Bemessung von Komponenten angewandten Sorgfalt, kann der unsachgemäße Betrieb solcher Anlagen Gefahren mit sich bringen.
- Gelegentlich kann es zu fehlerhaften Einstellungen kommen, die zu einem unbefriedigenden oder unsicheren Betrieb führen. Für Funktionseinstellungen stets die Herstelleranweisungen zu Rate ziehen. Das Personal, das Zugang zu diesen Einstellungen hat, muss mit den Anweisungen des Anlagenherstellers und den mit der elektrischen Anlage verwendeten Maschinen vertraut sein.
- Bediener sollten nur über Zugang zu den Einstellungen verfügen, die tatsächlich für ihre Arbeit erforderlich sind. Der Zugriff auf andere Steuerungsfunktionen sollte eingeschränkt sein, um unbefugte Änderungen der Betriebskenngrößen zu vermeiden.

Über dieses Buch

Ziel dieses Dokuments

In diesem Handbuch wird die Hardware- und Softwareimplementierung für analoge Module der Baureihe Modicon X80 beschrieben.

Gültigkeitsbereich

Diese Dokumentation ist gültig ab EcoStruxure™ Control Expert 15.0.

Die technischen Merkmale der hier beschriebenen Geräte sind auch online abrufbar. So greifen Sie auf diese Informationen online zu:

Schritt	Aktion
1	Gehen Sie zur Homepage von Schneider Electric www.schneider-electric.com.
2	 Geben Sie im Feld Search die Referenz eines Produkts oder den Namen einer Produktreihe ein. Die Referenz bzw. der Name der Produktreihe darf keine Leerstellen enthalten. Wenn Sie nach Informationen zu verschiedenen vergleichbaren Modulen suchen, können Sie Sternchen (*) verwenden.
3	Wenn Sie eine Referenz eingegeben haben, gehen Sie zu den Suchergebnissen für technische Produktdatenblätter (Product Datasheets) und klicken Sie auf die Referenz, über die Sie mehr erfahren möchten. Wenn Sie den Namen einer Produktreihe eingegeben haben, gehen Sie zu den Suchergebnissen Product Ranges und klicken Sie auf die Reihe, über die Sie mehr erfahren möchten.
4	Wenn mehrere Referenzen in den Suchergebnissen unter Products angezeigt werden, klicken Sie auf die gewünschte Referenz.
5	Je nach der Größe der Anzeige müssen Sie ggf. durch die technischen Daten scrollen, um sie vollständig einzusehen.
6	Um ein Datenblatt als PDF-Datei zu speichern oder zu drucken, klicken Sie auf Download XXX product datasheet.

Die in diesem Dokument vorgestellten Merkmale sollten denen entsprechen, die online angezeigt werden. Im Rahmen unserer Bemühungen um eine ständige Verbesserung werden Inhalte im Laufe der Zeit möglicherweise überarbeitet, um deren Verständlichkeit und Genauigkeit zu verbessern. Sollten Sie einen Unterschied zwischen den Informationen im Dokument und denen online feststellen, nutzen Sie die Online-Informationen als Referenz.

Verwandte Dokumente

Titel der Dokumentation	Referenznummer
Electrical installation guide	EIGED306001EN (Englisch)
Modicon M580, M340 und X80 I/O-Plattformen, Normen und Zertifizierungen	EIO000002726 (Englisch), EIO000002727 (Französisch), EIO000002728 (Deutsch), EIO000002730 (Italienisch), EIO000002729 (Spanisch), EIO0000002731 (Chinesisch)
EcoStruxure™ Control Expert – Betriebsarten	33003101 (Englisch), 33003102 (Französisch), 33003103 (Deutsch), 33003104 (Spanisch), 33003696 (Italienisch), 33003697 (Chinesisch)
EcoStruxure™ Control Expert – Programmiersprachen und Struktur, Referenzhandbuch	35006144 (Englisch), 35006145 (Französisch), 35006146 (Deutsch), 35013361 (Italienisch), 35006147 (Spanisch), 35013362 (Chinesisch)
EcoStruxure™ Control Expert – Kommunikation, Bausteinbibliothek	33002527 (Englisch), 33002528 (Französisch), 33002529 (Deutsch), 33003682 (Italienisch), 33002530 (Spanisch), 33003683 (Chinesisch)
EcoStruxure™ Control Expert – E/A-Verwaltung, Bausteinbibliothek	33002531 (Englisch), 33002532 (Französisch), 33002533 (Deutsch), 33003684 (Italienisch), 33002534 (Spanisch), 33003685 (Chinesisch)
EcoStruxure™ Control Expert – Concept- Anwendungskonverter, Benutzerhandbuch	33002515 (Englisch), 33002516 (Französisch), 33002517 (Deutsch), 33003676 (Italienisch), 33002518 (Spanisch), 33003677 (Chinesisch)

Sie können diese technischen Veröffentlichungen sowie andere technische Informationen von unserer Website herunterladen: <u>www.schneider-electric.com/en/download</u>.

Produktbezogene Informationen

WARNUNG

UNBEABSICHTIGTER GERÄTEBETRIEB

Die Anwendung dieses Produkts erfordert Fachkenntnisse bezüglich der Entwicklung und Programmierung von Steuerungssystemen. Nur Personen mit solchen Fachkenntnissen sollten dieses Produkt programmieren, installieren, ändern und anwenden.

Befolgen Sie alle landesspezifischen und örtlichen Sicherheitsnormen und -vorschriften.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Teil I Physische Implementierung von Analogmodulen

Inhalt dieses Abschnitts

In diesem Teil wird die physische Implementierung der Eingangs- und -Ausgangsmodule der Produktfamilie Modicon M80 sowie des zugehörigen TELEFAST-Kabelzubehörs beschrieben.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
1	Allgemeine Regeln für die physikalische Implementierung von Analogmodulen	17
2	Diagnose für analoge Module	55
3	BMX AMI 0410-Analogeingangsmodul	59
4	Analoges Eingangsmodul BMX AMI 0800	81
5	Analoges Eingangsmodul BMX AMI 0810	107
6	BMX ART 0414/0814 Analogeingangsmodule	129
7	BMX AMO 0210-Analogausgangsmodul	155
8	Analoges Ausgangsmodul BMX AMO 0410	171
9	Analoges Ausgangsmodul BMX AMO 0802	187
10	BMX AMM 0600 Analoges Eingangs-/Ausgangsmodul	203

Kapitel 1 Allgemeine Regeln für die physikalische Implementierung von Analogmodulen

Inhalt des Kapitels

Dieses Kapitel beschreibt die allgemeinen Regeln für die Implementierung der analogen Ein-/Ausgangsmodule.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Installation analoger Ein-/Ausgangsmodule	18
Anschluss analoger Ein-/Ausgangsmodule	20
Anschlussblöcke mit 20 Anschlusspunkten: BMX FTB 20•0	22
28-polige Klemmenleisten: BMX FTB 28•0	25
BMX FTW •01S-Kabel	28
BMX FTW •08S-Kabel	31
BMX FCW •01S-Kabel	34
Montage eines 20-poligen Anschlussblock an einem Modul	38
Befestigen einer 28-poligen Klemmenleiste mit einem Modul	42
Montage eines 40-poligen Steckverbinders vom Typ FCN an einem Modul	46
Schirmanschlusskit	48
Abmessungen der X80-E/A-Analogmodule	51
Normen und Zertifizierungen	53

Installation analoger Ein-/Ausgangsmodule

Einführung

Die analogen Ein-/Ausgangsmodule werden über den Bus des Racks mit Strom versorgt. Die Module können ohne Abschalten der Stromversorgung am Rack installiert und deinstalliert werden, ohne dass ein Risiko von Schäden oder Störungen der SPS besteht.

Die Implementierungsschritte (Installation, Montage und Demontage) werden unten beschrieben.

Vorsichtsmaßnahmen bei der Installation

Die Modicon X80-Analogmodule können in jeder beliebigen Position im Rack installiert werden außer:

- in den Positionen, die den Spannungsversorgungsmodulen des Racks (gekennzeichnet als PS, PS1 und PS2) vorbehalten sind.
- die Positionen, die für erweiterte Module (mit XBE gekennzeichnet) reserviert sind
- die Positionen, die für die CPU im lokalen Hauptrack (gekennzeichnet mit 00 oder 00 und 01, abhängig von der CPU) reserviert sind
- die Positionen, die für das (e)X80-Adaptermodul in der dezentralen Hauptstation (gekennzeichnet mit 00) reserviert sind

Der Bus unten am Rack ist für die Stromversorgung zuständig (3,3 V und 24 V).

Vor der Installation des Moduls müssen Sie die Schutzkappe des Modulsteckverbinders am Rack abnehmen.

\Lambda 🗛 GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Stellen Sie beim Einbauen/Entfernen der Module sicher, dass die Klemmleiste weiterhin mit der Abschirmungsleiste verbunden ist, und trennen Sie die Stromversorgung der Sensoren und Stellglieder.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

HINWEIS: Alle Module vor der Auslieferung im Werk kalibriert. Im Allgemeinen ist eine Kalibrierung des Moduls nicht notwendig. Für bestimmte Anwendungen oder aufgrund geltender Standardanforderungen (z. B. in der Pharmaindustrie) kann es jedoch empfehlenswert oder sogar unerlässlich sein, das Modul in bestimmten Zeitabständen neu zu kalibrieren.

Installation des Moduls

Die folgende Tabelle beschreibt die Vorgehensweise zur Montage der analogen E/A-Module auf dem Rack.

Schritt	Aktion	
1	Entfernen Sie die Schutzabdeckung vom Modulsteckplat	z auf dem Modicon X80-Rack.
2	Positionieren Sie die Unverwechselbarkeitsstifte auf der Rückseite des Moduls (am unteren Teil) in dem entsprechenden Steckplatz am Rack.	
3	Schieben Sie das Modul gegen die obere Seite des Racks, sodass das Modul mit der Rückseite des Racks bündig ist.	
4	Ziehen Sie die Montageschraube an der Moduloberseite fest, um das Modul in seiner Position im Rack zu sichern. Anzugsmoment: 0,4 bis 1,5 N•m (0,30 bis 1,10 lbf-ft).	

A WARNUNG

UNBEABSICHTIGTER GERÄTEBETRIEB

Stellen Sie sicher, dass die Montageschraube ordnungsgemäß festgezogen ist, um die sichere Befestigung des Moduls am Rack zu gewährleisten.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Anschluss analoger Ein-/Ausgangsmodule

Einführung

Analoge Eingangs-/Ausgangsmodule werden mit Sensoren, Vorstellgliedern oder Klemmen angeschlossen mithilfe von:

- einer abnehmbaren Klemmenleiste oder
- einem vormontierten Kabelsatz oder
- dem vorverdrahteten TELEFAST-System für den schnellen Anschluss an operative Teile.

Kompatibilität abnehmbarer Klemmenleisten

Die folgende Tabelle bietet einen Überblick über die Kompatibilität zwischen Analogmodulen und abnehmbaren Klemmenleisten:

Abnehmbare Klemmenleisten		20-polig BMX FTB 20•0	28-polig BMX FTB 28•0
Eingangsmodule	BMX AMI 0410(H)	Ja	Nein
	BMX AMI 0800	Nein	Ja
	BMX AMI 0810(H)	Nein	Ja
	BMX ART 0414(H)	Nein	Nein
	BMX ART 0814(H)	Nein	Nein
Ausgangsmodule	BMX AMO 0210(H)	Ja	Nein
	BMX AMO 0410(H)	Ja	Nein
	BMX AMO 0802(H)	Ja	Nein
Kombiniertes Ein- /Ausgangsmodul	BMX AMM 0600(H)	Ja	Nein

HINWEIS: Die BMX ART ••••-Module benötigen vormontierte Kabelsätze oder TELEFAST-Zubehör, um Sensoren an die 40-poligen FCN-Stecker anzuschließen.

Kompatibilität vormontierter Kabelsätze

Die folgende Tabelle bietet einen Überblick über die Kompatibilität zwischen Analogmodulen und vormontierten Kabelsätzen:

Vormontierter Kabelsatz		BMX FCW •01S	BMX FTW •01S	BMX FTW •08S
Eingangsmodule	BMX AMI 0410(H)	Nein	Ja	Nein
	BMX AMI 0800	Nein	Nein	Ja
	BMX AMI 0810(H)	Nein	Nein	Ja
	BMX ART 0414(H)	Ja	Nein	Nein
	BMX ART 0814(H)	Ja	Nein	Nein
Ausgangsmodule	BMX AMO 0210(H)	Nein	Ja	Nein
	BMX AMO 0410(H)	Nein	Ja	Nein
	BMX AMO 0802(H)	Nein	Ja	Nein
Kombiniertes Ein-/Ausgangsmodul	BMX AMM 0600(H)	Nein	Ja	Nein

TELEFAST-Verdrahtungszubehör

Die folgende Tabelle bietet einen Überblick über die Kompatibilität zwischen Analogmodulen und TELEFAST-Verdrahtungszubehör:

TELEFAST-Zubehör		Verbindungskabel	Schnittstellen-Anschlussplatte
Eingangsmodule	BMX AMI 0410(H)	BMX FCA ••0	ABE-7CPA410
	BMX AMI 0800	BMX FTA ••0	Auswahl unter: • ABE-7CPA02 • ABE-7CPA03 • ABE-7CPA31 • ABE-7CPA31E
	BMX AMI 0810(H)	BMX FTA ••0	Auswahl unter: • ABE-7CPA02 • ABE-7CPA31 • ABE-7CPA31E
	BMX ART 0414(H)	BMX FCA ••2	ABE-7CPA412
	BMX ART 0814(H)	BMX FCA ••2	ABE-7CPA412
Ausgangsmodule	BMX AMO 0210(H)	BMX FCA ••0	ABE-7CPA21
	BMX AMO 0410(H)	BMX FCA ••0	ABE-7CPA21
	BMX AMO 0802(H)	BMX FTA ••2	ABE-7CPA02
Kombiniertes Ein-/Ausgangsmodul	BMX AMM 0600(H)	-	-

HINWEIS: Das Ein-/Ausgangsmodul BMX AMM 0600 kann nicht an TELEFAST-Verdrahtungszubehör angeschlossen werden.

Anschlussblöcke mit 20 Anschlusspunkten: BMX FTB 20•0

Einführung

Es gibt drei Typen von 20-poligen Anschlussblöcken:

- Schraubanschlussblöcke BMX FTB 2010
- Käfigzuganschlussblöcke BMX FTB 2000
- Federzuganschlussblöcke BMX FTB 2020

Drahtenden und Kontakte

Jeder Anschlussblock kann Folgendes aufnehmen:

- Ungeschützte Drähte
- Drähte mit:
 - Kabelenden vom Typ DZ5-CE (Aderendhülsen):
 - o Kabelenden vom Typ AZ5-DE (Zwillings-Aderendhülsen):

HINWEIS: Bei Verwendung eines Litzenkabels empfiehlt Schneider Electric nachdrücklich die Verwendung von Aderendhülsen, die mithilfe eines geeigneten Crimpwerkzeugs anzubringen sind.

Beschreibung der 20-poligen Anschlussblöcke

In der nachfolgenden Tabelle werden die für jeden Anschlussblock geeigneten Drahttypen mit Drahtstärke, Verdrahtungsbeschränkungen und Anzugsmoment angegeben:

	Schraubanschlussblöcke	Käfigzuganschlussblöcke	Federzuganschlussblöcke
	BMX FTB 2010	BMX FTB 2000	BMX FTB 2020
Beschreibung			

	Schraubanschlussblöcke BMX FTB 2010	Käfigzuganschlussblöcke BMX FTB 2000	Federzuganschlussblöcke BMX FTB 2020
1 Massivleiter	 AWG: 2216 mm²: 0,341,5 	 AWG: 2218 mm²: 0,341 	 AWG: 2218 mm²: 0,341
2 Massivleiter	2 Leiter derselben Stärke: • AWG: 2 x 2216 • mm ² : 2 x 0,341,5	Nur möglich mit Zwillings- Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0,240,75	Nur möglich mit Zwillings- Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0,240,75
1 Litzenkabel	 AWG: 2216 mm²: 0,341,5 	 AWG: 2218 mm²: 0,341 	 AWG: 2218 mm²: 0,341
2 Litzenkabel	2 Leiter derselben Stärke: • AWG: 2 x 2216 • mm ² : 2 x 0,341,5	Nur möglich mit Zwillings- Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0,240,75	Nur möglich mit Zwillings- Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0,240,75
1 Litzenkabel mit Aderendhülsen	 AWG: 2216 mm²: 0,341,5 	 AWG: 2218 mm²: 0,341 	 AWG: 2218 mm²: 0,341
2 Litzenkabel mit Aderendhülsen	 AWG: 2 x 2418 mm²: 2 x 0,241 	 AWG: 2 x 2420 mm²: 2 x 0,240,75 	 AWG: 2 x 2420 mm²: 2 x 0,240,75
Minimale individuelle Drahtstärke für Litzenkabel ohne Aderendhülsen	 AWG: 30 mm²: 0,0507 	 AWG: 30 mm²: 0,0507 	 AWG: 30 mm²: 0,0507
Beschränkungen hinsichtlich der Verdrahtung	 Schraubanschlüsse verfügen über Schlitze zur Aufnahme von: Flachkopfschraubendreher mit 5-mm-Durchmesser Kreuzschlitzschraubendreher Pozidriv PZ1 oder Philips PH1 Schraubanschlussblöcke verfügen über unverlierbare Schrauben. Im Auslieferungszustand sind die Schrauben nicht angezogen. 	 Sicherheitsanschlussblöcke verfügen über Schlitze zur Aufnahme von: Flachkopfschraubendreher mit 3-mm-Durchmesser Sicherheitsanschlussblöcke verfügen über unverlierbare Schrauben. Im Auslieferungszustand sind die Schrauben nicht angezogen. 	Zum Anschließen der Drähte drücken Sie jeweils auf die Taste neben dem Anschlusspunkt. Um auf die Taste zu drücken, verwenden Sie einen Flachkopfschraubendreher mit einem maximalen Durchmesser von 3 mm.
Anzugsmoment der Schrauben	0,5 N•m (0.37 lbf-ft)	0,4 N•m (0.30 lbf-ft)	Nicht von Bedeutung

Anschluss der 20-poligen Anschlussblöcke

\Lambda 🗛 GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Schalten Sie die gesamte Spannungszufuhr der Sensoren und Vorstellglieder ab, bevor Sie einen Anschlussblock anschließen beziehungsweise abnehmen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Das folgende Diagramm zeigt, wie die Tür eines 20-poligen Anschlussblocks geöffnet wird, damit dieser verdrahtet werden kann:

HINWEIS: Das Verbindungskabel wird durch eine Kabelklemme unterhalb des 20-poligen Anschlussblocks befestigt und gesichert.

Beschriftung der 20-poligen Anschlussblöcke

Die Beschriftungen für die 20-poligen Anschlussblöcke werden zusammen mit dem Modul ausgeliefert. Sie müssen vom Kunden in die Anschlussblockabdeckung eingefügt werden.

Jede Beschriftung hat zwei Seiten:

- Eine Seite ist von außen bei geschlossener Abdeckung sichtbar. Auf dieser Seite befinden sich die Handelsproduktreferenznummern, eine verkürzte Modulbeschreibung sowie ein Leerbereich für Eintragungen des Kunden.
- Eine Seite ist von innen bei geöffneter Abdeckung sichtbar. Diese Seite enthält das Anschlussdiagramm für den Anschlussblock.

28-polige Klemmenleisten: BMX FTB 28-0

Einführung

Es stehen 2 Typen 28-poliger Klemmenleisten zur Auswahl:

- Käfigzugklemmenleisten BMX FTB 2800
- Federzugklemmenleisten BMX FTB 2820

Drahtenden und Kontakte

Jede Klemmenleiste kann Folgendes aufnehmen:

- Ungeschützte Drähte:
 - o Massivleiter
 - o Litzenkabel
- Drähte mit Aderendhülsen:

• Doppelte Drahtenden vom Typ AZ5DE ••••:

HINWEIS: Bei Verwendung eines Litzenkabels empfiehlt Schneider Electric nachdrücklich die Verwendung von Aderendhülsen, die mithilfe eines geeigneten Crimpwerkzeugs anzubringen sind.

Beschreibung der 28-poligen Klemmenleiste

In der nachfolgenden Tabelle werden die für jede Klemmenleiste geeigneten Drahttypen mit Drahtstärke, Verdrahtungsbeschränkungen und Anzugsmoment angegeben:

	Sicherheitsklemmenleisten BMX FTB 2800	Federspannklemmenleisten BMX FTB 2820
Beschreibung		

	Sicherheitsklemmenleisten BMX FTB 2800	Federspannklemmenleisten BMX FTB 2820
1 Massivleiter	• AWG: 2218	• AWG: 2218
	• mm ² : 0,341	• mm ² : 0,341
2 Massivleiter	Nur möglich mit Zwillings-Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75	Nur möglich mit Zwillings-Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75
1 Litzenkabel	• AWG: 2218	• AWG: 2218
*	• mm ² : 0,341	• mm ² : 0,341
2 Litzenkabel	Nur möglich mit Zwillings-Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75	Nur möglich mit Zwillings-Aderendhülsen: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75
1 Litzenkabel mit	• AWG: 2218	• AWG: 2218
	• mm ⁻ : 0,341	• mm ² : 0,341
2 Litzenkabel mit	• AWG: 2 x 2420	• AWG: 2 x 2420
	• mm ² : 2 x 0,240,75	• mm ² : 2 x 0,240,75
Minimale individuelle	• AWG: 30	• AWG: 30
Drahtstärke für Litzenkabel ohne Aderendhülsen	• mm ² : 0,0507	• mm ² : 0,0507
Beschränkungen	Sicherheitsklemmenleisten verfügen über	Zum Anschließen der Drähte drücken Sie
hinsichtlich der Verdrahtung	Schlitze zur Aufnahme von: • Flachkopfschraubendreher mit 3-mm- Durchmesser	jeweils auf die Taste neben dem Anschlusspunkt. Um auf die Taste zu drücken, verwenden Sie
	Sicherheitsklemmenleisten verfügen über unverlierbare Schrauben. Im Auslieferungszustand sind die Schrauben nicht angezogen.	einen Flachkopfschraubendreher mit einem maximalen Durchmesser von 3 mm.
Anzugsmoment der Schrauben	0,4 N•m (0,30 lbf-ft)	Entfällt

Anschluss der 28-poligen Klemmenleiste

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Schalten Sie die gesamte Spannungszufuhr der Sensoren und Vor-Aktuatoren ab, bevor Sie eine Klemmenleiste anschließen beziehungsweise abnehmen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Die folgende Abbildung zeigt, wie die Abdeckung einer Klemmenleiste geöffnet wird, damit diese verdrahtet werden kann:

HINWEIS: Das Verbindungskabel wird durch eine Kabelklemme unterhalb der 28-poligen Klemmenleiste befestigt und gesichert.

Markierung der Klemmenleisten

Die Markierungen für Klemmenleisten werden zusammen mit dem Modul ausgeliefert. Sie müssen vom Kunden in die Klemmenleistenabdeckung eingefügt werden.

Jede Beschriftung hat zwei Seiten:

- Eine Seite ist von außen bei geschlossener Abdeckung sichtbar. Auf dieser Seite befinden sich die Handelsproduktreferenznummern, eine verkürzte Modulbeschreibung sowie ein Leerbereich für Eintragungen des Kunden.
- Eine Seite ist von innen bei geöffneter Abdeckung sichtbar. Diese Seite enthält das Anschlussdiagramm für die Klemmenleiste.

BMX FTW •01S-Kabel

Einführung

Steckverbinder mit 20 Anschlusspunkten werden durch ein Kabel mit Sensoren, Vorstellgliedern und Terminals verbunden. Das Kabel soll eine direkte Kabelübertragung der Eingänge/Ausgänge des Moduls ermöglichen.

WARNUNG

UNERWARTETER GERÄTEBETRIEB

Verwenden Sie ausschließlich einen Anschluss, der für das spezifische Modul entwickelt wurde. Das Einstecken des falschen Anschlusses kann ein unerwartetes Verhalten der Anwendung zur Folge haben.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Kabelbeschreibung

Die BMX FTW •01S-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 20-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 20 Drähten abgeht.
- Das andere Ende weist frei stehende farbcodierte Drähte auf.

Die folgende Abbildung zeigt die BMX FTW •01S-Kabel:

mm in.

- 1 BMX FTB 2020-Klemmenleiste
- 2 Abschirmung der Kabel
- 3 Erster äußerer Kabelmantel
- 4 Nicht abisolierte Drähte
- 5 Strang aus Nylon, der das leichte Abziehen des Kabelmantels ermöglicht.
- L Länge gemäß der Teilenummer.

Das Kabel ist in zwei verschiedenen Längen erhältlich:

- 3 m (9.84 ft): BMX FTW 301S;
- 5 m (16.40 ft): BMX FTW 501S;

Anschlussbelegung

Die nachfolgende Abbildung zeigt den Anschluss von BMX FTW •01S-Kabeln:

Eigenschaften

In der folgenden Tabelle sind die Eigenschaften der BMX FTW •01S-Kabel aufgeführt:

Merkmal		Wert
Kabel	Ummantelungsmaterial	PVC
	LSZH-Status	Nein
Beschreibung des Leiters	Anzahl der Leiter	20
	Leiterquerschnitt (Stärke)	0,34 mm ² (22 AWG)
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)
Geltende Normen		DIN47100

Installation der Kabel

\Lambda 🗛 GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Schalten Sie die gesamte Spannungszufuhr der Sensoren und Vor-Aktuatoren ab, bevor Sie eine Klemmenleiste anschließen beziehungsweise abnehmen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Das folgende Diagramm zeigt das an das Modul angeschlossene, vormontierte Kabel:

Weitere Informationen finden Sie im Abschnitt *Befestigen einer 20-poligen Klemmenleiste an einem Modul (siehe Seite 38)*.

BMX FTW •08S-Kabel

Einführung

Module mit 28-poligen Steckverbindern werden durch ein Kabel mit Sensoren, Vorstellgliedern und Klemmen verbunden. Das Kabel soll eine problemlose direkte Kabelübertragung der Eingänge/Ausgänge des Moduls ermöglichen.

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

Gehen Sie bei der Installation äußerst vorsichtig vor, um etwaige nachfolgenden Fehler bei den Anschlüssen zu vermeiden. Das Einstecken des falschen Anschlusses würde ein unerwartetes Verhalten der Anwendung zur Folge haben.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Kabelbeschreibung

Die BMX FTW •08S-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende ein 28-poliger Steckverbinder, von dem ein ummanteltes Kabel mit 24 Drähten abgeht.
- Am anderen Ende frei stehende farbcodierte Drähte.

Die folgende Abbildung zeigt die BMX FTW •08S-Kabel:

mm in.

- 1 BMX FTB 2820-Klemmenleiste
- 2 Abschirmung der Kabel
- 3 Erster äußerer Kabelmantel
- 4 Nicht abisolierte Drähte
- 5 Strang aus Nylon, der das leichte Abziehen des Kabelmantels ermöglicht.
- L Länge gemäß der Teilenummer.

Das Kabel ist in zwei verschiedenen Längen erhältlich:

- 3 Meter: BMX FTW 308S
- 5 Meter: BMX FTW 508S

Pinbelegung

Die nachfolgende Abbildung zeigt den Anschluss von BMX FTW •08S-Kabeln:

Eigenschaften

In der folgenden Tabelle sind die Eigenschaften der BMX FTW •08S-Kabel aufgeführt:

Merkmal		Wert
Kabel	Ummantelungsmaterial	PVC
	LSZH-Status	Nein
Beschreibung des Leiters	Anzahl der Leiter	24
	Leiterquerschnitt (Stärke)	0,34 mm ² (22 AWG)
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)
Geltende Normen		DIN47100

Anbringen der Kabel

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Schalten Sie die gesamte Spannungszufuhr der Sensoren und Vor-Aktuatoren ab, bevor Sie eine Klemmenleiste anschließen beziehungsweise abnehmen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

In folgendem Diagramm wird der Anschluss des Kabels an das Modul dargestellt:

Weitere Informationen finden Sie im Abschnitt *Befestigen einer 28-poligen Klemmenleiste an einem Modul (siehe Seite 42).*

BMX FCW •01S-Kabel

Einführung

Module mit 40-poligen Steckverbindern werden durch ein Kabel mit Sensoren, Vorstellgliedern oder Klemmen verbunden. Das Kabel soll eine problemlose direkte Kabelübertragung der Eingänge/Ausgänge des Moduls ermöglichen.

Kabelbeschreibung

Die BMX FCW •01S-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende ein 40-poliger Steckverbinder, von dem ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende frei stehende farbcodierte Drähte.

Die folgende Abbildung zeigt die BMX FCW •01S-Kabel:

 $\frac{mm}{in}$

- 1 40-poliger Steckverbinder, FCN-Typ
- 2 Abschirmung der Kabel
- 3 Vorgefertigter äußerer Kabelmantel
- 4 Nicht abisolierte Drähte
- 5 Strang aus Nylon, der das leichte Abziehen des Kabelmantels ermöglicht.
- L Länge gemäß der Teilenummer.

Das Kabel ist in zwei verschiedenen Längen erhältlich:

- 3 Meter: BMX FCW 301S,
- 5 Meter: BMX FCW 501S.

Anschlussbelegung

Die folgende Abbildung zeigt den Anschluss der BMX FCW •01S-Kabel:

Eigenschaften

In der folgenden Tabelle sind die Eigenschaften der BMX FCW •01S-Kabel aufgeführt:

Merkmal		Wert
Kabel	Ummantelungsmaterial	PVC
	LSZH-Status	Nein
Beschreibung des Leiters	Anzahl der Leiter	20
	Leiterquerschnitt (Stärke)	0,34 mm ² (22 AWG)
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)
Geltende Normen		DIN47100

Anbringen der Kabel

\Lambda 🗛 GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Schalten Sie die gesamte Spannungszufuhr der Sensoren und Vor-Aktuatoren ab, bevor Sie eine Klemmenleiste anschließen beziehungsweise abnehmen.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

Gehen Sie bei der Installation äußerst vorsichtig vor, um etwaige nachfolgenden Fehler bei den Anschlüssen zu vermeiden. Das Einstecken des falschen Anschlusses hat ein unerwartetes Verhalten der Anwendung zur Folge.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.
In folgendem Diagramm wird das Anschließen des Kabels an das Modul dargestellt:

Weitere Informationen finden Sie im Abschnitt *Befestigen eines 40-poligen FCN-Typs an einem Modul (siehe Seite 46).*

Montage eines 20-poligen Anschlussblock an einem Modul

Einführung

Bei allen Modulen, die über Anschlussblöcke mit 20 Anschlusspunkten verfügen, müssen diese mit dem Modul verbunden werden. Diese Befestigungsvorgänge (Montage und Demontage) werden unten beschrieben.

\Lambda \Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Beim Anschließen bzw. Trennen des Anschlussblocks muss die Spannungsversorgung der Sensoren und Stellglieder ausgeschaltet sein.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

A VORSICHT

MATERIALSCHÄDEN

Schließen Sie keinen Wechselstrom-Anschlussblock an ein Gleichstrom-Modul an. Dies führt zur Beschädigung des Moduls.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Installation des Anschlussblocks

In der folgenden Tabelle wird die Vorgehensweise zur Montage eines Anschlussblocks mit 20 Anschlusspunkten an einem digitalen Ein-/Ausgangsmodul beschrieben.

Montageverfahren

Schritt	Aktion
1	Sobald das Modul auf dem Rack positioniert wurde, installieren Sie den Anschlussblock, indem Sie den Wertgeber des Anschlussblocks (der hintere untere Bereich der Anschlussklemme) in den Wertgeber des Moduls einfügen (der vordere untere Bereich des Moduls, wie unten dargestellt.
	HINWEIS: Die Modulstecker verfügen über Kennzeichnungen, die die richtige Ausrichtung für die Installation des Anschlussblocks angeben.
2	Befestigen Sie den Anschlussblock am Modul, indem Sie die beiden Befestigungsschrauben oben und unten am Anschlussblock anziehen. Anzugsmoment: 0,4 N•m (0.30 lbf-ft).

HINWEIS: Wenn die Schrauben nicht angezogen werden, besteht das Risiko, dass der Anschlussblock nicht richtig am Modul befestigt ist.

Kodierung des 20-poligen Anschlussblocks

A WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG

Kodieren Sie den Anschlussblock wie unten beschrieben, um dessen Montage in einem anderen Modul zu verhindern.

Das Einstecken des falschen Steckers kann ein unerwartetes Verhalten der Anwendung zur Folge haben.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

A VORSICHT

ZERSTÖRUNG DES MODULS

Kodieren Sie den Anschlussblock wie unten beschrieben, um dessen Montage in einem anderen Modul zu verhindern.

Das Einstecken des falschen Steckers kann zur Unbrauchbarkeit des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Wenn ein 20-Pin-Anschlussblock in einem für diesen Anschlussblock vorgesehenen Modul installiert wird, können Sie den Anschlussblock kodieren und das Modul mit Kontaktbolzen verwenden. Die Kontaktbolzen sollen verhindern, dass der Anschlussblock an einem anderen Modul befestigt wird. So kann beim Austausch eines Moduls fehlerhaftes Einstecken vermieden werden.

Die Kodierung erfolgt durch den Benutzer mithilfe der Kontaktbolzen des Führungsrads STB XMP 7800. Sie können nur die 6 Steckplätze in der Mitte der linken Seite (von der Verdrahtungsseite aus gesehen) des Anschlussblocks und die 6 Führungsschlitze des Moduls auf der linken Seite mit Kontaktbolzen versehen.

Um den Anschlussblock am Modul zu montieren, muss ein Modulschlitz mit einem Kontaktbolzen einem leeren Steckplatz am Anschlussblock entsprechen oder ein Anschlussblock mit einem Kontaktbolzen muss einem leeren Steckplatz im Modul entsprechen. Sie können bis zu 6 der verfügbaren Steckplätze beliebig mit Kontaktbolzen versehen.

Das nachfolgende Diagramm zeigt ein Führungsrad und die Steckplätze am Modul, die zur Kodierung des Anschlussblocks mit 20 Anschlusspunkten eingesetzt werden.

Modulsteckplätze

Die folgende Abbildung zeigt eine beispielhafte Kodierungskonfiguration, bei der eine Montage des Anschlussblocks am Modul möglich ist.

Die folgende Abbildung zeigt eine beispielhafte Kodierungskonfiguration, bei der eine Montage des Anschlussblocks am Modul nicht möglich ist.

Befestigen einer 28-poligen Klemmenleiste mit einem Modul

Einführung

Bei Modulen , die über 28-polige Klemmenleisten verfügen, müssen diese mit dem Modul verbunden werden. Diese Befestigungsvorgänge (Montage und Demontage) werden unten beschrieben.

\Lambda \Lambda GEFAHR

STROMSCHLAG

Beim Anschließen bzw. Trennen der Klemmenleiste muss die Stromversorgung der Sensoren und Stellglieder ausgeschaltet sein.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

AVORSICHT

MATERIALSCHÄDEN

Schließen Sie keine Wechselstrom-Klemmenleiste an ein Gleichstrom-Modul an. Dies führt zur Beschädigung des Moduls.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Installieren der Klemmenleiste

In der folgenden Tabelle wird die Vorgehensweise zur Montage einer 28-poligen Klemmenleiste an Modulen beschrieben:

Montageverfahren:

Schritt	Aktion
aus1	Sobald das Modul auf dem Rack positioniert wurde, installieren Sie die Klemmenleiste, indem Sie den Wertgeber der Klemmenleiste (der hintere untere Bereich der Klemme) in den Wertgeber des Moduls einfügen (der vordere untere Bereich des Moduls, wie unten dargestellt.
2	Befestigen Sie die Klemmenleiste am Modul, indem Sie die beiden Befestigungsschrauben oben und unten an der Klemmenleiste anziehen. Anzugsmoment: 0,4 N•m (0,30 lbf-ft).

HINWEIS: Wenn die Schrauben nicht angezogen werden, besteht das Risiko, dass die Klemmenleiste nicht richtig am Modul befestigt ist.

Codierung der Klemmenleiste

WARNUNG

UNERWARTETES VERHALTEN DER ANWENDUNG

Codieren Sie die Klemmenleiste wie oben beschrieben, um zu verhindern, dass die Klemmenleiste an einem anderen Modul befestigt wird.

Das Einstecken des falschen Steckers kann ein unerwartetes Verhalten der Anwendung zur Folge haben.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

A VORSICHT

MÖGLICHE BESCHÄDIGUNG DES MODULS

Codieren Sie die Klemmenleiste wie oben beschrieben, um zu verhindern, dass die Klemmenleiste an einem falschen Modul befestigt wird. Die Montage einer Klemmenleiste an einem falschen Modul kann zu einer Beschädigung dieses Moduls führen.

Das Einstecken des falschen Anschlusses kann zur Unbrauchbarkeit des Moduls führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Wenn eine Klemmenleiste an einem für diese Klemmenleiste vorgesehenen Modul installiert wird, können Sie die Klemmenleiste codieren und das Modul mit Kontaktbolzen verwenden. Die Kontaktbolzen sollen verhindern, dass die Klemmenleiste an einem anderen Modul befestigt wird. So können beim Austausch eines Moduls Fehler vermieden werden. Die Codierung erfolgt durch den Benutzer mithilfe der Kontaktbolzen des Führungsrads STB XMP 7800. Sie können nur die 6 Steckplätze in der Mitte der linken Seite (von der Verdrahtungsseite aus gesehen) der Klemmenleiste und die 6 Führungsschlitze des Moduls auf der linken Seite mit Kontaktbolzen versehen.

Um die Klemmenleiste am Modul zu montieren, muss ein Modulschlitz mit einem Kontaktbolzen einem leeren Steckplatz in der Klemmenleiste entsprechen, oder eine Klemmenleiste mit einem Kontaktbolzen muss einem leeren Steckplatz im Modul entsprechen. Sie können bis zu 6 der verfügbaren Steckplätze beliebig mit Kontaktbolzen versehen.

Das nachfolgende Diagramm zeigt ein Führungsrad und die Steckplätze am Modul, die zur Codierung einer 28-poligen Klemmenleiste eingesetzt werden:

Die folgende Abbildung zeigt eine beispielhafte Codierungskonfiguration, bei der eine Montage der Klemmenleiste am Modul möglich ist.

Die folgende Abbildung zeigt eine beispielhafte Codierungskonfiguration, bei der eine Montage der Klemmenleiste am Modul nicht möglich ist.

HINWEIS: Die Modulstecker verfügen über Kennzeichnungen, die die richtige Ausrichtung für die Installation der Klemmenleisten angeben.

Montage eines 40-poligen Steckverbinders vom Typ FCN an einem Modul

Einführung

Bei allen Modulen, die über Steckverbinder vom Typ FCN mit 40 Anschlusspunkten verfügen, müssen diese mit dem Modul verbunden werden. Diese Befestigungsvorgänge (Montage und Demontage) werden unten beschrieben.

\Lambda 🗛 GEFAHR

STROMSCHLAG

Beim Anschließen bzw. Trennen des FCN-Anschlussblocks muss die Spannungsversorgung der Sensoren und Vorstellglieder ausgeschaltet sein.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

A VORSICHT

MATERIALSCHÄDEN

Achten Sie darauf, dass Sie keinen Wechselstrom-Anschlussblock an ein Gleichstrom-Modul anschließen. Dies könnte zu einer Beschädigung des Geräts führen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Installation des Steckverbinders

Die folgende Tabelle zeigt das Verfahren zur Montage des Steckverbinders an einem Modul:

Montageverfahren:

Schritt	Aktion
1	Sobald das Modul im Rack installiert ist, führen Sie den FCN-Steckverbinder des Kabels in den Anschluss am Modul ein, wie oben gezeigt.
2	Befestigen Sie den Steckerbinder am Modul, indem Sie die beiden Befestigungsschrauben oben und unten am Anschlussblock anziehen. Anzugsmoment: 0,4 N•m (0.30 lbf-ft).

HINWEIS: Wenn die Schrauben nicht angezogen werden, besteht das Risiko, dass der Anschlussblock nicht richtig am Modul befestigt ist.

Schirmanschlusskit

Einführung

Das Anschlusskit für die Kabelschirmung BMXXSP••••ermöglicht die direkte Verbindung der Kabelschirmung mit der Erde und nicht mit der Modulschirmung, um den Schutz des Systems vor elektromagnetischen Störungen zu gewährleisten.

Schließen Sie die Schirmung an die Verbindungsleitungen für folgende Komponenten an:

- Analogmodule
- Zählmodule
- Geberschnittstellenmodule
- Bewegungssteuerungsmodule
- XBT-Konsole zum Prozessor (über ein USB-Kabel)

Satz-Referenzen

Jedes Schirmanschlusskit umfasst folgende Komponenten:

- Metallschiene
- Zwei Tragschichten

Die Referenz des Schirmverbindungssatzes ist von der Größe des Modicon X80-Racks abhängig:

X-Bus-Racks / Dual-Ethernet- und -X- Bus-Racks	Anzahl der Steckplätze	Schirmanschlusskit
BMXXBP0400(H)	4	RMXXSD0400
BMEXBP0400(H)	4	BMAASP0400
BMXXBP0600(H)	6	BMXXSP0600
BMXXBP0800(H)	0	
BMEXBP0800(H)	0	BMAASP0800
BMXXBP1200(H)	10	BMXXSP1200
BMEXBP1200(H)		

Racks mit redundanter Spannungsversorgung	Anzahl der Steckplätze	Schirmanschlusskit
BMEXBP0602(H)	6	BMXXSP0800
BMEXBP1002(H)	10	BMXXSP1200

Klemmringe

Verwenden Sie die Klemmringe, um die Schirmung der Verbindungsleitungen mit der Metallschiene des Kits zu verbinden.

HINWEIS: Die Klemmringe sind nicht im Lieferumfang des Schirmanschlusskits enthalten.

Je nach Kabeldurchmesser sind die Klemmringe mit folgenden Referenzen verfügbar:

- STBXSP3010: Schmale Ringe f
 ür Kabel mit einem Querschnitt im Bereich 1.5...6 mm² (AWG16...10)
- STBXSP3020: Breite Ringe f
 ür Kabel mit einem Querschnitt im Bereich 5...11 mm² (AWG10...7)

Installation des Kits

Das Schirmanschlusskit kann im Rack an einem bereits installierten Modul angebracht werden, mit Ausnahme des Rack-Erweiterungsmoduls BMXXBE0100.

Befestigen Sie die Tragschichten des Kits an beiden Enden des Racks, um eine Verbindung zwischen Kabel und Erdungsschraube des Racks herzustellen:

- 1 Rack
- 2 Tragschicht
- 3 Metallschiene
- 4 Klemmring

Anzugsmomente für die Installation des Schirmanschlusskits:

- Für die Schrauben zur Befestigung der Tragschicht am Modicon X80-Rack: Max. 0,5 N•m (0,37 lbf-ft)
- Für die Schrauben zur Befestigung der Metallschiene an den Tragschichten: Max. 0,75 N•m (0,55 lbf-ft)

HINWEIS: Durch ein Schirmanschlusskit ändert sich der Platzbedarf beim Ein- und Ausbau der Module nicht.

Abmessungen des Anschlusskits

Der nachstehenden Abbildung können Sie die Abmessungen (Höhe und Tiefe) eines Modicon X80-Racks mit dem zugehörigen Schirmanschlusskit entnehmen:

HINWEIS: Die Gesamtbreite entspricht der Breite des Modicon X80-Racks.

Abmessungen der X80-E/A-Analogmodule

Allgemeine Beschreibung der X80-E/A-Analogmodule

X80-E/A-Analogmodul mit abnehmbarer 20-poliger Klemmenleiste:

a Tiefe der DIN-Schiene: Der Wert ist von dem in Ihrer Plattform verwendeten DIN-Schienentyp abhängig.

X80-E/A-Analogmodul mit abnehmbarer 28-poliger Klemmenleiste:

a Tiefe der DIN-Schiene: Der Wert ist von dem in Ihrer Plattform verwendeten DIN-Schienentyp abhängig. Siehe Montage der Racks (siehe Modicon X80, Racks und Spannungsversorgungen, Hardware-Referenzhandbuch).

X80-E/A-Analogmodul mit 40-poligem Anschluss vom Typ FCN

a Tiefe der DIN-Schiene: Der Wert ist von dem in Ihrer Plattform verwendeten DIN-Schienentyp abhängig.

Modulreferenz	Modulabmessunge	Installationstiefe ⁽¹⁾		
	Breite	Höhe	Tiefe	
X80-E/A-Analogmodul mi	t abnehmbarer 20-po	oliger Klemmenleiste		
BMXAMI0410(H)				
BMXAMO0210(H)		103,7 mm (4.08 in.)	86 mm (3.39 in.)	119,5 mm (4.69 in.) ⁽¹⁾
BMXAMO0410(H)	32 mm (1.26 in.)			
BMXAMO0802(H)				
BMXAMM0600(H)				
X80-E/A-Analogmodul mi	t abnehmbarer 28-po	oliger Klemmenleiste		
BMXAMI0800(H)	22 mm (1.26 in)	102 7 mm (1 09 in)	86 mm (2.20 in)	
BMXAMI0810(H)	32 mm (1.20 m.)	103,7 mm (4.00 m.)	oo mm (3.39 m.)	119,5 mm (4.69 in.) ⁽¹⁾
X80-E/A-Analogmodul mit 40-poligem Anschluss vom Typ FCN				
BMXART0414(H)	22 mm (1.26 in)	103,7 mm (4.08 in.)	86 mm (3.39 in.)	126,5 mm (4.96 in.) ⁽¹⁾
BMXART0814(H)	32 mm (1.20 m.)			
(1) Tiefe der DIN-Schiene (a) nicht inbegriffen.				

Abmessungen der X80-Analogmodule

HINWEIS: Die mit den X80-E/A-Analogmodulen (20- und 28-polige abnehmbare Klemmenleisten und Anschluss vom Typ FCN) gelieferten Steckanschlüsse und die entsprechenden vorkonfektionierten Kabelsätze (BMXFTW*01S, BMXFTW*08S und BMXFCW*01S) weisen dieselben Abmessungen auf.

HINWEIS: Sehen Sie ausreichende Abstände für die Kabelinstallation und rund um die Racks vor.

Normen und Zertifizierungen

Download

Klicken Sie auf die Verknüpfung für Ihre bevorzugte Sprache, um die Normen und Zertifizierungen für die Module dieser Produktfamilie (im PDF-Format) herunterzuladen:

Titel	Sprachen
Modicon M580, M340 und X80 I/O-	• Englisch: <i>EI0000002726</i>
Plattformen, Normen und Zertifizierungen	 Französisch: <u>EIO000002727</u>
	• Deutsch: <u><i>EIO000002728</i></u>
	• Italienisch: <u><i>EIO000002730</i></u>
	• Spanisch: <i>EIO000002729</i>
	• Chinesisch: <u><i>EIO000002731</i></u>

Kapitel 2 Diagnose für analoge Module

Inhalt dieses Abschnitts

In diesem Abschnitt wird die Behandlung von erkannten Hardwarefehlern im Zusammenhang mit analogen Eingangs- und Ausgangsmodulen erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Anzeige der Analogmodulstati	56
Diagnose von Analogmodulen	57

Anzeige der Analogmodulstati

Einleitung

Die Analogmodule sind mit LEDs ausgestattet, die die Anzeige des Modulstatus und des Status der Kanäle ermöglichen. Dies sind Folgende:

- die LEDs zur Anzeige des Modulstatus: RUN, ERR und E/A.
- die LEDs zur Anzeige des Kanalstatus: IN (für Eingangsmodule), OUT (für Ausgangsmodule).

Beschreibung

Die Module sind mit verschiedenen LEDs ausgestattet, die ihren Status angeben:

Beschreibung der LEDs:

LED	Bedeutung
RUN (grün)	Modulbetriebsstatus
ERR (rot)	Interner erkannter Fehler im Modul oder ein Konflikt zwischen dem Modul und der restlichen Konfiguration.
E/A (rot)	Externer Fehler

Diagnose von Analogmodulen

Einleitung

Der Status des Analogmoduls wird durch das Aufleuchten oder Blinken der RUN-, ERR-, E/A- und Kanal-LEDs angegeben.

Beschreibung

Mithilfe der folgenden Tabelle können Sie die Diagnose des Modulstatus entsprechend den LEDs durchführen: RUN, ERR, E/A und Kanäle:

Modulstatus	Status-LEDs			
	RUN	ERR	I/O	IN • oder OUT •
normaler Betrieb	•	0	0	•
Modul läuft mit gestoppten Kanälen	•	0	0	0
Modul ausgefallen oder abgeschaltet	0	0	0	0
Modul nicht konfiguriert oder Kanalkonfiguration in Bearbeitung	\otimes	0	0	0
Interner Fehler bei Modul	0	•	0	0
Modul nicht auf Werkseinstellungen kalibriert (1)	•	0	•	0
Modul hat Probleme bei der Kommunikation mit der CPU (1)	•	\otimes	0	•
Modul nicht konfiguriert	0	\otimes	0	0
 Externer Fehler: Fehler Bereichsunterlauf/-überlauf Fehler bei Verbindung mit Sensor oder Stellglied 	•	8	•	 (2) (2) (2)
Legende:				
C LED aus				
LED blinkt schnell				
LED ein				
(1) nur beim Modul BMX AMO 0210				
(2) eine oder mehrere LEDs				

Kapitel 3 BMX AMI 0410-Analogeingangsmodul

Inhalt des Kapitels

In diesem Kapitel werden das Modul BMX AMI 0410, seine Merkmale und seine Verbindung mit den verschiedenen Sensoren beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	60
Technische Daten	62
Funktionsbeschreibung	64
Vorsichtsmaßnahmen bei der Verdrahtung	
Verdrahtungsschema	
Verwendung des TELEFAST-Verdrahtungszubehörs	

Auf einen Blick

Funktion

Das BMX AMI 0410-Modul ist ein hochwertiges industrielles Messgerät mit vier Eingängen.

Zusammen mit Sensoren oder Sendern wird das Modul zum Überwachen, Messen und zur kontinuierlichen Prozesssteuerung verwendet.

Das BMX AMI 0410-Modul bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration gewählten Option:

- Spannung +/-10 V/0 bis 5 V/0 bis 10 V/1 bis 5 V/+/- 5 V
- Strom 0 bis 20 mA/4 bis 20 mA/+/- 20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält vier Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Verstärkte Version

Das BMX AMI 0410H-Gerät (Hardened) ist die verstärkte Version des BMX AMI 0410-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Das BMX AMI 0410-Analogeingangsmodul hat folgenden Aufbau.

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.

Technische Daten

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMI 0410 und BMX AMI 0410H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Kenndaten

Die Module BMX AMI 0410 und BMX AMI 0410H weisen folgende allgemeine Kenndaten auf.

