PowerLogic™ ION8650
Energy and power quality switchboard meter
Medidor de tablero de distribución de energía y de calidad de energía
Compteur de tableau pour mesure de la qualité de l’énergie
Installation guide
Manual de instalación
Manuel d’installation

7ML02-0305-02
10/2018
Safety information

Important information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this manual or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE is used to address practices not related to physical injury.</td>
</tr>
</tbody>
</table>

Please note

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has the skills and knowledge related to the construction, installation and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.
Notice

Legal information

The Schneider Electric brand and any registered trademarks of Schneider Electric Industries SAS referred to in this guide are the sole property of Schneider Electric SA and its subsidiaries. They may not be used for any purpose without the owner's permission, given in writing. This guide and its content are protected, within the meaning of the French intellectual property code (Code de la propriété intellectuelle français, referred to hereafter as "the Code"), under the laws of copyright covering texts, drawings and models, as well as by trademark law. You agree not to reproduce, other than for your own personal, noncommercial use as defined in the Code, all or part of this guide on any medium whatsoever without Schneider Electric's permission, given in writing. You also agree not to establish any hypertext links to this guide or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the guide or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

FCC Part 15 notice

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encourages to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The user is cautioned that any changes or modifications not expressly approved by Schneider Electric could void the user's authority to operate the equipment.

CAN ICES-3(B) /NMB-3(B)

FCC Part 68 notice

This equipment complies with Part 68 of the FCC rules and the requirements adopted by the Administrative Council for Terminal Attachments (ACTA). On the side of this equipment is a label that contains, among other information, a product identifier in the format US: AAAEQQ#TXXXX. If requested, this number must be provided to the telephone company.

This equipment uses the following Universal Service Order Codes ("USOC") jacks: RJ11.

A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by the ACTA. A compliant telephone cord and modular plug or compliant modular jack is provided with this product.
The REN is used to determine the number of devices that may be connected to a telephone line. Excessive RENs on a telephone line may result in the devices not ringing in response to an incoming call. In most but not all areas, the sum of RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company. The REN for this product is part of the product identifier that has the format US: AAAEQ##TXXXX. The digits represented by ## are the REN without a decimal point (e.g., 03 is a REN of 0.3).

If this equipment, Digital Power Meter with Internal Modem, causes harm to the telephone network, the telephone company will notify you in advance that service may be temporarily discontinued. When advance notice is not practical, the telephone company will notify you as soon as possible. You will also be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures that could affect the operation of this equipment. If this happens, the telephone company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If you experience trouble with this equipment, Digital Power Meter with Internal Modem, please contact Schneider Electric at 615-287-3400. If this equipment is causing harm to the telephone network, the telephone company may request that you disconnect this equipment until the problem is resolved.

There are no user serviceable parts in this equipment.

Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information.

If your premises has specially wired alarm equipment connected to the telephone line, ensure that the installation of this Digital Power Meter with Internal Modem does not disable your alarm equipment. If you have questions about what will disable alarm equipment, consult your telephone company or a qualified installer.

Network compatibility notice for the internal modem

The internal modem in meters equipped with this option is compatible with the telephone systems of most countries in the world, with the exception of Australia and New Zealand. Use in some countries may require modification of the internal modem’s initialization strings. If problems using the modem on your phone system occur, please contact Schneider Electric Technical Support.

Calibration compliance

Schneider Electric certifies that this product meets the published specifications and has been calibrated and tested using equipment and standards traceable to the National Institute of Standards and Technology (NIST) in the US or the National Research Council of Canada (NRC). For details, refer to the Certificate of Calibration for this product.

Standards compliance

Made by Power Measurement Ltd.
Overview

The PowerLogic™ ION8650 advanced power and energy revenue meter features comprehensive logging, advanced power quality measurement, multi-protocol and multi-port communications, including IRIG-B support, and optional onboard and remote I/O capabilities.

This document outlines the steps for installing the FT-21 switchboard version of the ION8650 meter.

High accuracy metering considerations

In situations where the magnitude and quality of the voltage input source is insufficient (e.g., installations using PTs with low VA ratings or long conductor runs), consider using an auxiliary-powered ION8650.

Additional information

For more information on the ION8650 meter, including documentation downloads and software tools, visit www.schneider-electric.com. Available technical documentation includes:

- **ION8650 socket meter installation guide** - contains wiring and installation instructions for the socket version of the ION8650 meter.
- **ION8650 accuracy verification technical note** - details requirements and procedures for validating the meter's accuracy.
- **ION8650 user guide** - contains detailed information on meter operation, meter firmware updates, software support, communications, inputs/outputs, logging, time-of-use, alarm notification, and other advanced features.
- **I/O Expander installation guide** - describes the optional external I/O device that you can connect to the ION8650, for additional digital I/O and analog output ports.
- **Product option documents** - provide option-specific information about the various product options you can order for the meter. They usually ship with the product.
- **Technical notes** - provide instructions for using meter features and for creating custom configurations.
- **Online ION Setup help** - describes how to use the ION Setup meter configuration software.
- **ION Reference** - explains the ION architecture and describes the operation and behavior of the different ION modules available in ION hardware and ION software products.

Before you begin

1. Familiarize yourself with the contents of this guide, in particular the “Safety precautions” on page 10 and “Specifications” on page 28.
2. Carefully unpack the meter from the box. The switchboard meter ships with the following:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>This installation guide</td>
<td>The meter’s calibration certificate</td>
</tr>
</tbody>
</table>

3. Check that the part number on the front nameplate label matches the part number on your sales or purchase order (see “Front panel label” on page 11):

4. Make sure you have all other required equipment and peripherals appropriate for your installation, e.g., Ethernet or RS-232 to RS-485 converter, optical probe, revenue seal, etc.
Recommended tools

- Torque screwdriver with #2 Phillips and nut driver bits
- Precision flat tip screwdriver
- Wire cutter, stripper and crimper
- Small needlenose pliers
- ION Setup meter configuration software (download and install latest version from the website)

Safety precautions

Installation, wiring, testing and service must be performed in accordance with all local and national electrical codes.

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA, CSA Z462 or applicable local standards.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Do not exceed the device’s ratings for maximum limits.
- Do not use this device for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.
- Never short the secondary of a voltage transformer (VT).
- Never open circuit a current transformer (CT).
- Always use grounded external CTs for current inputs.
- Treat communications and IO wiring connected to multiple devices as hazardous live until determined otherwise.
- Do not perform Dielectric (Hi-Pot) or Megger testing on this device.
- Connect protective ground (earth) before turning on any power supplying this device.
- Replace all devices, doors and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

NOTE

Do not perform Dielectric (Hi-Pot) or Megger testing on the ION8650 because its internal surge protection circuitry starts functioning at levels below typical Hi-Pot voltages. Contact your local Schneider Electric representative for more information on device specifications and factory testing.

Available models

The ION8650 meter is available in three different models:

<table>
<thead>
<tr>
<th>Model</th>
<th>Memory</th>
<th>Data recorders</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION8650A</td>
<td>128 MB</td>
<td>50 (800 channels)</td>
<td>Class A power quality analysis meter with 1024 samples/cycle transient detection, Flicker, PQ waveform support, interharmonics, EN50160 power quality monitoring and Modbus mastering</td>
</tr>
<tr>
<td>ION8650B</td>
<td>64 MB</td>
<td>45 (720 channels)</td>
<td>Class S compliant meter with EN50160 power quality monitoring and Modbus mastering</td>
</tr>
<tr>
<td>ION8650C</td>
<td>32 MB</td>
<td>5 (80 channels)</td>
<td>Basic tariff/energy meter</td>
</tr>
</tbody>
</table>

1 Visit www.schneider-electric.com for more information on the different models.
Meter options

The model number (shown in “Front panel label” on page 11) indicates the meter’s options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Code</th>
<th>Description</th>
<th>Option</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 8 6 5 0 A 4 C 0 H 6 C 1 B 0 A</td>
<td>E</td>
<td>3-phase power supply (blade powered)²</td>
<td>M 8 6 5 0 A 4 C 0 H 6 C 7 A 0 A</td>
<td>A</td>
<td>Front panel infrared optical port, RS-232/RS-485</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Auxiliary power supply - Standard</td>
<td></td>
<td>C</td>
<td>Front panel infrared optical port, RS-232/RS-485</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>Auxiliary power supply - High voltage</td>
<td></td>
<td>D</td>
<td>Front panel infrared optical port, RS-232/RS-485</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 8 6 5 0 A 4 C 0 H 6 C 7 A 0 A</td>
<td>A</td>
<td>Front panel infrared optical port, RS-232/RS-485</td>
<td>M 8 6 5 0 A 4 C 0 H 6 C 7 A 0 A</td>
<td>A</td>
<td>Front panel infrared optical port, RS-232/RS-485</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 Form C solid state digital outputs, 3 Form A digital inputs</td>
<td></td>
<td>E</td>
<td>Front panel infrared optical port, RS-232/RS-485, Ethernet³, internal modem</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4 Form C solid state digital outputs, 1 Form A solid state digital output, 1 Form A digital input</td>
<td></td>
<td>M</td>
<td>Front panel infrared optical port, RS-232/RS-485, RS-485, Ethernet⁴, internal modem</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Ethernet outage notification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 8 6 5 0 A 4 C 0 H 6 C 1 B 0 A</td>
<td>A</td>
<td>No digital I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 Form C solid state digital outputs, 3 Form A digital inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4 Form C solid state digital outputs, 1 Form A solid state digital output, 1 Form A digital input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Ethernet outage notification</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Refer to “High accuracy metering considerations” on page 9 for recommendations when selecting a power supply option.
2. The standard 3-phase power supply is powered from the meter’s voltage measurement connections. Ensure your system meets the meter’s steady state voltage specifications.
3. The ION8650C meter can communicate simultaneously only through a maximum of three ports (the infrared optical port, plus two other communications ports). The ION8650A and ION8650B meters can communicate simultaneously through all communications ports.
4. Some features require Ethernet communications. See “Ethernet option” on page 20 for a list of services.
5. Additional inputs and outputs are available through the separately-ordered I/O Expander.

Front panel label

- **A**: Test amperage
- **B**: Class accuracy
- **C**: Test constant (LED pulse rate)
- **D**: Frequency
- **E**: Current range
- **F**: Form factor
- **G**: Voltage input rating
- **H**: Wiring configuration
- **I**: Voltage transformer ratio (VTR)
- **J**: Current transformer ratio (CTR)
- **K**: Primary watthour constant
- **L**: Transformer factor (VTR x CTR)
- **M**: Meter internal diagram (view from front of meter)
- **N**: ANSI bar code
- **O**: Model number
- **P**: Serial number
Front panel overview

Switchboard meter form factors

The switchboard meter fits in an FT-21 switchboard case cutout and is available in one of the following switchboard case form factors:

<table>
<thead>
<tr>
<th>Meter case with breakout panel</th>
<th>Meter case with breakout cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>See "Switchboard meter with rear breakout panel" on page 21 for details.</td>
<td>See "Switchboard meter with rear breakout cable" on page 22 for details.</td>
</tr>
<tr>
<td>Rear panel provides:</td>
<td>Included cables:</td>
</tr>
<tr>
<td>• 14-pin Molex connector (for the external I/O Expander option)</td>
<td>• 24-pin Molex connector cable (used with the COM breakout cable for RS-232 and RS-485 serial communications)</td>
</tr>
<tr>
<td>• Spring-loaded captured wire connectors (for wiring RS-485 communications, IRIG-B and optional onboard I/O)</td>
<td>• 2-wire cable for wiring IRIG-B</td>
</tr>
<tr>
<td>• DB9 male connector (RS-232 communications)</td>
<td>Optional cables:</td>
</tr>
<tr>
<td>• RJ45 jack (Ethernet option)</td>
<td>• Ethernet cable with RJ45 plug (Ethernet option)</td>
</tr>
<tr>
<td>• RJ11 telephone jack (modem option)</td>
<td>• Telephone cable with RJ11 plug (modem option)</td>
</tr>
<tr>
<td>• power terminal strip (auxiliary power supply option)</td>
<td>• 16-pin Molex connector cable (onboard I/O option)</td>
</tr>
<tr>
<td></td>
<td>• AC power cable (auxiliary power supply option)</td>
</tr>
</tbody>
</table>
Switchboard meter dimensions

FT-21 switchboard case with breakout panel

- 59 mm (2.3 in)
- 189 mm (7.4 in)
- 248 mm (9.8 in)
- 286 mm (10.6 in)
- 66 mm (2.6 in)
- 226 mm (8.9 in)

FT-21 switchboard case with breakout cable

- 59 mm (2.3 in)
- 171 mm (6.7 in)
- 231 mm (9.1 in)
- 286 mm (10.6 in)
- 165 mm (6.5 in)
- 226 mm (8.9 in)
- 119 mm (4.7 in)

© 2018 Schneider Electric. All rights reserved.
Installation

Installation, wiring, testing and service must be performed in accordance with all local and national electrical codes.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA, CSA Z462 or applicable local standards.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Never bypass external fusing. Install properly rated fuses in voltage measurement circuits and in auxiliary (control) power circuit.
- Do not exceed the device’s ratings for maximum limits. Use PTs (potential transformers) or VTs (voltage transformers) as necessary.
- Never short the secondary of a PT or VT.
- Never open circuit a CT (current transformer); use the shorting block to short circuit the leads of the CT before removing the connection from the device.
- Connect protective ground (earth) before turning on any power supplying this device.
- All electrical connections to the meter terminals must not be user-accessible after installation.
- Replace all devices, doors and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

Step 1: Switchboard case installation

1. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm that power is off.
2. Prepare the mounting surface for the FT-21 case. Refer to the drawing for hole dimensions.
3. Place the meter on a sturdy surface. Locate the thumbscrew (A) at the bottom of the switchboard cover and turn it counter-clockwise to release the cover.
4. Pull the bottom of the cover slightly towards you and lift it up to unhook it from the top retaining tabs (B). Set cover aside.
5. Push down and open all the lever contact switches (C).
6. Push the locking levers (D) to unlock the meter chassis (push up on the left lever, push down on the right lever).
7. Grab the top bracket handle (E), then carefully slide out the meter chassis and set it aside.

8. Insert the FT-21 case into the mounting hole.
9. Secure the lockwashers and nuts (F) onto the rear mounting studs. Tighten with a hex socket wrench or nut driver.
10. Align the meter chassis to the switchboard and carefully slide in the chassis, pushing forward on the bottom half of the meter bezel to mate the meter and meter case rear connectors.
11. Pull the locking levers (G) to lock the meter chassis to the case (pull down on the left lever, pull up on the right lever).
12. Push up and close all the lever contact switches (H).

13. Replace the cover, aligning the slots along the top with the retaining tabs (I) on the case.
14. Close the cover and hand-tighten the thumbscrew (J).
Step 2: Wire the switchboard case voltage and current inputs

Electrical wiring considerations

Install 2 A slow-blow fuses (customer supplied) in the voltage measurement input circuits as shown in the following electrical wiring diagrams. The auxiliary power supply circuit, if applicable, must also be fused. See “Step 4: Connect the optional auxiliary power” on page 20 for details.

NOTE

Built-in shorting blocks are provided within the FT-21 drawout case so when the meter is removed, the shorting blocks automatically short-circuit the current inputs.

Using Potential Transformers

<table>
<thead>
<tr>
<th>Wye system nominal voltage</th>
<th>Requires PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Vac L-N or 208 Vac L-L</td>
<td>no</td>
</tr>
<tr>
<td>277 Vac L-N or 480 Vac L-L</td>
<td>no</td>
</tr>
<tr>
<td>347 Vac L-N or 600 Vac L-L</td>
<td>yes</td>
</tr>
<tr>
<td>over 347 Vac L-N or 600 Vac L-L</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta system nominal voltage</th>
<th>Requires PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 480 Vac L-L</td>
<td>no</td>
</tr>
<tr>
<td>over 480 Vac L-L</td>
<td>yes</td>
</tr>
</tbody>
</table>

Volts mode and applicable wiring terminals

The following diagrams show which terminals on the back of the switchboard case are used when wiring the Form 9, Form 29/Form 36 or Form 35 meter to your electrical system. You must set the correct volts mode as shown below. See “Front panel setup menus” on page 24.

Wye system nominal voltage

- 120 Vac L-N or 208 Vac L-L
- 277 Vac L-N or 480 Vac L-L
- 347 Vac L-N or 600 Vac L-L
- over 347 Vac L-N or 600 Vac L-L

Delta system nominal voltage

- up to 480 Vac L-L
- over 480 Vac L-L

1 If you are using the switchboard meter in a Form 36 electrical wiring application, you must set the volts mode to 29S 4-Wire Wye.

The following diagrams illustrate typical wiring conventions for the electrical service types supported by the different ION8650 meter form factors. After completing all electrical wiring, mounting and installation steps, refer to “Step 10: Use phasor diagrams to verify wiring” on page 26 for details on meter operation for different systems and volts modes, as well as verification of correct phase wiring.
Form 9 (3-element)

Set the meter’s Volts Mode to **9S - 4 Wire Wye/Delta**. Voltage measurement limit is 57 to 277 VLN.

NOTE

Before performing an installation using the Form 9, 4-Wire Delta wiring configuration (diagram on left), see the **Red/High Leg Delta** technical note (download at www.schneider-electric.com).
Form 29 or Form 36 (2½-element)

Set the meter’s Volts Mode to **29S - 4 Wire Wye**. Voltage measurement limit is 57 to 277 VLN.

Form 35 (2-element)

Set the meter’s Volts Mode to **35S - 3 Wire**. Voltage measurement limit is 120 to 480 VLL.

1 This configuration can affect some of the meter’s parameter calculations. Contact Technical Support for more details.
Step 3: Prepare the ground connections

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

Do not connect Vref to ground when using the Form 35, 3-Wire Delta, No PTs, 2 CTs wiring diagram.

Failure to follow these instructions will result in death or serious injury

Proper grounding of the meter helps:
- Provide a safe path to protective ground (earth)
- Protect the electronic circuitry in the meter
- Ensure and maintain meter accuracy
- Properly operate noise filtering within the meter
- Properly operate communications ports
- Comply with all local and national regulations

1. Remove any paint, oxidation or other surface coating or contaminants that prevent proper electrical ground connection.
2. Use a ring or spade connector and 2.08 mm² (14 AWG) wire to connect the switchboard case ground to protective ground (earth).

Rear view of switchboard with breakout panel option
Rear view of switchboard with breakout cable option

© 2018 Schneider Electric. All rights reserved.
Step 4: Connect the optional auxiliary power

This section only applies if you ordered an auxiliary power supply option for your meter.

⚠️ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Verify the meter’s power source meets the specifications for your meter’s power supply option.

Failure to follow these instructions will result in death or serious injury.

- Install a properly-rated 3 A slow-blow fuse (customer supplied) on the L/+ terminal.
- Do not install a fuse on the meter’s N/- terminal if the power supply source N/- terminal is grounded.
- Connect the G terminal to earth ground.

Step 5: Wire the communications and optional I/O

⚠️ WARNING

HAZARD OF UNINTENDED OPERATION

Do not use this device for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

Failure to follow these instructions can result in death or serious injury.

Front optical port

Use an IEC Type II optical probe to communicate using the meter’s front optical port.

Ethernet option

Below are the default IP service port settings for Ethernet communications.

