Contents

Identifying Masterpact 2
Rating plate 2

Discovering Masterpact 4
Components 4

Using Masterpact 8
Understanding the controls and indications 8
Charging the circuit breaker 9
Closing the circuit breaker 10
Opening the circuit breaker 11
Resetting after a fault trip 12
Locking the controls 13

Using the Masterpact drawout chassis 16
Identifying the circuit breaker positions 16
Racking 17
Matching a Masterpact circuit breaker with its chassis 19
Locking the switchboard door 20
Locking the circuit breaker in position 21
Locking the safety shutters 24

Identifying the electrical auxiliaries 26
Identification of the connection terminals 26
Electrical diagrams 27
Operation 29

Discovering Masterpact's accessories 30
Micrologic control units 30
Indication contacts 31
Auxiliaries for remote operation 33
Device mechanical accessories 35
Chassis mechanical accessories 37

Inspecting and testing before use 40
Initial tests 40
What to do when the circuit breaker trips 41

Maintaining Masterpact performance 42
Recommended maintenance program 42
Troubleshooting and solutions 43

Checking Masterpact operating conditions 45
Environmental conditions 45
The Masterpact NW range of circuit breakers and switch-disconnectors offer current ratings from 800 A to 6300 A. Five different performance levels are available:

- **N1**: standard with total discrimination
- **H1**: high performance with total discrimination
- **H2**: a compromise between current limiting and discrimination
- **H3**: high breaking capacity and discrimination, without current limiting
- **L1**: high level of current limiting, with some discrimination.

Rating plate

- **Icu kA at 415 V**:
 - L1: 1600 kA
 - H3: 1200 kA
 - H2: 1000 kA
 - H1: 800 kA
 - N1: 2000 kA
- **Ics = 100% Icu**:
 - 150 kA (L1)
 - 100 kA (H3)
 - 65 kA (H2)
 - 42 kA (H1)
- **Current ratings**:
 - 800 A to 6300 A
Masterpact circuit breakers are available in drawout and fixed versions. The drawout version is mounted on a chassis and the fixed version is installed using fixing brackets.

Drawout version

Fixed version
Discovering Masterpact

Components

Chassis

- Auxiliary terminal shield
- Carriage switch terminals
- Control auxiliary terminals
- Carriage switch terminals
- Control-unit contact terminals
- Arc-chute cover
- Carrying grip
- Disconnecting-contact cluster
- Safety shutters
- Shutter locking blocks
- Racking interlock
- Crank storage
- Shutter position indication and locking
- "Connected", "test" or "disconnected" position indicator
- Crank socket
- Position release button
- Locking by padlocks
- Locking by keylocks
- Door interlock
- Mismatch protection
- Drawout grip
Discovering Masterpact

Components

Front

- Trip indication button used to reset before closing
- Indicator for position of the main contacts
- Rating plate
- “Springs charged” and “Ready to close” indicator
- Locking by padlock or by 2 screws or lead-seal cover for pushbuttons
Using Masterpact

Understanding the controls and indications

Circuit breaker open and discharged

Circuit breaker closed and discharged

Circuit breaker open, charged and not "ready to close"

Circuit breaker closed, charged and not "ready to close"

Circuit breaker open, charged and "ready to close"
The charge status is indicated as follows.

The springs in the circuit breaker operating mechanism must be charged to store the energy required to close the main contacts. The springs may be charged manually using the charging handle or automatically using the optional MCH gear motor.

Manual charging:
Pull the handle down seven times until you hear a “clack”.

Automatic charging:
If the MCH gear motor is installed, the spring is automatically recharged after each closing.
Closing the circuit breaker

Closing conditions
Closing (i.e. turning the circuit ON) is possible only if the circuit breaker is "ready to close". The prerequisites are the following:
- device open (OFF)
- springs charged
- no opening order present.

If the circuit breaker is not "ready to close" when the order is given, stop the order and start again when the circuit breaker is "ready to close". An opening order always takes priority over a closing order.

Closing the circuit breaker
Locally (mechanical)
Press the mechanical ON pushbutton.

Locally (electrical)
Press the electrical closing pushbutton. Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation. The BPFE connects to the closing release (XF com) in place of the COM module. The COM module is incompatible with this option.

Remotely
By adding an XF closing release, the circuit breaker can be closed remotely. When connected to a remote control panel, the XF closing release (0.85 to 1.1 Un) can close the circuit breaker remotely.

Enabling or disabling the anti-pumping function
The purpose of the mechanical anti-pumping function is to ensure that a circuit breaker receiving simultaneous opening and closing orders does not open and close indefinitely. If there is a continuous closing order, after opening the circuit breaker remains open until the closing order is discontinued. A new closing order then closes the circuit breaker. This function can be disabled by wiring the closing release in series with the PF "ready to close" contact.
Opening the circuit breaker

 Locally
Press the OFF pushbutton.

Remotely
Use one of the following solutions:
- one or two MX opening releases (MX1 and MX2, 0.7 to 1.1 Un)
- one MN undervoltage release (0.35 to 0.7 Un)
- one MN undervoltage release (0.35 to 0.7 Un) with a delay unit (R or Rr).

When connected to a remote control panel, these releases can be used to open the circuit breaker remotely.
The circuit breaker signals a fault by:
- a mechanical indicator on the front panel
- one or two SDE "fault-trip" indication contacts (SDE2 is optional).

Locally
If the circuit breaker is not equipped with the automatic reset option, reset it manually.

Remotely
Use the Res electrical remote reset option (not compatible with an SDE2).
Locking the controls
Disabling circuit-breaker
local closing and opening

Pushbutton locking using a padlock
(shackle diameter 5 to 8 mm), a lead seal or screws.

Locking
Close the covers.

Unlocking
Remove the padlock, lead seal or screws.

Insert the padlock shackle, lead seal or screws.

Lift the covers and swing them down.

The pushbuttons are no longer locked.
Combination of locking systems
To disable circuit-breaker closing using the pushbuttons or remotely, use as needed:
- one to three padlocks
- one or two keylocks
- a combination of the two locking systems.

Install a padlock (maximum shackle diameter 5 to 8 mm)

Locking
Open the circuit breaker.

Unlocking
Remove the padlock.

Check
The controls are inoperative.
Locking the controls with one or two keylocks

Locking
- Open the circuit breaker.
- Turn the key(s).
- Remove the key(s).

Check
- The controls are inoperative.

Unlocking
- Insert the key(s).
- Turn the key(s).
- The key(s) cannot be removed.