Betriebstemperatur	BMX AMI 0410	0 bis 60 °C (32 bis 140 °F)		
	BMX AMI 0410H	-25 bis 70 °C (-13 bis 158 °F)		
Typ der Eingänge		Isolierte Hoch-Pegel-Eingänge		
Art der Eingänge		Spannung/Strom		
Anzahl der Kanäle		4		
Erfassungszykluszeit:				
 Schnell (periode Erfassur verwendeten Kanäle) 	ng für die deklarierten	1 ms + 1ms x Anzahl der verwendeten Kanäle		
• Standard (periodische Erf	assung für alle Kanäle)	5 ms		
Anzeigeauflösung		16-Bit		
Digitale Filterung		Erste Ordnung		
Isolierung:				
Zwischen Kanälen		+/-300 VDC		
• Zwischen Kanälen und Bu	s	1400 VDC		
Zwischen Kanälen und Er	de	1400 VDC		
Für Eingänge maximal zulässige Überlast:		Spannungseingänge: +/- 30 VDC Stromeingänge: +/- 90 mA Unfallgeschützt: Verdrahtung -19,2 bis 30 VDC		
Stromaufnahme (3,3 V) Typisch		0,32 W		
Maximum		0,48 W		
Stromaufnahme (24 V)	Typisch	0,82 W		
Maximum		1,30 W		

Messbereich

Die analogen Eingänge der Module BMX AMI 0410 und BMX AMI 0410H haben die folgenden Messbereichseigenschaften:

Messbereich	+/-10 V; +/-5 V 0 bis 10 V; 0 bis 5 V; 1 bis 5 V	+/- 20 mA 0 bis 20 mA; 4 bis 20 mA
Max. Wandlungswert	+/-11,4 V	+/-30 mA
Konvertierungsauflösung	0,35 mV	0,92 μA
Eingangsimpedanz	10 ΜΩ	Interner Umwandlungswiderstan d (250 Ω) + interner Schutzwiderstand (siehe Hinweis)
Genauigkeit des internen Wandlungswiderstands	-	0,1 % - 15 ppm/°C
Messfehler für Standardmodule BMX AMI 0410:		
 Bei 25 °C Maximum innerhalb des Temperaturbereichs (0 bis 60 °C/32 bis 140 °F) 	0,075 % von FS ⁽¹⁾ 0,1 % von FS ⁽¹⁾	0,15 % von FS ⁽¹⁾⁽²⁾ 0,3 % von FS ⁽¹⁾⁽²⁾
Messfehler für Hardened-Module BMX AMI 0410H	ł:	
 Bei 25 °C Maximum innerhalb des Temperaturbereichs - 25 bis 70 °C (-13 bis 158 °F) 	0,075 % von FS ⁽¹⁾ 0,2 % von FS ⁽¹⁾	0,15 % von FS ⁽¹⁾⁽²⁾ 0,55 % von FS ⁽¹⁾⁽²⁾
Temperaturdrift	15 ppm/°C	30 ppm/°C
Monotonie	Ja	Ja
Gleichtaktunterdrückung (50/60 Hz)	90 dB	90 dB
Übersprechen zwischen Kanälen DC und AC: 50/60 Hz	> 80 dB	> 80 dB
Nicht-Linearität	0,001 % von FS ⁽¹⁾	0,001 % von FS ⁽¹⁾
Wiederholbarkeit bei 25 °C mit 10 Min. Stabilisierungszeit	0,005 % von FS ⁽¹⁾	0,007 % von FS ⁽¹⁾
Langzeitstabilität nach 1000 Stunden	< 0,004 % von FS ⁽¹⁾	< 0,004 % von FS ⁽¹⁾
(1) FS: Vollaussteuerung (Full Scale)(2) Mit Fehler in Bezug auf den Wandlungswiders	tand	·

HINWEIS: Der interne Schutzwiderstand hat eine typische Impedanz von 25 Ω (minimal 3,6 Ω und maximal 50 Ω). Die Präzision des Schutzwiderstands hat keinen Einfluss auf den Messwert.

HINWEIS: Wenn nichts an die analogen Module BMX AMI 0410 und BMX AMI 0410H angeschlossen ist und wenn Kanäle konfiguriert sind (Bereich 4 bis 20 mA oder 1 bis 5 V) führt ein Kabelbruch zur Erkennung eines E/A-Fehlers.

Funktionsbeschreibung

Funktion

Das BMX AMI 0410-Modul ist ein hochwertiges industrielles Messgerät mit vier Eingängen.

Zusammen mit Sensoren oder Sendern wird das Modul zum Überwachen, Messen und zur kontinuierlichen Prozesssteuerung verwendet.

Das BMX AMI 0410-Modul bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration gewählten Option:

- +/-10 V
- 0..10 V
- 0 5 V / 0 20 mA
- 1..5 V / 4..20 mA
- +/- 5 V +/- 20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält vier Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Beschreibung

Diese Abbildung zeigt das Modul BMX AMI 0410.

Beschreibung

Nein.	Vorgehensweise	Funktion
1	Anpassung der Eingänge und Multiplexing	 Physikalische Verbindung mit dem Prozess über eine Klemmenleiste mit 20 Anschlusspunkten Schutz des Moduls gegen Überspannungen. Schutz der Stromlesewiderstände mithilfe von Begrenzern und rückstellbaren Sicherungen Analoge Filterung des Eingangssignals Abfrage der Eingangskanäle mithilfe von statischem Multiplexing über Optoschalter, um die Möglichkeit von Spannung im gemeinsamen Modus von +/- 300 VDC zu bieten
2	Verstärkung der Eingangssignale	 Auswahl der Verstärkung auf der Basis von Merkmalen der Eingangssignale, wie bei der Konfiguration definiert (unipolarer oder bipolarer Bereich, Spannung oder Stromstärke) Abweichungskompensation im Verstärker
3	Konvertierung	 Konvertierung des analogen Eingangssignals in ein 24-Bit-Signal mithilfe des ΣΔ-Konverters.
4	Umwandlung der Messwerte an den Eingängen in eine durch den Anwender nutzbare Einheit	 Berücksichtigt Rekalibrierung und Ausrichtungskoeffizienten, die auf Messungen angewendet werden, sowie die Koeffizienten für die Selbstkalibrierung des Moduls. Filterung (Digitalfilter) der Messwerte abhängig von den Konfigurationsparametern
		 Skalierung der Messwerte abhängig von den Konfigurationsparametern
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle Senden der gemessenen Werte sowie des Modulstatus an die
		Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigun gen an die Anwendung	Test der Konvertierungszeichenkette Test der Überschreitung des Messbereichs auf den Kanälen Watchdog-Test

Taktung des Messwerts

Die Taktung der Messungen wird durch den bei der Konfiguration aus gewählten Zyklus (normaler oder schneller Zyklus) bestimmt.

- Normaler Zyklus bedeutet, dass die Dauer des Abfragezyklus feststeht.
- Beim schnellen Zyklus hingegen fragt das System nur die als in Verwendung gekennzeichneten Kanäle ab. Die Dauer des Abfragezyklus ist deshalb proportional zur Anzahl der verwendeten Kanäle.

Die Zykluszeitwerte basieren auf dem ausgewählten Zyklus.

Modul	Normaler Zyklus	Schneller Zyklus
BMX AMI 0410	5 ms	1 ms + (1 ms x N) Hierbei gilt: N ist die Anzahl der verwendeten Kanäle.

HINWEIS: Der Modulzyklus wird nicht mit dem SPS-Zyklus synchronisiert. Zu Beginn jedes SPS-Zyklus wird jeder Kanalwert berücksichtigt. Wenn die Zykluszeit für den MAST/FAST-Task geringer als die Zykluszeit des Moduls ist, wurden einige Werte nicht geändert.

Überlauf-/Unterlaufüberwachung

Das Modul BMX AMI 0410 ermöglicht dem Benutzer, zwischen sechs Spannungs- oder Stromstärkenbereichen für jeden Eingang zu wählen.

Diese Option muss für jeden Kanal im Konfigurationsfenster konfiguriert werden. Die Erkennung einer Überschreitung des oberen und unteren Toleranzwerts ist unabhängig von der Über-/Unterlaufkontrolle immer aktiv.

Je nach dem gewählten Bereich überprüft das Modul auf Überlauf. Es überprüft, ob sich der Messwert zwischen einer Ober- und Untergrenze bewegt.

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Oberer Toleranzbereich	Umfasst die Werte zwischen dem Höchstwert des Bereichs (Beispiel: +10 V für den Bereich +/- 10V) und der oberen Grenze.
Unterer Toleranzbereich	Umfasst die Werte zwischen dem Mindestwert des Bereichs (Beispiel: -10 V für den Bereich +/- 10V) und der unteren Grenze.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Die Werte der Grenzen können unabhängig voneinander konfiguriert werden. Es können Ganzzahlwerte zwischen den folgenden Grenzen angenommen werden.

Bereich	BMX AMI 0410-Bereich									
Unterlaufbereich		Unterer Toleranzbereich		Nennbereich		Oberer Toleranzbereich		Überlaufbereich		
Unipolar										
0-10 V	-1.400	-1.001	-1.000	-1	0	10.000	10.001	11.000	11,001	11,400
05 V / 020 mA	-5.000	-1.001	-1.000	-1	0	10.000	10.001	11.000	11.001	15.000
15 V / 420 mA	-4.000	-801	-800	-1	0	10.000	10.001	10.800	10.801	14.000

Bereich	BMX AMI 0410-Bereich									
	Unterlauf	bereich	Unterer Toleranz	bereich	Nennbereich		Oberer Toleranzbereich		Überlaufbereich	
Bipolar										
+/-10 V	-11.400	-11.001	-11.000	-10.001	-10.000	10.000	10.001	11.000	11,001	11,400
+/- 5 V, +/- 20 mA	-15,000	-11,001	-11.000	-10.001	-10.000	10.000	10.001	11.000	11.001	15,000
Benutzer										
+/-10 V	-32.768				Benutzer- definiert	Benutzer- definiert				32.767
0-10 V	-32.768				Benutzer- definiert	Benutzer- definiert				32.767

Messwertanzeige

Die Messwerte können in einem standardisierten Format (in %, zwei Dezimalstellen) angezeigt werden.

Bereichstyp	Anzeige
Unipolarer Bereich 0-10 V, 0-5 V, 1-5 V, 0-20 mA, 4-20 mA	von 0 bis 10.000 (0 % bei +100,00 %)
Bipolarer Bereich +/- 10 V, +/- 5 mV +/- 20 mA	von -10.000 bis +10.000 (-100,00 % bei +100,00 %)

Es ist auch möglich, den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl zu definieren:

- Die untere Grenze in Abhängigkeit vom Mindestwert für den Bereich: 0 % (oder -100,00 %).
- Die obere Grenze in Abhängigkeit vom Maximalwert für den Bereich (+100,00 %).

Die untere und obere Grenze muss jeweils ein Ganzzahlwert zwischen -32.768 und +32.767 sein.

Nehmen wir an, Sie verfügen über einen Behälter mit Druckdaten in Schleifen von 4 - 20 mA, wobei 4 mA dem Wert 3.200 mB und 20 mA dem Wert 9.600 mB entspricht. Sie können das Benutzerformat wählen, indem Sie die folgenden oberen und unteren Grenzen festlegen:

3.200 für 3.200 mB als untere Grenze

9.600 für 9.600 mB als obere Grenze

Die an das Programm übertragenen Werte variieren zwischen 3.200 (= 4 mA) und 9.600 (= 20 mA).

Filterung des Messwerts

Der vom System durchgeführte Filterungstyp wird "Filterung erster Ordnung" genannt. Der Filterungskoeffizient kann mit einem Programmiergerät oder über ein Programm geändert werden.

Die verwendete mathematische Formel lautet:

$Meas_{f(n)} = \alpha \times Meas_{f(n-1)} + (1 - \alpha) \times Val_{b(n)}$

Erläuterung:

 α = Effizienz des Filters

Mes_{f(n)} = zum Zeitpunkt n gefilterter Messwert

-&Mes_{f(n-1)} = zum Zeitpunkt n-1 gefilterter Messwert

Val_{b(n)} = Bruttowert zum Zeitpunkt n

Sie können den Filterungswert anhand von sieben Auswahlmöglichkeiten konfigurieren (von 0 bis 6). Dieser Wert kann auch dann geändert werden, wenn sich die Anwendung im RUN-Modus befindet.

HINWEIS: Es kann im normalen oder schnellen Zyklus auf die Filterung zugegriffen werden.

Die Filterungswerte sind abhängig von dem T-Konfigurationszyklus (wobei T = Zykluszeit von 5 ms im Standardmodus):

Gewünschte Effizienz	Erforderlicher Wert	Entsprechend α	Filterungsantwortzeit bei 63%	Abschaltfrequenz (in Hz)
Keine Filterung	0	0	0	0
Geringe Filterung	1	0,750	4 x T	0,040/T
	2	0,875	8 x T	0,020/T
Mittlere Filterung	3	0,937	16 x T	0,010/T
	4	0,969	32 x T	0,005/T
Starke Filterung	5	0,984	64 x T	0,0025/T
	6	0,992	128 x T	0,0012/T

Sensorausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der mit einem gegebenen Sensor überwacht wird, bei einem bestimmten Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist deshalb keine neue Ausrichtung erforderlich. Wenn jedoch der Sensor oder der Arbeitspunkt des Sensors ausgetauscht wird, ist eine neue Ausrichtung erforderlich.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Jeder Eingangskanal bietet folgende Möglichkeiten:

- Anzeigen und Ändern des gewünschten Messwerts
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Der Ausrichtungs-Offset kann auch per Programmierung geändert werden.

Die Kanalausrichtung wird auf dem Kanal in der Standardbetriebsart ohne Auswirkungen auf die Betriebsarten des Kanals durchgeführt.

Der maximale Offset zwischen gemessenem Wert und gewünschtem (ausgerichteten) Wert darf +/-1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX ART/AMO/AMI/AMM ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Abschirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Erdungsschiene auf der Modulseite. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung zu verbinden.

\Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

• TELEFAST-Verbindung:

Verbinden Sie die Kabelabschirmung des Sensors mit den vorhandenen Klemmen und die gesamte Baugruppe mit der Erdung im Schaltschrank.

(1) Die Erdung der Kabel wird bei Verwendung des ABE-7BV10-Zubehörs erleichtert.

Erdungsreferenz der Sensoren

Um die ordnungsgemäße Funktionsweise der Erfassungskette zu gewährleisten, sollten Sie die folgenden Hinweise berücksichtigen:

- Die Sensoren müssen nahe beieinander platziert sein (einige Meter)
- Alle Sensoren müssen zu einem einzigen Punkt referenziert werden, der mit der SPS-Masse verbunden ist
Verwenden von massebezogenen Sensoren

Die Sensoren werden wie im folgenden Diagramm aufgeführt verbunden:

Wenn die Sensoren in Bezug auf die Masse referenziert werden, kann dies in einigen Fällen ein entferntes Erdungspotenzial an die Klemmenleiste zurücksenden. Daher **müssen** die folgenden Regeln eingehalten werden:

- Das Potenzial muss unter der zulässigen Niederspannung liegen. Beispiel: 30 Vrms oder 42,4 VDC.
- Das Anlegen eines Sensorpunktes an ein Bezugspotenzial generiert einen Leckstrom. Sie müssen deshalb sicherstellen, dass alle Leckströme das System nicht stören.

\Lambda GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen.

Stellen Sie Folgendes sicher:

- Es bestehen keine Potenziale, die größer sind als die zulässigen unteren Grenzwerte.
- Induzierte Ströme beeinflussen nicht die Messungen oder die Integrität des Systems.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

AVORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Auf einen Blick

Das Modul BMX AMI 0410 wird mithilfe der Klemmenleiste mit 20 Anschlusspunkten verbunden.

Abbildung

Die Klemmenleiste und die Sensoren werden wie folgt verbunden:

Verdrahtungsansicht

IVx +-Pol-Eingang für Kanal x COM 0Vx --Pol-Eingang für Kanal x ICx +-Eingang Stromlesewiderstand Kanal 0 Spannungssensor Kanal 1 2-adriger Stromsensor

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMI 0410-Modul
- 2 BMX FCA ••0-Verbindungskabel
- 3 ABE-7CPA410-Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

Das TELEFAST ABE-7CPA410-Zubehör ist eine Basiseinheit für den Anschluss von Sensoren. Es hat folgende Funktionen:

- Erweitern der Eingangsanschlüsse im Spannungsmodus.
- Versorgen (Kanal f
 ür Kanal) der Sensoren mit 0-20 mA oder 4-20 mA mit einer gesch
 ützten 24-V-Spannung, die auf 25 mA begrenzt ist, unter Aufrechterhaltung der Isolation zwischen den Kan
 älen.
- Schutz der in TELEFAST integrierten Stromlesewiderstände vor Überspannung.

Isolation zwischen Kanälen	750 VDC
Isolation zwischen Kanälen und 24-VDC-Versorgung	750 VDC
Überspannungsschutz an Stromeingängen	Durch Zener-Dioden mit 8,2 V

HINWEIS: Wenn Sie Stromeingänge verwenden, werden die TELEFAST-Widerstände mit 250 Ohm und nicht die des Moduls verwendet. Das Modul BMX AMI 0410 wird im Spannungsmodus betrieben.

BMX FCA ••0-Verbindungskabel

Die BMX FCA ••0-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 20-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FCA ••0-Kabel:

- 1 BMX FTB 2020-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in drei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FCA 150
- 3 m (9,84 ft): BMX FCA 300
- 5 m (16,40 ft): BMX FCA 500

In der folgenden Tabelle sind die Eigenschaften der BMX FCA ••0-Kabel aufgeführt:

Eigenschaft		Wert
Kabel	Ummantelungsmaterial	PVC
	LSZH-Status	Nein
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70°C (-13 bis 158°F)

Verbinden von Sensoren

Sensoren können wie in der Abbildung (siehe Seite 71) dargestellt an das ABE-7CPA410-Zubehör angeschlossen werden.

Die folgende Tabelle enthält die Anschlussnummern von ABE7-CPA410 und SUBD25:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25-poligen Sub-D- Steckers	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25-poligen Sub-D- Steckers	Signalart
1	1	Erde	1		Eingangsmodul 24 VDC
2	1	Erde	1		Eingangsmodul 24 VDC
3	1	Erde	1		0 V 24-Eingang
4	1	COM 0	1		0 V 24-Eingang
100		Ausgang IS 0	101	14	COM 0V0
102		Ausgang IS 1	103	3	COM 0V1
104		Ausgang IS 2	105	17	COM 0V2
106		Ausgang IS 3	usgang IS 3 107 6		COM 0V3
200	1	Ausgang IV 0	ng IV 0 201 Ein		Eingang IC 0
202	15	Ausgang IV 1	ing IV 1 203 Eing		Eingang IC 1
204	4	Ausgang IV 2	205		Eingang IC 2
206	18	Ausgang IV 3	207		Eingang IC 3

Verdrahtungsschema:

Kapitel 4 Analoges Eingangsmodul BMX AMI 0800

Gegenstand dieses Kapitels

In diesem Kapitel werden das Modul BMX AMI 0800, seine Merkmale und seine Verbindung mit den verschiedenen Sensoren beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite		
Auf einen Blick	82		
Eigenschaften	83		
Funktionsbeschreibung	85		
Vorsichtsmaßnahmen bei der Verdrahtung	92		
Verdrahtungsschema	95		
Verwendung des TELEFAST-Verdrahtungszubehörs			

Auf einen Blick

Funktion

Das BMX AMI 0800 ist ein Analogmodul mit hoher Dichte und 8 nicht isolierten Kanälen.

Zusammen mit Sensoren oder Sendern wird dieses Modul zur Überwachung, Messung und kontinuierlichen Prozesssteuerung verwendet.

Das Modul BMX AMI 0800 bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration getroffenen Auswahl:

- Spannung +/-5 V/+/-10 V/0-5 V/0-10 V/1-5 V
- Strom +/-20 mA/0-20 mA/4-20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält acht Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Beschreibung

Das folgende Diagramm zeigt das analoge Eingangsmodul BMX AMI 0800:

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.

Eigenschaften

Betriebsbedingungen: Höhenlage

Die Kenndaten in den nachstehenden Tabellen gelten für das Modul BMX AMI 0800 bei einem Einsatz in einer Höhe bis 2000 m (6560 ft). Wenn das Modul in einer Höhe über 2000 m (6560 ft) zum Einsatz kommt, müssen die Werte herabgesetzt werden.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Kenndaten

Die folgende Tabelle enthält die allgemeinen Eigenschaften des Moduls BMX AMI 0800:

Betriebstemperatur		0 bis 60 °C (32 bis 140 °F)		
Typ der Eingänge		Hochwertige schnelle Eingänge mit gemeinsamem Anschlusspunkt		
Art der Eingänge		Spannung/Strom		
Anzahl der Kanäle		8		
Erfassungszykluszeit:				
 Schnell (periode Erfassung f ür verwendeten Kan äle) 	die deklarierten	1 ms + 1ms x Anzahl der verwendeten Kanäle		
• Standard (periodische Erfassu	ng für alle Kanäle)	9 ms		
Anzeigeauflösung		16-Bit		
Digitale Filterung		Erste Ordnung		
Isolierung:				
Zwischen Kanälen		Nicht potentialgetrennt		
Zwischen Kanälen und Bus		1400 VDC		
• Zwischen Kanälen und Erde		1400 VDC		
Für Eingänge maximal zulässige Überlast:		Spannungseingänge: +/- 30 VDC Stromeingänge: +/- 30 mA		
Stromaufnahme (3,3 V) Typisch		0,32 W		
Maximum		0,48 W		
Stromaufnahme (24 V)	Typisch	0,90 W		
Maximum		1,10 W		

Messbereich

Die analogen Eingänge des Moduls BMX AMI 0800 weisen die folgenden Messbereichseigenschaften auf:

Messbereich	+/- 10 V; +/- 5 V 0 bis 10 V; 0 bis 5 V; 1 bis 5 V	+/- 20 mA 0 bis 20 mA; 4 bis 20 mA
Max. Wandlungswert	+/-11,4 V	+/-30 mA
Konvertierungsauflösung	0,36 mV	1,4 µA
Eingangsimpedanz	10 ΜΩ	250 Ω Interner Wandlungswiderstand
Genauigkeit des internen Wandlungswiderstands	-	0,1 % - 15 ppm/°C
 Messfehler: bei 25 C Maximaler Temperaturbereich (060 °C) 	0,075 % von FS ⁽¹⁾ 0,1 % von FS ⁽¹⁾	Typisch 0,15 % von FS ⁽¹⁾⁽²⁾ 0,3 % von FS ⁽¹⁾⁽²⁾
Temperaturdrift	30 ppm/°C	50 ppm/°C einschließlich Konvertierungswidersta nd
Monotonie	Ja	Ja
Gleichtaktunterdrückung (50/60 Hz)	100 dB	100 dB
Übersprechen zwischen Kanälen DC und AC: 50/60 Hz	> 80 dB	> 80 dB
Nicht-Linearität	0,001 %	0,001 %
Wiederholbarkeit bei 25 °C mit 10 Min. Stabilisierungszeit	0,005 % von FS ⁽¹⁾	0,007 % von FS ⁽¹⁾
Langzeitstabilität nach 1000 Stunden	< 0,004 % von FS ⁽¹⁾	< 0,004 % von FS ⁽¹⁾
(1) FS: Vollaussteuerung (Full Scale)(2) Mit Fehler in Bezug auf den Wandlungswiderstand		

HINWEIS: Wenn an die Analogmodule BMX AMI 0800 nichts angeschlossen ist und die Kanäle konfiguriert wurden (Bereich 4 bis 20 mA oder 1 bis 5 V), wird ein E/A-Fehler wie bei einem Kabelbruch erkannt.

Funktionsbeschreibung

Funktion

Das Modul BMX AMI 0800 ist ein Analogmodul mit hoher Dichte und 8 Nicht-Eingangskanälen.

Zusammen mit Sensoren oder Sendern wird dieses Modul zum Überwachen, zum Messen und zur kontinuierlichen Prozesssteuerung verwendet.

Das Modul BMX AMI 0800 bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration getroffenen Auswahl:

- +/-10 V
- 0..10 V
- 0 5 V / 0 20 mA
- 1 5 V / 4 20 mA
- +/-5 V / +/-20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält acht Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Abbildung

Beschreibung:

Nr.	Vorgehensweise	Funktion
1	Anpassung der Eingänge und Multiplexing	 Physikalische Verbindung mit dem Prozess über eine Klemmenleiste mit 28 Anschlusspunkten Schutz des Moduls gegen Überspannungen Analoge Filterung des Eingangssignals
2	Verstärkung der Eingangssignale	 Auswahl der Verstärkung auf der Basis von Merkmalen der Eingangssignale, wie bei der Konfiguration definiert (unipolarer oder bipolarer Bereich, Spannung oder Stromstärke) Abweichungskompensation im Verstärker
3	Konvertierung	 Konvertierung des analogen Eingangssignals in ein 24-Bit-Signal mithilfe des ΣΔ-Konverters

Nr.	Vorgehensweise	Funktion
4	Umwandlung der Messwerte an den Eingängen in eine durch den Anwender nutzbare Einheit	 Berücksichtigt Rekalibrierung und Ausrichtungskoeffizienten, die auf Messungen angewendet werden, sowie die Koeffizienten für die Selbstkalibrierung des Moduls. (Digitale) Filterung der Messwerte in Abhängigkeit der Konfigurationsparameter Skalierung der Messwerte in Abhängigkeit der Konfigurationsparameter
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle Senden der gemessenen Werte sowie des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	Test der Konvertierungszeichenkette Test der Überschreitung des Messbereichs auf den Kanälen Watchdog-Test

Taktung des Messwerts

Die Taktung der Messwerte wird durch den während der Konfiguration gewählten Zyklus (normaler oder schneller Zyklus) bestimmt:

- Normaler Zyklus bedeutet, dass die Dauer des Abfragezyklus feststeht.
- Beim schnellen Zyklus hingegen fragt das System nur die als in Verwendung gekennzeichneten Kanäle ab. Die Dauer des Abfragezyklus ist deshalb proportional zu der Anzahl von verwendeten Kanälen.

Die Zeitwerte des Zyklus basieren auf dem gewählten Zyklus:

Baugruppe	Normaler Zyklus	Schneller Zyklus
BMX AMI 0800	9 ms	1 ms + (1 ms x N) wobei N: Anzahl von verwendeten Kanälen

HINWEIS: Der Modulzyklus wird nicht mit dem SPS-Zyklus synchronisiert. Zu Beginn jedes SPS-Zyklus wird jeder Kanalwert berücksichtigt. Wenn die Zykluszeit für den MAST/FAST-Task geringer als die Zykluszeit des Moduls ist, wurden einige Werte nicht geändert.

Überlauf-/Unterlaufüberwachung

Das Modul BMX AMI 0800 ermöglicht dem Benutzer, zwischen sechs Spannungs- oder Stromstärkenbereichen für jeden Eingang zu wählen.

Diese Option muss für jeden Kanal im Konfigurationsfenster konfiguriert werden. Die Erkennung einer Überschreitung des oberen und unteren Toleranzwerts ist unabhängig von der Über-/Unterlaufkontrolle immer aktiv.

Je nach dem gewählten Bereich überprüft das Modul auf Überlauf; es überprüft, ob sich der Messwert zwischen einer Ober- und Untergrenze bewegt:

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Oberer Toleranzbereich	Variiert zwischen den Werten, die sich zwischen dem Maximalwert des Bereichs (beispielsweise +10 V für den +/- 10-V-Bereich) und der oberen Grenze befinden.
Unterer Toleranzbereich	Variiert zwischen den Werten, die sich zwischen dem Mindestwert des Bereichs (beispielsweise -10 V für den +/- 10-V-Bereich) und der unteren Grenze befinden.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Messbereich	BMX AMI 0800-Bereich										
	Unterlaut	fbereich	Unterer Toleranz	Unterer M Toleranzbereich		Nennbereich		Oberer Toleranzbereich		Überlaufbereich	
Unipolar											
0-10 V	-1.500	-1.001	-1.000	-1	0	10.000	10.001	11.000	11.001	11.400	
05 V / 020 mA	-5.000	-1.001	-1.000	-1	0	10.000	10.001	11.000	11.001	15.000	
15 V / 420 mA	-4.000	-801	-800	-1	0	10.000	10.001	10.800	10.801	14.000	
Bipolar											
+/-10 V	-11.500	-11.001	-11.000	-10.001	-10.000	10.000	10.001	11.000	11.001	11.400	
+/- 5 V, +/- 25 mA	-15.000	-11.001	-11.000	-10.001	-10.000	10.000	10.001	11.000	11.001	15.000	
Benutzer											
+/-10<:hs>V	-32.768				Benutzer definiert	Benutzer definiert				32.767	
0-10 V	-32.768				Benutzer definiert	Benutzer definiert				32.767	

Die Werte der Grenzen können unabhängig voneinander konfiguriert werden. Es können Ganzzahlwerte zwischen den folgenden Grenzen angenommen werden:

Messwertanzeige

Messungen können mithilfe einer standardisierten Anzeige (in %, zwei Dezimalstellen) angezeigt werden:

Bereichstyp	Anzeige
Unipolarer Bereich 0-10 V, 0-5 V, 1-5 V, 0-20 mA, 4-20 mA	von 0 bis 10.000 (0 % bei +100,00 %)
Bipolarer Bereich +/- 10 V, +/- 5 mV +/- 20 mA	von -10.000 bis 10.000 (-100,00 % bei +100,00 %)

Es ist auch möglich, den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl zu definieren:

- Die untere Grenze in Abhängigkeit des Mindestwerts für den Bereich: 0% (oder -100,00 %).
- Die obere Grenze in Abhängigkeit des Maximalwerts für den Bereich (+100,00%).

Die untere und obere Grenze muss jeweils ein Ganzzahlwert zwischen -32.768 und +32.767 sein.

Nehmen wir an, Sie verfügen über einen Behälter mit Druckdaten in Schleifen von 4 - 20 mA, wobei 4 mA dem Wert 3.200 mB und 20 mA dem Wert 9.600 mB entspricht. Sie können das Benutzerformat wählen, indem Sie die folgenden oberen und unteren Grenzen festlegen:

3.200 für 3.200 mB als untere Grenze

9.600 für 9.600 mB als obere Grenze

Die an das Programm übertragenen Werte variieren zwischen 3.200 (= 4 mA) und 9.600 (= 20 mA).

Filterung des Messwerts

Der vom System durchgeführte Filterungstyp wird "Filterung erster Ordnung" genannt. Der Koeffizient der Filterung kann über ein Programmiergerät oder durch das Programm geändert werden.

Die verwendete mathematische Formel lautet wie folgt:

$$Meas_{f(n)} = \alpha \times Meas_{f(n-1)} + (1 - \alpha) \times Val_{b(n)}$$

wobei:

 α = Effizienz des Filters

Mes_{f(n)} = zum Zeitpunkt n gefilterter Messwert

Mes_{f(n)} = zum Zeitpunkt n-1 gefilterter Messwert

Val_{b(n)} = Bruttowert zum Zeitpunkt n

Sie können den Filterungswert mithilfe von sieben Auswahlmöglichkeiten konfigurieren (von 0 bis 6). Dieser Wert kann auch dann geändert werden, wenn sich die Anwendung im RUN-Modus befindet.

HINWEIS: Es kann im normalen oder schnellen Zyklus auf die Filterung zugegriffen werden.

Die Filterungswerte sind abhängig von dem T-Konfigurationszyklus (wobei T = Zykluszeit von 5 ms im Standardmodus):

Gewünschte Effizienz	Erforderlicher Wert	Entsprechend α	Filterungsantwortzeit bei 63%	Abschaltfrequenz (in Hz)
keine Filterung,	0	0	0	0
geringe Filterung,	1	0.750	4 x T	0,040/T
	2	0.875	8 x T	0,020/T
Mittlere Filterung	3	0.937	16 x T	0,010/T
	4	0.969	32 x T	0,005/T
starke Filterung.	5	0,984	64 x T	0,0025/T
	6	0,992	128 x T	0,0012/T

Sensorausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der mit einem gegebenen Sensor überwacht wird, bei einem bestimmten Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist deshalb keine neue Ausrichtung erforderlich. Wenn jedoch der Sensor oder der Arbeitspunkt des Sensors ausgetauscht wird, ist eine neue Ausrichtung erforderlich.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Für jeden Eingangskanal können Sie:

- Anzeigen und Ändern des gewünschten Messwerts
- Speichern des Ausrichtungswerts
- Ermitteln, ob der Kanal bereits über eine Ausrichtung verfügt

Der Ausrichtungs-Offset kann auch per Programmierung geändert werden.

Die Kanalausrichtung wird auf dem Kanal in der Standardbetriebsart ohne Auswirkungen auf die Betriebsarten des Kanals durchgeführt.

Der maximale Offset zwischen gemessenem Wert und gewünschtem (ausgerichteten) Wert darf +/-1,500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX ART/AMO/AMI/AMM ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Schirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Erdungsschiene auf der Modulseite. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

▲ GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Schirmleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

- 1 BMX AMI 0800
- 2 Schirmleiste
- 3 Klemme
- 4 An Sensoren

Erdungsreferenz der Sensoren

Um die ordnungsgemäße Funktionsweise der Erfassungskette zu gewährleisten, sollten Sie die folgenden Hinweise berücksichtigen:

- Die Sensoren müssen nahe beieinander platziert sein (einige Meter)
- Alle Sensoren müssen zu einem einzigen Punkt referenziert werden, der mit der SPS-Masse verbunden ist

Verwenden von massebezogenen Sensoren

Die Sensoren werden wie im folgenden Diagramm aufgeführt verbunden:

Wenn die Sensoren in Bezug auf die Masse referenziert werden, kann dies in einigen Fällen ein entferntes Erdungspotenzial an die Klemmenleiste zurücksenden. Daher **müssen** die folgenden Regeln eingehalten werden:

- Das Potenzial muss unter der zulässigen Niederspannung liegen. Beispiel: 30 Vrms oder 42,4 VDC.
- Das Anlegen eines Sensorpunktes an ein Bezugspotenzial generiert einen Leckstrom. Sie müssen deshalb sicherstellen, dass alle Leckströme das System nicht stören.

\Lambda GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen.

Stellen Sie Folgendes sicher:

- Es bestehen keine Potenziale, die größer sind als die zulässigen unteren Grenzwerte.
- Induzierte Ströme beeinflussen nicht die Messungen oder die Integrität des Systems.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

AVORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Das Modul BMX AMI 0800 wird mithilfe der Klemmenleiste mit 28 Anschlusspunkten angeschlossen.

Abbildung

Die Klemmenleiste und die Sensoren werden wie folgt verbunden:

VIx +Pol-Eingang für Kanal x.
 COMx - Pol-Eingang für Kanal x, COMx sind intern miteinander verbunden
 IIx +Eingang Stromlesewiderstand.
 Kanal 0 Spannungssensor
 Kanal 1 2-adriger Stromsensor

Verdrahtungszubehör

Für den schnellen Anschluss an betriebstüchtige Teile kann das Modul mit einem vorverdrahteten TELEFAST-System *(siehe Seite 96)* verbunden werden.

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMI 0800-Modul
- 2 BMXFTA••0-Verbindungskabel
- **3** Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

Das Modul BMX AMI 0800 kann mit folgenden Schnittstellen-Anschlussplatten verbunden werden:

- ABE-7CPA02
- ABE-7CPA03
- ABE-7CPA31
- ABE-7CPA31E

HINWEIS: Wenn das zu messende Signal HART-Informationen umfasst, muss die ABE-7CPA31E-Schnittstellen-Anschlussplatte verwendet werden, damit diese Informationen, die den Analogwert unterbrechen würden, ausgefiltert werden können.

BMX FTA ••0-Verbindungskabel

Die BMX FTA ••0-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 28-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 24 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FTA ••0-Kabel:

- 1 BMX FTB 2820-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in zwei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FTA 150
- 3 m (9,84 ft): BMX FTA 300

In der folgenden Tabelle sind die Eigenschaften der BMX FTA ••0-Kabel aufgeführt:

Merkmal		Wert
Kabel	Ummantelungsmaterial	PVC
	LSZH-Status	Nein
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)

ABE-7CPA02-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Schnittstellen-Anschlussplatte ABE-7CPA02:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0800- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0800- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		Masse
2	1		STD (1)	Vers. 2	1		Masse
3	1		STD (1)	Vers. 3	1		Masse
4	1		STD (2)	Vers. 4	1		Masse
1000	19,2 bis 30 VDC	3	+IV0	200	14	2	COM0
101	2	1	+IC0	201	1		Masse
102	15	4	+IV1	202	3	5	COM1
103	16	6	+IC1	203	1		Masse
104	4	9	+IV2	204	17	8	COM2
105	5	7	+IC2	205	1		Masse
106	18	10	+IV3	206	6	11	COM3
107	19	12	+IC3	207	1		Masse
108	7	17	+IV4	208	20	16	COM4
109	8	15	+IC4	209	1		Masse
110	21	18	+IV5	210	9	19	COM5
111	22	20	+IC5	211	1		Masse
112	10	23	+IV6	212	23	22	COM6
113	11	21	+IC6	213	1		Masse
114	24	24	+IV7	214	12	25	COM7
115	25	26	+IC7	215	/		Masse

HINWEIS: Bei ABE-7CPA02 befindet sich die Kontaktbrücke zwischen Pin 1 und Pin 2.

+IVx: +Pol Spannungseingang für Kanal x

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

HINWEIS: Für mit dem TELEFAST ABE-7CPA02 verbundene Stromsensoren muss ein an der BMX AMI 0800-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

ABE-7CPA03-Sensorverbindung

Negativer Strom wird von ABE-7CPA03 nicht unterstützt.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA03:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart	
1	1		0 V	Vers. 1	/		24 V (Sensor- versorgung)	
2	1		0 V	Vers. 2	/		24 V (Sensor- versorgung)	
3	1		0 V	Vers. 3	/		0 V (Sensor- versorgung)	
4	1		0 V	Vers. 4	/		0 V (Sensor- versorgung)	
100	1		+IS1	200	1		+IS0	
101	15	4	+IV1	201	1	3	+IV0	
102	16	6	+IC1	202	2	1	+IC0	
103	/		Masse	203	14/3	2/5	COM0 / COM1	
104	1		+IS3	204	1		+IS2	
105	18	10	+IV3	205	4	9	+IV2	
106	19	12	+IC3	206	5	7	+IC2	
107	/		Masse	207	17/6	8/11	COM2 / COM3	
108	1		+IS5	208	1		+IS4	
109	21	18	+IV5	209	7	17	+IV4	
110	22	20	+IC5	210	8	15	+IC4	
111	1		Masse	211	20/9	16/19	COM4 / COM5	
112	1		+IS7	212	1		+IS6	
+ISx: 24-V-Kapalspannungsversorgung								

+IVx: +Pol Spannungseingang für Kanal x

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart
113	24	24	+IV7	213	10	21	+IV6
114	25	26	+IC7	214	11	23	+IC6
115	1		Masse	215	23/12	22/25	COM6 / COM7
+ISx: 24-V-Kanalspannungsversorgung +IVx: +Pol Spannungseingang für Kanal x +ICx: +Pol Stromeingang für Kanal x COMx: -Pol Spannungs- oder Stromeingang für Kanal x							

HINWEIS: Für mit dem TELEFAST ABE-7CPA03 verbundene Stromsensoren muss ein an der BMX AMI 0800-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

ABE-7CPA31-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA31:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI 0800- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		24 V (Sensor- versorgung)
2	1		Masse	Vers. 2	1		24 V (Sensor- versorgung)
3	1		Masse	Vers. 3	1		0 V (Sensor- versorgung)
4	1		Masse	Vers. 4	1		0 V (Sensor- versorgung)
100	1		+IS0	116	1		+IS4
101	1	3	+IV0	117	7	17	+IV4
102	2	1	+IC0	118	8	15	+IC4
103	14	2	0 V	119	20	16	0 V
104	1		+IS1	120	1		+IS5
105	15	4	+IV1	121	21	18	+IV5
106	16	6	+IC1	122	22	20	+IC5
107	3	5	0 V	123	9	19	0 V
108	1		+IS2	124	1		+IS6
109	4	9	+IV2	125	10	23	+IV6
110	5	7	+IC2	126	11	21	+IC6
111	17	8	0 V	127	23	22	0 V
112	/		+IS3	128	1		+IS7
+ISx: 24-V-Kana	Ispannungsve	ersorgung					

+IVx: +Pol Spannungseingang für Kanal x

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 800- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI 0800- Pinbelegung	Signalart
113	18	10	+IV3	129	24	24	+IV7
114	19	12	+IC3	130	25	26	+IC7
115	6	11	0 V	131	12	25	0 V
 +ISx: 24-V-Kanalspannungsversorgung +IVx: +Pol Spannungseingang für Kanal x +ICx: +Pol Stromeingang für Kanal x COMx: -Pol Spannungs- oder Stromeingang für Kanal x 							

HINWEIS: Für mit dem TELEFAST ABE-7CPA31 verbundene Stromsensoren muss ein an der BMX AMI 0800-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

BMX AMI 0800

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

ABE-7CPA031E-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA31E:

Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart	Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart
1	/	Masse	Vers. 1	1	24 V (Sensorversorgung)
2	/	Masse	Vers. 2 /		24 V (Sensorversorgung)
3	1	Masse	Vers. 3	1	0 V (Sensorversorgung)
4	1	Masse	Vers. 4	1	0 V (Sensorversorgung)
100	1	+IS0	116	1	+IS4
101	1	Т0	117	1	T4
102	1	+IC0	118	1	+IC4
103	1	0V0	119	1	0V4
104	1	+IS1	120	1	+IS5
105	1	T1	121	1	T5
106	1	+IC1	122	1	+IC5
107	1	0V1	123	1	0V5
108	1	+IS2	124	1	+IS6
109	1	T2	125	1	Т6
110	1	+IC2	126	1	+IC6
111	1	0V2	127	1	0V6
112	1	+IS3	128	1	+IS7
113	1	Т3	129	1	T7
114	1	+IC3	130	1	+IC7
115	1	0V3	131	1	0V7

+ISx: 24-V-Kanalspannungsversorgung

Tx: Reservierter Test-Pin für die HART-Funktion. Dieser Pin ist intern mit +ICx verbunden.

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

HINWEIS: Für mit dem TELEFAST ABE-7CPA31E verbundene Stromsensoren muss ein an der BMX AMI 0800-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

Kapitel 5 Analoges Eingangsmodul BMX AMI 0810

Gegenstand dieses Kapitels

In diesem Kapitel werden das Modul BMX AMI 0810, seine Merkmale und seine Verbindung mit den verschiedenen Sensoren beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	108
Eigenschaften	109
Funktionsbeschreibung	111
Vorsichtsmaßnahmen bei der Verdrahtung	118
Verdrahtungsschema	121
Verwendung des TELEFAST-Verdrahtungszubehörs	122

Auf einen Blick

Funktion

Das Modul BMX AMI 0810 ist ein analoges Eingangsmodul mit hoher Dichte und 8 isolierten Kanälen.

Zusammen mit Sensoren oder Sendern wird dieses Modul zum Überwachen, zum Messen und zur kontinuierlichen Prozesssteuerung verwendet.

Das Modul BMX AMI 0810 bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration getroffenen Auswahl:

- Spannung +/-5 V/+/-10 V/0-5 V/0-10 V/1-5 V
- Strom +/-20 mA/0-20 mA/4-20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält acht Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Verstärkte Version

Das BMX AMI 0810H-Gerät (Hardened) ist die verstärkte Version des BMX AMI 0810-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Das folgende Diagramm zeigt das analoge Eingangsmodul BMX AMI 0810:

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.
Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMI 0810 und BMX AMI 0810H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Kenndaten

Die Module BMX AMI 0810 und BMX AMI 0810H weisen folgende allgemeine Kenndaten auf:

Betriebstemperatur BMX AMI 0810			0 bis 60 °C (32 bis 140 °F)		
		BMX AMI 0810H	-25 bis 70 °C (-13 bis 158 °F)		
Typ der	Eingänge		Hochwertige isolierte schnelle Eingänge		
Art der l	Eingänge		Spannung/Strom		
Anzahl	der Kanäle		8		
Erfassu	ngszykluszeit:				
 Schr dekla 	ell (periode Erfa arierten verwende	ssung für die eten Kanäle)	1 ms + 1ms x Anzahl der verwendeten Kanäle		
 Stan alle k 	dard (periodische Kanäle)	e Erfassung für	9 ms		
Anzeigeauflösung			16-Bit		
Digitale Filterung			Erste Ordnung		
Isolierur	ng:				
• Zwis	chen Kanälen		+/-300 VDC		
• Zwis	chen Kanälen un	id Bus	1400 VDC		
• Zwis	chen Kanälen un	id Erde	1400 VDC		
Für Eingänge maximal zulässige Überlast:		ulässige Überlast:	Spannungseingänge: +/- 30 VDC Stromeingänge: +/- 30 mA Geschützt gegen versehentliche Verdrahtung: -19,2 bis 30 VDC		
			HINWEIS: Die Funktion Geschützt gegen versehentliche Verdrahtung wird nicht unterstützt, wenn das Modul mit einer Telefast-Schnittstelle betrieben wird.		
Stromau	ufnahme (3,3 V)	Typisch	0,32 W		
		Maximum	0,48 W		
Stromau	ufnahme (24 V)	Typisch	1,06 W		
Maximum		Maximum	1,50 W		

Messbereich

Die analogen Eingänge der Module BMX AMI 0810 und BMX AMI 0810H haben die folgenden Messbereichseigenschaften:

Messbereich	+/- 10 V; +/- 5 V	+/- 20 mA;
	0 bis 10 V; 0 bis 5 V; 1 bis 5 V	0 bis 20 mA; 4 bis 20 mA
Max. Wandlungswert	+/-11,4 V	+/-30 mA
Konvertierungsauflösung	0,36 mV	1,4 µA
Eingangsimpedanz	10 ΜΩ	Interner Umwandlungswiderstand (250 Ω) + interner Schutzwiderstand (siehe Hinweis)
Genauigkeit des internen Wandlungswiderstands	-	0,1 % - 15 ppm/°C
Messfehler für Standardmodule:		
 bei 25 C Maximaler Temperaturbereich (060 °C) 	0,075 % von FS ⁽¹⁾ 0,1 % von FS ⁽¹⁾	Typisch 0,15 % von FS ⁽¹⁾⁽²⁾ 0.3 % von FS ⁽¹⁾⁽²⁾
Messfehler für Hardened-Module:		
 Bei 25 °C Maximum innerhalb des Temperaturbereichs -25 bis 70 °C (-13 bis 158 °F) 	0,075 % von FS ⁽¹⁾ 0,2 % von FS ⁽¹⁾	Typisch 0,15 % von FS ⁽¹⁾⁽²⁾ 0,55 % von FS ⁽¹⁾⁽²⁾
Temperaturdrift	30 ppm/°C	50 ppm/°C
Monotonie	Ja	Ja
Gleichtaktunterdrückung (50/60 Hz)	80 dB	80 dB
Übersprechen zwischen Kanälen DC und AC: 50/60 Hz	> 80 dB	> 80 dB
Nicht-Linearität	0,001 %	0,001 %
Wiederholbarkeit bei 25 °C mit 10 Min. Stabilisierungszeit	0,005 % von FS ⁽¹⁾	0,007 % von FS ⁽¹⁾
Langzeitstabilität nach 1000 Stunden	< 0,004 % von FS ⁽¹⁾	< 0,004 % von FS ⁽¹⁾
(1) FS: Vollaussteuerung (Full Scale)(2) Mit Fehler in Bezug auf den Wandlungswide	erstand	•

HINWEIS: Der interne Schutzwiderstand hat eine typische Impedanz von 25 Ω (minimal 3,6 Ω und maximal 50 Ω). Die Präzision des Schutzwiderstands hat keinen Einfluss auf den Messwert.

HINWEIS: Wenn an die Analogmodule BMX AMI 0810 und BMX AMI 0810H nichts angeschlossen ist und die Kanäle konfiguriert wurden (Bereich 4 bis 20 mA oder 1 bis 5 V) wird ein E/A-Fehler wie bei einem Kabelbruch erkannt.

Funktionsbeschreibung

Funktion

Das Modul BMX AMI 0810 ist ein analoges Eingangsmodul mit hoher Dichte und 8 isolierten Kanälen.

Zusammen mit Sensoren oder Sendern wird dieses Modul zum Überwachen, zum Messen und zur kontinuierlichen Prozesssteuerung verwendet.

Das Modul BMX AMI 0810 bietet folgende Bereiche für jeden Eingang, je nach der bei der Konfiguration getroffenen Auswahl:

- +/-10 V
- 0..10 V
- 0 5 V / 0 20 mA
- 1..5 V / 4..20 mA
- +/-5 V / +/-20 mA

Das Modul wird mit Spannungseingängen betrieben. Es enthält acht Lesewiderstände, die mit der Klemmenleiste zum Durchführen von Stromeingängen verbunden sind.

Abbildung

Beschreibung:

Nein.	Vorgehensweise	Funktion
1	Anpassung der Eingänge und Multiplexing	 Physikalische Verbindung mit dem Prozess über eine Klemmenleiste mit 28 Anschlusspunkten Schutz des Moduls gegen Überspannungen Schutz der Stromlesewiderstände mithilfe von Begrenzern und rückstellbaren Sicherungen Analoge Filterung des Eingangssignals Abfrage der Eingangskanäle mithilfe von statischem Multiplexing über Optoschalter, um die Möglichkeit von Spannung im gemeinsamen Modus von +/- 300 VDC zu bieten
2	Verstärkung der Eingangssignale	 Auswahl der Verstärkung auf der Basis von Merkmalen der Eingangssignale, wie bei der Konfiguration definiert (unipolarer oder bipolarer Bereich, Spannung oder Stromstärke) Abweichungskompensation im Verstärker

Nein.	Vorgehensweise	Funktion
3	Konvertierung	 Konvertierung des analogen Eingangssignals in ein 24-Bit-Signal mithilfe des ΣΔ-Konverters
4	Umwandlung der Messwerte an den Eingängen in eine durch den Anwender nutzbare Einheit	 Berücksichtigt Rekalibrierung und Ausrichtungskoeffizienten, die auf Messungen angewendet werden, sowie die Koeffizienten für die Selbstkalibrierung des Moduls. (Digitale) Filterung der Messwerte in Abhängigkeit von den Konfigurationsparametern Skalierung der Messwerte in Abhängigkeit von den Konfigurationsparametern
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle Senden der gemessenen Werte sowie des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	Test der Konvertierungszeichenkette Test der Überschreitung des Messbereichs auf den Kanälen Watchdog-Test

Taktung des Messwerts

Die Taktung der Messwerte wird durch den während der Konfiguration gewählten Zyklus (normaler oder schneller Zyklus) bestimmt:

- Normaler Zyklus bedeutet, dass die Dauer des Abfragezyklus feststeht.
- Beim schnellen Zyklus hingegen fragt das System nur die als in Verwendung gekennzeichneten Kanäle ab. Die Dauer des Abfragezyklus ist deshalb proportional zu der Anzahl von verwendeten Kanälen.

Die Zeitwerte des Zyklus basieren auf dem gewählten Zyklus:

Modul	Normaler Zyklus	Schneller Zyklus
BMX AMI 0810	9 ms	1 ms + (1 ms x N) Hierbei gilt: N ist die Anzahl der verwendeten Kanäle.

HINWEIS: Der Modulzyklus wird nicht mit dem SPS-Zyklus synchronisiert. Zu Beginn jedes SPS-Zyklus wird jeder Kanalwert berücksichtigt. Wenn die Zykluszeit für den MAST/FAST-Task geringer als die Zykluszeit des Moduls ist, wurden einige Werte nicht geändert.