<table>
<thead>
<tr>
<th>ION over TCP</th>
<th>Modbus RTU</th>
<th>EtherGate (COM1)</th>
<th>EtherGate (COM4)</th>
<th>Modbus TCP</th>
<th>DNP over TCP</th>
<th>FTP</th>
<th>IEC61850</th>
</tr>
</thead>
<tbody>
<tr>
<td>7700</td>
<td>7701</td>
<td>7801</td>
<td>7802</td>
<td>502</td>
<td>20000</td>
<td>21</td>
<td>102</td>
</tr>
</tbody>
</table>

>Note

The Ethernet port settings are configurable. See the PowerLogic ION8650 User Guide for more information on changing Ethernet port number assignments.
ION8650C considerations

For ION8650C, the front optical port plus a maximum of two other communications ports can be enabled. The following table shows the factory-default enabled ports:

<table>
<thead>
<tr>
<th>Communications Option</th>
<th>Code</th>
<th>Factory-enabled communications port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>RS-232/RS-485 and RS-485</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>Ethernet and internal modem (RS-232/RS-485 and RS-485 are disabled)</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>RS-485 and Ethernet (RS-485 is disabled)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>RS-232/RS-485 and internal modem (RS-485 is disabled)</td>
<td></td>
</tr>
</tbody>
</table>

1 The front optical port is always enabled. See “Meter options” on page 11 for a full list of available communications options.

Switchboard meter with rear breakout panel

<table>
<thead>
<tr>
<th>Connector</th>
<th>Connection detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ethernet (option) If equipped, use Cat 5 UTP cable to connect to LAN/WAN.</td>
</tr>
<tr>
<td>B</td>
<td>Modem (option) If equipped, use RJ11 telephone cord to connect to modem line.</td>
</tr>
<tr>
<td>C</td>
<td>I/O Expander (option) If you are installing the optional I/O Expander, see “Connecting I/O Expander option to meter with breakout panel”, below for details.</td>
</tr>
<tr>
<td>E</td>
<td>Chassis ground See “Step 3: Prepare the ground connections” on page 19.</td>
</tr>
<tr>
<td>F</td>
<td>Digital inputs If equipped, S1, S2, S3, SCOM</td>
</tr>
<tr>
<td>G</td>
<td>IRIG-B Connect to IRIG-B time sync output signal device.</td>
</tr>
<tr>
<td>H</td>
<td>Digital outputs If equipped, C1, C2, C3, C4</td>
</tr>
<tr>
<td>I</td>
<td>COM1 RS-485 & COM2 or COM4 RS-485</td>
</tr>
<tr>
<td>J</td>
<td>Auxiliary power supply (option) If equipped, see “Step 4: Connect the optional auxiliary power” on page 20.</td>
</tr>
</tbody>
</table>

Connecting I/O Expander option to meter with breakout panel

Using the cable that came with your I/O Expander, connect the 14-pin male Molex connector end to the meter and connect the 24-pin male Molex connector end to the I/O Expander.

\[\text{NOTE}\]

Only use the I/O connectors on the I/O Expander. The communications ports on the I/O Expander are disabled when it is connected to a meter with breakout panel option.
Switchboard meter with rear breakout cable

1. If you are not including an I/O Expander in your installation, connect the COM breakout cable to the 3 ft. (0.91 m) meter cable that has a 24-pin Molex connector.

2. Terminate the connectors or wires as follows:

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connection detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 24-pin Molex cable</td>
<td>Connect to COM breakout cable or I/O Expander</td>
</tr>
<tr>
<td>B Auxiliary power (optional)</td>
<td>See “Step 4: Connect the optional auxiliary power” on page 20.</td>
</tr>
<tr>
<td>C IRIG-B wire</td>
<td>Connect to IRIG-B time sync output signal device. Red wire = IRIG-B (+) and black wire = IRIG-B (-).</td>
</tr>
<tr>
<td>D 16-pin Molex (optional)</td>
<td>See “Optional on-board I/O wiring” on page 23</td>
</tr>
<tr>
<td>E RJ11 telephone cable (optional)</td>
<td>Connect to modem telephone line</td>
</tr>
<tr>
<td>F RJ45 Ethernet cable (optional)</td>
<td>Connect to LAN/WAN Ethernet port</td>
</tr>
</tbody>
</table>

3. Refer to the section, “RS-232 connections” on page 30 for additional information on RS-232 connections.

4. For RS-485 communications, use an Ethernet to RS-485 or RS-232 to RS-485 converter. Refer to the communications converter documentation for details.

COM breakout cable

Use this cable if you are not including an I/O Expander in your installation. Connect the 24-pin Molex cable (A) to the supplied COM breakout cable. See below for connection details.

<table>
<thead>
<tr>
<th>Port connection</th>
<th>Wire or connector</th>
<th>Connect to</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1 (RS-232)</td>
<td>DB9 connector (from breakout cable)</td>
<td>computer RS-232 serial port</td>
</tr>
<tr>
<td>COM1 (RS-485)</td>
<td>White wire (from breakout cable)</td>
<td>RS-485 Data +</td>
</tr>
<tr>
<td>RS-485 common shield</td>
<td>Bare wire (from breakout cable)</td>
<td>RS-485 shield (COM1 and COM4)</td>
</tr>
<tr>
<td>COM4 (RS-485)</td>
<td>Red wire (from breakout cable)</td>
<td>RS-485 Data +</td>
</tr>
<tr>
<td></td>
<td>Black wire (from breakout cable)</td>
<td>RS-485 Data -</td>
</tr>
</tbody>
</table>

I/O Expander option

If you are including an I/O Expander in your installation, connect the 24-pin Molex cable (A) directly to the I/O Expander. Do not use the COM breakout cable in this situation. Refer to the I/O Expander installation guide for details on how to terminate the communications connectors.

24-pin Molex connector pinout

The following table describes the serial communications wiring to the 24-pin Molex connector. Use this if you want to wire the meter’s serial communications without using the COM breakout cable:

<table>
<thead>
<tr>
<th>Function</th>
<th>Wire color / stripe</th>
<th>Pin</th>
<th>Wire color / stripe</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM4 RS-485 Data +</td>
<td>White / blue</td>
<td>1 2</td>
<td>Blue / white</td>
<td>COM4 RS-485 Data -</td>
</tr>
<tr>
<td>N/A - do not use</td>
<td>Black / blue</td>
<td>3 4</td>
<td>Black</td>
<td>COM1 RS-232 CTS</td>
</tr>
<tr>
<td>COM1 RS-232 CD</td>
<td>White</td>
<td>5 6</td>
<td>Red</td>
<td>COM1 RS-232 RXD</td>
</tr>
<tr>
<td>COM1 RS-232 TXD</td>
<td>Green</td>
<td>7 8</td>
<td>Brown</td>
<td>COM1 RS-232 DTR</td>
</tr>
<tr>
<td>COM1 RS-232 RTS</td>
<td>Blue</td>
<td>9 10</td>
<td>Orange</td>
<td>COM1 RS-232 ground</td>
</tr>
<tr>
<td>COM4 RS-485 Data -</td>
<td>Red / blue</td>
<td>11 12</td>
<td>Blue / red</td>
<td>COM4 RS-485 Data -</td>
</tr>
<tr>
<td>RS-485 shield</td>
<td>Bare wire</td>
<td>13 14</td>
<td>Black/orange, Black/green</td>
<td>N/A - do not use</td>
</tr>
</tbody>
</table>

1 Pins 15 to 24 are not used, and should be left disconnected.
Optional onboard I/O wiring

This section only applies if you ordered an onboard I/O option for your meter. See “Meter options” on page 11 to determine your meter’s onboard I/O option. For additional information, see the specifications table, “Onboard I/O” on page 29.

1. Connect the supplied I/O breakout cable to the onboard I/O connector from the meter (16-pin Molex).

2. Terminate the wire ends as follows:

<table>
<thead>
<tr>
<th>Function</th>
<th>Wire color / stripe</th>
<th>Pin</th>
<th>Wire color / stripe</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output C1 - K</td>
<td>Black</td>
<td>1</td>
<td>2</td>
<td>White</td>
</tr>
<tr>
<td>Output C2 - Z</td>
<td>Red</td>
<td>3</td>
<td>4</td>
<td>Green</td>
</tr>
<tr>
<td>Output C2 - Y</td>
<td>Orange</td>
<td>5</td>
<td>6</td>
<td>Blue</td>
</tr>
<tr>
<td>Output C3 - K</td>
<td>White / black</td>
<td>7</td>
<td>8</td>
<td>Red / black</td>
</tr>
<tr>
<td>Output C4 - Z</td>
<td>Green / black</td>
<td>9</td>
<td>10</td>
<td>Orange / black</td>
</tr>
<tr>
<td>Output C4 - Y</td>
<td>Blue / black</td>
<td>11</td>
<td>12</td>
<td>Black / white</td>
</tr>
<tr>
<td>Input S2</td>
<td>Red / white</td>
<td>13</td>
<td>14</td>
<td>Green / white</td>
</tr>
<tr>
<td>Input SCOM</td>
<td>blue / white</td>
<td>15</td>
<td>16</td>
<td>black / red</td>
</tr>
</tbody>
</table>

3. Refer to “Additional setup options” on page 30 for more information.

NOTE
All digital inputs are assigned, by default. All solid state digital outputs are not assigned (use Power Monitoring Expert or ION Setup software to configure the digital outputs).

Step 6: Power up the meter

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Make sure protective ground (earth) is connected before turning on power to the meter.
- All electrical connections to the meter terminals must not be user-accessible after installation.
- Replace all devices, doors and covers before putting the meter into service.

Failure to follow these instructions will result in death or serious injury.

1. Close the PT fuses (or direct voltage input fuses).
2. Open the CT shorting blocks.
3. Apply power to the meter.

Verify meter operation

When you apply power to the meter, the front panel screen turns on and briefly displays a message to show that the meter is starting, then it scrolls through the different display screens.
Step 7: Set up meter using the front panel

The following sections describe how to configure the meter using the front panel buttons.

Front panel button navigation

1. Press and hold the round (ALT/ENTER) button to access the meter’s setup screens.
2. Press the up or down (navigation) button to change the selection (highlighted item).
3. Press the round button to select.
4. To go back to the previous screen, highlight RETURN then press the round button.

Modifying the meter setup values

1. Use one of the methods below to change the setup value:
 - To select a different option from a list, press the up or down button to highlight the item you want, then press the round button to select it.
 - To change a numeric value, use the up or down button to increase or decrease the number. Press and hold the up button to move the cursor position to the left, or press and hold the down button to move it to the right.
2. Press the round button to set the change:
 - Enter the password if prompted. Default password is “0” (zero).
 - Select YES at the CONFIRM CHANGE screen, then press the round button.

Front panel setup menus

The following table lists the setup menus and describes the setup registers. The meter displays “Not Available” if the optional hardware or feature is not present.

Use ION Setup to configure setup registers that are not accessible through the front panel.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Setting</th>
<th>Description</th>
<th>Range (Values)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volts Mode</td>
<td>The power system’s wiring configuration</td>
<td>9S - 4 Wire Wye/Delta, 29S - 4 Wire Wye, 35S - 3 Wire, 36S - 4 Wire Wye, DEMO</td>
<td>9S - 4 Wire Wye/ Delta</td>
</tr>
<tr>
<td></td>
<td>PT Primary</td>
<td>The Potential Transformer’s primary winding voltage rating</td>
<td>1.0 to 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>PT Secondary</td>
<td>The Potential Transformer’s secondary winding voltage rating</td>
<td>1.0 to 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>CT Primary</td>
<td>The Current Transformer’s primary winding current rating</td>
<td>1.0 to 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CT Secondary</td>
<td>The Current Transformer’s secondary winding current rating</td>
<td>1.0 to 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>VA Polarity</td>
<td>The polarity of the Potential Transformer on VA</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VB Polarity</td>
<td>The polarity of the Potential Transformer on VB</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VC Polarity</td>
<td>The polarity of the Potential Transformer on VC</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IA Polarity</td>
<td>The polarity of the Current Transformer on IA</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IB Polarity</td>
<td>The polarity of the Current Transformer on IB</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IC Polarity</td>
<td>The polarity of the Current Transformer on IC</td>
<td>Normal or Inverted</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Phase Rotation</td>
<td>Power system’s phase rotation</td>
<td>ABC, ACB</td>
<td>ABC</td>
</tr>
<tr>
<td>COM1 Setup</td>
<td>Protocol</td>
<td>Specifies the protocol used on this port</td>
<td>None, ION, Modbus RTU, Modbus Master, DNP v3.00, DLMS, ModemGate, GPS: Truetime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne, Factory, EtherGate</td>
<td>ION</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>Specifies COM port baud rate during serial communications</td>
<td>300 to 115200</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Transmit Delay</td>
<td>Specifies the port’s transmit delay setting</td>
<td>0 to 1.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Unit ID</td>
<td>Identifies the meter during serial communications</td>
<td>1 to 9999</td>
<td>From serial number 2</td>
</tr>
<tr>
<td></td>
<td>Serial Port</td>
<td>Data, parity and stop bits for the port</td>
<td>B01, B02, B01, B02</td>
<td>8N1</td>
</tr>
<tr>
<td></td>
<td>RS232 or RS485</td>
<td>Specifies RS-232 or RS-485</td>
<td>RS232, RS485</td>
<td>RS232</td>
</tr>
<tr>
<td></td>
<td>RTS/CTS Handshake</td>
<td>Specifies if hardware flow control is used during RS-232 communication</td>
<td>RTS with delay, RTS/CTS</td>
<td>RTS with delay</td>
</tr>
<tr>
<td></td>
<td>RS485 Bias</td>
<td>Specifies whether or not RS-485 biasing is applied to port</td>
<td>ON or OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>COM2 Setup</td>
<td>Protocol</td>
<td>Specifies the protocol used on this port</td>
<td>None, ION, Modbus RTU, DNP v3.00, DLMS, GPS: Truetime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne, Factory</td>
<td>ION</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>Specifies COM port baud rate during serial communications</td>
<td>300 to 115200</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Transmit Delay</td>
<td>Specifies the port’s transmit delay setting</td>
<td>0 to 1.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Unit ID</td>
<td>Identifies the meter during serial communications</td>
<td>1 to 9999</td>
<td>101</td>
</tr>
</tbody>
</table>
Installation

Menu Setting Description Range (Values) Default

<table>
<thead>
<tr>
<th>COM3 Setup (Front optical)</th>
<th>Protocol</th>
<th>Specifies the protocol used on this port</th>
<th>None, ION, Modbus RTU, Modbus Master¹, DNP v3.00, DLMS, GPS: TrueTime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne.Factory</th>
<th>ION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td></td>
<td>Specifies baud rate during serial communications</td>
<td>300 to 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td></td>
<td>Specifies the port's transmit delay setting</td>
<td>0 to 1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Unit ID</td>
<td></td>
<td>Identifies the meter during communications</td>
<td>1 to 9999</td>
<td>102</td>
</tr>
<tr>
<td>Serial Port</td>
<td></td>
<td>Data, parity and stop bits for the port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COM4 Setup (RS-485)</th>
<th>Protocol</th>
<th>Specifies the protocol used on this port</th>
<th>None, ION, Modbus RTU, Modbus Master¹, DNP v3.00, DLMS, GPS: ModemGate, GPS: Truetime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne.Factory, EtherGate</th>
<th>ION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td></td>
<td>Specifies baud rate during serial communications</td>
<td>300 to 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td></td>
<td>Specifies the port's transmit delay setting</td>
<td>0 to 1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Unit ID</td>
<td></td>
<td>Identifies the meter during communications</td>
<td>1 to 9999</td>
<td>103</td>
</tr>
<tr>
<td>Serial Port</td>
<td></td>
<td>Data, parity and stop bits for the port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td>RS485 Bias</td>
<td></td>
<td>Specifies whether or not RS-485 is applied to port</td>
<td>ON or OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Network Setup	IP Address	Specifies TCP/IP Ethernet address	0.0.0.0 to 255.255.255.255³	None⁴
	Mask	Specifies Subnet Mask	0.0.0.0 to 255.255.255.255	None
	Gateway	Specifies Ethernet gateway (if used)	0.0.0.0 to 255.255.255.255	None
	SMTP Address	Specifies location of SMTP Server	0.0.0.0 to 255.255.255.255	None
	MAC Address	Machine Access Control address	hexadecimal⁵	N/A
	Port Enable	Specifies if the port is enabled or disabled	Webserver, FTP, DNP over TCP, ION over TCP, Modbus over TCP, Modbus TCP, Telnet	TBD

<table>
<thead>
<tr>
<th>Enabled Com Ports⁶</th>
<th>COM1</th>
<th>Specifies whether COM1 (RS-232/RS-485) is enabled or not</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COM2</td>
<td>Specifies whether COM2 (Modem) is enabled or not</td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td></td>
<td>COM3</td>
<td>COM3 (Front optical port) is always enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>COM4</td>
<td>Specifies whether COM4 (RS485) is enabled or not</td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
<td>Specifies whether the Ethernet port is enabled or not</td>
<td>Enabled, Disabled</td>
</tr>
<tr>
<td></td>
<td>undo & Return</td>
<td>Select this to cancel the changes made and return to the previous menu</td>
<td>TBD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format Setup</th>
<th>Phase Labels</th>
<th>Specifies how phases are labeled</th>
<th>123, ABC, RST, XYZ, RYB, RWB</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PF Symbol</td>
<td>Specifies what symbol pair is used to indicate power factor</td>
<td>CAP1IND (capacitive/inductive), LDLG (lead/flag), +/-</td>
<td>LDLG</td>
</tr>
<tr>
<td></td>
<td>Digit Group</td>
<td>Specifies symbols used to delimit thousands & decimal place holder</td>
<td>1000.0 or 1,000.0 or 1 000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td></td>
<td>Date Format</td>
<td>Specifies how dates are displayed</td>
<td>YYYY/MM/DD, MM/DD/YYYY, DD/MM/YYYY</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td></td>
<td>Show DST</td>
<td>Specifies whether or not DST is displayed</td>
<td>Do not display DST, Display DST</td>
<td>Display DST</td>
</tr>
<tr>
<td></td>
<td>Volts Decimal</td>
<td>Number of decimal places displayed for voltages</td>
<td>1. to 123456789.XXX</td>
<td>1.XX</td>
</tr>
<tr>
<td></td>
<td>Current Decimal</td>
<td>Number of decimal places displayed for currents</td>
<td>1. to 123456789.XXX</td>
<td>1.XX</td>
</tr>
<tr>
<td></td>
<td>Power Decimal</td>
<td>Number of decimal places displayed for power values</td>
<td>1. to 123456789.XXX</td>
<td>1.XX</td>
</tr>
<tr>
<td></td>
<td>Update Rate</td>
<td>Sets how often the display is updated, in seconds</td>
<td>1s to 6s</td>
<td>1s</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>Sets the contrast of the display (higher numbers are sharper)</td>
<td>0 to 9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Backlight TO</td>
<td>How long the front panel display backlight stays on after the last button is pressed</td>
<td>0 to 7200 (seconds)⁷</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>DMD Lock TO</td>
<td>Minimum time allowed between consecutive demand resets</td>
<td>0 to 5184000 (seconds)</td>
<td>2160000 s (25 days)</td>
</tr>
<tr>
<td></td>
<td>Test Mode TO</td>
<td>How long the device remains in test mode before reverting to normal</td>
<td>60 to 21600 (seconds)</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>Display Scale</td>
<td>Scale applied to values before they are displayed</td>
<td>1.00 to 999999.0</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Scaling Mode</td>
<td>Specifies if values are divided or multiplied by the Display Scale before being displayed</td>
<td>Multiply or Divide</td>
<td>Divide</td>
</tr>
<tr>
<td></td>
<td>Delta Vectors</td>
<td>Specifies how vector diagrams are displayed when in Delta mode</td>
<td>System or Instrument</td>
<td>Instrument</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security</th>
<th>Modify Password</th>
<th>Changes the password in basic security⁸</th>
<th>0 - 9999999</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disable Security</td>
<td>Removed password requirement for USER0 (front panel) when Advanced Security has not been enabled.</td>
<td>Enabled, Disabled⁹</td>
<td>Password Enabled</td>
</tr>
<tr>
<td></td>
<td>Web Config</td>
<td>Allows configuration through web server interface</td>
<td>Enabled, Disabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

1 ION8650C (Feature set C) does not support Modbus Master protocol.
2 The factory set Unit ID is based on the serial number of the meter. For example: Serial number: XXXX-1009X263-XX is factory set to unit ID 9263.
3 After it has been entered, the address 0.0.0.0 is displayed as ‘None’ on the front panel.
4 To modify the NONE setting, press and hold the up arrow to enter edit mode.
5 MAC address is hard-coded at the factory and is for reference use only.
6 Applies only to ION8650C (Feature Set C). See “Switching the active communications ports for ION8650C” on page 31.
7 Setting the backlight timeout to 0 results in the backlight always being on.
8 This option is only available in basic security. When advanced security is enabled, the NOT AVAILABLE message is displayed on the front panel.
9 To disable or enable basic meter security, see “Meter security” on page 30.
Step 8: **Configure advanced settings using ION Setup**

Use ION Setup to configure the advanced features of the meter. ION Setup is available as a free download at www.schneider-electric.com. Refer to the online help for instructions on how to use ION Setup.

