Model IGP10 I/A Series® High Gauge Pressure Transmitter with Digital or Analog Output Signals

The Foxboro® brand I/A Series® Model IGP10 is a two-wire transmitter that provides precise, reliable measurement of high gauge pressures, and provides a digital or analog output signal for local or remote configuration, monitoring, and control.

FEATURES

- Gauge pressure ranges to 52, 105, or 210 MPa (7500, 15,000, or 30,000 psi).
- Digital output versions with either FoxCom™, HART®, or FOUNDATION™ Fieldbus communication protocol.
- Analog output version can be either 4 to 20 mA, or 1 to 5 V dc for low power installations.
- Fieldbus version FISCO/FNICO compliant.
- SIL2-Certified transmitter offered as an option for HART versions.
- Silicon strain gauge sensors successfully field-proven in many thousands of installations.
- Aluminum housing has durable, corrosion-resistant epoxy finish; 316 ss housing also available; both meet NEMA 4X and IP66 ratings.
- Stainless steel or Inconel wetted sensor for 105 MPa (15,000 psi) transmitters, or high strength 13-8 Molybdenum stainless steel for 210 MPa (30,000 psi) transmitters.
- Welded, stainless steel pressure capsule assembly with bonded strain gauge sensor provides an airtight and watertight seal and intrinsic overpressure protection.
- Multi-marking is available for HART electronic versions only for FM, CSA, and ATEX intrinsically safe installations. The user determines and permanently marks on the data plate the certification to be applied.
CE marked; complies with applicable EMC, ATEX, and PED European Directives.

- Meets numerous Agency requirements for hazardous area locations. Versions available to meet Agency zone requirements.
- Dual Seal certified by CSA to meet ANSI/ISA 12.27.01-2003 requirements.
- Many options and accessories offered to expand the capabilities of these transmitters.
- Standard 5-year warranty.

I/A Series® PRESSURE TRANSMITTER FAMILY

The I/A Series Electronic Pressure Transmitters are a complete family of d/p Cell®, gauge, absolute, multirange, multivariable, and premium performance transmitters, as well as transmitters with remote or direct connect pressure seals, all using field-proven silicon strain gauge sensors and common topworks. The family additionally includes transmitters, also with common topworks, specifically for use in sanitary, and pulp and paper processes.

Select the electronics module you need to provide just the right level of intelligence for your application and budget. If your needs change, the modular design allows easy migration to standards including FoxCom, HART, FOUNDATION Fieldbus, and Analog 4 to 20 mA or 1 to 5 V dc.

DIGITAL AND ANALOG OUTPUT VERSIONS

Digital output versions include transmitters with FoxCom, HART, or FOUNDATION Fieldbus communication protocols. Analog output versions include 4 to 20 mA output and 1 to 5 V dc output.

Digital FoxCom or 4 to 20 mA dc (Version -D Electronics)

FoxCom Digital Output

Provides Measurement Integration with I/A Series systems, transmission of multiple measurements, and workstation configuration and diagnostics. Also provides digital communications with a PC-based configurator or optional LCD indicator with pushbuttons for local configuration and calibration.

FoxCom 4 to 20 mA Output

Allows direct analog connection to common receivers while still providing full Intelligent Transmitter Digital Communications with a PC-based Configurator, applicable I/A Series system FBMs, or optional LCD Indicator with pushbuttons for configuration and calibration.

Digital HART and 4 to 20 mA dc (Version -T Electronics)

4 to 20 mA with HART communications. Allows direct analog connection to common receivers while still providing full Intelligent Digital Communications using a HART Communicator or PC-based Configurator.

Digital FOUNDATION Fieldbus - FISCO/FNICO Compliant (Version -F Electronics)

This all digital, serial, two-way communication system interconnects field devices, such as transmitters, actuators, and controllers. It is a Local Area Network (LAN) with built-in capability to distribute control application across the network. Fieldbus technology consists of a Physical Layer, a Communication Stack, and User Application Blocks. The communication stack includes an LAS (Link Access Scheduler), and the user application software blocks include AI (Analog Input) and PID (Proportional/Integral/ Derivative) function blocks. Interoperability of fieldbus devices is achieved using device addresses (IDs) and device descriptions (DDs).
4 to 20 mA dc Analog Output
(Version -A Electronics)

Version -A transmitters are the most cost effective analog output transmitters available providing full configuration capability. They represent Foxboro advancements in providing the greatest functionality for the largest number of applications at the least possible cost to you.

These transmitters even provide the ability to rerange to new calibrated ranges, using the standard LCD Indicator with on-board pushbuttons, without the need to apply calibration pressure. They are explosionproof for use in Division 1 hazardous areas, and comply with Division 2 requirements.

1 to 5 V dc Analog Output (Version -V Electronics)

These low power, low voltage transmitters are both explosionproof and intrinsically safe and provide a standard LCD Indicator with on-board pushbuttons for configuration and calibration. They provide:

- 1 to 5 V dc Output Signal
- 9 V dc Minimum Voltage
- 3 mA maximum current

HIGH PERFORMANCE

These transmitters utilize microprocessor-based correction to achieve both excellent accuracy and ambient temperature compensation.

OPTIONAL SIL2 TRANSMITTERS WITH HART PROTOCOL

Modern industrial processes tend to be technically complex and have the potential to inflict serious harm to persons or property during a mishap. The IEC 61508 standard defines safety as “freedom from unacceptable risk.” SIL2 pressure transmitters with HART communication protocol, in conjunction with Triconex Safety Systems, provide integrated solutions for safety and critical control applications.

The integrated solution is certified as interference-free from the 4 to 20 mA loop; this guarantees the integrity of the safety system and the safety of the controlled process. The integrated design allows uninterrupted operation of the safety function, while allowing access to device level information via HART commands. The solution permits interface of device diagnostics with asset management systems without compromising functional safety. Select Option -S2 for a SIL2-certified HART Transmitter. A copy of the certification is available via Auxiliary Specification (AS) Code CERT-S.

COMPLIANCE WITH EUROPEAN UNION DIRECTIVES

- Complies with Electromagnetic Compatibility Requirements of European EMC Directive 2004/108/EC by conforming to the following EN and IEC Standards: EN 61326-1, and IEC 61000-4-2 through 61000-4-6.
- Complies with NAMUR NE 21 Interference Immunity Requirement (EMC), and NAMUR NE 43 analog output overrange and underrange annunciations.
- Complies with all Applicable European Union Directives (“CE” Logo marked on product).