Überlauf-/Unterlaufsteuerung

Das Modul BMX AMI 0810 ermöglicht dem Benutzer, zwischen sechs Spannungs- oder Stromstärkenbereichen für jeden Eingang zu wählen.

Diese Option muss für jeden Kanal im Konfigurationsfenster konfiguriert werden. Die Erkennung einer Überschreitung des oberen und unteren Toleranzwerts ist unabhängig von der Über-/Unterlaufkontrolle immer aktiv.

Je nach dem gewählten Bereich überprüft das Modul auf Überlauf; es überprüft, ob sich der Messwert zwischen einer Ober- und Untergrenze bewegt:

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Oberer Toleranzbereich	Umfasst die Werte zwischen dem Höchstwert des Bereichs (Beispiel: +10 V für den Bereich +/- 10V) und der oberen Grenze.
Unterer Toleranzbereich	Umfasst die Werte zwischen dem Mindestwert des Bereichs (Beispiel: -10 V für den Bereich +/- 10V) und der unteren Grenze.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Bereich	BMX AMI	BMX AMI 0810-Bereich									
	Unterlaufbereich		Unterer Toleranzbereich		Nennbereich		Oberer Toleranzbereich		Überlaufbereich		
Unipolar											
0-10 V	-1,500	-1,001	-1,000	-1	0	10.000	10.001	11,000	11,001	11,400	
05 V / 020 mA	-5,000	-1,001	-1,000	-1	0	10.000	10.001	11,000	11,001	15,000	
15 V / 420 mA	-4.000	-801	-800	-1	0	10.000	10.001	10.800	10.801	14,000	
Bipolar											
+/-10 V	-11,500	-11,001	-11,000	-10.001	-10.000	10.000	10.001	11,000	11,001	11,400	
+/- 5 V, +/- 20 mA	-15,000	-11,001	-11,000	-10.001	-10.000	10.000	10.001	11,000	11,001	15,000	
Benutzer											
+/-10 V	-32.768				Benutzer- definiert	Benutzer- definiert				32.767	
0-10 V	-32.768				Benutzer- definiert	Benutzer- definiert				32.767	

Die Werte der Grenzen können unabhängig voneinander konfiguriert werden. Es können Ganzzahlwerte zwischen den folgenden Grenzen angenommen werden:

Messwertanzeige

Messungen können mithilfe einer standardisierten Anzeige (in %, zwei Dezimalstellen) angezeigt werden:

Bereichstyp	Anzeige
Unipolarer Bereich 0-10 V, 0-5 V, 1-5 V, 0-20 mA, 4-20 mA	von 0 bis 10.000 (0 % bei +100,00 %)
Bipolarer Bereich +/- 10 V, +/- 5 mV +/- 20 mA	von -10,000 bis +10,000 (-100,00 % bei +100,00 %)

Es ist auch möglich, den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl zu definieren:

- Die untere Grenze in Abhängigkeit des Mindestwerts für den Bereich: 0 % (oder -100,00 %).
- Die obere Grenze in Abhängigkeit des Maximalwerts für den Bereich (+100,00 %).

Die untere und obere Grenze muss jeweils ein Ganzzahlwert zwischen -32.768 und +32.767 sein.

Nehmen wir an, Sie verfügen über einen Behälter mit Druckdaten in Schleifen von 4 - 20 mA, wobei 4 mA dem Wert 3.200 mB und 20 mA dem Wert 9.600 mB entspricht. Sie können das Benutzerformat wählen, indem Sie die folgenden oberen und unteren Grenzen festlegen:

3.200 für 3.200 mB als untere Grenze

9.600 für 9.600 mB als obere Grenze

Die an das Programm übertragenen Werte variieren zwischen 3.200 (= 4 mA) und 9.600 (= 20 mA).

Filterung der Messwerte

Der vom System durchgeführte Filterungstyp wird "Filterung erster Ordnung" genannt. Der Filterungskoeffizient kann mit einem Programmiergerät oder über ein Programm geändert werden.

Die verwendete mathematische Formel lautet:

$$Meas_{f(n)} = \alpha \times Meas_{f(n-1)} + (1 - \alpha) \times Val_{b(n)}$$

Erläuterung:

 α = Effizienz des Filters

Mes_{f(n)} = zum Zeitpunkt n gefilterter Messwert

Mes_{f(n-1)} = zum Zeitpunkt n-1 gefilterter Messwert

Val_{b(n)} = Bruttowert zum Zeitpunkt n

Sie können den Filterungswert mithilfe von sieben Auswahlmöglichkeiten konfigurieren (von 0 bis 6). Dieser Wert kann auch dann geändert werden, wenn sich die Anwendung im RUN-Modus befindet.

HINWEIS: Es kann im normalen oder schnellen Zyklus auf die Filterung zugegriffen werden.

Die Filterungswerte sind abhängig von dem T-Konfigurationszyklus (wobei T = Zykluszeit von 5 ms im Standardmodus):

Gewünschte Effizienz	Erforderlicher Wert	Entsprechend α	Filterungsantwortzeit bei 63%	Abschaltfrequenz (in Hz)
Keine Filterung	0	0	0	0
Geringe Filterung	1	0,750	4 x T	0,040/T
	2	0,875	8 x T	0,020/T
Mittlere Filterung	3	0,937	16 x T	0,010/T
	4	0,969	32 x T	0,005/T
Starke Filterung	5	0,984	64 x T	0,0025/T
	6	0,992	128 x T	0,0012/T

Sensorausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der mit einem gegebenen Sensor überwacht wird, bei einem bestimmten Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist deshalb keine neue Ausrichtung erforderlich. Wenn jedoch der Sensor oder der Arbeitspunkt des Sensors ausgetauscht wird, ist eine neue Ausrichtung erforderlich.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Jeder Eingangskanal bietet folgende Möglichkeiten:

- Anzeigen und Ändern des gewünschten Messwerts
- Speichern des Ausrichtungswerts
- Ermitteln, ob der Kanal bereits über eine Ausrichtung verfügt

Der Ausrichtungs-Offset kann auch per Programmierung geändert werden.

Die Kanalausrichtung wird auf dem Kanal in der Standardbetriebsart ohne Auswirkungen auf die Betriebsarten des Kanals durchgeführt.

Der maximale Offset zwischen gemessenem Wert und gewünschtem (ausgerichteten) Wert darf +/-1,500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX ART/AMO/AMI/AMM ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Schirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Erdungsschiene auf der Modulseite. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

▲ GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Schirmleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

- 1 BMX AMI 0810
- 2 Schirmleiste
- 3 Klemme
- 4 An Sensoren

Erdungsreferenz der Sensoren

Um die ordnungsgemäße Funktionsweise der Erfassungskette zu gewährleisten, sollten Sie die folgenden Hinweise berücksichtigen:

- Die Sensoren müssen nahe beieinander platziert sein (einige Meter)
- Alle Sensoren müssen zu einem einzigen Punkt referenziert werden, der mit der SPS-Masse verbunden ist

Verwenden von massebezogenen Sensoren

Die Sensoren werden wie im folgenden Diagramm aufgeführt verbunden:

Wenn die Sensoren in Bezug auf die Masse referenziert werden, kann dies in einigen Fällen ein entferntes Erdungspotenzial an die Klemmenleiste zurücksenden. Daher **müssen** die folgenden Regeln eingehalten werden:

- Das Potenzial muss unter der zulässigen Niederspannung liegen. Beispiel: 30 Vrms oder 42,4 VDC.
- Das Anlegen eines Sensorpunktes an ein Bezugspotenzial generiert einen Leckstrom. Sie müssen deshalb sicherstellen, dass alle Leckströme das System nicht stören.

HINWEIS: Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Induzierte Ströme beeinflussen die Messungen oder die Integrität des Systems nicht.

GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Stellen Sie sicher, dass Sensoren und andere Peripheriegeräte nicht über Erdungspunkte einem Spannungspotenzial ausgesetzt sind, das die zulässigen Grenzwerte überschreitet.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

AVORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Das Modul BMX AMI 0810 wird mithilfe der Klemmenleiste mit 28 Anschlusspunkten angeschlossen.

Abbildung

Die Klemmenleiste und die Sensoren werden wie folgt verbunden:

VIx +Pol-Eingang für Kanal x COM x -Pol-Eingang für Kanal x IIx +Eingang Stromlesewiderstand Kanal0 Spannungssensor Kanal 1 2-adriger Stromsensor

Verdrahtungszubehör

Für den schnellen Anschluss an betriebstüchtige Teile kann das Modul mit einem vorverdrahteten TELEFAST-System *(siehe Seite 122)* verbunden werden.

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMI 0810-Modul
- 2 BMXFTA••0-Verbindungskabel
- **3** Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

Das Modul BMX AMI 0810 kann mit folgenden Schnittstellen-Anschlussplatten verbunden werden:

- ABE-7CPA02
- ABE-7CPA31
- ABE-7CPA31E

HINWEIS: Wenn das zu messende Signal HART-Informationen umfasst, muss die ABE-7CPA31E-Schnittstellen-Anschlussplatte verwendet werden, damit diese Informationen, die den Analogwert unterbrechen würden, ausgefiltert werden können.

BMX FTA ••0-Verbindungskabel

Die BMX FTA ••0-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 28-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 24 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FTA ••0-Kabel:

- 1 BMX FTB 2820-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in zwei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FTA 150
- 3 m (9,84 ft): BMX FTA 300

In der folgenden Tabelle sind die Eigenschaften der BMX FTA ••0-Kabel aufgeführt:

Merkmal		Wert	
Kabel Ummantelungsmaterial		PVC	
	LSZH-Status	Nein	
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)	

ABE-7CPA02-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA02:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub- D-Steckers	BMXAMI0 810- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub- D-Steckers	BMXAMI0 810- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		Masse
2	1		STD (1)	Vers. 2	1		Masse
3	1		STD (1)	Vers. 3	1		Masse
4	/		STD (2)	Vers. 4	/		Masse
1000	19,2 bis 30 VDC	3	+IV0	200	14	2	COM0
101	2	1	+IC0	201	1		Masse
102	15	4	+IV1	202	3	5	COM1
103	16	6	+IC1	203	1		Masse
104	4	9	+IV2	204	17	8	COM2
105	5	7	+IC2	205	1		Masse
106	18	10	+IV3	206	6	11	COM3
107	19	12	+IC3	207	1		Masse
108	7	17	+IV4	208	20	16	COM4
109	8	15	+IC4	209	1		Masse
110	21	18	+IV5	210	9	19	COM5
111	22	20	+IC5	211	1		Masse
112	10	23	+IV6	212	23	22	COM6
113	11	21	+IC6	213	/		Masse
114	24	24	+IV7	214	12	25	COM7
115	25	26	+IC7	215	1		Masse

HINWEIS: Bei ABE-7CPA02 befindet sich die Kontaktbrücke zwischen Pin 1 und Pin 2.

+IVx: +Pol Spannungseingang für Kanal x

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

HINWEIS: Für mit dem TELEFAST ABE-7CPA02 verbundene Stromsensoren muss ein an der BMX AMI 0810-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

ABE-7CPA31-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA31:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 810- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 810- Pinbelegung	Signalart			
1	1		Masse	Vers. 1	1		24 V (Sensor- versorgung)			
2	1		Masse	Vers. 2	1		24 V (Sensor- versorgung)			
3	/		Masse	Vers. 3	/		0 V (Sensor- versorgung)			
4	/		Masse	Vers. 4	/		0 V (Sensor- versorgung)			
+ISx: 24-V-Kana +IVx: +Pol Spar +ICx: +Pol Stron COMx: -Pol Spa	+ISx: 24-V-Kanalspannungsversorgung +IVx: +Pol Spannungseingang für Kanal x +ICx: +Pol Stromeingang für Kanal x COMx: -Pol Spannungs- oder Stromeingang für Kanal x									

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 810- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMI0 810- Pinbelegung	Signalart
100	1		+IS0	116	1		+IS4
101	1	3	+IV0	117	7	17	+IV4
102	2	1	+IC0	118	8	15	+IC4
103	14	2	0 V	119	20	16	0 V
104	1		+IS1	120	1		+IS5
105	15	4	+IV1	121	21	18	+IV5
106	16	6	+IC1	122	22	20	+IC5
107	3	5	0 V	123	9	19	0 V
108	1		+IS2	124	1		+IS6
109	4	9	+IV2	125	10	23	+IV6
110	5	7	+IC2	126	11	21	+IC6
111	17	8	0 V	127	23	22	0 V
112	1		+IS3	128	1		+IS7
113	18	10	+IV3	129	24	24	+IV7
114	19	12	+IC3	130	25	26	+IC7
115	6	11	0 V	131	12	25	0 V
+ICv: 24 V Kon		orooraupa					

+ISx: 24-V-Kanalspannungsversorgung **+IVx:** +Pol Spannungseingang für Kanal x

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

HINWEIS: Für mit dem TELEFAST ABE-7CPA31 verbundene Stromsensoren muss ein an der BMX AMI 0810-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

ABE-7CPA31E-Sensorverbindung

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA31E:

Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart	Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart
1	1	Masse	Vers. 1	1	24 V (Sensorversorgung)
2	1	Masse	Vers. 2	1	24 V (Sensorversorgung)
3	1	Masse	Vers. 3	1	0 V (Sensorversorgung)
4	1	Masse	Vers. 4	1	0 V (Sensorversorgung)
100	1	+IS0	116	1	+IS4
101	1	то	117	1	Τ4
102	1	+IC0	118	1	+IC4
103	1	0V0	119	1	0V4
104	1	+IS1	120	1	+IS5

+ISx: 24-V-Kanalspannungsversorgung

Tx: Reservierter Test-Pin für die HART-Funktion. Dieser Pin ist intern mit +ICx verbunden.

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart	Nummer der TELEFAST- Klemmenleiste	Klemme	Signalart
105	1	T1	121	1	T5
106	1	+IC1	122	1	+IC5
107	1	0V1	123	1	0V5
108	1	+IS2	124	1	+IS6
109	1	T2	125	1	Т6
110	1	+IC2	126	1	+IC6
111	1	0V2	127	1	0V6
112	1	+IS3	128	1	+IS7
113	1	Т3	129	1	Т7
114	1	+IC3	130	1	+IC7
115	1	0V3	131	1	0V7

+ISx: 24-V-Kanalspannungsversorgung

Tx: Reservierter Test-Pin für die HART-Funktion. Dieser Pin ist intern mit +ICx verbunden.

+ICx: +Pol Stromeingang für Kanal x

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

HINWEIS: Für mit dem TELEFAST ABE-7CPA31E verbundene Stromsensoren muss ein an der BMX AMI 0810-Klemmenleiste wie nachstehend gezeigt eine Kontaktbrücke zwischen Stromeingang und Spannungseingang angebracht werden.

1 Kontaktbrücke an der Klemmenleiste

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV10/20.

Kapitel 6 BMX ART 0414/0814 Analogeingangsmodule

Inhalt des Kapitels

In diesem Kapitel werden die Module BMX ART 0414/0814, ihre Merkmale und ihre Verbindung mit den verschiedenen Sensoren beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	130
Eigenschaften	131
Analoge Eingangswerte	136
Funktionsbeschreibung	139
Vorsichtsmaßnahmen bei der Verdrahtung	144
Verdrahtungsschema	148
Verwendung des TELEFAST-Verdrahtungszubehörs	151

Auf einen Blick

Funktion

Die Module BMX ART 0414/0814 sind Erfassungsgeräte für verschiedene Bereiche mit vier (0414) bzw. acht Eingängen (0814). Die Eingänge sind untereinander isoliert. Diese Module stellen für jeden Eingang in Abhängigkeit von der bei der Konfiguration getroffenen Auswahl folgende Bereiche zur Verfügung:

- RTD IEC Pt100/Pt1000, US/JIS Pt100/Pt1000, Cu10, Cu50, Cu100, Ni100/Ni1000 in 2-, 3- oder 4-Draht-Ausführung
- Thermoelement B, E, J, K, L, N, R, S, T, U
- Spannung +/- 40 mV bis 1,28 V

Verstärkte Versionen

Das BMX ART 0414H, und das BMX ART 0814H-Gerät (Hardened) sind die verstärkten Versionen des BMX ART 0414- und des BMX ART 0814-Standardgeräts. Sie können auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Nachstehend eine Abbildung der analogen Eingangsmodule BMX ART 0414/0814:

BMX ART 0414

BMX ART 0814

Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX ART 0414(H) und BMX ART 0814(H) auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Kenndaten

Die Module BMX ART 0414(H) und BMX ART 0814(H) weisen folgende allgemeine Kenndaten auf:

Eingangstypen		Isolierte, RTD-, Thermoelement- und Spannungseingänge			
Art der Eingänge		+/- 40 mV; +/- 80 mV; +/- 160 mV; +/- 320 mV; +/- 640 mV; 1,28 V			
Betriebstemperatur BMX ART 0414 BMX ART 0814		0 bis 60 °C (32 bis 140 °F)			
	BMX ART 0414H BMX ART 0814H	-25 bis 70 °C (-13 bis 158 °F)			
Anzahl der Kanäle	BMX ART 0414(H)	4			
	BMX ART 0814(H)	8			
Erfassungszykluszeit	BMX ART 0414(H)	400 ms / 4 Kanäle			
	BMX ART 0814(H)	400 ms / 8 Kanäle			
Konvertierungsmethode		ΣΔ			
Lösung		15-Bit + Zeichen			
 Isolierung: Zwischen Kanälen Zwischen Kanälen und Zwischen Kanälen und 	Bus Erde	 750 VDC 1400 VDC 750 VDC 			
Maximal zulässige Übersp	annung für Eingänge	+/- 7.5 VDC			
Vergleichsstellenkompensation		 Interne Kompensation mittels dediziertem TELEFAST ABE-7CPA412-Verdrahtungszubehör, einschließlich Sensor. Externe Kompensation mittels Kanal 0 für 2/3-Draht- Pt100 für die Vergleichsstellenkompensation. Externe Kompensation mittels der Werte der Vergleichsstellenkompensation der Kanäle 4/7 für die Kanäle 0/3. In diesem Fall ist nur ein Sensor erforderlich. 			
Eingangsfilter		Tiefpassfilter (1. Rang, numerisch)			

Unterdrückung im differenz	iellen Modus (50/60 Hz)	Typisch 60 dB
Gleichtaktunterdrückung (5	0/60 Hz)	Typisch 120 dB
BMX ART 0414(H)		
Stromaufnahme (3,3 V) Typisch		0,32 W
	Maximum	0,48 W
Stromaufnahme (24 V)	Typisch	0,47 W
	Maximum	1,20 W
BMX ART 0814(H)		
Stromaufnahme (3,3 V)	Typisch	0,32 W
	Maximum	0,48 W
Stromaufnahme (24 V) Typisch		1,00 W
	Maximum	1,65 W

Technische Daten des Spannungseingangs

Die technischen Daten der Spannungseingänge der Module BMX ART 0414(H) und BMX ART 0814(H) lauten wie folgt:

Spannungsbereich:	+/- 40 mV; +/- 80 mV; +/- 160 mV; +/- 320 mV; +/- 640 mV; 1.28 V
Eingangsimpedanz:	Typisch 10 MOhm
Maximaler konvertierter Wert:	+/- 102.4%
Maximale Auflösung:	2,4 μV im Bereich +/- 40 mV
Messfehler für Standardmodule:	
• Bei 25 °C (77 °F)	0,05 % von FS (1)
Maximum innerhalb des	0,15 % von FS (1)
Temperaturbereichs (0 bis 60 °C/32 bis 140 °F)	
Messfehler für Hardened-Module:	
• Bei 25 °C (77 °F)	0,05 % von FS (1)
Maximum innerhalb des	0,20 % von FS (1)
Temperaturbereichs (-25 bis 70 °C/-13 bis 140 °F)	
Temperaturabweichung:	
	30 ppm/°C
Legende:	
(1) FS: Vollaussteuerung (Full Scale)	

Technische Daten der RTD-Eingänge

Die technischen Daten der RTD-Eingänge der Module BMX ART 0414(H) und BMX ART 0814(H) lauten wie folgt:

RTD	Pt100	Pt1000	Ni100	Ni1000	Cu10	CU50	CU100
Messbereich	Gemäß IEC -175 bis 825 °C (-347 bis +1517 °F) Gemäß US/JIS: -87 bis +437 °C (-125 bis +819 °F)		-54 bis +174 °C (-65 bis +345 °F)		-91 bis +251 °C (-132 bis +484 °F)	-200 bis +200 °C (-328+392)	
Auflösung	0,1 °C (0.2	°F)					
Typ der Erkennung	Unterbrech	ung (Erkenn	ung bei jeden	n Kanal)	-		
Fehler bei 25 °C (1)	+/- 2,1 °C (+/- 3.8 °F)	+/- 2,1 °C (+/-3.8 °F)	+/- 0,7 °C (+/- 1.3 °F)	+/- 4 °C (+/-7.2 °F)	+/- 2,1 °C (+/-3,8 °F)	
Maximaler Fehler für Standardmodule im Temperaturbereich 0 bis 60° C (32 bis 140 °F) (2)	+/- 3 °C (+/- 5.4 °F)		+/- 3 °C (+/- 5.4 °F)	+/- 0,7 °C (+/- 1.3 °F)	+/- 4 °C +/- 3 °C (+/-7.2 °F) (+/-5.4 °F)		;)
Maximaler Fehler für Hardened-Module im Temperaturbereich -25 bis 70 °C (2)	+/- 3°C		+/- 3,5°C (+/- 6.3 °F)	+/-1,15 °C (+/-2.1 °F)	+/- 4,5 °C (+/- 8.1 °F)	+/- 3,5 °C (+/-6.3 °F	; ;)
Maximaler Verdrahtungs	widerstand:						
 4-Draht 	50 Ω	500 Ω	50 Ω	500 Ω	50 Ω	50 Ω	
• 2/3-Draht	20 Ω 200 Ω		20 Ω	200 Ω	20 Ω	20 Ω	
Temperaturabweichung:							
	30 ppm/°C						
Legende							
(1) Ausschließlich durch die Verdrahtung verursachte Fehler, +/-1 °C (0.2 °F) im Bereich -100 bis +200 °C (-148 bis							

+392 °F) für Pt100

(2) Siehe die detaillierten Fehler am Temperaturpunkt (siehe Seite 354).

Kenndaten der Thermoelementeingänge

Die folgende Tabelle enthält die allgemeinen technischen Daten für die Thermoelementeingänge der Module BMX ART 0414(H) und BMX ART 0814(H):

Thermoelemente	В	E	J	к	L	
Messbereich	+171 bis +1.779 °C (340 bis 3234 °F)	-240 bis +970 °C (-400 bis 1778 °F)	-177 bis +737 °C (-287 bis 1359 °F)	-231 bis +1.331°C (-384 bis 2428 °F)	-174 bis +874 °C (-281 bis 1605 °F)	
	-	-	-	-	-	
Thermoelemente	Ν	R	S	Т	U	
Messbereich	-232 bis +1.262 °C (-386 bis 2304 °F)	-9 bis +1.727 °C (16 bis 3234 °F)	-9 bis +1.727 °C (-16 bis 141 °F)	-254 bis +384 °C (-425 bis 723 °F)	-181 bis +581 °C (-294 bis 1078 °F)	
Auflösung	0,1 °C (0.2 °F)					
Typ der Erkennung	Unterbrechung (Erk	ennung bei jedem K	anal)			
Fehler bei 25 °C	+/-3,2 °C für die Typ detaillierte Fehler an	oen J, L, R, S und U m Temperaturpunkt	(siehe Thermoele für jeden Typ); +/-3	ment-Bereiche <i>(sief</i> 3,7 °C für die Typen	<i>e Seite 356)</i> für B, E, K, N und T	
Maximaler Fehler für Standardmodule im Temperaturbereich 0. bis 60 °C (2)	+/-4,5 °C (+/-8,1 °F) für die Typen J, L, R, S und U; +/-5 °C (+/-9 °F) für die Typen B, E, K, N und T (bei Verwendung des TELEFAST-Zubehörs mit interner Vergleichsstellenkompensation)					
Maximaler Fehler für Hardened- Module im Temperaturbereich -25 bis 70 °C (2)	+/-5,5 °C (+/-9 °F) für die Typen J, L, R, S und U; +/-6 °C (+/-10.8 °F) für die Typen B, E, K, N und T (bei Verwendung des TELEFAST-Zubehörs mit interner Vergleichsstellenkompensation)					
Temperaturdrift	30 ppm/°C					

Technische Daten des Widerstandseingangs

Die technischen Daten der Widerstandseingänge der Module BMX ART 0414(H) und BMX ART 0814(H) lauten wie folgt:

Bereich	400 Ω; 4000 Ω
Typmessung	2-, 3-, 4-adrig
Maximale Auflösung	12,5 m Ω im Bereich 400 Ω 125 m Ω im Bereich 4000 Ω
Messfehler für Standardmodule:	
• Bei 25 °C (77 °F)	0,12 % von FS (1)
• Maximum innerhalb des Temperaturbereichs (0 bis 60 °C/32 bis 140 °F)	0.2 % von FS (1)
Messfehler für verstärkte Module:	
• Bei 25 °C (77 °F)	0,12 % von FS (1)
 Maximum innerhalb des Temperaturbereichs (-25 bis –70 °C/-13 bis 140 °F) 	0,3 % von FS (1)
Temperaturdrift	25 ppm/°C
Legende:	
(1) FS: Vollaussteuerung (Full Scale)	

Analoge Eingangswerte

Beschreibung

Die Daten für RTD- und TC-Sensoren entsprechen jeweils einem Zehnfachen der Echttemperatur in °C oder °F. Die letzte Ziffer entspricht 0,1 °C bzw. 0.1 °F.

Die gültigen Daten für Millivoltmeter reichen von 40 mV über 320 mV bis 1280 mV, wobei sie ebenfalls einem Zehnfachen des gemessenen Echtwerts entsprechen. Die letzte Ziffer entspricht 10 nV.

Der Datenbereich 640 mV für Millivoltmeter ist ein Hundertfaches des gemessenen Echtwerts. Die letzte Ziffer entspricht 100 nV.

RTD-Bereiche

Die nachstehende Tabelle zeigt die gültigen Bereiche für RTD-Sensoren bzw. Widerstandsthermometer (die Werte in Klammern sind in 1/10 °F ausgedrückt).

Baureihe	Unterlauf	Unterer Bereich	Oberer Bereich	Überlauf
Pt100 IEC 751-1995, JIS C1604-1997	-1990	-1750	8250	8490
(2/4 Drähte)	(-3260)	(-2830)	(15170)	(15600)
Pt1000 IEC 751-1995, JIS C1604-1997	-1990	-1750	8250	8490
(2/4 Drähte)	(-3260)	(-2830)	(15170)	(15600)
Ni100 DIN43760-1987 (2/4 Drähte)	-590	-540	1740	1790
	(-750)	(-660)	(3460)	(3550)
Ni1000 DIN43760-1987 (2/4 Drähte)	-590	-540	1740	1790
	(-750)	(-660)	(3460)	(3550)
Pt100 IEC 751-1995, JIS C1604-1997	-1990	-1750	8250	8490
(3 Drähte)	(-3260)	(-2830)	(15170)	(15600)
Pt1000 IEC 751-1995, JIS C1604-1997	-1990	-1750	8250	8490
(3 Drähte)	(-3260)	(-2830)	(15170)	(15600)
Ni100 DIN43760-1987 (3 Drähte)	-590	-540	1740	1790
	(-750)	(-660)	(3460)	(3550)
Ni1000 DIN43760-1987 (3 Drähte)	-590	-540	1740	1790
	(-750)	(-660)	(3460)	(3550)
JPt100 JIS C1604-1981, JIS C1606-	-990	-870	4370	4490
1989 (2/4 Drähte)	(-1460)	(-1240)	(8180)	(8400)
JPt1000 JIS C1604-1981, JIS C1606-	-990	-870	4370	4490
1989 (2/4 Drähte)	(-1460)	(-1240)	(8180)	(8400)
JPt100 JIS C1604-1981, JIS C1606-	-990	-870	4370	4490
1989 (3 Drähte)	(-1460)	(-1240)	(8180)	(8400)

Baureihe	Unterlauf	Unterer Bereich	Oberer Bereich	Überlauf
JPt1000 JIS C1604-1981, JIS C1606-	-990	-870	4370	4490
1989 (3 Drähte)	(-1460)	(-1240)	(8180)	(8400)
Cu10 (2/4 Drähte)	-990	-910	2510	2590
	(-1460)	(-1320)	(4840)	(4980)
Cu10 (3 Drähte)	-990	-910	2510	2590
	(-1460)	(-1320)	(4840)	(4980)

Thermoelementbereiche

Die nachstehende Tabelle enthält die gültigen Bereiche für TC-Sensoren bzw. Thermoelementsensoren (die Werte in Klammern sind in 1/10 °F ausgedrückt).

Baureihe	Unterlauf	Unterer Bereich	Oberer Bereich	Überlauf
Тур Ј	-1980	-1770	7370	7580
	(-3260)	(-2870)	(13590)	(13980)
Тур К	-2680	-2310	13310	13680
	(-4500)	(-3830)	(24270)	(24940)
Тур Е	-2690	-2400	9700	9990
	(-4510)	(-3990)	(17770)	(18290)
Тур Т	-2690	-2540	3840	3990
	(-4520)	(-4250)	(7230)	(7500)
Тур S	-500	-90	17270	17680
	(-540)	(160)	(29550)	(30250)
Тур R	-500	-90	17270	17680
	(-540)	(160)	(29550)	(30250)
Тур В	1320	1710	17790	18170
	(2700)	(3390)	(32000)	(32000)
Тур N	-2670	-2320	12620	12970
	(-4500)	(-3860)	(23040)	(23680)
Тур U	-1990	-1810	5810	5990
	(-3250)	(-2930)	(10770)	(11090)
Тур L	-1990	-1740	8740	8990
	(-3250)	(-2800)	(16040)	(16490)

Spannungsbereiche

Die nachstehende Tabelle enthält die Standardwerte für die verschiedenen Spannungsbereiche.

Bereich	Unterlauf	Unterer Bereich	Oberer Bereich	Überlauf
+/- 40 mV	-4192	-4000	4000	4192
+/- 80 mV	-8384	-8000	8000	8384
+/- 160 mV	-16768	-16000	16000	16768
+/- 320 mV	-32000	-32000	32000	32000
+/- 640 mV	-6707	-6400	6400	6707
+/- 1280 mV	-13414	-12800	12800	13414

Widerstandsbereiche

Die nachstehende Tabelle enthält die Standardwerte für die verschiedenen Widerstandsbereiche.

Bereich	Unterlauf	Unterer Bereich	Oberer Bereich	Überlauf
0 bis 400 Ohm, 2/4 Drähte	0	0	4000	4096
0 bis 4000 Ohm, 2/4 Drähte	0	0	4000	4096
0 bis 400 Ohm, 3 Drähte	0	0	4000	4096
0 bis 4000 Ohm, 3 Drähte	0	0	4000	4096

Funktionsbeschreibung

Funktion

Die Module BMX ART 0414/814 sind Mehrbereichs-Erfassungsgeräte mit vier Eingängen beim BMX ART 0414 und acht Eingängen beim BMX ART 0814.

Beide Module bieten folgende Bereiche für jeden Eingang, je nach der während der Konfiguration gewählten Option:

- RTD: IEC Pt100, IEC Pt1000, US/JIS Pt100, US/JIS Pt1000, Kupfer CU10, Ni100 oder Ni1000
- Thermoelement: B, E, J, K, L, N, R, S, T oder U
- Spannung: +/- 80 mV, +/- 80 mV, +/- 160 mV, +/- 320 mV, +/- 640 mV, +/- 1,28 V,
- Ohm: 0..400 Ω, 0..4000 Ω.

HINWEIS: Das TELEFAST2-Zubehör **ABE-7CPA412** erleichtert den Anschluss und stellt ein Gerät für die Vergleichsstellenkompensation bereit.

Abbildung

Die Eingangsmodule BMX ART 0414/0814 führen die folgenden Funktionen aus:

Nachfolgend sind die Funktionen beschrieben.

Adresse	Element	Funktion		
1	Anpassung der Eingänge	"Anpassung" besteht aus einem gemeinsamen und einem differenziellen Modusfilter. Die Schutzwiderstände an den Eingängen bieten einen Schutz vor Spannungsspitzen von bis zu +/- 7,5 V. Eine Multiplexing-Schicht ermöglicht eine Selbstkalibrierung des Erfassungsketten-Offsets so nah wie möglich an dem Eingangsanschluss sowie eine Auswahl des Vergleichsstellenkompensations-Sensors, der in dem TELEFAST- Gehäuse enthalten ist.		
2	Verstärkung der Eingangssignale	Um einen Verstärker in dem A/N-Konverter mit schwachem Offset herum gebildet. Ein Stromgenerator gewährleistet die RTD-Widerstandsmessung.		
3	Konvertierung	Der Wandler empfängt das von einem Eingangskanal oder von der Vergleichsstellenkompensation stammende Signal. Die Konvertierung erfolgt durch einen Σ Δ -Wandler (16 Bits). Für jeden Eingang ist ein Wandler vorhanden.		
4	Umwandlung der Messwerte an den Eingängen in eine durch den Anwender nutzbare Einheit	 Rekalibrierung und Ausrichtungskoeffizienten, die auf Messungen angewendet werden sowie die Koeffizienten für die Selbstkalibrierung des Moduls Filterung (Digitalfilter) der Messwerte abhängig von den Konfigurationsparametern Skalierung der Messwerte abhängig von den Konfigurationsparametern 		
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU. Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle Senden der gemessenen Werte sowie des Modulstatus an die Anwendung 		
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	 Testen der Konvertierungszeichenkette Bereichsunterlauf/-überlauf an Kanälen und Prozesstest für Vergleichsstellenkompensation Watchdog-Test 		
7	Vergleichsstellenkompensation	 Eine interne Kompensation durch TELEFAST ABE-7CPA412 Externe Kompensation durch Pt100 Externe Kompensation mittels der Werte der Vergleichsstellenkompensation der Kanäle 4/7 für die Kanäle 0/3. In diesem Fall ist nur ein Sensor erforderlich. 		

Anzeige der Messung des elektrischen Bereichs

Messungen können mithilfe einer standardisierten Anzeige (in %, zwei Dezimalstellen) angezeigt werden.

Bereichstyp	Anzeige
Bipolarer Bereich	von -10.000 bis +10.000 (-100,00 % bis +100,00 %)

Es ist auch möglich, den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl zu definieren:

- Die untere Grenze in Abhängigkeit des Mindestwerts für den Bereich: -100,00 %
- Die obere Grenze in Abhängigkeit des Maximalwerts für den Bereich: +100,00 %.

Diese unteren und oberen Grenzen sind Ganzzahlwerte zwischen -32.768 and +32.768.

Anzeige der Messung des Temperaturbereichs

Für die Anwendung bereitgestellte Messungen können direkt verwendet werden. Es kann entweder die Anzeige "In Temperatur" oder die standardisierte Anzeige ausgewählt werden:

- Im Anzeigemodus "In Temperatur" werden die Werte in zehntel Grad bereitgestellt (Celsius oder Fahrenheit, je nachdem, welche Einheit Sie ausgewählt haben).
- Für die benutzerdefinierte Anzeige können Sie eine standardisierte Anzeige 0-10.000 (also von 0 bis 100,00 %) auswählen, indem Sie die minimalen und maximalen Temperaturen wie in dem Bereich 0 bis 10.000 dargestellt angeben.

Filterung des Messwerts

Der vom System durchgeführte Filterungstyp wird "Filterung erster Ordnung" genannt. Der Filterungskoeffizient kann über eine Programmierkonsole oder über das Programm angepasst werden.

Die verwendete mathematische Formel lautet wie folgt:

 $Mesf(n) = \alpha \times Mesf(n-1) + (1-\alpha) \times Valb(n)$

Erläuterung:

α = Effizienz des Filters

Mesf(n) = zum Zeitpunkt n gefilterter Messwert

Mesf(n-1) = zum Zeitpunkt n-1 gefilterter Messwert

Valg(n) = Gesamtwert zum Zeitpunkt n

Sie können den Filterungswert mithilfe von sieben Auswahlmöglichkeiten konfigurieren (von 0 bis 6). Dieser Wert kann auch dann geändert werden, wenn sich die Anwendung im RUN-Modus befindet.

HINWEIS: Es kann im normalen oder schnellen Zyklus auf die Filterung zugegriffen werden.

Die Filterwerte lauten wie folgt: Sie richten sich nach dem Sensortyp. T ist eine Zykluszeit von 200 ms für TC und mV. T ist auch eine Zykluszeit von 400 ms für RTD und Ohm.

Gewünschte Effizienz	Erforderlicher Wert	Entsprechend α	Filterungsantwortzeit bei 63 %	Abschaltfrequenz (in Hz)
Keine Filterung	0	0	0	0
Geringe Filterung	1	0.750	4 x T	0,040/T
	2	0.875	8 x T	0,020/T
Mittlere Filterung	3	0.937	16 x T	0,010/T
	4	0.969	32 x T	0,005/T
Starke Filterung	5	0.984	64 x T	0,025/T
	6	0.992	128 x T	0,012/T

Die Werte können mithilfe einer standardisierten Anzeige (in %, zwei Dezimalstellen) angezeigt werden.

Bereichstyp	Anzeige
Unipolarer Bereich	von 0 bis 10.000 (0 % bei +100,00 %)
Bipolarer Bereich	von -10.000 bis 10.000 (-100,00 % bis +100,00 %)

Der Benutzer kann auch den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl definieren:

- Die untere Grenze in Abhängigkeit des Mindestwerts für den Bereich: -100,00 %
- Die obere Grenze in Abhängigkeit des Maximalwerts für den Bereich +100,00 %.

Diese unteren und oberen Grenzen sind Ganzzahlwerte zwischen -32.768 and +32.767.

Rückweisung Hauptfrequenz 50/60 Hz

Je nach Land kann der Benutzer die Frequenzrückweisung der Oberwellen der Hauptleistung durch Anpassen der Geschwindigkeit des Sigma/Delta-Konverters konfigurieren.

Sensorausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der mit einem gegebenen Sensor überwacht wird, bei einem bestimmten Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist deshalb keine neue Ausrichtung erforderlich. Wenn jedoch der Sensor oder der Arbeitspunkt des Sensors ausgetauscht wird, ist eine neue Ausrichtung erforderlich.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Sie können für jeden Eingangskanal Folgendes ausführen:

- Anzeigen und Ändern des gewünschten Messungswerts
- Speichern des Ausrichtungswerts
- Ermitteln, ob der Kanal bereits über eine Ausrichtung verfügt

Das Ausrichtungs-Offset kann auch per Programmierung geändert werden.

Die Kanalausrichtung wird auf dem Kanal in der Standardbetriebsart ohne Auswirkungen auf die Betriebsarten des Kanals durchgeführt.

Der maximale Offset zwischen gemessenem Wert und gewünschtem (ausgerichteten) Wert darf +/- 1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX ART/AMO/AMI/AMM ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Schirmung der Kabel

• Verbindung mit den FCN-Steckern:

Da eine große Anzahl von Kanälen vorhanden sind, werden mindestens 10 allgemein geschirmte, paarweise verdrillte Kabel (Außendurchmesser max. 10 mm) mit einem oder zwei 40-poligen FCN-Steckern für die direkte Verbindung mit dem Modul verwendet. Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Erdungsschiene auf der Modulseite. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

\Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

• TELEFAST-Verbindung:

Verbinden Sie die Kabelabschirmung des Sensors mit den vorhandenen Klemmen und die gesamte Baugruppe mit der Erdung im Schaltschrank.

Abschirmung der Sensoren

Um die ordnungsgemäße Funktionsweise der Erfassungskette zu gewährleisten, sollten Sie die folgenden Hinweise berücksichtigen:

• Wenn die Sensoren von Erde potentialgetrennt sind, müssen alle Abschirmungen der Sensorkabel auf Telefast/SPS-Erde bezogen sein.

• Wenn die Sensoren auf die Sensorerde bezogen sind, die sich weit entfernt von der SPS-Erde befindet, müssen alle Abschirmungen der Sensorkabel auf die Sensorerde bezogen werden, um Erdungsschleifen zu verhindern.

Verwendung der von Erde potenzialgetrennten Sensoren

Die Sensoren werden wie im folgenden Diagramm aufgeführt verbunden:

Wenn die Sensoren in Bezug auf die Masse referenziert werden, kann dies in einigen Fällen ein entferntes Erdungspotenzial an die Klemmen oder den FCN-Stecker zurücksenden. Daher müssen die folgenden Regeln eingehalten werden:

- Das Potenzial muss unter der zulässigen Niederspannung liegen. Beispiel: 30 Vrms oder 42,4 VDC.
- Das Anlegen eines Sensorpunktes an ein Bezugspotenzial hat die Generierung eines Leckstroms zur Folge. Sie müssen deshalb sicherstellen, dass alle Leckströme das System nicht stören.

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Induzierte Ströme beeinflussen die Messungen oder die Integrität des Systems nicht.

▲ GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Stellen Sie sicher, dass Sensoren und andere Peripheriegeräte nicht über Erdungspunkte einem Spannungspotenzial ausgesetzt sind, das die zulässigen Grenzwerte überschreitet.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

A VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Das Eingangsmodul BMX ART 0414 besteht aus einem 40-poligen FCN-Stecker.

Das Eingangsmodul BMX ART 0814 besteht aus zwei 40-poligen FCN-Steckern.

WARNUNG

UNERWARTETES GERÄTEVERHALTEN

Gehen Sie bei der Installation äußerst vorsichtig vor, um jegliche nachfolgenden Fehler bei den Anschlüssen zu vermeiden. Das Einstecken des falschen Anschlusses würde ein unerwartetes Verhalten der Anwendung zur Folge haben.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Anschlussbelegung des Steckers und Sensorverdrahtung

Bei diesem Beispiel besteht die folgende Sondenkonfiguration:

- Kanal 0/4: Thermoelement
- Kanal 1/5: 2-adrig RTD
- Kanal 2/6: 3-adrig RTD
- Kanal 3/7: 4-adrig RTD

Die Anschlussbelegung des 40-poligen FCN-Steckers und die Sensorverdrahtung sieht wie folgt aus:

Vorderansicht des Moduls – Kabelansicht

MS+: Plus-Eingang RTD-Messung / Plus-Eingang Thermoelement

- MS-: Minus-Eingang RTD-Messung / Minus-Eingang Thermoelement
- EX+: Plus-Ausgang RTD-Sondengenerator für die Stromstärke
- **EX-:** Minus-Ausgang RTD-Sondengenerator für die Stromstärke
- NC: Nicht angeschlossen
- **DtC:** Der Sensorerkennungseingang für die Vergleichsstellenkompensation ist an CJ+ angeschlossen, wenn der Sensortyp DS600 verwendet wird. Er ist nicht angeschlossen (NC), wenn der Sensortyp LM31 verwendet wird.

HINWEIS: Der Sensor für die Vergleichsstellenkompensation ist nur für Thermoelemente erforderlich.

Vergleichsstellenkompensation

Für jeden Block aus 4 Kanälen (Kanäle 0 bis 3 und Kanäle 4 bis 7) wird die externe Kompensation des Moduls vom Zubehör TELEFAST ABE-7CPA412 durchgeführt. Dieses Gerät erzeugt eine Spannung in mV gemäß folgender Formel:

Spannung = (6,45 mV * T) + 509 mV (wobei T = Temperatur in °C).

Die Gesamtfehlergrenze beim Verwenden dieses Geräts wird auf 1,2°C im Temperaturbereich von -5°C bis +60°C verringert.

Es ist möglich, die Genauigkeit der Kompensation zu erhöhen, indem eine 2/3-adrige Pt100-Sonde verwendet wird, die direkt mit den Kanälen 0 und 4 (nur beim BMX ART0814) des Moduls bzw. mit den TELEFAST-Klemmenleisten verbunden ist. Kanal 0 ist deshalb auf die Vergleichsstellenkompensation der Kanäle 1, 2 und 3 ausgerichtet. Kanal 4 ist auf die Kanäle 4 bis 7 ausgerichtet.

Ebenso ist es möglich, Kanal 0 als Thermoelementeingabe beizubehalten, indem eine 2-adrige Pt100-Sonde verwendet wird, sofern die ursprüngliche Länge der Sonde begrenzt ist.

Die Verdrahtung würde dann folgendermaßen aussehen:

Die Verdrahtung ist nur gültig, wenn der Kanal 0 verwendet wird. Wenn der Kanal 0 nicht verwendet wird, wählen Sie eine Vergleichsstelle mit externer Pt100-Sonde. Der Bereich des Kanals 0 wird auf eine 3-adrige Pt100-Sonde geändert.

Die Verdrahtung würde dann folgendermaßen aussehen:

HINWEIS: Beim Modul BMX ART 0814 können die Werte der Vergleichsstellenkompensation der Kanäle 4 bis 7 auch für die Kanäle 0 bis 3 verwendet werden. Deshalb ist nur ein externer Vergleichsstellen-Kompensationssensor *(siehe Seite 153)* an Kanal 4 angeschlossen.

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

Das TELEFAST ABE-7CPA412-Zubehör ist eine Basiseinheit, die verwendet wird, um 4-Kanal-Analogmodule mit Schraubklemmenleisten zu verbinden.

HINWEIS: Wenn das Gehäuse, in dem sich das TELEFAST ABE-7CPA412-Zubehör befindet, eingeschaltet ist, warten Sie mindestens 45 Minuten, um die maximale Präzision der Vergleichsstellenkompensation zu gewährleisten. Es ist nicht erforderlich, 45 Minuten zu warten, wenn die Vergleichsstellenkompensation durch eine externe Pt100-Sonde durchgeführt wird. Wenn die Vergleichsstellenkompensation des TELEFAST ABE-7CPA412 verwendet wird, um sicherzustellen, dass die angegebene Präzision erzielt wird, darf die Luftbewegung um das TELEFAST ABE-7CPA412 herum 0,1 m/s nicht überschreiten. Temperaturschwankungen dürfen 10°C/Stunde nicht überschreiten, und das TELEFAST ABE-7CPA412 muss mindestens in

100 mm Entfernung von allen Wärmequellen aufgestellt werden.

Das TELEFAST ABE-7CPA412 kann bei einer Außentemperatur von -40°C bis +80°C betrieben werden.

BMX FCA ••2-Verbindungskabel

Die BMX FCA ••2-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende ein 40-poliger Steckverbinder (FCN-Typ), von dem ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FCA ••2-Kabel:

- 1 40-poliger Steckverbinder, FCN-Typ
- 2 Abschirmung der Kabel
- 3 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in drei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FCA 152
- 3 m (9,84 ft): BMX FCA 302
- 5 m (16,40 ft): BMX FCA 502

In der folgenden Tabelle sind die Eigenschaften der BMX FCA ••2-Kabel aufgeführt:

Merkmal		Wert	
Kabel Ummantelungsmaterial		PVC	
	LSZH-Status	Nein	
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70°C (-13 bis 158°F)	

Verbinden von Sensoren

Sensoren können wie in der folgenden Abbildung *(siehe Seite 144)* dargestellt, mit dem TELEFAST ABE-7CPA412-Zubehör verbunden werden.

Verdrahtung

Legende: Betrieb im Thermoelementmodus mit der internen Telefast-Vergleichsstellenkompensation

Legende: Betrieb im Thermoelementmodus mit der Vergleichsstellenkompensation mittels einer zweiadrigen PT100-Sonde

Legende: Betrieb im Thermoelementmodus mit der Vergleichsstellenkompensation mittels einer dreiadrigen PT100-Sonde

Kapitel 7 BMX AMO 0210-Analogausgangsmodul

Inhalt des Kapitels

In diesem Kapitel werden das BMX AMO 0210-Modul, seine Merkmale und seine Verbindung mit den verschiedenen Sensoren erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	156
Eigenschaften	157
Funktionsbeschreibung	160
Vorsichtsmaßnahmen bei der Verdrahtung	165
Verdrahtungsschema	167
Verwendung des TELEFAST-Verdrahtungszubehörs	168

Auf einen Blick

Funktion

Das BMX AMO 0210-Modul hat zwei voneinander isolierte analoge Ausgänge. Es sind für jeden Ausgang die folgenden Bereiche vorhanden:

- Spannung +/-10 V
- Strom 0 bis 20 mA und 4 bis 20 mA

Der Bereich wird während der Konfiguration ausgewählt.

Verstärkte Version

Das BMX AMO 0210H-Gerät (Hardened) ist die verstärkte Version des BMX AMO 0210-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Das BMX AMO 0210-Analogausgangsmodul hat folgenden Aufbau.

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.

Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMO 0210 und BMX AMO 0210H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen)*.

Allgemeine Kenndaten

Die Module BMX AMO 0210 und BMX AMO 0210H weisen folgende allgemeine Kenndaten auf.

Betriebstemperatur	BMX AMO 0210	0 bis 60 °C (32 bis 140 °F)		
	BMX AMO 0210H	-25 bis 70 °C (-13 bis 158 °F)		
Ausgangstypen		Isolierte Ausgänge hoher Pegel		
Art der Ausgänge		Spannung oder Strom über Software konfiguriert		
Anzahl der Kanäle		2		
Auflösung Analog/Digital-Wandler		15 Bits + Vorzeichen		
Aktualisierungszeit der Ausgänge		≤ 1 ms		
Spannungsversorgung für Ausgänge		Über Modul		
Schutzarten		vor Kurzschlüssen und Überlastungen (Spannungsausgang)		
Isolierung:				
Zwischen Kanälen		750 V DC		
Zwischen Kanälen und Bus		1400 VDC		
Zwischen Kanälen und Erde		1400 VDC		
Messfehler für Standardmodule BMX A	MO 0210:			
• Bei 25 °C (77 °F)		0,10% von FS ⁽¹⁾		
Maximaler Temperaturbereich 0 bis	60 °C (32 bis 140 °F)	0,20 % von FS ⁽¹⁾		
Messfehler für verstärkte BMX AMO 02				
• Bei 25 °C (77 °F)		0,10% von FS ⁽¹⁾		
 Maximum innerhalb des Temperaturbereichs - 25 bis 70 °C (-13 bis 158 °F) 		0,45% von FS ⁽¹⁾		
(1) FS: Vollaussteuerung (Full Scale)				

Temperaturdrift		30 ppm/°C		
Monotonie		Ja		
Gleichtaktunterdrückung (50/60 Hz)		100 dB		
Übersprechen zwischen Kanälen DC und AC: 50/60 Hz		> 90 dB		
Keine Linearität		0,1 % von FS ⁽¹⁾		
Welligkeit AC-Ausgang		2 mV effektiv bei 50 Ω		
Stromaufnahme (3,3 V)	Typisch	0,35 W		
	Maximum	0,48 W		
Stromaufnahme (24 V) Typisch		2,1 W		
Maximum		2,8 W		
(1) FS: Vollaussteuerung (Full Scale)				

Spannungsausgang

Die Spannungsausgänge der Module BMX AMO 0210 und BMX AMO 0210H haben die folgenden Kenndaten:

Bereich der Nennwertvarianz	+/- 10 V
Maximaler Varianzbereich	+/- 11,25 V
Analogauflösung	0,37 mV
Lastimpedanz	Min. 1 kΩ
Typ der Erkennung	Kurzschlüsse

Stromausgang

Die Stromausgänge der Module BMX AMO 0210 und BMX AMO 0210H haben die folgenden Kenndaten.