Some features are not enabled until you change certain setup parameters, such as setting the NomVolts register in Sag/Swell module to enable power quality functions. Refer to the **ION8650 User Guide** for a detailed explanation of all the meter features.

Step 9: **View meter data**

By default, the NORM (normal) display screens are displayed. Press the round (ALT/ENTER) button to switch to ALT (alternate) display mode. Use the up or down arrow buttons to scroll through the different screens.

NORM screens

<table>
<thead>
<tr>
<th>Display</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kWh delivered/received</td>
</tr>
<tr>
<td>kVARh</td>
<td>kVARh delivered/received</td>
</tr>
<tr>
<td>kVAh</td>
<td>kVAh delivered/received</td>
</tr>
<tr>
<td>Peak Demand Delivered</td>
<td>Maximum delivered kW, kVAR, kVA (timestamped)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Demand Reset</td>
<td>Number of Demand Resets (timestamped)</td>
</tr>
<tr>
<td>Q Metering</td>
<td>Approximated VARh measurements</td>
</tr>
<tr>
<td>Disk Simulator</td>
<td>Simulates mechanical watt-hour meter disk</td>
</tr>
<tr>
<td>All Segments</td>
<td>Black screen indicates functioning LCD pixels</td>
</tr>
</tbody>
</table>

ALT screens

<table>
<thead>
<tr>
<th>Display</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Plate 1</td>
<td>Owner, firmware version, TAG 1 & 2</td>
</tr>
<tr>
<td>Name Plate 2</td>
<td>Sliding window demand settings</td>
</tr>
<tr>
<td>Event Log</td>
<td>Most recent high priority (255) events</td>
</tr>
<tr>
<td>Phasor Diagram</td>
<td>Phasors and values for phase current/voltage</td>
</tr>
<tr>
<td>Instantaneous Voltage</td>
<td>Phase voltage, average voltage (L-N or L-L)</td>
</tr>
<tr>
<td>Instantaneous Current</td>
<td>Phase current, average current</td>
</tr>
<tr>
<td>Instantaneous Power</td>
<td>kW total, kVAR total, KVA total, power factor</td>
</tr>
<tr>
<td>Instantaneous Demand</td>
<td>kW delivered/received</td>
</tr>
<tr>
<td>Flicker¹</td>
<td>Flicker measurements for V1, V2 and V3</td>
</tr>
<tr>
<td>Voltage Harmonics (3 screens)</td>
<td>Per-phase voltage harmonic histograms</td>
</tr>
<tr>
<td>Current Harmonics (3 screens)</td>
<td>Per-phase current harmonic histograms</td>
</tr>
<tr>
<td>Active TOU Rate</td>
<td>Active TOU billing rate</td>
</tr>
<tr>
<td>Active TOU Seasons</td>
<td>Active TOU billing season</td>
</tr>
<tr>
<td>TOU Energy by Rate</td>
<td>kWh delivered values for each TOU rate</td>
</tr>
<tr>
<td>kW Peak Demand</td>
<td>Maximum kW delivered for each TOU rate</td>
</tr>
<tr>
<td>Past Billing Energy</td>
<td>kWh delivered in previous billing (PB)</td>
</tr>
<tr>
<td>Past Billing Peak Demand</td>
<td>Maximum kW delivered in PB</td>
</tr>
<tr>
<td>Past Season Energy</td>
<td>kWh delivered for each TOU rate in PB</td>
</tr>
<tr>
<td>Past Season Peak Demand</td>
<td>Max kW delivered for each TOU rate in PB</td>
</tr>
<tr>
<td>Past Billing/Season Energy</td>
<td>kWh delivered/received in PB & season</td>
</tr>
<tr>
<td>Past Bill/Season Pk Dem</td>
<td>Max kW del/rec from PB & season</td>
</tr>
<tr>
<td>Past Billing/Season Energy</td>
<td>kVARh del/rec in PB & season</td>
</tr>
<tr>
<td>Past Bill/Season Pk Demand</td>
<td>Max kVAR del/rec in PB & season</td>
</tr>
</tbody>
</table>

¹ Flicker measurements are only available on the ION8650A and ION8650B models.

TEST mode

Test mode is used to modify certain parameters in a hardware-locked meter or to verify the meter’s accuracy. Refer to the **ION8650 user guide** and the **ION8650 accuracy verification** technical note for details.

Step 10: **Use phasor diagrams to verify wiring**

You can view the meter’s phasor diagram from the front panel or by using ION Setup. The Phasor Viewer in ION Setup is used to verify your meter’s wiring. See the ION Setup online help for details.
ION8650 switchboard meter installation guide

Installation

WYE - ABC Rotation
Applicable Volts Mode: 9S - 4 Wire Wye/Delta and 29S - 4 Wire Wye

- **Q2**: Leading PF (+)
- **Q1**: Lagging PF (-)

Active Power
- **kW**

WYE - ACB Rotation
Applicable Volts Mode: 9S - 4 Wire Wye/Delta and 29S - 4 Wire Wye

- **Q2**: Leading PF (+)
- **Q1**: Lagging PF (-)

Active Power
- **kW**

3 Wire Delta - ABC Rotation
Applicable Volts Mode: 35S - 3 Wire

- **Q2**: Leading PF (+)
- **Q1**: Lagging PF (-)

Active Power
- **kW**

3 Wire Delta - ACB Rotation
Applicable Volts Mode: 35S - 3 Wire

- **Q2**: Leading PF (+)
- **Q1**: Lagging PF (-)

Active Power
- **kW**

4 Wire Delta (High/Red Leg Delta)
ION8650 phasor diagrams in 9S - 4 Wire Wye/Delta mode at Unity PF

- Assuming 3PH phase load is dominant.

- 3PH DELTA load is off. Only single phase load.

© 2018 Schneider Electric. All rights reserved.

27
Specifications

The information contained in this section is subject to change without notice. Contact your local Schneider Electric representative for the latest updates.

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution degree</td>
<td>2</td>
</tr>
<tr>
<td>Altitude</td>
<td>Less than 3000 m (9842 ft) above sea level</td>
</tr>
<tr>
<td>Operating range</td>
<td>-40 to 85 °C (-40 to 185 °F) internal ambient. Maximum ambient is -40 to 70 °C (-40 to 158 °F)</td>
</tr>
<tr>
<td>Display operating temperature</td>
<td>-20 to 60 °C (-4 to 140 °F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% RH non-condensing</td>
</tr>
</tbody>
</table>

Measurement inputs

Voltage measurement inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Form 9: Va, Vb, Vc, Vref</th>
<th>Form 29 & 36: Va, Vc, Vref</th>
<th>Form 35: Vab, Vcb, Vref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>Ring or spade connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal screw torque rating</td>
<td>2.82 N·m (25 in·lb) max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended wire gauge</td>
<td>5.26 mm² (10 AWG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>Form 9, 29 & 36: 57 to 277 V L-N rms (-20%,+25%)</td>
<td>Form 35: 100 to 480 V L-L rms (-20%,+25%)</td>
<td></td>
</tr>
<tr>
<td>Maximum voltage, auxiliary powered meters</td>
<td>Form 9, 29 & 36: 347 V L-N rms, 600 V L-L rms</td>
<td>Form 35: 600 V L-L rms</td>
<td></td>
</tr>
<tr>
<td>Dielectric withstand</td>
<td>2500 V rms, 60 Hz for 1 minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated impulse voltage</td>
<td>6 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement / installation category</td>
<td>CAT III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating fundamental frequency range</td>
<td>42-69 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current measurement inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Form 9, 29 and 36: Ia, Ib, Ic</th>
<th>Form 35: Ia, Ic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector type</td>
<td>Ring or spade connector</td>
<td></td>
</tr>
<tr>
<td>Terminal screw torque rating</td>
<td>2.82 N·m (25 in·lb) max</td>
<td></td>
</tr>
<tr>
<td>Recommended wire gauge</td>
<td>5.26 mm² (10 AWG)</td>
<td></td>
</tr>
<tr>
<td>Starting current, class 2/10/20</td>
<td>0.001 A rms</td>
<td></td>
</tr>
<tr>
<td>Overrange</td>
<td>to 24 A rms</td>
<td></td>
</tr>
<tr>
<td>Rated inputs</td>
<td>ANSI C12.20 combined current classes 2, 10 and 20</td>
<td>IEC 62053-22, combined 1 A and 5 A nominal, Imax = 20 A rms</td>
</tr>
<tr>
<td>Overload</td>
<td>500 A rms for 1s</td>
<td></td>
</tr>
<tr>
<td>Dielectric withstand type test</td>
<td>2500 V rms, 60 Hz for 1 minute</td>
<td></td>
</tr>
<tr>
<td>Max voltage</td>
<td>600 V rms</td>
<td></td>
</tr>
<tr>
<td>Rated impulse voltage</td>
<td>6 kV</td>
<td></td>
</tr>
<tr>
<td>Measurement / Installation Category</td>
<td>CAT III</td>
<td></td>
</tr>
<tr>
<td>Burden, class 2/10/20</td>
<td>0.05 VA per phase at 1 A (50 mΩ max)</td>
<td></td>
</tr>
</tbody>
</table>

Ground

- Use 2.08 mm² (14 AWG) wire

Power supply, standard (blade-powered)

- Type: 3-phase (powered from voltage sensing inputs)
- Rated inputs: Form 9, 29 and 36: 69 to 277 V L-N rms (120 to 480 V L-L rms), 42 to 69 Hz Form 35: 120 to 480 V L-L rms, 42 to 69 Hz
- Rated impulse voltage: 6 kV
- Burden: Typical: 4 W, 8 VA/phase, 3-phase operation; Maximum: 7 W, 14 VA/phase, 3-phase operation
- Ride-through: min guaranteed: 6 cycles at nominal frequency (minimum 50 Hz), at 120 V L-N rms (208 V L-L rms) 3-phase operation

Power supply, auxiliary power - standard voltage

- Type: 1-phase supply, powered through external cable with grounded NEMA 5-15 power plug
- Rated inputs: AC: 65 to 120 V L-N rms, 42 to 69 Hz DC: 80 to 170 V DC
- Rated impulse voltage: 6 kV
- Burden: Typical: 7 W, 14 VA; Maximum: 11 W, 18 VA
- Ride-through: min guaranteed: 6 cycles at nominal frequency (minimum 50 Hz), at 65 V L-N minimum voltage
Power supply, auxiliary power - high voltage

<table>
<thead>
<tr>
<th>Type</th>
<th>1-Phase supply, powered through external cable with grounded NEMA power plug</th>
</tr>
</thead>
</table>
| Rated inputs | AC: 180 to 277 V L-N rms
DC: 200 to 390 VDC |
| Rated impulse voltage | 6 kV |
| Burden | Typical: 8 W, 14 VA; Maximum: 11 W, 19 VA |
| Ride-through: min guaranteed | 6 cycles at nominal frequency (minimum 50 Hz), at 160 V L-N minimum voltage |

Onboard I/O

Digital outputs

| Type | 4 Form C solid state outputs (I/O option B & C)
1 Form A solid state output (I/O option C only) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>1.3 to 0.13 mm² (16 to 26 AWG)</td>
</tr>
<tr>
<td>Max load voltage</td>
<td>130 V AC / 200 V DC</td>
</tr>
<tr>
<td>Max load current</td>
<td>100 mA</td>
</tr>
<tr>
<td>ON Resistance</td>
<td>30 Ω (typical), 50 Ω (maximum)</td>
</tr>
<tr>
<td>OFF Resistance</td>
<td>400 MΩ (minimum)</td>
</tr>
<tr>
<td>Isolation</td>
<td>2000 V rms, 60 Hz for 1 minute (to ground), 1000 V rms, 60 Hz for 1 minute (between outputs)</td>
</tr>
</tbody>
</table>
| Rated impulse voltage | 2500 V peak (to ground)
1500 V peak (between inputs or outputs) (CAT II) |
| Update Rate | 20 ms (accuracy = +/- 7 ms), not including communication lag time. State changes occur within 20 ms. 1/2 cycle for internal I/O |
| Signal Type | Continuous or pulse |
| Fusing | Protect with 100 mA slow-blow fuse (such as Littlefuse 201 Series 100 mA fuse) |
| Max output transition | 50 per second |
| Min Pulse Width | 1 ms |
| Timing resolution | 1/2 cycle or 1 s |
| Transient suppression device for digital outputs | Install according to diagrams in the section, "Digital outputs" on page 33. The customer-supplied transient suppression device must meet these specifications:
Polarization = Bidirectional. Breakdown voltage = 300 V maximum. Peak power dissipation = 10 kw for 10 microseconds (minimum), and 1.5 kW for 1 millisecond (minimum). |
| State change latency | 20 ms (Digital output)
40 ms (Digital input modules) |
| Control schemes | Use intermediate mechanisms so relay control can be disabled for servicing. |

Digital inputs

| Type | 3 Form A inputs (I/O option B)
1 Form A inputs (I/O option C) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>Use wiring appropriate for the application</td>
</tr>
<tr>
<td>Max load voltage</td>
<td>30 VDC internal (supplied), or 130 VDC external</td>
</tr>
<tr>
<td>Max load current</td>
<td>100 mA</td>
</tr>
<tr>
<td>Isolation</td>
<td>2000 V rms, 60 Hz for 1 minute (to ground), 1000 V rms, 60 Hz for 1 minute (between inputs)</td>
</tr>
</tbody>
</table>
| Rated impulse voltage | 2500 V peak (to ground)
1500 V peak (between inputs or outputs) (CAT II) |
| Min pulse width | 20 ms |
| Max input transition rate | 50 per second |
| Scan time | 20 ms |
| Timing resolution | 1 ms, with 2 ms accuracy |
| Inputs | ON for external resistance of 2 kΩ resistance or less, OFF for external resistance of 4 MΩ resistance or greater |

Communications

- **RS-232/RS485**: DB9 cable
- **RS-485**: Shielded twisted pair wire
- **Modem**: 56k universal modem
 FCC part 68 RJ11 telephone cord
- **Infrared optical port**: ANSI Type II optical port
- **RS-485**: Shielded twisted pair wire
- **Ethernet**: 100BASE-T Category 3 UTP (min)
 RJ45 Ethernet cable
- **IRIG-B**: Nom Voltage = 8 VDC +/- 10%. Max Voltage = 8 VDC
 0.33mm² (22 AWG) twisted pair wire
Appendix A Additional setup options

Meter security

Disabling/enabling security using the front panel

Disabling security
2. Enter the meter password when prompted. Select “Proceed”. Select “Yes” to confirm.
3. Select “Return” twice to go back to the normal screen.

Enabling security
To enable meter security, you must first modify the meter password:
1. Select the “Modify Passwd” setup menu screen. Use the up or down navigation button to change the password. Press the round button to set. Select “Yes” to confirm.
2. Select the “Disable Security” setup menu screen.
3. Enter the new password. Select “Proceed” to set. Select “Yes” to confirm.
4. Select “Return” twice to go back to the normal screen.

RS-232 connections

Use the appropriate diagram below to connect your meter’s RS-232 communications.

<table>
<thead>
<tr>
<th>RS-232 cable connection options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Direct to computer</td>
<td>Plug the meter’s 24-pin Molex connector to the communications breakout cable. From the breakout cable, plug the DB9 connector to the computer’s serial port. If required, use a straight-through modem cable to extend the cable length.</td>
</tr>
<tr>
<td>B Direct to external modem</td>
<td>Plug the meter’s 24-pin Molex connector to the communications breakout cable. From the breakout cable, plug the DB9 connector to a null modem cable. Plug the other end of this cable to the external modem.</td>
</tr>
<tr>
<td>C I/O Expander to computer</td>
<td>Plug the meter’s 24-pin Molex connector to I/O Expander. Use a null modem cable to connect the I/O Expander’s DB9 connector to the computer’s serial port.</td>
</tr>
<tr>
<td>D I/O Expander to external modem</td>
<td>Plug the meter’s 24-pin Molex connector to I/O Expander. Use a straight-through modem cable to connect the I/O Expander’s DB9 connector to the external modem.</td>
</tr>
</tbody>
</table>

Disabling/enabling COM ports using the front panel

From a security standpoint, it is recommended that you disable any COM ports that you are not using.
1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the navigation buttons to highlight the COM port that you want to configure (COM1 through COM4) and press ALT/ENTER to select.
3. Use the navigation buttons to highlight the Protocol setting and press ALT/ENTER to select.
4. Select None from the list of available protocols.
5. Select YES to confirm the change.

1 This only applies to meters with breakout cable option. For meters with breakout panel option, use the serial communications connectors on the meter’s rear panel.
Disabling/enabling Ethernet ports using the front panel

From a security standpoint, it is recommended that you disable any Ethernet ports that you are not using.

1. Press and hold the ALT/ENTER button for a few seconds. The SETUP menu appears.
2. Use the up or down arrow buttons to select NETWORK SETUP and press ALT/ENTER.
3. Scroll to PORT ENABLE and press ALT/ENTER.
4. Select the port you want to change and press ALT/ENTER. Select Yes to enable the port and No to disable.
5. Select YES to confirm the change. Enter the meter password if prompted.

Switching the active communications ports for ION8650C

The ION8650C meter supports concurrent communications on the optical port and a maximum of two other communications ports. If you ordered the Ethernet and/or internal modem option with this meter, you must first disable one of the active communications port before you can enable another in its place (for example, the COM1 serial port).

NOTE

Switching the active communications port requires a meter reboot before the changes can take effect.

1. Use the front panel to select ENABLED COM PORTS setup menu screen. Select CONTINUE.
2. Select the active communications port you want to disable (e.g., Ethernet). Select DISABLED. Enter the meter password when prompted, then select YES to confirm the change.
3. Select the communications port you want to enable (e.g., COM1). Select ENABLED. Select YES to confirm the change.
4. Select REBOOT. Select YES when prompted. Enter the meter password when prompted.

Onboard I/O (input/output) option

For detailed I/O specifications refer to the table, “Onboard I/O” on page 29.

Digital inputs

Refer to the example part number in “Optional onboard I/O wiring” on page 23 to determine how many digital inputs your meter has. The Form A digital inputs are factory set to self-excited (using its internal power supply).

<table>
<thead>
<tr>
<th>Typical Form A Digital Input Connections1 - Internal Excitation</th>
<th>Typical Form A Digital Input Connections1 - External Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 These diagrams depict Onboard I/O option B.
Setting up the digital input for external excitation

Follow the directions below to change the digital inputs’ setting to use an external power supply.

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E in the USA or applicable local standards.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Components inside the meter are extremely sensitive to electrostatic discharge. Use anti-static precautions when working inside the unit.

Failure to follow these instructions will result in death or serious injury.