Four types of keylocks can be installed

- **RONIS**
- **PROFALUX**
- **CASTELL**
- **KIRK**

Note: Castell and Kirk keylocks are not provided by Schneider Electric, only the adaptation kit is available.
Using the Masterpact drawout chassis

Identifying the circuit breaker positions

The indicator on the front signals the position of the circuit breaker in the chassis.

- **"connected" position**
- **"test" position**
- **"disconnected" position**
Using the Masterpact drawout chassis

These operations require that all chassis-locking functions be disabled (see page 21).

Racking

Prerequisites
To connect and disconnect Masterpact, the crank must be used. The chassis locking systems, padlocks and the racking interlock all inhibit use of the crank.

Withdrawing the circuit breaker from the "connected" to "test" position, then to "disconnected" position

The circuit breaker is in "connected" position. Push the pop-up button before starting to turn the crank.

The circuit breaker is in "test" position. Remove the crank or continue to "disconnected" position. Push the pop-up button before continuing to turn the crank.

The circuit breaker is in "test" position.

The circuit breaker is in "disconnected" position.

Important. The right-hand rail cannot be removed if the crank has not been removed or if the circuit breaker is not fully disconnected.

Removing the rails
Press the release tabs and pull the rails out.

To put the rails back in, press the release tabs and push the rails in.
For complete information on Masterpact handling and mounting, see the installation manual(s).

Before mounting the circuit breaker, make sure it matches the chassis in terms of rated current and performance level.

Inserting Masterpact
Position the circuit breaker on the rails. Check that it rests on all four supports.

Open the circuit breaker (in any case, it opens automatically during connection).

Push the circuit breaker into the chassis, taking care not to push on the control unit.

If you cannot insert the circuit breaker in the chassis, check that the mismatch protection on the chassis corresponds to that on the circuit breaker.

Racking the circuit breaker from the "disconnected" to "test" position, then to "connected" position

The device is in "disconnected" position. Push the pop-up button before starting to turn the crank.

The device is in "test" position. Push the pop-up button before continuing to turn the crank.

The device is in "test" position. Remove the crank or continue to "connected" position.

The device is in "connected" position.
Matching a Masterpact circuit breaker with its chassis

To set up a mismatch-prevention combination for the circuit breaker and the chassis, see the mismatch-prevention installation manual.

The mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics.

The possible combinations are listed below.
Locking the switchboard door

The locking option is installed on the left or right-hand side of the chassis:
- when the circuit breaker is in "connected" or "test" position, the latch is lowered and the door is locked
- when the circuit breaker is in "disconnected" position, the latch is raised and the door is unlocked.

Disabling door opening
Close the door. Put the Masterpact in "test" or "connected" position. The door is locked.

Enabling door opening
Put the Masterpact in "disconnected" position. The door is unlocked.
Combination of locking systems
With the circuit breaker in the "disconnected" position, for forbidding its connection in the chassis, use as needed:
- one to three padlocks
- one or two keylocks
- a combination of the two locking systems.

Disabling connection when the circuit breaker is in "disconnected" position, using one to three padlocks (maximum shackle diameter 5 to 8 mm)

Locking
Circuit breaker in "disconnected" position.

Pull out the tab.

Insert the shackle (max. diameter 5 to 8 mm) of the padlock(s).

The crank cannot be inserted.

Unlocking.
Remove the padlock(s).

Release the tab.

The crank can be inserted.

OK

Padlocks and keylocks may be used together.
Using the Masterpact drawout chassis

Locking the circuit breaker in position

Disabling connection when the circuit breaker is in "disconnected" position, using one or two keylocks.

Locking
Circuit breaker in "disconnected" position.

Unlocking
Insert the key(s).

Four types of keylocks are available

- **RONIS**
- **PROFALUX**
- **CASTELL**
- **KIRK**

Padlocks and keylocks may be used together.

Note:
Castell and Kirk keylocks are not provided by Schneider Electric, only the adaptation kit is available.
Using the Masterpact drawout chassis

Locking the circuit breaker in position

For this operation, the circuit breaker must be removed from the chassis.

Disabling use of the crank in all positions
It is possible to modify the padlock and keylock locking function. Instead of locking only in "disconnected" position, it is possible to lock the circuit breaker in all positions.

Set the circuit breaker to "disconnected" position. Insert the crank.
Remove the circuit breaker from the chassis.

Turn the catch to the right. The circuit breaker can now be locked in all positions.

Locking the circuit breaker when the door is open

When the door is open, the crank cannot be inserted.
When the door is closed, the crank can be inserted.
Using the Masterpact drawout chassis

Locking the safety shutters
Padlocking inside the chassis

Using the shutter locking blocks
Remove the block(s) from their storage position. Position the block(s) on the guide(s).

Lock the block(s) using a padlock.

Four locking possibilities
Top and bottom shutters not locked. Top shutter locked, Bottom shutter not locked.
Top shutter not locked, Bottom shutter locked. Top and bottom shutters locked.
This system offers two functions:
- Padlocking of the top or bottom shutters
- Indication of the position of each shutter:
 - Shutter open
 - Shutter closed.

Locking

Pull out the left-hand tab to lock the top shutter.

Insert a padlock (shackle 5 to 8 mm).

Pull out the right-hand tab to lock the bottom shutter.

Insert a padlock (shackle 5 to 8 mm).

Pull out both tabs to lock both shutters.

Insert a padlock (shackle 5 to 8 mm).

Unlocking

Remove the padlock.

Release the tab(s).

Using the Masterpact drawout chassis

- Top shutter closed. Bottom shutter open.
- Top shutter open. Bottom shutter closed.
- Top and bottom shutters open.
- Top and bottom shutters closed.
Identifying the electrical auxiliaries