Bereich der Nennwertvarianz	020 mA, 420 mA		
Verfügbarer maximaler Strom	24 mA		
Analogauflösung	0m74 μA		
Lastimpedanz	Max. 600 Ω		
Typ der Erkennung	Offener Stromkreis ⁽¹⁾⁽²⁾		
(1) Eine Erkennung offener Schaltkreise erfolgt physisch über das Modul, wenn der Zielstromwert ungleich			

(1) Eine Erkennung offener Schaltkreise erfolgt physisch über das Modul, wenn der Zielstromwert ungleich 0 mA ist.

(2) Die Erkennung offener Schaltkreise wird durch den Verdrahtungskontrolle-Parameter aktiviert.

Antwortzeit der Ausgänge

Die maximale Verzögerung zwischen der Übertragung des Ausgangswerts über den SPS-Bus und der tatsächlichen Positionierung an der Klemmenleiste beträgt weniger als 2 ms:

- Interne Zykluszeit = 1 ms für die beiden Kanäle
- Antwortzeit der Digital/Analog-Wandlung = Max. 1 ms bei einem Schritt von 0 bis 100 %

HINWEIS: Wenn keine Geräte mit dem Analogmodul BMX AMO 0210 verbunden und die Kanäle konfiguriert sind (Bereich 4 - 20 mA), wird ein E/A-Fehler erkannt, so als läge ein Drahtbruch vor. Für den Bereich 0 bis 20 mA wird nur dann ein E/A-Fehler wie für einen Drahtbruch ausgegeben, wenn der Stromwert 0 mA überschreitet.

A VORSICHT

GEFAHR UNGÜLTIGER DATEN

Beim Bruch oder bei der Trennung eines Signaldrahts wird der zuletzt gemessene Wert beibehalten.

- Stellen Sie sicher, dass dies keine gefährliche Situation zur Folge hat.
- Verlassen Sie sich nicht auf den signalisierten Wert. Pr
 üfen Sie den Eingangswert am Sensor.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Funktionsbeschreibung

Funktion

Das Modul BMX AMO 0210 hat zwei voneinander isolierte analoge Ausgänge. Das Modul bietet folgende Bereiche für jeden Ausgang, je nach der während der Konfiguration gewählten Option:

- +/- 10 V
- 0...20 mA
- 4...20 mA

Beschreibung

Diese Abbildung zeigt das Modul BMX AMO 0210.

Beschreibung.

Adresse	Prozess	Eigenschaften
1	Anpassung der Ausgänge	 Physische Anbindung an den Prozess über eine Schraubklemmenleiste mit 20 Anschlusspunkten Schutz des Moduls für Spannungsspitzen
2	Signalanpassung an die Stellglieder	 Anpassung der Spannung bzw. des Stroms über die Softwarekonfiguration
3	Wandlung	 Wandlung über 15 Bits mit einem Polaritätszeichen Automatische und dynamische Neuausrichtung der vom Programm bereitgestellten Daten durch den Wandler
4	Konvertierung der Anwendungsdaten in vom Digital-/Analogwandler direkt verwendbare Daten	 Verwendung der werkseitig voreingestellten Kalibrierungsparameter
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle sowie der digitalen Kanalsollwerte von der Anwendung Rückgabe des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	 Ausgangsstromversorgungstest Prüfung auf Bereichsüberlauf an den Kanälen Test für Ausgangsunterbrechungen und -kurzschlüsse Watchdog-Test Programmierbare Funktionen für den Fehlermodus

Verdrahtungsausgänge

Die Anwendung muss den Ausgängen Werte in einem standardisierten Format bereitstellen:

- -10.000 bis +10.000 für den Bereich +/-10 V
- 0 bis +10.000 in 0-20-mA- und 4-20-mA-Bereichen

Digital/Analog-Wandlung

Die Digital/Analog-Wandlung erfolgt über:

- 16-Bit für den Bereich +/-10 V
- 15-Bit in 0-20-mA- und 4-20-mA-Bereichen

Überlaufkontrolle

Das Modul BMX AMO 0210 unterstützt eine Überlaufkontrolle in Bezug auf die Spannungs- und Strombereiche.

Der Messbereich ist in in drei Teilbereiche untergliedert:

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Für die verschiedenen Bereiche gelten folgende Überlaufwerte:

Bereich	BMX AMO 0210					
	Unterlaufbereich		Nennbereich		Überlaufbereich	
+/- 10 V	-11.250	-11.001	-11.000	11.000	11.001	11.250
020 mA	-2.000	-1.001	-1.000	11.000	11.001	12.000
420 mA	-1.600	-801	-800	10800	10801	11.600

Sie können ebenfalls eine Kennung für einen Überlauf der Obergrenze, einen Unterlauf der Untergrenze oder für beides auswählen.

HINWEIS: Die Erkennung eines Bereichsüber-/unterlaufs ist optional.

Fehlerwert/Wert halten oder Ausgänge auf Null zurücksetzen

Bei Auftreten eines Fehler und je nach Schweregrad des Fehlers verhalten sich die Ausgänge wie folgt:

- Sie schalten einzeln oder gemeinsam in die Position Fehlerwert/Wert halten um.
- Sie werden auf 0 forciert (0 V bzw. 0 mA).

Verschiedene Verhaltensweisen von Ausgängen:

Fehler	Verhalten der Spannungsausgänge	Verhalten der Stromausgänge	
Task im STOP-Modus oder Programm fehlt	Fehlerwert/Wert halten (Kanal für	Fehlerwert/Wert halten (Kanal für Kanal)	
Unterbrechung der Kommunikation	Kanal)		
Konfigurationsfehler	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Modulinterner Fehler			
Ausgangswert außerhalb des Bereichs (Bereichsunter- oder -überlauf)	Wert erreicht Sättigung an vorgegebener Grenze (Kanal für Kanal)	Gesättigter Wert (Kanal für Kanal)	
Kurzschluss oder Unterbrechung am Ausgang	Kurzschluss: Wert halten (Kanal für Kanal)	Offener Schaltkreis: Wert halten (Kanal für Kanal)	
Austausch des Moduls bei laufendem Betrieb (Prozessor im STOP-Modus)	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Neuladen des Programms			

Fehlerwert oder Wert halten bei aktuellem Wert wird während der Modulkonfiguration ausgewählt. Der Fehlerwert kann unter Control Expert mit der Debug-Funktion oder durch ein Programm geändert werden.

WARNUNG

UNERWARTETER GERÄTEBETRIEB

Die Position im Fehlermodus sollte nicht als einziges Sicherheitsverfahren verwendet werden. Wenn eine unkontrollierte Positionierung zu einer Gefahrensituation führen kann, dann muss ein unabhängiges, redundantes System installiert werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Verhalten beim ersten Einschalten und beim Ausschalten.

Wenn das Modul ein- oder ausgeschaltet wird, werden die Ausgänge auf 0 gesetzt (0 V bzw. 0 mA).

Stellgliedausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der an einem bestimmten Stellglied beobachtet wird, um einen spezifischen Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist keine neue Ausrichtung erforderlich. Wenn jedoch das Stellglied oder der Arbeitspunkt des Stellglieds ausgewechselt wird, muss eine Neuausrichtung durchgeführt werden.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Für jeden Ausgangskanal können Sie folgende Funktion ausführen:

- Anzeige und Änderung des ursprünglichen Zielwerts des Ausgangs
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Der maximale Offset zwischen dem Messwert und dem berichtigten Ausgangswert (ausgerichteter Wert) darf +/- 1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX AMO/AMI/AMM/ART ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einführung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Abschirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Abschirmungsleiste auf der Modulseite fest. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP---- (*siehe Seite 48*), um die Abschirmung zu verbinden.

\Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Verwenden von massebezogenen Sensoren

Es gibt keine speziellen technischen Einschränkungen bezüglich der Erdungsreferenz von Vorstellgliedern. Es empfiehlt sich jedoch die Vermeidung eines entfernten Erdungspotenzial an der Klemmenleiste; dieses kann sehr vom Erdungspotenzial in der Nähe abweichen.

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Induzierte Ströme beeinflussen die Messungen oder die Integrität des Systems nicht.

GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Stellen Sie sicher, dass Sensoren und andere Peripheriegeräte nicht über Erdungspunkte einem Spannungspotenzial ausgesetzt sind, das die zulässigen Grenzwerte überschreitet.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

A VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung ohne programmierbare Filterung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Die Stellglieder werden mithilfe der Klemmenleiste mit 20 Anschlusspunkten verbunden.

Abbildung

Die Versorgung der Stromschleife erfolgt direkt über den Ausgang, und es ist keine externe Stromversorgung erforderlich. Die Klemmenleiste und die Stellglieder werden wie folgt verbunden:

U/Ix +-Pol-Eingang für Kanal x COMx --Pol-Eingang für Kanal x Kanal 0: Spannungsstellglied Kanal 1: Stromstellglied

Kabelansicht

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMO 0210-Modul
- 2 BMXFCA••0-Verbindungskabel
- 3 ABE-7CPA21-Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

BMX FCA ••0-Verbindungskabel

Die BMX FCA ••0-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 20-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FCA ••0-Kabel:

- 1 BMX FTB 2020-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in drei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FCA 150
- 3 m (9,84 ft): BMX FCA 300
- 5 m (16,40 ft): BMX FCA 500

In der folgenden Tabelle sind die Eigenschaften der BMX FCA ••0-Kabel aufgeführt:

Merkmal		Wert	
Kabel Ummantelungsmaterial		PVC	
	LSZH-Status	Nein	
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)	

Verbinden von Stellgliedern

Die Analogausgänge des Moduls BMX AMO 0210 sind auf der Klemmenleiste des TELEFAST ABE-7CPA21 wie folgt verfügbar:

Die folgende Tabelle enthält die Aufteilung der Analogausgänge auf der TELEFAST ABE-7CPA21-Klemmenleiste mit einem Kabel des Typs BMX FCA ••0:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen SubD- Steckver binders	BMXAMO0 210- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen SubD- Steckver binders	BMXAMO0 210- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		Masse
2	1		STD (1)	Vers. 2	1		Masse
3	1		STD (1)	Vers. 3	1		Masse
4	1		STD (2)	Vers. 4	1		Masse
1000	19,2 bis 30 VDC			200	14		
101	2	3	U/I0	201	1		Masse
102	15		NA	202	3		
103	16		NA	203	1		Masse
104	4		NA	204	17		NA
105	5	4	COM 0	205	1		Masse
106	18	17	U/I1	206	6	18	COM 1
107	19		NA	207	1		Masse
NA: Nicht angeschlossen							

HINWEIS: Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV20.

Kapitel 8 Analoges Ausgangsmodul BMX AMO 0410

Gegenstand dieses Kapitels

In diesem Kapitel werden das BMX AMO 0410-Modul, seine Merkmale und seine Verbindung mit den verschiedenen Vorstellgliedern und Stellgliedern erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	172
Eigenschaften	173
Funktionsbeschreibung	176
Vorsichtsmaßnahmen bei der Verdrahtung	181
Verdrahtungsschema	183
Verwendung des TELEFAST-Verdrahtungszubehörs	184

Auf einen Blick

Funktion

Das Modul BMX AMO 0410 ist ein analoges Ausgangsmodul mit hoher Dichte und 4 isolierten Kanälen. Es sind für jeden Ausgang die folgenden Bereiche vorhanden:

- Spannung +/-10 V
- Strom 0-20 mA und 4-20 mA

Der Bereich wird während der Konfiguration ausgewählt.

Verstärkte Version

Das BMX AMO 0410H-Gerät (Hardened) ist die verstärkte Version des BMX AMO 0410-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Das folgende Diagramm zeigt das analoge Ausgangsmodul BMX AMO 0410:

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.

Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMO 0410 und BMX AMO 0410H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen)*.

Allgemeine Kenndaten

Die Module BMX AMO 0410 und BMX AMO 0410H weisen folgende allgemeine Kenndaten auf:

Betriebstemperatur	BMX AMO 0410	0 bis 60 °C (32 bis 140 °F)	
	BMX AMO 0410H	-25 bis 70 °C (-13 bis 158 °F)	
Ausgangstypen		Hochpegel-Schnellausgänge	
Art der Ausgänge		Spannung oder Strom über Software konfiguriert	
Anzahl der Kanäle		4	
Auslösung des Digital-/Analogwandlers		16 Bit	
Aktualisierungszeit der Ausgänge		1 ms	
Spannungsversorgung für Ausgänge		Über Modul	
Schutzarten		vor Kurzschlüssen und Überlastungen (Spannungsausgang)	
Isolierung: ● Zwischen Kanälen		750 VDC	
Zwischen Kanälen und Bus		1400 VDC	
Zwischen Kanälen und Erde		1.400 VDC	
Messfehler für Standardmodule:			
• Bei 25 °C		0,10% von FS ⁽¹⁾	
 Maximaler Temperaturbereich (0 bis 60 °C) 		0,20 % von FS ⁽¹⁾	
Messfehler für Hardened-Module:			
• Bei 25 °C (77 °F)		0,10% von FS ⁽¹⁾	
 Maximaler Wert des Temperaturbereichs 25 bis 70 °C (-13 bis 158 °F) 		0,45% von FS ⁽¹⁾	
(1) FS: Vollaussteuerung (Full Scale)			

Temperaturabweichung		45 ppm/°C	
Monotonie		Ja	
Gleichtaktunterdrückung (50/60 Hz)		100 dB	
Übersprechen zwischen Kanälen DC und AC: 50/60 Hz		> 80 dB	
Keine Linearität		0,1 % von FS ⁽¹⁾	
Welligkeit AC-Ausgang		2 mV effektiv bei 50 Ω	
Stromaufnahme (3,3 V) Typisch		0,45 W	
	Maximum	0,51 W	
Stromaufnahme (24 V)	Typisch	3,0 W	
Maximum		3,6 W	
(1) FS: Vollaussteuerung (Full Scale)			

Spannungsausgang

Die Spannungsausgänge der Module BMX AMO 0410 und BMX AMO 0410H weisen folgende Eigenschaften auf:

Bereich der Nennwertvarianz	+/- 10 V
Maximaler Varianzbereich	+/- 10,50 V
Analogauflösung	0,37 mV
Lastimpedanz	1 KΩ min.
Typ der Erkennung	Kurzschlüsse

Stromausgang

Die Stromausgänge der Module BMX AMO 0410 und BMX AMO 0410H weisen folgende Eigenschaften auf:

Bereich der Nennwertvarianz	020 mA, 420 mA		
Verfügbarer maximaler Strom	21 mA		
Analogauflösung	0m74 μA		
Lastimpedanz	Max. 500 Ω		
Typ der Erkennung	Offener Stromkreis ⁽¹⁾⁽²⁾		

(1) Die Erkennung offener Schaltkreise erfolgt physisch über das Modul, wenn der Zielstromwert ungleich 0 mA ist.

(2) Die Erkennung offener Schaltkreise wird durch den Verdrahtungskontrolle-Parameter aktiviert.

Antwortzeit der Ausgänge

Die maximale Verzögerung zwischen der Übertragung des Ausgangswerts über den SPS-Bus und der tatsächlichen Positionierung an der Klemmenleiste beträgt weniger als 2 ms:

- Interne Zykluszeit = 1 ms für die vier Kanäle
- Antwortzeit der Digital-/Analogkonvertierung = Max. 1 ms bei einem Schritt von 0 bis 100 %

HINWEIS: Wenn keine Geräte mit dem Analogmodul BMX AMO 0410 verbunden und die Kanäle konfiguriert sind (Bereich 4 bis 20 mA), wird ein E/A-Fehler erkannt, so als läge ein Kabelbruch vor. Für den Bereich 0 bis 20 mA wird nur dann ein E/A-Fehler wie bei einem Kabelbruch erkannt, wenn der Stromwert über 0 mA liegt.

A VORSICHT

GEFAHR UNGÜLTIGER DATEN

Beim Bruch oder bei der Trennung eines Signaldrahts wird der zuletzt gemessene Wert beibehalten.

- Stellen Sie sicher, dass dies keine gefährliche Situation zur Folge hat.
- Verlassen Sie sich nicht auf den signalisierten Wert. Prüfen Sie den Eingangswert am Sensor.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Funktionsbeschreibung

Funktion

Das Modul BMX AMO 0410 ist ein analoges Ausgangsmodul mit hoher Dichte und 4 isolierten Kanälen. Das Modul bietet folgende Bereiche für jeden Ausgang, je nach der während der Konfiguration gewählten Option:

- +/- 10 V
- 0...20 mA
- 4...20 mA

Beschreibung

Diese Abbildung zeigt das Modul BMX AMO 0410:

Beschreibung:

Adresse	Prozess	Eigenschaften
1	Anpassung der Ausgänge	 Physische Anbindung an den Prozess über eine Schraubklemmenleiste mit 20 Anschlusspunkten Schutz des Moduls für Spannungsspitzen
2	Signalanpassung an die Stellglieder	 Anpassung der Spannung bzw. des Stroms über die Softwarekonfiguration
3	Wandlung	 Wandlung über 15 Bits mit einem Polaritätszeichen Automatische und dynamische Neuausrichtung der vom Programm bereitgestellten Daten durch den Wandler
4	Konvertierung der Anwendungsdaten in vom Digital-/Analogwandler direkt verwendbare Daten	 Verwendung der werkseitig voreingestellten Kalibrierungsparameter
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle sowie der digitalen Kanalsollwerte von der Anwendung Rückgabe des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	 Ausgangsstromversorgungstest Prüfung auf Bereichsüberlauf an den Kanälen Test für Ausgangsunterbrechungen und -kurzschlüsse Watchdog-Test Programmierbare Funktionen für den Fehlermodus

Verdrahtungsausgänge

Die Anwendung muss den Ausgängen Werte in einem standardisierten Format bereitstellen:

- -10.000 bis +10.000 für den Bereich +/-10 V
- 0 bis +10.000 in den Bereichen 0-20 mV und 4-20 mA

Digital/Analog-Wandlung

Die Digital/Analog-Wandlung erfolgt über:

- 16-Bit für den Bereich +/-10 V
- 15-Bit in 0-20-mV- und 4-20-mA-Bereichen

Überlaufkontrolle

Das Modul BMX AMO 0410 unterstützt eine Überlaufkontrolle in Bezug auf die Spannungs- und Strombereiche.

Der Messbereich ist in drei Bereiche unterteilt:

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Die Überlaufwerte für die unterschiedlichen Bereiche sind wie folgt:

Bereich	BMX AMO 0410					
	Unterlaufbereich		Nennbereich		Überlaufbereich	
+/- 10 V	-10.500	-10.301	-10.300	10.300	10.301	10.500
020 mA	-2.000	-1.001	-1.000	10.300	10.301	10.500
420 mA	-1.600	-801	-800	10.300	10.301	10.500

Sie können ebenfalls eine Kennung für einen Überlauf der Obergrenze, einen Unterlauf der Untergrenze oder für beides auswählen.

HINWEIS: Die Erkennung eines Bereichsüber-/unterlaufs ist optional.

Fehlerwert/Wert halten oder Ausgänge auf Null zurücksetzen

Im Falle eines Fehlers und je nach der Schwere gilt für die Ausgänge Folgendes:

- Sie schalten einzeln oder gemeinsam in die Position Fehlerwert/Wert halten um.
- Sie werden auf 0 forciert (0 V bzw. 0 mA).

Verschiedene Verhaltensweisen von Ausgängen:

Fehler	Verhalten der Spannungsausgänge	Verhalten der Stromausgänge	
Task im STOP-Modus oder Programm fehlt	Fehlerwert/Wert halten (Kanal für	Fehlerwert/Wert halten (Kanal für Kanal)	
Unterbrechung der Kommunikation	Kanal)		
Konfigurationsfehler	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Modulinterner Fehler			
Ausgangswert außerhalb des Bereichs (Bereichsunter- oder -überlauf)	Wert erreicht Sättigung an vorgegebener Grenze (Kanal für Kanal)	Gesättigter Wert (Kanal für Kanal)	
Kurzschluss oder Unterbrechung am Ausgang	Kurzschluss: Wert halten (Kanal für Kanal)	Offener Schaltkreis: Wert halten (Kanal für Kanal)	
Austausch des Moduls bei laufendem Betrieb (Prozessor im STOP-Modus)	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Neuladen des Programms			

Fehlerwert oder Wert halten bei aktuellem Wert wird während der Modulkonfiguration ausgewählt. Der Fehlerwert kann unter Control Expert mit der Debug-Funktion oder durch ein Programm geändert werden.

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

Die Position im Fehlermodus sollte nicht als einziges Sicherheitsverfahren verwendet werden. Wenn eine unkontrollierte Positionierung zu einer Gefahrensituation führen kann, dann muss ein unabhängiges, redundantes System installiert werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Verhalten beim ersten Einschalten und beim Ausschalten.

Wenn das Modul ein- oder ausgeschaltet wird, werden die Ausgänge auf 0 gesetzt (0 V bzw. 0 mA).

Stellgliedausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der an einem bestimmten Stellglied beobachtet wird, um einen spezifischen Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist keine neue Ausrichtung erforderlich. Wenn jedoch das Stellglied oder der Arbeitspunkt des Stellglieds ausgewechselt wird, muss eine Neuausrichtung durchgeführt werden.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Für jeden Ausgangskanal können Sie folgende Funktion ausführen:

- Anzeige und Änderung des ursprünglichen Zielwerts des Ausgangs
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Das maximale Offset zwischen dem gemessenem Wert und dem korrigierten Ausgangswert (ausgerichteter Wert) darf +/- 1,500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX AMO/AMI/AMM/ART ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.
Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Abschirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Abschirmungsleiste auf der Modulseite fest. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP---- (siehe Seite 48), um die Abschirmung zu verbinden.

\Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

- 1 BMX AMO 0410
- 2 Abschirmungsleiste
- 3 Klemme
- 4 An Vorstellgliedern

Verwenden von massebezogenen Sensoren

Es gibt keine speziellen technischen Einschränkungen bezüglich der Erdungsreferenz von Vorstellgliedern. Es empfiehlt sich jedoch die Vermeidung eines entfernten Erdungspotenzials an der Klemmenleiste, das u. U. vom Erdungspotenzial in der Nähe abweichen kann.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Stellen Sie Folgendes sicher:

- Es bestehen keine Potenziale, die größer sind als die Sicherheitsgrenzen.
- Induzierte Ströme beeinflussen nicht die Messungen oder die Integrität des Systems.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

AVORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung ohne programmierbare Filterung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Die Aktuatoren werden mithilfe einer 20-poligen Klemmenleiste verbunden.

Beschreibung

Die Stromschleife ist wird durch den Ausgang selbst versorgt und benötigt keine externe Versorgung. Die Verdrahtung der Klemmenleiste und der Aktuatoren ist wie folgt:

U/lx +Pol-Eingang für Kanal x COMx -Pol-Eingang für Kanal x Kanal 0: Spannungsaktuator Kanal 1: Stromaktuator

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMO 0410-Modul
- 2 BMXFCA••0-Verbindungskabel
- 3 ABE-7CPA21-Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

BMX FCA ••0-Verbindungskabel

Die BMX FCA ••0-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 20-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FCA ••0-Kabel:

- 1 BMX FTB 2020-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in drei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FCA 150
- 3 m (9,84 ft): BMX FCA 300
- 5 m (16,40 ft): BMX FCA 500

In der folgenden Tabelle sind die Eigenschaften der BMX FCA ••0-Kabel aufgeführt:

Merkmal		Wert	
Kabel Ummantelungsmaterial I		PVC	
	LSZH-Status	Nein	
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70°C (-13 bis 158°F)	

Verbinden von Stellgliedern

Auf die Analogausgänge kann an den Klemmen des TELEFAST ABE-7CPA21 wie folgt zugegriffen werden:

Die folgenden Tabelle enthält die Aufteilung der Analogausgänge auf der TELEFAST ABE-7CPA21-Klemmenleiste mit einem Kabel des Typs BMX FCA ••0:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMO 0410- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMO 0410- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		Masse
2	1		STD (1)	Vers. 2	1		Masse
3	1		STD (1)	Vers. 3	1		Masse
4	1		STD (2)	Vers. 4	1		Masse
1000	19,2 bis 30 VDC	1	U/I0	200	14	2	COM 0
101	2		NA	201	1		Masse
102	15	7	U/I1	202	3	8	COM 1
103	16		NA	203	1		Masse
104	4	11	U/I2	204	17	12	COM 2
105	5		NA	205	1		Masse
106	18	17	U/I3	206	6	18	COM 3
107	19		NA	207	1		Masse
NA Nicht anges	chlossen						

HINWEIS: Die Kontaktbrücke mit dem ABE-7CPA21 muss von der Klemme entfernt werden, andernfalls kommt es zu einem Erdungskurzschluss der Signalerde von Kanal 0. Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV20.

Kapitel 9 Analoges Ausgangsmodul BMX AMO 0802

Gegenstand dieses Kapitels

In diesem Kapitel werden das BMX AMO 0802-Modul, seine Merkmale und seine Verbindung mit den verschiedenen Vorstellgliedern und Stellgliedern erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	188
Eigenschaften	189
Funktionsbeschreibung	192
Vorsichtsmaßnahmen bei der Verdrahtung	197
Verdrahtungsschema	199
Verwendung des TELEFAST-Verdrahtungszubehörs	200

Auf einen Blick

Funktion

Das Modul BMX AMO 0802 ist ein analoges Ausgangsmodul mit hoher Dichte und 8 nicht isolierten Kanälen. Es sind für jeden Ausgang die folgenden Strombereiche vorhanden:

- 0 bis 20 mA
- 4 bis 20 mA

Der Bereich wird während der Konfiguration ausgewählt.

Verstärkte Version

Das BMX AMO 0802H-Gerät (Hardened) ist die verstärkte Version des BMX AMO 0802-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie in Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Das folgende Diagramm zeigt das analoge Ausgangsmodul BMX AMO 0802:

HINWEIS: Die Klemmenleiste wird separat bereitgestellt.

Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMO 0802 und BMX AMO 0802H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Kenndaten

Die Module BMX AMO 0802 und BMX AMO 0802H weisen folgende allgemeine Kenndaten auf:

Betriebstemperatur	BMX AMO 0802	0 bis 60 °C (32 bis 140 °F)	
	BMX AMO 0802H	-25 bis 70 °C (-13 bis 158 °F)	
Ausgangstypen		Nicht potentialgetrennte Hochpegelausgänge mit gemeinsamem Zugangspunkt	
Art der Ausgänge		Strom	
Anzahl der Kanäle		8	
Auslösung des Digital-/Analogw	andlers	16 Bit	
Aktualisierungszeit der Ausgän	ge	4 ms	
Spannungsversorgung für Ause	jänge	Über Modul	
Schutzarten		Ausgänge vor Kurzschluss und permanenter Überlast geschützt	
Isolierung:			
 Zwischen Kanälen 		Nicht potentialgetrennt	
Zwischen Kanälen und Bus		1400 VDC	
• Zwischen Kanälen und Erde		Nicht potentialgetrennt 1400 VDC 1.400 VDC 0,10% von FS ⁽¹⁾	
Messfehler für Standardmodule	:		
 Bei 25 °C (77 °F) 		0,10% von FS ⁽¹⁾	
 Maximum innerhalb des Ten bis 60 °C / 32 bis 140 °F) 	nperaturbereichs (0	0,25% von FS ⁽¹⁾	
Messfehler für verstärkte:			
 Bei 25 °C (77 °F) 		0,10% von FS ⁽¹⁾	
 Maximaler Wert des Temper - 25 bis 70°C (-13 bis 158°F 	raturbereichs)	0,45% von FS ⁽¹⁾	
(1) FS: Vollaussteuerung (Full	Scale)		

Temperaturabweichung		45 ppm/°C	
Monotonie		Ja	
Gleichtaktunterdrückung (50	0/60 Hz)	80 dB	
Übersprechen zwischen Ka 50/60 Hz	nälen DC und AC:	> 80 dB	
Keine Linearität		0,1 % von FS ⁽¹⁾	
Welligkeit AC-Ausgang		2 mV effektiv bei 50 Ω	
Stromaufnahme (3,3 V) Typisch		0,35 W	
	Maximum	0,48 W	
Stromaufnahme (24 V) Typisch		3,60 W	
Maximum		3,90 W	
(1) FS: Vollaussteuerung (Full Scale)			

Stromausgang

Die aktuellen Ausgänge BMX AMO 0802 und BMX AMO 0802H haben die folgenden Merkmale:

Bereich der Nennwertvarianz	0 bis 20 mA, 4 bis 20 mA
Verfügbarer maximaler Strom	21 mA
Analogauflösung	0m74 μA
Lastimpedanz	Max. 350 Ω
Typ der Erkennung	Offener Stromkreis ⁽¹⁾⁽²⁾
(1) Die Erkennung offener Schaltkreise erfolgt phys 0 mA ist.	sisch über das Modul, wenn der Zielstromwert ungleich

(2) Die Erkennung offener Schaltkreise wird durch den Verdrahtungskontrolle-Parameter aktiviert.

Antwortzeit der Ausgänge

Die maximale Verzögerung zwischen der Übertragung des Ausgangswerts über den SPS-Bus und der tatsächlichen Positionierung an der Klemmenleiste beträgt weniger als 5 ms:

- Interne Zykluszeit = 4 ms für die acht Kanäle
- Antwortzeit der Digital-/Analogkonvertierung = Max. 1 ms bei einem Schritt von 0 bis 100 %

HINWEIS: Wenn keine Geräte mit dem BMX AMO 0802-Analogmodul verbunden und die Kanäle konfiguriert sind (Bereich 4 - 20 mA), wird ein E/A-Fehler erkannt, so als läge ein Drahtbruch vor. Für den Bereich 0 - 20 mA wird nur dann ein E/A-Fehler wie bei einem Drahtbruch erkannt, wenn der Stromwert über 0 mA liegt.

A VORSICHT

GEFAHR UNGÜLTIGER DATEN

Beim Bruch oder bei der Trennung eines Signaldrahts wird der zuletzt gemessene Wert beibehalten.

- Stellen Sie sicher, dass dies keine gefährliche Situation zur Folge hat.
- Verlassen Sie sich nicht auf den signalisierten Wert. Prüfen Sie den Eingangswert am Sensor.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Funktionsbeschreibung

Funktion

Das Modul BMX AMO 0802 ist ein analoges Ausgangsmodul mit hoher Dichte und 8 nicht isolierten Kanälen. Es sind für jeden Ausgang die folgenden Strombereiche vorhanden:

- 0 bis 20 mA
- 4 bis 20 mA

Der Bereich wird während der Konfiguration ausgewählt.

Beschreibung

Diese Abbildung zeigt das Modul BMX AMO 0802:

Beschreibung:

Adresse	Prozess	Eigenschaften
1	Anpassung der Ausgänge	 Physische Anbindung an den Prozess über eine Schraubklemmenleiste mit 20 Anschlusspunkten Schutz des Moduls für Spannungsspitzen
2	Signalanpassung an die Stellglieder	Die Anpassung von Strom erfolgt über die Softwarekonfiguration.
3	Wandlung	 Wandlung über 15 Bits mit einem Polaritätszeichen Automatische und dynamische Neuausrichtung der vom Programm bereitgestellten Daten durch den Wandler
4	Konvertierung der Anwendungsdaten in vom Digital-/Analogwandler direkt verwendbare Daten	 Verwendung der werkseitig voreingestellten Kalibrierungsparameter
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter des Moduls und der Kanäle sowie der digitalen Kanalsollwerte von der Anwendung Rückgabe des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	 Ausgangsstromversorgungstest Prüfung auf Bereichsüberlauf an den Kanälen Test für Ausgangsunterbrechungen und -kurzschlüsse Watchdog-Test Programmierbare Funktionen für den Fehlermodus

Verdrahtungsausgänge

Die Anwendung muss den Ausgängen Werte im standardisierten Format liefern: 0 bis +10.000 in den Bereichen 0-20 mV und 4-20 mA.

Digital/Analog-Wandlung

Die Digital/Analog-Wandlung erfolgt über: 15-Bit in den Bereichen 0-20 mV und 4-20 mA.

Überlaufkontrolle

Das Modul BMX AMO 0802 unterstützt eine Überlaufkontrolle in Bezug auf die Strombereiche.

Der Messbereich ist in drei Bereiche unterteilt:

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Die Überlaufwerte für die unterschiedlichen Bereiche sind wie folgt:

Bereich	BMX AMO 0802					
	Unterlaufbereich Nennbereich				Überlaufbereich	
020 mA	-2.000	-1.001	-1.000	10.300	10.301	10.500
420 mA	-1.600	-801	-800	10.300	10.301	10.500

Sie können ebenfalls eine Kennung für einen Überlauf der Obergrenze, einen Unterlauf der Untergrenze oder für beides auswählen.

HINWEIS: Die Erkennung eines Bereichsüber-/unterlaufs ist optional.

Fehlerwert/Wert halten oder Ausgänge auf Null zurücksetzen

Im Falle eines Fehlers und je nach der Schwere gilt für die Ausgänge Folgendes:

- Sie schalten einzeln oder gemeinsam in die Position Fehlerwert/Wert halten um.
- Sie werden auf 0 mA forciert.

Verschiedene Verhaltensweisen von Ausgängen:

Fehler	Verhaltensweisen von Ausgängen
Task im STOP-Modus oder Programm fehlt	Fehlerwert/Wert halten (Kanal für Kanal)
Unterbrechung der Kommunikation	
Konfigurationsfehler	0 mA (alle Kanäle)
Modulinterner Fehler	
Ausgangswert außerhalb des Bereichs (Bereichsunter- oder -überlauf)	Gesättigter Wert (Kanal für Kanal)
Unterbrechung am Ausgang	Wert halten (Kanal für Kanal)
Austausch des Moduls bei laufendem Betrieb (Prozessor im STOP-Modus)	0 mA (alle Kanäle)
Neuladen des Programms	

Fehlerwert oder Wert halten bei aktuellem Wert wird während der Modulkonfiguration ausgewählt. Der Fehlerwert kann unter Control Expert mit der Debug-Funktion oder durch ein Programm geändert werden.

A WARNUNG

UNERWARTETER GERÄTEBETRIEB

Die Position im Fehlermodus sollte nicht als einziges Sicherheitsverfahren verwendet werden. Wenn eine unkontrollierte Positionierung zu einer Gefahrensituation führen kann, dann muss ein unabhängiges, redundantes System installiert werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Verhalten beim ersten Einschalten und beim Ausschalten.

Wenn das Modul ein- oder ausgeschaltet wird, werden die Ausgänge auf 0 mA gesetzt.

Stellgliedausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der an einem bestimmten Stellglied beobachtet wird, um einen spezifischen Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist keine neue Ausrichtung erforderlich. Wenn jedoch das Stellglied oder der Arbeitspunkt des Stellglieds ausgewechselt wird, muss eine Neuausrichtung durchgeführt werden.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Für jeden Ausgangskanal können Sie folgende Funktion ausführen:

- Anzeige und Änderung des ursprünglichen Zielwerts des Ausgangs
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Der maximale Offset zwischen dem Messwert und dem berichtigten Ausgangswert (ausgerichteter Wert) darf +/- 1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX AMO/AMI/AMM/ART ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einleitung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Abschirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Abschirmungsleiste auf der Modulseite fest. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP---- (siehe Seite 48), um die Abschirmung zu verbinden.

\Lambda GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

- 1 BMX AMO 0802
- 2 Abschirmungsleiste
- 3 Klemme
- 4 An Vorstellgliedern

Verwenden von massebezogenen Sensoren

Es gibt keine speziellen technischen Einschränkungen bezüglich der Erdungsreferenz von Vorstellgliedern. Es empfiehlt sich jedoch die Vermeidung eines entfernten Erdungspotenzials an der Klemmenleiste, das u. U. vom Erdungspotenzial in der Nähe abweichen kann.

HINWEIS: Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Induzierte Ströme beeinflussen die Messungen oder die Integrität des Systems nicht.

GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Stellen Sie sicher, dass Sensoren und andere Peripheriegeräte nicht über Erdungspunkte einem Spannungspotenzial ausgesetzt sind, das die zulässigen Grenzwerte überschreitet.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

A VORSICHT

UNERWARTETES VERHALTEN DER ANWENDUNG

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

• Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung ohne programmierbare Filterung zu verbinden.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Die Stellglieder werden mithilfe der 20-poligen Klemmenleiste verbunden.

Abbildung

Die Versorgung der Stromschleife erfolgt direkt über den Ausgang, und es ist keine externe Stromversorgung erforderlich. Die Klemmenleiste und die Stellglieder werden wie folgt verbunden:

COMx --Pol-Eingang für Kanal x, COMx sind intern miteinander verbunden.

Verdrahtungszubehör

Es werden zwei Kabel BMX FTA 152/302 in zwei verschiedenen Längen (1,5 m und 3 m) für die Verbindung des Moduls mit einer Telefast-Schnittstelle ABE7CPA02 *(siehe Seite 200)* bereitgestellt.

Verwendung des TELEFAST-Verdrahtungszubehörs

Einführung

Das vorverdrahtete TELEFAST-System besteht aus den nachstehend gezeigten Verbindungskabeln und Schnittstellen-Anschlussplatten:

- 1 BMX AMO 0802-Modul
- 2 BMXFTA••2-Verbindungskabel
- 3 ABE-7CPA02-Schnittstellen-Anschlussplatte
- 4 Abschirmungsleiste
- 5 Klemme

BMX FTA ••2-Verbindungskabel

Die BMX FTA ••2-Kabel sind vormontierte Kabelsätze bestehend aus:

- Am einen Ende eine 20-polige Klemmenleiste, aus der ein ummanteltes Kabel mit 20 Drähten abgeht.
- Am anderen Ende ein 25-poliger Sub-D-Steckverbinder.

Die folgende Abbildung zeigt die BMX FTA ••2-Kabel:

- 1 BMX FTB 2020-Klemmenleiste
- 2 Abschirmung der Kabel
- **3** 25-poliger Sub-D-Steckverbinder
- L Länge gemäß der Teilenummer.

Das Kabel ist in drei verschiedenen Längen erhältlich:

- 1,5 m (4,92 ft): BMX FTA 152
- 3 m (9,84 ft): BMX FTA 302

In der folgenden Tabelle sind die Eigenschaften der BMX FTA ••2-Kabel aufgeführt:

Merkmal		Wert	
Kabel	Ummantelungsmaterial	PVC	
	LSZH-Status	Nein	
Umgebungskenndaten	Betriebstemperatur	- 25 bis 70 °C (-13 bis 158 °F)	

Verbinden von Stellgliedern

Stellglieder können wie in der Abbildung (siehe Seite 199) dargestellt an das ABE-7CPA02-Zubehör angeschlossen werden.

Die folgende Tabelle enthält die Aufteilung der Analogkanäle auf TELEFAST-Klemmenleisten mit der Referenz ABE-7CPA02:

Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25-poligen Sub-D- Steckverbinders	BMXAMO 0802- Pinbelegung	Signalart	Nummer der TELEFAST- Klemmenleiste	Pinnummer des 25- poligen Sub-D- Steckers	BMXAMO 0802- Pinbelegung	Signalart
1	1		Masse	Vers. 1	1		Masse
2	1		STD (1)	Vers. 2	1		Masse
3	1		STD (1)	Vers. 3	1		Masse
4	1		STD (2)	Vers. 4	1		Masse
1000	19,2 bis 30 VDC	3	10	200	14	4	COM0
101	2		NA	201	1		Masse
102	15	5	11	202	3	6	COM1
103	16		NA	203	1		Masse
104	4	7	12	204	17	8	COM2
105	5		NA	205	1		Masse
106	18	9	13	206	6	10	COM3
107	19		NA	207	1		Masse
108	7	11	14	208	20	12	COM4
109	8		NA	209	1		Masse
110	21	13	15	210	9	14	COM5
111	22		NA	211	1		Masse
112	10	15	16	212	23	16	COM6
113	11		NA	213	1		Masse
114	24	17	17	214	12	18	COM7
115	25		NA	215	1		Masse
Ix: +Pol Spannungseingang für Kanal x							

COMx: -Pol Spannungs- oder Stromeingang für Kanal x

NC: Nicht angeschlossen

HINWEIS: Die Kontaktbrücke muss von der ABE-7CPA02-Klemme entfernt werden, andernfalls kommt es zu einem Erdungsschluss der Signalerde der Kanäle.

Verwenden Sie für den Erdanschluss die zusätzliche Klemmenleiste ABE-7BV20.

Kapitel 10 BMX AMM 0600 Analoges Eingangs-/Ausgangsmodul

Inhalt des Kapitels

In diesem Kapitel werden das BMX AMM 0600-Modul, seine Merkmale und seine Verbindung mit den verschiedenen Sensoren und Aktoren erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Auf einen Blick	204
Eigenschaften	205
Funktionsbeschreibung	209
Vorsichtsmaßnahmen bei der Verdrahtung	220
Verdrahtungsschema	223

Auf einen Blick

Funktion

Das Ein-/Ausgangsmodul BMX AMM 0600 kombiniert 4 nicht potenzialgetrennte Analogeingänge mit 2 nicht potenzialgetrennten Analogausgängen.

Das Modul BMX AMI 0600 bietet folgende Bereiche, je nach der bei der Konfiguration getroffenen Auswahl:

- Spannungseingangsbereich: +/-10 V / 0..10 V / 0..5 V / 1..5 V
- Stromeingangsbereich: 0...20 mA / 4...20 mA
- Spannungsausgangsbereich: +/-10 V
- Stromausgangsbereich: 0 bis 20 mA/4 bis 20 mA

Verstärkte Version

Das BMX AMM 0600H-Gerät (Hardened) ist die verstärkte Version des BMX AMM 0600-Standardgeräts. Es kann auch bei extremen Temperaturen und unter chemisch aggressiven Umgebungsbedingungen eingesetzt werden.

Weitere Informationen finden Sie im Kapitel *Installation in besonders rauen Umgebungen* (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).

Beschreibung

Die analogen E/A-Module BMX AMM 0600 haben folgenden Aufbau:

HINWEIS: Die 20-polige Klemmenleiste wird separat bereitgestellt.

Eigenschaften

Betriebsbedingungen für Höhenlagen

Die Kenndaten in den folgenden Tabellen gelten für die Nutzung der Module BMX AMM 0600 und BMX AMM 0600H auf einer Höhe von bis zu 2000 m (6560 ft). Wenn die Module auf einer Höhe von mehr als 2000 m (6560 ft) betrieben werden, führen Sie ein zusätzliches Derating durch.

Nähere Informationen finden Sie im Kapitel *Betriebs- und Lagerungsbedingungen (siehe Modicon M580-, M340- und X80 I/O-Plattformen, Normen und Zertifizierungen).*

Allgemeine Eigenschaften der Eingänge

Die Eingänge der Module BMX AMM 0600 und BMX AMM 0600H weisen folgende allgemeine Eigenschaften auf:

Betriebstemperatur	BMX AMM 0600	0 bis 60 °C (32 bis 140 °F)		
	BMX AMM 0600H	-25 bis 70 °C (-13 bis 158 °F)		
Typ der Eingänge		Nicht potenzialgetrennte unsymmetrische (einendige) Eingänge		
Art der Eingänge		Spannung/Strom		
Anzahl der Kanäle		4 Eingänge		
Erfassungszykluszeit:				
 Schnell (periodische Erfass deklarierten Kanäle) 	sung für die verwendeten	1 ms + 1ms + Anzahl der verwendeten Kanäle		
• Standard (periodische Erfa	ssung für alle Kanäle)	5 ms		
Auflösung		14-Bit im Bereich +/- 10 V 12-Bit im Bereich 0 bis 5 V		
Digitale Filterung		Erste Ordnung		
Isolierung:				
• zwischen Eingangs- und A	usgangskanalgruppe	750 V DC		
• zwischen Kanälen und Bus		1.400 V DC		
• Zwischen Kanälen und Erd	e	1400 VDC		
Für Eingänge maximal zulässige Überlast:		Spannungseingänge: +/- 30 VDC Stromeingänge: +/- 90 mA		
Stromaufnahme (3,3 V) Typisch		0,35 W		
	Maximum	0,48 W		
Stromaufnahme (24 V)	Typisch	2,6 W		
Maximum		3,2 W		

Eingangsmessbereich

Für die Module BMX AMM 0600 und BMX AMM 0600H gelten folgende Nennwerte in Bezug auf den Eingangsmessbereich:

Messbereich	+/-10 V 0 bis 10 V; 0 bis 5 V; 1 bis 5 V	0 bis 20 mA; 4 bis 20 mA	
Max. Wandlungswert	+/-11,25 V	0 bis 30 mA	
Auflösung	1,42 mV	5,7 μΑ	
Eingangsimpedanz	10 ΜΩ	250 Ω Interner Wandlungswiderstand	
Genauigkeit des internen Wandlungswiderstands	-	0,1 % - 15 ppm/°C	
Messfehler für Eingänge für Standardmodule:			
 Bei 25 °C (77 °F) Maximum innerhalb des Temperaturbereichs (0 bis 60 °C/-32 bis 140 °F) 	0,25% von FS ⁽¹⁾ 0,35% von FS ⁽¹⁾	0,35% von FS ⁽¹⁾⁽²⁾ 0,50% von FS ⁽¹⁾⁽²⁾	
Messfehler für Eingänge für Hardened-Module:			
 Bei 25 °C (77 °F) Maximaler Wert des Temperaturbereichs - 25 bis 70 °C (-13 bis 158°°F) 	0,25 % von FS ⁽¹⁾ 0,40% von FS ⁽¹⁾	0,35 % von FS ⁽¹⁾⁽²⁾ 0,60% von FS ⁽¹⁾⁽²⁾	
Eingangstemperaturdrift	30 ppm/°C	50 ppm/°C	
Monotonie	Ja	Ja/Ja	
Gleichtaktunterdrückung (50/60 Hz)	80 dB	80 dB	
Übersprechen zwischen den Kanälen DC und AC 50/60 Hz	> 70 dB	> 70 dB	
Keine Linearität	0,10 % von FS ⁽¹⁾	0,10 % von FS ⁽¹⁾⁽²⁾	
 (1) FS: Vollaussteuerung (Full Scale) (2) Mit Fehler in Bezug auf den Wandlungswider 	rstand	•	

HINWEIS: Wenn nichts an das analoge Ein-/Ausgangsmodul BMX AMM 0600 bzw. BMX AMM 0600H angeschlossen ist und wenn Kanäle konfiguriert sind (Bereich 4 bis 20 mA oder 1 bis5 V), führt ein Kabelbruch zur Erkennung eines E/A-Fehlers.

Allgemeine Eigenschaften der Ausgänge

Die Ausgänge der Module BMX AMM 0600 und BMX AMM 0600H weisen folgende allgemeinen Eigenschaften auf:

Typ der Ausgänge	2 nicht potenzialgetrennte Ausgänge
Bereichskonfiguration	Auswahl des Spannungs- oder Strombereichs bei Eigenspeisung über die Firmware

Spannungsbereich

Für die Module BMX AMM 0600 und BMX AMM 0600H gelten folgende Nennwerte in Bezug auf den Spannungsbereich:

Bereich der Nennwertvarianz	+/-10 V
Maximaler Varianzbereich	+/- 11,25 V
Spannungsauflösung	12 Bit
Messfehler für Standardmodule:	
 Bei 25 °C (77 °F) Maximum innerhalb des Temperaturbereichs 0 	0,25 % von FS ⁽¹⁾
bis 60 °C (-32 bis 140 °F)	
Messfehler für Hardened-Module:	
• Bei 25 °C (77 °F)	0,25 % von FS ⁽¹⁾
 Maximum innerhalb des Temperaturbereichs 0 bis 60 °C (32 bis 140 °F) 	0,80% von FS ⁽¹⁾
Temperaturdrift	100 ppm/°C
Monotonie	Ja
Gleichtaktunterdrückung (50/60 Hz)	80 dB
Übersprechen zwischen den Kanälen DC und AC 50/60 Hz	> 70 dB
Nichtlinearität	0,1 % von FS
Welligkeit AC-Ausgang	2 mVeff bei 50 Ω BW < 25 MHz
Lastimpedanz	Min. 1 kΩ
Typ der Erkennung	Kurzschluss und Überlast
(1) FS: Vollaussteuerung (Full Scale)	

Strombereich

Für die Module BMX AMM 0600 und BMX AMM 0600H gelten folgende Nennwerte in Bezug auf den Strombereich:

Bereich der Nennwertvarianz	0 bis 20 mA / 4 bis 20 mA
Verfügbarer maximaler Strom	24 mA
Stromauflösung	11 Bit
 Messfehler: bei 25 °C (77 °F) Maximum innerhalb des Temperaturbereichs 	0,25 % von FS ⁽¹⁾ 0,60% von FS ⁽¹⁾
Temperaturdrift	100 ppm/°C
Monotonie	Ja
Nichtlinearität	0,1 % von FS ⁽¹⁾
Gleichtaktunterdrückung (50/60 Hz)	80 dB
Übersprechen zwischen den Kanälen DC und AC 50/60 Hz	> 70 dB
Welligkeit AC-Ausgang	2 mVeff bei 50 Ω BW < 25 MHz
Lastimpedanz	Max. 600 Ω
Typ der Erkennung	Offener Stromkreis ⁽²⁾⁽³⁾
(1) FS: Vollaussteuerung (Full Scale)	*

(2) Eine Erkennung offener Schaltkreise erfolgt physisch über das Modul im Bereich von 4 bis 20 mA. Es wird auch erkannt, wenn der Zielstromwert von 0 mA im Bereich 0 bis 20 mA abweicht.

(3) Die Erkennung offener Schaltkreise wird durch den Verdrahtungskontrolle-Parameter aktiviert.

Antwortzeit der Ausgänge

Die maximale Verzögerung zwischen der Übertragung des Ausgangswerts über den SPS-Bus und der tatsächlichen Positionierung an der Klemmenleiste beträgt weniger als 2 ms:

- Interne Zykluszeit = 1 ms für die zwei Ausgänge
- Antwortzeit der Digital/Analog-Wandlung = Max. 1 ms bei einem Schritt von 0 bis 100 %

Funktionsbeschreibung

Funktion

Das Ein-/Ausgangsmodul BMX AMM 0600 kombiniert 4 nicht potenzialgetrennte Analogeingänge mit 2 nicht potenzialgetrennten Analogausgängen. Die Ein- und Ausgangsblöcke sind jedoch jeweils isoliert.

Das Modul BMX AMI 0600 bietet folgende Bereiche, je nach der bei der Konfiguration getroffenen Auswahl:

- Spannungseingangsbereich: +/-10 V / 0..10 V / 0..5 V / 1..5 V
- Stromeingangsbereich: 0...20 mA / 4...20 mA
- Spannungsausgangsbereich: +/-10 V
- Stromausgangsbereich: 0...20 mA / 4...20 mA

Abbildung

Nachstehend eine Abbildung des Moduls BMX AMM 0600:

Beschreibung.