1. Disconnect and lock out power. Use a properly rated voltage sensing device to confirm power is off.
2. Remove the meter chassis from the meter case and set it on a sturdy anti-static work area. See the procedure outline in “Step 1: Switchboard case installation” on page 14.
3. Using a #2 Phillips screwdriver, loosen by one turn the two rear hinge screws (A).
4. Remove the two front retaining screws (B) and set them aside.
5. Carefully tilt open the meter chassis. The excitation pins and jumpers are in a recessed cavity on the bottom left of the meter.
6. Remove both jumpers and place one jumper on pins 2 and 3 of the four-pin header. Keep the second jumper for future use.
7. Reassemble the meter chassis, reinstall the retaining screws and tighten the hinge screws.
8. Reinstall the meter chassis in the case. Refer to the procedure outline in “Step 1: Switchboard case installation” on page 14.
Onboard digital input internal excitation is now disabled; an external supply can be used for external contacts. See the specifications table, “Onboard I/O” on page 29 for details.

Digital outputs

⚠️ **WARNING**

HAZARD OF UNINTENDED OPERATION

Do not use this device for critical control or protection applications where human or equipment safety relies on the operation of the control circuit.

Failure to follow these instructions can result in death or serious injury.

Refer to the example part number in “Optional onboard I/O wiring” on page 23 to determine what digital outputs your meter has.
Información de seguridad

Información importante

Lea estas instrucciones atentamente y examine el equipo para familiarizarse con el dispositivo antes de instalarlo, manipularlo, revisarlo o realizar el mantenimiento de este. Los siguientes mensajes especiales pueden aparecer a lo largo de este documento o en el equipo para advertir de posibles riesgos o remitirle a otras informaciones que le ayudarán a aclarar o simplificar los procedimientos.

La adición de uno de estos dos símbolos a una etiqueta de seguridad del tipo “Peligro” o “Advertencia” indica que existe un riesgo de descarga eléctrica que causará lesiones si no se siguen las instrucciones.

Este es el símbolo de alerta de seguridad. Sirve para alertar de posibles riesgos de lesiones. Siga las recomendaciones de todos los mensajes de seguridad precedidos por este símbolo para evitar posibles lesiones e incluso la muerte.

<table>
<thead>
<tr>
<th>☢ PELIGRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELIGRO indica una situación de riesgo inminente que, si no se evita, causará la muerte o lesiones graves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☢ ADVERTENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERTENCIA indica una situación de riesgo potencial que, si no se evita, puede causar a muerte o lesiones graves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☢ PRECAUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRECAUCIÓN indica una situación de riesgo potencial que, si no se evita, puede causar lesiones moderadas o leves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☢ AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVISO se usa para indicar prácticas no relacionadas con lesiones físicas.</td>
</tr>
</tbody>
</table>

Por favor, tenga en cuenta lo siguiente

Sólo el personal cualificado puede instalar, manipular y revisar el equipo electrónico así como realizar el mantenimiento de este. Schneider Electric no asume ninguna responsabilidad de las consecuencias que se deriven de la utilización de este manual.

Una persona cualificada es alguien con la capacidad y los conocimientos relativos a la construcción, instalación y operación del equipo eléctrico con la formación de seguridad necesaria para reconocer y evitar los riesgos implícitos.
Avisos

Información legal

La marca Schneider Electric y cualquier marca comercial registrada de Schneider Electric Industries SAS citada en esta guía son propiedad exclusiva de Schneider Electric SA y sus filiales. No se pueden usar sin el permiso por escrito del propietario. Esta guía y su contenido están protegidos, en el sentido del código de la propiedad intelectual francés (Code de la propriété intellectuelle français, denominado en lo sucesivo "el Código"), bajo las leyes de derechos de autor que abarcan textos, ilustraciones y modelos, así como por la legislación de marcas. Usted se compromete a no reproducir, salvo para su propio uso personal, no comercial, tal como se define en el Código, la totalidad o parte de esta guía en ningún soporte sin el permiso de Schneider Electric, por escrito. También se compromete a no establecer ningún vínculo de hipertexto en esta guía o su contenido. Schneider Electric no otorga ningún derecho o licencia para el uso personal y no comercial de la guía o de su contenido, salvo para una licencia no exclusiva para consultarla "tal cual", bajo su propia responsabilidad. Todos los demás derechos están reservados.

Sólo el personal cualificado puede instalar, manipular y revisar el equipo electrónico así como realizar el mantenimiento de este. Schneider Electric no asume ninguna responsabilidad por cualquier consecuencia derivada del uso de este material.

Dado que las normas, especificaciones y diseños cambian de vez en cuando, solicite la confirmación de la información dada en esta publicación.

Aviso de la FCC sección 15

Este equipo ha sido probado y cumple con los límites establecidos para los dispositivos digitales Clase B, según la sección 15 de la normativa de la FCC (Comisión Federal de Comunicaciones de los EE.UU.). Estos límites se establecen para proporcionar la protección adecuada contra interferencias que puedan dañar el equipo cuando este se utiliza en un entorno residencial. Este equipo genera, utiliza y puede emitir energía de radiofrecuencia y, si no se instala y utiliza siguiendo las indicaciones del manual de instrucciones, puede provocar interferencias que afecten a las radiocomunicaciones. No obstante, no hay garantía de que no se produzcan interferencias en una instalación en concreto. Si este equipo causa interferencias en la recepción de señales de radio y televisión, lo cual se puede determinar apagándolo y encendiéndolo, se recomienda al usuario que intente corregir las interferencias con las siguientes me:

- Reoriente o reubique la antena receptor.a.
- Aumente la separación entre el equipo y el receptor.
- Conecte el equipo a una toma de un circuito diferente al que está conectado el receptor.
- Consulte con el distribuidor o con un técnico experimentado de radio/televisión para obtener más ayuda.

Se advierte al usuario que los cambios o modificaciones que no estén aprobados expresamente por Schneider Electric podrían revocar la autorización del usuario para operar el equipo.

CAN ICES-3(B) /NMB-3(B)

Aviso de la FCC sección 68

Este equipo cumple con la Sección 68 de la normativa de la FCC (Comisión Federal de Comunicaciones de los EE.UU.) y los requisitos adoptados por el Consejo Administrativo de Accesorios Terminales (Administrative Council for Terminal Attachments, ACTA). En el lateral de este equipo se encuentra una etiqueta que contiene, entre otra información, el identificador del producto en el formato usado en los EE.UU.: AAAEQ##TXXXX. Debe proporcionar este número a la compañía telefónica si se le solicita.

 Este equipo usa jacks con los siguientes códigos de pedido de servicio universal (Universal Service Order Codes, "USOC") : RJ11.
La toma y el jack usados para conectar este equipo al cableado de las instalaciones y a la red telefónica deben cumplir con la sección 68 de la normativa de la FCC y los requisitos adoptados por la ACTA vigentes. Este producto incluye un cable telefónico y una toma modular o jack modular conformes a la normativa.

El REN se usa para determinar cuántos dispositivos se pueden conectar a la línea telefónica. Un exceso de REN en la línea telefónica puede dar como resultado que los dispositivos no suenen cuando entre una llamada. En la mayoría de zonas, aunque no en todas, el total de REN no debe ser superior a cinco (5,0). Póngase en contacto con la compañía telefónica local para saber con seguridad cuántos dispositivos se pueden conectar a una línea determinados por el total de REN. El REN de este producto forma parte del identificador del producto en el formato usado en los EE.UU.: AAEEQ##TXXXX. Los dígitos representados por ## son el REN sin el decimal (p. ej., 03 es un ren de 0,3).

Si este equipo, el Medidor de potencia digital con módem interno, daña la red telefónica, la compañía telefónica le avisará previamente que se podría interrumpir temporalmente el servicio. Si no puede avisarle previamente, la compañía telefónica le notificará en cuanto sea posible. También le informará de su derecho a abrir una reclamación con la FCC si usted lo creyera necesario.

La compañía telefónica podría realizar cambios en sus instalaciones, equipo, operaciones o procedimientos que podrían afectar el funcionamiento de este equipo. En ese caso, la compañía telefónica le avisará previamente para que usted pueda realizar las modificaciones necesarias para mantener el servicio ininterrumpido.

Si tiene problemas con este equipo, el Medidor de potencia digital con módem interno, póngase en contacto con Schneider Electric en el 615-287-3400. Si este equipo provoca daños en la red telefónica, es posible que la compañía telefónica le solicite que lo desconecte hasta que se haya resuelto el problema.

Este equipo no contiene piezas reparables por el usuario.

La conexión al servicio de conferencia está sujeta a las tarifas estatales. Póngase en contacto con la comisión estatal de utilidades públicas, la comisión de servicios públicos o la comisión corporativa para obtener más información.

Si tiene equipos de alarma por cable especiales conectados a la línea telefónica en sus instalaciones, asegúrese de que la instalación de este Medidor de potencia digital con módem interno no desactive el equipo de alarma. Si tiene dudas sobre qué podría desactivar el equipo de alarma, consulte con su compañía telefónica o con un instalador cualificado.

Aviso de compatibilidad de red del módem interno

El módem interno de medidores equipados con esta opción es compatible con los sistemas telefónicos de la mayoría de los países del mundo, exceptuando Australia y Nueva Zelanda. El uso en algunos países puede exigir la modificación de las cadenas de inicialización del módem interno. Si surge algún problema relativo al uso del módem en la línea telefónica, póngase en contacto con la Asistencia Técnica de Schneider Electric.

Cumplimiento de la normativa de calibración

Schneider Electric certifica que este producto cumple las especificaciones publicadas y que se ha calibrado y probado mediante equipos y estándares que concuerdan con el National Institute of Standards and Technology (NIST, Instituto nacional de normalización y tecnología) de EE. UU. o el National Research Council of Canada (NRC, Consejo nacional de investigación de Canadá). Si desea obtener más detalles, consulte el certificado de calibración del producto.
Cumplimiento de normas

Fabricado por Power Measurement Ltd.
Descripción general

El avanzado medidor de energía y consumo eléctrico PowerLogic™ ION8650 ofrece funciones de registro exhaustivas, mediciones de calidad de energía avanzadas, comunicaciones multiprotocolo y multipuerto, incluida la compatibilidad con IRIG-B, y capacidades opcionales de entradas/salidas (E/S) incorporadas y remotas.

Este documento resume los pasos necesarios para instalar la versión de tablero de distribución FT-21 del medidor ION8650.

Observaciones sobre mediciones de alta precisión

En situaciones en las que la magnitud y la calidad de las fuentes de entrada de tensión son insuficientes, como en instalaciones con TT de bajo valor nominal en VA o largos tendidos de conductores, quizá convenga utilizar un medidor ION8650 con alimentación auxiliar.

Información adicional

Si desea más información sobre el medidor ION8650, descargas de documentación y herramientas de software, visite el sitio web www.schneider-electric.com. La documentación técnica disponible figura a continuación:

- Manual de instalación del medidor de soporte de energía y calidad de energía ION8650: Contiene las instrucciones de cableado e instalación de la versión de soporte del medidor ION8650.
- Nota técnica Verificación de la precisión del medidor ION8650: Detalla los requisitos y procedimientos necesarios para validar la precisión del medidor.
- ION8650 user guide (Manual del usuario del medidor ION8650): Detalla información sobre el manejo del medidor, actualizaciones del firmware de este, compatibilidad de software, comunicaciones, entradas y salidas, registros, tiempos de uso, notificaciones de alarmas y otras funciones avanzadas.
- I/O Expander installation guide (Manual de instalación del módulo de expansión de E/S de PowerLogic®): Describe el dispositivo opcional de E/S externas que se puede conectar al ION8650 para disponer de E/S digitales adicionales y puertos de salidas analógicas.
- Documentos de opciones del producto: aportan información específica de cada opción sobre las distintas opciones de producto que puede solicitar para la central de medida. Normalmente se suministran con el producto.
- Notas técnicas: aportan instrucciones de uso de las funciones de la central de medida y de creación de configuraciones personalizadas.
- Ayuda en línea de ION Setup: Describe la manera de utilizar el software de configuración de medidores ION Setup.
- ION Reference: Explica la arquitectura ION y describe el funcionamiento y comportamiento de los diferentes módulos ION disponibles en los productos de hardware y software de ION.

Antes de empezar

1. Familiarícese con el contenido de este manual, sobre todo con las secciones “Precauciones de seguridad” en la página 40 y “Especificaciones” en la página 62.
2. Desembale con cuidado el medidor. El medidor de tablero de distribución se entrega con los siguientes elementos:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Este manual de instalación</td>
</tr>
<tr>
<td>B</td>
<td>Certificado de calibración del medidor</td>
</tr>
<tr>
<td>C</td>
<td>Tornillos de terminal, y tuercas y arandelas de montaje</td>
</tr>
</tbody>
</table>

Si encargó la opción de factor de forma de cable de conexiones, también se incluyen los siguientes elementos:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Cable de conexiones COM: conector de Molex hembra de 24 pines a DB9 hembra (RS-232), dos juegos de cables de par trenzado (RS-485)</td>
</tr>
<tr>
<td>E</td>
<td>Acoplador opcional Ethernet CAT5 de hembra a hembra (solo si encargó la opción de comunicaciones Ethernet)</td>
</tr>
<tr>
<td>F</td>
<td>Cable opcional de conexiones de E/S: de Molex hembra de 16 pines a 16 cables desnudos para la conexión a dispositivos de E/S (solo si encargó la opción de E/S incorporadas)</td>
</tr>
</tbody>
</table>
3. Compruebe que el número de referencia de la etiqueta de la placa de datos delantera coincida con el número de referencia de la orden de compra o del recibo (consulte la sección “Etiqueta del panel frontal” en la página 42).

4. Asegúrese de que dispone de todos los equipos y periféricos adecuados para la instalación, por ejemplo un convertidor de Ethernet o de RS-232 a RS-485, una sonda óptica, precinto de consumo eléctrico, etc.

Herramientas recomendadas
- Destornillador dinamométrico con puntas Phillips n.º 2 y de tuerca
- Destornillador de boca plana de precisión
- Cortacables, pelacables y alicate crimpador
- Alicates pequeños de punta fina
- Software de configuración de medidores ION Setup (descargue e instale la versión más reciente del sitio web)

Precauciones de seguridad

La instalación, el cableado, la comprobación y la puesta en servicio deben llevarse a cabo de acuerdo con todos los reglamentos locales y nacionales en materia de electricidad.

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO DE ARCO
- Utilice un equipo de protección individual (EPI) adecuado y siga las prácticas de seguridad de trabajo eléctrico. Consulte la normativa NFPA 70E para los EE. UU., CSA Z462 o la normativa local aplicable.
- Apague todas las fuentes de alimentación de este dispositivo y del equipo en el que está instalado antes de trabajar con ellos.
- Utilice siempre un voltímetro de rango adecuado para confirmar que el equipo está totalmente apagado.
- No sobrepase los límites máximos de los valores nominales del dispositivo.
- No utilice este dispositivo en aplicaciones de control o protección críticas en las que la seguridad de las personas o de los equipos dependa del funcionamiento del circuito de control.
- Nunca cortocircuite el secundario de un transformador de tensión (TT).
- Nunca deje abierto el circuito de un transformador de intensidad (TI).
- Utilice siempre TI externos con terminal a tierra para las entradas de intensidad.
- Considere que las comunicaciones y el cableado de E/S conectados a varios dispositivos son peligrosos por estar alimentados, hasta que determine lo contrario.
- No realice pruebas dielécticas (de rigidez) ni pruebas de megóhmetro en este dispositivo.
- Conecte el terminal de tierra de protección antes de encender cualquier fuente de alimentación del dispositivo.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de encender el equipo.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

Nota

No realice pruebas dielécticas (de rigidez) ni pruebas de megóhmetro en el medidor ION8650, porque su circuito interno de protección contra sobretensiones comienza a funcionar con valores inferiores a las tensiones habituales de las pruebas de rigidez. Para obtener más información sobre las especificaciones del dispositivo y las pruebas realizadas en fábrica, póngase en contacto con el distribuidor local de Schneider Electric.
Modelos disponibles

Existen tres modelos disponibles del medidor ION8650:

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Memoria</th>
<th>Grabadores de datos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION8650A</td>
<td>128 MB</td>
<td>50 (800 canales)</td>
<td>Medidor de análisis de la calidad de energía de clase A con detección de transitorios de 1024 muestras/ciclo, flicker, compatibilidad con forma de onda de calidad de energía, interarmónicos, control por Modbus</td>
</tr>
<tr>
<td>ION8650B</td>
<td>64 MB</td>
<td>45 (720 canales)</td>
<td>Medidor conforme a Clase S con supervisión de calidad de energía según EN50160 y control por Modbus</td>
</tr>
<tr>
<td>ION8650C</td>
<td>32 MB</td>
<td>5 (80 canales)</td>
<td>Medidor básico de tarifas y energía</td>
</tr>
</tbody>
</table>

1. Visite el sitio web www.schneider-electric.com para obtener más información sobre los modelos disponibles.

Opciones del medidor

El número de modelo (mostrado en la sección “Etiqueta del panel frontal” en la página 42) indica las opciones del medidor.