ALL WELDED PRESSURE CAPSULE ASSEMBLY

All welded, stainless steel exterior pressure capsule assembly surfaces provide an airtight and watertight bottomworks ideal for corrosive environments. The capsule assembly features a bonded foil strain gauge sensor. The intrinsic overpressure protection in this design eliminates sensor damage when exposed to high pressure surges.
DEPENDABLE AND EFFICIENT DESIGN

- Silicon Strain Gauge Technology has been Field-Proven in Hundreds of Thousands of Successful Applications.
- Simple, Elegant Packaging uses a Minimum of Parts to Achieve Exceptionally High Reliability.

DIRECT PROCESS MOUNTING

Because of their light weight, these transmitters can be directly connected to the process piping without mounting brackets. However, for unique requirements, an optional mounting bracket is offered, and an interconnection to the process can be made using the transmitter process connection selected.

EASE OF INSTALLATION

- Rotatable Topworks allows transmitter installation in tight places, allows indicator to be positioned in preferred direction, and eases field retrofit.
- Two Conduit Entrances offer a choice of entry positions for ease of installation and self-draining of condensation regardless of mounting position and topworks rotation.
- Wiring Guides and Terminations provide ease of wire entry and support, plenty of space to work and store excess wire, and large, rugged, rugged screw terminals for easy wire termination.

EXPLOSIONPROOF DESIGN

Transmitter meets numerous agency requirements for hazardous area locations. Versions available to meet Agency flameproof and zone requirements.

LCD INDICATOR (FIGURE 1)

A two-line indicator with pushbuttons displays the measurement with a choice of units. The pushbuttons allow zero and span adjustments as well as local configuration without the need for a PC-based Configurator. This indicator is optional with the Digital Output transmitters, and standard with the Analog Output transmitters. When used with Analog Output transmitters, if local process indication is not required or desired, an optional blind (solid) cover can be substituted for the standard window cover.

NOTE

When an LCD Indicator is used, ensure that the URV (upper range value) in the selected pressure units does not exceed the character capacity on the top line of the display; i.e., five numeric characters, or four with the analog output transmitters. This is especially important with analog output transmitters (Versions -A and -V) since the LCD must be used for URV entry.
Span and Range Limits

<table>
<thead>
<tr>
<th>Span Limit Code</th>
<th>Span Limits</th>
<th>Range Limits (Gauge Pressure Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>psi</td>
</tr>
<tr>
<td>K</td>
<td>17 and 52</td>
<td>2500 and 7500</td>
</tr>
<tr>
<td>G</td>
<td>35 and 105</td>
<td>5000 and 15,000</td>
</tr>
<tr>
<td>H</td>
<td>70 and 210</td>
<td>10,000 and 30,000</td>
</tr>
</tbody>
</table>

Maximum Overrange Pressure Rating

<table>
<thead>
<tr>
<th>Span Limit Code</th>
<th>Maximum Overrange Pressure (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
</tr>
<tr>
<td>K</td>
<td>79</td>
</tr>
<tr>
<td>G</td>
<td>137</td>
</tr>
<tr>
<td>H</td>
<td>231</td>
</tr>
</tbody>
</table>

a. Maximum overrange pressure is the maximum pressure that may be applied without causing damage to the transmitter. The ratings are in gauge pressure units.

Zero and Span Adjustments

These adjustments can be initiated from the I/A Series Workstation (with applicable FBMs), the PC-based Configurator, or the LCD Indicator.

Zeroing for Nonzero-Based Ranges for FoxCom and HART Versions Only

Dual Function Zeroing is provided to allow zeroing with the transmitter open to atmosphere, even when there is a nonzero-based range. This greatly simplifies position effect zeroing on many pressure and level applications. It also applies to the LCD Indicator Pushbuttons and Optional External Zero Adjustment (see Figure 3).

Optional External Zero Adjustment

External pushbutton mechanism (Figure 3) is isolated from the electronics compartment and magnetically activates an internal reed switch through the housing. This eliminates a potential leak path for moisture or contaminants to get into the electronics compartment. This zero adjustment can be disabled by a configuration selection.

Field Wiring Reversal

No transmitter damage.

Electronics and Sensor Temperatures

Readable from I/A Series system or PC-based Configurator only. Measurement is transmitter temperature, at the sensor and electronics module, not necessarily process temperature.
Adjustable Damping

Versions -D, -T, and -F Electronics

Transmitter response time is normally 0.75 s, and electronically adjustable to 0.00 (none), 0.25, 0.50, 1, 2, 4, 8, 16, or 32 seconds, whichever is greater, for a 90% recovery from an 80% input step as defined in ANSI/ISA S51.1. (For a 63.2% recovery, 0.5 s with Sensor Codes K, G, and H.) Damping can be set in both the transducer and AI blocks with the -F version.

Version -A and -V Electronics

Transmitter response time is normally 0.75 s, and electronically adjustable to 0 (none), 2, 4, or 8 seconds, whichever is greater, for a 90% recovery from an 80% input step as defined in ANSI/ISA S51.1. (For a 63.2% recovery, 0.5 s with Sensor Codes K, G, and H.)

Current Outputs for Overrange, Fail, and Offline Conditions - FoxCom and HART Only

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FoxCom</th>
<th>HART</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE</td>
<td>User configurable between 4 and 20 mA</td>
<td></td>
</tr>
<tr>
<td>SENSOR FAILURE</td>
<td>User configurable to Fail LO or Fail HI</td>
<td></td>
</tr>
<tr>
<td>FAIL LO</td>
<td>3.60 mA</td>
<td>3.60 mA</td>
</tr>
<tr>
<td>UNDERRANGE</td>
<td>3.75 mA</td>
<td>3.80 mA</td>
</tr>
<tr>
<td>OVERRANGE</td>
<td>21.00 mA</td>
<td>20.50 mA</td>
</tr>
<tr>
<td>FAIL HI</td>
<td>22.00 mA</td>
<td>21.00 mA</td>
</tr>
</tbody>
</table>

Write Protect Jumper (Electronics Versions -D, -F, and -T)

Can be positioned to lock out all configurators from making transmitter database changes. This makes transmitter suitable for Safety Shutdown System Applications that require this feature.

Supply Voltage

4 to 20 mA Output

Minimum supply voltage shown in Figure 2 is 11.5 V dc. For Versions -D, -T, and -A, this can be reduced to 11 V dc by using a jumper across test receptacles in the field wiring compartment terminal block. See Figure 8.