Adresse	Prozess	Eigenschaften
1	Anpassung	 Physische Anbindung an den Prozess über eine Schraubklemmenleiste mit 20 Anschlusspunkten Schutz des Moduls für Spannungsspitzen
2	Signalanpassung	 Anpassung der Spannung bzw. des Stroms über die Softwarekonfiguration
3	Wandlung	 Wandlung über 13 Bits mit einem Polaritätszeichen Automatische und dynamische Neuausrichtung der vom Programm bereitgestellten Daten durch den Wandler
4	Konvertierung der Anwendungsdaten in vom Digital-/Analogwandler direkt verwendbare Daten	 Verwendung der werkseitig voreingestellten Kalibrierungsparameter
5	Kommunikation mit der Anwendung	 Verwaltung des Austauschs mit der CPU Topologische Adressierung Empfang der Konfigurationsparameter für das Modul und die Kanäle von der Anwendung sowie numerischer Sollwerte von den Kanälen Rückgabe des Modulstatus an die Anwendung
6	Überwachung des Moduls und Senden von Fehlerbenachrichtigungen an die Anwendung	 Prüfung auf Bereichsüberlauf an den Kanälen Prüfung auf offene Schaltkreise oder Kurzschlüsse an den Ausgängen Watchdog-Test Programmierbare Funktionen für den Fehlermodus

Eingangsfunktionen: Taktung der Messungen

Die Taktung der Messungen wird durch den bei der Konfiguration aus gewählten Zyklus (normaler oder schneller Zyklus) bestimmt.

- Normaler Zyklus bedeutet, dass die Dauer des Abfragezyklus feststeht.
- Beim schnellen Zyklus hingegen fragt das System nur die als in Verwendung gekennzeichneten Kanäle ab. Die Dauer des Abfragezyklus ist deshalb proportional zur Anzahl der verwendeten Kanäle.

Die Zykluszeitwerte basieren auf dem ausgewählten Zyklus.

Modul	Normaler Zyklus	Schneller Zyklus
BMX AMM 0600	5 ms	1 ms + (1 ms x N) Hierbei gilt: N ist die Anzahl der verwendeten Kanäle.

HINWEIS: Der Modulzyklus wird nicht mit dem SPS-Zyklus synchronisiert. Zu Beginn jedes SPS-Zyklus wird jeder Kanalwert berücksichtigt. Wenn die Zykluszeit für den MAST/FAST-Task geringer als die Zykluszeit des Moduls ist, wurden einige Werte nicht geändert.

Eingangsfunktionen: Überlauf-/Unterlaufkontrolle

Das Modul BMX AMI 0600 ermöglicht dem Benutzer die Auswahl unter 6 Spannungs- bzw. Stromstärkenbereichen für jeden Eingang.

Diese Option muss für jeden Kanal im Konfigurationsfenster konfiguriert werden. Die Erkennung einer Überschreitung des oberen und unteren Toleranzwerts ist unabhängig von der Über-/Unterlaufkontrolle immer aktiv.

Je nach dem ausgewählten Bereich prüft das Modul auf Überlauf, d. h. ob sich der Messwert zwischen einer Ober- und Untergrenze bewegt.

Beschreibung:

Bezeichnung	Beschreibung
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.
Oberer Toleranzbereich	Umfasst die Werte zwischen dem Höchstwert des Bereichs (Beispiel: +10 V für den Bereich +/- 10V) und der oberen Grenze.
Unterer Toleranzbereich	Umfasst die Werte zwischen dem Mindestwert des Bereichs (Beispiel: -10 V für den Bereich +/- 10V) und der unteren Grenze.
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.

Die Werte der Grenzen können unabhängig voneinander konfiguriert werden. Es können Ganzzahlwerte zwischen den folgenden Grenzen angenommen werden.

	Bereich	Eingänge des Moduls BMX AMM 0600									
		Unterlauf	bereich	Unterer Toleranzbereich		Nennbereich		Oberer Toleranzbereich		Überlaufbereich	
	0-10 V	-1.250	-1.001	-1.000	-1	0	10.000	10.001	11.000	11.001	11.250
Unipo-	05 V / 020 mA	-5.000	-1.001	-1.000	-1	0	10.000	10.001	11.000	11.001	15.000
iai	15 V / 420 mA	-4.000	-801	-800	-1	0	10.000	10.001	10.800	10.801	14.000
Bipo- lar	+/-10 V	-11.250	-11.001	-11.000	-10.001	-10.000	10.000	10.001	11.000	11.001	11.250
Benut-	+/-10 V	-32.768				Benut- zerdefi- niert	Benut- zerdefi- niert				32.767
zer	0-10 V	-32.768				Benut- zerdefi- niert	Benut- zerdefi- niert				32.767

Eingangsfunktionen: Anzeige der Messwerte

Die Messwerte können in einem standardisierten Format (in %, zwei Dezimalstellen) angezeigt werden.

Bereichstyp	Anzeige
Unipolarer Bereich 0-10 V, 0-5 V, 1-5 V, 0-20 mA, 4-20 mA	von 0 bis 10.000 (0 % bei +100,00 %)
Bipolarer Bereich +/- 10 V, +/- 5 mV +/- 20 mA	von -10.000 bis +10.000 (-100,00 % bei +100,00 %)

Es ist auch möglich, den Wertebereich, innerhalb dem Messungen dargestellt werden, durch folgende Auswahl zu definieren:

- Die untere Grenze in Abhängigkeit des Mindestwerts für den Bereich: 0 % (oder -100,00 %).
- Die obere Grenze in Abhängigkeit des Maximalwerts für den Bereich (+100,00 %).

Die untere und obere Grenze muss jeweils ein Ganzzahlwert zwischen -32.768 und +32.767 sein.

Nehmen wir an, Sie verfügen über einen Behälter mit Druckdaten in Schleifen von 4 - 20 mA, wobei 4 mA dem Wert 3.200 mB und 20 mA dem Wert 9.600 mB entspricht. Sie können das Benutzerformat wählen, indem Sie die folgenden oberen und unteren Grenzen festlegen:

3.200 für 3.200 mB als untere Grenze

9.600 für 9.600 mB als obere Grenze

Die an das Programm übertragenen Werte variieren zwischen 3.200 (= 4 mA) und 9.600 (= 20 mA).

Eingangsfunktionen: Filterung der Messwerte

Der vom System durchgeführte Filterungstyp wird "Filterung erster Ordnung" genannt. Der Filterungskoeffizient kann mit einem Programmiergerät oder über ein Programm geändert werden.

Die verwendete mathematische Formel lautet:

 $Mesf(n) = \alpha \times Mesf(n-1) + (1-\alpha) \times Valb(n)$

Erläuterung:

 α = Effizienz des Filters

Mesf(n) = Messung gefiltert zum Zeitpunkt n

Mesf(n-1) = Messung gefiltert zum Zeitpunkt n-1

Valg(n) = Bruttowert zum Zeitpunkt n

Sie können den Filterungswert anhand von sieben Auswahlmöglichkeiten konfigurieren (von 0 bis 6). Dieser Wert kann auch dann geändert werden, wenn sich die Anwendung im RUN-Modus befindet.

HINWEIS: Es kann im normalen oder schnellen Zyklus auf die Filterung zugegriffen werden.

Gewünschte Effizienz	Erforderlicher Wert	Entsprechend α	Filterungsantwortzeit bei 63%	Abschaltfrequenz (in Hz)
Keine Filterung	0	0	0	0
Geringe Filterung	1	0,750	4 x T	0,040/T
	2	0,875	8 x T	0,020/T
Mittlere Filterung	3	0,937	16 x T	0,010/T
	4	0,969	32 x T	0,005/T
Starke Filterung	5	0,984	64 x T	0,0025/T
	6	0,992	128 x T	0,0012/T

Die Filterungswerte sind abhängig von dem T-Konfigurationszyklus (wobei T = Zykluszeit von 5 ms im Standardmodus):

Eingangsfunktionen: Sensorausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der mit einem gegebenen Sensor überwacht wird, bei einem bestimmten Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist deshalb keine neue Ausrichtung erforderlich. Wenn jedoch der Sensor oder der Arbeitspunkt des Sensors ausgetauscht wird, ist eine neue Ausrichtung erforderlich.

Die Konvertierungszeilen sind wie folgt.

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Jeder Eingangskanal bietet folgende Möglichkeiten:

- Anzeigen und Ändern des gewünschten Messwerts
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Der Ausrichtungs-Offset kann auch per Programmierung geändert werden.

Die Kanalausrichtung wird auf dem Kanal in der Standardbetriebsart ohne Auswirkungen auf die Betriebsarten des Kanals durchgeführt.

Der maximale Offset zwischen gemessenem Wert und gewünschtem (ausgerichteten) Wert darf +/-1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle bei den Modulen BMX AMO/AMI/AMM/ART ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Ausgangsfunktionen: Verdrahtung der Ausgänge

Die Anwendung muss den Ausgängen Werte in einem standardisierten Format bereitstellen:

- -10.000 bis +10.000 f
 ür den Bereich +/-10 V
- 0 bis +10.000 in den Bereichen 0-20 mV und 4-20 mA

Digital/Analog-Wandlung

Die Digital/Analog-Wandlung erfolgt über:

• 12-Bit in den Bereichen 0-20 mA und 4-20 mA sowie für den Bereich +/-10 V

Ausgangsfunktionen: Überlaufkontrolle

Das Modul BMX AMM 0600 unterstützt eine Überlaufkontrolle in Bezug auf die Spannungs- und Strombereiche.

Der Messbereich ist in in drei Teilbereiche untergliedert:

Beschreibung:

Bezeichnung	Beschreibung						
Nennbereich	Messbereich in Abhängigkeit vom gewählten Bereich.						
Überlaufbereich	Bereich, der sich über der oberen Grenze befindet.						
Unterlaufbereich	Bereich, der sich unter der unteren Grenze befindet.						
Bereich	Ausgänge des Moduls BMX AMM 0600						
----------	----------------------------------	----------------------------------	---------	--------	--------	--------	--
	Unterlaufberei	bereich Nennbereich Überlaufbere				ich	
+/- 10 V	-11.250	-11.001	-11.000	11.000	11.001	11.250	
020 mA	-2.000	-1.001	-1.000	11.000	11.001	12.000	
420 mA	-1.600	-801	-800	10.800	10.801	11.600	

Für die verschiedenen Bereiche gelten folgende Überlaufwerte:

Sie können ebenfalls eine Kennung für einen Überlauf der Obergrenze, einen Unterlauf der Untergrenze oder für beides auswählen.

HINWEIS: Die Erkennung eines Bereichsüber-/unterlaufs ist optional.

Ausgangsfunktionen: Fehlerwert/Wert halten oder Zurücksetzen auf Null

Bei Auftreten eines Fehler und je nach Schweregrad des Fehlers verhalten sich die Ausgänge wie folgt:

- Sie schalten einzeln oder gemeinsam in die Position Fehlerwert/Wert halten um.
- Sie werden auf 0 forciert (0 V bzw. 0 mA).

Unterschiedliches Verhalten der Ausgänge

Fehler	Verhalten der Spannungsausgänge	Verhalten der Stromausgänge	
Task im STOP-Modus oder Programm fehlt	Fehlerwert/Wert halten (Kanal für Kanal)	Fehlerwert/Wert halten (Kanal für Kanal)	
Unterbrechung der Kommunikation			
Konfigurationsfehler	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Modulinterner Fehler			
Ausgangswert außerhalb des Bereichs (Bereichsunter- oder -überlauf)	Wert erreicht Sättigung an vorgegebener Grenze (Kanal für Kanal)	Gesättigter Wert (Kanal für Kanal)	
Kurzschluss oder offener Schaltkreis an Ausgang	Kurzschluss: Wert halten (Kanal für Kanal)	Offener Schaltkreis: Wert halten (Kanal für Kanal)	
Austausch des Moduls bei laufendem Betrieb (Prozessor im STOP-Modus)	0 V (alle Kanäle)	0 mA (alle Kanäle)	
Neuladen des Programms			

Die Übernahme des Fehlerwerts oder das Halten des aktuellen Werts wird bei der Modulkonfiguration ausgewählt. Der Fehlerwert kann über die Debugfunktion in Control Expert oder über ein Programm geändert werden.

WARNUNG

UNERWARTETER GERÄTEBETRIEB

Die Position im Fehlermodus sollte nicht als einziges Sicherheitsverfahren verwendet werden. Wenn eine unkontrollierte Positionierung zu einer Gefahrensituation führen kann, dann muss ein unabhängiges, redundantes System installiert werden.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Ausgangsfunktionen: Verhalten bei erstem Einschalten und bei Ausschalten

Wenn das Modul ein- oder ausgeschaltet wird, werden die Ausgänge auf 0 gesetzt (0 V bzw. 0 mA).

Ausgangsfunktionen: Stellgliedausrichtung

Bei der Ausrichtung wird ein systematischer Offset, der an einem bestimmten Stellglied beobachtet wird, um einen spezifischen Arbeitspunkt vermieden. Mit diesem Vorgang wird ein mit dem Prozess verknüpfter Fehler verhindert. Beim Austausch eines Moduls ist keine neue Ausrichtung erforderlich. Wenn jedoch das Stellglied oder der Arbeitspunkt des Stellglieds ausgewechselt wird, muss eine Neuausrichtung durchgeführt werden.

Die Konvertierungszeilen sind wie folgt:

Der Ausrichtungswert kann über eine Programmierkonsole bearbeitet werden, auch dann, wenn sich das Programm im RUN-Modus befindet. Für jeden Ausgangskanal können Sie folgende Funktion ausführen:

- Anzeige und Änderung des ursprünglichen Zielwerts des Ausgangs
- Speicherung des Ausrichtungswerts
- Ermittlung, ob der Kanal bereits über eine Ausrichtung verfügt

Der maximale Offset zwischen dem Messwert und dem berichtigten Ausgangswert (ausgerichteter Wert) darf +/- 1.500 nicht überschreiten.

HINWEIS: Zur Ausrichtung mehrerer Analogkanäle an den Modulen BMX AMO/AMI/AMM/ART ist eine Vorgehensweise von Kanal zu Kanal empfehlenswert. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, damit die Parameter korrekt angewendet werden.

Vorsichtsmaßnahmen bei der Verdrahtung

Einführung

Damit das Signal vor Störungen von außerhalb, die beim Reihenmodus induziert werden, sowie vor Störungen im gemeinsamen Modus geschützt wird, sollten Sie die folgenden Vorsichtsmaßnahmen durchführen.

Abschirmung der Kabel

Verbinden Sie die Kabelabschirmung mit der Erdungsschiene. Klemmen Sie die Abschirmung an die Erdungsschiene auf der Modulseite. Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• *(siehe Seite 48)*, um die Abschirmung zu verbinden.

▲ GEFAHR

STROMSCHLAG-, EXPLOSIONS- ODER LICHTBOGENGEFAHR

Während der Montage/des Entfernens von Modulen:

- Überprüfen Sie, dass alle Klemmleisten weiterhin mit der Abschirmungsleiste verbunden sind
- und schalten Sie die Stromversorgung der Sensoren und Vorstellglieder ab.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Erdungsreferenz der Sensoren

Um die ordnungsgemäße Funktionsweise der Erfassungskette zu gewährleisten, sollten Sie die folgenden Hinweise berücksichtigen:

- Die Sensoren müssen nahe beieinander platziert sein (einige Meter)
- Alle Sensoren müssen zu einem einzigen Punkt referenziert werden, der mit der SPS-Masse verbunden ist

Verwendung von Sensoren mit nicht potenzialgetrennten Eingängen

Die Eingänge des Moduls sind asymmetrisch und nicht voneinander potenzialgetrennt. Die Verwendung einer Spannung im gemeinsamen Modus ist nicht möglich. Die Sensoren werden wie im folgenden Diagramm aufgeführt verbunden:

Wenn ein oder mehrere Sensoren in Bezug auf die Masse referenziert werden, kann dies in einigen Fällen einen entfernten Erdungsstrom an die Klemmenleiste zurücksenden und die Messwerte beeinträchtigen. Daher **müssen** die folgenden Regeln eingehalten werden:

- Verwenden Sie von der Erdung potenzialgetrennte Sensoren, wenn der Abstand von den Sensoren > 30 m ist oder wenn sich Stromquellen in der Nähe der SPS befinden.
- Das Potenzial muss unter der zulässigen Niederspannung liegen. Beispiel: 30 Vrms oder 42,4 VDC zwischen Sensoren und Abschirmung.
- Das Anlegen eines Sensorpunktes an ein Bezugspotenzial generiert einen Leckstrom. Sie müssen deshalb sicherstellen, dass alle Leckströme das System nicht stören.

Verwenden von massebezogenen Sensoren

Es gibt keine speziellen technischen Einschränkungen bezüglich der Erdungsreferenz von Vorstellgliedern. Aus Sicherheitsgründen empfiehlt sich jedoch die Vermeidung eines entfernten Erdungspotenzials an der Klemmenleiste; dieses kann sehr vom Erdungspotenzial in der Nähe abweichen.

Sensoren und andere Peripheriegeräte können an einen Erdungspunkt in einiger Entfernung zum Modul angeschlossen werden. Derartige dezentrale Erdungsreferenzen können beträchtliche Potenzialunterschiede im Verhältnis zur lokalen Erde übertragen. Induzierte Ströme beeinflussen die Messungen oder die Integrität des Systems nicht.

▲ GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS

Stellen Sie sicher, dass Sensoren und andere Peripheriegeräte nicht über Erdungspunkte einem Spannungspotenzial ausgesetzt sind, das die zulässigen Grenzwerte überschreitet.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Anweisungen zu elektromagnetischen Störungen

A WARNUNG

UNERWARTETES GERÄTEVERHALTEN

Befolgen Sie diese Anweisungen, um elektromagnetische Störungen zu reduzieren:

- Passen Sie die programmierbare Filterung an die an den Eingängen angelegte Frequenz an.
- Verwenden Sie den Abschirmungsverbindungssatz BMXXSP•••• (siehe Seite 48), um die Abschirmung zu verbinden.
- Verwenden Sie eine spezifische 24-VDC-Stromversorgung f
 ür Sensoren und ein abgeschirmtes Kabel, um die Sensoren am Modul anzuschlie
 ßen.

Elektromagnetische Störungen können ein unerwartetes Verhalten der Anwendung verursachen.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Verdrahtungsschema

Einleitung

Die Stellglieder werden mithilfe der 20-poligen Klemmenleiste verbunden.

Abbildung

Die Klemmenleiste, die Sensoren und die Stellglieder werden wie folgt verbunden: Kabelansicht

Ux +-Pol-Eingang für Kanal x

COMx --Pol-Eingang für Kanal x

U/IOx: +-Polausgang für Kanal x

COMOx --Polausgang für Kanal x

* Die Versorgung der Stromschleife erfolgt direkt über den Ausgang, und es ist keine externe Stromversorgung erforderlich.

Teil II Softwaretechnische Implementierung analoger Module

Inhalt dieses Abschnitts

Dieser Teil beschreibt die Implementierung der analogen Ein- und Ausgangsmodule mit dem Control Expert-Softwareprogramm.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	Kapitelname	Seite
11	Allgemeiner Überblick über Analogmodule	227
12	Konfigurieren der Analogmodule	229
13	IODDTs und gerätespezifische DDTs für Analogmodule	249
14	Debugging von Analogmodulen	273
15	Diagnose eines Analogmoduls	281
16	Betrieb der Module aus der Anwendung	285

Kapitel 11 Allgemeiner Überblick über Analogmodule

Einführung in die Installationsphase

Einführung

Die Softwareinstallation der anwendungsspezifischen Module wird in den verschiedenen Editoren von Control Expert durchgeführt:

- Im Offline-Modus
- Im Online-Modus

Wenn Sie keinen Prozessor für die Verbindung haben, können Sie in Control Expert einen anfänglichen Test mit einem Simulator durchführen. In diesem Fall verläuft die Installation unterschiedlich.

Halten Sie sich an die angegebene Reihenfolge der Installationsphasen. Sie können jedoch diese Reihenfolge ändern (indem Sie beispielsweise mit der Konfigurationsphase beginnen).

Installationsphasen bei Verwendung eines Prozessors

In der folgenden Tabelle werden die verschiedenen Phasen der Installation mit einem Prozessor beschrieben.

Phase	Beschreibung	Modus
Deklaration der Variablen	Deklaration von Variablen vom Typ IODDT für die anwendungsspezifischen Module und Variablen des Projekts	Offline ⁽¹⁾
Programmierung	Projektprogrammierung	Offline ⁽¹⁾
Konfiguration	Deklaration von Modulen	Offline
	Modulkanalkonfiguration	
	Eingabe von Konfigurationsparametern	
Zuordnung	Zuordnung von IODDT-Variablen zu den konfigurierten Kanälen (Variableneditor)	Offline ⁽¹⁾
Generierung	Projektgenerierung (Analyse und Bearbeitung von Verbindungen)	Offline
Übertragung	Übertragung des Projekts zur SPS	Online
Einstellung/	Projekt-Debugging im Debug-Fenster und in Animationstabellen	
Debugging	Änderung von Programm und Einstellparametern	
Dokumentation	Erstellen von Dokumentationsdatei und Drucken sonstiger Informationen zum Projekt	Online
Betrieb/Diagnose	Anzeige sonstiger Informationen zur Überwachungssteuerung des Projekts	Online
	Diagnose von Projekt und Modulen	
(1) Diese Phasen	können auch online durchgeführt werden.	

Installationsphasen bei Verwendung eines Simulators

In der folgenden Tabelle werden die verschiedenen Phasen der Installation mit einem Simulator beschrieben.

Phase	Beschreibung	Modus
Deklaration der Variablen	Deklaration von Variablen vom Typ IODDT für die anwendungsspezifischen Module und Variablen des Projekts	
Programmierung	Projektprogrammierung	Offline ⁽¹⁾
Konfiguration	Deklaration von Modulen	Offline
	Modulkanalkonfiguration	
	Eingabe von Konfigurationsparametern	
Zuordnung	Zuordnung von IODDT-Variablen zu den konfigurierten Modulen (Variableneditor)	Offline ⁽¹⁾
Generierung	Projektgenerierung (Analyse und Bearbeitung von Verbindungen)	Offline
Übertragung	Übertragung des Projekts zum Simulator	Online
Simulation	Programmsimulation ohne Eingänge/Ausgänge	Online
Einstellung/Debugging	Projekt-Debugging im Debug-Fenster und in Animationstabellen	Online
	Änderung von Programm und Einstellparametern	
(1) Diese Phasen könne	en auch online durchgeführt werden.	

Konfiguration von Modulen

Die Konfigurationsparameter können nur in der Control Expert-Software geändert werden.

Einstellparameter können entweder in der Control Expert-Software (im Debugging-Modus) oder in der Anwendung geändert werden.

Kapitel 12 Konfigurieren der Analogmodule

Inhalt des Kapitels

In diesem Kapitel wird die Konfiguration eines Moduls mit analogen Eingängen und Ausgängen beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Abschnitte:

Abschnitt	Thema	Seite
12.1	Konfiguration von Analogmodulen: Übersicht	230
12.2	Parameter der analogen Ein- und Ausgangskanäle	232
12.3	Eingeben von Konfigurationsparametern mit Control Expert	237

Abschnitt 12.1 Konfiguration von Analogmodulen: Übersicht

Beschreibung des Konfigurationsfensters der Analogmodule

Konfigurationsfenster

	·							
	\2.1\0.2 : BMX AMI 0810							
2	8 potentialgetrennte analoge Hochges	chwindigkeit	s-U/I-Eingänge					
	BMX AMI 0810	🔟 Konfi	guration					
	··· 🖹 Kanal 1	Ver-	Symbol	Bereich		Skala	Fil	ter
	Ranal 2		MOD ANA 8 1.ANA CH IN[0].ANA.VALUE	+/- 10 V	~	%	0	~
	Kanal 3	1 🗸	MOD_ANA_8_1.ANA_CH_IN[1].ANA.VALUE	+/- 10 V	~	%	0	~
	Ranal 4	2 🗸	MOD_ANA_8_1.ANA_CH_IN[2].ANA.VALUE	+/- 10 V	~	%	0	~
	Ranal S	3 🔽	MOD_ANA_8_1.ANA_CH_IN[3].ANA.VALUE	+/- 10 V	~	%	0	~
Í	Kanal 6	4	MOD_ANA_8_1.ANA_CH_IN[4].ANA.VALUE	+/- 10 V	~	%	0	~
	···· 🖹 Kanal /	5 🗸	MOD_ANA_8_1.ANA_CH_IN[5].ANA.VALUE	+/- 10 V	~	%	0	~
=		6 🗸	MOD_ANA_8_1.ANA_CH_IN[6].ANA.VALUE	+/- 10 V	~	%	0	~
	Task:	7 🔽	MOD_ANA_8_1.ANA_CH_IN[7].ANA.VALUE	+/- 10 V	~	%	0	~
	MAST Zyklus O Normal Fast							

5

Fenster der Modulkonfiguration

In der folgenden Tabelle werden die verschiedenen Teile des Fensters vorgestellt:

Nummer	Element	Funktion
1	Registerkarten	Auf der im Vordergrund angezeigten Registerkarte wird der aktuelle Modus angegeben (in diesem Beispiel Konfiguration der Kanäle).
2	Kopfzeile	 Gibt die Kurzbezeichnung des Moduls an. Im selben Bereich befinden sich drei Anzeige-LEDs, die den Modulstatus im Online-Modus angeben: RUN verweist auf den Betriebszustand des Moduls. ERR signalisiert einen Fehler im Modul. I/O zeigt ein Ereignis außerhalb des Moduls oder einen Anwendungsfehler an.
3	Modulauswahl	 Durch einen Klick auf die Referenznummer eines Moduls können Sie Folgendes anzeigen: Die Registerkarte Übersicht mit den Merkmalen des Geräts. Die Registerkarte E/A-Objekte oder Geräte-DDT, je nach dem beim Einfügen des Moduls ausgewählten bzw. für das Modul obligatorischen E/A-Datentyp. Diese Registerkarten ermöglichen die Vorsymbolisierung der Ein-/Ausgangsobjekte. Fehler verweist auf den Gerätestatus (im Online-Modus).
	Kanalauswahl	 Durch einen Klick auf die Nummer eines Kanals können Sie Folgendes anzeigen: Die Registerkarte Konfiguration, auf der jeder Kanal konfiguriert werden kann. Debuggen verweist auf den Kanalstatus (im Online-Modus).
4	Allgemeiner Parameterbereich	 Ermöglicht die Konfiguration der Kanäle anhand verschiedener Felder: Task: Gibt die Task an, über die der Austausch zwischen Prozessor und Modul abgewickelt wird. Zyklus: Ermöglicht die Definition des Abfrageuzyklus für Eingänge (nur für einige Analogmodule verfügbar). Rückweisung: Bei 50 Hz oder 60 Hz (nur für einige Analogmodule verfügbar). Vergleichsstellenkompensation, Kanal 0-3: Ermöglicht die Definition der Vergleichsstellenkompensation gemäß der für die Kanäle 0 bis 3 verwendeten Hardware (nur für einige Analogmodule verfügbar).
5	Konfigurationsbereich	Ermöglicht die Definition der Konfigurationsparameter für die verschiedenen Kanäle. Dieser Bereich umfasst verschiedene Themen, die je nach ausgewähltem Analogmodul angezeigt werden. Die Spalte Symbol enthält das mit dem Kanal verknüpfte Symbol, sobald dieses vom Benutzer (im Variableneditor) definiert wurde.

Abschnitt 12.2 Parameter der analogen Ein- und Ausgangskanäle

Inhalt dieses Abschnitts

Dieser Abschnitt beschreibt die verschiedenen Parameter der Ein- und Ausgangskanäle für ein Analogmodul.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Parameter für analoge Eingangsmodule	233
Parameter für analoge Ausgangsmodule	236

Parameter für analoge Eingangsmodule

Auf einen Blick

Analoge Eingangsmodule umfassen kanalspezifische Parameter, die im Fenster der Modulkonfiguration angezeigt werden.

Referenz

Jedes analoge Eingangsmodul verfügt über folgende Parameter (in Fettschrift dargestellte Parameter sind Teil der Standardkonfiguration):

Parameter	BMX AMI 0410	BMX AMI 0800	BMX AMI 0810					
Anzahl der Eingangskanäle	4	8	8					
Kanal verwendet (1)	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv					
Abtastzyklus	Normal Fast	Normal Fast	Normal Fast					
Bereich	+/-10 V 00,10 V 05 V / 020 mA 15 V / 420 mA +/-5 V / +/-20mA	+/-10 V 010 V 05 V / 020 mA 15 V / 420 mA +/-5 V / +/-20mA	+/-10 V 010 V 05 V / 020 mA 15 V / 420 mA +/-5 V / +/-20mA					
Filter	0 6	0 6	0 6					
Anzeige	% / Benutzer	% / Benutzer	% / Benutzer					
Dem Kanal zugeordnete Task	MAST / FAST	MAST / FAST	MAST / FAST					
Von einer Änderung der Task betroffene Kanäle	2 aufeinander folgende Kanäle	2 aufeinander folgende Kanäle	2 aufeinander folgende Kanäle					
Rückweisung	-	-	-					
Verdrahtungsüberwachung ⁽¹⁾	-	-	-					
Vergleichsstellenkompensation	-/-	-/-	-/-					
Überlaufsteuerung unterer Grenzbereich ⁽¹⁾	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv					
Überlaufsteuerung für den oberen Grenzbereich ⁽¹⁾	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv					
Überlauf unterer Grenzbereich (1)	-11.400	-11.400	-11.400					
Überlauf oberer Grenzbereich (1)	11.400	11.400	11.400					
(1) Dieser Parameter ist als Kontr	(1) Dieser Parameter ist als Kontrollkästchen verfügbar.							

Parameter	BMX AMM 0600	BMX ART 0414	BMX ART 0814
Anzahl der Eingangskanäle	4	4	8
Kanal verwendet (1)	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv
Abtastzyklus	Normal Fast	-	-
Bereich	+/-10 V 00,10 V 05 V / 020 mA 15 V / 420 mA	Thermo K Thermoelement B Thermo J Thermo L Thermo N Thermo R Thermo R Thermo S Thermo T Thermo U 0400 Ohm 0400 Ohm 0400 Ohm Pt100 IEC/DIN Pt100 IEC/DIN Pt100 US/JIS Pt1000 US/JIS Cu10 Kupfer Ni100 IEC/DIN Ni1000 IEC/DIN +/- 40 mV +/- 80 mV +/- 640 mV +/- 1,28 V	Thermo K Thermoelement B Thermo J Thermo L Thermo N Thermo R Thermo R Thermo S Thermo T Thermo U 0400 Ohm 0400 Ohm 0400 Ohm Pt100 IEC/DIN Pt100 IEC/DIN Pt100 US/JIS Pt1000 US/JIS Cu10 Kupfer Ni100 IEC/DIN H 40 mV +/- 40 mV +/- 640 mV +/- 1,28 V
Filter	0 6	0 6	0 6
Anzeige	% / Benutzer	1/10 °C / 1/10 °F / % / Benutzer	1/10 °C / 1/10 °F / % / Benutzer
Dem Kanal zugeordnete Task	MAST / FAST	MAST	MAST
Von einer Änderung der Task betroffene Kanäle	2 aufeinander folgende Kanäle	2 aufeinander folgende Kanäle	2 aufeinander folgende Kanäle
Rückweisung	-	50 Hz / 60 Hz	50 Hz / 60 Hz
Verdrahtungsüberwachung (1)	-	Aktiv / Inaktiv	Aktiv / Inaktiv
(1) Dieser Parameter ist als Kontro	ollkästchen verfügbar.	·	

Parameter	BMX AMM 0600	BMX ART 0414	BMX ART 0814
Vergleichsstellenkompensation	-/-	 Intern per TELEFAST 	 Intern per TELEFAST
		• Extern per PT100	• Extern per PT100
0			 Verwendung der Werte der Vergleichsstellenk ompensation der Kanäle 4 bis 7 für die Kanäle 0 bis 3
Grenzbereich ⁽¹⁾	AKUV / INAKUV	AKUV / INAKUV	AKUV / INAKUV
Überlaufsteuerung für den oberen Grenzbereich ⁽¹⁾	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv
Überlauf unterer Grenzbereich (1)	-11.250	-2.680	-2.680
Überlauf oberer Grenzbereich (1)	11.250	13.680	13.680
(1) Dieser Parameter ist als Kontro	ollkästchen verfügbar.		

Parameter für analoge Ausgangsmodule

Auf einen Blick

Analoge Ausgangsmodule umfassen kanalspezifische Parameter, die im Fenster der Modulkonfiguration angezeigt werden.

Referenz

Die folgende Tabelle enthält die verfügbaren Parameter (die Standardkonfiguration ist fett formatiert).

Modul	BMX AMO 0210	BMX AMO 0410	BMX AMO 0802	BMX AMM 0600
Anzahl der Ausgangskanäle	2	4	8	2
Bereich	+/-10 V 020 mA 420 mA	+/-10 V 020 mA 420 mA	0 bis 20 mA 420 mA	+/-10 V 020 mA 420 mA
Dem Kanal zugeordnete Task	MAST / FAST	MAST / FAST	MAST / FAST	MAST / FAST
Von einer Änderung der Task betroffene Kanäle	Alle Kanäle	Alle Kanäle	Alle Kanäle	Alle Kanäle
Fehlermodus	Rückfall auf 0 / Wert halten / Fehlerwert			
Überlaufsteuerung für den unteren Grenzbereich ⁽¹⁾	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv
Überlaufsteuerung für den oberen Grenzbereich ⁽¹⁾	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv
Verdrahtungskontrolle (1)(2)	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv	Aktiv / Inaktiv
 (1) Dieser Parameter ist als Kontrollkästchen verfügbar (2) Die Verdrahtungskontrollfunktion prüft auf Drahtbruch. 				

Abschnitt 12.3 Eingeben von Konfigurationsparametern mit Control Expert

Inhalt dieses Kapitels

In diesem Abschnitt wird die Eingabe verschiedener Konfigurationsparameter für analoge Eingangs-/Ausgangskanäle von Control Expert vorgestellt.

HINWEIS: Für die Kommunikation zwischen den Kanälen und der CPU gibt es die logischen Knoten. Jeder logische Knoten umfasst zwei Kanäle. Wenn Sie also die Konfiguration von analogen Modulen ändern, werden die neuen Parameter auf beide Kanäle des logischen Knotens angewandt. Sie werden mittels Control Expert-Nachrichten über diese Änderung informiert.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Wählen des Bereichs für den Eingang oder Ausgang eines Analogmoduls	238
Auswählen eines mit einem analogen Kanal verbundenen Tasks	239
Wählen des Abfragezyklus des Eingangskanals	240
Wählen des Anzeigeformats für einen Strom- oder Spannungseingangskanal	241
Wählen des Anzeigeformats für einen Thermoelement- oder RTD-Eingangskanal	242
Wählen des Filterwerts des Eingangskanals	
Wählen der Eingangskanalnutzung	244
Auswahl der Funktion für die Überlaufsteuerung	
Auswählen der Vergleichsstellenkompensation	247
Wählen des Fehlermodus für Analogausgänge	

Wählen des Bereichs für den Eingang oder Ausgang eines Analogmoduls

Auf einen Blick

Dieser Parameter definiert den Messbereich des Kanaleingangs oder Kanalausgangs.

Der Eingangs-/Ausgangsbereich ist abhängig vom Modultyp unterschiedlich:

- Spannung
- Strom
- Thermoelement
- RTD

Vorgehensweise

Der den Kanälen eines Analogmoduls zugeordnete Bereich wird folgendermaßen definiert:

Schritt	Vorgehensweise
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Klicken Sie in der Spalte "Bereich" auf den Pfeil des Dropdown-Menüs des zu parametrierenden Kanals. Ergebnis : Eine Auswahlliste wird angezeigt. Bereich +/10 V 0-20 mA 4-20 mA
3	Wählen Sie den gewünschten Bereich.
4	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Auswählen eines mit einem analogen Kanal verbundenen Tasks

Einleitung

Dieser Parameter definiert den Task, über den die Erfassung der Eingänge und die Aktualisierung der Ausgänge erfolgt.

Je nach dem Modultyp wird der Task für zwei oder vier aufeinander folgende Kanäle definiert.

Folgende Auswahlmöglichkeiten stehen zur Verfügung:

- MAST-Task
- FAST-Task

HINWEIS: Die Module BMX ART 0414/0814 werden nur im Mast-Task ausgeführt.

A WARNUNG

UNERWARTETER BETRIEB VON GERÄTEN

Sie dürfen dem **FAST**-Task auf keinen Fall mehr als 2 analoge Module mit jeweils 4 verwendeten Kanälen zuweisen. Bei einer größeren Anzahl können Konflikte bei der Systemtaktung auftreten.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Prozedur

Der den Kanälen eines Analogmoduls zugeordnete Task-Typ wird folgendermaßen definiert:

Schritt	Maßnahme
1	Öffnen Sie das Fenster zur Hardwarekonfiguration des gewünschten Moduls.
2	Klicken Sie für den gewünschten Kanal oder die gewünschte Kanalgruppe im Bereich Allgemeine Parameter auf die Schaltfläche des Dropdown-Menüs Task. Ergebnis: Eine Auswahlliste wird angezeigt:
3	Wählen Sie den gewünschten Task.
4	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Wählen des Abfragezyklus des Eingangskanals

Auf einen Blick

Dieser Parameter legt den Abfragezyklus der Eingänge analoger Module fest.

Es gibt zwei Möglichkeiten für den Abfragezyklus der Eingänge:

- Normal: Die Kanäle werden entsprechend der in den Moduleigenschaften angegebenen Zeit abgetastet.
- Schnell: Es werden nur die Eingänge abgetastet, die als geladen deklariert sind. Die Zykluszeit ist abhängig von der Anzahl der verwendeten Kanäle und von der Abfragezeit eines Kanals.

Die Register des Eingangskanals werden am Anfang der Task aktualisiert, der das Modul zugewiesen wurde.

HINWEIS: Die Zyklusparameter **Normal / Schnell** und der Kanalparameter **Verwendet** sind im Onlinemodus nicht veränderbar, wenn das Projekt mit den Standardwerten dieser Parameter (normaler Zyklus und alle Kanäle verwendet) in die Steuerung übertragen wurde.

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise für die Festlegung des Abfragezyklus beschrieben, der den Eingängen eines analogen Moduls zugewiesen werden soll.

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Aktivieren Sie für die Eingangskanalgruppe im Bereich Allgemeine Parameter das gewünschte Kontrollkästchen (Normal oder Schnell) des Feldes Zyklus . Ergebnis : Der gewählte Abfragezyklus wird den Kanälen zugewiesen.
3	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Wählen des Anzeigeformats für einen Strom- oder Spannungseingangskanal

Auf einen Blick

Dieser Parameter definiert das Anzeigeformat der Messwerte eines Kanals eines analogen Moduls, dessen Messbereich für Stromstärke oder Spannung konfiguriert wurde.

Für das Anzeigeformat stehen folgende Möglichkeiten zur Verfügung:

- Normalisiert (%..):
 - O Unipolarer Bereich: 0 bis +10.000
 - O Bipolarer Bereich: -10.000 bis +10.000
- Benutzerdefiniert (Benutzer).

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise zum Definieren der Anzeigeskala beschrieben, die einem Kanal eines analogen Moduls zugewiesen werden soll.

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Klicken Sie in die Zelle der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Ein Pfeil wird angezeigt.
3	Klicken Sie auf den Pfeil in der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Das Dialogfeld Kanalparameter wird angezeigt.
	Kanalparameter 0 Kanalparameter 0 Skala Arzeige 0%-> 10000 100%-> 10000 Uberlauf Darunter. Darunter. 11250 ✓ Aktiviert
1	Cohen Sie die Werte ein die dem Kanal in den beiden Anzeige Feldern im Persieh Skelieren zugewissen
4	werden sollen.
5	Bestätigen Sie Ihre Wahl, indem Sie das Dialogfeld schließen. Hinweis: Wenn Standardwerte ausgewählt wurden (normalisierte Anzeige), wird in der entsprechenden Zelle in der Spalte Skalieren % angezeigt. Andernfalls wird Benutzer angezeigt (benutzerdefinierte Anzeige).
6	Bestätigen Sie die Änderung mit dem Befehl Bearbeiten → Bestätigen .

Wählen des Anzeigeformats für einen Thermoelement- oder RTD-Eingangskanal

Auf einen Blick

Dieser Parameter definiert das Anzeigeformat der Messwerte eines Kanals eines analogen Moduls, dessen Messbereich als Thermoelement oder RTD konfiguriert wurde.

Die verfügbaren Anzeigeformate sind Celsius oder Fahrenheit; Benachrichtigungen für Kurzschluss oder Stromkreisunterbrechungen sind möglich.

Vorgehensweise

Die Vorgehensweise für das Definieren des Anzeigeformats, das einem Analogmodulkanal zugewiesen ist, dessen Messbereich als Thermoelement oder RTD konfiguriert wurde, ist wie folgt:

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Klicken Sie in die Zelle der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Ein Pfeil wird angezeigt.
3	Klicken Sie auf den Pfeil in der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Das Dialogfeld Kanalparameter wird angezeigt. Kanalparameter 0 Einheit Prahibruch-Test Einheit Temperaturbereich: von -2.700 bis 13.720 1/10 °C Skala Normalisient Anze ge 2310 1/10 °C 13310 1/10 °C Übertauf Darunter: 2680 Überwacht
4	Aktivieren Sie das Kontrollkästchen Drahtbruch-Test , wenn Sie diese Funktion aktivieren möchten.
5	Wählen Sie die Temperatureinheit, indem Sie das Kontrollkästchen °C oder °F aktivieren.
6	Aktivieren Sie das Kontrollkästchen Normalisiert für eine normalisierte Anzeige.
7	Bestätigen Sie Ihre Wahl, indem Sie das Dialogfeld schließen.
8	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Wählen des Filterwerts des Eingangskanals

Auf einen Blick

Dieser Parameter legt den Filterungstyp der Eingangskanäle für Analogmodule fest (siehe *Filterung des Messwerts, Seite 69*).

Folgende Filterwerte stehen zur Verfügung:

- 0: Keine Filterung
- 1 und 2: Geringe Filterung
- 3 und 4: Mittlere Filterung
- 5 und 6: Starke Filterung

HINWEIS: Die Filterung wird sowohl bei schnellen als auch bei normalen Zyklen berücksichtigt.

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise zum Festlegen des Filterwertes beschrieben, der den Eingängen der analogen Module zugewiesen werden soll.

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Klicken Sie in der Spalte Filter auf den Pfeil des Dropdown-Menüs des zu parametrierenden Kanals. Ergebnis : Das Dropdown-Menü wird angezeigt.
3	Wählen Sie den Filterwert aus, der dem ausgewählten Kanal zugewiesen werden soll.
4	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Wählen der Eingangskanalnutzung

Einleitung

Ein Kanal ist in einem Task deklariert, wenn die gemessenen Werte in dem diesem Kanal zugewiesenen Task "geladen" sind.

Wenn ein Kanal nicht verwendet wird, ist die Zeile abgeblendet, der Wert 0 wird an das Anwendungsprogramm gesendet und die kanalspezifischen Statusanzeigen (Messbereichsüberschreitung usw.) sind inaktiv.

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise zum Ändern der Verwendung eines Kanals beschrieben.

Schritt	Maßnahme
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Klicken Sie in der Spalte Geladen in die Zelle für den Kanal, der bearbeitet werden soll, und aktivieren bzw. deaktivieren Sie den Kanal.
3	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Auswahl der Funktion für die Überlaufsteuerung

Auf einen Blick

Die Überlaufsteuerung wird durch eine überwachte bzw. nicht überwachte untere Grenze und eine überwachte bzw. nicht überwachte obere Grenze definiert.

Verfahren

Die einem Analogmodulkanal zugeordneten Parameter für die Überlaufsteuerung werden wie folgt geändert:

Schritt	Aktion	
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.	
2	Klicken Sie in die Zelle der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Ein Pfeil wird angezeigt.	
3	Klicken Sie auf den Pfeil in der Spalte Skalieren des zu konfigurierenden Kanals. Ergebnis : Das Dialogfeld Kanalparameter wird angezeigt.	
	Kanalparameter 0 X Skala Anzeige 0%-> -10000 100%-> 10000 Überlauf Darunter: 11250 ✓ Aktiviert Darüber: 1250 ✓ Aktiviert X	
4	Aktivieren Sie das Kontrollkästchen Aktiviert des Felds Unterlauf , um eine Unterlaufgrenze festzulegen.	
5	Aktivieren Sie das Kontrollkästchen Aktiviert des Felds Überlauf , um eine Überlaufgrenze festzulegen.	
6	Bestätigen Sie Ihre Wahl, indem Sie das Dialogfeld schließen.	
7	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .	

Überlaufflags

Wenn eine Unterlauf-/Überlaufsteuerung erforderlich ist, werden die Angaben durch die folgenden Bits bereitgestellt:

Bitname	Flag (wenn = 1)
%IWr.m.c.1.5	Der gelesene Wert liegt innerhalb des unteren Toleranzbereichs.
%IWr.m.c.1.6	Der gelesene Wert liegt innerhalb des oberen Toleranzbereichs.
%IWr.m.c.2.1	 Wenn Überlauf-/Unterlaufsteuerung erforderlich ist, gibt das Bit an, dass der aktuell gelesene Wert innerhalb eines der zwei nicht autorisierten Bereiche fällt: %MWr.m.c.3.6 stellt einen Unterlauf dar %MWr.m.c.3.7 stellt einen Überlauf dar
%lr.m.c.ERR	Kanalfehler

Auswählen der Vergleichsstellenkompensation

Auf einen Blick

Diese Funktion ist in den analogen Eingangsmodulen des Typs BMX ART 0414/0814 verfügbar. Sie wird entweder durch TELEFAST oder eine Pt100-Sonde ausgeführt. Eine interne Kompensation durch TELEFAST wird standardmäßig vorgeschlagen.

Modul BMX ART 0414/0814

Die Vorgehensweise zum Ändern der Vergleichsstellenkompensation der Module BMX ART 0414/0814 ist wie folgt:

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Aktivieren Sie das Feld Intern durch TELEFAST, das Feld Extern durch Pt100 oder das Feld Temperatur von K 4-7 im Feld Vergleichsstellenkanal 0-3.
3	Bestätigen Sie die Änderung durch Bearbeiten → Bestätigen .

0.1: BMX ART 0414									
8 potentialgetrennte analoge TC/RTD-Eingänge									
BMX ART 814	ŀ	Konfiguration	ı)						
Kanal 1									
III III Kanal 2 ■Kanal 3		Venwendet	Symbol	Messhereic	h	Skala	Filter		
Kanal 4			o y mboi	Thermo K	•	1/10 C	0	-	
Kanal 5	1			Thermo K	Ť	1/10 G	0	-	
Kanal 7	2			Thermo K	¥	1/10 C	0	- <u>+</u>	
MAST	3	V		Thermo K	•	1/10 C.	0	•	
	4	V		Thermo K	•	1/10 C.	0	•	
Vergleichsstelle K U-3	5			Thermo K	¥	1/10 C.	0	•	
	6			Thermo K	¥	1/10 C.	0	•	
C Extern PI 100	7	V		Thermo K	¥	1/10 C.	0	•	
					_				
Vergleichsstelle K 4-7									
Intern Telefast States DT 100									
Rückweisung									

Wählen des Fehlermodus für Analogausgänge

Auf einen Blick

Dieser Parameter definiert das Verhalten, das von Ausgängen übernommen wird, wenn die SPS auf STOP wechselt oder ein Kommunikationsfehler vorliegt.

Mögliche Verhaltenstypen sind:

- Fehlerwert: Ausgänge werden auf einen bearbeitbaren Wert zwischen -10.000 und +10.000 (0 ist der Standard) gesetzt.
- Wert halten: Die Ausgänge bleiben in dem Zustand, in dem sie sich vor dem Wechsel in den Modus STOP befanden.

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise zum Festlegen des Fehlerverhaltens beschrieben, das den Ausgängen der analogen Module zugewiesen ist.

Schritt	Aktion
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.
2	Aktivieren Sie das Kontrollkästchen in der Zelle der Spalte Fehlerwert des zu parametrierenden Kanals.
3	Geben Sie in die entsprechende Zelle der Spalte Fehlerwert den gewünschten Wert ein. Ergebnis : Der ausgewählte Fehlermodus wird somit dem ausgewählten Kanal zugeordnet.
4	Um stattdessen den Haltemodus zu wählen, deaktivieren Sie das Kontrollkästchen in der Zelle der Spalte Fehler des entsprechenden Kanals. Ergebnis : Das Halten des Wertes wird auf den ausgewählten Kanal angewandt.
5	Bestätigen Sie die Änderung durch den Befehl Bearbeiten → Bestätigen .

Kapitel 13 IODDTs und gerätespezifische DDTs für Analogmodule

Gegenstand dieses Kapitels

In diesem Kapitel werden die verschiedenen, den analogen Eingangs-/Ausgangsmodulen zugeordneten Sprachobjekte, IODDTs und gerätespezifische DDTs vorgestellt.

Um verschiedene simultane Austauschvorgänge für denselben Kanal zu vermeiden, ist es erforderlich, den Wert des Worts EXCH_STS (%MWr.m.c.0) des mit dem Kanal verbundenen IODDT vor dem Aufruf jeglicher Elementarfunktionen, die diesen Kanal verwenden, zu testen.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Detaillierte Beschreibung von IODDT-Objekten des Typs T_ANA_IN_BMX	250
Detaillierte Beschreibung von IODDT-Objekten des Typs T_ANA_IN_T_BMX	253
Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_OUT_BMX	256
Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_IN_GEN	259
Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_OUT_GEN	260
Beschreibung der Sprachobjekte des IODDT vom Typ T_GEN_MOD	261
Analoggeräte-DDT	262
Beschreibung des Bytes MOD_FLT	269
Forcierungsmodus für die dezentralen Ethernet-E/A von Analoggeräten	270

Detaillierte Beschreibung von IODDT-Objekten des Typs T_ANA_IN_BMX

Einführung

In den folgenden Tabellen werden die IODDT-Typen des Typs T_ANA_IN_BMX für die Module BME AHI 0812, BMX AMI 0410, BMX AMI 0800 und BMX AMI 0810 sowie für die Eingänge des Kombimoduls BMX AMM 600 erläutert.