<table>
<thead>
<tr>
<th>Opción</th>
<th>Código</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuente de alimentación</td>
<td>E</td>
<td>Fuente de alimentación trifásica (alimentación por palas)²</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Fuente de alimentación auxiliar (estándar)</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>Fuente de alimentación auxiliar (alta tensión)</td>
</tr>
<tr>
<td>Comunicaciones</td>
<td>A0</td>
<td>Puerto óptico por infrarrojos del panel frontal, RS-232/RS-485, RS-485</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>Puerto óptico por infrarrojos del panel frontal, RS-232/RS-485, RS-485, Ethernet⁴, módem interno</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>Puerto óptico por infrarrojos del panel frontal, RS-232/RS-485, RS-485, Ethernet⁴</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Puerto óptico por infrarrojos del panel frontal, RS-232/RS-485, RS-485, módem interno</td>
</tr>
<tr>
<td>E/S incorporadas</td>
<td>A</td>
<td>Sin E/S digitales</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 salidas digitales de estado sólido de forma C, 3 entradas digitales de forma A</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4 salidas digitales de estado sólido de forma C, 1 salida digital de estado sólido de forma A, 1 entrada digital de forma A</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Notificación de corte de Ethernet</td>
</tr>
</tbody>
</table>

1. Para obtener recomendaciones a la hora de seleccionar una opción de fuente de alimentación, consulte la sección “Observaciones sobre mediciones de alta precisión” en la página 39.
2. La fuente de alimentación trifásica estándar se alimenta de las conexiones de tensión del medidor. Asegúrese de que el sistema satisfaga las especificaciones de tensión en estado estable del medidor.
3. El medidor ION8650C puede comunicarse simultáneamente a través de un máximo de tres puertos (el puerto óptico por infrarrojos más otros dos puertos de comunicaciones) Los medidores ION8650A e ION8650B pueden comunicarse simultáneamente a través de todos los puertos de comunicaciones.
4. Algunas funciones requieren comunicaciones Ethernet. Consulte la sección “Opción Ethernet” en la página 52 para obtener una lista de servicios.
5. El módulo de expansión de E/S, que se encarga por separado, ofrece entradas y salidas adicionales.
Etiqueta del panel frontal

<table>
<thead>
<tr>
<th>A</th>
<th>Amperaje de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Precisión de clase</td>
</tr>
<tr>
<td>C</td>
<td>Constante de prueba (frecuencia de impulsos del LED)</td>
</tr>
<tr>
<td>D</td>
<td>Frecuencia</td>
</tr>
<tr>
<td>E</td>
<td>Rango de intensidad</td>
</tr>
<tr>
<td>F</td>
<td>Factor de forma</td>
</tr>
<tr>
<td>G</td>
<td>Valor nominal de entrada de tensión</td>
</tr>
<tr>
<td>H</td>
<td>Configuración del cableado</td>
</tr>
</tbody>
</table>

Descripción general del panel frontal

A	Generador de impulsos de vatios: Conjunto de LED (infrarrojo, rojo) que sirven para los impulsos de energía activa.
B	Generador de impulsos de VAR: Conjunto de LED (infrarrojo, rojo) que sirven para los impulsos de energía reactiva.
C	Interruptor de restablecimiento de demanda: Restablece los valores de demanda punta registrados en el medidor. Se puede activar con la cubierta puesta o quitada.
D	Botón redondo (ALT/ENTER): Sirve para seleccionar una opción resaltada. También sirve para alternar entre los modos de visualización NORM y ALT. Si se mantiene pulsado, se accederá al menú “Setup” (Configuración).
E	Botones de navegación: Los botones de flecha arriba y flecha abajo sirven para desplazarse por elementos de menú diferentes y para resaltarlos, o para incrementar o reducir el valor de un número resaltado. Si se mantiene pulsado el botón de flecha arriba, el cursor se desplazará a la izquierda. Si se mantiene pulsado el botón de flecha abajo, el cursor lo hará a la derecha.
F	Puerto óptico por infrarrojos
G	Botón de restablecimiento maestro: Se encuentra en un botón empotrado bajo la etiqueta delantera para evitar su activación accidental. Debe retirar la cubierta y la etiqueta del medidor para acceder a él.
H	Botón de modo Test: Se encuentra debajo de la cubierta frontal y pone el medidor en modo Test, suspendiéndose así la acumulación de las cantidades facturables.
I	Pantalla LCD del medidor
Factores de forma del medidor de tablero de distribución

El medidor de tablero de distribución encaja en un corte de caja de tablero de distribución FT-21 y está disponible en uno de los siguientes factores de forma de caja:

<table>
<thead>
<tr>
<th>Caja de medidor con panel de conexiones</th>
<th>Caja de medidor con cable de conexiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulte la sección “Medidor de tablero de distribución con panel de conexiones trasero” en la página 53 para obtener más detalles. El panel posterior proporciona las siguientes características:</td>
<td></td>
</tr>
<tr>
<td>- Conector Molex de 14 pines (para la opción de módulo de expansión de E/S externas)</td>
<td></td>
</tr>
<tr>
<td>- Conectores de conexión por resorte de muelle (para cableado de comunicaciones RS-485, IRIG-B y las E/S incorporadas opcionales)</td>
<td></td>
</tr>
<tr>
<td>- Conector DB9 macho (comunicaciones RS-232)</td>
<td></td>
</tr>
<tr>
<td>- Toma RJ45 (opción Ethernet)</td>
<td></td>
</tr>
<tr>
<td>- Toma de teléfono RJ11 (opción de módem)</td>
<td></td>
</tr>
<tr>
<td>- Regleta de terminales de alimentación (opción de fuente de alimentación auxiliar)</td>
<td></td>
</tr>
<tr>
<td>Consulte la sección “Medidor de tablero de distribución con cable de conexiones trasero” en la página 53 para obtener más detalles. Cables incluidos:</td>
<td></td>
</tr>
<tr>
<td>- Cable con conector Molex de 24 pines (utilizado con el cable de conexiones COM para comunicaciones serie RS-232 y RS-485)</td>
<td></td>
</tr>
<tr>
<td>- Cable de 2 hilos para cableado de IRIG-B</td>
<td></td>
</tr>
<tr>
<td>Cables opcionales:</td>
<td></td>
</tr>
<tr>
<td>- Cable Ethernet con conector RJ45 (opción Ethernet)</td>
<td></td>
</tr>
<tr>
<td>- Cable de teléfono con conector RJ11 (opción de módem)</td>
<td></td>
</tr>
<tr>
<td>- Cable con conector Molex de 16 pines (opción de E/S incorporadas)</td>
<td></td>
</tr>
<tr>
<td>- Cable de alimentación de CA (opción de fuente de alimentación auxiliar)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensiones del medidor de tablero de distribución

![Dimensiones del medidor de tablero de distribución](image-url)
Caja de tablero de distribución FT-21 con cable de conexiones
Instalación

La instalación, el cableado, la comprobación y la puesta en servicio deben llevarse a cabo de acuerdo con todos los reglamentos locales y nacionales en materia de electricidad.

⚠️ PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELO DE ARCO

- Utilice un equipo de protección individual (EPI) adecuado y siga las prácticas de seguridad de trabajo eléctrico. Consulte la normativa NFPA 70E para los EE. UU., CSA Z462 o la normativa local aplicable.
- Apague todas las fuentes de alimentación de este dispositivo y del equipo en el que está instalado antes de trabajar con ellos.
- Utilice siempre un voltímetro de rango adecuado para confirmar que el equipo está totalmente apagado.
- Nunca conecte una derivación para evitar los fusibles externos. Instale fusibles de rango adecuado en los circuitos de medición de tensión y de alimentación auxiliar.
- No rebase la tensión nominal especificada del dispositivo. Utilice TT (transformadores de tensión) cuando sea necesario.
- Nunca cortocircuite el secundario de un TT.
- Nunca deje abierto el circuito de un TI (transformador de intensidad). Utilice un bloque de cortocircuito para establecer un cortocircuito en los conductores del TI antes de desmontar las conexiones del dispositivo.
- Conecte el terminal de tierra de protección antes de encender cualquier fuente de alimentación del dispositivo.
- Las conexiones eléctricas de los terminales del medidor no deben quedar al alcance de los usuarios después de la instalación.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de encender el equipo.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.
Paso 1: Instalación de la caja de tablero de distribución

1. Desconecte y bloquee la alimentación. Utilice un voltímetro de rango adecuado para confirmar que el equipo está apagado.
3. Coloque el medidor sobre una superficie sólida. Localice el tornillo de mariposa (A) en la parte inferior de la cubierta del tablero de distribución y gírelo en sentido contrario al de las agujas del reloj para soltar la cubierta.
4. Tire ligeramente de la parte inferior de la cubierta hacia usted y levántela para liberarla de las lengüetas de retención superiores (B). Coloque la cubierta a un lado.
5. Presione hacia abajo y abra todos los interruptores de contacto por palanca (C).
6. Presione las palancas de bloqueo (D) para desbloquear el chasis del medidor (presione hacia arriba la palanca izquierda y presione hacia abajo la palanca derecha).
7. Agarre el asa (E) del soporte superior y, a continuación, deslice con cuidado el chasis del medidor hasta sacarlo y colóquelo a un lado.
8. Inserte la caja FT-21 en el agujero de montaje.
9. Asegure las arandelas de seguridad y las tuercas (F) en los espárragos de montaje traseros. Apriételas con una llave de tubo hexagonal o una llave para tuercas.
10. Alinee el chasis del medidor con el tablero de distribución e inserte el medidor deslizándolo con cuidado hacia dentro y empujando la mitad inferior del marco del medidor de modo que se acoplen el medidor y los conectores traseros de la caja de este.

11. Tire de las palancas de bloqueo (G) para bloquear el chasis del medidor en la caja (tire hacia abajo de la palanca izquierda y tire hacia arriba de la palanca derecha).

12. Presione hacia arriba y cierre todos los interruptores de contacto por palanca (H).

13. Vuelva a colocar la cubierta alineando las ranuras de la parte superior con las lengüetas de retención (I) de la caja.

14. Cierre la cubierta y apriete con la mano el tornillo de mariposa (J).

Paso 2: Cableado de las entradas de tensión y de intensidad de la caja del tablero de distribución

Consideraciones sobre el cableado eléctrico
Instale fusibles de acción retardada de 2 A (que deberá aportar el cliente) en los circuitos de entrada de mediciones de tensión, tal como se ilustra en los diagramas de cableado eléctrico que figuran a continuación. El circuito de la fuente de alimentación auxiliar, si se utiliza, debe contar también con la protección de un fusible. Consulte la sección “Paso 4: Conexión de la fuente de alimentación auxiliar opcional” en la página 51 para obtener más detalles.

\[\textbf{Nota}\]

La caja extraíble FT-21 cuenta con bloques de cortocircuito incorporados, de manera que, cuando se extrae el medidor, los bloques de cortocircuito cortocircuitan automáticamente las entradas de intensidad.

\[\textbf{Uso de transformadores de tensión}\]

<table>
<thead>
<tr>
<th>Tensión nominal de sistema en estrella</th>
<th>Requiere PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VCA L-N o 208 VCA L-L</td>
<td>No</td>
</tr>
<tr>
<td>277 VCA L-N o 480 VCA L-L</td>
<td>No</td>
</tr>
<tr>
<td>347 VCA L-N o 600 VCA L-L</td>
<td>Sí</td>
</tr>
<tr>
<td>Por encima de 347 VCA L-N o 600 VCA L-L</td>
<td>Sí</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensión nominal de sistema en triángulo</th>
<th>Requiere PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 480 VCA L-L</td>
<td>No</td>
</tr>
<tr>
<td>Por encima de 480 VCA L-L</td>
<td>Sí</td>
</tr>
</tbody>
</table>
Modo de voltios y terminales de cableado aplicables

Los siguientes diagramas muestran los terminales de la parte trasera de la caja del tablero de distribución que se utilizan cuando se cablea el medidor de Forma 9, Forma 29/Forma 36 o Forma 35 al sistema eléctrico. Deberá establecer el valor pertinente de la configuración Volts Mode (modo de voltios) tal como se muestra seguidamente. Consulte la sección “Menús de configuración del panel frontal” en la página 56.

![Diagrama de cableado](image)

1 Si va a utilizar el medidor de tablero de distribución en una aplicación de cableado eléctrico de Forma 36, debe configurar Volts Mode como 29S – 4 Wire Wye (Estrella de 4 hilos de 29S).

Los diagramas de más adelante describen las convenciones de cableado habituales correspondientes a los tipos de servicio eléctrico que admiten los diferentes factores de forma del medidor ION8650. Una vez completadas todas las etapas de cableado eléctrico, montaje e instalación, consulte la sección “Paso 10: Uso de los diagramas fasoriales para verificar el cableado” en la página 60 para obtener más detalles sobre el manejo del medidor en los diferentes sistemas y modos de voltios, así como sobre la verificación del correcto cableado de las fases.

Forma 9 (de 3 elementos)

Establezca el valor de Volts Mode en el medidor como **9S - 4 Wire Wye/Delta**. El límite de medición de tensión se encuentra entre 57 y 277 VLN.

![Diagrama de cableado Forma 9](image)
Forma 9 o Forma 36 (de 2½ elementos)

Establezca el valor de Volts Mode en el medidor como 29S - 4 Wire Wye. El límite de medición de tensión se encuentra entre 57 y 277 VLN.
Forma 35 (de 2 elementos)

Establezca el valor de Volts Mode en el medidor como **35S - 3 Wire**. El límite de medición de tensión se encuentra entre 120 y 480 VLL.

Paso 3: Preparación de las conexiones a tierra

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESELTIO DE ARCO

No conecte la entrada Vref a tierra cuando utilice el diagrama de cableado “Forma 35: Triángulo de 3 hilos, sin TT y con 2 TI”.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

La correcta puesta a tierra del medidor ayuda en los siguientes aspectos:

- Proporciona una ruta segura a la tierra de protección.
• Protege la circuitería electrónica del medidor.
• Asegura y preserva la precisión del medidor.
• Permite un correcto funcionamiento del filtrado del ruido en el medidor.
• Permite un correcto funcionamiento de los puertos de comunicaciones.
• Cumple todas las normativas locales y nacionales.

1. Retire la pintura, óxido o cualquier otro recubrimiento o contaminación superficial que impida la correcta conexión eléctrica a tierra.
2. Utilice un conector de anilla o de horquilla y cable de 2,08 mm² (14 AWG) para conectar la tierra de la caja del tablero de distribución a la tierra de protección.

Paso 4: Conexión de la fuente de alimentación auxiliar opcional

Esta sección se aplica únicamente si ha encargado la opción de fuente de alimentación auxiliar del medidor.

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO DE ARCO

• Apague todas las fuentes de alimentación de este dispositivo y del equipo en el que está instalado antes de trabajar con ellos.
• Utilice siempre un voltímetro de rango adecuado para confirmar que el equipo está totalmente apagado.
• Verifique que la fuente de alimentación del medidor cumple las especificaciones correspondientes a la opción de fuente de alimentación del medidor.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

• Instale un fusible de acción retardada de 3 A de rango adecuado (que deberá aportar el cliente) en el terminal L/+.
• No instale un fusible en el terminal N/– del medidor si el terminal N/– de la fuente de alimentación está conectado a tierra.
• Conecte el terminal G a tierra.

<table>
<thead>
<tr>
<th>Cable de alimentación auxiliar en el cable de conexiones</th>
<th>Utilice el cable de alimentación auxiliar (con enchufe en U con puesta a tierra) para conectar una fuente de alimentación de CA o CC monofásica de rango adecuado.</th>
<th>Fuente de alimentación de CA o de CC sin puesta a tierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal de alimentación auxiliar en el panel de conexiones</td>
<td>Cablee los conectores del terminal de alimentación auxiliar a la fuente de alimentación de CA o de CC monofásica de rango adecuado mediante cables del tipo y de la sección adecuados para la tensión suministrada. Utilice conectores de anilla o de horquilla en los extremos de los cables.</td>
<td>Fuente de alimentación de CA o de CC con puesta a tierra</td>
</tr>
</tbody>
</table>

© 2018 Schneider Electric. Reservados todos los derechos.
Paso 5: Cableado de las comunicaciones y las E/S opcionales

ADVERTENCIA

RIESGO DE FUNCIONAMIENTO IMPREVISTO

No utilice este dispositivo en aplicaciones críticas de control o protección en las que la seguridad de las personas o equipos depende del funcionamiento del circuito de control.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

Puerto óptico delantero

Utilice una sonda óptica IEC Tipo II para permitir la comunicación mediante el puerto óptico delantero del medidor.

Opción Ethernet

A continuación se muestra la configuración de puertos de servicio IP correspondiente a las comunicaciones Ethernet.

<table>
<thead>
<tr>
<th>Opción de comunicaciones</th>
<th>Código</th>
<th>Puerto de comunicaciones activado de fábrica ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION sobre TCP</td>
<td>7700</td>
<td>Modbus RTU</td>
</tr>
<tr>
<td></td>
<td>7701</td>
<td>EtherGate (COM1)</td>
</tr>
<tr>
<td></td>
<td>7801</td>
<td>EtherGate (COM4)</td>
</tr>
<tr>
<td></td>
<td>7802</td>
<td>Modbus TCP</td>
</tr>
<tr>
<td></td>
<td>502</td>
<td>DNP sobre TCP</td>
</tr>
<tr>
<td></td>
<td>20000</td>
<td>FTP</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>IEC61850</td>
</tr>
</tbody>
</table>

¹ El puerto óptico delantero siempre está activado. Consulte la sección “Opciones del medidor” en la página 41 para obtener una lista completa de las opciones de comunicaciones disponibles.
Medidor de tablero de distribución con panel de conexiones trasero

### Conector	Detalle de la conexión
A | Ethernet (opción)
B | Módem (opción)
C | Módulo de expansión de E/S (opción)
D | COM1 RS-232
E | Tierra del chasis
F | Entradas digitales
G | IRIG-B
H | Salidas digitales
I | COM1 RS-485 y COM2 o COM4 RS-485
J | Fuente de alimentación auxiliar (opción)

NOTA

Utilice los conectores de E/S únicamente con el módulo de expansión de E/S. Los puertos de comunicaciones del módulo de expansión de E/S se desactivan cuando este se conecta a un medidor con la opción de panel de conexiones.

Conexión de la opción de módulo de expansión de E/S a un medidor con panel de conexiones

Mediante el cable que acompaña al módulo de expansión de E/S, conecte el extremo del conector Molex macho de 14 pines al medidor, y el extremo del conector Molex macho de 24 pines al módulo de expansión de E/S.

Medidor de tablero de distribución con cable de conexiones trasero

1. Si no va a incluir un módulo de expansión de E/S en la instalación, conecte el cable de conexiones COM al cable de la central de medida de 0,91 m equipado con un conector Molex de 24 pines.
2. Termine los conectores o los cables de la siguiente manera:

### Cable	Detalle de la conexión
A | Cable Molex de 24 pines
B | Cable de alimentación auxiliar (opcional)
C | Cable IRIG-B
D | Cable Molex de 16 pines (opcional)
E | Cable teléfono RJ11 (opcional)
F | Cable Ethernet RJ45 (opcional)
Cable de conexiones COM

Emplee este cable si no va a incluir un módulo de expansión de E/S en la instalación. Conecte el cable Molex de 24 pines (A) al cable de conexiones COM proporcionado. Consulte a continuación los detalles de conexión.

<table>
<thead>
<tr>
<th>Conexión de puerto</th>
<th>Cable o conector</th>
<th>Conectar a</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1 (RS-232)¹</td>
<td>Conector DB9</td>
<td>Puerto serie RS-232 del ordenador</td>
</tr>
<tr>
<td>COM1 (RS-485)²</td>
<td>Cable blanco (del cable de conexiones)</td>
<td>RS-485 Datos +</td>
</tr>
<tr>
<td>Blindaje común de RS-485</td>
<td>Cable desnudo (del cable de conexiones)</td>
<td>Blindaje de RS-485 (COM1 y COM4)</td>
</tr>
<tr>
<td>COM4 (RS-485)</td>
<td>Cable rojo (del cable de conexiones)</td>
<td>RS-485 Datos +</td>
</tr>
<tr>
<td></td>
<td>Cable negro (del cable de conexiones)</td>
<td>RS-485 Datos –</td>
</tr>
</tbody>
</table>

¹ Consulte la sección “Conexiones RS-232” en la página 65 para obtener más información sobre conexiones RS-232.
² En el caso de comunicaciones RS-485, utilice un convertidor de Ethernet a RS-485 o de RS-232 a RS-485. Para obtener más información, consulte la documentación del convertidor de comunicaciones.

Opción de módulo de expansión de E/S

Si va a añadir un módulo de expansión de E/S a la instalación, conecte el cable Molex de 24 pines (A) directamente al módulo de expansión de E/S. No utilice en este caso el cable de conexiones COM. Si desea acceder a información pormenorizada sobre la manera de terminar los conectores de comunicaciones, consulte el I/O Expander Installation Guide (Manual de instalación del módulo de expansión de E/S de PowerLogic®).

Distribución de pines del conector Molex de 24 pines

La tabla dispuesta a continuación describe el cableado de comunicaciones serie del conector Molex de 24 pines. Le será de utilidad si desea cablear las comunicaciones serie del medidor sin utilizar el cable de comunicaciones COM.

<table>
<thead>
<tr>
<th>Función</th>
<th>Color o banda del cable</th>
<th>Pin¹</th>
<th>Color o banda del cable</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM4 RS-485 Datos +</td>
<td>Blanco/azul</td>
<td>1 2</td>
<td>Azul/azul</td>
<td>COM4 RS-485 Datos –</td>
</tr>
<tr>
<td>No procede: No utilizar</td>
<td>Negro/azul</td>
<td>3 4</td>
<td>Negro</td>
<td>COM1 RS-232 CTS</td>
</tr>
<tr>
<td>COM1 RS-232 CD</td>
<td>Blanco</td>
<td>5 6</td>
<td>Rojo</td>
<td>COM1 RS-232 RXD</td>
</tr>
<tr>
<td>COM1 RS-232 TXD</td>
<td>Verde</td>
<td>7 8</td>
<td>Marrón</td>
<td>COM1 RS-232 DTR</td>
</tr>
<tr>
<td>COM1 RS-232 RTS</td>
<td>Azul</td>
<td>9 10</td>
<td>Naranja</td>
<td>COM1 RS-232 tierra</td>
</tr>
<tr>
<td>COM1 RS-485 Datos +</td>
<td>Rojo/azul</td>
<td>11 12</td>
<td>Azul/rojo</td>
<td>COM1 RS-485 Datos –</td>
</tr>
<tr>
<td>Blindaje RS-485</td>
<td>Cable desnudo</td>
<td>13 14</td>
<td>Negro/naranja, negro/verde</td>
<td>No procede: No utilizar</td>
</tr>
</tbody>
</table>

¹ Los pines 15 a 24 no se utilizan y deben dejarse desconectados.