Figure 2. 4 to 20 mA Output, Supply Voltage vs. Output Load

Transmitter will function with output load < 250 Ω provided that a HART Communicator or PC-based Configurator is not connected to it. Use of a HART Communicator or PC-based Configurator requires 250 Ω minimum load.
Liquid Crystal Display (LCD) Indicator with On-Board Pushbuttons (Figure 3)

This indicator is standard with the -A and -V electronic versions, and optional with the -D, -T, and -F electronic versions.

The indicator provides:

- Two Lines; five numeric characters on top line (four when a minus sign is needed, and for analog output versions) and seven alphanumeric characters on bottom line.
- Measurement Readout; value on top line and units label on bottom line.
- Configuration and Calibration Prompts.

Configuration and Calibration Data, and Electronics Upgradeability

All factory characterization data and user configuration and calibration data are stored in the sensor. This means that the electronics module may be replaced, with one of like type, without the need for reconfiguration or recalibration. Although module replacement can affect accuracy by a maximum of 0.20% of span, this error can be removed by an mA trim without application of pressure (not applicable to Fieldbus version).

Changing module types (e.g., from one protocol to another protocol) may require reconfiguration and recalibration, as well as a different terminal block, but all factory characterization data is retained.

Allowable Pressure Units for Calibrated Range

MPa, psig, bar, kg/cm², mH₂O, and atm. Also mH₂O for HART only.

FoxCom (Version -D) Communications

Digital Mode (Fixed Current)

Digital Output signal is updated 10 times per second and carries the pressure measurement, and sensor and electronics temperature measurements. See Table 1 for communication parameters and Figure 4 for a digital output block diagrams.

HART (Version -T) Communications

4 to 20 mA Analog Mode

Analog output is updated a minimum of 30 times per second. A minimum loop load of 250 ohms is required. See Table 1 for communication parameters and Figure 5 for 4 to 20 mA output block diagram.

Multidrop Mode (Fixed Current)

This Mode supports communications with up to 15 transmitters on a single pair of signal/power wires. The output signal is updated 4 times/second. A minimum loop load of 250 ohms is required. See Table 1 for communication parameters and Figure 6 for a typical multidrop block diagram.
FOUNDATION Fieldbus (Version -F)

Communications

Fieldbus is a serial, two-way communication system that runs at 31.25 kbits/s. The digital output signal is superimposed on the dc power signal on the bus, and controlled by a strict cycle schedule and protocol. Supply voltage, 9 to 32 V dc, is by a specific Fieldbus power source. The maximum number of devices on a non-intrinsically safe bus is 32. For intrinsically safe bus systems, the maximum number is 6. See Table 1 for communication parameters and Figure 7 for a typical installation topology.

Analog Output (Versions -A and -V)

Version -A

This version provides a 4 to 20 mA analog output signal and also full configuration capability using the standard LCD Indicator with pushbuttons. Also, reranging to new calibrated ranges is allowed without the need to apply calibration pressure.

Version -V

This is a low power, low voltage transmitter that provides a 1 to 5 V dc analog output signal, a 9 V dc minimum voltage, and 3 mA maximum current. As with the Version -A, it allows full configuration capability, and reranging without the need to apply calibration pressure, using the standard LCD Indicator with pushbuttons.

Table 1. Communication Parameters - FoxCom, HART, and FOUNDATION Fieldbus

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FoxCom</th>
<th>HART</th>
<th>Fieldbus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analog Mode</td>
<td>Digital Mode</td>
<td>Analog Mode</td>
</tr>
<tr>
<td>Remote Configurator</td>
<td>Remote Configurator, or I/A Series System</td>
<td>HART Communicator or PC-based Configurator</td>
<td>I/A Series System, PC Host, or Fieldbus Certified Host</td>
</tr>
<tr>
<td>Communication Rate</td>
<td>600 baud</td>
<td>4800 baud</td>
<td>1200 baud</td>
</tr>
<tr>
<td>Communication Distance</td>
<td>1800 m (6000 ft)</td>
<td>600 m (2000 ft)</td>
<td>3050 m (10 000 ft)</td>
</tr>
</tbody>
</table>

a. Total bus length including all spurs. Maximum spur length is 120 m (395 ft). For hybrid installations, maximum I.S. spur length is dependent on the field barrier used. For intrinsically safe bus installations, the maximum spur length is 30 m (98 ft).
Figure 4. Digital Output Block Diagram
(FoxCom)

Figure 5. 4 to 20 mA Output Block Diagram
(FoxCom and HART)

Figure 6. Typical Multidrop Block Diagram
(HART – Up to Fifteen Transmitters)

Figure 7. Miscellaneous Installation Topologies
(FOUNDATION Fieldbus)
OPERATING, STORAGE, AND TRANSPORTATION CONDITIONS

<table>
<thead>
<tr>
<th>Influence</th>
<th>Reference Operating Conditions</th>
<th>Normal Operating Conditions (a)</th>
<th>Operative Limits (a)</th>
<th>Storage and Transportation Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Connection Temp. (Neobee M-20 Fill)</td>
<td>$24 \pm 2^\circ C$ ($75 \pm 3^\circ F$)</td>
<td>-40 and $+82^\circ C$ (-40 and $+180^\circ F$)</td>
<td>-40 and $+10^4^\circ C$ (-40 and $+220^\circ F$)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Electronics Temperature with LCD Indicator (c)</td>
<td>$24 \pm 2^\circ C$ ($75 \pm 3^\circ F$)</td>
<td>-29 to $+82^\circ C$ (-20 to $+180^\circ F$)</td>
<td>-40 and $+85^\circ C$ (-40 and $+185^\circ F$)</td>
<td>-54 and $+85^\circ C$ (-65 and $+185^\circ F$)</td>
</tr>
<tr>
<td>Relative Humidity (e)</td>
<td>50 ±10%</td>
<td>0 to 100%</td>
<td>0 and 100%</td>
<td>0 and 100% Noncondensing</td>
</tr>
<tr>
<td>mA Output Supply Voltage Output Load</td>
<td>30 ±0.5 V dc 650 Ω</td>
<td>11.5 to 42 V dc (f) 0 to 1450 Ω (g)</td>
<td>11.5 and 42 V dc (f) 0 and 1450 Ω (g)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Voltage Output Supply Voltage Supply Current Output Load</td>
<td>12.5 ±0.5 V dc (h) 10 MΩ</td>
<td>9 to 15.5 V dc (h) 1 to 10 MΩ</td>
<td>9 and 30 V dc (h) (i)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus Supply Voltage (j)</td>
<td>30 ±0.5 V dc</td>
<td>9 to 32 V dc</td>
<td>9 and 32 V dc</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vibration</td>
<td>1 m/s² (0.1 "g")</td>
<td>6.3 mm (0.25 in) Double Amplitude: from 5 to 15 Hz with Aluminum Housing and from 5 to 9 Hz with 316 ss Housing</td>
<td>11 m/s² (1.1 "g") from 2.5 to 5 Hz (in Shipping Package)</td>
<td></td>
</tr>
</tbody>
</table>