Eingangsmessung

Das analoge Eingangsmessungsobjekt lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
VALUE	INT	R	Analoge Eingangsmessung	%IWr.m.c.0

Fehlerbit %Ir.m.c.ERR

Für das Fehlerbit %Ir.m.c.ERR gilt Folgendes:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ERROR	BOOL	R	Fehlerbit für Analogkanal	%lr.m.c.ERR

Messungsstatuswort MEASURE_STS

Die Bits des Messungsstatusworts MEASURE STS (%IWr.m.c.1) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ALIGNED	BOOL	R	Ausgerichteter Kanal	%IWr.m.c.1.0
CH_FORCED	BOOL	R	Forcierter Kanal	%IWr.m.c.1.1
LOWER_LIMIT	BOOL	R	Messung innerhalb des unteren Toleranzbereichs	%IWr.m.c.1.5
UPPER_LIMIT	BOOL	R	Messung innerhalb des oberen Toleranzbereichs	%IWr.m.c.1.6
INT_OFFSET_ERROR	BOOL	R	Internet Offset-Fehler	%IWr.m.c.1.8
INT_REF_ERROR	BOOL	R	Interner Referenzfehler	%IWr.m.c.1.10
POWER_SUP_ERROR	BOOL	R	Nicht verwendet	%IWr.m.c.1.11
SPI_COM_ERROR	BOOL	R	SPI-Kommunikationsfehler	%IWr.m.c.1.12

Flag für die Ausführung des expliziten Austauschs: EXCH_STS

Die Austauschsteuerbits des Kanals EXCH STS (%MWr.m.c.0) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_IN_PROGR	BOOL	R	Lesen der Statuswörter des Kanals läuft	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Austausch der Befehlsparameter läuft	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	R	Austausch der Einstellparameter läuft	%MWr.m.c.0.2

Rückmeldung zum expliziten Austausch: EXCH_RPT

Die Rückmeldebits von EXCH_RPT (%MWr.m.c.1) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_ERR	BOOL	R	Fehler beim Lesen der Kanalstatuswörter	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Fehler beim Austausch der Befehlsparameter	%MWr.m.c.1.1
ADJ_ERR	BOOL	R	Fehler beim Austausch der Einstellparameter	%MWr.m.c.1.2
RECONF_ERR	BOOL	R	Fehler bei der Neukonfiguration des Kanals	%MWr.m.c.1.15

Kanalspezifische Standardfehler: CH_FLT

In der folgenden Tabelle werden die Bedeutungen der Bits des Statusworts CH_FLT (%MWr.m.c.2) aufgeführt. Der Lesevorgang wird über READ_STS (IODDT_VAR1) ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
SENSOR_FLT	BOOL	R	Fehler in der Sensorverbindung	%MWr.m.c.2.0
RANGE_FLT	BOOL	R	Fehler Bereichsunterlauf/-überlauf	%MWr.m.c.2.1
CH_ERR_RPT	BOOL	R	Kanalfehlerrückmeldung	%MWr.m.c.2.2
INTERNAL_FLT	BOOL	R	Nicht betriebsbereiter Kanal	%MWr.m.c.2.4
CONF_FLT	BOOL	R	Unterschiedliche Hard- und Softwarekonfiguration	%MWr.m.c.2.5
COM_FLT	BOOL	R	Kommunikationsfehler mit der Steuerung	%MWr.m.c.2.6
APPLI_FLT	BOOL	R	Anwendungsfehler (Einstellungs- oder Konfigurationsfehler)	%MWr.m.c.2.7
NOT_READY	BOOL	R	Kanal nicht bereit	%MWr.m.c.3.0
CALIB_FLT	BOOL	R	Kalibrierungsfehler	%MWr.m.c.3.2
INT_OFFS_FLT	BOOL	R	Interner Kalibrierungsoffset-Fehler	%MWr.m.c.3.3
INT_REF_FLT	BOOL	R	Interner Kalibrierungsreferenzfehler	%MWr.m.c.3.4
INT_SPI_PS_FLT	BOOL	R	Interner Fehler bei der Spannungsversorgung oder der seriellen Verbindung	%MWr.m.c.3.5
RANGE_UNF	BOOL	R	Fehler bei rekalibriertem Kanal oder Bereichsunterlauf	%MWr.m.c.3.6
RANGE_OVF	BOOL	R	Fehler bei ausgerichtetem Kanal oder Bereichsüberlauf	%MWr.m.c.3.7

Steuerbefehle

In der folgenden Tabelle werden die Bedeutungen der Bits des Statusworts COMMAND_ORDER (%MWr.m.c.4) aufgeführt. Der Lesevorgang wird durch READ STS ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
FORCING_ORDER	BOOL	R/W	Befehl zur Forcierung/Aufhebung der Forcierung	%MWr.m.c.4.13

Parameter

Die folgende Tabelle zeigt die Bedeutung der Statuswörter %MWr.m.c.5, %MWr.m.c.8 und %MWr.m.c.9. Es werden die den Parametern (READ_PARAM und WRITE_PARAM) zugeordneten Abfragen verwendet:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CMD_FORCING_VALUE	INT	R/W	Anzuwendender Forcierungswert	%MWr.m.c.5
FILTER_COEFF	INT	R/W	Wert des Filterkoeffizienten	%MWr.m.c.8
ALIGNMENT_OFFSET	INT	R/W	Ausrichtungsoffset-Wert	%MWr.m.c.9
			HINWEIS: Offset = Sollwert - Messwert. Wenn Sie beispielsweise den Wert 3000 erwarten und der Wert 2400 gemessen wird, dann müssen Sie ein Offset von 600 einstellen.	
THRESHOLD0	INT	Ohne	Für Evolution reserviert.	%MWr.m.c.10
THRESHOLD1	INT	Ohne	Für Evolution reserviert.	%MWr.m.c.11

HINWEIS: Um einen Kanal zu forcieren, müssen Sie die Anweisung WRITE_CMD (%MWr.m.c.5) verwenden und das Bit %MWr.m.c.4.13 auf 1 setzen.

HINWEIS: Um die Forcierung für einen Kanal aufzuheben und ihn normal zu verwenden, müssen Sie das Bit %MWr.m.c.4.13 auf 0 setzen.
Detaillierte Beschreibung von IODDT-Objekten des Typs T_ANA_IN_T_BMX

Auf einen Blick

In der folgenden Tabelle werden die IODDT-Objekte des Typs T_ANA_IN_T_BMX für die Analogeingangsmodule **BMX ART 0414/0814** beschrieben.

Eingangsmessung

Das analoge Eingangsmessungsobjekt lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
VALUE	INT	R	Analoge Eingangsmessung	%IWr.m.c.0

Fehlerbit %Ir.m.c.ERR

Das Fehlerbit %Ir.m.c.ERR lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ERROR	BOOL	R	Fehlerbit des analogen Kanals	%lr.m.c.ERR

Messungsstatuswort MEASURE_STS

Die verschiedenen Bits des Messungsstatusworts MEASURE_STS (%IWr.m.c.1) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ALIGNED	BOOL	R	Ausgerichteter Kanal	%IWr.m.c.1.0
CH_FORCED	BOOL	R	Forcierter Kanal	%IWr.m.c.1.1
LOWER_LIMIT	BOOL	R	Messung innerhalb des unteren Toleranzbereichs	%IWr.m.c.1.5
UPPER_LIMIT	BOOL	R	Messung innerhalb des oberen Toleranzbereichs	%IWr.m.c.1.6
INT_OFFSET_ERROR	BOOL	R	Interner Offset-Fehler	%IWr.m.c.1.8
INT_REF_ERROR	BOOL	R	Interner Referenzfehler	%IWr.m.c.1.10
POWER_SUP_ERROR	BOOL	R	Nicht verwendet	%IWr.m.c.1.11
SPI_COM_ERROR	BOOL	R	SPI-Kommunikationsfehler	%IWr.m.c.1.12

Vergleichsstellenkompensation

Der Wert der Vergleichsstellenkompensation lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CJC_VALUE	INT	R	Wert der Vergleichsstellenkompensation (1/10 °C)	%IWr.m.c.2

Flag für die Ausführung des expliziten Austauschs: EXCH_STS

Die Austauschsteuerungsbits des Kanals EXCH_STS (%MWr.m.c.0) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_IN_PROGR	BOOL	R	Lesen der Statuswörter des Kanals läuft	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Austausch der Befehlsparameter läuft	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	R	Austausch der Einstellparameter läuft	%MWr.m.c.0.2

Rückmeldung zum expliziten Austausch: EXCH_RPT

Die Rückmeldebits von EXCH_RPT (%MWr.m.c.1) weisen folgende Bedeutung auf:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_ERR	BOOL	R	Fehler beim Lesen der Statuswörter des Kanals	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Fehler beim Austausch der Befehlsparameter	%MWr.m.c.1.1
ADJ_ERR	BOOL	R	Fehler beim Austausch der Einstellparameter	%MWr.m.c.1.2
RECONF_ERR	BOOL	R	Fehler bei der Neukonfiguration des Kanals	%MWr.m.c.1.15

Kanalspezifische Standardfehler: CH_FLT

In der folgenden Tabelle werden die Bedeutungen der Bits des Statusworts CH_FLT (%MWr.m.c.2) aufgeführt. Der Lesevorgang wird über READ_STS (IODDT_VAR1) ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
SENSOR_FLT	BOOL	R	Fehler in der Sensorverbindung	%MWr.m.c.2.0
RANGE_FLT	BOOL	R	Fehler Bereichsunterlauf/-überlauf	%MWr.m.c.2.1
CH_ERR_RPT	BOOL	R	Kanalfehlerrückmeldung	%MWr.m.c.2.2
INTERNAL_FLT	BOOL	R	Nicht betriebsbereiter Kanal	%MWr.m.c.2.4
CONF_FLT	BOOL	R	Unterschiedliche Hard- und Softwarekonfiguration	%MWr.m.c.2.5
COM_FLT	BOOL	R	Kommunikationsfehler mit der Steuerung	%MWr.m.c.2.6
APPLI_FLT	BOOL	R	Anwendungsfehler (Einstellungs- oder Konfigurationsfehler)	%MWr.m.c.2.7
NOT_READY	BOOL	R	Kanal nicht bereit	%MWr.m.c.3.0
COLD_JUNCTION_FLT	BOOL	R	Vergleichsstellenkompensationsfehler	%MWr.m.c.3.1
CALIB_FLT	BOOL	R	Kalibrierungsfehler	%MWr.m.c.3.2
INT_OFFS_FLT	BOOL	R	Interner Kalibrierungsoffset-Fehler	%MWr.m.c.3.3

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
INT_REF_FLT	BOOL	R	Interner Kalibrierungsreferenzfehler	%MWr.m.c.3.4
INT_SPI_PS_FLT	BOOL	R	Interner Fehler bei der Spannungsversorgung oder seriellen Verbindung	%MWr.m.c.3.5
RANGE_UNF	BOOL	R	Bereichsunterlauf	%MWr.m.c.3.6
RANGE_OVF	BOOL	R	Bereichsüberlauf	%MWr.m.c.3.7

Steuerbefehle

In der folgenden Tabelle werden die Bedeutungen der Bits des Statusworts COMMAND_ORDER (%MWr.m.c.4) aufgeführt. Der Lesevorgang wird über READ STS ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
FORCING_UNFORCING_ORDER	BOOL	R/W	Befehl zur Forcierung/Aufhebung der Forcierung	%MWr.m.c.4.13

Parameter

Die folgende Tabelle zeigt die Bedeutung der Statuswörter %MWr.m.c.5%MWr.m.c.8 und %MWr.m.c.9. Es werden die den Parametern (READ_PARAM und WRITE_PARAM) zugeordneten Abfragen verwendet:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CMD_FORCING_VALUE	INT	R/W	R/W Anzuwendender Forcierungswert %	
FILTER_COEFF	INT	R/W	Wert des Filterkoeffizienten	%MWr.m.c.8
ALIGNMENT_OFFSET	INT	R/W	Ausrichtungsoffset-Wert	%MWr.m.c.9
			HINWEIS: Offset = Sollwert - Messwert. Wenn Sie beispielsweise den Wert 3000 erwarten und der Wert 2400 gemessen wird, dann müssen Sie ein Offset von 600 einstellen.	

HINWEIS: Um einen Kanal zu forcieren, müssen Sie die Anweisung WRITE_CMD (%MWr.m.c.5) verwenden und das Bit %MWr.m.c.4.13 auf 1 setzen.

HINWEIS: Um die Forcierung für einen Kanal aufzuheben und ihn normal zu verwenden, müssen Sie das Bit %MWr.m.c.4.13 auf 0 setzen.

Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_OUT_BMX

Auf einen Blick

In den folgenden Tabellen werden die IODDT-Objekte des Typs T_ANA_OUT_BMX für die analogen Ausgangsmodule BME AHO 0412BMX AMO 0210, BMX AMO 0410 und BMX AMO 0802 sowie für die Ausgänge des Kombimoduls BMX AMM 600 beschrieben.

Ausgangswert

Das analoge Ausgangsmessungsobjekt lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
VALUE	INT	R	Analoge Ausgangsmessung	%QWr.m.c.0

Fehlerbit %Ir.m.c.ERR

Das Fehlerbit %Ir.m.c.ERR lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ERROR	BOOL	R	Fehlerbit des analogen Kanals.	%lr.m.c.ERR

Wertforcierung

Der Wert des Forcierungsbits lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
FORCING_VALUE	INT	R	Forcierung des Wertes	%IWr.m.c.0

Kanalforcierungsanzeige

Die Bedeutungen der Forcierungssteuerungsbits des Kanals (%IWr.m.c.1) lauten wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CHANNEL_FORCED	BOOL	R	Forcierung des Kanals	%MWr.m.c.1.1

Flag für die Ausführung des expliziten Austauschs: EXCH_STS

Die Bedeutungen der Austauschsteuerungsbits des Kanals EXCH_STS (%MWr.m.c.0) lauten wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_IN_PROGR	BOOL	R	Lesen der Statuswörter des Kanals läuft	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Austausch der Befehlsparameter läuft	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	R	Austausch der Einstellparameter läuft	%MWr.m.c.0.2

Rückmeldung zum expliziten Austausch: EXCH_RPT

Die Bedeutung des Berichtsbits von EXCH_RPT (%MWr.m.c.1) lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_ERR	BOOL	R	Fehler beim Lesen der Kanalstatuswörter	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Fehler beim Austausch der Befehlsparameter	%MWr.m.c.1.1
ADJ_ERR	BOOL	R	Fehler beim Austausch der Einstellparameter	%MWr.m.c.1.2
RECONF_ERR	BOOL	R	Fehler bei der Neukonfiguration des Kanals	%MWr.m.c.1.15

Kanalspezifische Standardfehler: CH_FLT

In der folgenden Tabelle werden die Bedeutungen der Bits des Statuswortes CH_FLT (%MWr.m.c.2) aufgeführt. Der Lesevorgang wird über READ_STS (IODDT_VAR1) ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
ACT_WIRE_FLT	BOOL	R	Unterbrechung oder Kurzschluss des Stellglieddrahts	%MWr.m.c.2.0
RANGE_FLT	BOOL	R	Fehler Bereichsunterlauf/-überlauf	%MWr.m.c.2.1
SHORT_CIRCUIT	BOOL	R	Kurzschluss	%MWr.m.c.2.2
CAL_PRM_FLT	BOOL	R	Kalibrierungsparameter nicht konfiguriert	%MWr.m.c.2.3
INTERNAL_FLT	BOOL	R	Nicht betriebsbereiter Kanal	%MWr.m.c.2.4
CONF_FLT	BOOL	R	Unterschiedliche Hard- und Softwarekonfiguration	%MWr.m.c.2.5
COM_FLT	BOOL	R	Kommunikationsfehler mit der Steuerung	%MWr.m.c.2.6
APPLI_FLT	BOOL	R	Anwendungsfehler (Einstellungs- oder Konfigurationsfehler)	%MWr.m.c.2.7
ALIGNED_CH	BOOL	R	Ausgerichtete Kanäle	%MWr.m.c.3.0
INT_CAL_FLT	BOOL	R	Kalibrierungsparameter nicht definiert	%MWr.m.c.3.2
INT_PS_FLT	BOOL	R	Fehler in interner Spannungsversorgung	%MWr.m.c.3.3
INT_SPI_FLT	BOOL	R	Fehler bei der seriellen Verbindung	%MWr.m.c.3.4
RANGE_UNF	BOOL	R	Bereichsunterlauf	%MWr.m.c.3.6
RANGE_OVF	BOOL	R	Bereichsüberlauf	%MWr.m.c.3.7

Befehlssteuerung

In der folgenden Tabelle werden die Bedeutungen der Bits des Statuswortes COMMAND_ORDER (%MWr.m.c.4) aufgeführt. Der Lesevorgang wird durch READ_STS ausgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
FORCING_UNFORCING_ORDER	BOOL	R/W	Befehl für die Forcierung/Aufhebung der Forcierung	%MWr.m.c.4.13

Parameter

Die folgendenTabellen enthalten die Bedeutung der Wörter %%MWr.m.c.5 bis %MWr.m.c.8. Verwendet werden die den Parametern (READ_PARAM und WRITE_PARAM) zugeordneten Requests.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CMD_FORCING_VALUE	INT	R/W	Anzuwendender Forcierungswert	%MWr.m.c.5
FALLBACK	INT	R/W	Fehlerwert.	%MWr.m.c.7
ALIGNMENT	INT	R/W	Ausrichtungswert.	%MWr.m.c.8

HINWEIS: Um einen Kanal zu forcieren, müssen Sie die Anweisung WRITE_CMD (%MWr.m.c.5) verwenden und das Bit %MWr.m.c.4.13 auf 1 setzen.

HINWEIS: Um die Forcierung für einen Kanal aufzuheben und ihn normal zu verwenden, müssen Sie das Bit %MWr.m.c.4.13 auf 0 setzen.

Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_IN_GEN

Auf einen Blick

In den folgenden Tabellen werden die IODDT-Objekte des Typs T_ANA_IN_GEN für die Eingangsmodule BME AHI 0812, BMX AMI 0410, BMX AMI 0800 und BMX AMI 0810, für die Eingänge des Kombimoduls BMX AMM 600 und für das analoge Eingangsmodul BMX ART 0414/0814 beschrieben.

Ausgangsmessung

Das analoge Eingangsmessungsobjekt lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
VALUE	INT	R	Analoge Eingangsmessung	%IWr.m.c.0

Fehlerbit %Ir.m.c.ERR

Das Fehlerbit % Ir.m.c.ERR lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ERROR	BOOL	R	Fehlerbit für Analogkanal	%lr.m.c.ERR

Detaillierte Beschreibung der IODDT-Objekte des Typs T_ANA_OUT_GEN

Auf einen Blick

In den folgenden Tabellen werden die IODDT-Objekte des Typs $T_ANA_OUT_GEN$ für die analogen Ausgangsmodule BME AHO 0412, BMX AMO 0210, BMX AMO 0410 und BMX AMO 0802 sowie für den Ausgang des Kombimoduls BMX AMM 600 beschrieben.

Ausgangsmessung

Das analoge Ausgangsmessungsobjekt lautet wie folgt:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
VALUE	INT	R	Analoge Ausgangsmessung	%IWr.m.c.0

Fehlerbit %Ir.m.c.ERR

Für das Fehlerbit %Ir.m.c.ERR gilt Folgendes:

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
CH_ERROR	BOOL	R	Fehlerbit für Analogkanal	%Ir.m.c.ERR

Beschreibung der Sprachobjekte des IODDT vom Typ T_GEN_MOD

Einführung

Die Modicon X80-Module verfügen über einen zugeordneten IODDT vom Typ T_GEN_MOD.

Bemerkungen

Prinzipiell wird die Bedeutung der Bits für den Bitstatus 1 angegeben. In speziellen Fällen wird jeder Status des Bits erläutert.

Einige Bits werden nicht verwendet.

Liste der Objekte

In der folgenden Tabelle werden die Objekte des IODDT aufgeführt.

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
MOD_ERROR	BOOL	R	Modulfehlerbit	%lr.m.MOD.ERR
EXCH_STS	INT	R	Steuerwort für den Modulaustausch	%MWr.m.MOD.0
STS_IN_PROGR	BOOL	R	Lesen von Statuswörtern des Moduls	%MWr.m.MOD.0.0
EXCH_RPT	INT	R	Wort für Austauschrückmeldung	%MWr.m.MOD.1
STS_ERR	BOOL	R	Ereignis beim Lesen von Modulstatuswörtern	%MWr.m.MOD.1.0
MOD_FLT	INT	R	Internes Fehlerwort des Moduls	%MWr.m.MOD.2
MOD_FAIL	BOOL	R	Modul funktionsunfähig	%MWr.m.MOD.2.0
CH_FLT	BOOL	R	Funktionsunfähige Kanäle	%MWr.m.MOD.2.1
BLK	BOOL	R	Klemmenleiste falsch verdrahtet	%MWr.m.MOD.2.2
CONF_FLT	BOOL	R	Hardware- oder Software- Konfigurationsunregelmäßigkeit	%MWr.m.MOD.2.5
NO_MOD	BOOL	R	Modul fehlt oder nicht betriebsbereit	%MWr.m.MOD.2.6
EXT_MOD_FLT	BOOL	R	Internes Fehlerwort des Moduls (nur Fipio- Erweiterung)	%MWr.m.MOD.2.7
MOD_FAIL_EXT	BOOL	R	Interner Modulfehler, Modul nicht betriebsbereit (nur Fipio-Erweiterung)	%MWr.m.MOD.2.8
CH_FLT_EXT	BOOL	R	Funktionsunfähige Kanäle (nur Fipio- Erweiterung)	%MWr.m.MOD.2.9
BLK_EXT	BOOL	R	Klemmenleiste falsch verdrahtet (nur Fipio- Erweiterung)	%MWr.m.MOD.2.10
CONF_FLT_EXT	BOOL	R	Hardware- oder Software- Konfigurationsunregelmäßigkeit (nur Fipio- Erweiterung)	%MWr.m.MOD.2.13
NO_MOD_EXT	BOOL	R	Modul fehlt oder nicht betriebsbereit (nur Fipio- Erweiterung)	%MWr.m.MOD.2.14

Analoggeräte-DDT

Einführung

In dieser Rubrik werden die Control ExpertAnaloggeräte-DDT **von** beschrieben. Die Standardnamensgebung der Instanz wird unter Namensgebungsregel für Geräte-DDTs *(siehe EcoStruxure* ™ *Control Expert, Programmiersprachen und Struktur, Referenzhandbuch)* beschrieben.

Der Name eines Geräte-DDT enthält folgende Informationen:

- Plattform mit:
 - o U für einheitliche Struktur zwischen Modicon X80-Modul und Quantum
- Gerätetyp (ANA für Analogmodul)
- Funktion (STD für Standard)
 - O STD für Standard
 - O TEMP für Temperatur
- Richtung:
 - O IN
 - o OUT
- Max. Kanäle (2, 4, 8)

Beispiel: Für ein Modicon X80-Modul mit 4 Standardeingängen und 2 Ausgängen ist der DDDT (Device Derived Data Type oder Abgeleiteter Geräte-Datentyp) T_U_ANA_STD_IN_4_OUT_2.

Einschränkung hinsichtlich der Einstellparameter

Bei Quantum EIO und M580 RIO können die Einstellparameter bei laufendem Betrieb nicht über die SPS-Anwendung geändert werden (keine Unterstützung für READ_PARAM, WRITE_PARAM, SAVE_PARAM, RESTORE_PARAM).

Dies gilt für folgende analogen Eingangsparameter:

• FILTER_COEFF

Wert des Filterkoeffizienten

• ALIGNMENT_OFFSET

Wert des Ausrichtungs-Offsets

Dies gilt für folgende analogen Ausgangsparameter:

• FALLBACK Fehlerwert

ALIGNMENT

Ausrichtungswert

Liste der impliziten Geräte-DDTs

In der folgenden Tabelle werden die Geräte-DDTs mit den zugehörigen X80-Modulen aufgeführt:

Gerätespezifischer DDT-Typ	Modicon X80-Geräte
T_U_ANA_STD_IN_4	BMX AMI 0410
T_U_ANA_STD_IN_8	BME AHI 0812 BMX AMI 0800 BMX AMI 0810
T_U_ANA_STD_OUT_2	BMX AMO 0210
T_U_ANA_STD_OUT_4	BME AHO 0412 BMX AMO 0410
T_U_ANA_STD_OUT_8	BMX AMO 0802
T_U_ANA_STD_IN_4_OUT_2	BMX AMM 0600
T_U_ANA_TEMP_IN_4	BMX ART 0414
T_U_ANA_TEMP_IN_8	BMX ART 0814

Beschreibung der impliziten Geräte-DDTs

Die nachstehende Tabelle zeigt die Bits der Statuswörter ${\tt T_U_ANA_STD_IN_x}$ und ${\tt T_U_ANA_STD_OUT_y}$:

Standardsymbol	Тур	Bedeutung	Zugriff
MOD_HEALTH	BOOL	0 = Modul mit erkanntem Fehler	Lesen
		1 = Modulbetrieb OK	
MOD_FLT	BYTE	Internes Fehlerbyte <i>(siehe Seite 269)</i> des Moduls	Lesen
ANA_CH_IN	ARRAY [0x-1] of T_U_ANA_STD_CH_IN	Array-Struktur	-
ANA_CH_OUT	ARRAY [0y-1] of T_U_ANA_STD_CH_OUT	Array-Struktur	-

Die nachstehende Tabelle zeigt die Bits des Statusworts T_U_ANA_STD_IN_x_OUT_y:

Standardsymbol	Тур	Bedeutung	Zugriff
MOD_HEALTH	BOOL	0 = Modul mit erkanntem Fehler	Lesen
		1 = Modulbetrieb OK	
MOD_FLT	BYTE	Internes Fehlerbyte <i>(siehe Seite 269)</i> des Moduls	Lesen
ANA_CH_IN	ARRAY [0x-1] of T_U_ANA_STD_CH_IN	Array-Struktur	-
ANA_CH_OUT	ARRAY [xx+y-1] of T_U_ANA_STD_CH_OUT	Array-Struktur	-

Standardsymbol	Тур	Bedeutung	Zugriff
MOD_HEALTH	BOOL	0 = Modul mit erkanntem Fehler	Lesen
		1 = Modulbetrieb OK	
MOD_FLT	BYTE	Internes Fehlerbyte <i>(siehe Seite 269)</i> des Moduls	Lesen
ANA_CH_IN	ARRAY [[0x-1] of T_U_ANA_TEMP_CH_IN	Array-Struktur	-

Die nachstehende Tabelle zeigt die Bits des Statusworts T_U_ANA_TEMP_IN_x:

Die nachstehende Tabelle zeigt die Bits des Strukturkstatusworts T_U_ANA_STD_CH_IN [0...x-1]:

Standardsymbol	Тур	Bit	Bedeutung	Zugriff	
FCT_TYPE		WORT	-	0 = Kanal nicht verwendet	Lesen
				1 = Kanal verwendet	
CH_HEALTH		BOOL	-	0 = Kanal mit erkanntem Fehler	Lesen
				1 = Kanalbetrieb OK	
CH_WARNING		BOOL	-	nicht verwendet	-
ANA		STRUCT	-	T_U_ANA_VALUE_IN	Lesen
MEASURE_STS [INT]	SURE_STS [INT] CH_ALIGNED		0	Ausgerichteter Kanal	Lesen
	LOWER_LIMIT	BOOL	5	Istwert in unterem Toleranzbereich	Lesen
	UPPER_LIMIT	BOOL	6	Istwert in oberem Toleranzbereich	Lesen
	INT_OFFSET_ERROR	BOOL	8	Interner Offset-Fehler	Lesen
	IN_REF_ERROR	BOOL	10	Interner Referenzfehler	Lesen
	POWER_SUP_ERROR	BOOL	11	Nicht verwendet	Lesen
	SPI_COM_ERROR	BOOL	12	SPI-Kommunikationsfehler	Lesen

Die nachstehende Tabelle zeigt die Bits des Statusworts T_U_ANA_STD_CH_OUT [0...y-1]:

Standardsymbol	Тур	Bedeutung	Zugriff
FCT_TYPE	WORD	0 = Kanal nicht verwendet	Lesen
		1 = Kanal verwendet	
CH_HEALTH	BOOL	0 = Kanal mit erkanntem Fehler	Lesen
		1 = Kanalbetrieb OK	
ANA	STRUCT	T_U_ANA_VALUE_OUT	Lesen

Die nachstehende Tabelle zeigt die Bits der Strukturstatuswörter $T_U_ANA_VALUE_IN$ [0...x-1] und $T_U_ANA_VALUE_OUT$ [0...y-1]:

Standardsymbol	Тур	Bit	Bedeutung	Zugriff
VALUE	INT	-	Wenn FORCE_CMD = 1, dann VALUE = FORCED_VALUE	Lesen ⁽¹⁾
			Wenn FORCE_CMD = 0, dann VALUE = TRUE_VALUE	
FORCED_VALUE	INT	-	Forcierter Wert des Kanals	Lesen/Schrei ben
FORCE_CMD	BOOL	-	0 = Befehl zum Aufheben der Forcierung	Lesen/Schrei
			1 = Befehl zum Forcieren	ben
FORCE_STATE	BOOL	-	0 = Wert nicht forciert	Lesen
			1 = Wert forciert	
TRUE_VALUE ⁽²⁾	INT	-	Wahrer Wert des Kanals (von Sensor)	Lesen
 Der VALUE des Strukturworts T_U_ANA_VALUE_OUT ist im Lese-/Schreibmodus zugänglich. TRUE_VALUE von T_U_ANA_VALUE_OUT ist der von der Anwendung berechnete Wert. 				

Die nachstehende Tabelle zeigt die Bits des Strukturstatusworts T_U_ANA_TEMP_CH_IN [0...x-1]:

Standardsymbol	Тур	Bit	Bedeutung Zugri	
FCT_TYPE	WORT	-	0 = Kanal nicht verwendet	Lesen
			1 = Kanal verwendet	
CH_HEALTH	BOOL	-	0 = Kanal mit erkanntem Fehler	Lesen
			1 = Kanalbetrieb OK	
CH_WARNING	BOOL	-	nicht verwendet	-
ANA	STRUCT	-	T_U_ANA_VALUE_IN	Lesen
MEASURE_STS	INT	-	Istwert-Status	Lesen
CJC_VALUE	INT	-	Wert der Vergleichsstellenkompensation (1/10 $^{\circ}$ C)	Lesen

Verwendung und Beschreibung der DDTs für den expliziten Austausch

Die nachstehende Tabelle enthält die DDT-Typen, die für die Variablen verwendet werden, die mit einem dedizierten EFB-Parameter zur Durchführung eines expliziten Austauschs verknüpft sind:

DDT	Beschreibung						
T_M_ANA_STD_CH_STS	Struktur zum Lesen des Kanalstatus eines Analogmoduls.	Je nach Position des E/A-Moduls kann der DDT mit dem sɪs- Ausgangsparameter des EFB verknüpft					
T_M_ANA_STD_CH_IN_STS	Struktur zum Lesen des Kanalstatus eines analogen Ausgangsmoduls.	 werden: READ_STS_QX, wenn sich das Modul in Quantum EIO befindet. DEAD_OTO ANY 					
T_M_ANA_STD_CH_OUT_STS	Struktur zum Lesen des Kanalstatus eines analogen Ausgangsmoduls.	READ_STS_MX, wenn sich das Modul im lokalen M580-Rack oder in einer M580-RIO-Station befindet.					
T_M_ANA_TEMP_CH_STS	Struktur zum Lesen des Kanalstatus eines analogen Temperatureingangsmoduls						
T_M_ANA_STD_CH_IN_PRM	Struktur für die Einstellparameter eines Kanals eines analogen Eingangsmoduls in einem Iokalen M580-Rack.	 Der DDT kann mit dem Ausgangsparameter PARAM des EFB verknüpft werden: READ_PARAM_MX zum Lesen der Modulparameter 					
T_M_ANA_STD_CH_OUT_PRM	Struktur für die Einstellparameter eines Kanals eines analogen Ausgangsmoduls in einem Iokalen M580-Rack.	 WRITE_PARAM_MX zum Schreiben der Modulparameter SAVE_PARAM_MX zum Speichern der Modulparameter RESTORE_PARAM_MX zum Wiederherstellen der neuen Parameter des Moduls 					
HINWEIS: Die Kanal-Zieladresse Ausgangsparameter OUT mit dem	HINWEIS: Die Kanal-Zieladresse (ADDR) kann über den EF ADDMX verwaltet werden (verknüpfen Sie den Ausgangsparameter ADDR der Kommunikationsfunktionen)						

HINWEIS: Weitere Informationen zu EF und EFB finden Sie unter *EcoStruxure* [™] *Control Expert* – *E/A-Verwaltung, Bausteinbibliothek* und *EcoStruxure* [™] *Control Expert* – *Kommunikation, Bausteinbibliothek*.

Die folgende Abbildung zeigt die DDT-Struktur für T_M_ANA_STD_CH_STS, T_M_ANA_ST-D_CH_IN_STS, T_M_ANA_STD_CH_OUT_STS und T_M_ANA_TEMP_CH_STS:

Standardsymbol		Тур	Bit	Bedeutung	Zugriff
CH_FLT [INT]	SENSOR_FLT	BOOL	0	Sensorfehler	Lesen
	RANGE_FLT	BOOL	1	Bereichsfehler	Lesen
	CH_ERR_RPT	BOOL	2	Kanalfehler signalisiert	Lesen
	INTERNAL_FLT	BOOL	4	Interner Fehler: Modul ausgefallen	Lesen
	CONF_FLT	BOOL	5	Konfigurationsfehler: Unterschiedliche Hardware- und Softwarekonfigurationen	Lesen
	COM_FLT	BOOL	6	Problem bei der Kommunikation mit der SPS	Lesen
	APPLI_FLT	BOOL	7	Anwendungsfehler	Lesen
	COM_FLT_ON_EVT ⁽¹⁾	BOOL	8	Kommunikationsfehler bei Ereignis	Lesen
	OVR_ON_CH_EVT ⁽¹⁾	BOOL	9	Überlauffehler bei CPU- Ereignis	Lesen
	OVR_ON_CH_EVT ⁽¹⁾	BOOL	10	Überlauffehler bei Kanalereignis	Lesen
CH_FLT_2 [INT]	NOT_READY	BOOL	0	Kanal nicht bereit	Lesen
	COLD_JUNCTION_FLT ⁽²⁾	BOOL	1	Fehler in Bezug auf die Vergleichsstellenkompensati on	Lesen
	CALIB_FLT	BOOL	2	Kalibrierungsfehler	Lesen
	INT_OFFS_FLT	BOOL	3	Interner Offset-Fehler	Lesen
	IN_REF_FLT	BOOL	4	Interner Referenzfehler	Lesen
	INT_SPI_PS_FLT	BOOL	5	Interner Fehler in serieller Verbindung oder Spannungsversorgung	Lesen
	RANGE_UNF	BOOL	6	Neukalibrierter Kanal oder Bereichsunterlauf	Lesen
	RANGE_OVF	BOOL	7	Ausgerichteter Kanal oder Bereichsüberlauf	Lesen
(1) Nur verfügbar fü (2) Nur verfügbar fü	ür T_M_ANA_STD_CH_IN_ST ür T_M_ANA_TEMP_CH_STS	S und T_	M_AN	A_STD_CH_OUT_STS.	

Die folgende Tabelle zeigt die T_M_ANA_STD_CH_IN_PRM DDT-Struktur:

Standardsymbol	Тур	Bit	Bedeutung	Zugriff
FILTERCOEFF	INT	-	Wert des Filterkoeffizienten	Lesen/Schreib en
ALIGNMENT_OFFSET	INT	-	Wert des Ausrichtungs-Offsets	Lesen/Schreib en
THRESHOLD0	INT	-	Für Weiterentwicklung reserviert.	-
THRESHOLD1	INT	-	Für Weiterentwicklung reserviert.	-

Die folgende Tabelle zeigt die T_M_ANA_STD_CH_OUT_PRM DDT-Struktur:

Standardsymbol	Тур	Bit	Bedeutung	Zugriff
FALLBACK	INT	-	Fehlerwert	Lesen/Schrei ben
ALIGNMENT	INT	-	Ausrichtungswert	Lesen/Schrei ben

Beschreibung des Bytes MOD_FLT

Byte MOD_FLT in Geräte-DDT

Struktur des Bytes MOD_FLT:

Bit	Symbol	Beschreibung
0	MOD_FAIL	 1: Interner erkannter Fehler oder erkannter Modulausfall. 0: Kein Fehler erkannt.
1	CH_FLT	 1: Nicht betriebsfähige Kanäle. 0: Kanäle sind betriebsfähig.
2	BLK	 1: Fehler in Klemmenleiste erkannt. 0: Kein Fehler erkannt.
		HINWEIS: Dieses Bit kann möglicherweise nicht verwaltet werden.
3	-	 1: Modul führt Selbsttest aus. 0: Modul führt keinen Selbsttest aus.
		HINWEIS: Dieses Bit kann möglicherweise nicht verwaltet werden.
4	-	Nicht verwendet
5	CONF_FLT	 1: Hardware- oder Software-Konfigurationsfehler erkannt. 0: Kein Fehler erkannt.
6	NO_MOD	 1: Modul fehlt oder nicht betriebsbereit. 0: Modul ist in Betrieb.
		HINWEIS: Dieses Bit wird nur von Modulen verwaltet, die sich in einem dezentralen Rack befinden und ein BME CRA 312 10-Adaptermodul haben. Module in einem dezentralen Rack verwalten dieses Bit nicht, das auf 0 bleibt.
7	-	Nicht verwendet

Forcierungsmodus für die dezentralen Ethernet-E/A von Analoggeräten

Einführung

Die Eingangs- und Ausgangswerte von Modicon X80-Analogmodulen können über den Wert des gerätespezifischen DDT forciert werden.

HINWEIS: Die Werte von Modicon X80-Digitalmodulen werden über den EBOOL-Mechanismus forciert, siehe Kapitel *Forcierungsmodus* (siehe EcoStruxure [™] Control Expert, Betriebsarten). Dies gilt nicht für BMEAH•0•12-Module.

Die Forcierung von Eingangs- und Ausgangsvariablen bei laufender Steuerung kann schwerwiegende Folgen für den Betrieb einer Maschine oder eines Prozesses haben. Aus diesem Grund sollte diese Funktion nur von Benutzern verwendet werden, die mit den Auswirkungen auf die Steuerungslogik vertraut sind und die Folgen forcierter E/As für die Maschine beziehungsweise den Prozess genau kennen.

A WARNUNG

UNBEABSICHTIGTER GERÄTEBETRIEB

Sie müssen mit dem Prozess und den gesteuerten Geräten vertraut sein und das geänderte Verhalten in Control Expert im Detail kennen, bevor Sie analoge Ein- oder Ausgänge forcieren.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

T_U_ANA_VALUE_••-Struktur von Modicon X80-Analoggeräten

Die nachstehende Tabelle zeigt den Inhalt des zur Forcierung eines Werts verwendeten analogen Geräte-DDT *(siehe Seite 262)*-Typs:

Standardsymbol	Тур	Bedeutung
VALUE	INT	Kanalwert. Der in der Anwendung verwendete Wert, d. h. entweder FORCED_VALUE oder TRUE_VALUE, je nach FORCED_STATE.
FORCED_VALUE	INT	Der bei der Forcierung auf einen Ausgang angewendete oder als Eingang interpretierte Wert. Wenn FORCED_STATE = 1, dann VALUE = FORCED_VALUE
FORCE_CMD	BOOL	Der zur Forcierung bzw. Aufhebung der Forcierung eines analogen Ausgangs- oder Eingangswerts verwendete Parameter.
FORCED_STATE	BOOL	Forcierungsstatus: • 0: = Wert nicht forciert • 1: Wert forciert
TRUE_VALUE	INT	Verweist auf den wahren Wert (True) des analogen Aus- oder Eingangs, ungeachtet des Status des Forcierungsbefehls.

Forcieren eines Werts mit den Animationstabellen

Gehen Sie zur Forcierung eines DDT-Werts in einer Animationstabelle vor wie folgt:

Schritt	Aktion
1	Wählen Sie den betroffenen analogen Kanal aus.
2	Setzen Sie den Parameter FORCED_VALUE des ausgewählten Kanals auf den gewünschten Wert. Detaillierte Anweisungen zur Einstellung eines Werts finden Sie im Kapitel Änderungsmodus (siehe EcoStruxure ™ Control Expert, Betriebsarten).
3	Stellen Sie den Parameter FORCE_CMD auf den Wert 1 ein.
4	 Ergebnis: Prüfen Sie, ob die Forcierung angewendet wird: FORCED_STATE muss gleich 1 sein. VALUE = FORCED_VALUE

Aufheben der Forcierung eines Werts mit den Animationstabellen

Gehen Sie zur Aufhebung der Forcierung eines DDT-Werts in einer Animationstabelle vor wie folgt:

Schritt	Aktion
1	Wählen Sie den betroffenen analogen Kanal aus.
2	Stellen Sie den Parameter FORCE_CMD auf den Wert 0 ein.
3	 Ergebnis: Prüfen Sie, ob die Forcierung wieder aufgehoben wurde: FORCED_STATE muss gleich 0 sein. VALUE = TRUE_VALUE

Kapitel 14 Debugging von Analogmodulen

Inhalt des Kapitels

In diesem Kapitel wird das Debugging der Analogmodule erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Beschreibung der Debug-Funktion eines Analogmoduls	274
Beschreibung des Debug-Fensters des Analogmoduls	275
Auswählen der Anpassungswerte für die Eingabekanäle und Messwertforcierung	277
Änderung von Einstellwerten von Ausgangskanälen	279

Beschreibung der Debug-Funktion eines Analogmoduls

Einleitung

Diese Funktion ist nur im Online-Betrieb aufrufbar. Sie ermöglicht jedem Eingangs-/Ausgangsmodul des Projekts Folgendes:

- Anzeigen von Messwerten
- Anzeigen der Parameter jedes Kanals (Status des Kanals, Filterwert usw.)
- Aufrufen der Diagnose und Einstellung des gewählten Kanals (Maskierung des Kanals usw.)

Die Funktion ermöglicht auch den Zugriff auf die Diagnose eines Moduls bei Ereignissen.

Vorgehensweise

Bei dieser Vorgehensweise können Sie die **Debugging**-Funktion wie folgt einsetzen:

Schritt	Maßnahme
1	Konfigurieren Sie das Modul.
2	Übertragen Sie die Anwendung zur SPS.
3	Wechseln Sie in den Online-Modus.
4	Doppelklicken Sie im Konfigurationsfenster des Racks auf das Modul.
5	Wählen Sie die Registerkarte Debuggen .

Beschreibung des Debug-Fensters des Analogmoduls

Einleitung

Im Debug-Fenster werden der Wert und der Status aller Kanäle des gewählten Moduls in Echtzeit angezeigt.

Abbildung

Die nachfolgende Abbildung zeigt ein Beispiel für einen Debugging-Bildschirm an.

Beschreibung

In der folgenden Tabelle sind die verschiedenen Elemente des Debug-Fensters und ihre Funktionen aufgeführt.

Adresse	Element	Funktion
1	Registerkarten	 Auf der im Vordergrund angezeigten Registerkarte wird der aktuelle Modus angegeben (in diesem Beispiel Debuggen). Jeder Modus kann über die entsprechende Registerkarte ausgewählt werden. Folgende Modi sind verfügbar: Debuggen - Zugriff nur im Online-Modus Konfiguration
2	Modulbereich	 Zeigt die abgekürzte Bezeichnung des Moduls. Im selben Bereich befinden sich drei Anzeige-LEDs, die den Modulstatus im Online-Modus angeben: RUN gibt den Betriebsstatus des Moduls an ERR weist auf einen internen erkannten Modulfehler hin I/O zeigt ein Ereignis am Modul oder einen Anwendungsfehler an.
3	Kanal-Bereich	 Es ermöglicht: die Auswahl eines Kanals. die Anzeige des Symbols (vom Benutzer (mittels des Variableneditors) festgelegter Name des Kanals).
4	Allgemeine Parameter- Bereich	Legt den konfigurierten MAST - oder FAST -Task fest. Diese Informationen können nicht geändert werden.
5	Anzeige- und Befehlsbereich	 Zeigt den Wert und den Status aller Kanäle des Moduls in Echtzeit an. Die Spalte "Symbol" zeigt das dem Kanal zugeordnete Symbol an, wenn es vom Benutzer (im Variableneditor) definiert wurde. Dieser Bereich ermöglicht einen direkten Zugriff auf die Diagnose aller Kanäle, wenn diese nicht betriebsbereit sind (angezeigt durch die Anzeige- LED "Fehler", die rot aufleuchtet). Zugriff auf die Einstellung der Filter-, Anpassungs- und Fehlerwerte der Ausgänge Ermöglicht einen direkten Zugriff auf die Diagnose aller Kanäle, wenn Fehler aufgetreten sind (angezeigt durch die Anzeige-LED, die in die Schaltfläche für den Zugriff auf die Diagnose integriert ist und rot aufleuchtet).

HINWEIS: Nicht verfügbare LEDs und Befehle werden abgeblendet.

Auswählen der Anpassungswerte für die Eingabekanäle und Messwertforcierung

Auf einen Blick

Diese Funktion wird verwendet, um die Filter, Ausrichtungs- und Fehlerwerte für einen oder mehrere Kanäle eines Analogmoduls zu ändern.

Folgende Befehle sind verfügbar:

- Forcen
- Filtern
- Ausrichtung

Bei der Ausrichtung mehrerer analoger Kanäle an BMX AMO/AMI/AMM/ART-Modulen empfehlen wir, kanalweise vorzugehen. Testen Sie jeden Kanal nach der Ausrichtung, bevor Sie mit dem nächsten Kanal fortfahren, um die Parameter korrekt anzuwenden.

Vorgehensweise

In der folgenden Tabelle wird das Verfahren für das Ändern der Filter-, Forcierungs- und Ausrichtungswerte zusammengefasst.

Schritt	Aktion für einen Kanal
1	Rufen Sie das Debug-Fenster auf.
2 Wählen Sie den zu ändernden Kanal in der Zone Anzeige , und doppelklicken S entsprechende Feld. Ergebnis : Das Dialogfeld Kanal einstellen wird angezeigt.	
	Kanal 0 einstellen 🛛
	Anzeige Bereich +/-10V Forcieren 0 Forcieren Forcierung aufheben
	O Validieren
	Validieren Offset Image: Second sec

Schritt	Aktion für einen Kanal
3	Klicken Sie auf das Textfeld im Feld Forcen . Geben Sie den Forcierungswert ein. Senden Sie die Forcierungsreihenfolge, indem Sie auf die Schaltfläche Forcen klicken.
4	Klicken Sie auf das Dropdown-Menü im Feld Filter und legen Sie den neu ausgewählten Filterwert fest. Bestätigen Sie die Auswahl, indem Sie auf die Schaltfläche Bestätigen klicken.
5	Klicken Sie im Feld Ausrichtung auf das Textfeld und legen Sie den Zielwert fest. Bestätigen Sie die Auswahl, indem Sie auf die Schaltfläche Bestätigen klicken.
6	Schließen Sie das Dialogfeld Kanal einstellen . Ergebnis : Der neue Filter-, Forcierungs- oder Ausrichtungswert wird daraufhin in dem Feld angezeigt, das dem in der Spalte Filtern , Forcen oder Anpassung des Bereichs Anzeige entspricht.

Änderung von Einstellwerten von Ausgangskanälen

Auf einen Blick

Diese Funktion wird verwendet, um die Forcierungs-, Fehler- und Ausrichtungswerte für einen oder mehrere Ausgangskanäle eines Analogmoduls zu ändern.

Folgende Befehle sind verfügbar:

- Forcen
- Fehlerwert
- Anpassung

Vorgehensweise

In der folgenden Tabelle wird das Verfahren für das Ändern der Werte zusammengefasst, die an den Ausgangskanälen angewendet werden sollen:

Schritt	Aktion für einen Kanal		
1	Rufen Sie das Debug-Fenster auf.		
2	Wählen Sie den Kanal in der Zone Anzeige , und doppelklicken Sie in das entsprechende Feld. Ergebnis : Das Dialogfeld Kanal einstellen wird angezeigt.		
	Kanal 0 einstellen Anzeige Bereich +/-10V -10.000 bis 10.000 Forcieren Porcierung aufheben Fehlerwett Image: Section of the section		

Schritt	Aktion für einen Kanal
3	Klicken Sie in das Textfeld im Feld Forcen des Dialogfelds Kanal einstellen . Geben Sie den Forcierungswert ein. Senden Sie die Forcierungsreihenfolge, indem Sie auf die Schaltfläche Forcen klicken.
4	Klicken Sie im Dialogfeld Fehlermodus auf das Kästchen im Feld Fehlerwert , und geben Sie den neuen Wert des Fehlermodus ein. Bestätigen Sie diesen neuen Wert, indem Sie auf die Schaltfläche Bestätigen klicken.
5	Klicken Sie in das Textfeld im Feld Anpassung des Dialogfelds Kanal einstellen , und definieren Sie den Zielwert. Bestätigen Sie die Auswahl, indem Sie auf die Schaltfläche Bestätigen klicken.
6	Schließen Sie das Dialogfeld Kanal einstellen .

Kapitel 15 Diagnose eines Analogmoduls

Inhalt des Kapitels

In diesem Kapitel ist die Diagnose bei der Implementierung der Analogmodule beschrieben.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Diagnose eines Analogmoduls	282
Detaillierte Diagnose nach Analogkanal	284

Diagnose eines Analogmoduls

Einleitung

Die Moduldiagnosefunktion zeigt aktuelle Fehler – sofern vorhanden – gemäß ihrer jeweiligen Kategorie an:

- Interner Modulfehler:
 - o Modulfehlfunktion
 - o Selbsttestfehler
- Externe Ereignisse:
 - o Verdrahtungsüberwachung (Drahtbruch, Überlast oder Kurzschluss)
 - O Unterhalb/oberhalb des Bereichs
- Andere Fehler:
 - o Konfigurationsfehler
 - o Modul nicht vorhanden oder ausgeschaltet
 - O Nicht betriebsbereiter Kanal

Ein fehlerhaftes Modul wird dadurch angezeigt, dass bestimmte Anzeige-LEDs auf Rot wechseln, z. B.:

- im Konfigurationseditor auf Rack-Ebene:
 - o Anzeige-LED für die Racknummer
 - O Anzeige-LED für die Steckplatznummer des Moduls im Rack
- im Konfigurationseditor der Modul-Ebene:
 - o die Anzeige-LEDs Err und I/O, je nach Fehlertyp
 - o die Anzeige-LED Kanal im Bereich Kanal

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise zum Aufrufen des Modulfehler-Fensters beschrieben.

Schritt	Maßnahme					
1	Rufen Sie das Debug-Fenster des Moduls auf.					
2	Klicken Sie auf die Referenz des Moduls im Kanalbereich, und wählen Sie die Registerkarte Fehler . Ergebnis : Die Liste der Modulfehler wird angezeigt.					
	4 potenzialgetrennte analoge Hochgeschwindigkeits-U/I-Eingänge Version: 1.00					
	BMX AMI 0410 Kanal 0					
	Kanal0 Kanal2 Kanal3 Interne Fehler Externe Fehler Kanalfehler					
	Hinweis: Ein Zugriff auf den Moduldiagnose-Bildschirm ist nicht möglich, wenn ein Konfigurationsfehler, ein schwerwiegender Ausfallfehler oder ein Fehler wegen eines fehlenden Moduls auftritt. In diesem Fall wird folgende Meldung angezeigt: "Modul nicht vorhanden oder unterscheidet sich von dem in dieser Position konfigurierten Modul."					

Detaillierte Diagnose nach Analogkanal

Einleitung

Die Kanaldiagnosefunktion zeigt aktuelle Fehler – sofern vorhanden – gemäß ihrer jeweiligen Kategorie an:

• Interne Fehler

- O Nicht betriebsbereiter Kanal
- o Kalibrierungsfehler

• Externe Ereignisse

- o Sensorverbindungsereignis
- O Bereichsüberlauf/-unterlauf
- o Vergleichsstellenkompensationsfehler

• Andere Fehler

- o Konfigurationsfehler
- o Kommunikationsverlust
- o Anwendungsfehler
- Wert außerhalb des Bereichs (Ausgangskanal)
- o Kanal nicht bereit

Ein Kanalfehler wird auf der Registerkarte **Debuggen** durch eine **____** rote Anzeige in der Spalte **Fehler** angezeigt.

Vorgehensweise

In der folgenden Tabelle ist die Vorgehensweise für den Zugriff auf das Kanalfehler-Fenster beschrieben.