Identification of the connection terminals

Layout of terminal blocks

<table>
<thead>
<tr>
<th>CD3</th>
<th>CD2</th>
<th>CD1</th>
<th>CE6</th>
<th>CE5</th>
<th>CE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>834</td>
<td>824</td>
<td>814</td>
<td>364</td>
<td>354</td>
<td>344</td>
</tr>
<tr>
<td>832</td>
<td>822</td>
<td>812</td>
<td>362</td>
<td>352</td>
<td>342</td>
</tr>
<tr>
<td>831</td>
<td>821</td>
<td>811</td>
<td>361</td>
<td>351</td>
<td>341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MNMX2</th>
<th>MX1</th>
<th>XF</th>
<th>PF</th>
<th>MCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2/C12</td>
<td>C2</td>
<td>A2</td>
<td>254</td>
<td>B2</td>
</tr>
<tr>
<td>/C13</td>
<td>C3</td>
<td>A3</td>
<td>252</td>
<td>B3</td>
</tr>
<tr>
<td>D1/C11</td>
<td>C1</td>
<td>A1</td>
<td>251</td>
<td>B1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OF24</th>
<th>OF23</th>
<th>OF22</th>
<th>OF21</th>
<th>OF14</th>
<th>OF13</th>
<th>OF12</th>
<th>OF11</th>
<th>OF4</th>
<th>OF3</th>
<th>OF2</th>
<th>OF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>234</td>
<td>224</td>
<td>214</td>
<td>144</td>
<td>134</td>
<td>124</td>
<td>114</td>
<td>44</td>
<td>34</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>242</td>
<td>232</td>
<td>222</td>
<td>212</td>
<td>142</td>
<td>132</td>
<td>122</td>
<td>112</td>
<td>42</td>
<td>32</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>241</td>
<td>231</td>
<td>221</td>
<td>211</td>
<td>141</td>
<td>131</td>
<td>121</td>
<td>111</td>
<td>41</td>
<td>31</td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Com</th>
<th>UC1</th>
<th>UC2</th>
<th>UC3</th>
<th>UC4</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>F2</th>
<th>V3</th>
<th>E5</th>
<th>E4</th>
<th>E3</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>E6</td>
<td>Z5</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>E2</td>
<td>F1</td>
</tr>
<tr>
<td>SDE1</td>
<td>SDE2</td>
<td>SDE3</td>
<td>Rel.</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>F1</td>
</tr>
<tr>
<td>484</td>
<td>483</td>
<td>484/k2</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EF4

<table>
<thead>
<tr>
<th>EF24</th>
<th>EF23</th>
<th>EF22</th>
<th>EF21</th>
<th>EF14</th>
<th>EF13</th>
<th>EF12</th>
<th>EF11</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>238</td>
<td>228</td>
<td>218</td>
<td>148</td>
<td>138</td>
<td>128</td>
<td>118</td>
</tr>
<tr>
<td>246</td>
<td>236</td>
<td>226</td>
<td>216</td>
<td>146</td>
<td>136</td>
<td>126</td>
<td>116</td>
</tr>
<tr>
<td>245</td>
<td>235</td>
<td>225</td>
<td>215</td>
<td>145</td>
<td>135</td>
<td>125</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Com</th>
<th>UC1</th>
<th>UC2</th>
<th>UC3</th>
<th>UC4</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>F2</th>
<th>V3</th>
<th>E5</th>
<th>E4</th>
<th>E3</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>E6</td>
<td>Z5</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>E2</td>
<td>F1</td>
</tr>
<tr>
<td>SDE1</td>
<td>SDE2</td>
<td>SDE3</td>
<td>Rel.</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>F1</td>
</tr>
<tr>
<td>484</td>
<td>483</td>
<td>484/k2</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MF-MX2

<table>
<thead>
<tr>
<th>MNMX2</th>
<th>MX1</th>
<th>XF</th>
<th>PF</th>
<th>MCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2/C12</td>
<td>C2</td>
<td>A2</td>
<td>254</td>
<td>B2</td>
</tr>
<tr>
<td>/C13</td>
<td>C3</td>
<td>A3</td>
<td>252</td>
<td>B3</td>
</tr>
<tr>
<td>D1/C11</td>
<td>C1</td>
<td>A1</td>
<td>251</td>
<td>B1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OF24</th>
<th>OF23</th>
<th>OF22</th>
<th>OF21</th>
<th>OF14</th>
<th>OF13</th>
<th>OF12</th>
<th>OF11</th>
<th>OF4</th>
<th>OF3</th>
<th>OF2</th>
<th>OF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>234</td>
<td>224</td>
<td>214</td>
<td>144</td>
<td>134</td>
<td>124</td>
<td>114</td>
<td>44</td>
<td>34</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>242</td>
<td>232</td>
<td>222</td>
<td>212</td>
<td>142</td>
<td>132</td>
<td>122</td>
<td>112</td>
<td>42</td>
<td>32</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>241</td>
<td>231</td>
<td>221</td>
<td>211</td>
<td>141</td>
<td>131</td>
<td>121</td>
<td>111</td>
<td>41</td>
<td>31</td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Com</th>
<th>UC1</th>
<th>UC2</th>
<th>UC3</th>
<th>UC4</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>F2</th>
<th>V3</th>
<th>E5</th>
<th>E4</th>
<th>E3</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>E6</td>
<td>Z5</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>E2</td>
<td>F1</td>
</tr>
<tr>
<td>SDE1</td>
<td>SDE2</td>
<td>SDE3</td>
<td>Rel.</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>F1</td>
</tr>
<tr>
<td>484</td>
<td>483</td>
<td>484/k2</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Com</th>
<th>UC1</th>
<th>UC2</th>
<th>UC3</th>
<th>UC4</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>F2</th>
<th>V3</th>
<th>E5</th>
<th>E4</th>
<th>E3</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>E6</td>
<td>Z5</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>E2</td>
<td>F1</td>
</tr>
<tr>
<td>SDE1</td>
<td>SDE2</td>
<td>SDE3</td>
<td>Rel.</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>F2</td>
<td>V3</td>
<td>E5</td>
<td>E4</td>
<td>E3</td>
<td>E1</td>
<td>F1</td>
</tr>
<tr>
<td>484</td>
<td>483</td>
<td>484/k2</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identifying the electrical auxiliaries

Electrical diagrams
Fixed and drawout devices

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in normal position.

Power

- Electrical diagrams
- Fixed and drawout devices

Control unit

- Upstream cb
- Downstream cb

Remote operation

- SDE2 / Res
- MN / MX2
- MX1
- XF
- PF
- MCH

AEPH Control unit

- Com: E1-E6 communication
- UC1: Z1-Z5 zone selective interlocking;
 - Z1 = ZSI OUT SOURCE
 - Z2 = ZSI OUT;
 - Z3 = ZSI IN SOURCE
 - Z4 = ZSI IN ST (short time)
 - Z5 = ZSI IN GF (earth fault)
- M1 = Vigi module input (Micrologic 7)
- UC2: T1, T2, T3, T4 = external neutral;
- M2, M3 = Vigi module input (Micrologic 7)
- UC3: F2+, F1– external 24 V DC power supply
- VN external voltage connector
- UC4: V1, V2, V3 optional external voltage protector
- M2C: 2 programmable contacts (internal relay);
- M6C: 6 programmable contact (external relay);

Remote operation

- SDE2: Fault-trip indication contact
- Res: Remote reset
- SDE1: Fault-trip indication contact (supplied as standard)
- MN: Undervoltage release
- MX2: Shunt release
- MX1: Shunt release (standard or communicating)
- XF: Closing release (standard or communicating)
- PF: "Ready to close" contact
- MCH: Gear motor.