Cableado de E/S incorporadas opcionales

Esta sección se aplica únicamente si ha encargado la opción de E/S incorporadas del medidor. Consulte la sección “Opciones del medidor” en la página 41 para averiguar la opción de E/S incorporadas correspondiente a su medidor. Si desea más información, consulte la tabla de
especificaciones “E/S incorporadas” en la página 63.

1. Conecte el cable de conexiones de E/S proporcionado al conector de E/S incorporadas del medidor (Molex de 16 pines).
2. Termine los extremos del cable de la siguiente manera:

<table>
<thead>
<tr>
<th>Opción B de E/S incorporadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Salida C1 K</td>
</tr>
<tr>
<td>Salida C2 Z</td>
</tr>
<tr>
<td>Salida C2 Y</td>
</tr>
<tr>
<td>Salida C3 K</td>
</tr>
<tr>
<td>Salida C4 Z</td>
</tr>
<tr>
<td>Salida C4 Y</td>
</tr>
<tr>
<td>Entrada S2</td>
</tr>
<tr>
<td>Entrada SCOM</td>
</tr>
</tbody>
</table>

3. Si desea más información, consulte la sección “Opciones adicionales de configuración” en la página 65.

Nota
De manera predeterminada todas las entradas digitales están asignadas. No se asigna ninguna salida digital de estado sólido (utilice el software Power Monitoring Expert o ION Setup para configurar las salidas digitales).

Paso 6: Aplicación de tensión al medidor

<table>
<thead>
<tr>
<th>PELIGRO</th>
</tr>
</thead>
</table>

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO DE ARCO
- Antes de aplicar tensión al medidor, asegúrese de que la tierra de protección está conectada.
- Las conexiones eléctricas de los terminales del medidor no deben quedar al alcance de los usuarios después de la instalación.
- Vuelva a colocar todos los dispositivos, las puertas y las cubiertas antes de poner en servicio el medidor.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

1. Cierre los fusibles del TT (o los fusibles de entrada de tensión directa).
2. Abra los bloques de cortocircuito del TI.
3. Aplique tensión al medidor.

Verificación del funcionamiento del medidor
Cuando se aplica tensión al medidor, la pantalla del panel frontal se enciende y muestra brevemente un mensaje que indica que el medidor se está iniciando, para desplazarse seguidamente por las diferentes pantallas.
Paso 7: Configuración del medidor con el panel frontal

Las secciones que siguen describen la manera de configurar el medidor mediante los botones del panel frontal.

Navegación mediante los botones del panel frontal

1. Mantenga pulsado el botón roondo (ALT/ENTER) para acceder a las pantallas de configuración del medidor.
2. Pulse el botón de flecha arriba o flecha abajo (navegación) para cambiar la selección (elemento resaltado).
3. Pulse el botón roondo para seleccionarlo.
4. Para retroceder a la pantalla anterior, resalte “RETURN” (Volver) y pulse el botón roondo.

Modificación de los valores de configuración del medidor

1. Cualquiera de los dos métodos descritos a continuación le permitirán cambiar los valores de configuración:
 - Si desea seleccionar una opción diferente de una lista, pulse el botón de flecha arriba o de flecha abajo para resaltar el elemento que desee y, a continuación, pulse el botón roondo para seleccionarlo.
 - Si desea cambiar un valor numérico, utilice el botón de flecha arriba o de flecha abajo para incrementar o reducir el valor. Mantenga pulsado el botón de flecha arriba para mover el cursor hacia la izquierda, o bien mantenga pulsado el botón de flecha abajo para hacerlo hacia la derecha.
2. Pulse el botón roondo para establecer el cambio:
 - Introduzca la contraseña, si así se le indica. La contraseña predeterminada es “0” (cero).
 - En la pantalla “CONFIRM CHANGE” (Confirmar cambio), seleccione “YES” (Sí) y, a continuación, pulse el botón roondo.

Menús de configuración del panel frontal

La tabla que figura a continuación muestra los menús de configuración y describe sus registros. Si la función o hardware opcional no están presentes, el medidor muestra el mensaje “Not available” (No disponible).

Use ION Setup para configurar los registros de configuración que no sean accesibles a través del panel frontal.
<table>
<thead>
<tr>
<th>Menú</th>
<th>Valor</th>
<th>Descripción</th>
<th>Intervalo (valores)</th>
<th>Predet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Setup</td>
<td>Volts Mode (Modo de voltios)</td>
<td>Configuración de cableado del sistema de alimentación.</td>
<td>9S – 4 Wire Wye/Delta (Estrella/triángulo de 4 hilos de 9S), 29S – 4 Wire Wye (Estrella de 4 hilos de 29S), 36S – 4 Wire Wye (Estrella de 4 hilos de 36S), DEMO (Demostración)</td>
<td>9S – 4 Wire Wye/Delta</td>
</tr>
<tr>
<td></td>
<td>PT Primary (Primario del TT)</td>
<td>Tensión nominal del devanado primario del transformador de tensión.</td>
<td>De 1.0 a 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>PT Secondary (Secundario del TT)</td>
<td>Tensión nominal del devanado secundario del transformador de tensión.</td>
<td>De 1.0 a 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>CT Primary (Primario del TI)</td>
<td>Intensidad nominal del devanado primario del transformador de intensidad.</td>
<td>De 1.0 a 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CT Secondary (Secundario del TI)</td>
<td>Intensidad nominal del devanado secundario del transformador de intensidad.</td>
<td>De 1.0 a 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>VA Polarity (Polaridad de V1)</td>
<td>Polaridad del transformador de tensión en V1.</td>
<td>Normal o Inverted (invertida)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VB Polarity (Polaridad de V2)</td>
<td>Polaridad del transformador de tensión en V2.</td>
<td>Normal o Inverted (invertida)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VC Polarity (Polaridad de V3)</td>
<td>Polaridad del transformador de tensión en V3.</td>
<td>Normal o Inverted (inverted)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IA Polarity (Polaridad de I1)</td>
<td>Polaridad del transformador de intensidad en I1.</td>
<td>Normal o Inverted (inverted)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IB Polarity (Polaridad de I2)</td>
<td>Polaridad del transformador de intensidad en I2.</td>
<td>Normal o Inverted (inverted)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IC Polarity (Polaridad de I3)</td>
<td>Polaridad del transformador de intensidad en I3.</td>
<td>Normal o Inverted (inverted)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Phase Rotation (Rotación de fases)</td>
<td>Rotación de fases del sistema de alimentación.</td>
<td>ABC, ACB</td>
<td>ABC</td>
</tr>
<tr>
<td>Protocol (Protocolo)</td>
<td></td>
<td>Especifica el protocolo utilizado en este puerto.</td>
<td>Ninguna, ION, Modbus RTU, Modbus Master¹, DNP v3.00, DLMS, ModemGate, GPS: Truetime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne, Factory, EtherGate</td>
<td>ION</td>
</tr>
<tr>
<td>Baud Rate (Velocidad en baudios)</td>
<td></td>
<td>Especifica la velocidad en baudios del puerto COM durante las comunicaciones serie.</td>
<td>De 300 a 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay (Retardo de transmisión)</td>
<td></td>
<td>Especifica el valor del retardo de transmisión del puerto.</td>
<td>De 0 a 1.00</td>
<td>0,01</td>
</tr>
<tr>
<td>Unit ID (ID de la unidad)</td>
<td></td>
<td>Identifica el medidor durante las comunicaciones serie.</td>
<td>De 1 a 9999</td>
<td>A partir del número de serie²</td>
</tr>
<tr>
<td>Serial Port (Puerto serie)</td>
<td></td>
<td>Bits de datos, de paridad y de parada del puerto.</td>
<td>8O1, 8O2, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td>RTS/CTS Handshake (Reconocimiento de RTS/CTS)</td>
<td></td>
<td>Especifica si se utiliza control de flujo de hardware durante la comunicación RS-232.</td>
<td>RTS with delay (RTS con retardo), RTS/CTS</td>
<td>RTS with delay</td>
</tr>
<tr>
<td>RS485 Bias (Polaridad de RS485)</td>
<td></td>
<td>Especifica si se debe aplicar o no la polarización RS-485 al puerto.</td>
<td>ON (conectada) u OFF (desconectada)</td>
<td>OFF</td>
</tr>
<tr>
<td>Baud Rate (Velocidad en baudios)</td>
<td></td>
<td>Especifica la velocidad en baudios del puerto COM durante las comunicaciones serie.</td>
<td>De 300 a 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay (Retardo de transmisión)</td>
<td></td>
<td>Especifica el valor del retardo de transmisión del puerto.</td>
<td>De 0 a 1.00</td>
<td>0,01</td>
</tr>
<tr>
<td>Unit ID (ID de la unidad)</td>
<td></td>
<td>Identifica el medidor durante las comunicaciones serie.</td>
<td>De 1 a 9999</td>
<td>101</td>
</tr>
<tr>
<td>Menú</td>
<td>Valor</td>
<td>Descripción</td>
<td>Intervalo (valores)</td>
<td>Predet.</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Baud Rate (Velocidad en baudios)</td>
<td></td>
<td>Especifica la velocidad en baudios durante las comunicaciones serie.</td>
<td>De 300 a 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay (Retardo de transmisión)</td>
<td></td>
<td>Especifica el valor del retardo de transmisión del puerto.</td>
<td>De 0 a 1.00</td>
<td>0,01</td>
</tr>
<tr>
<td>Unit ID (ID de la unidad)</td>
<td></td>
<td>Identifica el medidor durante las comunicaciones.</td>
<td>De 1 a 9999</td>
<td>102</td>
</tr>
<tr>
<td>Serial Port (Puerto serie)</td>
<td></td>
<td>Bits de datos, de paridad y de parada del puerto.</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td>Protocolo (Protocolo)</td>
<td></td>
<td>Especifica el protocolo utilizado en este puerto.</td>
<td>Ninguna, ION, Modbus RTU, Modbus Master1, DNP v3.00, DLMS, ModemGate, GPS: Truetime/Datum, GPS: Arbiter, GPS: Arbiter-Vorne, Factory, EtherGate</td>
<td>ION</td>
</tr>
<tr>
<td>Baud Rate (Velocidad en baudios)</td>
<td></td>
<td>Especifica la velocidad en baudios durante las comunicaciones serie.</td>
<td>De 300 a 115200</td>
<td>9600</td>
</tr>
<tr>
<td>Transmit Delay (Retardo de transmisión)</td>
<td></td>
<td>Especifica el valor del retardo de transmisión del puerto.</td>
<td>De 0 a 1.00</td>
<td>0,01</td>
</tr>
<tr>
<td>Unit ID (ID de la unidad)</td>
<td></td>
<td>Identifica el medidor durante las comunicaciones.</td>
<td>De 1 a 9999</td>
<td>103</td>
</tr>
<tr>
<td>Serial Port (Puerto serie)</td>
<td></td>
<td>Bits de datos, de paridad y de parada del puerto.</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td>RS485 Bias (Polariidad de RS485)</td>
<td></td>
<td>Especifica si se debe aplicar o no la polarización RS-485 al puerto.</td>
<td>ON (conectada) u OFF (desconectada)</td>
<td>OFF</td>
</tr>
<tr>
<td>IP Address (Dirección IP)</td>
<td></td>
<td>Especifica la dirección Ethernet TCP/IP.</td>
<td>De 0.0.0.0 a 255.255.255</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Mask (Máscara)</td>
<td></td>
<td>Especifica la máscara de subred.</td>
<td>De 0.0.0.0 a 255.255.255</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Gateway (Pasarela)</td>
<td></td>
<td>Especifica la pasarela Ethernet (si se utiliza).</td>
<td>De 0.0.0.0 a 255.255.255</td>
<td>Ninguna</td>
</tr>
<tr>
<td>SMTP Address (Dirección SMTP)</td>
<td></td>
<td>Especifica la ubicación del servidor SMTP.</td>
<td>De 0.0.0.0 a 255.255.255</td>
<td>Ninguna</td>
</tr>
<tr>
<td>MAC Address (Dirección MAC)</td>
<td></td>
<td>Dirección de control de acceso a la máquina.</td>
<td>Hexadecimal</td>
<td>No procede</td>
</tr>
<tr>
<td>Port Enable (Activar puerto)</td>
<td></td>
<td>Especifica si el puerto está activado o desactivado.</td>
<td>Webserver, FTP, DNP over TCP, ION over TCP, Modbus over TCP, Modbus TCP, Telnet</td>
<td>TBD</td>
</tr>
<tr>
<td>COM1</td>
<td></td>
<td>Especifica si COM1 (RS-232/RS-485) está activado o no.</td>
<td>Enabled (Activada)</td>
<td></td>
</tr>
<tr>
<td>COM2</td>
<td></td>
<td>Especifica si COM2 (módem) está activado o no.</td>
<td>Disabled (Desactivada), Enabled (Activada)</td>
<td></td>
</tr>
<tr>
<td>COM3</td>
<td></td>
<td>COM3 (puerto óptico delantero) siempre está activado.</td>
<td>Enabled (Activada)</td>
<td></td>
</tr>
<tr>
<td>COM4</td>
<td></td>
<td>Especifica si COM4 (RS-485) está activado o no.</td>
<td>Disabled (Desactivada), Enabled (Activada)</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
<td>Especifica si el puerto Ethernet está activado o no.</td>
<td>Disabled (Desactivada), Enabled (Activada)</td>
<td></td>
</tr>
<tr>
<td>Volts Decimal</td>
<td></td>
<td>Número de cifras decimales que se muestran en valores de tensión.</td>
<td>De 1 a 123456789.XXX</td>
<td>1.XX</td>
</tr>
<tr>
<td>Current Decimal</td>
<td></td>
<td>Número de cifras decimales que se muestran en valores de intensidad.</td>
<td>De 1 a 123456789.XXX</td>
<td>1.XX</td>
</tr>
<tr>
<td>Power Decimal</td>
<td></td>
<td>Número de cifras decimales que se muestran en valores de potencia.</td>
<td>De 1 a 123456789.XXX</td>
<td>1.XX</td>
</tr>
</tbody>
</table>

Observaciones:
- **RS485 Bias (Polariidad de RS485):** Especifica si se debe aplicar o no la polarización RS-485 al puerto.
- **Puertos Com activados:**
 - COM1 (RS-232/RS-485)
 - COM2 (módem)
 - COM3 (puerto óptico delantero)
 - COM4 (RS-485)
 - Ethernet
- **Formato de fecha:**
 - YYYY/MM/DD (AAAA/MM/DD)
 - MM/DD/YYYY (MM/DD/AAAA)
 - DD/MM/YYYY (DD/MM/AAAA)
- **Volts Decimal (Decimales de voltios):** Número de cifras decimales que se muestran en valores de tensión.
- **Current Decimal (Decimales de intensidad):** Número de cifras decimales que se muestran en valores de intensidad.
- **Power Decimal (Decimales de potencia):** Número de cifras decimales que se muestran en valores de potencia.
Paso 8: Configuración de los parámetros avanzados mediante ION Setup

Algunas funciones no se activan hasta que se cambian ciertos parámetros de la configuración, como el valor del registro NomVolts (Tensión nominal) en el módulo Sag/Swell (Huecos/puntas) para activar las funciones de calidad de energía. Para obtener una explicación pormenorizada de todas las funciones del medidor, consulte el ION8650 User Guide (Manual del usuario del medidor ION8650).

Paso 9: Visualización de los datos del medidor

De manera predeterminada se muestran las pantallas del modo de visualización NORM (normal). Pulse el botón redondo (ALT/ENTER) para pasar al modo de visualización ALT (alternativo). Los botones de flecha arriba o flecha abajo le permitirán desplazarse por las distintas pantallas.

<table>
<thead>
<tr>
<th>Menú</th>
<th>Valor</th>
<th>Descripción</th>
<th>Intervalo (valores)</th>
<th>Predet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Setup (Configuración de la pantalla)</td>
<td>Update Rate (Tasa de refresco)</td>
<td>Establece la frecuencia en segundos con la que se actualiza la pantalla.</td>
<td>De 1 s a 6 s</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td>Contrast (Contraste)</td>
<td>Establece el contraste de la pantalla (los números más altos corresponden a mayor nitidez).</td>
<td>De 0 a 9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Backlight TO (Límite de tiempo de retroiluminación)</td>
<td>Cuánto tiempo permanece encendida la retroiluminación de la pantalla del panel frontal después de pulsar el último botón.</td>
<td>De 0 a 7200 (segundos)²</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>DM3 Lock TO (Límite de tiempo de bloqueo de demanda)</td>
<td>Tiempo mínimo permitido entre restablecimientos de demanda consecutivos.</td>
<td>De 0 a 5184000 (segundos)</td>
<td>2160000 s (25 días)</td>
</tr>
<tr>
<td></td>
<td>TEST Mode TO (Límite de tiempo del modo Test)</td>
<td>Cuánto tiempo permanece el dispositivo en modo Test antes de volver al estado normal.</td>
<td>De 60 a 21600 (segundos)</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>Display Scale (Escala de visualización)</td>
<td>Escala que se aplica a los valores antes de ser mostrados.</td>
<td>De 1.00 a 9999999.0</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Scaling Mode (Modo de escala)</td>
<td>Especifica si los valores se dividen o se multiplican por la escala de visualización antes de ser mostrados.</td>
<td>Multiply (Multiplicar) o Divide (Dividir)</td>
<td>Divide</td>
</tr>
<tr>
<td></td>
<td>Delta Vectors (Vector modulo triángulo)</td>
<td>Especifica cómo se muestran los diagramas vectoriales cuando se está en modo Delta (Triángulo).</td>
<td>System (Sistema) o Instrument (Instrumento)</td>
<td>Instrument</td>
</tr>
<tr>
<td></td>
<td>Modify Passwd (Modificar contraseña)</td>
<td>Cambia la contraseña de la seguridad básica³</td>
<td>De 0 a 99999999</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Disable Security (Desactivar seguridad)</td>
<td>Elimina el requisito de contraseña del USUARIO00 (panel frontal) cuando se activa la Seguridad avanzada.</td>
<td>Disabled (Desactivada), Enabled (Activada)⁹</td>
<td>Password Enabled (Contraseña activada)</td>
</tr>
<tr>
<td></td>
<td>Web Config (Configuración web)</td>
<td>Permite la configuración mediante una interfaz de servidor web.</td>
<td>Disabled (Desactivada), Enabled (Activada)⁹</td>
<td>Enabled (Activada)</td>
</tr>
</tbody>
</table>

¹ ION8650C (conjunto de funciones C) no admite el protocolo Modbus Master.
² El ID de unidad configurado de fábrica se basa en el número de serie del medidor. Por ejemplo, si el número de serie es XXXX-100X263-XX el ID de unidad configurado de fábrica es 9263.
³ Una vez introducida, la dirección 0.0.0.0 aparece como ‘Ninguna’ en el panel frontal.
⁴ Para modificar el ajuste “NONE” (Ninguna), mantenga pulsado el botón de flecha arriba para entrar en el modo de edición.
⁵ La dirección MAC se codifica en fábrica de manera rígida (no modificable) y su finalidad es meramente indicativa.
⁶ Sólo se aplica a ION8650C (conjunto de funciones C). Consulte la sección “Conmutación de los puertos de comunicaciones activos en el modelo ION8650C” en la página 66.
⁷ Si se configura el tiempo de apagado de la retroiluminación en 0, se mantendrá encendida siempre.
⁸ Esta función sólo está disponible con la seguridad básica. Cuando se activa la seguridad avanzada, aparece el mensaje NO DISPONIBLE en el panel frontal.
⁹ Para activar o desactivar la seguridad básica del medidor, consulte la sección “Seguridad del medidor” en la página 65.
Pantallas del modo NORM