- Normal Operating Conditions and Operative Limits are defined per ANSI/ISA 51.1-1979 (R1993).
- Selection of Option -J extends the low temperature operative limit of transmitters with silicone filled sensors down to -50°C (-58°F). Performance is not assured below -29°C. Sensor damage may occur if process is frozen.
- Although the LCD will not be damaged at any temperature within the “Storage and Transportation Limits,” updates will be slowed and readability decreased at temperatures outside the “Normal Operating Conditions.”
- Refer to “ELECTRICAL SAFETY SPECIFICATIONS” on page 14 for restriction in electronic temperature limits with certain electrical approvals/certifications.
- With topworks covers on and conduit entrances sealed.
- 11.5 V dc can be reduced to 11 V dc by using a plug-in shorting bar with -D, -T, and -A electronic versions. See Figure 8.
- 250 Ω minimum load required for proper communication with FoxCom and HART Protocol. See Figure 2.
- Supply Current: 3 mA maximum demand within operative limits.
- Operative limits are 100 kΩ to open circuit, 0.2 μf maximum.
- Power supplied by a specific Fieldbus power supply.
Accuracy (Includes Linearity, Hysteresis, and Repeatability)

±0.20% of Span (factory configured with 2.0 seconds user-adjustable damping)

Calibration Frequency

The calibration frequency is five years. The five years is derived using the values of allowable error (% span), TPE (% span), performance margin (% span), and stability (% span/month); where:

\[
\text{Calibration Frequency} = \frac{\text{Performance Margin}}{\text{Stability}} = \text{Months}
\]

Power-Up Time

Less than 5 seconds for output to reach first valid measurement.

Supply Voltage Effect

The output changes less than 0.005% of span for each 1 V change within the specified supply voltage requirements.

Vibration Effect

Total effect is ±0.2% of URL per “g” for vibrations in the frequency range of 5 to 500 Hz; with double amplitudes of 6.3 mm (0.25 in) in the range of 5 to 15 Hz, or accelerations of 3 “g” in the range of 15 to 500 Hz, whichever is smaller, for aluminum housings; and with double amplitudes of 6.3 mm (0.25 in) in the range of 5 to 9 Hz, or accelerations of 1 “g” in the range of 9 to 500 Hz, whichever is smaller, for 316 ss housings.

Position Effect

The transmitter may be mounted in any position. Any zero effect caused by the mounting position can be eliminated by rezeroing. There is no span effect.

Ambient Temperature Effect

Total effect for a 55°C (100°F) change within Normal Operating Condition limits is:

<table>
<thead>
<tr>
<th>Span Limit Codes</th>
<th>Ambient Temperature Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>For -D FoxCom Transmitters</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>All</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>For -T HART Transmitters</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>All</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>For -F FOUNDATION Fieldbus Transmitters</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>All</td>
<td>±(0.155% URL + 0.045% Span)</td>
</tr>
<tr>
<td>For -A Analog Transmitters</td>
<td>±(0.155% URL + 0.30% Span)</td>
</tr>
<tr>
<td>All</td>
<td>±(0.155% URL + 0.30% Span)</td>
</tr>
<tr>
<td>For -V Analog Transmitters</td>
<td>±(0.155% URL + 0.10% Span)</td>
</tr>
</tbody>
</table>

RFI Effect

The output error is less than 0.1% of span for radio frequencies in the range of 27 to 1000 MHz and field intensity of 10 V/m when the transmitter is properly installed with shielded conduit and grounding, and housing covers are in place. (Per IEC Std. 61000-4-3.)

Switching and Indirect Lightning Transients

The transmitter can withstand a transient surge up to 2000 V common mode or 1000 V normal mode without permanent damage. The output shift is less than 1.0%. (Per ANSI/IEEE C62.41-1980 and IEC Std. 61000-4-5.)
Environmental Protection
The enclosure has the dusttight and weatherproof rating of IP66 as defined by IEC 60529 and provides the environmental and corrosion resistant protection rating of NEMA 4X.

Electronics Housing and Housing Covers
Housing has two compartments to separate the electronics from the field connections. The housing and covers are made from low copper (0.6% maximum) die-cast aluminum alloy with an epoxy finish, or from 316 ss. Buna-N O-ring seals are used to seal the threaded housing covers, housing neck, and terminal block.

Process Wetted Parts
For Span Limit Codes G and K
15-5 ss or Inconel X-750
For Span Limit Code H
13-8 Molybdenum Stainless Steel

Process Connections

<table>
<thead>
<tr>
<th>Structure Code</th>
<th>Span Limit Code</th>
<th>Process Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4 NPT Internal</td>
<td>G 1/2 (a) External</td>
</tr>
<tr>
<td>24</td>
<td>G and K</td>
<td>Standard</td>
</tr>
<tr>
<td>26</td>
<td>G and K</td>
<td>Standard</td>
</tr>
<tr>
<td>28</td>
<td>H</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a. Option -G = G 1/2 Form B ext. thread manometer connection.
b. Option -G1 = Autoclave F-250-C connection with a 9/16-18 internal gland thread.

Electronics Module
Printed wiring assemblies are conformally coated for moisture and dust protection.

Mounting Position
The transmitter may be mounted in any orientation.

Electrical Conduit Connections
Two 1/2 NPT, PG13.5, or M20 conduit threads on sides of transmitter housing. Unused connection must be plugged (metal plug is offered) to ensure moisture/RFI protection. See “MODEL CODE - IGP10 SERIES FOR HIGH GAUGE PRESSURE MEASUREMENT” on page 19 for optional cable glands and thread adapters.