Note:

When communicating MX or XF releases are used, the third wire (C3, A3) must be connected even if the communications module is not installed.

A: Digital ammeter, E: A + energy
P: E + power meter + programmable protection, H: P + harmonics
Identifying the electrical auxiliaries

Electrical diagrams

Indication contacts

- **OF24 or EF24**: Combined "connected/closed" indication contacts
- **OF23 or EF23**: ON/OFF indication contacts
- **OF22 or EF22**: ON/OFF indication contacts
- **OF21 or EF21**: ON/OFF indication contacts
- **OF14 or EF14**: ON/OFF indication contacts
- **OF13 or EF13**: ON/OFF indication contacts
- **OF12 or EF12**: ON/OFF indication contacts
- **OF11 or EF11**: ON/OFF indication contacts

Chassis contacts

- **CD3 or CE3**: Contacts
- **CD2 or CE2**: Contacts
- **CD1 or CE1**: Contacts
- **CT3 or CE7**: Contacts
- **CT2 or CE8**: Contacts
- **CT1 or CE9**: Contacts

Key:
- Drawout device only
- SDE1, OF1, OF2, OF3, OF4 supplied as standard
- Interconnected connections (only one wire per connection point)
Identifying the electrical auxiliaries

Operation

The ON/OFF indication contacts signal the status of the device main contacts.

Circuit breaker

<table>
<thead>
<tr>
<th>Status</th>
<th>OF: ON/OFF (closed/open)</th>
</tr>
</thead>
<tbody>
<tr>
<td>open</td>
<td>closed</td>
</tr>
<tr>
<td>closed</td>
<td>open</td>
</tr>
</tbody>
</table>

Chassis

The carriage switches indicate the "connected", "test" and "disconnected" positions.

<table>
<thead>
<tr>
<th>Carriage Switch</th>
<th>CE: connected-position carriage switch</th>
<th>CD: disconnected-position carriage switch</th>
<th>CT: test position carriage switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>completely closed</td>
<td>closed</td>
<td>open</td>
<td>open</td>
</tr>
<tr>
<td>separation of the main circuits</td>
<td>separation of the auxiliary circuits</td>
<td>test position</td>
<td>completely connected</td>
</tr>
<tr>
<td>completely disconnected</td>
<td>open</td>
<td>closed</td>
<td></td>
</tr>
</tbody>
</table>
Discovering Masterpact's accessories

Micrologic control units

For the spare parts list, see the Masterpact NT/NW catalogue. For more in-depth information, see the control-unit user manual.

Micrologic control units

- All Masterpact circuit breakers are equipped with a Micrologic control unit. Control units are designed to protect power circuits and loads. Alarms may be programmed for remote indications.
 - Micrologic 2.0 A
 - Micrologic 5.0 A
 - Micrologic 6.0 A
 - Micrologic 7.0 A
 - Micrologic 2.0 E
 - Micrologic 5.0 E
 - Micrologic 6.0 E
 - Micrologic 5.0 P
 - Micrologic 6.0 P
 - Micrologic 7.0 P
 - Micrologic 5.0 H
 - Micrologic 6.0 H
 - Micrologic 7.0 H
 - Depending on the model, control units offer in addition:
 - fault indications
 - measurement of electrical parameters (current, voltage, power, etc)
 - harmonic analysis
 - communication.

Long-time rating plugs

- Standard accessory, one per control unit.
 - 0.4 to 1 x Ir setting
 - 0.4 to 0.8 x Ir setting
 - 0.8 to 1 x Ir setting
 - Off (no long-time protection).
 - The plugs determine the setting range for the Long-time protection.

M2C and M6C programmable contacts

- Optional accessory, used with Micrologic P and H control units.
 - M2C: 2 programmable contacts
 - M6C: 6 programmable contacts
 - M2C: 2 contacts (6 A-240 V)
 - M6C: 6 contacts (6A-240V).
 - Permissible load on each of the M6C relay outputs:
 - 240 V AC: 5 A where p.f = 0.7
 - 380 V AC: 3 A where p.f = 0.7
 - 24 V DC: 8 A where L/R = 0
 - 48 V DC: 1.5 A where L/R = 0
 - 125 V DC: 0.4 A where L/R = 0
 - 250 V DC: 0.15 A where L/R = 0
 - M6C supply voltage: 24 V DC ± 5%
 - M6C maximum consumption: 100 mA

Contacts can be programmed using the keypad on the control unit or via the COM option.
- They indicate:
 - the type of fault
 - instantaneous or delayed threshold overruns.

- Contacts can be programmed using the keypad on the control unit or via the COM option.
- They indicate:
 - the type of fault
 - instantaneous or delayed threshold overruns.
Indication contacts

ON/OFF indication contacts (OF)
- Standard accessory: 4 OF per device.
- OF contacts indicate the position of main contacts.
- They switch when the minimum isolation distance between the main contacts is reached.
- 4 changeover contacts.
- Rated current: 10 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 480 V: 10 A (rms)
 - 600 V: 6 A (rms).
- Breaking capacity for DC power (DC12 as per IEC 60947-5-1): 250 V: 3 A.

Additional ON/OFF indication contacts (OF)
- Optional accessory, two blocks of 4 OF contacts per device.
- Terminal blocks (not included):
 - for fixed device
 - for drawout device.
- OF contacts indicate the position of the main contacts.
- They switch when the minimum isolation distance between the main contacts is reached.
- Changeover contacts.
- Rated current: 6 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 480 V: 10 A (rms)
 - 600 V: 6 A (rms).
- Breaking capacity for DC power (DC12 as per IEC 60947-5-1): 250 V: 3 A.

Combined "connected/closed" contacts (EF)
- Optional accessory, 8 EF contacts per device.
- Each contact is mounted in place of the connector of an additional OF contact.
- One EF contact.
- The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information.
- Changeover contacts.
- Rated current: 6 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 6 A (rms)
 - 380 V: 6 A (rms)
 - 480 V: 6 A (rms)
 - 600 V: 6 A (rms)
- Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 2.5 A
 - 130 V: 0.8 A
 - 250 V: 0.3 A.