<table>
<thead>
<tr>
<th>Pantalla</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>Valores de kWh suministrados/recibidos</td>
</tr>
<tr>
<td>kVARh</td>
<td>Valores de kVARh suministrados/recibidos</td>
</tr>
<tr>
<td>kVAh</td>
<td>Valores de kVAh suministrados/recibidos</td>
</tr>
<tr>
<td>Peak Demand Delivered (Demanda punta suministrada)</td>
<td>Valor máximo de kW, kVAR y kVA suministrados (con sello de fecha y hora)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pantalla</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Demand Reset (Restablecimiento de demanda punta)</td>
<td>Número de restablecimientos de demanda (con sello de fecha y hora)</td>
</tr>
<tr>
<td>Q Metering (Medición de Q)</td>
<td>Mediciones aproximadas de VARh</td>
</tr>
<tr>
<td>Disk Simulator (Simulador del disco)</td>
<td>Simula el disco del medidor mecánico de vatios hora.</td>
</tr>
<tr>
<td>All Segments (Todos los segmentos)</td>
<td>La pantalla negra muestra los pixeles LCD que funcionan correctamente.</td>
</tr>
</tbody>
</table>

Pantallas del modo ALT

<table>
<thead>
<tr>
<th>Pantalla</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Plate 1 (Placa de datos 1)</td>
<td>Propietario, versión del firmware, ETIQUETAS 1 y 2</td>
</tr>
<tr>
<td>Name Plate 2 (Placa de datos 2)</td>
<td>Configuración de demanda de ventana deslizante</td>
</tr>
<tr>
<td>Event Log (Registro de eventos)</td>
<td>Eventos más recientes de alta prioridad (255)</td>
</tr>
<tr>
<td>Phasor Diagram (Diagrama fasorial)</td>
<td>Fasores y valores de intensidad/tensión de fase</td>
</tr>
<tr>
<td>Instantaneous Voltage (Tensión instantánea)</td>
<td>Tensión de fase, tensión media (L-N o L-L)</td>
</tr>
<tr>
<td>Instantaneous Current (Intensidad instantánea)</td>
<td>Intensidad de fase, intensidad media</td>
</tr>
<tr>
<td>Instantaneous Power (Potencia instantánea)</td>
<td>Valores de kW totales, kVAR totales, kVA totales, factor de potencia</td>
</tr>
<tr>
<td>Instantaneous Demand (Demanda instantánea)</td>
<td>Valores de kW suministrados/recibidos</td>
</tr>
<tr>
<td>Flicker1</td>
<td>Mediciones de flicker de V1, V2 y V3</td>
</tr>
<tr>
<td>Voltage Harmonics (Armónicos de tensión [3 pantallas])</td>
<td>Histogramas de armónicos de tensión por fase</td>
</tr>
<tr>
<td>Current Harmonics (Armónicos de intensidad [3 pantallas])</td>
<td>Histogramas de armónicos de intensidad por fase</td>
</tr>
<tr>
<td>Active TOU Rate (Tarifa de TOU activa)</td>
<td>Tasa activa de facturación de TOU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pantalla</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active TOU Seasons (Temporadas de TOU activas)</td>
<td>Temporada activa de facturación de TOU</td>
</tr>
<tr>
<td>TOU Energy by Rate (Energía de TOU por tarifa)</td>
<td>Valores de kWh suministrados correspondientes a cada tarifa de TOU</td>
</tr>
<tr>
<td>kW Peak Demand (Demanda punta de kW)</td>
<td>Valores de kW máximos suministrados correspondientes a cada tarifa de TOU</td>
</tr>
<tr>
<td>Past Billing Energy (Energía de facturación anterior)</td>
<td>Valores de kWh suministrados en la facturación anterior</td>
</tr>
<tr>
<td>Past Billing Peak Demand (Demanda punta de facturación anterior)</td>
<td>Valores de kWh máximos suministrados en la facturación anterior</td>
</tr>
<tr>
<td>Past Season Energy (Consumo energético de la temporada anterior)</td>
<td>Valores de kWh suministrados correspondientes a cada tarifa de TOU de la facturación anterior</td>
</tr>
<tr>
<td>Past Season Peak Demand (Demanda punta de la temporada anterior)</td>
<td>Valores de kWh máximos suministrados correspondientes a cada tarifa de TOU de la facturación anterior</td>
</tr>
<tr>
<td>Past Billing/Season Energy (Consumo energético de la facturación/temporada anterior)</td>
<td>Valores de kWh suministrados/recibidos en la facturación y temporada anteriores</td>
</tr>
<tr>
<td>Past Bill/Season Pk Dem (Demanda punta de la facturación/temporada anterior)</td>
<td>Valores de kW máximos recibidos de demanda de ventana deslizante correspondientes a la facturación y temporada anteriores</td>
</tr>
<tr>
<td>Past Billing/Season Energy (Consumo energético de la facturación/temporada anterior)</td>
<td>Valores de kVARh suministrados/recibidos en la facturación y temporada anteriores</td>
</tr>
<tr>
<td>Past Bill/Season Pk Demand (Demanda punta de la facturación/temporada anterior)</td>
<td>Valores de kVARh máximos suministrados/ recibidos en la facturación y temporada anteriores</td>
</tr>
<tr>
<td>Active TOU Rate (Tarifa de TOU activa)</td>
<td>Tasa activa de facturación de TOU</td>
</tr>
</tbody>
</table>

1 Las mediciones de flicker están disponibles únicamente en los modelos ION8650A y ION8650.

Modo TEST

El modo Test sirve para modificar ciertos parámetros de un medidor bloqueado por hardware o para verificar la precisión del medidor. Si desea obtener más detalles, consulte el ION8650 user guide (Manual del usuario del medidor ION8650) y la nota técnica Verificación de la precisión del medidor ION8650.

Paso 10: Uso de los diagramas fasoriales para verificar el cableado

El diagrama fasorial se visualiza en el panel frontal del ION o mediante ION Setup. El visor de fasor de ION Setup sirve para verificar el cableado del medidor. Consulte la ayuda en línea de ION Setup para obtener detalles.
ESTRELLA: Rotación ABC

Modo de voltios aplicable: 9S – 4 Wire Wye/Delta (Estrella/triangulo de 4 hilos de 9S) y 29S – 4 Wire Wye (Estrella de 4 hilos de 29S)

Q2: FP en avance (+)
Q1: FP en retraso (-)
Q3: FP en retraso (-)
Q4: FP en avance (+)

Potencia activa

- kW

Potencia reactive

+ kVAR

ESTRELLA: Rotación ACB

Modo de voltios aplicable: 9S – 4 Wire Wye/Delta (Estrella/triangulo de 4 hilos de 9S) y 29S – 4 Wire Wye (Estrella de 4 hilos de 29S)

Q2: FP en avance (+)
Q1: FP en retraso (-)
Q3: FP en retraso (-)
Q4: FP en avance (+)

Potencia activa

- kW

Potencia reactive

+ kVAR

Triángulo de 3 hilos: Rotación ABC

Modo de voltios aplicable: 35S – 3 Wire (3 hilos de 35S)

Q2: FP en avance (+)
Q1: FP en retraso (-)
Q3: FP en retraso (-)
Q4: FP en avance (+)

Potencia activa

- kW

Potencia reactive

+ kVAR

Triángulo de 3 hilos: Rotación ACB

Modo de voltios aplicable: 35S – 3 Wire (3 hilos de 35S)

Q2: FP en avance (+)
Q1: FP en retraso (-)
Q3: FP en retraso (-)
Q4: FP en avance (+)

Potencia activa

- kW

Potencia reactive

+ kVAR

Triángulo de 4 hilos (triángulo de extremo alto)

Diagrama fasorial del ION8650 en modo 9S – 4 Wire Wye/Delta en FP uno

Suponiendo que la carga trifásica es dominante.

La carga trifásica en triángulo está apagada. Sólo una carga monofásica.
Especificaciones

La información contenida en esta sección está sujeta a cambios sin previo aviso. Para obtener la información más reciente, póngase en contacto con el distribuidor local de Schneider Electric.

Ambientales

<table>
<thead>
<tr>
<th>Especificación</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel de contaminación</td>
<td>2</td>
</tr>
<tr>
<td>Altitud</td>
<td>Menos de 3000 m sobre el nivel del mar</td>
</tr>
<tr>
<td>Rango de funcionamiento</td>
<td>De ~40 a 85 °C (ambiente en el interior). La temperatura ambiente máxima es de ~40 a 70 °C.</td>
</tr>
<tr>
<td>Temperatura de funcionamiento de la pantalla</td>
<td>De ~20 a 80 °C</td>
</tr>
<tr>
<td>Humedad</td>
<td>5% a 95% de humedad relativa sin condensación</td>
</tr>
</tbody>
</table>

Entradas de mediciones

Entradas de mediciones de tensión

<table>
<thead>
<tr>
<th>Entradas</th>
<th>Forma 9: Va, Vb, Vc, Vref</th>
<th>Forma 29 y 36: Va, Vc, Vref</th>
<th>Forma 35: Vab, Vcb, Vref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de conector (aportado por el cliente)</td>
<td>Conector de anilla o de horquilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par de apriete de los tornillos de terminal</td>
<td>2.82 N·m máx.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección de cable recomendada</td>
<td>5.26 mm² (10 AWG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión nominal</td>
<td>Forma 9, 29 y 36: 277 V L-N rms (-20%,+25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forma 35: 100 a 480 V L-L rms (-20%,+25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima: mediciones con alimentación auxiliar</td>
<td>Forma 9, 29 y 36: 347 V L-N rms, 600 V L-L rms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forma 35: 600 V L-L rms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rígidez dieléctrica</td>
<td>2500 V rms, 60 Hz durante 1 minuto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categoría de medición/instalación</td>
<td>CAT III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rango de frecuencia fundamental de funcionamiento</td>
<td>42-69 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impedancia de entrada</td>
<td>5 MΩ/fase (de fase a Vref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusible (aportado por el cliente)</td>
<td>2 A de acción retardada (consulte los diagramas de cableado)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entradas de mediciones de intensidad

<table>
<thead>
<tr>
<th>Enlaces</th>
<th>Forma 9, 29 y 36: Ia, Ib, Ic</th>
<th>Forma 35: Ia, Ic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de conector (aportado por el cliente)</td>
<td>Conector de anilla o de horquilla</td>
<td></td>
</tr>
<tr>
<td>Par de apriete de los tornillos de terminal</td>
<td>2.82 N·m máx.</td>
<td></td>
</tr>
<tr>
<td>Sección de cable recomendada</td>
<td>5.26 mm² (10 AWG)</td>
<td></td>
</tr>
<tr>
<td>Intensidad de arranque: clase 210/20</td>
<td>0.001 A rms</td>
<td></td>
</tr>
<tr>
<td>Carga máxima admisible</td>
<td>Hasta 24 A rms</td>
<td></td>
</tr>
<tr>
<td>Valores nominales de las entradas</td>
<td>ANSI C12.20: clases de intensidad combinadas 2, 10 y 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 62053-22: combinación 1 A y 5 A nominal, Imáx. = 20 A rms</td>
<td></td>
</tr>
<tr>
<td>Sobrecarga</td>
<td>500 A rms durante 1 s</td>
<td></td>
</tr>
<tr>
<td>Prueba de tipo de rígidez dieléctrica</td>
<td>2500 V rms, 60 Hz durante 1 minuto</td>
<td></td>
</tr>
<tr>
<td>Tensión máxima</td>
<td>600 V rms</td>
<td></td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
<td></td>
</tr>
<tr>
<td>Categoría de medición/instalación</td>
<td>CAT III</td>
<td></td>
</tr>
<tr>
<td>Carga: clase 210/20</td>
<td>0.05 VA por fase a 1 A</td>
<td></td>
</tr>
</tbody>
</table>

Tierra

<table>
<thead>
<tr>
<th>Enlaces</th>
<th>2,08 mm² (14 AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipos</td>
<td></td>
</tr>
<tr>
<td>Valores nominales de las entradas</td>
<td>Forma 9, 29 y 36: 69 a 277 V L-N rms (120 a 480 V L-L rms), 42 a 69 Hz</td>
</tr>
<tr>
<td></td>
<td>Forma 35: 120 a 480 V L-L rms, 42 a 69 Hz</td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
</tr>
<tr>
<td>Carga</td>
<td>8 VA/fase, funcionamiento trifásico; Máxima: 14 VA/fase, funcionamiento trifásico</td>
</tr>
<tr>
<td>Ride-through: mínimo garantizado</td>
<td>6 ciclos a frecuencia nominal (min. 50 Hz), a 120 V L-N rms (208 V L-L rms), funcionamiento trifásico</td>
</tr>
</tbody>
</table>

Fuente de alimentación: estándar (alimentación por palas)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Trifásica (alimentada por las entradas de detección de tensión)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores nominales de las entradas</td>
<td>Forma 9, 29 y 36: 69 a 277 V L-N rms (120 a 480 V L-L rms), 42 a 69 Hz</td>
</tr>
<tr>
<td></td>
<td>Forma 35: 120 a 480 V L-L rms, 42 a 69 Hz</td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
</tr>
<tr>
<td>Carga</td>
<td>8 VA/fase, funcionamiento trifásico; Máxima: 14 VA/fase, funcionamiento trifásico</td>
</tr>
<tr>
<td>Ride-through: mínimo garantizado</td>
<td>6 ciclos a frecuencia nominal (min. 50 Hz), a 120 V L-N rms (208 V L-L rms), funcionamiento trifásico</td>
</tr>
</tbody>
</table>
Fuente de alimentación: alimentación auxiliar (tensión estándar)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Monofásica, alimentada mediante un cable externo con enchufe de alimentación NEMA 5-15 con puesta a tierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores nominales de las entradas</td>
<td>CA: de 65 a 120 V L-L rms, 42 a 69 Hz</td>
</tr>
<tr>
<td></td>
<td>CC: de 80 a 170 VCCA</td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
</tr>
<tr>
<td>Carga</td>
<td>típica: 7 W, 14 VA; Máxima: 11 W, 18 VA</td>
</tr>
<tr>
<td>Ride-through: mínimo garantado</td>
<td>6 ciclos a frecuencia nominal (min. 50 Hz), a 65 V L-N de tensión mínima</td>
</tr>
</tbody>
</table>

Fuente de alimentación: alimentación auxiliar (alta tensión)

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Monofásica, alimentada mediante un cable externo con enchufe de alimentación NEMA con puesta a tierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores nominales de las entradas</td>
<td>CA: de 160 a 277 V L-N rms</td>
</tr>
<tr>
<td></td>
<td>CC: de 200 a 390 VCCA</td>
</tr>
<tr>
<td>Tensión de impulsos nominal</td>
<td>6 kV</td>
</tr>
<tr>
<td>Carga</td>
<td>típica: 8 W, 14 VA; Máxima: 11 W, 19 VA</td>
</tr>
<tr>
<td>Ride-through: mínimo garantado</td>
<td>6 ciclos a frecuencia nominal (min. 50 Hz), a 160 V L-N de tensión mínima</td>
</tr>
</tbody>
</table>

E/S incorporadas

Salidas digitales

Tipo	4 salidas de estado sólido de forma C (opción B y C de E/S)
	1 salida de estado sólido de forma A (sólo con la opción C de E/S)
Cable	1,3 a 0,13 mm² (16 a 26 AWG)
Tensión de carga máx.	130 VCA/200 VCC
Intensidad de carga máx.	100 mA
Resistencia (en funcionamiento)	30 Ω típica, 50 Ω máxima
Resistencia (desactivada)	400 M Ω minima
Aislamiento	2000 V rms, 60 Hz durante 1 minuto (a tierra)
	1000 V rms, 60 Hz durante 1 minuto (entre salidas)
Tensión de impulsos nominal	2500 V punta (a tierra)
	1500 V punta (entre entradas o salidas) (CAT II)
Update Rate (tasa de refresco)	20 ms (precisión = +/- 7 ms), sin incluir el retardo de comunicación. Los cambios de carga se producen dentro de plazos de 20 ms. 1/2 ciclo para las E/S internas.
Tipo de señal	Continua o impulsos
Fusibles	Protección mediante fusible de acción retardada de 100 mA (como fusibles Littlefuse serie 201 de 100 mA)
Transición de salidas máx.	50 por segundo
Amplitud de impulso mín.	1 ms
Resolución de la temporización	1/2 ciclo o 1 s
Dispositivo de supresión de transitorios de las salidas digitales	Instalar según los diagramas de la sección, "Salidas digitales" en la página 69. El dispositivo de supresión de transitorios, proporcionado por el cliente, debe cumplir las siguientes especificaciones: Polarización bidireccional. Tensión de avería = máximo 300 V. Derivación de potencia punta = 10 kW durante 10 microsegundos (mínimo) y 1,5 kW durante 1 milisegundo (mínimo).
Latencia de cambio de estado	20 ms (salida digital)
	40 ms (módulos de entrada digital)
Esquemas de control	Utilice mecanismos intermedios de modo que se pueda desactivar el control de los relés para las tareas de mantenimiento.

Entradas digitales

Tipo	3 entradas de forma A (opción B de E/S)
	1 entrada de forma A (opción C de E/S)
	Autoexcitación, detección de contacto seco, no se requiere tensión externa. (Para excitación externa, el rango de funcionamiento es de 24 a 130 VCC.)
Cable	Utilice cables apropiados para la aplicación.
Tensión de carga máx.	30 VCCA interna (suministrada) o 130 VCCA externa
Intensidad de carga máx.	100 mA
Aislamiento	2000 V rms, 60 Hz durante 1 minuto (a tierra)
	1000 V rms, 60 Hz durante 1 minuto (entre entradas)
Tensión de impulsos nominal	2500 V punta (a tierra)
	1500 V punta (entre entradas o salidas) (CAT II)
Amplitud de impulso mín.	20 ms
Velocidad de transición de entrada máx.	50 por segundo
Tiempo de exploración	20 ms
Resolución de la temporización	1 ms, con precisión de 2 ms
Entradas	Activadas para una resistencia externa de 2 kΩ o inferior. Desactivadas para una resistencia externa de 4 MΩ o superior.
Comunicaciones

<table>
<thead>
<tr>
<th>Comunicación</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232/RS-485</td>
<td>Cable DB9</td>
</tr>
<tr>
<td>RS-485</td>
<td>Cable de par trenzado blindado</td>
</tr>
<tr>
<td>Módem</td>
<td>Módem universal de 56k</td>
</tr>
<tr>
<td></td>
<td>Cable de teléfono RJ11 que cumpla la sección 68 de la normativa de la FCC</td>
</tr>
<tr>
<td>Puerto óptico por infrarrojos</td>
<td>Puerto óptico ANSI Tipo II</td>
</tr>
<tr>
<td>RS-485</td>
<td>Cable de par trenzado blindado</td>
</tr>
<tr>
<td>Ethernet</td>
<td>UTP Categoría 3 100BASE-T (min)</td>
</tr>
<tr>
<td></td>
<td>Cable Ethernet RJ45</td>
</tr>
<tr>
<td>IRIG-B</td>
<td>Tensión nom. = 5 VCC +/- 10%. Tensión máx. = 8 VCC</td>
</tr>
<tr>
<td></td>
<td>Cable de par trenzado de 0,33 mm² (22 AWG)</td>
</tr>
</tbody>
</table>
Appendix A Opciones adicionales de configuración

Seguridad del medidor

Desactivación/activación de la seguridad mediante el panel frontal

Desactivación de la seguridad
2. Introduzca la contraseña del medidor cuando se le indique. Seleccione “Proceed” (Continuar). Seleccione “Yes” (Sí) para confirmar.
3. Seleccione “Return” (Volver) dos veces para volver a la pantalla normal.