Electrical Terminations
Field wires enter through the conduit connections described above and terminate under screw terminals and washers on the terminal block in the field terminals compartment. See Figure 8 for the terminal block configuration for the different transmitter electronics versions offered.

Approximate Mass

With Aluminum Housing
1.5 kg (3.3 lb)

With 316 ss Housing
2.6 kg (5.7 lb)

With LCD Indicator
Add 0.2 kg (0.4 lb)
Figure 8. Field Terminals Compartment for the Electronics Versions Offered

-D FoxCom, -T HART, AND -A ANALOG TRANSMITTER VERSIONS

EARTH (GROUND) TERMINAL SCREW, 0.164-32
(+/-) AND (-) POWER TERMINAL SCREWS, 0.164-32
RECEPTACLES (3) FOR STANDARD BANANA PLUGS
TERMINAL BLOCK LOCATED IN FIELD TERMINAL SIDE OF TRANSMITTER
-1 FoxCom VERSION
FOR PC-BASED CONFIGURATOR PLUGS
-1 T HART VERSION
FOR HART COMMUNICATOR PLUGS
-1 A ANALOG VERSION
NO REMOTE COMMUNICATION, UPPER BANANA RECEPTACLE IS PLUGGED
USED TO CHECK TRANSMITTER 4 TO 20 mA OUTPUT

-F FOUNDATION Fieldbus TRANSMITTER VERSION

EARTH (GROUND) TERMINAL SCREW, 0.164-32
POLARITY INDEPENDENT TERMINALS: 0.164-32 SCREWS
TERMINAL BLOCK LOCATED IN FIELD TERMINAL SIDE OF TRANSMITTER
SURGE PROTECTION JUMPER

-V ANALOG TRANSMITTER VERSION

EARTH (GROUND) TERMINAL SCREW, 0.164-32
(+/-) AND (-) POWER TERMINAL SCREWS, 0.164-32
TERMINAL BLOCK LOCATED IN FIELD TERMINAL SIDE OF TRANSMITTER
OUTPUT VOLTAGE TERMINAL SCREWS 0.164-32
A=(POS.) B=(NEG.)
OPTIONAL SHORTING BAR (SB-11)
REDUCES MINIMUM VOLTAGE FROM 11.5 TO 11 V dc

-D FoxCom, -T HART, AND -A ANALOG TRANSMITTER VERSIONS

EARTH (GROUND) TERMINAL SCREW, 0.164-32
(+/-) AND (-) POWER TERMINAL SCREWS, 0.164-32
RECEPTACLES (3) FOR STANDARD BANANA PLUGS
TERMINAL BLOCK LOCATED IN FIELD TERMINAL SIDE OF TRANSMITTER
-1 FoxCom VERSION
FOR PC-BASED CONFIGURATOR PLUGS
-1 T HART VERSION
FOR HART COMMUNICATOR PLUGS
-1 A ANALOG VERSION
NO REMOTE COMMUNICATION, UPPER BANANA RECEPTACLE IS PLUGGED
USED TO CHECK TRANSMITTER 4 TO 20 mA OUTPUT
ELECTRICAL SAFETY SPECIFICATIONS

Transmitters have been designed to meet the electrical safety descriptions listed in the tables that follow. Contact Global Customer Support for information or status of testing laboratory approvals/certifications.

NOTES

- See “MODEL CODE - IGP10 SERIES FOR HIGH GAUGE PRESSURE MEASUREMENT” on page 19 for availability of Electrical Safety Design Codes with Transmitter Structures.
- Refer to applicable Instruction Manual for application conditions and connectivity requirements.
- When selecting ATEX Safety Design Code M for Foxboro or HART Electronic Versions, the user must permanently mark (check off in rectangle block on data plate) one type of protection only (ia and ib, or n). Do not change this mark once it has been applied.
- When selecting Safety Design Code W for HART Electronic Versions, the user must permanently mark (check off in rectangular block on data plate) intrinsically safe certifications for ATEX, CSA, or FM, as applicable. Do not change this mark once it has been applied.

Electronics Version -A (4 to 20 mA Analog Output Version)

<table>
<thead>
<tr>
<th>Testing Laboratory, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Maximum Ambient Temperature 85°C.</td>
<td>C</td>
</tr>
<tr>
<td>CSA Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 1.</td>
<td>Temperature Class T6 at 40°C and T4A at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>FM explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Temperature Class T6 at 80°C and T5 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM nonincendive for Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G, and Class III, Division 2.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
</tbody>
</table>
Electronics Version -D (FoxCom Version)

<table>
<thead>
<tr>
<th>Testing Laboratory, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
</table>
| **ATEX** intrinsically safe; II 1 GD, EEx ia IIC, Zone 0 or II 1/2 GD, EEx ib IIC, Zone 0 and 1. | Temperature Class T4; Ta = -40 to +80°C
Temperature Class T5; Ta = -40 to +40°C
Temperature Class T6; Ta = -40 to +40°C | E |
| **ATEX** protection n; II 3 GD, EEx nL IIC, Zone 2. | Temperature Class T4; Ta = -40 to +80°C
Temperature Class T5; Ta = -40 to +70°C
Temperature Class T6; Ta = -40 to +40°C | N |
| **ATEX** multiple certifications, ia and ib, and n. Refer to ATEX Codes E and N. | Applies to Codes E and N. | M |
| **CSA** intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1. | Temperature Class T6 at 40°C, and T4A at 85°C maximum ambient. | C |
| **CSA** explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1. | Maximum Ambient Temperature 85°C. | C |
| **CSA** Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 2. | Temperature Class T6 at 40°C and T4A at 85°C maximum ambient. | C |
| **FM** intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1. | Temperature Class T4A at 40°C and T4 at 85°C maximum ambient. | F |
| **FM** explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1. | Temperature Class T6 at 80°C and T5 at 85°C maximum ambient. | F |
| **FM** nonincendive Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G, and Class III, Division 2. | Temperature Class T4A at 40°C and T4 at 85°C maximum ambient. | F |
Electronics Version -F (FOUNDATION Fieldbus Version)