Schritt	Maßnahme
1	Rufen Sie das Debug-Fenster des Moduls auf.
2	Klicken Sie für den nicht betriebsbereiten Kanal auf die Schaltfläche —● neben der Spalte Fehler . Ergebnis : Die Liste der Kanalfehler wird angezeigt.
	Fehler 🔀
	Externe Fehler Andere Fehler Andere Fehler
	Hinweis: Auf Kanaldiagnoseinformationen kann auch über ein Programm zugegriffen werden (READ_STS- Anweisung).

Kapitel 16 Betrieb der Module aus der Anwendung

Inhalt des Kapitels

In diesem Kapitel wird erläutert, wie die analogen E/A-Module in einer Anwendung betrieben werden.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Abschnitte:

Abschnitt	Thema	Seite
16.1	Zugreifen auf Messung und Status	286
16.2	Zusätzliche Programmierungsfunktionen	292

Abschnitt 16.1 Zugreifen auf Messung und Status

Inhalt dieses Abschnitts

In diesem Abschnitt wird erläutert, wie ein analoges Modul konfiguriert wird, um auf die E/A-Messungen und den jeweiligen Status zuzugreifen.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema		
Adressierung der Analogmodulobjekte		
Modulkonfiguration		

Adressierung der Analogmodulobjekte

Einführung

Die Adressierung des Hauptbits und der Wortobjekte der analogen E/A-Module ist von Folgendem abhängig:

- Rack-Adresse
- Physische Position des Moduls im Rack
- Modulkanalnummer

HINWEIS: Der Zugriff auf die Module erfolgt über topologische oder Signalspeicheradressen (siehe EcoStruxure TM Control Expert, Betriebsarten).

Beschreibung

Die Adressierung wird folgendermaßen definiert.

%	I, Q, M, K	X, W, D, F	r	m	с	•	i	j
Symbol	Objekttyp	Format	Rack	Modulposition	Kanalnr.		Rang	Wortbit

In der folgenden Tabelle werden die verschiedenen Elemente beschrieben, aus denen sich die Adressierung zusammensetzt.

Reihe	Element	Bedeutung
Symbol	%	-
Objekttyp	l Q	Abbildung des physischen Moduleingangs Abbildung des physischen Modulausgangs Diese Informationen werden für jeden Zyklus der Task ausgetauscht, der die Informationen angehängt sind.
	М	Interne Variable Diese Lese- oder Schreibinformationen werden auf Anforderung der Anwendung ausgetauscht.
	к	Interne Konstante Diese Konfigurationsinformationen liegen nur schreibgeschützt vor.
Format (Größe)	х	Boolesch Bei booleschen Objekten kann das X ausgelassen werden.
	W	Einfache Länge
	D	Doppelte Länge
	F	Gleitkomma
Rackadresse	r	Rackadresse
Modulposition	m	Positionsnummer des Moduls im Rack

Reihe	Element	Bedeutung
Kanalnr.	С	Kanalnr. 0 bis 127 oder MOD (MOD: Kanal für die Verwaltung des Moduls und der von allen Kanälen gemeinsam genutzten Parameter reserviert)
Rang	i	Wortstelle 0 bis 127 oder ERR (ERR: Verweist auf einen Fehler im Wort)
Wortbit	j	Position des Bits im Wort

Beispiele

In der folgenden Tabelle sind einige Beispiele für die Adressierung analoger Objekten aufgeführt.

Schaltfläche	Beschreibung
%I1.3.MOD.ERR	Fehlerinformationen für das analoge Eingangsmodul, das sich in Rack 1 an Position 3 befindet.
%I1.4.1.ERR	Fehlerinformationen zu Kanal 1 für das analoge Eingangsmodul, das in Rack 1 an Position 4 erstellt wurde.
%IW1.2.2	Bildwort für den analogen Eingang 2 des Moduls, das sich in Rack 1 an Position 2 befindet.
%QW2.4.1	Bildwort für den analogen Ausgang 1 des Moduls, das sich in Rack 2 an Position 4 befindet.
Modulkonfiguration

Auf einen Blick

Die hier als Beispiel verwendete Anwendung verwaltet Flüssigkeitspegel in einem Tank. Der Tank wird mit einer Pumpe gefüllt und mit einem Ventil abgelassen. Die verschiedenen Tankpegel werden mit Sensoren gemessen, die über dem Tank platziert sind. Der Tank darf maximal mit 100 Litern Flüssigkeit gefüllt werden.

Sobald der Tank voll ist, stoppt die Pumpe und der Bediener lässt den Tank manuell ab.

Für diese Anwendung ist die Verwendung eines analogen Eingangsmoduls BMX AMI 0410 und eines analogen Ausgangsmoduls BMX AMO 0210 erforderlich. Diese Anwendung benötigt möglicherweise auch ein Ein-/Ausgangsmodul BMX AMM 0600.

Tankverwaltungs-Grafcet

Das Anwendungs-Grafcet lautet wie folgt:

Verwenden der Messungen

Das analoge Eingangsmodul BMX_AMI_0410 wird konfiguriert, sodass der Flüssigkeitspegel im Tank abgerufen werden kann.

Schritt	Aktion				
1	Doppelklicken Sie im Projekt-Browser und unter Variablen und FB-Instanzen auf Elementare Variablen.				
2	Erstellen Sie die Variable des Typs INTLevel.				
3	Geben Sie in der Spalte Adresse die Adresse ein, die dieser Variablen zugeordnet ist. In unserem Beispiel wird davon ausgegangen, dass der Sensor mit Kanal 0 des Moduls BMX AMI 0410 verbunden ist. Dieses Modul wird mit Steckplatz 1 von Rack 0 verbunden. Die Adresse ist demnach: %IW0.1.0				
	Abbildung: Level INT %%IW0.1.0				

Diese Variable kann verwendet werden, um zu überprüfen, ob der Flüssigkeitspegel im Tank den maximalen Pegel erreicht hat.

Hierfür kann die Transition Level Reached des Grafcet der folgende Code zugeordnet werden.

	Level_I	Reache	d
aya = 100	(```	
Level>=100			

Wenn der Flüssigkeitspegel im Tank den maximalen Pegel erreicht bzw. überschreitet, wird die Transition Level Reached aktiviert.

Verwenden des jeweiligen Status

Die Transition With_fault muss so programmiert werden, dass die Pumpe in drei Fällen stoppen kann:

- Der maximale Flüssigkeitspegel wurde erreicht.
- Die Pumpe wurde manuell gestoppt.
- Die Messung ergibt einen Wert über dem oberen Toleranzbereich.

Bevor das Bit verwendet werden kann, mit dem angegeben wird, ob die Messung weiterhin in den oberen Toleranzbereich (%IWr.m.c.1.6) fällt, müssen das Anzeigeformat und der Bereich des verwendeten Kanals definiert werden.

Schritt	Aktion				
1	Öffnen Sie das Konfigurationsfenster des gewünschten Moduls.				
2	Wählen Sie den Bereich 010 V (siehe Seite 238) für Kanal 0 aus.				
4	Rufen Sie das Dialogfeld "Parameter" <i>(siehe Seite 241)</i> für den Kanal auf, um folgende Parametereinzugeben:				
	Kanalparameter 0 Skala Anzeige 0%-> 100%-> Überlauf Überlauf Orauher: 0 Aktiviert Darüber: 110 Y Aktiviert				
	Der obere Toleranzbereich liegt zwischen 100 und 110 Liter.				
5	Bestätigen Sie Ihre Änderungen, indem Sie das Dialogfeld schließen.				
6	Bestätigen Sie die Änderung über Bearbeiten -> Bestätigen.				

Der der Fehlersteuerungs-Transition zugeordnete Code lautet wie folgt:

Abschnitt 16.2 Zusätzliche Programmierungsfunktionen

Inhalt dieses Abschnitts

In diesem Abschnitt werden einige nützliche Funktionen zum Programmieren von Anwendungen erläutert, die analoge E/A-Module verwenden.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Beschreibung der mit Analogmodulen verbundenen Sprachobjekte	293
Mit Analogmodulen verbundene Sprachobjekte mit implizitem Austausch	294
Mit Analogmodulen verbundene Sprachobjekte mit explizitem Austausch	
Verwaltung von Austauschvorgängen und Berichten mit expliziten Objekten	
Konfigurationsspezifische Sprachobjekte	302

Beschreibung der mit Analogmodulen verbundenen Sprachobjekte

Allgemein

Die Analogmodule sind mit verschiedenen IODDT verknüpft.

IODDTs werden durch den Hersteller vordefiniert. Sie enthalten Eingangs-/Ausgangs-Sprachobjekte, die zu einem Kanal eines Analogmoduls gehören.

Es gibt mehrere unterschiedliche IODDT-Typen für das Analogmodul:

- T_ANA_IN_BMX spezifisch für Analogeingangsmodule wie die Module BME AHI 0812 und BMX AMI 0410 und spezifisch für die Eingänge des Kombimoduls BMX AMM 600
- T ANA IN T BMX spezifisch für Analogeingangsmodule wie die Module BMX ART 0414/0814
- T_ANA_OUT_BMX spezifisch für Analogausgangsmodule wie die Module BMX AHO 0412 und BMX AMO 0210 und spezifisch für die Ausgänge des Kombimoduls BMX AMM 600
- T_ANA_IN_GEN spezifisch für alle Analogeingangsmodule wie die Module AME AHI 0812, BMX AMI 0410, BMX ART 0414/0814 und spezifisch für die Eingänge des Kombimoduls BMX AMM 600

HINWEIS: Für die Erstellung von IODDT-Variablen sind zwei Möglichkeiten gegeben:

- Auf der Registerkarte E/A-Objekte
- mit dem Dateneditor

Sprachobjekttypen

Jeder IODDT beinhaltet eine Reihe von Sprachobjekten, mit denen der Benutzer Module steuern und deren ordnungsgemäße Funktionsweise überprüfen kann.

Es gibt zwei Arten von Sprachobjekten:

- Implizite Austauschobekte: Diese Objekte werden automatisch in jedem Zyklus der dem Modul zugewiesenen Task ausgetauscht. Sie betreffen die Eingänge/Ausgänge des Moduls (Messergebnisse, Informationen, Befehle usw.).
- Explizite Austauschobjekte: Diese Objekte werden unter Verwendung von Anweisungen zum expliziten Austausch auf Anforderung der Anwendung ausgetauscht. Diese werden verwendet, um das Modul festzulegen und Diagnosen durchzuführen.

Mit Analogmodulen verbundene Sprachobjekte mit implizitem Austausch

Auf einen Blick

Eine integrierte Schnittstelle oder das Hinzufügen eines Moduls erweitert automatisch das Projekt von Sprachobjekten, welche das Programmieren dieser Schnittstelle oder dieses Moduls ermöglichen.

Diese Objekte entsprechen den Bildern der Ein-/Ausgänge und Softwareinformationen des Moduls oder der integrierten Schnittstelle.

Zur Erinnerung

Die Eingänge (%1 und %1W) des Moduls werden zu Beginn des Tasks im Speicher der Steuerung aktualisiert, wenn sich die Steuerung im Modus RUN oder STOP befindet.

Die Ausgänge (%Q und %QW) werden am Ende des Tasks aktualisiert, jedoch nur, wenn sich die Steuerung im Modus RUN befindet.

HINWEIS: Befindet sich der Task in STOP, so erfolgt abhängig von der gewählten Konfiguration Folgendes:

- Die Ausgänge werden auf die Position Fehlerwert gesetzt (Fehlermodus).
- Die Ausgänge werden auf ihrem letzten Wert gehalten (Modus "Wert halten").

Abbildung

Der Betriebszyklus der SPS-Aufgabe (zyklische Ausführung) ist folgendermaßen aufgebaut:

Mit Analogmodulen verbundene Sprachobjekte mit explizitem Austausch

Auf einen Blick

Ein expliziter Austausch ist ein Austausch, der auf Anfrage des Anwenderprogramms mithilfe der folgenden Anweisungen durchgeführt wird:

- READ_STS: Lesen von Statuswörtern
- WRITE CMD: Schreiben von Befehlswörtern
- WRITE PARAM: Schreiben von Einstellparametern
- READ PARAM: Lesen von Einstellparametern
- SAVE PARAM: Speichern von Einstellparametern
- RESTORE PARAM: Wiederherstellen von Einstellparametern

Diese Austauschvorgänge gelten für einen Satz von %MW-Objekten desselben Typs (Status, Befehle oder Parameter), die zu einem Kanal gehören.

HINWEIS: Diese Objekte enthalten Informationen über das Modul (z. B. Fehlertyp eines Kanals, ...), ermöglichen dessen Steuerung (z. B. Schaltbefehl) und die Festlegung der Funktionsmodi (Speichern und Wiederherstellen der aktuell ausgeführten Einstellparameter).

HINWEIS: Sie können die Requests WRITE_PARAM und RESTORE_PARAM nicht gleichzeitig an die von denselben logischen Knoten verwalteten Kanäle senden. Der logische Knoten kann nur einen Request verarbeiten, der andere Request generiert einen Fehler. Um diese Art von Fehler zu vermeiden, müssen Sie den Austausch für jeden Kanal mit %MWr.m.c.0.x und %MWr.m.c.1.x verwalten.

Allgemeines Prinzip der Verwendung von expliziten Anweisungen

Die folgende Abbildung zeigt die verschiedenen Arten von expliziten Austauschvorgängen, die zwischen Prozessor und Modul stattfinden können.

SPS-Prozessor

Analogmodul

(1) Nur mit den Anweisungen READ_STS und WRITE_CMD.

Beispiel zum Verwenden von Anweisungen

Anweisung READ_STS:

Die Anweisung READ_STS wird zum Lesen der Wörter SENSOR_FLT (%MWr.m.c.2) und NOT_READY (%MWr.m.c.3) verwendet. Es ist deshalb möglich, die Fehler mit größerer Genauigkeit zu bestimmen, die während eines Vorgangs aufgetreten sein können.

Bei Ausführen der Anweisung READ_STS für alle Kanäle kann es zu einer Überladung des SPS kommen. Eine sicherere Methode ist es, den Fehleranteil aller Module in jedem Zyklus und anschließend die Kanäle der betreffenden Module zu testen. In diesem Fall müssen Sie nur die Anweisung READ_STS für die erhaltene Adresse verwenden.

Der Algorithmus kann folgendermaßen aussehen:

```
WHILE (%I0.m.ERR <> 1) OR (m = Anzahl von Modulen) THEN
  m=m+1
  Loop
END WHILE
WHILE (%I0.m.c.ERR <> 1) OR (c <= Anzahl von Modulen) THEN
  c=c+1
  Loop
END WHILE
READ STS (%I0.m.c)</pre>
```

Anweisung WRITE_PARAM:

Die Anweisung WRITE_PARAM wird zum Ändern bestimmter Konfigurationsparameter verwendet, die von den Modulen während des Betriebs verwendet werden.

Sie müssen die neuen Werte nur den relevanten Objekten zuweisen und die Anweisung WRITE PARAM auf den erforderlichen Kanal anwenden.

Sie können diese Anweisung z. B. zur Änderung des Fehlerausweichwerts über das Programm verwenden (nur für analoge Ausgangsmodule). Weisen Sie den erforderlichen Wert dem Wort Fallback (%MWr.m.c.7) zu, und verwenden Sie dann die Anweisung WRITE PARAM.

Verwaltung von Austauschvorgängen und Berichten mit expliziten Objekten

Einleitung

Werden Daten zwischen Steuerungsspeicher und Modul ausgetauscht, kann die Bestätigung dieser Informationen durch das Modul mehrere Taskzyklen erfordern. Um den Austausch zu verwalten, verwenden alle IODDTs zwei Wörter:

- EXCH_STS (%MWr.m.c.0): Austausch läuft
- EXCH_RPT (%MWr.m.c.1): Rückmeldung

HINWEIS: Je nach Lokalisierung des Moduls wird die Verwaltung der expliziten Austauschvorgänge (z. B. %MW0.0.MOD.0.0) von der Anwendung nicht erkannt:

- Bei Modulen im Rack erfolgen explizite Austauschvorgänge unmittelbar auf dem lokalen SPS-Bus und sie werden vor Ablauf des Ausführungstasks beendet, sodass beispielsweise READ_STS immer beendet ist, wenn das %MW0.0.mod.0.0-Bit von der Anwendung überprüft wird.
- Bei einem dezentralen Bus (z. B. Fipio) erfolgen explizite Austauschvorgänge nicht synchron zum Ausführungstask und können so von der Anwendung erkannt werden.

Abbildung

Die folgende Abbildung zeigt die unterschiedlichen signifikanten Bits für die Verwaltung der Austauschvorgänge.

Beschreibung der signifikanten Bits

Jedes Bit der Wörter EXCH_STS (%MWr.m.c.0) und EXCH_RPT (%MWr.m.c.1) ist mit einem Parametertyp verbunden:

- Bits des Rangs 0 sind mit den Statusparametern verbunden:
 - Das Bit STS_IN_PROGR (%MWr.m.c.0.0) zeigt an, ob eine aktuelle Aufforderung zum Lesen der Statuswörter vorhanden ist.
 - Das Bit STS_ERR (%MWr.m.c.1.0) zeigt an, ob eine Aufforderung zum Lesen der Statuswörter vom Kanal des Moduls akzeptiert wird.
- Bits des Rangs 1 sind mit den Steuerparametern verbunden:
 - Das Bit CMD_IN_PROGR (%MWr.m.c.0.1) gibt an, ob die Steuerparameter an den Modulkanal gesendet werden oder nicht.
 - Das Bit CMD_ERR (%MWr.m.c.1.1) zeigt an, ob die Steuerparameter vom Kanal des Moduls akzeptiert werden.
- Bits des Rangs 2 sind mit den Einstellparametern verbunden:
 - Das Bit ADJ_IN_PROGR (%MWr.m.c.0.2) gibt an, ob die Einstellparameter mit dem Kanal des Moduls ausgetauscht werden (über WRITE_PARAM, READ_PARAM, SAVE_PARAM, RESTORE PARAM).
 - Das Bit ADJ_ERR (%MWr.m.c.1.2) zeigt an, ob die Einstellparameter vom Kanal des Moduls akzeptiert werden. Wenn der Austausch korrekt ausgeführt wird, wird das Bit auf 0 gesetzt.
- Bits des Rangs 15 geben eine Neukonfiguration des Kanals c des Moduls ausgehend von der Konsole an (Änderung der Konfigurationsparameter und Kaltstart des Kanals).
- Die Bits r, m und c geben die folgenden Steckplätze an:
 - Bit r gibt die Racknummer an.
 - o Bit m bezeichnet die Position des Moduls im Rack.
 - O Bit c gibt die Kanalnummer im Modul an.

HINWEIS: Austausch- und Berichtswörter existieren auch auf der Ebene der Module EXCH_STS (%MWr.m.MOD.0) und EXCH_RPT (%MWr.m.MOD.1) des IODDT-Typs T_ANA_IN_BMX, T_ANA_IN_T_BMX und T_ANA_OUT_BMX.

Beispiel

Phase 1: Senden von Daten mit der Anweisung WRITE PARAM:

SPS-Speicher		E/A-Modulspeicher
1		
Statusparameter		Statusparameter
Steuerparameter		Steuerparameter
Einstellparameter	┣──►	Einstellparameter

Wenn die Anweisung vom SPS-Prozessor verarbeitet wird, wird das Bit Austausch läuft im %MWr.m.c auf 1 gesetzt.

Phase 2: Analyse der Daten durch das E/A-Modul und den Bericht:

Wenn die Daten zwischen dem SPS-Speicher und dem Modul ausgetauscht sind, wird die Bestätigung durch das Modul durch das Bit ADJ_ERR (%MWr.m.c.1.2) verwaltet, das je nach seinem Wert den folgenden Bericht ausgibt:

- 0: korrekter Austausch
- 1: Fehler beim Austausch

HINWEIS: Es existiert kein Einstellparameter auf Modulebene.

Ausführungsindikatoren eines expliziten Austauschs: EXCH_STS

Die folgende Tabelle zeigt die Steuerbits der expliziten Austauschvorgänge EXCH_STS (%MWr.m.c.0).

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_IN_PROGR	BOOL	R	Lesen der Statuswörter des Kanals läuft	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Befehlsparameter werden ausgetauscht	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	R	Einstellparameter werden ausgetauscht	%MWr.m.c.0.2
RECONF_IN_PROGR	BOOL	R	Neueinstellung des Moduls läuft	%MWr.m.c.0.15

HINWEIS: Wenn das Modul nicht vorhanden oder getrennt ist, werden die expliziten Austauschobjekte (z. B. READ_STS) nicht an das Modul gesendet (STS_IN_PROG (%MWr.m.c.0.0) = 0), aber die Wörter werden aktualisiert.

Rückmeldung von expliziten Austauschvorgängen: EXCH_RPT

Die folgende Tabelle zeigt die Rückmeldungsbits EXCH RPT (%MWr.m.c.1).

Standardsymbol	Тур	Zugriff	Bedeutung	Adresse
STS_ERR	BOOL	R	Fehler beim Lesen der Statuswörter des Kanals (1 = Fehler)	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Fehler beim Austausch von Befehlsparametern (1 = Fehler)	%MWr.m.c.1.1
ADJ_ERR	BOOL	R	Fehler beim Austausch von Einstellparametern (1 = Fehler)	%MWr.m.c.1.2
RECONF_ERR	BOOL	R	Fehler bei der Neukonfiguration des Kanals (1 = Fehler)	%MWr.m.c.1.15

Konfigurationsspezifische Sprachobjekte

Auf einen Blick

Die Konfiguration eines Analogmoduls wird in den Konfigurationskonstanten (%KW) gespeichert.

Die in den folgenden Tabellen dargestellten Parameter r, m und c stellen die topologische Adressierung des Moduls dar. Diese Parameter haben die folgende Bedeutung:

- **r:** Gibt die Racknummer an.
- m: Bezeichnet die Position des Moduls im Rack.
- c: Gibt die Kanalnummer an.

Konfigurationsobjekte der Module BME AHI 0812, BMX AMI 0410, BMX AMI 0800 und BMX AMI 0810 und Eingänge des Moduls BMX AMM 0600

Der Konfiguration der Module BME AHI 0812, BMX AMI 0410, BMX AMI 0800 und BMX AMI 0810 wurden folgende Sprachobjekte zur Prozesssteuerung zugeordnet:

Adressen	Beschreibung	Bedeutung der Bits
%KWr.m.c.0	Kanalbereichskonfiguration	Bit 0 bis 5: Elektrischer Bereich (Hexadezimalwert) Bit 7: 0 = Elektrischer Bereich (immer 0)
%KWr.m.c.1	Skala/Min. Wert der Benutzerskalierung	-
%KWr.m.c.2	Skala/Max. Wert der Benutzerskalierung	-
%KWr.m.c.3	Unterschreitung des oberen Bereichs	-
%KWr.m.c.4	Überschreitung des oberen Bereichs	-
%KWr.m.c.5	Kanalbearbeitungskonfiguration	Bit 0: 0 = MAST-Modus, 1 = FAST-Modus Bit 1: 0 = Kanal deaktiviert, 1 = Kanal aktiviert Bit 2: 0 = Sensormonitor aus, 1 = Sensormonitor ein Bit 7: 0 = Herstellerskala, 1 = Benutzerskala Bit 8: Untere Grenze des oberen Bereichs aktiviert Bit 9: Obere Grenze des oberen Bereichs aktiviert

Konfigurationsobjekte der Module BMX ART 0414/0814

Der Konfiguration der Module BMX ART 0414/0814 wurden folgende Sprachobjekte zur Prozesssteuerung zugeordnet:

Adressen	Beschreibung	Bedeutung der Bits
%KWr.m.c.0	Kanalbereichskonfiguration	Bit 0 bis 5: Temperaturbereich (Hexadezimalwert) Bit 6: Temperaturbereich (0 = °C, 1 = °F) Bit 7: 1 = Temperaturbereich Bit 8: 0 = Rückweisung 50 Hz, 1 = Rückweisung 60 Hz
%KWr.m.c.1	Skala/Min. Wert der Benutzerskalierung	-
%KWr.m.c.2	Skala/Max. Wert der Benutzerskalierung	-
%KWr.m.c.3	Unterschreitung des oberen Bereichs	-
%KWr.m.c.4	Überschreitung des oberen Bereichs	-
%KWr.m.c.5	Kanalbearbeitungskonfiguration	 Bit 0: 0 = Standardmodus (immer 0) Bit 1: 0 = Kanal deaktiviert (nur im FAST-Modus), 1 = Kanal aktiviert Bit 2: 0 = Sensormonitor aus, 1 = Sensormonitor ein Bits 3 bis 6: CJC-Konfigurationsmodus für Kanäle 0/3: Bit 3 = 0 und Bit 4 = 0: Int. Telefast, Bit 3 = 1 und Bit 4 = 0: Externes RTD Bit 3 = 0 und Bit 4 = 1: CJC an Kanälen 4/7 Bits 3 bis 6: CJC-Konfigurationsmodus für Kanäle 4/7: Bit 5 = 0 und Bit 6 = 0: Int. Telefast, Bit 5 = 1 und Bit 6 = 0: Externes RTD Bit 5 = 1 und Bit 6 = 0: Externes RTD Bit 7: 0 = Herstellerskala, 1 = Benutzerskala Bit 8: Untere Grenze des oberen Bereichs aktiviert

Konfigurationsobjekte der Module BME AHO 0412, BMX AMO 0210, BMX AMO 0410 und BMX AMO 0802 und Ausgänge des Moduls BMX AMM 0600

Der Konfiguration der Module BME AHO 0412, BMX AMO 0210, BMX AMO 0410 und BMX AMO 0802 wurden folgende Sprachobjekte zur Prozesssteuerung zugeordnet:

Adressen	Beschreibung	Bedeutung der Bits
%KWr.m.c.0	Kanalbereichskonfiguration	Bit 0 bis 5: Elektrischer Bereich (Hexadezimalwert)Bit 8: Fehlerausweichmodus (0 = Fehlerwert, 1 = Wert halten)Bit 11: Überwachung der Stellglied-Verdrahtung (0 = deaktiviert, 1 = aktiviert)Bit 14: Ausgang Unterschreitung des gültigen Bereichs (0 = deaktiviert, 1 = aktiviert)Bit 15: Ausgang Überschreitung des gültigen Bereichs (0 = deaktiviert, 1 = aktiviert)
%KWr.m.c.1	Skala/Min. Wert der Benutzerskalierung	-
%KWr.m.c.2	Skala/Max. Wert der Benutzerskalierung	-
%KWr.m.c.3	Unterschreitung des Grenzwerts	-
%KWr.m.c.4	Überschreitung des Grenzwerts	-

Teil III Kurzanleitung: Beispiel für die Implementierung von analogen E/A-Modulen

Inhalt dieses Abschnitts

Dieser Teil bietet ein Beispiel für die Implementierung der analogen E/A-Module.

Inhalt dieses Teils

Dieser Teil enthält die folgenden Kapitel:

Kapitel	KapiteIname	Seite
17	Beschreibung der Anwendung	307
18	Installation der Anwendung mit Control Expert	309
19	Starten der Anwendung	337
20	Aktionen und Transitionen	345

Kapitel 17 Beschreibung der Anwendung

Überblick über die Anwendung

Einleitung

Die in diesem Dokument beschriebene Anwendung wird zum Verwalten des Flüssigkeitspegels in einem Tank eingesetzt. Der Tank wird mit einer Pumpe gefüllt und mit einem Ventil abgelassen.

Der Tankpegel wird mit einem Ultraschallsensor gemessen, der unter dem Tank platziert ist.

Das Tankvolumen wird mithilfe einer digitalen Anzeige dargestellt.

Der gewünschte Flüssigkeitspegel wird durch den Bediener mithilfe eines Potentiometers definiert.

Die Steuerungsressourcen der Anwendung für den Betrieb basieren auf einem Bedienerfenster, das den Status der unterschiedlichen Sensoren und Stellglieder sowie den Tankpegel anzeigt.

Der hohe Tankpegel wird über das Bedienerfenster definiert.

Abbildung

Das endgültige Bedienerfenster der Anwendung sieht wie folgt aus:

Betriebsart

Die Betriebsart sieht wie folgt aus:

- Der gewünschte Flüssigkeitspegel wird mithilfe eines Potentiometers definiert.
- Mit der Schaltfläche Zyklus starten wird das Füllen gestartet.
- Wenn der gewünschte Tankpegel erreicht ist, wird die Pumpe gestoppt und die LED **Tank bereit** leuchtet auf.
- Mit der Schaltfläche Tank ableiten wird das Ableiten des Tanks gestartet.
- Wenn der niedrige Tankpegel erreicht ist, wird das Ventil geschlossen. Mit der Schaltfläche **Zyklus starten** wird das Füllen erneut gestartet.
- Mit der Schaltfläche Zyklus stoppen wird das Füllen unterbrochen. Wenn Sie auf diese Schaltfläche klicken, können Sie eine sichere Schutzebene für das System einrichten. Die Pumpe stoppt und das Ventil wird geöffnet, bis der niedrige Pegel erreicht ist (Tank leer). Das Ventil wird geschlossen.
- Die Pumpe hat eine variable Durchsatzrate, auf deren Wert über das Bedienerfenster zugegriffen werden kann. Je höher der Flüssigkeitspegel steigt, desto größer ist die Reduktion des Durchsatzes.

Die Durchsatzrate des Ventils ist festgelegt.

- Es muss eine Schutzmaßnahme installiert werden. Wenn der hohe Pegel überschritten wird, wird eine Schutzmaßnahme aktiviert und das System wird vor Fehlern geschützt. Die Pumpe stoppt in diesem Fall und das Ventil wird geöffnet, bis der niedrige Pegel erreicht ist (Tank leer). Das Ventil wird geschlossen.
- Für den Schutzmodus muss eine Fehlermeldung angezeigt werden.
- Der Zeitraum, in dem das Ventil geöffnet und geschlossen wird, wird überwacht, und es wird eine Fehlermeldung angezeigt, wenn einer dieser Vorgänge überschritten wird.

Kapitel 18 Installation der Anwendung mit Control Expert

Inhalt dieses Kapitels

In diesem Kapitel wird der zum Erstellen der Anwendung durchzuführende Prozess beschrieben. Das Kapitel enthält sowohl allgemeine als auch ausführlichere Informationen zu den Schritten, die zum Erstellen der verschiedenen Anwendungskomponenten benötigt werden.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Abschnitte:

Abschnitt	Thema	Seite
18.1	Beschreibung der verwendeten Lösung	310
18.2	Entwicklung der Anwendung	313

Abschnitt 18.1 Beschreibung der verwendeten Lösung

Inhalt dieses Abschnitts

Dieser Abschnitt enthält Informationen zu der Lösung, die zum Entwickeln der Anwendung verwendet wird. Es werden die technologischen Möglichkeiten sowie der zeitliche Rahmen zum Erstellen der Anwendung erläutert.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Ausgewählte technische Lösungen	311
Die verschiedenen Prozessschritte mit Control Expert	312

Ausgewählte technische Lösungen

Einführung

Es gibt mehrere Möglichkeiten, eine Anwendung mit Control Expert zu schreiben. Die vorgeschlagene Lösung ermöglicht es, die Anwendung so zu strukturieren, dass ihre Erstellung und das Debuggen erleichtert werden.

Technische Lösungen

Die folgende Tabelle zeigt die für die Anwendung verwendeten technologischen Auswahlmöglichkeiten.

Objekte	Ausgewählte Lösung
Verwendung der Pumpe	Erstellung eines benutzerdefinierten Funktionsbausteins (DFB), um die Verwaltung der Pumpe in Hinblick auf die Programmeingabe und die Geschwindigkeit des Debuggens zu erleichtern. Die für die Entwicklung dieses DFB verwendete Programmiersprache ist eine graphische Sprache auf der Grundlage von Funktionsbausteinen (FBD).
Verwendung des Ventils	Erstellung eines benutzerdefinierten Funktionsbausteins (DFB), um die Verwaltung des Ventils in Hinblick auf die Programmeingabe und die Geschwindigkeit des Debuggens zu erleichtern. Die für die Entwicklung dieses DFB verwendete Programmiersprache ist eine graphische Sprache auf der Grundlage von Funktionsbausteinen (FBD).
Überwachungsfenster	Verwenden von Elementen aus der Bibliothek und von neuen Objekten.
Hauptüberwachungsprogramm	Dieses Programm wird in der Ablaufsprache (SFC) entwickelt, die auch unter dem Namen "GRAFCET" bekannt ist. Die verschiedenen Sections werden in Kontaktplan (LD) erstellt und nutzen die verschiedenen erstellten DFB.
Fehleranzeige	Verwenden des DFBs "ALRM_DIA" zur Steuerung des Status der mit den erkannten Fehlern verknüpften Variablen.

HINWEIS: Die Verwendung von DFB-Funktionsbausteinen in einer Anwendung:

- Vereinfacht die Gestaltung und das Schreiben des Programms
- Verbessert die Lesbarkeit des Programms
- Vereinfacht das Debugging der Anwendung
- Reduziert den Umfang des generierten Codes

Die verschiedenen Prozessschritte mit Control Expert

Einführung

Das folgende logische Diagramm zeigt die verschiedenen Schritte, die zum Erstellen der Anwendung ausgeführt werden müssen. Damit alle Anwendungselemente korrekt definiert werden können, muss eine chronologische Reihenfolge eingehalten werden.

Beschreibung

Beschreibung der verschiedenen Typen:

Abschnitt 18.2 Entwicklung der Anwendung

Inhalt dieses Abschnitts

Dieser Abschnitt beschreibt die schrittweise Erstellung der Anwendung mithilfe von Control Expert.

Inhalt dieses Abschnitts

Dieser Abschnitt enthält die folgenden Themen:

Thema	Seite
Erstellung des Projekts	314
Auswählen des Analogmoduls	315
Variablendeklaration	316
Erstellen und Verwenden der DFBs	319
Erstellen des Programms in SFC zum Verwalten des Tanks	324
Erstellung eines Programms in LD zur Anwendungsausführung	328
Erstellung eines Programms in LD zur Anwendungssimulation	330
Erstellen einer Animationstabelle	333
Erstellen des Bedienerfensters	334

Erstellung des Projekts

Einführung

Die Entwicklung einer Anwendung unter Control Expert ist an die Erstellung eines mit einer Steuerung verknüpften Projekts gebunden.

Vorgehensweise zum Erstellen eines Projekts

Die folgende Tabelle zeigt das Verfahren zum Erstellen des Projekts mit Control Expert:

Schritt	Aktion					
aus1	Starten Sie die Software Control Expert.					
2 Klicken Sie auf "Datei" und dann auf "Neu", um eine SPS zu wählen.						
	Neues Projekt					
	Alle Versionen anzeigen					
	SPS Betriebssystem- version (Min.) Beschreibung OK					
	Modicon M340 Abbrechen					
	BMX P34 1000 02.10 CPU 340-10 Modbus BMX P34 2000 02.10 CPU 340-10 Modbus Hilfe					
	BNX F34 2010 02.00 CPU 340-20 Modulas CANonen					
	BMX P34 20102 02.10 CPU 340-20 Modbus CANopen2					
	BMX P34 2020 02.10 CPU 340-20 Modbus Ethernet					
	BMX P34 2030 02.00 CPU 340-20 Modbus CANopen					
	Quantum					
	🕀 ··· Quantum Safety					
	Projekteinstellung					
	Einstellungsdatei: <standardeinstellungen></standardeinstellungen>					
3	Wenn Sie alle SPS-Versionen einsehen möchten aktivieren Sie die Ontion. Alle Versionen					
•	anzeigen"					
4	Wählen Sie den gewünschten Prozessor unter den angezeigten Prozessoren aus					
r						
5	Wenn Sie ein Projekt mit spezifischen Werten für die Projekteinstellungen erstellen mochten,					
	markieren Sie die Option Einstellungsdatel und verwenden Sie die Suchschaltfläche, um die XSO-					
Datei (Projekteinstellungsdatei) auszuwählen. Sie können auch eine neue Datei erstellen. Ist die Option Einstellungsdatei nicht ausgewählt, werden Standardwerte für die						
6	Bestätigen Sie Ihre Auswahl mit "OK".					

Auswählen des Analogmoduls

Auf einen Blick

Zur Entwicklung einer Analoganwendung müssen das richtige Modul und die geeignete Konfiguration ausgewählt werden.

Modulauswahl

Die folgende Tabelle beschreibt die Vorgehensweise zur Auswahl des Analogmoduls.

Schritt	Aktion				
1	Doppelklicken Sie im Projekt-Browser auf Konfiguration, 0:SPS-Bus, 0:BMX ··· ··· (wobei 0 die Racknummer ist) und doppelklicken Sie dann auf einen Steckplatz.				
2	Wählen Sie im Fenster Hardware-Katalog das Eingangsmodul BMX AMI 0410 aus und ziehen Sie es dann per Drag&Drop in das Fenster SPS-Bus.				
	Hardwarekatalog				
	Analog BMX AMI 0410 BMX AMI 0800 BMX AMI 0810 BMX AMI 0810 BMX AMI 0600 BMX AMO 0210 BMX AMO 0210 BMX AMO 0802 BMX AMO 0802 BMX ART 0414 BMX ART 0814 BMX ART 0814 Digital Bewegung BMX ART 0814 Bewegung CaNopen SPS-Bus DTM-Katalog				
3	Führen Sie das Gleiche für das Ausgangsmodul BMX AMO 0210 aus.				

Variablendeklaration

Einführung

Alle in den verschiedenen Abschnitten des Programms verwendeten Variablen müssen deklariert werden.

Nicht deklarierte Variablen können im Programm nicht verwendet werden.

HINWEIS: Weitere Informationen hierzu finden Sie im Kapitel *Dateneditor (siehe EcoStruxure*[™] *Control Expert, Betriebsarten).*

Prozedur zum Deklarieren von Variablen

Die folgende Tabelle zeigt die Prozedur zum Deklarieren von Anwendungsvariablen.

Schritt	Aktion
1	Doppelklicken Sie im Projekt-Browser unter "Variablen und FB-Instanzen" auf "Elementare Variablen".
2	Wählen Sie im Fenster "Dateneditor" das Feld in der Spalte "Name" und geben Sie einen Namen für die erste Variable ein.
3	Wählen Sie jetzt einen Typ für diese Variable.
4	Wenn alle Variablen deklariert wurden, können Sie das Fenster schließen.

Für die Anwendung verwendete Variablen

Die folgende Tabelle zeigt die Details der in der Anwendung verwendeten Variablen.

Variable	Тур	Definition
Bestätigung	EBOOL	Bestätigung eines Fehlers (Status 1).
Stopp	EBOOL	Stoppt den Zyklus am Ende des Ableitvorgangs (Status 1).
Valve_Opening_Cmd	EBOOL	Öffnet das Ventil (Status 1).
Motor_Run_Cmd	EBOOL	Startanforderung für das Füllen von Zyklen (Status 1).
Valve_Closing_Cmd	EBOOL	Schließt das Ventil (Status 1).
Initiale_condition	EBOOL	Transition, die die Pumpe startet.
Desired_Level	REAL	Gewünschte Flüssigkeitsmenge.
Tank_ready	BOOL	Tank ist voll und bereit zur Ableitung.
Datenfluss	BOOL	Zwischenvariable für die Anwendungssimulation.
Init_Flow	REAL	Anfangsdurchsatzrate der Pumpe.
Flow_Reduction	BOOL	Durchsatzrate der Pumpe nach der Reduktion.
Pump_Flow	REAL	Durchsatzrate der Pumpe.

Variable	Тур	Definition
Valve_Flow	REAL	Durchsatzrate des Ventils.
Motor_Error	EBOOL	Vom Motor zurückgegebener Fehler.
Valve_Closure_Error	EBOOL	Vom Ventil beim Schließen zurückgegebener Fehler.
Valve_Opening_Error	EBOOL	Vom Ventil beim Öffnen zurückgegebener Fehler.
Lim_Valve_Closure	EBOOL	Ventil in geschlossener Position (Status 1).
Lim_Valve_Opening	EBOOL	Ventil in geöffneter Position (Status 1).
Run EBOOL Startanforderung für das Füllen von Zyklen (Status 1).		Startanforderung für das Füllen von Zyklen (Status 1).
Nb_Stage REAL Zahl der Tankfüllphase.		Zahl der Tankfüllphase.
Ebene	REAL	Flüssigkeitsmenge im Tank.
Tank_low_level	EBOOL	Niedriges Tankvolumen (Status 1).
Tank_high_level	EBOOL	Hohes Tankvolumen (Status 1).
Stage	REAL	Inkrementeller Phasenwert.
Contactor_Return	EBOOL	Vom Kontakt zurückgegebener Fehler bei einem Motorschaden.
Valve_closure_time	TIME	Schließungszeit des Ventils.
Valve_opening_time	TIME	Öffnungszeit des Ventils.
Drain	EBOOL	Ableitungsbefehl

HINWEIS: Im Gegensatz zu BOOL-Typen können EBOOL-Typen für E/A-Module verwendet werden.

Dateneditor			
Variablen DDT-Typen Funktionsbauste	eine DFB-Typer		
Filter Name (*	√ E	DT DDT	IODDT
Name 🔺	Тур 🖵	Adr 🗸 Wert	Bernerkung-
Acknowledgement	EBOOL		
Contactor_Return	EBOOL		
Desired_Level	REAL		
Drain	EBOOL		
Flow	BOOL		
Flow_Reduction	BOOL		
) Initiale_Condition	EBOOL		
init_Flow	REAL	1	
• Level	REAL		
Lim_Valve_Closure	EBOOL		
Lim_Valve_Opening	EBOOL		
Motor_Error	EBOOL		
Motor_Run_Cmd	EBOOL		
Nb Stage	REAL	10	
Pump Flow	REAL	0.0	
	EBOOL		
Stage	REAL	0.0	
Stop	EBOOL		
Tank Low Level	EBOOL		
Tank High Level	EBOOL		
Tank_Ready	BOOL		
Valve Closure Cmd	EBOOL		
Valve Closure Error	EBOOL		
Valve Closure Time	TIME		
	DEAL	10	
Valve_Linuw	EBOOL	1.0	
	EBOOL		
Valve_Opening_Error	TIME		
valve_Opening_Time	HIVE		
1 A A ART			

Die folgende Abbildung zeigt die mit Hilfe des Dateneditors erstellten Anwendungsvariablen.

Erstellen und Verwenden der DFBs

Einführung

DFB-Typen sind Funktionsbausteine, die vom Benutzer als ST, IL, LD oder FBD programmiert werden können. Unser Beispiel verwendet einen Motor-DFB und einen Ventil-DFB.

Außerdem werden zum Überwachen der Variablen vorhandene DFBs aus der Bibliothek verwendet. Insbesondere werden "safety"-Variablen für die Tankmengen und vom Ventil zurückgegebene "error"-Variablen verwendet. Der Status dieser Variablen wird in der Diagnoseanzeige dargestellt.

HINWEIS: Funktionsbausteine können zum Strukturieren und Optimieren der Anwendung verwendet werden. Sie können immer dann verwendet werden, wenn eine Programmsequenz mehrmals in der Anwendung wiederholt wird, oder um einen Standard-Programmiervorgang festzulegen (beispielsweise einen Algorithmus, der einen Motor steuert).

Sobald der DFB-Typ erstellt wurde, können Sie eine Instanz dieses DFB über den Variableneditor oder bei Aufruf der Funktion über den Programmeditor definieren.

HINWEIS: Weitere Informationen finden Sie im Kapitel *Benutzerspezifische Funktionsbausteine* (*DFB*) (siehe EcoStruxure [™] Control Expert, Programmiersprachen und Struktur, Referenzhandbuch).

Verfahren zur Erstellung eines DFBs

Die folgende Tabelle zeigt das Verfahren zum Erstellen von Anwendungs-DFBs.

Schritt	Aktion
1	Klicken Sie im Projekt-Browser mit der rechten Maustaste auf Abgeleitete FB-Typen und wählen Sie dann Öffnen aus.
2	Aktivieren Sie im Dateneditor das Kontrollkästchen in der Spalte Name, geben Sie dann den Namen Ihres DFBs ein und bestätigen Sie den Vorgang mit der Eingabetaste. Der Name des DFBs wird mit der Kennzeichnung "Works" (nicht analysierter DFB) angezeigt.
3	Öffnen Sie die Struktur des DFBs (siehe Abbildung auf der nächsten Seite) und fügen Sie die Eingänge, Ausgänge und andere für den DFB spezifische Variablen hinzu.
4	Wenn die Variablen des DFBs deklariert sind, analysieren Sie den DFB (die Kennzeichnung "Works" muss entfernt werden). Um Ihren DFB zu analysieren, wählen Sie den DFB aus und klicken Sie im Menü Generierung auf Analysieren. Sie haben die Variablen für den DFB erstellt und müssen jetzt die zugeordnete Section erstellen.
5	Doppelklicken Sie im Projekt-Browser auf Abgeleitete FB-Typen und dann auf den gewünschten DFB. Unter dem Namen des DFBs wird das Feld Sections angezeigt.
6	Klicken Sie mit der rechten Maustaste auf Sections und wählen Sie dann die Option Neue Section aus.
7	Weisen Sie Ihrer Section einen Namen zu, wählen Sie dann den Sprachtyp aus und bestätigen Sie mit OK. Bearbeiten Sie die Section mithilfe der in Schritt 3 deklarierten Variablen. Der DFB kann jetzt von dem Programm (DFB-Instanz) verwendet werden.

Vom Motor-DFB verwendete Variablen

In der folgenden Tabelle sind die vom Motor-DFB verwendeten Variablen aufgelistet.

Variable	Тур	Definition		
Run	Eingang Befehl zum Starten des Motors.			
Stopp Eingang Befehl zum Stoppen des Motors.		Befehl zum Stoppen des Motors.		
Contactor_Return Eingang Kontaktrückmeldung bei einem Problem mit dem Motor.		Kontaktrückmeldung bei einem Problem mit dem Motor.		
Bestätigung Eingang Bestätigung de		Bestätigung der Motor_error-Ausgangsvariable.		
Motor_Run_Cmd	Ausgang	Starten des Motors.		
Motor_Error	Ausgang	Anzeige eines Alarms im Fenster "Diagnoseanzeige", der mit einem Problem am Motor in Zusammenhang steht.		

Darstellung der im Dateneditor deklarierten Motor-DFB-Variablen

In der folgenden Abbildung werden die in dieser Anwendung zum Steuern des Motors verwendeten Motor-DFB-Variablen dargestellt.

Dateneditor				
Variablen DDT-Typen Funktionsbausteine DF	B-Typen			
- Filter				
Name *				
Name 🗸	Nr.	Тур 🔻	Wert	Komm 🔻 🔺
Errane Motor		<dfb></dfb>		
Eingänge>				
Run	1	BOOL		
Stop	2	BOOL		
Contactor Return	3	BOOL		
Acknowledgement	4	BOOL		
D*				
Ausgänge>				
Motor_RUn_Cmd	1	BOOL		
Motor_Error	2	BOOL		
🖬 🦳 <eingänge ausgänge=""></eingänge>				
<pre><aligemein></aligemein></pre>				
<privat></privat>				
Sections>				T

Funktionsweise des Motor-DFBs

In der folgenden Abbildung wird das Motor-DFB-Programm dargestellt, das von der Anwendung in FBD zum Steuern des Motors geschrieben wurde.

Wenn Run = 1 und Stop = 0, kann der Motor gesteuert werden (Motor_Run_Cmd = 1). Der andere Teil überwacht die Contactor_return-Variable. Wenn Contactor_return nicht auf "1" gesetzt wird, nachdem der digitale Zähler zwei Sekunden gezählt hat, wechselt der Motor_error-Ausgang zu "1".

HINWEIS: Weitere Informationen zum Erstellen einer Section finden Sie im Kapitel *Programmierung (siehe EcoStruxure* [™] *Control Expert, Betriebsarten).* Wählen Sie gewünschte Sprache aus.

Von dem Ventil-DFB verwendete Variablen

In der folgende Tabelle sind die vom Ventil-DFB verwendeten Variablen aufgelistet.

Variable	Тур	Definition
Valve_opening	Eingang	Befehl zum Öffnen des Ventils.
Valve_closure	Eingang	Befehl zum Schließen des Ventils.
Lim_valve_opening	Eingang	Status des Ventilgrenzwerts.
Lim_valve_closure	Eingang	Status des Ventilgrenzwerts.
Acknowledgement	Eingang	Bestätigung der Variable Valve_closure_error oder Valve_opening_error.
Valve_opening_cmd	Ausgang	Öffnen des Ventils.
Valve_closure_cmd	Ausgang	Schließen des Ventils.
Valve_opening_error	Ausgang	Anzeige eines Alarms im Fenster "Diagnoseanzeige", der mit einem Problem beim Öffnen des Ventils in Zusammenhang steht.
Valve_closure_error	Ausgang	Anzeige eines Alarms im Fenster "Diagnoseanzeige", der mit einem Problem beim Schließen des Ventils in Zusammenhang steht.

Darstellung der im Dateneditor deklarierten Ventil-DFB-Variablen

In der folgenden Abbildung werden die in dieser Anwendung zum Steuern des Ventils verwendeten Ventil-DFB-Variablen dargestellt.

Dateneditor							
Variablen DDT-Typen Funktionsbausteine DFB-Typen							
Filter Name *							
Name	▼	Nr.	Тур 🔻	Wert	Komm 👻		
🔁 🖓 🚺	fentil		<dfb></dfb>				
Eingänge>						_	
	Valve_opening	1	BOOL			_	
	• Valve_closure	2	BOOL				
	Lim_valve_opening	3	BOOL				
	• Lim_valve_closure	4	BOOL				
	Acknowledgement	5	BOOL				
	• • • • III-						
Ausgänge>							
	• Valve_opening_cmd	1	BOOL				
	Valve_closure_cmd	2	BOOL				
	• Valve_opening_error	3	BOOL				
	Valve_closure_error	4	BOOL				
						-	
Eingänge/Ausgänge>							
sallgemein>							
主 🦲 <privat></privat>						┓	
	-					ر ف ا	

Funktionsweise des Ventil-DFBs

In der folgenden Abbildung wird der Ventil-DFB dargestellt, der in der FBD-Sprache geschrieben wurde.

Dieser DFB autorisiert den Befehl, das Ventil zu öffnen (Valve_opening_cmd), wenn die Eingänge Valve_closure und Lim_valve_opening auf "0" gesetzt wurden. Das Prinzip ist für das Schließen identisch, wobei jedoch die zusätzliche Sicherheit gilt, dass bei gleichzeitigem Schließ- und Öffnungsbefehl des Ventils dem Öffnen Vorrang gewährt wird.

Zum Überwachen der Öffnungs- und Schließungszeiten verwenden wir den TON-Timer, um das Auslösen einer Fehlerbedingung zu verzögern. Sobald das Öffnen des Ventils aktiviert wird (Befehl_Ventil_öffnen = 1), wird der Timer ausgelöst. Wenn Lim_valve_opening nicht innerhalb von zwei Sekunden zu "1" wechselt, wechselt die Ausgangsvariable Valve_opening_error zu "1". In diesem Fall wird eine Fehlermeldung angezeigt.

HINWEIS: Die PT-Zeit muss gemäß Ihrer Ausrüstung angepasst werden.

HINWEIS: Weitere Informationen zum Erstellen einer Section finden Sie im Kapitel *Programmierung (siehe EcoStruxure* [™] *Control Expert, Betriebsarten).* Wählen Sie gewünschte Sprache aus.