"Fault-trip" indication contact (SDE1)
- Standard accessory on circuit breakers, one SDE1 contact per device.
- Not available for switch-disconnector versions (except for NW HF and HH).
- The contact provides a remote indication of device opening due to an electrical fault.
- Changeover contact.
- Rated current: 6 A.
- Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 6 A (rms)
 - 380 V: 6 A (rms)
 - 480 V: 2 A (rms)
- Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.
Indication contacts

Additional "fault-trip" indication contact (SDE2)
- Optional accessory for circuit breakers, one additional SDE2 contact per device.
- Not available for switch-disconnector versions (except for NW HF and HH).
- Not compatible with the Res option.
- The contact remotely indicates device tripping due to an electrical fault.
- Changeover contact
 - Rated current: 6 A
 - Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 6 A (rms)
 - 380 V: 6 A (rms)
 - 480 V: 2 A (rms)
 - Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.

Electrical reset after fault trip (Res)
- Optional accessory, one Res per device.
- Not compatible with the SDE2 option.
- Power supply:
 - 110/130 V AC
 - 220/240 V AC
- The contact remotely resets the device following tripping due to an electrical fault.
- Changeover contact
 - Rated current: 6 A
 - Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 6 A (rms)
 - 380 V: 6 A (rms)
 - 480 V: 2 A (rms)
 - Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.

"Springs charged" limit switch contact (CH)
- Standard accessory, one CH contact per device.
- The contact indicates the "charged" status of the operating mechanism (springs charged).
- Changeover contact
 - Rated current: 10 A
 - Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
 - 480 V: 5 A (rms)
 - 600 V: 3 A (rms)
 - Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.25 A.

"Ready to close" contact (PF)
- Optional accessory, one PF contact per device.
- The contact indicates that the device may be closed because all the following are valid:
 - Circuit breaker is open
 - Spring mechanism is charged
 - A maintained closing order is not present
 - A maintained opening order is not present.
- Changeover contact
 - Rated current: 10 A
 - Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1):
 - 240 V: 10 A (rms)
 - 380 V: 5 A (rms)
 - Breaking capacity for DC power (DC12 as per IEC 60947-5-1):
 - 48 V: 3 A
 - 125 V: 0.3 A
 - 250 V: 0.15 A.
Auxiliaries for remote operation

Gear Motor MCH
- Optional accessory, one MCH gear motor per device.
- Power supply:
 - AC 50/60 Hz:
 - 48/60 V AC
 - 100/130 V AC
 - 200/240 V AC
 - 277 V AC
 - 380/415 V AC
 - 400/440 V AC
 - 480 V AC
 - DC:
 - 24/30 V DC
 - 48/60 V DC
 - 100/125 V DC
 - 200/250 V DC
- The gear motor automatically charges and recharges the spring mechanism.
- Charging time: 4 seconds max.
- Consumption:
 - 180 VA AC
 - 180 W DC
- Inrush current:
 - 2 to 3 In for 0.1 second
- Operating rate:
 - Maximum 3 cycles per minute.

Opening releases MX1 and MX2, closing release XF
- Optional accessory, 1 or 2 MX releases per device, 1 XF per device.
- The function (MX or XF) is determined by where the coil is installed.
- Power supply:
 - AC 50/60 Hz:
 - 24 V AC
 - 48 V AC
 - 100/130 V AC
 - 200/250 V AC
 - 277 V AC
 - 380/480 V AC
 - DC:
 - 12 V DC
 - 24/30 V DC
 - 48/60 V DC
 - 100/130 V DC
 - 200/250 V DC
- The MX release instantaneously opens the circuit breaker when energised.
- The XF release instantaneously closes the circuit breaker when energised, if the device is "ready to close".
- Device response time:
 - MX: 50 ms ± 10
 - XF: 70 ms +10/-15 > 3200 A: 80 ms ± 10
- Operating threshold:
 - MX: 0.7 to 1.1 x Un
 - XF: 0.85 to 1.1 x Un
- The supply can be maintained.
- Consumption:
 - pick-up (80 ms): 200 VA
 - hold: 4.5 VA.
Discovering Masterpact's accessories

Auxiliaries for remote operation

Instantaneous undervoltage releases (MN)
- Optional accessory, 1 MN per device
- Not compatible with the MX2 opening release
- Power supply:
 - V AC 50/60 Hz:
 - 24 V AC
 - 48 V AC
 - 100 / 130 V AC
 - 200 / 250 V AC
 - 380 / 480 V AC
 - V DC:
 - 24 / 30 V DC
 - 48 / 60 V DC
 - 100 / 130 V DC
 - 200 / 250 V DC
- The MN release instantaneously opens the circuit breaker when its supply voltage drops.
- Device response time: 90 ms ±5
- Operating threshold:
 - opening: 0.35 to 0.7 x Un
 - closing: 0.85 x Un
- Consumption:
 - pick-up (80 ms): 200 VA
 - hold: 4.5 VA.

Delay unit for MN releases
- Optional accessory, 1 MNR with delay unit per device.
- Delay-unit (must be ordered in addition to the MN):
 - 48/60 V AC
 - 100 / 130 V AC
 - 200/250 V AC
 - 380/480 V AC
- The unit delays operation of the MN release to eliminate circuit-breaker nuisance tripping during short voltage dips.
- The unit is wired in series with the MN and must be installed outside the circuit breaker.
- Device response time: 0.5, 1, 1.5, 3 seconds
- Operating threshold:
 - opening: 0.35 to 0.7 x Un
 - closing: 0.85 x Un
- Consumption:
 - pick-up (80 ms): 200 VA
 - hold: 4.5 VA.

Electrical closing pushbutton (BPFE)
- Optional accessory, 1 BPFE per device
- Located on the front face of the device, this pushbutton carries out electrical closing of the circuit breaker via the XF release, taking into account all the safety functions that are part of the control/monitoring system of the installation.
Device mechanical accessories

Operation counter (CDM)
- Optional accessory, one CDM per device.
- The operation counter sums the number of operating cycles.

Escutcheon (CDP)
- Optional accessory, one CDP per device
 - for fixed device
 - for drawout device.
- The CDP increases the degree of protection to IP 40 and IK 07 (fixed and drawout devices).

Transparent cover (CCP)
- Optional accessory, one CP per device equipped with a CDP (for fixed and drawout devices).
- Mounted with a CDP, the CP increases the degree of protection to IP 55 and IK 10 (fixed and drawout devices).
Device mechanical accessories

Transparent cover for pushbutton locking using a padlock, lead seal or screws
- Optional accessory, one locking cover per device.
- The transparent cover blocks access (together or separately) to the pushbuttons used to open and close the device.
- Locking requires a padlock, a lead seal or two screws.