<table>
<thead>
<tr>
<th>Testing Laboratory, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX FISCO field device intrinsically safe; II 1 G, EEx ia IIC, Zone 0.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>E</td>
</tr>
<tr>
<td>ATEX FNICO field device protection n; II 3 G, EEx nL IIC, Zone 2.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>N</td>
</tr>
<tr>
<td>CSA FISCO field device intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T6 at 40°C, and T4A at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Maximum Ambient Temperature 85°C.</td>
<td>C</td>
</tr>
<tr>
<td>CSA FNICO field device Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 2.</td>
<td>Temperature Class T6 at 40°C and T4A at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA zone certified intrinsically safe Ex ia IIC, and energy limited Ex nA II.</td>
<td>Temperature Class T4 at 40°C, and T3 at 85°C maximum ambient.</td>
<td>L</td>
</tr>
<tr>
<td>FM FISCO field device intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Temperature Class T6 at 80°C and T5 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM FNICO field device nonincendive Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G, and Class III, Division 2.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM zone approved intrinsically safe AEx ia IIC.</td>
<td>Temperature Class T4 at 85°C maximum ambient.</td>
<td>R</td>
</tr>
<tr>
<td>IECEx FISCO field device intrinsically safe, Ex ia IIC, Zone 0.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>T</td>
</tr>
<tr>
<td>IECEx FNICO field device protection n, Ex nL IIC, Zone 2.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>U</td>
</tr>
</tbody>
</table>
Electronics Version -T (HART Version)

<table>
<thead>
<tr>
<th>Testing Laboratory, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX intrinsically safe; II 1 GD EEx ia IIC, Zone 0.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>E</td>
</tr>
<tr>
<td>ATEX protection n; II 3 GD, EEx nL IIC, Zone 2.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>N</td>
</tr>
<tr>
<td>ATEX multiple certifications, ia and ib, and n. Refer to ATEX Codes E and N for details.</td>
<td>Applies to Codes E and N but not to Code D.</td>
<td>M</td>
</tr>
<tr>
<td>CSA intrinsically safe for Class I, Division 1, Groups A, B, C, and D, Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T4A at 40°C and T3C at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA explosionproof for Class I, Division 1, Groups B, C, and D, and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Maximum Ambient Temperature 85°C.</td>
<td>C</td>
</tr>
<tr>
<td>CSA Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 2.</td>
<td>Temperature Class T4A at 40°C and T3C at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA zone certified intrinsically safe Ex ia IIC, and energy limited Ex nA II.</td>
<td>Temperature Class T4 at 40°C and T3 at 85°C maximum ambient.</td>
<td>L</td>
</tr>
<tr>
<td>FM intrinsically safe for Class I, Division 1, Groups A, B, C, and D, Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Temperature Class T6 at 80°C and T5 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM nonincendive Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G, and Class III, Division 2.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM zone certified intrinsically safe AEx ia IIC.</td>
<td>Temperature Class T4 at 85°C maximum ambient.</td>
<td>R</td>
</tr>
<tr>
<td>IECEx intrinsically safe, Ex ia IIC.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>T</td>
</tr>
<tr>
<td>IECEx protection n, Ex nL IIC.</td>
<td>Temperature Class T4, Ta = -40°C to +80°C.</td>
<td>U</td>
</tr>
<tr>
<td>Multi-marked for HART as follows: ATEX intrinsically safe, II 1 GD, EEx ia IIC, Zone 0.</td>
<td>See application conditions for Code E intrinsically safe applications.</td>
<td>W</td>
</tr>
<tr>
<td>CSA intrinsically safe, Cl. I, Div. 1, Groups A, B, C, D; Class II, Div. 1, Groups E, F, G; Class III, Div. 1. Also CSA zone certified intrinsically safe Ex ia IIC.</td>
<td>See application conditions for Code C intrinsically safe applications.</td>
<td>W</td>
</tr>
<tr>
<td>FM intrinsically safe, Cl. I, Div. 1, Groups A, B, C, D; Class II, Div. 1, Groups E, F, G; Class III, Div. 1; also FM zone certified intrinsically safe AEx ia IIC.</td>
<td>See application conditions for Code F intrinsically safe applications.</td>
<td>W</td>
</tr>
</tbody>
</table>
Electronics Version -V (1 to 5 V dc Analog Output Version)

<table>
<thead>
<tr>
<th>Testing Laboratory, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T6 at 40°C and T4A at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Maximum Ambient Temperature 85°C.</td>
<td>C</td>
</tr>
<tr>
<td>CSA Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 2.</td>
<td>Temperature Class T6 at 40°C and T4A at 85°C maximum ambient.</td>
<td>C</td>
</tr>
<tr>
<td>CSA zone certified intrinsically safe Ex ia IIC, and energy limited Ex nA II.</td>
<td>Temperature Class T4 at 40°C and T3 at 85°C maximum ambient.</td>
<td>L</td>
</tr>
<tr>
<td>FM intrinsically safe for Class I, Division 1, Groups A, B, C, and D; Class II, Division 1, Groups E, F, and G; Class III, Division 1.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM explosionproof for Class I, Division 1, Groups B, C, and D; and dust-ignitionproof for Class II, Division 1, Groups E, F, and G; and Class III, Division 1.</td>
<td>Temperature Class T6 at 80°C and T5 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM nonincendive Class I, Division 2, Groups A, B, C, and D; Class II, Division 2, Groups F and G; and Class III, Division 2.</td>
<td>Temperature Class T4A at 40°C and T4 at 85°C maximum ambient.</td>
<td>F</td>
</tr>
<tr>
<td>FM zone approved intrinsically safe AEx ia IIC.</td>
<td>Temperature Class T4 at 85°C maximum ambient.</td>
<td>R</td>
</tr>
</tbody>
</table>
Description

I/A Series, Electronic, Direct Connected, High Gauge Pressure Transmitter (a)

Electronics Versions and Output Signal

- Intelligent; Digital FoxCom and 4 to 20 mA dc, Configurable (Version –D) –D
- Intelligent; Digital HART and 4 to 20 mA (Version –T) –T
- Intelligent; Digital FOUNDATION fieldbus (Version –F) –F
- Electronic; 4 to 20 mA Analog Output, (Version –A) (b) –A
- Electronic; 1 to 5 V dc Analog Output, Low Power (Version –V) (b) –V

Structure Code – Process Connection, Sensor, and Fill Fluid

<table>
<thead>
<tr>
<th>Connection</th>
<th>Diaphragm Material</th>
<th>Fill Material</th>
<th>Type Used with:</th>
<th>Used with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-5 ss</td>
<td>15-5 ss</td>
<td>None</td>
<td>1/4 NPT, Internal</td>
<td>Structure Code G and K only</td>
</tr>
<tr>
<td>Inconel X-750</td>
<td>Inconel X-750</td>
<td>None</td>
<td>1/4 NPT, Internal</td>
<td>Structure Code G and K only</td>
</tr>
<tr>
<td>13-8 Moly ss</td>
<td>13-8 Moly ss</td>
<td>None</td>
<td>Autoclave F-250-C (c)</td>
<td>Span Limit Code H only</td>
</tr>
</tbody>
</table>