Erstellen des Programms in SFC zum Verwalten des Tanks

Einführung

Das Hauptprogramm ist in SFC geschrieben (Grafcet). Die unterschiedlichen Sections der Grafcet-Schritte und -Transitionen sind in LD geschrieben. Dieses Programm ist in einer MAST-Task deklariert. Es ist vom Status einer booleschen Variable abhängig.

Der wesentliche Vorteil der Programmiersprache SFC besteht darin, dass die Ausführung der Anwendung dank der graphischen Animation in Echtzeit verfolgt werden kann.

Einige Sections werden in der MAST-Task deklariert:

- Die in SFC geschriebene Section Tank_Management (siehe Seite 325), die die Betriebsart angibt.
- Die in LD geschriebene Section Execution *(siehe Seite 328)* (Ausführung), die den Start der Pumpe mithilfe des DFB "Motor" und das Schließen und Öffnen des Ventils ausführt.
- Die in LD geschriebene Section **Simulation** *(siehe Seite 330),* die die Anwendung simuliert. Diese Section muss bei einer Verbindung mit einer SPS gelöscht werden.

HINWEIS: Die Animation der in der Anwendung verwendeten Sections des Typs LD, SFC und FBD erfordert, dass sich die Anwendung im Online-Modus *(siehe Seite 337)* und die Steuerung im Modus RUN befinden.
Abbildung der Section Tank_management

Die folgende Abbildung zeigt den Grafcet der Anwendung.

Informationen zu dem im Grafcet verwendeten Aktionen und Transitionen finden Sie im Kapitel *Aktionen und Transitionen (siehe Seite 345).*

HINWEIS: Weitere Informationen zum Erstellen einer SFC-Section finden Sie im Kapitel *SFC-Editor (siehe EcoStruxure™ Control Expert, Betriebsarten).*

Beschreibung der Section Tank_Management

In der folgende Tabelle sind die unterschiedlichen Schritte und Transitionen des Tank_Management-Grafcet beschrieben:

Schritt/Transition	Beschreibung
Initial	Dies ist der erste Schritt.
Initial_condition	 Dies ist die Transition, die die Pumpe startet. Die Transition ist gültig, wenn folgende Variablen diese Werte haben: Stop = 0, Run = 1, Tank_High_Level = 0, Lim_valve_closure = 1, Desired_Level > 0
Init_Pump	Dies ist der Schritt zum Initiieren der Durchsatzrate der Pumpe.
Filling_Start	Diese Transition ist aktiv, wenn die Durchsatzrate der Pumpe initialisiert ist.
Tank_Filling	Dies ist der Schritt, mit dem die Pumpe gestartet und der Tank gefüllt wird, bis der hohe Pegel erreicht ist. Dieser Schritt aktiviert den Motor-DFB in der Application-Section, durch die die Aktivierung der Pumpe gesteuert wird.
Reached_Level	Diese Transition ist aktiv, wenn der gewünschte Tankpegel erreicht ist.
End_Alarm	Dies ist der Schritt, bei dem die LED Tank ready aufleuchtet.
Drain	Diese Transition ist aktiv, wenn der Bediener auf die Schaltfläche Drain Tank klickt (Drain = 1).
Tank_Drain_2	Dieser Schritt ist identisch mit Tank_Drain.
Tank_Low_Level	Diese Transition ist aktiv, wenn der untere Tankpegel erreicht ist (Tank_Low_Level = 1).
With_fault	Diese Transition ist aktiv, wenn High_Safety_Alarm = 1 oder die Schaltfläche "Stop_cycle" aktiviert wurde (Stop_cycle = 1).
Tank_Drain	Dieser Schritt aktiviert den Ventil-DFB in der Application-Section, durch die das Öffnen des Ventils gesteuert wird.
Empty_Tank	Diese Transition ist gültig, wenn der Tank leer ist (Tank_Low_Level = 1 und Pump_Flow = 0,0).
Füllung wird ausgeführt	Diese Transition ist gültig, wenn der Tank gerade gefüllt wird.
Pump_Flow_Reduction	Dies ist der Schritt zum Reduzieren der Durchsatzrate der Pumpe.
Flow Reduction	Dies ist der Wert der Durchsatzrate nach der Reduzierung.

HINWEIS: Sie können alle Schritte, Aktionen und Transitionen Ihrer SFC anzeigen, indem Sie vor

dem Namen der SFC-Section auf $\overset{\bullet}{+}$ klicken.

Verfahren zur Erstellung einer SFC-Section

Die folgende Tabelle zeigt das Verfahren zum Erstellen einer SFC-Section für die Anwendung.

Aktion
Doppelklicken Sie unter Projekt-Browser\Programme\Tasks auf MAST.
Klicken Sie mit der rechten Maustaste auf Section und wählen Sie dann die Option Neue Section aus. Geben Sie der Section einen Namen (Tank_management für die SFC-Section), und wählen Sie die Sprache SFC aus.
Der Name Ihrer Section wird angezeigt. Sie können ihn bearbeiten, indem Sie darauf doppelklicken.
Die Tools zum Bearbeiten von SFC werden im Fenster angezeigt. Sie können sie nun verwenden, um Ihr Grafcet zu erstellen. Um beispielsweise einen Schritt mit einer Transition zu erstellen, führen Sie die folgenden Schritte aus:
 Um einen Schritt zu erstellen, klicken Sie auf und platzieren Sie ihn dann im Editor. Um eine Transition zu erstellen, klicken Sie auf + und platzieren Sie sie dann im Editor (üblichenweise unter dem Schritt der ihr verausgeht).

Erstellung eines Programms in LD zur Anwendungsausführung

Einführung

Diese Section steuert die Pumpe und das Ventil mittels der erstellten DFB (siehe Seite 319).

Abbildung der Ausführungs-Section

Die folgende Section ist Teil der MAST-Task. Für diese Section wurde keine temporäre Bedingung definiert, sie wird daher permanent ausgeführt.

Beschreibung der Anwendungs-Section

Wenn der Schritt "Pumpe" aktiv ist, ist der Run-Eingang des Motor-DFBs bei 1. Motor_run_cmd wechselt zu "1" und die Pumpenversorgung wird aktiviert.

Dasselbe Prinzip trifft auf den Rest der Section zu.

Verfahren zur Erstellung einer LD-Section

In der nachfolgenden Tabelle wird die Vorgehensweise zur Erstellung eines Teils der Section **Anwendung** beschrieben:

Schritt	Aktion
1	Doppelklicken Sie unter Projekt-Browser\Programme\Tasks auf MAST.
2	Klicken Sie mit der rechten Maustaste auf Section und wählen Sie dann die Option Neue Section aus. Geben Sie der Section den Namen "Anwendung". Wählen Sie dann den Sprachtyp LD. Das Bearbeitungsfenster wird geöffnet.
3	Um den Kontakt mit Init_Pump.x zu erstellen, klicken Sie auf im Editor. Doppelklicken Sie auf den Kontakt, geben Sie den Namen des Schritts mit einem ".x" am Ende ein (dies gibt an, dass es sich um einen Schritt einer SFC handelt) und bestätigen Sie mit OK.
4	Um den Motor-DFB zu verwenden, müssen Sie ihn instanziieren. Klicken Sie mit der rechten Maustaste auf den Editor und klicken Sie dann auf Datenauswahl und anschließend auf

HINWEIS: Weitere Informationen zum Erstellen einer LD-Section finden Sie im Kapitel *LD-Editor* (*siehe EcoStruxure*TM *Control Expert, Betriebsarten*).

Erstellung eines Programms in LD zur Anwendungssimulation

Einführung

Diese Section wird ausschließlich für die Anwendungssimulation verwendet. Sie sollte deshalb nicht verwendet werden, wenn eine SPS verbunden ist.

Abbildung der Simulation-Section

Die folgende Section ist Teil der MAST-Task. Für diese Section wurde keine Bedingung definiert, sie wird daher permanent ausgeführt:

HINWEIS: Weitere Informationen zum Erstellen einer LD-Section finden Sie im Kapitel *LD-Editor* (siehe EcoStruxure TM Control Expert, Betriebsarten).

Beschreibung der Simulation-Section

- Die erste Zeile der Abbildung wird verwendet, um den Wert der Lim_valve_opening-Variable zu simulieren. Wenn der Befehl zum Öffnen des Ventil ausgegeben wird (Valve_opening_cmd = 1), wird ein TON-Timer ausgelöst. Wenn die PT-Zeit erreicht wird, geht der TON-Ausgaben in den Status "1" über und setzt den Ausgang Lim_valve_opening auf "1", wenn der Befehl zum Schließen des Befehls nicht gleichzeitig ausgegeben wird.
- Das gleiche Prinzip gilt für die Ausgänge Lim valve closure und Contactor return.
- Der letzte Teil der Section wird zur Simulation des Tankpegels und zum Auslösen der verschiedenen Tankpegel verwendet. Für diesen Vorgang können die OPERATE- und COMPARE-Bausteine aus der Bibliothek verwendet werden.

Erstellen einer Animationstabelle

Einführung

Mit einer Animationstabelle werden die Werte von Variablen überwacht sowie geändert und/oder erzwungen. Nur die in Variablen und FB-Instanzen deklarierten Variablen können zur Animationstabelle hinzugefügt werden.

HINWEIS: Weitere Informationen finden Sie im Kapitel *Animationstabellen (siehe EcoStruxure*[™] *Control Expert, Betriebsarten).*

Verfahren zum Erstellen einer Animationstabelle

Die folgende Tabelle zeigt das Verfahren zum Erstellen einer Animationstabelle.

Schritt	Aktion
1	Klicken Sie im Projekt-Browser mit der rechten Maustaste auf Animationstabellen. Das Bearbeitungsfenster wird geöffnet.
2	Klicken Sie auf die erste Zelle der Spalte "Name", dann auf die Schaltfläche mit den drei Punkten und fügen Sie die gewünschten Variablen hinzu.

Für die Anwendung erstellte Animationstabelle

Die nachfolgende Abbildung zeigt die von der Anwendung verwendete Animationstabelle.

🛃 Tabelle 📃 🗖 🛛			
Ändern Forcieren	₹.£	L I	X III
Name 🗸	Wert	Тур 🔻	Kommentar
; Level	0	REAL	
Stage	0.0	REAL	
Pump_Flow	0.0	REAL	
Lim_Valve_closure	0	EBOOL	
🕘 Valve_Closure_Cmd	0	EBOOL	
Valve_Opening_Cmd	1	EBOOL	
Lim_Valve_Opening	0	EBOOL	
🔵 Desired_Level	100.0	REAL	
Nb_Stage	10.0	REAL	
🕘 Run	1	EBOOL	
Stop	0	EBOOL	
2			

HINWEIS: Die Animationstabelle ist nur im Online-Modus dynamisch (Anzeige der Variablenwerte)

Erstellen des Bedienerfensters

Einführung

Das Bedienerfenster wird zur Animation graphischer Objekte verwendet, die die Anwendung symbolisieren. Diese Objekte können zur Control Expert-Bibliothek gehören oder mit dem Grafikeditor erstellt werden.

HINWEIS: Weitere Informationen finden Sie im Kapitel *Bedienerfenster (siehe EcoStruxure*[™] *Control Expert, Betriebsarten).*

Darstellung des Bedienerfensters

Die nachfolgende Abbildung zeigt das Bedienfenster der Anwendung.

N°	Beschreibung	Zugeordnete Variable
1	Pumpenflussanzeige	Pump_Flow
2	Anzeige des gemessenen Pegels	Level
3	Darstellung des Pegels im Tank	Level
4	Ventil	Lim_Valve_Closure
5	Skalenanzeige	Desired_Level
6	Anzeige des gewünschten Pegels	Desired_Level
7	Taste zum Ableiten des Tanks	Drain
8	LED zur Signalisierung "Tank bereit"	Tank_Ready
9	LED für niedrigen Pegelstand im Tank	Tank_Low_Level
10	LED für hohen Pegelstand im Tank	Tank_High_Level
11	Stopp-Taste	Stop
12	Start-Taste	Run

Die zugehörigen Variablen werden in der nachfolgenden Tabelle beschrieben.

HINWEIS: Um die Objekte im Online-Modus zu animieren, müssen Sie auf die Schaltfläche *M* klicken. Indem Sie auf diese Schaltfläche klicken, können Sie die Schreibvorgänge validieren.

Verfahren zum Erstellen eines Bedienerfensters

Die folgende Tabelle zeigt das Verfahren zum Einfügen und Animieren des Tanks.

Schritt	Aktion
1	Klicken Sie im Projekt-Browser mit der rechten Maustaste auf Bedienerfenster und klicken Sie dann auf Neues Fenster. Der Bedienerfenster-Editor wird geöffnet.
2	 Wählen Sie im Menü Tools die Option Bedienerfensterbibliothek aus. Das Fenster wird geöffnet. Doppelklicken Sie auf Flüssigkeiten und dann auf Tank. Wählen Sie den dynamischen Tank aus dem Bedienerfenster aus und kopieren Sie ihn mittels Kopieren (Strg + C) und Einfügen (Strg + V) in die Zeichnung im Bedienerfenster-Editor. (Um zu Ihrem Fenster zurückzukehren, klicken Sie auf das Menü Fenster und dann auf Fenster). Der Tank befindet sich jetzt im Bedienerfenster. Jetzt benötigen Sie eine Variable, um den Pegel zu animieren. Klicken Sie im Menü Tools auf Variablenfenster. Das Fenster wird links angezeigt, und in der Spalte Name befindet sich das Wort "%MW0". Um den animierten Teil des graphischen Objekts (hier der Tank) anzuzeigen, müssen Sie auf "%MW0" doppelklicken. Ein Teil des Tanks ist ausgewählt. Klicken Sie mit der rechten Maustaste auf diesen Teil und klicken Sie dann auf Merkmale. Wählen Sie die Registerkarte Animation aus und geben Sie die betroffene Variable ein, indem Sie auf die Schaltfläche (anstelle von "%MW0") klicken. Bei unserer Anwendung ist dies Tank_vol. Sie müssen die Mindest- und Maximalwerte des Tanks definieren. Klicken Sie auf der Registerkarte Animation sund geben Sie die Inserer Anwendung ist dies Tank_vol. Sie müssen die Mindest- und Maximalwerte des Tanks definieren. Klicken Sie auf der Registerkarte Animationstyp auf Balkendiagramm, anschließend auf die Schaltfläche und füllen Sie die Felder abhängig vom Tank aus. Bestätigen Sie mittels Anwenden und OK.
3	Klicken Sie auf 료, um nacheinander die anderen Leitungen auszuwählen, und führen Sie dasselbe Verfahren durch.

Die folgende Tabelle stellt das Verfahren zum Erstellen der Schaltfläche "Start" dar.

Schritt	Aktion	
1	Klicken Sie im Projekt-Browser mit der rechten Maustaste auf Bedienerfenster und klicken Sie	
	dann auf Neues Fenster.	
	Der Bedienerfenster-Editor wird geöffnet.	
2	Klicken Sie auf die Schaltfläche 🛄 und platzieren Sie die neue Schaltfläche im Bedienerfenster. Doppelklicken Sie auf die Schaltfläche und wählen Sie auf der Registerkarte Steuerung die	
	Ausführungsvariable aus, indem Sie auf die Schaltfläche klicken und mit "OK" bestätigen. Geben Sie nun im Textbereich den Schaltflächennamen ein.	

HINWEIS: Aktivieren Sie unter Instanzauswahl das Kontrollkästchen "IODDT" und klicken Sie auf 🗉, um auf die Liste der E/A-Objekte zuzugreifen.

Kapitel 19 Starten der Anwendung

Inhalt des Kapitels

In diesem Kapitel wird das Verfahren zum Starten der Anwendung beschrieben. Es stellt die verschiedenen Ausführungstypen der Anwendung vor.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Ausführung der Anwendung im Simulationsmodus	338
Ausführung der Anwendung im Standardmodus	339

Ausführung der Anwendung im Simulationsmodus

Einführung

Sie können eine Verbindung mit dem API-Simulator herstellen, mit dessen Hilfe Sie eine Anwendung ohne Verbindung mit der SPS und anderen Geräten testen können.

HINWEIS: Weitere Informationen finden Sie unter EcoStruxure™ Control Expert, PLC Simulator

Ausführung der Anwendung

Die folgende Tabelle zeigt das Verfahren zum Starten der Anwendung im Simulationsmodus:

Schritt	Aktion
1	Klicken Sie im Menü SPS auf Simulationsmodus.
2	Klicken Sie im Menü Generierung auf Gesamtes Projekt generieren. Ihr Projekt wird generiert und ist für die Übertragung an den Simulator bereit. Beim Generieren des Projekts wird ein Ergebnisfenster angezeigt. Bei einem Fehler im Programm zeigt Control Expert die Position des Fehlers an, wenn Sie auf den unterstrichenen Satz doppelklicken.
3	Klicken Sie im Menü SPS auf Verbindung. Sie sind jetzt mit dem Simulator verbunden.
4	Klicken Sie im Menü SPS auf Projekt an SPS übertragen. Das Fenster Projekt an SPS übertragen wird geöffnet. Klicken Sie auf Übertragen. Die Anwendung wird zum SPS- Simulator übertragen.
5	Klicken Sie im Menü SPS auf Ausführen. Das Fenster Ausführen wird geöffnet. Klicken Sie auf OK. Die Anwendung wird jetzt (im RUN-Modus) auf dem SPS-Simulator ausgeführt.

Ausführung der Anwendung im Standardmodus

Einführung

Um im Standardmodus zu arbeiten, benötigen Sie eine SPS und analoge E/A-Module, um Ausgänge verschiedenen Sensoren und Aktoren zuzuordnen.

Die im Simulationsmodus verwendeten Variablen müssen angepasst werden. Im Standardmodus müssen sich Variablen an einer Stelle befinden, an der sie physischen E/A zugeordnet werden können.

HINWEIS: Weitere Informationen zur Adressierung finden Sie im Kapitel Dateninstanzen.

Eingangsverdrahtung

Der Sensor wird wie folgt verbunden.

Die Zuordnung der 20-Pin-Klemmenleiste sieht wie folgt aus.

Ausgangsverdrahtung

Die Zuordnung der 20-Pin-Klemmenleiste sieht wie folgt aus.

Hardwarekonfiguration der Anwendung

Die folgende Tabelle zeigt das Verfahren zum Konfigurieren der Anwendung.

Schritt	Aktion	
1	Doppelklicken Sie im Projekt-Browser auf "Konfiguration", dann auf 0:X-Bus und auf 0:BMX XBP ••• (wobei 0 die Racknummer ist).	
2	Wählen Sie im Fenster X-Bus einen Steckplatz (z. B. 3) und doppelklicken Sie darauf.	
3	Fügen Sie ein analoges Eingangsmodul ein, beispielsweise BMX AMI 0410. Das Modul wird auf dem SPS-Bus angezeigt. Doppelklicken Sie darauf.	
4	Im Fenster 0.1 : BMX 0410 ist es möglich, den Bereich und die Skala der verwendeten Kanäle zu konfigurieren. Konfigurieren Sie für diese Anwendung den Kanal 0 für den Bereich 010V.	
5	Klicken Sie in die Skalenzone von Kanal 0. Ein Fenster wird geöffnet. Definieren Sie die verschiedenen Werte, wie in der Abbildung unten dargestellt:	
	4 potentialgetrennte analoge Hochgeschwindigkeits-U/l-Eingänge BMX AMI0410 BMX AMI0410 Kanal 0 Kanal 1 Kanal 2 Kanal 3 Task: MAST Zyklus Normal Skalarnuter Kanal 0 Vervendet Symbol Messbereich Skala Filter 1 Vervendet Symbol Messbereich Skala Vervendet Symbol Messbereich Skala Vervendet Symbol Messbereich Skala Vervendet Symbol Messbereich Skalar Vervendet Symbol Messbereich Skalar Vervendet Symbol Messbereich Skalar Vervendet Symbol Messbereich Skalar Vervendet Symbol Messbereich Skalar	

Zuweisung der Variablen zum Eingangsmodul

Die folgende Tabelle zeigt das Verfahren für die direkte Adressierung der Variablen.

Schritt	Aktion
1	Doppelklicken Sie im Projekt-Browser und unter Variablen und FB-Instanzen auf Elementare Variablen.
2	Wählen Sie im Fenster Dateneditor das Feld in der Spalte Name und geben Sie einen Namen für die erste Variable ein (z. B. Sensor_value). Wählen Sie für diese Variable einen INT-Typ.
3	Geben Sie in der Spalte "Adresse" die Adresse des analogen Wertes ein, die der Variablen zugeordnet ist. Ordnen Sie in diesem Beispiel die Sensor_value-Variable mit konfiguriertem analogem Eingangskanal zu, indem Sie die Adresse "%IW0.1.0" eingeben. Abbildung:

HINWEIS: Wiederholen Sie diesen Vorgang zum Deklarieren und Konfigurieren des analogen Ausgangsmoduls BMX AMO 0210.

Konvertieren von E/A-Werten

Bei dieser Anwendung sind die Werte für Pegel und Pumpe vom Typ REAL, und die analogen Module verwenden Ganzzahlen. Deshalb müssen Integer/Real-Konvertierungen in einer MAST-Task angewendet werden.

Das nachfolgende Fenster zeit die Section für die E/A-Konvertierung, die mithilfe des Library-Funktionsbausteins in DFB geschrieben wurde.

Ausführung der Anwendung

Die folgende Tabelle zeigt das Verfahren zum Starten der Anwendung im Standardmodus.

Schritt	Aktion
1	Klicken Sie im Menü SPS auf Standardmodus.
2	Klicken Sie im Menü Generierung auf Gesamtes Projekt generieren. Ihr Projekt wird generiert und ist für die Übertragung an die SPS bereit. Beim Generieren des Projekts wird ein Ergebnisfenster angezeigt. Bei einem Fehler im Programm zeigt Control Expert die Position des Fehlers an, indem Sie auf den unterstrichenen Satz klicken.
3	Klicken Sie im Menü SPS auf Verbindung. Sie sind jetzt mit der SPS verbunden.
4	Klicken Sie im Menü SPS auf Projekt an SPS übertragen. Das Fenster Projekt an SPS übertragen wird geöffnet. Klicken Sie auf Übertragen. Die Anwendung wird zur SPS übertragen.
5	Klicken Sie im Menü SPS auf Ausführen. Das Fenster Ausführen wird geöffnet. Klicken Sie auf OK. Die Anwendung wird jetzt (im RUN-Modus) auf der SPS ausgeführt.

Kapitel 20 Aktionen und Transitionen

Inhalt des Kapitels

Dieses Kapitel enthält die Aktionen und Transitionen, die im Grafcet verwendet werden (siehe Abbildung der Section Tank_management, Seite 325)

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Transitionen	346
Aktionen	348

Transitionen

Auf einen Blick

Die nächsten Tasks werden in verschiedenen Transitionen des Grafcet verwendet.

Transition Filling_Start

Die Aktion, die der Transition Filling_Start zugeordnet ist, sieht wie folgt aus:

Transition With_Default

Die Aktion, die der Transition With_Default zugeordnet ist, sieht wie folgt aus:

Transition Reached_Level

Die Aktion, die der Transition Reached_Level zugeordnet ist, sieht wie folgt aus:

Transition Filling_In_Progress

Die Aktion, die der Transition Filling_In_Progress zugeordnet ist, sieht wie folgt aus:

Kommentar: Reduktion der Durchsatzrate der Pumpe.

Transition Empty_Tank

Die Aktion, die der Transition Empty_Tank zugeordnet ist, sieht wie folgt aus:

Aktionen

Auf einen Blick

Die nächsten Tasks in LD werden bei verschiedenen Schritten des Grafcet verwendet.

Anfangsschritt

Die Aktion, die dem Schritt Initial zugeordnet ist, sieht wie folgt aus:

Kommentar: Simulationsmodus: Reinitialisierung der Flüssigkeitsmenge. Durch diese Aktion werden Ungenauigkeiten bei der Berechnung der Flüssigkeitsmenge ausgeglichen.	
Kommentar:	
Durch diese Aktion wird die Variable	
Desired_Menu ∨or Beginn des	
Füllvorgangs getestet.	
Stop Run Lim_Valve_Closure ank_	High_LevelCOMPAREInitial_Condition

Init_Pump step

Die Aktion, die dem Schritt Init_Pump zugeordnet ist, sieht wie folgt aus:

Kommentar: Starten	Kommentar: Initialisierung
der Pumpe	der Stufenvariable
OPERATE Pump_Flow:=Init_Flow;	OPERATE

End_Alarm step

Die Aktion, die dem Schritt End_Alarm zugeordnet ist, sieht wie folgt aus:

Schritt Pump_Flow_Reduction

Die Aktion, die dem Schritt Pump_Flow_Reduction zugeordnet ist, sieht wie folgt aus:

Anhang

Übersicht

Diese Anhänge enthalten Informationen, die für die Programmierung der Anwendung nützlich sein sollten.

Inhalt dieses Anhangs

Dieser Anhang enthält die folgenden Kapitel:

Kapitel	KapiteIname	Seite
А	Merkmale der RTD- und Thermoelementbereiche des BMX ART 0414/0814	353
В	Topologische/Signalspeicher-Adressierung von Modulen	365

Anhang A Merkmale der RTD- und Thermoelementbereiche des BMX ART 0414/0814

Inhalt dieses Abschnitts

In diesem Abschnitt werden die Merkmale der RTD- und Thermoelementbereiche der BMX ART 0414/0814-Analogmodule erläutert.

Inhalt dieses Kapitels

Dieses Kapitel enthält die folgenden Themen:

Thema	Seite
Eigenschaften der RTD-Bereiche für die Module BMX ART 0414/0814	354
Eigenschaften der BMX ART 0414/814 Thermoelementbereiche in Grad Celsius	356
Eigenschaften der BMX ART 0414/0814-Thermoelementbereiche in Grad Fahrenheit	360

Eigenschaften der RTD-Bereiche für die Module BMX ART 0414/0814

Auf einen Blick

In der folgenden Tabelle wird die maximale Fehlergrenze bei 25 °C der Pt100-, Pt1000- und Ni1000-RTD-Bereiche dargestellt:

Temperatur		Pt100 RTD	Pt1000 RTD	Ni1000 RTD			
Anzeigeauflösung		0,1 °C	0,1 °C	0,1 °C			
Max.	Abweichung bei 25 °C (1)						
	-100 °C	0,8 °C	1,6 °C	0,4 °C			
	0°C	0,8 °C	1,6 °C	0,5 °C			
	100 °C	0,8 °C	1,6 °C	0,7 °C			
ъ	200 °C	1,0 °C	2 °C	0,6 °C			
nds	300 °C	1,2 °C	2,4 °C				
rieb	400 °C	1,3 °C	2,8 °C				
Bet	500 °C	1,5 °C	3,3 °C				
	600 °C	1,7 °C	3,6 °C				
	700 °C	1,9 °C	4,1 °C				
	800 °C	2,1 °C	4,5 °C				
Eingangsdynamik		-175 - 825 °C -283 - 1.517 °F	-175 - 825 °C -283 - 1.517 °F	-54 - 174 °C -66 - 346 °F			
Legende:							
(1) Umgebungstemperatur							

HINWEIS: Die Genauigkeiten gelten für eine 3/4-drahtige Verbindung und enthalten die Fehler und eine Abweichung der aktuellen Quelle mit 1,13 mA (Pt100) oder 0,24 mA (Pt1000 oder Ni1000). Die Selbsterhitzung hat keine signifikanten Fehler bei der Messung zur Folge, gleich ob sich die Sonde in der Luft oder unter Wasser befindet.

Temperatur		Pt100 RTD	Pt1000 RTD	Ni1000 RTD			
Anzeigeauflösung		0,1 °C	0,1 °C	0,1 °C			
Max. Abweichung von 0 bis 60 °C							
	-100 °C	1 °C	2 °C	0,8			
	0°C	1 °C	2 °C	0,9 °C			
	100 °C	1 °C	2 °C	1,1 °C			
뵻	200 °C	1,2 °C	2,4 °C	1,3 °C			
nds	300 °C	1,5 °C	3 °C				
trieb	400 °C	1,8 °C	3,6 °C				
Bel	500 °C	2 °C	4 °C				
	600 °C	2,3 °C	4,6 °C				
	700 °C	2,5 °C	5 °C				
	800 °C	2,8 °C	5,6 °C				
Eingangsdynamik		-175 - 825 °C -283 - 1.517 °F	-175 - 825 °C -283 - 1.517 °F	-54 - ′174 °C -66 - 346 °F			

In der folgenden Tabelle wird die maximale Fehlergrenze zwischen 0 und 65 °C der Pt100-, Pt1000- und Ni1000-RTD-Bereiche dargestellt.

HINWEIS: Die Genauigkeiten gelten für eine 4-drahtige Verbindung und enthalten die Fehler und eine Abweichung der aktuellen Quelle mit 1,13 mA (Pt100) oder 0,24 mA (Pt1000 oder Ni1000). Die Selbsterhitzung hat keine signifikanten Fehler bei der Messung zur Folge, gleich ob sich die Sonde in der Luft oder unter Wasser befindet.

Ein Fehler bei einer bestimmten Temperatur T kann durch die lineare Extrapolation bei den bei 25 und 60 °C definierten Fehlern abgeleitet werden, und zwar gemäß der folgenden Formel:

 $\varepsilon_T = \varepsilon_{25} + |T - 25| \times [\varepsilon_{60} - \varepsilon_{25}]/35$

Referenznormen:

- Pt100/Pt1000 RTD: NF C 42-330, Juni 1983 und IEC 751, zweite Ausgabe 1986.
- Ni1000 RTD: DIN 43760, September 1987.

Eigenschaften der BMX ART 0414/814 Thermoelementbereiche in Grad Celsius

Einführung

Die folgende Tabelle zeigt die Messgerätefehler für die verschiedenen Thermoelemente B, E, J, K, N, R, S und T **in Grad Celsius**.

- Die unten angegebenen Pr\u00e4zisionswerte sind g\u00fcltig unabh\u00e4ngig vom Typ der Kaltl\u00f6tstellenkompensation : TELEFAST oder Pt100 Klasse A.
- Die in der Präzisionsberechnung angenommene Kaltlötstellentemperatur beträgt 25 °C.
- Die Auflösung wird mit einem mittleren Betriebspunkt angegeben.
- Die Präzisionwerte beinhalten:
 - Elektrische Fehler am Erfassungssystem f
 ür Eingangskan
 äle und Kaltl
 ötstellenkompensation, Softwarefehler und Austauschbarkeitsfehler an den Sensoren der Kaltl
 ötstellenkompensation.
 - O Fehler der Thermoelementsensoren werden nicht berücksichtigt.

Thermoelemente B, E, J und K

Die Tabelle unten zeigt die maximalen Fehlerwerte für die Thermoelemente B, E, J und K bei 25 $^\circ\text{C}.$

Temperatur		Thermoelement B		Thermoelement E		Thermoelement J		Thermoelement K		
Max	k. Abweichung bei 25 °C (1)	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100	
	-200 °C			3,7 °C	2,5 °C			3,7 °C	2,5 °C	
	-100 °C			2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	
	0°C			2,5 °C	2,3 °C	2,5 °C	2,3 °C	2,5 °C	2,3 °C	
	100 °C			2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	
	200 °C	3,5 °C	3,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,5 °C	
	300 °C	3,2 °C	3,0 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,6 °C	2,4 °C	
	400 °C	3,0 °C	2,8 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	
	500 °C	3,0 °C	2,8 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	
	600 °C	3,0 °C	2,8 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	
	700 °C	3,0 °C	2,8 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,9 °C	2,7 °C	
	800 °C	3,0 °C	2,8 °C	2,9 °C	2,7 °C			2,9 °C	2,7 °C	
	900 °C	3,0 °C	2,8 °C	2,9 °C	2,7 °C			3,0 °C	2,8 °C	
	1.000 °C	3,0 °C	2,8 °C					3,0 °C	2,8 °C	
	1.100 °C	3,0 °C	2,8 °C					3,1 °C	2,9 °C	
	1.200 °C	3,0 °C	2,8 °C					3,2 °C	3,0 °C	
	1.300 °C	3,0 °C	2,8 °C					3,3 °C	3,1 °C	
	1.400 °C	3,1 °C	2,9°C							
ъ	1.500 °C	3,1 °C	2,9 °C							
nds	1.600 °C	3,1 °C	2,9 °C							
trieb	1.700 °C	3,2 °C	3,0 °C							
Bel	1.800 °C	3,3 °C	3,1 °C							
Eingangsdynamik		1710 bis	17.790 °C -2.400		-2.400 bis 9.700 °C		-7.770 bis 7.370 °C		-23.100 bis 13,310 °C	
Leg	Legende:									

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch Pt100 3-drahtig.

Refernznormen: IEC 584-1, erste Ausgabe, 1977 und IEC 584-2, zweite Ausgabe, 1989.

Thermoelemente L, N, R und S

Die Tabelle unten zeigt die maximalen Fehlerwerte für die Thermoelemente L, N, R und S bei 25 °C.

Temperatur		Thermoelement L		Thermoelement N		Thermoelement R		Thermoelement S	
Max	. Abweichung bei 25 °C (1)	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100
	-200 °C			3,7 °C	2,5 °C				
	-100 °C			2,6 °C	2,4 °C				
	0°C	2,5 °C	2,3 °C	2,5 °C	2,3 °C	2,5 °C	2,3 °C	2,5 °C	2,3 °C
	100 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C
	200 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C
	300 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C
	400 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C
	500 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C
	600 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,7 °C	2,5 °C
	700 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C
	800 °C	2,9 °C	2,7 °C	2,9 °C	2,7 °C	2,8 °C	2,6 °C	2,8 °C	2,6 °C
	900 °C	2,9 °C	2,7 °C	2,9 °C	2,7 °C	2,9 °C	2,7 °C	2,9 °C	2,7 °C
	1.000 °C			3,0 °C	2,8 °C	2,9 °C	2,7 °C	2,9 °C	2,7 °C
	1.100 °C			3,0 °C	2,8 °C	2,9 °C	2,7 °C	3,0 °C	2,8 °C
	1.200 °C			3,1 °C	2,9 °C	3,0 °C	2,8 °C	3,0 °C	2,8 °C
	1.300 °C					3,0 °C	2,8 °C	3,1 °C	2,9 °C
nkt	1.400 °C					3,1 °C	2,9 °C	3,1 °C	2,9 °C
spur	1.500 °C					3,1 °C	2,9 °C	3,2 °C	3,0 °C
rieb	1.600 °C					3,2 °C	3,0 °C	3,2 °C	3,0 °C
Bel	1.700 °C					3,2 °C	3,0 °C	3,2 °C	3,0 °C
Eingangsdynamik		-1.740 bi °C	s 8.740	-2.320 bis 12.620 °C		-90 bis 16.240 °C		-90 bis 16.240 °C	

Legende:

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch Pt100 3-drahtig.

Referenznormen:

- Thermoelement L: DIN 43710, Dezember 1985 Ausgabe.
- Thermoelement N: IEC 584-1, zweite Ausgabe, 1989 und IEC 584-2, zweite Ausgabe, 1989.
- Thermoelement R: IEC 584-1, erste Ausgabe, 1977 und IEC 584-2, zweite Ausgabe, 1989.
- Thermoelement S: IEC 584-1, erste Ausgabe, 1977 und IEC 584-2, zweite Ausgabe, 1989.

Thermoelemente T und U

Die Tabelle unten zeigt die maximalen Fehlerwerte für die Thermoelemente T und U bei 25 °C.

Temperatur		Thermoelement T	•	Thermoelement U		
Max. Abweichung bei 25 °C (1)		TFAST	Pt100	TFAST	Pt100	
	-200 °C	3,7 °C	2,5 °C			
	-100 °C	3,6 °C	2,4 °C			
	0°C	3,5 °C	2,3 °C	2,5 °C	2,3 °C	
	100 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	
	200 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	
봊	300 °C	2,6 °C	2,4 °C	2,6 °C	2,4 °C	
Inds	400 °C	2,7 °C	2,5 °C	2,7 °C	2,5 °C	
rieb	500 °C			2,7 °C	2,5 °C	
Bet	600 °C			2,7 °C	2,5 °C	
Eingangsdynamik		-2.540 bis 3.840 °C		-1.810 bis 5.810°C		
Leae	Legende:					

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch Pt100 3-drahtig.

Referenznormen:

- Thermoelement U: DIN 43710, Dezember 1985 Ausgabe.
- Thermoelement T: IEC 584-1, erste Ausgabe, 1977 und IEC 584-2, zweite Ausgabe, 1989.

Eigenschaften der BMX ART 0414/0814-Thermoelementbereiche in Grad Fahrenheit

Einführung

Die folgenden Tabellen zeigen die Abweichungen der Messkette der verschiedenen Thermoelemente B, E, J, K, N, R, S und T **in Grad Fahrenheit**.

- Die unten angegebenen Genauigkeiten sind für alle Arten der Vergleichsstellenkompensation gültig: TELEFAST oder Pt100 Klasse A.
- Die bei der Berechnung der Genauigkeit betrachtete Temperatur der Vergleichsstelle des Thermoelements beträgt 77°F.
- Die Auflösung ist mit einem Betriebspunkt in der Mitte des Messbereichs angegeben.
- Die Genauigkeiten berücksichtigen:
 - o die elektrischen Abweichungen an der Erfassungskette der Eingangskanäle und der Kanäle für Vergleichsstellenkompensation, die Softwareabweichungen, die Austauschbarkeitsabweichungen an den Vergleichsstellenkompensations-Gebern.
 - o Die Abweichung des Thermoelementgebers wird nicht berücksichtigt.
Thermoelement B, E, J und K

Die unten stehende Tabelle zeigt die maximalen Fehlerwerte mit einer Genauigkeit für die Thermoelemente B, E, J und K bei 77°F:

Temperatur		Thermoelement B		Thermoelement E		Thermoelement J		Thermoelement K	
Max. Fehler bei 77°F (1)		TFAST	Pt100	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100
	-300 °F			6,7 °F	4,5 °F			6,7 °F	4,5 °F
	-100 °F			4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	0 °F			4,5 °F	4,1 °F	4,5 °F	4,1 °F	4,5 °F	4,1 °F
	200 °F			4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	400 °F	6,3 °F	6,1 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	600 °F	5,8 °F	5,4 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F
	700 °F	5,4 °F	5,0 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F
	900 °F	5,4 °F	5,0 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F
	1.100 °F	5,4 °F	5,0 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F
	1.300 °F	5,4 °F	5,0 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,2 °F	4,9 °F
	1.500 °F	5,4 °F	5,0 °F	5,2 °F	4,9 °F			5,2 °F	4,9 °F
	1.700 °F	5,4 °F	5,0 °F	5,2 °F	4,9 °F			5,4 °F	5,0 °F
	1.800 °F	5,4 °F	5,0 °F					5,4 °F	5,0 °F
	2.000 °F	5,4 °F	5,0 °F					5,4 °F	5,0 °F
	2.200 °F	5,4 °F	5,0 °F					5,4 °F	5,0 °F
	2.400 °F	5,4 °F	5,0 °F					5,4 °F	5,0 °F
	2.600 °F	5,6 °F	5,2 °C						
볼	2.700 °F	5,6 °F	5,2 °C						
nds	2.900 °F	5,6 °F	5,2 °C						
rieb	3.100 °F	5,8 °F	5,4 °F						
Bet	3.200 °F	6,0 °F	5,6 °F						
Ein	Eingangsdynamik 3.390 - 32-000 °F		-3.990 - 1	17.770 °F	-2.870 - 1	13.950 °F	-3.830 - 2	4.270 °F	
Legende:									

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch PT 100, 3-adrig.

Thermoelement L, N, R und S

Die unten stehende Tabelle zeigt die maximalen Fehlerwerte mit einer Genauigkeit für die Thermoelemente L, N, R und S bei 77°F.

Temperatur		Thermoel	ement L	Thermoelement N Thermoelement R		ement R	Thermoelement S		
Max. Fehler bei 77°F (1)		TFAST	Pt100	TFAST	Pt100	TFAST	Pt100	TFAST	Pt100
	-300 °F			6,7 °F	4,5 °F				
	-100 °F			4,7 °F	4,3 °F				
	0 °F	4,5 °F	4,1 °F	4,5 °F	4,1 °F	4,5 °F	4,1 °F	4,5 °F	4,1 °F
	200 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	400 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	600 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	700 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F
	900 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F
	1.100 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	4,9 °F	4,5 °F
	1.300 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F	5,0 °F	4,7 °F
	1.500 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F
	1.700 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F	5,2 °F	4,9 °F
	1.800 °F					5,2 °F	4,9 °F	5,2 °F	4,9 °F
	2.000 °F					5,2 °F	4,9 °F	5,4 °F	5,0 °F
	2.200 °F					5,4 °F	5,0 °F	5,4 °F	5,0 °F
	2.400 °F					5,4 °F	5,0 °F	5,6 °F	5,2 °F
其	2.600 °F					5,6 °F	5,2 °F	5,6 °F	5,2 °F
Inds	2.700 °F					5,6 °F	5,2 °F	5,8 °F	5,4 °F
trieb	2.900 °F					5,8 °F	5,4 °F	5,8 °F	5,4 °F
Bel	3.000 °F					5,8 °F	5,4 °F	5,8 °F	5,4 °F
Eingangsdynamik (2)		-2.800 - 1	6.040 °F	-3.860 - 2	3.040 °F	-160 - 29.	950 °F	-160 - 29.	950 °F

Legende:

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch PT 100, 3-adrig.

(2) Interne Kompensation: Umgebungstemperatur = 68 °F. Externe Kompensation: Umgebungstemperatur = 86 °F.

Thermoelement T und U

Die unten stehende Tabelle zeigt die maximalen Fehlerwerte mit einer Genauigkeit für die Thermoelemente T und U bei 77° F.

Temperatur		Thermoelement T		Thermoelement U	
Max. Fehler bei 77 °F (1)		TFAST	Pt100	TFAST	Pt100
	-300 °F	6,7 °F	4,5 °F		
	-100 °F	6,5 °F	4,3 °F		
	0 °F	6,3 °F	4,1 °F	4,5 °F	4,1 °F
	200 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
	400 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
拷	600 °F	4,7 °F	4,3 °F	4,7 °F	4,3 °F
Inds	700 °F	4,9 °F	4,5 °F	4,9 °F	4,5 °F
rieb	900 °F			4,9 °F	4,5 °F
Bel	1.100 °F			4,9 °F	4,5 °F
Eingangsdynamik (2)		-4.250 - 7.230°F		-2.930 - 10.770 °F	
Legende:					

(1) TFAST: Interne Kompensation durch TELEFAST.

PT100: Externe Kompensation durch PT 100, 3-adrig.

Anhang B Topologische/Signalspeicher-Adressierung von Modulen

Topologische/Signalspeicher-Adressierung der Modicon X80-Analogmodule

Analogmodule

HINWEIS: Mit M340-Steuerungen, die mit einer Firmware ab Version 2.4 ausgestattet sind, können Sie über eine topologische oder eine Signalspeicher-Adressierung auf die Module zugreifen. Siehe auch *Registerkarte "Speicher" (siehe EcoStruxure™ Control Expert, Betriebsarten).*

Die folgende Tabelle enthält die Modicon X80-Analogmodulobjekte, die topologischen oder Signalspeicher-Adressen zugeordnet werden können.

Modulreferenz	Topologische Adresse	Signalspeicher-Adresse
BME AHI 0812	%IW Rack.Steckplatz.Kanal, Kanal [0,7]	-%IWStartadresse %IWStartadresse + 7
BME AHO 0412	%QW Rack.Steckplatz.Kanal, Kanal [0,3]	-%MWStartadresse %MWStartadresse + 3
BMX AMI 0410	%IW Rack.Steckplatz.Kanal, Kanal [0,3]	-%IWStartadresse %IWStartadresse + 3
BMX AMI 0800	%IW Rack.Steckplatz.Kanal, Kanal [0,7]	-%IWStartadresse %IWStartadresse + 7
BMX AMI 0810	%IW Rack.Steckplatz.Kanal, Kanal [0,7]	-%IWStartadresse %IWStartadresse + 7
BMX AMM 0600	%IW Rack.Steckplatz.Kanal, Kanal [0,3] %QW Rack.Steckplatz.Kanal, Kanal [4,5]	-%IWStartadresse %IWStartadresse + 3 und -%MWStartadresse %MWStartadresse + 1
BMX AMO 0210	%QW Rack.Steckplatz.Kanal, Kanal [0,1]	-%MWStartadresse %MWStartadresse + 1
BMX AMO 0410	%QW Rack.Steckplatz.Kanal, Kanal [0,3]	-%MWStartadresse %MWStartadresse + 3

HINWEIS: Für BMEAH-0-12-Module ist der Signalspeicher nicht verfügbar.

Modulreferenz	Topologische Adresse	Signalspeicher-Adresse
BMX AMO 0802	%QW Rack.Steckplatz.Kanal, Kanal [0,7]	-%MWStartadresse %MWStartadresse + 7
BMX ART 0414	%IW Rack.Steckplatz.Kanal, Kanal [0,3]	-Wert: -%IWStartadresse %IWStartadresse + 3 -Vergleichsstellenkompensation: -%IWStartadresse +4
BMX ART 0814	%IW Rack.Steckplatz.Kanal, Kanal [0,7]	-%IWStartadresse %IWStartadresse + 7 -Vergleichsstellenkompensation, Kanal 0-3: %IWStartadresse + 8 -Vergleichsstellenkompensation, Kanal 4-7: %IWStartadresse + 9

Weitere Informationen finden Sie unter *Spezielle Konvertierung für Compact-E/A-Module* (siehe EcoStruxureTM Control Expert, Concept-Anwendungskonverter, Benutzerhandbuch).

Index

0-9

20-polige Anschlussblöcke Installation, *38*28-polige Klemmenleisten Installieren, *42*

Α

ABE-7CPA410, ABE7CPA02, *96*, *122*, ABE7CPA03, ABE7CPA21, *168*, ABE7CPA31, *96*, ABE7CPA31E, *96*, ABE7CPA412, Abfragezyklen Analogeingänge, Analoge X80-E/A Signalspeicher-/Topologische Adressierung, *365* Anschluss,

В

BMWFTB2020. 22 BMXAMI0410, 59 BMXAMI0800. 81 BMXAMI0810, 107 BMXAMM0600, 203 BMXAMO0210, 155 BMXAMO0410, 171 BMXAMO0802, 187 BMXART0414, 129 BMXART0814, 129 BMXFCA150, 77, 169, 185 BMXFCA152. 152 BMXFCA300, 77, 169, 185 BMXFCA302, 152 BMXFCA500, 77, 169, 185 BMXFCA502, 152

BMXFCW301S. 34 BMXFCW501S. 34 BMXFTA150, 97, 123 BMXFTA152. 201 BMXFTA300. 97. 123 BMXFTA302, 201 BMXFTA502, 201 BMXFTB2000. 22 BMXFTB2010, 22 BMXFTB2800. 25 BMXFTB2820, 25 BMXFTW301S , 28 BMXFTW308S . 31 BMXFTW501S . 28 BMXFTW508S . 31 BMXXSP0400. 48 BMXXSP0600. 48 BMXXSP0800, 48 BMXXSP1200, 48

С

Codierrad, 43

D

Debugging von Analogausgängen, Debugging von Analogeingängen, Diagnose für Analogausgänge, Diagnose für Analogeingänge,

Ε

Erdungszubehör, BMXXSP0400, BMXXSP0600, BMXXSP0800, BMXXSP1200, STBXSP3010, STBXSP3020,

F

Fehlermodus für Analogausgänge, *163, 179, 195, 217*Filtern von Analogeingängen BMX AMI 0810, *116*Filterung der Analogeingänge BMXAMM0600, *214*Filterung, analoge Eingänge BMXART0814, *141*Filterung, analoger Eingang BMXAMI0410, *69* BMXAMI0800, *90*Forcieren Analoge X80-E/A, *270*Führungsrad, *43*

IODDTs, 249

K

Kanaldatenstruktur für alle Module T_GEN_MOD, Kanaldatenstruktur für analoge Module T_ANA_IN_BMX, T_ANA_IN_T_BMX, T_ANA_OUT_GEN, Kanaldatenstruktur für Analogeingänge T_ANA_IN_GEN, Kanaldatenstruktur für Analogmodule T_ANA_OUT_BMX, Klemmenleisten, Codierung, Konfigurieren der Analogmodule, *229, 229* Kurzanleitung, Aktionen und Transitionen,

Μ

Messwerte, *292* MOD_FLT, *269*

Ν

Normen, 53

P Programmierung, 292

R

RTD-Bereiche BMXART0814, 354

S

Sensorausrichtung BMX AMI 0810, 117 BMXAMI0410, 70 BMXAMI0800, 91 BMXAMM0600, 215 BMXRT0814, 143 Signalspeicher-/Topologische Adressierung Analoge X80-E/A, 365 Software-Implementierung Betrieb der Module, 285 Sprachobjekte, 249 STBXMP7800, 43 STBXSP3010. 48 STBXSP3020, 48 Steckverbinder vom Typ FCN Installation, 46 Stellgliedausrichtung BMXAMM0600, 219 BMXAMO0210, 164 BMXAMO0410, 180 BMXAMO0802, 196

Т

T_ANA_IN_BMX, T_ANA_IN_GEN, T_ANA_IN_T_BMX, T_ANA_OUT_BMX, T_ANA_OUT_GEN, T_GEN_MOD, T_M_ANA_STD_CH_IN_PRM, 266 T M ANA STD CH IN STS, 266 T_M_ANA_STD_CH_OUT_PRM, 266 T M ANA STD CH OUT STS, 266 T M ANA STD CH STS, 266 T_M_ANA_TEMP_CH_STS, 266 T_U_ANA_STD_IN_4, 262 T U ANA STD IN 4 OUT 2, 262 T_U_ANA_STD_IN_8, 262 T U ANA STD OUT 2, 262 T U ANA STD OUT 4, 262 T U ANA STD OUT 8. 262 T U ANA TEMP IN 4, 262 T U ANA TEMP IN 8, 262 Taktung BMX AMI 0810, 113 BMXAMI0410, 66 BMXAMI0800. 87 TELEFAST Verbinden mit dem Modul BMXAMI0410, 76 Verbinden mit dem Modul BMXAMI0800, 96 Verbinden mit dem Modul BMXAMI0810, 122 Verbinden mit dem Modul BMX-AMO0210. 168 Verbinden mit dem Modul BMX-AMO0410. 184 Verbinden mit dem Modul BMX-AMO0802, 200 Verbinden mit dem Modul BMXART0414, 151 Verbinden mit dem Modul BMXART0814, 151 Thermoelementbereiche BMXART0814, 356

U

Überlaufüberwachung BMX AMI 0810, BMXAMI0410, BMXAMI0800, BMXAMM0600, *212, 216* BMXAM00210, BMXAM00410, BMXAM00802, Unterlaufüberwachung BMX AMI 0810, BMXAMI0410, BMXAMI0800, BMXAMI0600,

V

Vergleichsstellenkompensation, 247 BMXART0814, 150 Vorsichtsmaßnahmen bei der Verdrahtung BMXAMI0410, 71 BMXAMI0800, 92 BMXAMI0810, 118 BMXAM0600, 220 BMXAM00210, 165 BMXAM00210, 165 BMXAM00410, 181 BMXAM00802, 197 BMXART0814, 144

Х

X80-Analogmodule, 20

Ζ

Zeitverhalten BMXAMM0600, *212* Zertifizierungen, *53*