Device locking in the OFF position using a padlock
- Optional accessory, one locking system per device.
- The unit inhibits local or remote closing of the device.
- Up to three padlocks may be used for locking.

Device OFF position locking kit for keylocks
- Optional accessory, one locking kit per device.
- Locks not included:
 - for Profalux or Ronis keylocks
 - for Castell keylocks
 - for Kirk keylocks.
- The kit inhibits local or remote closing of the device.

Keylocks required for the device OFF position locking kit
- One or two keylocks per locking kit
 - for Ronis: 1 keylock, 2 keylocks.
 - for Profalux: 1 keylock, 2 keylocks.
Chassis mechanical accessories

Safety shutters
- Standard accessories, provided on every chassis.
- The safety shutters automatically block the access to the disconnecting contact cluster when the device is in the "disconnected" or "test" positions.
- IP20.

Shutter locking blocks
- Optional accessory: 2 blocks for NW08 to NW40
 4 blocks for NW40b to NW63.
- The block may be padlocked. It:
 □ prevents connection of the device
 □ locks the shutters in the closed position.

Shutter position indication and locking on front face
- Optional accessory:
 □ NW08/NW040
 3 and 4 poles
 □ NW40b/NW63
 3 poles
 4 poles.
- This option located on the front of the chassis:
 □ indicates that the shutters are closed
 □ can be used to independently or simultaneously padlock the two shutters (top and bottom).

Chassis locking in "disconnected" position
- Optional accessory, one locking system per device
 □ for Profalux or Ronis keylocks
 □ for Castell keylocks
 □ for Kirk keylocks.
- Mounted on the chassis and accessible with the door closed, this system locks the chassis in "disconnected" position using one or two keylocks.
- The "disconnected" position locking system may be modified to lock the circuit breaker in all three positions.

Keylocks required with the "disconnected" position locking system
- One or two keylocks per locking system
 □ Ronis:
 1 keylock
 2 keylocks
 □ Profalux:
 1 keylock
 2 keylocks.
- Adaptation kits alone are available for Kirk and Castell keylocks.
Discovering Masterpact’s accessories

Chassis mechanical accessories

Door interlock
- Optional accessory, one door interlock per chassis.
- This device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position.
- It may be mounted on the left or right-hand side of the chassis.

Racking interlock
- Optional accessory, one racking interlock per chassis.
- This device prevents insertion of the racking handle when the cubicle door is open.
- It is mounted on the right-hand side of the chassis.

Mismatch protection
- Optional accessory, one mismatch protection device per chassis.
- Mismatch protection offers twenty different combinations that the user may select to ensure that only a compatible circuit breaker is mounted on a given chassis.

Auxiliary terminal shield (CB)
- Optional accessory, one CB shield per chassis
- The shield prevents access to the terminal block of the electrical auxiliaries.
"Connected", "disconnected" and "test" position carriage switches (CE, CD, CT)

- Optional accessory, one to nine carriage switches
- Standard configuration, 0 to 3 CE, 0 to 3 CD, 0 to 3 CT
- Other configurations (by ordering additional actuators):
 - 0 to 9 CE, 0 CD, 0 CT
 - 0 to 6 CE, 0 to 3 CD, 0 CT
 - 0 to 6 CE, 0 CD, 0 to 3 CT
- Connection cables not included, see below:
 - 1 carriage switch
 - 1 set of actuators for additional carriage switches
- Connection cables (per carriage switch).

- The carriage switches indicate the three positions:
 - CE: connected position
 - CD: disconnected position (when the minimum isolation distance between the main contacts and the auxiliary contacts is reached)
 - CT: test position.

- Changeover contact
- Rated current: 10 A
- Breaking capacity 50/60 Hz for AC power (AC12 as per IEC 60947-5-1): 240 V: 10 A (rms) 380 V: 5 A (rms)
- Breaking capacity for DC power (DC12 as per IEC 60947-5-1): 250 V: 0.3 A.
Inspecting and testing before use

These operations must be carried out in particular before using a Masterpact device for the first time.

Initial tests

Procedure

A general check of the circuit breaker takes only a few minutes and avoids any risk of mistakes due to errors or negligence.

A general check must be carried out:
- Prior to initial use
- Following an extended period during which the circuit breaker is not used.

A check must be carried out with the entire switchboard de-energised.

In switchboards with compartments, only those compartments that may be accessed by the operators must be de-energised.

Electrical tests

Insulation and dielectric-withstand tests must be carried out immediately after delivery of the switchboard. These tests are precisely defined by international standards and must be directed and carried out by a qualified expert.

Prior to running the tests, it is absolutely necessary to:
- Disconnect all the electrical auxiliaries of the circuit breaker (MCH, MX, XF, MN, Res electrical remote reset)
- Remove the long-time rating plug on the 7.0 A, 5.0 P, 6.0 P, 7.0 P, 5.0 H, 6.0 H, 7.0 H control units. Removal of the rating plug disconnects the voltage measurement input.

Switchboard inspection

Check that the circuit breakers are installed in a clean environment, free of any installation scrap or items (tools, electrical wires, broken parts or shreds, metal objects, etc.).

Conformity with the installation diagram

Check that the devices conform with the installation diagram:
- Breaking capacities indicated on the rating plates
- Identification of the control unit (type, rating)
- Presence of any optional functions (remote ON/OFF with motor mechanism, auxiliaries, measurement and indication modules, etc.)
- Protection settings (long time, short time, instantaneous, earth fault)
- Identification of the protected circuit marked on the front of each circuit breaker.

Condition of connections and auxiliaries

Check device mounting in the switchboard and the tightness of power connections. Check that all auxiliaries and accessories are correctly installed:
- Electrical auxiliaries
- Terminal blocks
- Connections of auxiliary circuits.

Operation

Check the mechanical operation of the circuit breakers:
- Opening of contacts
- Closing of contacts.

Check on the control unit

Check the control unit of each circuit breaker using the respective user manuals.
Note the fault
Faults are signalled locally and remotely by the indicators and auxiliary contacts installed on circuit breakers (depending on each configuration). See page 12 in this manual and the user manual of the control unit for information on the fault indications available with your circuit breaker.

Identify the cause of tripping
A circuit must never be reclosed (locally or remotely) before the cause of the fault has been identified and cleared.