Span Limits – Gauge Pressure Units

<table>
<thead>
<tr>
<th>MPa</th>
<th>psi</th>
<th>bar</th>
<th>Used with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 and 52</td>
<td>2500 and 7500</td>
<td>175 and 525</td>
<td>Structure Codes 24 and 26 only</td>
</tr>
<tr>
<td>35 and 105</td>
<td>5000 and 15 000</td>
<td>350 and 1050</td>
<td>Structure Codes 24 and 26 only</td>
</tr>
<tr>
<td>70 and 210</td>
<td>10 000 and 30 000</td>
<td>700 and 2100</td>
<td>Structure Code 28 only</td>
</tr>
</tbody>
</table>

Conduit Connection and Housing Material

<table>
<thead>
<tr>
<th>Conduit Connection</th>
<th>Housing Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 NPT</td>
<td>Conduit Connection, Both Sides, Aluminum Housing</td>
</tr>
<tr>
<td>PG 13.5</td>
<td>Conduit Connection, Both Sides, 316 ss Housing</td>
</tr>
<tr>
<td>M20</td>
<td>Conduit Connection, Both Sides, 316 ss Housing</td>
</tr>
</tbody>
</table>

Electrical Safety (See “ELECTRICAL SAFETY SPECIFICATIONS” on page 14 for Description)

ATEX Certifications as follows:

- Version D; EEx ia IIC, Zone 0; or EEx ib IIC, Zone 0 and 1
- Version F; FISCO EEx ia IIC, Zone 0
- Version T; EEx ia IIC, Zone 0

ATEX Certifications as follows:

- Versions D and T; EEx nL IIC, Zone 2
- Version F; FNICO EEx nL IIC, Zone 2

ATEX Certifications as follows:

- Versions D and T; Multiple Certifications, includes ATEX Codes E and N. See “ELECTRICAL SAFETY SPECIFICATIONS” on page 14 for user marking.
CSA Certifications as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Electronic Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsically Safe; Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>Explosionproof, Dust-ignitionproof; Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>Class I, II, III; Div. 2</td>
<td>X</td>
</tr>
<tr>
<td>Zone Certified: Ex ia IIC; Ex nA II</td>
<td>X</td>
</tr>
<tr>
<td>FISCO, Class I, II, III, Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>FNICO, Class I, II, III, Div. 2</td>
<td>X</td>
</tr>
</tbody>
</table>

FM Approvals as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Electronic Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsically Safe; Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>Explosionproof, Dust-ignitionproof; Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>Nonincendive for Div. 2</td>
<td>X</td>
</tr>
<tr>
<td>Zone Approved: AEx ia IIC</td>
<td>X</td>
</tr>
<tr>
<td>FISCO, Class I, II, III, Div. 1</td>
<td>X</td>
</tr>
<tr>
<td>FNICO, Class I, II, III, Div. 2</td>
<td>X</td>
</tr>
</tbody>
</table>

IECEx certifications:
- FISCO Ex ia IIC; Version F
- FNICO Ex nL IIC; version F
- Multi-marked for ATEX, CSA, and FM Intrinsically Safe Applications - HART Version only (d)

Mounting Bracket Set

- Painted Steel Bracket with Plated Steel Bolts, 1/2 NPT (with Conduit Connection Codes 1 and 3 only) - M1
- Stainless Steel Bracket with Stainless Steel Bolts, 1/2 NPT (with Conduit Connection Codes 1 and 3 only) - M2
- Painted Steel Bracket with Plated Steel Bolts, PG 13.5 (with Conduit Connection Codes 2 and 4 only) - M3
- Stainless Steel Bracket with Stainless Steel Bolts, PG 13.5 (with Conduit Connection Codes 2 and 4 only) - M4
- Painted Steel Bracket with Plated Steel Bolts, M20 (with Conduit Connection Codes 5 and 6 only) - M5
- Stainless Steel Bracket with Stainless Steel Bolts, M20 (with Conduit Connection Codes 5 and 6 only) - M6

Digital Indicator with Pushbuttons or Solid (Blind) Cover over Standard Indicator

- Digital Indicator, Pushbuttons, and Window Cover (Electronics Versions -D, -F, and -T only) - L1
- Substitute Solid (Blind) Cover over Standard Indicator (Electronics Versions -A and -V only) - L2

Conduit Connectors

- Hawke-Type 1/2 NPT Cable Gland for use with Conduit Connection Codes 1 and 3 (e) - A1
- Plastic PG 13.5 Cable Gland for use with Conduit Connection Codes 2 and 4 (f) - A2
- M20 Conduit Thread Adapter for use with Conduit Connection Codes 1 and 3 (e) - A3
- Brass PG 13.5 Cable Gland (Trumpet-Shaped) for use w/Conduit Connection Codes 2 and 4 (f) - A4
Electronics Housing Features

- External Zero Adjustment
- Custody Transfer Lock and Seal
- External Zero Adjustment and Custody Transfer Lock and Seal

Custom Factory Configuration

- Digital Output (4 to 20 mA Default if not selected) - Electronics Version -D only
- Full Factory Configuration (Requires Configuration Form to be filled out)

Process Connections

- G 1/2 Form B, External Thread (with Span Limit Codes K and G only)
- Autoclave F-250-C (with Span Limit Code G only)
- 1/2 NPT External Thread (with Span Limit Codes K and G only)

SIL2 Transmitters for HART Versions Only

- SIL2-Certified HART Transmitter

Instruction Books (Common MI, Brochure, and Full Documentation Set on DVD is Standard)

- Without Instruction Book and DVD (“Getting Started” document only provided)

Miscellaneous Optional Selections

- Low Temperature Operative Limit of Electronics Housing Extended Down to -50°C (-58°F) (g)
- Supplemental Customer Tag (Stainless Steel Tag wired onto Transmitter)

Example: IGP10-D24G1F-L1Z1C1T

- Z1
- Z2
- Z3
- C1
- C2
- G
- G1
- G2
- S2
- K1
- J
- T

Notes:

a. Refer to PSSs 2A-1C13A to 2A-1C13 E for gauge pressure transmitters with span limits less than 52 MPa (7500 psi).

b. Refer to PSS 2A-1C13K for IGP10 Transmitters with Sanitary Process Connections.

d. Refer to “LCD INDICATOR” section regarding URV character limitation with selected measurement units.

e. Autoclave F-250-C Connection with a 9/16-18 internal gland thread.

f. For multi-marking details, see “ELECTRICAL SAFETY SPECIFICATIONS” on page 14.

g. Available with Electrical Safety Codes E, M, and N only.

h. Available with Electrical Safety Code E only.

-50°C indicates sensor and electronics ambient temperature capabilities. Performance is not assured below -29°C. Sensor damage may occur if process is frozen.
SUGGESTED RFQ SPECIFICATIONS

The manufacturer shall provide direct connected pressure transmitters for measuring high gauge pressures and transmitting a digital or analog output signal for use in a standard two-wire dc supply voltage system. The specifications for these transmitters are as follows:

Digital Output Signal:
- FoxCom digital and 4 to 20 mA dc output signal;
- HART digital signal superimposed on a 4 to 20 mA output signal;
- FOUNDATION fieldbus digital signal, 31.25 kbits/s.

Analog Output Signal:
- 4 to 20 mA dc or 1 to 5 V dc

Remote Communications:
- FoxCom, HART, or FOUNDATION Fieldbus Remote Communications must not interfere with the output signal.

RFI Protection:
- 0.1% error between 27 and 1000 MHz at 10 V/m field intensity

Span Limits:
- From 17 to 210 MPa (2500 to 30000 psi)

Proof Pressure:
- 1.5 times Full Scale Pressure Range or 140 MPa (20,000 psi), whichever is less, for the 105 MPa (15,000 psi) transmitters; and 1.2 times Full Scale Pressure Range for the 210 MPa (30,000 psi) transmitters.

Process Connection:
- Direct to process piping: 1/4-18 NPT internal thread is standard for the 105 MPa (15,000 psi) transmitters; and 9/16-18 internal gland thread (conforms to Autoclave Type F250C) is standard for the 210 MPa (30,000 psi) transmitters.

Sensor Materials:
- 15-5 ss and Inconel X-750 for the 105 MPa (15,000 psi) transmitters; and 13-8 Molybdenum stainless steel for the 210 MPa (30,000 psi) transmitters.

Housing:
- 316 ss, or Aluminum housing with Epoxy finish

Electronics:
- Enclosed in a NEMA 4X (IEC IP66) housing sealed with O-rings for double protection against moisture or other contaminants. Integral LCD Digital Indicator with on-board configuration pushbuttons; standard with analog output transmitters, and optional with digital output transmitters.

Mounting:
- Direct to process or bracket mounted to pipe.

Electrical Classification:
- Nonincendive for Class I and Class II, Division 2 locations; intrinsically safe or explosionproof for Class I and Class II, Division 1 locations. Fieldbus versions FISCO/FNICO compliant. Versions available to meet Agency zone requirements. Designed to comply with applicable European Union Directives.

Approximate Mass:
- Direct Connected Transmitter: 1.5 kg (3.3 lb)
- With 316 ss Electronics Housing: Add 1.1 kg (2.4 lb)
- With LCD Indicator: Add 0.2 kg (0.4 lb)

Model Code:
- I/A Series IGP10 Direct Connected, High Gauge Pressure Transmitter with FoxCom Communication Protocol, HART Communication Protocol, FOUNDATION Fieldbus Communication Protocol, 4 to 20 mA dc Analog Output Signal, or a Low Power Transmitter with a 1 to 5 V dc Analog Output Signal, or equivalent.
GENERAL NOTES

1. REPLACEABLE/INTERCHANGEABLE ELECTRONICS MODULE DETERMINES THE ELECTRONICS VERSION AND OUTPUT SIGNAL.
2. TOPWORKS CAN BE ROTATED TO ANY POSITION WITHIN ONE TURN COUNTERCLOCKWISE OF THE FULLY TIGHTENED POSITION.
3. CONDUIT CONNECTIONS (TWO) ARE EITHER 1/2 NPT, M20, OR PG 13.5. PLUG UNUSED CONNECTION WITH SUPPLIED METAL PLUG.

FIELD TERMINALS

1.25 FLAT-TO-FLAT:

123 4.85
125 5.00
135 5.33

96 3.8

31 1.25
36 1.41
18 0.72

1/4 NPT INTERNAL THREAD PROCESS CONNECTION STANDARD WITH SPAN LIMIT CODES K AND G; NOT AVAILABLE WITH SPAN LIMIT CODE H.

AUTOCLAVE F-250-C INTERNAL THREAD PROCESS CONNECTION STANDARD WITH SPAN LIMIT CODE H; OPTIONAL (CODE -G) WITH SPAN LIMIT CODES K AND G.

G 1/2 FORM B EXTERNAL THREAD PROCESS CONNECTION OPTIONAL (CODE -G) WITH SPAN LIMIT CODES K AND G; NOT AVAILABLE WITH SPAN LIMIT CODE H.

1/2 NPT EXTERNAL THREAD PROCESS CONNECTION OPTIONAL (CODE -G2) WITH SPAN LIMIT CODES K AND G; NOT AVAILABLE WITH SPAN LIMIT CODE H.
ORDERING UNSTRUCTIONS

1. Model Number
2. Calibrated Pressure Range (in MPa, psig, bar, kg/cm², or atm Engineering Units; also mH₂O for HART version only)
3. Configuration Data Form when Factory Configuration Option -C2 is specified
4. If Option -S2 (SIL-Certified HART Transmitter) is selected, a copy of the certification can be provided by specifying AS Code CERT-S.
5. Optional Features not Included in Model Code (see PSS 2A-1Z9 E)
6. Accessories (see PSS 2A-1Z9 E)
7. Customer Tag - Data Plate: 32 characters, maximum
8. Software Tag - Database:
 ▶ Version -D: 12 characters, maximum
 ▶ Version -T: 8 characters, maximum
 ▶ Versions -F: 32 characters, maximum
 ▶ Versions -A and -V: Not applicable

OTHER FOXBORO PRODUCTS

The Foxboro product lines offer a broad range of measurement and instrument products, including solutions for pressure, flow, analytical, temperature, positioning, controlling, and recording. For a list of these offerings, visit our web site at:

www.fielddevices.foxboro.com