A fault may have a number of causes:
- depending on the type of control unit, fault diagnostics are available. See the user manual for the control unit.
- depending on the type of fault and the criticality of the loads, a number of precautionary measures must be taken, in particular the insulation and dielectric tests on a part of or the entire installation. These checks and test must be directed and carried out by qualified personnel.

Inspect the circuit breaker following a short-circuit
- Check the arc chutes (see page 43).
- Check the contacts (see page 43).
- Check the tightness of connections (see the device installation manual).
- Check the disconnecting-contact clusters (see page 44).

Reset the circuit breaker
The circuit breaker can be reset locally or remotely. See page 12 in this manual for information on how the circuit breaker can be reset.
Maintaining Masterpact performance

Recommended maintenance program

Keep your Masterpact NT/NW features year after year by performing requested maintenance.

To ensure that your protective device retains the operating and safety characteristics specified in the catalogs for the whole of its service life, Schneider Electric recommends that routine inspections and periodic maintenance should be carried out by qualified personnel in accordance with the instructions in the Masterpact maintenance guide.

The Maintenance Guide LVPED508016EN can be downloaded from the www.schneider-electric.com website and provides detailed information on:

- the types of maintenance required, depending on the criticality of the protected circuit
- the risks involved if the component ceases to operate correctly
- what is understood by the terms normal, improved and severe environment and operating conditions
- the periodic preventive maintenance operations that should be carried out under normal environment and operating conditions as well as the level of competence required for the operations
- the environment and operating conditions that accelerate device ageing.

The level II and III procedures mentioned in the Maintenance Guide can be downloaded from the www.schneider-electric.com website. They are compiled in a document with reference HRB16483.
Troubleshooting and solutions

Problem

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker cannot be closed locally or remotely</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Circuit breaker padlocked or keylocked in the "open" position</td>
<td>□ disable the locking function</td>
<td></td>
</tr>
<tr>
<td>- Circuit breaker interlocked mechanically in a source changeover system</td>
<td>□ check the position of the other circuit breaker in the changeover system</td>
<td></td>
</tr>
<tr>
<td>- Circuit breaker not completely connected</td>
<td>□ modify the situation to release the interlock on the circuit breaker</td>
<td></td>
</tr>
<tr>
<td>- The reset button signalling a fault trip has not been reset</td>
<td>□ clear the fault</td>
<td></td>
</tr>
<tr>
<td>- Stored energy mechanism not charged</td>
<td>□ charge the mechanism manually</td>
<td></td>
</tr>
<tr>
<td>- MX opening shunt release permanently supplied with power</td>
<td>□ there is an opening order.</td>
<td></td>
</tr>
<tr>
<td>- MN undervoltage release not supplied with power</td>
<td>□ there is an opening order.</td>
<td></td>
</tr>
<tr>
<td>- XF closing release continuously supplied with power, but circuit breaker not "ready to close" (XF not wired in series with PF contact)</td>
<td>□ cut the supply of power to the XF closing release, then send the closing order again via the XF, but only if the circuit breaker is "ready to close"</td>
<td></td>
</tr>
<tr>
<td>- Permanent trip order in the presence of a Micrologic P or H control unit with minimum voltage and minimum frequency protection in Trip mode and the control unit powered</td>
<td>□ Disable these protection functions on the Micrologic P or H control unit</td>
<td></td>
</tr>
<tr>
<td>Circuit breaker cannot be closed remotely but can be opened locally using the closing pushbutton</td>
<td>□ Closing order not executed by the XF closing release</td>
<td></td>
</tr>
<tr>
<td>- MN undervoltage release supply voltage too low</td>
<td>□ check the voltage and the supply circuit (U > 0.85 Un).</td>
<td></td>
</tr>
<tr>
<td>- Load-shedding order sent to the MX opening release by another device</td>
<td>□ check the overall load on the distribution system</td>
<td></td>
</tr>
<tr>
<td>- Unnecessary opening order from the MX opening release</td>
<td>□ if necessary, modify the settings of devices in the installation</td>
<td></td>
</tr>
<tr>
<td>Unexpected tripping without activation of the reset button signalling a fault trip</td>
<td>a fault is present :</td>
<td></td>
</tr>
<tr>
<td>- Overload</td>
<td>□ determine and clear the causes of the fault</td>
<td></td>
</tr>
<tr>
<td>- Earth fault</td>
<td>□ check the condition of the circuit breaker before putting it back into service</td>
<td></td>
</tr>
<tr>
<td>- Short-circuit detected by the control unit</td>
<td>□ press the reset button</td>
<td></td>
</tr>
<tr>
<td>Unexpected tripping with activation of the reset button signalling a fault trip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Thermal memory</td>
<td>□ see the user manual of the control unit</td>
<td></td>
</tr>
<tr>
<td>- Transient overcurrent when closing</td>
<td>□ modify the distribution system or the control-unit settings</td>
<td></td>
</tr>
<tr>
<td>- Closing on a short-circuit</td>
<td>□ check the condition of the circuit breaker before putting it back into service</td>
<td></td>
</tr>
<tr>
<td>Instantaneous opening after each attempt to close the circuit breaker with activation of the reset button signalling a fault trip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Thermal memory</td>
<td>□ see the user manual of the control unit</td>
<td></td>
</tr>
<tr>
<td>- Transient overcurrent when closing</td>
<td>□ modify the distribution system or the control-unit settings</td>
<td></td>
</tr>
<tr>
<td>- Closing on a short-circuit</td>
<td>□ clear the fault</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Probable causes</td>
<td>Solutions</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Circuit breaker cannot be opened remotely, but can be opened locally</td>
<td>- Opening order not executed by the MX opening release</td>
<td>- check the voltage and the supply circuit (0.7 - 1.1 Un). If the problem persists, replace the MX release</td>
</tr>
<tr>
<td></td>
<td>- Opening order not executed by the MN undervoltage release</td>
<td>- drop in voltage insufficient or residual voltage (> 0.35 Un) across the terminals of the undervoltage release. If the problem persists, replace the MN release</td>
</tr>
<tr>
<td>Circuit breaker cannot be opened locally</td>
<td>- Operating mechanism malfunction or welded contacts</td>
<td>- contact a Schneider service centre</td>
</tr>
<tr>
<td>Circuit breaker cannot be reset locally but not remotely</td>
<td>- Insufficient supply voltage for the MCH gear motor</td>
<td>- check the voltage and the supply circuit (0.7 - 1.1 Un). If the problem persists, replace the MCH release</td>
</tr>
<tr>
<td>Nuisance tripping of the circuit breaker with activation of the reset</td>
<td>- Reset button not pushed-in completely</td>
<td>- push the reset button in completely</td>
</tr>
<tr>
<td>button signalling a fault trip</td>
<td>- A padlock or keylock is present on the chassis or a door interlock is present</td>
<td>- disable the locking function</td>
</tr>
<tr>
<td>Impossible to insert the crank in connected, test or disconnected</td>
<td>- The reset button has not been pressed</td>
<td>- press the reset button</td>
</tr>
<tr>
<td>position</td>
<td>- Circuit breaker not in disconnected position</td>
<td>- disable the locking function</td>
</tr>
<tr>
<td>Circuit breaker cannot be removed from chassis</td>
<td>- The rails are not completely out</td>
<td>- pull the rails all the way out</td>
</tr>
<tr>
<td>Circuit breaker cannot be connected (racked in)</td>
<td>- Cradle/circuit breaker mismatch protection</td>
<td>- check that the cradle corresponds with the circuit breaker</td>
</tr>
<tr>
<td></td>
<td>- The safety shutters are locked</td>
<td>- remove the lock(s)</td>
</tr>
<tr>
<td></td>
<td>- The disconnecting-contact clusters are incorrectly positioned</td>
<td>- reposition the clusters</td>
</tr>
<tr>
<td></td>
<td>- Cradle locked in disconnected position</td>
<td>- disable the cradle locking function</td>
</tr>
<tr>
<td></td>
<td>- The reset button has not been pressed, preventing rotation of the crank</td>
<td>- press the reset button</td>
</tr>
<tr>
<td></td>
<td>- The circuit breaker has not been sufficiently inserted in the cradle</td>
<td>- insert the circuit breaker completely so that it is engaged in the racking mechanism</td>
</tr>
<tr>
<td>Circuit breaker cannot be locked in disconnected position</td>
<td>- The circuit breaker is not in the right position</td>
<td>- check the circuit breaker position by making sure the reset button is out</td>
</tr>
<tr>
<td></td>
<td>- The crank is still in the cradle</td>
<td>- remove the crank and store it</td>
</tr>
<tr>
<td>Circuit breaker cannot be locked in connected, test or disconnected</td>
<td>- Check that locking in any position is enabled</td>
<td>- contact a Schneider service centre</td>
</tr>
<tr>
<td>position</td>
<td>- The circuit breaker is not in the right position</td>
<td>- check the circuit breaker position by making sure the reset button is out</td>
</tr>
<tr>
<td></td>
<td>- The crank is still in the cradle</td>
<td>- remove the crank and store it</td>
</tr>
<tr>
<td>The crank cannot be inserted to connect or disconnected the circuit</td>
<td>- The rails are not completely in</td>
<td>- push the rails all the way in</td>
</tr>
<tr>
<td>breaker</td>
<td>- The crank is still in the chassis</td>
<td>- remove the crank and store it</td>
</tr>
<tr>
<td>The right-hand rail (chassis alone) or the circuit breaker cannot be</td>
<td>- The rails are not completely in</td>
<td>- push the rails all the way in</td>
</tr>
<tr>
<td>drawn out</td>
<td>- The crank is still in the chassis</td>
<td>- remove the crank and store it</td>
</tr>
</tbody>
</table>
Environmental conditions

Checking Masterpact operating conditions

Ambient temperature
Masterpact NW devices can operate under the following temperature conditions:
- the electrical and mechanical characteristics are stipulated for an ambient temperature of -25 °C to +70 °C
- circuit-breaker mechanical closing by pushbutton is guaranteed down to -35 °C
- Masterpact NW (without the control unit) can be stored in an ambient temperature of -40 °C to +85 °C
- the control unit can be stored in an ambient temperature of -25 °C to +85 °C.

Extreme atmospheric conditions
Masterpact NW devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
- IEC 60068-2-1: dry cold at -40 °C
- IEC 60068-2-2: dry heat at +85 °C
- IEC 60068-2-30: damp heat (temperature +55 °C, relative humidity 95%)
- IEC 60068-2-52 level 2: salt mist.

Masterpact NW devices can operate in the industrial environments defined by standard IEC 60947 (pollution degree up to 4).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Masterpact NW devices with corrosion protection have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
- IEC 60068-2-42: atmospheres containing sulphur dioxide (SO²)
- IEC 60068-2-43: atmospheres containing hydrogen sulphide (H²S).

Vibrations
Masterpact NW devices resist electromagnetic or mechanical vibrations.

Tests are carried out in compliance with standard IEC 60068-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd’s, etc.):
- 2 to 13.2 Hz: amplitude ±1 mm
- 13.2 to 100 Hz: constant acceleration 0.7 g.

Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Some applications have vibration profiles outside of this standard, and require special attention during application design, installation, and use. Excessive vibration may cause unexpected tripping, damage to connections or to other mechanical parts. Please refer to the Masterpact maintenance guide (causes of accelerated ageing / operating conditions / vibrations) for additional information.

Examples of applications with high vibration profiles could include:
- wind turbines
- power frequency converters that are installed in the same switchboard or close proximity to the Masterpact circuit breaker
- emergency generators
- high vibration marine applications such as thrusters, anchor positioning systems, etc.
Altitude
Masterpact NW devices are designed for operation at altitudes under 2000 metres. At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics.

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric resistance voltage (V)</td>
<td>3500</td>
<td>3150</td>
<td>2500</td>
<td>2100</td>
</tr>
<tr>
<td>Average insulation level (V)</td>
<td>1000</td>
<td>900</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Maximum utilisation voltage (V)</td>
<td>690</td>
<td>590</td>
<td>520</td>
<td>460</td>
</tr>
<tr>
<td>Average thermal current (A) at 40 °C</td>
<td>1 x In</td>
<td>0.99 x In</td>
<td>0.96 x In</td>
<td>0.94 x In</td>
</tr>
</tbody>
</table>

Electromagnetic disturbances
Masterpact NW devices are protected against:
- overvoltages caused by devices that generate electromagnetic disturbances
- overvoltages caused by an atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

Masterpact NW devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:
- IEC 60947-2, appendix F
- IEC 60947-2, appendix B (trip units with earth-leakage function).

The above tests guarantee that:
- no nuisance tripping occurs
- tripping times are respected.

Cleaning
- Non-metallic parts: never use solvent, soap or any other cleaning product. Clean with a dry cloth only
- Metal parts: clean with a dry cloth whenever possible. If solvent, soap or any other cleaning product must be used, make sure that it does not come into contact with non-metallic parts.