Activación de la seguridad
Para activar la seguridad del medidor, primero debe modificar la contraseña del medidor:
1. Seleccione la pantalla del menú de configuración “Modify Passwd” (Modificar contraseña).
 Utilice el botón de navegación de flecha arriba o flecha abajo para cambiar la contraseña. Pulse el botón redondo para establecerla. Seleccione “Yes” (Sí) para confirmar.
3. Introduzca la nueva contraseña. Seleccione “Proceed” (Continuar) para establecerla. Seleccione “Yes” (Sí) para confirmar.
4. Seleccione “Return” (Volver) dos veces para volver a la pantalla normal.

Conexiones RS-232

Utilice el diagrama adecuado de los que figuran a continuación para conectar las comunicaciones RS-232 del medidor.

<table>
<thead>
<tr>
<th>Opciones de conexión de cables de RS-232</th>
<th>Directamente al ordenador</th>
<th>Directamente al módem externo</th>
<th>Del módulo de expansión de E/S al ordenador</th>
<th>Del módulo de expansión de E/S al módem externo</th>
</tr>
</thead>
</table>

1 Son de aplicación únicamente a los medidores con la opción de cable de conexiones. En los medidores con la opción de panel de conexiones, utilice los conectores de comunicaciones serie del panel trasero del medidor.
Desactivar/Activar los puertos COM desde el panel frontal

Desde el punto de vista de la seguridad, se recomienda desactivar los puertos COM que no esté utilizando.

1. Mantenga pulsado el botón ALT/ENTER durante unos segundos. Aparecerá el menú SETUP (Configuración).
2. Use los botones de navegación para marcar al puerto COM que desea configurar (de COM1 a COM4) y pulse ALT/ENTER para seleccionarlo.
3. Use los botones de navegación para marcar la configuración del Protocolo y pulse ALT/ENTER para seleccionarla.
4. Seleccione "None" (Ninguno) en la lista de protocolos disponibles.
5. Seleccione "YES" (Sí) para confirmar el cambio.

Desactivar/Activar los puertos Ethernet desde el panel frontal

Desde el punto de vista de la seguridad, se recomienda desactivar los puertos Ethernet que no esté utilizando.

1. Mantenga pulsado el botón ALT/ENTER durante unos segundos. Aparecerá el menú SETUP (Configuración).
2. Use los botones de dirección arriba y abajo para seleccionar NETWORK SETUP (Configuración de red) y pulse ALT/ENTER.
3. Desplácese hasta PORT ENABLE (Activar puerto) y pulse ALT/ENTER.
4. Seleccione el puerto que desea cambiar y pulse ALT/ENTER. Seleccione "Yes" (Sí) para activar el puerto y "No" para desactivarlo.
5. Seleccione “YES” (Sí) para confirmar el cambio. Escriba la contraseña del medidor cuando se le indique.

Conmutación de los puertos de comunicaciones activos en el modelo ION8650C

El modelo de medidor ION8650 admite comunicaciones simultáneas en el puerto óptico y en un máximo de otros dos puertos de comunicaciones Si encargó con este medidor las opciones de Ethernet y/o de módem interno, primero debe desactivar uno de los puertos de comunicaciones activos antes de activar otro en su lugar (por ejemplo, el puerto serie COM1).

Nota

Para que el cambio del puerto de comunicaciones activo surta efecto, es necesario reiniciar el medidor.

1. En el panel frontal, seleccione la pantalla del menú de configuración "ENABLED COM PORTS" Seleccione "CONTINUE" (Continuar). Seleccione "CONTINUE" (Continuar).
2. Selecione el puerto de comunicaciones activo que desea desactivar (por ejemplo, Ethernet). Seleccione "DISABLED" (Desactivado). Escriba la contraseña del medidor cuando se le indique y, a continuación, seleccione "YES" para confirmar el cambio.
3. Selecione el puerto de comunicaciones que desea activar (por ejemplo, COM1). Seleccione "ENABLED" (Activado). Seleccione "YES" (Sí) para confirmar el cambio.
4. Selecione "REBOOT" (Reiniciar). Seleccione "YES" cuando se le indique. Introduzca la contraseña del medidor cuando se le indique.
Opción de E/S incorporadas

Para ver las especificaciones pormenorizadas de E/S, consulte la tabla de especificaciones “E/S incorporadas” en la página 63.

Entradas digitales

Para averiguar cuántas entradas digitales tiene el medidor, consulte el ejemplo de número de referencia en la sección “Cableado de E/S incorporadas opcionales” en la página 54. Las entradas digitales de forma A se configuran en fábrica como autoexcitadas (utilizan su propia fuente de alimentación interna).

Configuración de las entradas digitales para excitación externa

Siga las instrucciones descritas a continuación para cambiar la configuración de las entradas digitales de modo que utilicen una fuente de alimentación externa.

PELIGRO

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O DESTELLO DE ARCO

- Utilice un equipo de protección individual (EPI) adecuado y siga las prácticas de seguridad de trabajo eléctrico. Consulte la normativa NFPA 70E para los EE. UU. o la normativa local aplicable.
- Sólo el personal electricista cualificado puede instalar y reparar este equipo.
- Apague todas las fuentes de alimentación de este dispositivo y del equipo en el que está instalado antes de trabajar con ellos.
- Utilice siempre un voltímetro de rango adecuado para confirmar que el equipo está totalmente apagado.
- Los componentes del interior del medidor son extremadamente sensibles a las descargas electrostáticas. Adopte precauciones antiestáticas siempre que realice cualquier operación en el interior de la unidad.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

1. Desconecte y bloquee la alimentación. Utilice un voltímetro de rango adecuado para confirmar que el equipo está apagado.
2. Extraiga el chasis del medidor de la caja del medidor y déjelo sobre una superficie de trabajo firme y antiestática. Consulte el procedimiento descrito en la sección “Paso 1: Instalación de la caja de tablero de distribución” en la página 46.

![Diagrama con etiquetas A y B]

4. Quite los dos tornillos delanteros de sujeción (B) y déjelos a un lado.
5. Abra el chasis del medidor inclinándolo con cuidado. Los puentes y pines de excitación se encuentran en un hueco rebajado en la parte inferior izquierda del medidor.

![Diagrama con etiquetas 2, 3, 1, 4 y configuraciones interna y externa]

6. Quite los dos puentes y coloque un puente en los pines 2 y 3 del cabezal de 4 pines. Conserve el otro puente para futuros usos.
7. Vuelva a montar el chasis del medidor, coloque de nuevo los tornillos de sujeción y apriete los tornillos de bisagra.
8. Vuelva a instalar el chasis del medidor en la caja. Consulte el procedimiento descrito en la sección “Paso 1: Instalación de la caja de tablero de distribución” en la página 46.

La excitación interna de las entradas digitales incorporadas se habrá desactivado; se podrá utilizar una fuente de alimentación externa para los contactos externos. Para obtener más detalles, consulte la tabla de especificaciones “E/S incorporadas” en la página 63.
Salidas digitales

ADVERTENCIA

RIESGO DE FUNCIONAMIENTO IMPREVISTO

No utilice este dispositivo en aplicaciones críticas de control o protección en las que la seguridad de las personas o equipos dependa del funcionamiento del circuito de control.

El incumplimiento de estas instrucciones ocasionará la muerte o lesiones graves.

Para averiguar cuántas salidas digitales tiene el medidor, consulte el ejemplo de número de referencia en la sección "Cableado de E/S incorporadas opcionales" en la página 54.

Conexiones típicas de salidas digitales de forma C

- Puertos de salidas digitales de forma C
- Fusibles de acción retardada de 100 mA
- Dispositivo de supresión de transitorios
- Fuente de alimentación

Conexiones típicas de salidas digitales de forma A

- Puertos de salidas digitales de forma A
- Fusibles de acción retardada de 100 mA
- Dispositivo de supresión de transitorios
- Relé externo
- Fuente externa de 30-130 VCC
 - 130 VCA/200 VCC máx.
Informations de sécurité

Informations importantes

Lisez attentivement ces directives et examinez l'appareil afin de vous familiariser avec lui avant l'installation, l'utilisation ou l'entretien. Les messages spéciaux suivants peuvent apparaître dans ce manuel ou sur l'appareil pour prévenir de dangers potentiels ou pour attirer l'attention sur des informations qui clarifient ou simplifient une procédure.

L'ajout d'un de ces symboles à une étiquette de sécurité «Danger» ou «Avertissement» indique qu'il existe un danger électrique qui peut entraîner des blessures si les instructions ne sont pas respectées.

Ceci est le symbole d'alerte de sécurité. Il sert à vous avertir d'un danger potentiel de blessures corporelles. Respectez toutes les consignes de sécurité accompagnant ce symbole pour éviter tout risque potentiel de blessure ou de mort.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>DANGER indique une situation dangereuse qui, si elle n'est pas évitée, entraînera la mort ou des blessures graves.</td>
</tr>
<tr>
<td>AVERTISSEMENT</td>
<td>AVERTISSEMENT indique une situation dangereuse qui, si elle n'est pas évitée, pourrait entraîner la mort ou des blessures graves.</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>ATTENTION indique une situation dangereuse qui, si elle n'est pas évitée, pourrait entraîner des blessures mineures ou modérées.</td>
</tr>
<tr>
<td>AVIS</td>
<td>AVIS s'emploie pour aborder des pratiques non liées aux blessures physiques.</td>
</tr>
</tbody>
</table>

Veuillez noter

Les appareils électriques devraient être installés, utilisés, réparés et entretenus uniquement par du personnel qualifié. Schneider Electric n'assume aucune responsabilité pour toutes conséquences découlant de l'utilisation de ce matériel.

Une personne qualifiée est quelqu'un qui possède les capacités et les connaissances nécessaires à la construction, l'installation et l'utilisation d'équipements électriques et qui a reçu une formation de sécurité lui permettant d'éviter les dangers potentiels.
Avis
Informations juridiques
La marque Schneider Electric et toutes marques déposées de Schneider Electric Industries SAS dont il est question dans ce guide sont la seule propriété de Schneider Electric SA et de ses filiales. Elles ne peuvent être utilisées dans aucun but sans la permission écrite de leur propriétaire. Ce guide et son contenu sont protégés, au sens du code de la propriété intellectuelle français, ci-après "le Code", en vertu des lois sur les droits d'auteurs couvrant les textes, les dessins et les modèles, ainsi que par les lois sur les marques commerciales. Vous acceptez de ne pas reproduire, autrement que pour votre usage personnel et non commercial, comme défini dans le Code, tout ou une partie de ce guide sur quelque support que ce soit sans la permission écrite de Schneider Electric. Vous acceptez également de ne pas établir d'hyperliens vers ce guide ou son contenu. Schneider Electric n'accorde aucun droit ou licence pour l'utilisation personnelle et non commerciale de ce guide ou de son contenu, sauf une licence non exclusive pour le consulter "en l'état", à vos propres risques. Tous les autres droits sont réservés.
Les appareils électriques devraient être installés, utilisés, réparés et entretenus uniquement par du personnel qualifié. Schneider Electric n'assume aucune responsabilité pour toutes conséquences découlant de l'utilisation de ce matériel.
Comme les normes, spécifications et modèles changent de temps en temps, veuillez demander confirmation des informations données dans cette publication.

Avis FCC Paragraphe 15
Cet appareil a subi des essais et a été reconnu conforme aux limites imposées aux appareils numériques de classe B, selon le paragraphe 15 de la réglementation FCC (Commission fédérale des communications des États-Unis). Ces limites ont été établies afin d'assurer une protection raisonnable contre les interférences nuisibles dans une installation résidentielle. Cet appareil génère, utilise et peut rayonner une énergie de radiofréquence et, s'il n'est pas installé et utilisé suivant les instructions, peut causer des interférences nuisibles aux communications radio. Toutefois, il n'est pas garanti qu'il n'y aura aucune interférence dans une installation particulière. Si cet appareil cause des interférences nuisibles à la réception de la radio ou de la télévision, ce qui peut être déterminé en éteignant et allumant l'appareil, l'utilisateur est encouragé à tenter de corriger l'interférence en adoptant l'une des mesures suivantes ou plusieurs d'entre elles :
- Changer l'orientation de l'antenne de réception ou la déplacer.
- Augmenter la distance entre l'appareil et le récepteur.
- Connecter l'appareil à une prise d'un circuit différent de celui auquel le récepteur est connecté.
- Consulter le distributeur ou un technicien radio/TV qualifié.
L'utilisateur est prévenu que tous changements ou modifications non expressément approuvés par Schneider Electric pourrait annuler le droit de l'utilisateur à utiliser cet appareil.

CAN ICES-3(B) /NMB-3(B)

Avis FCC Paragraphe 68
Cet appareil est conforme au paragraphe 68 de la réglementation FCC et aux exigences adoptées par le Conseil Administratif pour les Connexions de Terminaux (ACTA). Sur le côté de cet appareil, il y a une étiquette avec, parmi d'autres informations, un identifiant du produit au format US : AAAEQ###TXXXX. S'il est demandé, ce numéro doit être fourni à la compagnie de téléphone.
Cet appareil utilise les prises suivante du Code Universel de Commande de Service ("USOC") : RJ11.
La fiche et la prise utilisées pour raccorder cet appareil au câblage du local et au réseau téléphonique doivent être en conformité avec le règlement FCC paragraphe 68 pertinent et les exigences adoptées par l'ACTA. Un cordon téléphonique et une fiche modulaire aux normes ou une prise modulaire aux normes est fournie avec ce produit.
L'indice d'équivalence de sonnerie (REN) est utilisé pour déterminer le nombre d'appareils qui peuvent être branchés sur une ligne téléphonique. Un nombre excessif de REN sur une ligne téléphonique peut faire en sorte que l'appareil ne sonne pas en réponse à un appel entrant. Dans la plupart des endroits, mais pas tous, la somme des REN ne devrait pas excéder cinq (5). Pour s'assurer du nombre d'appareils qui peuvent être branchés sur une ligne, comme déterminé par le total des REN, contactez la compagnie de téléphone locale. Le REN pour ce produit fait partie de l'identifiant du produit au format US : AAAEQQ#TXXXX. Les chiffres représentés par ## sont le REN sans décimale (par ex. 03 est un REN de 0,3).

Si cet appareil, le wattmètre numérique avec modem interne, nuit au réseau téléphonique, la compagnie de téléphone vous préviendra à l'avance qu'il est possible que le service soit temporairement suspendu. Lorsqu'un avis préalable n'est pas pratique, la compagnie de téléphone vous préviendra dès que cela sera possible. Vous serez également prévenu de votre droit à présenter une réclamation auprès de la FCC si vous considérez que cela est nécessaire.

La compagnie du téléphone peut effectuer des changements à ses installations, équipements, opérations ou procédures qui pourraient affecter le fonctionnement de cet appareil. Si cela arrive, la compagnie du téléphone vous avertira suffisamment à l'avance pour que vous puissiez effectuer les modifications nécessaires et ne subissiez pas d'interruption de service.

Si vous avez des problèmes avec cet appareil, le wattmètre numérique avec modem interne, veuillez contacter Schneider Electric au 615-287-3400. Si cet appareil nuit au réseau téléphonique, la compagnie du téléphone peut vous demander de débrancher cet appareil jusqu’à ce que le problème soit résolu.

Cet appareil ne contient aucun composant susceptible d'être réparé par l'utilisateur.

La connexion aux services de ligne commune est sujette aux tarifications locales. Contactez la commission des services publics de l'état, la commission de la fonction publique ou la commission des corporations pour obtenir des informations.

Si vos locaux possèdent un équipement d'alarme spécialement câblé branché sur la ligne téléphonique, assurez-vous que l'installation de ce wattmètre numérique avec modem interne ne mette pas votre équipement d'alarme hors-service. Si vous avez des questions sur ce qui mettra hors-service le dispositif d'alarme, consultez votre compagnie de téléphone ou un installateur qualifié.

Avis de compatibilité réseau pour le modem interne

Le modem interne des compteurs pourvus de cette option est compatible avec les réseaux téléphoniques de la plupart des pays, à l'exception de l'Australie et de la Nouvelle-Zélande. Son utilisation dans certains pays peut nécessiter la modification des chaînes d'initialisation du modem interne. Si des problèmes apparaissent lors de l'utilisation du modem sur votre système de téléphone, veuillez contacter le Support Technique Schneider Electric.

Conformité de l’étalonnage

Schneider Electric certifie que ce produit est conforme aux spécifications publiées et qu'il a été étalonné et testé au moyen d'appareils et d'étalons identifiables de l'Institut national de normalisation et de technologie (NIST) aux États-Unis ou du Conseil national de recherche du Canada (NRC). Pour plus d'informations, reportez-vous au Certificat d’étalonnage du produit.

Conformité aux normes

![ER N998](image)

Fabriqué par Power Measurement Ltd.
Général

Le PowerLogic™ ION8650 est un compteur de facturation avancé pour la mesure de l’électricité et l’énergie qui intègre un riche éventail de fonctions : enregistrement de journaux exhaustifs, mesures avancées de qualité de l’énergie, communications multiprotocole et multiport (dont IRIG-B). Des options d’E/S internes ou déportées sont également proposées.

Ce document décrit la procédure d’installation de la version pour tableau FT-21 du compteur ION8650.

Recommandations pour une grande précision de mesures
Dans les situations où l’amplitude et la qualité de la source de tension en entrée sont insuffisantes (par exemple dans des installations avec TP à faible plage nominale VA ou conducteurs particulièrement longs), il est recommandé d’utiliser un ION8650 à alimentation auxiliaire.

Informations supplémentaires
Pour plus d’informations sur le compteur ION8650, notamment pour le téléchargement de documentation et de logiciels, rendez-vous sur www.schneider-electric.com. La documentation technique disponible comprend les titres suivants :
- Manuel d’installation du compteur à socle ION8650 - contient des instructions de raccordement et d’installation pour la version à socle du compteur ION8650.
- Vérification de la précision du ION8650 note technique - détails des critères et procédures de validation de la précision du compteur.
- Manuel d’utilisation du ION8650 - contient des informations complètes sur le compteur : fonctionnement, mise à jour du logiciel embarqué, logiciels compatibles, communications, entrées/ sorties, enregistrement de journaux, registres tarifaires, notification des alarmes et autres fonctions avancées.
- Documents d’options produit – Contiennent des informations spécifiques aux différentes options de produits que vous pouvez commander pour le compteur. Ils sont généralement fournis avec le produit.
- Notes techniques – Contiennent des instructions pour utiliser les fonctions du compteur et créer des configurations personnalisées.
- Fichier d’aide ION Setup - explique comment utiliser le logiciel de configuration de compteurs ION Setup.
- Référence ION - explique l’architecture ION et décrit le fonctionnement et le comportement des différents modules ION disponibles dans la gamme d’appareils ION et de logiciels ION.

Avant de commencer

1. Familiarisez-vous avec le contenu de ce guide, en particulier la section « Mesures de sécurité » page 76 et la section « Spécifications » page 96.
2. Retirez délicatement le compteur de son emballage. Le compteur de tableau est livré avec les éléments suivants :

 | A | Le présent manuel d’installation |
 | B | Certificat d’étalonnage du compteur |
 | C | Vis de borne, rondelles et écrous de montage |

Si vous avez commandé l’option à configuration de broches pour câble de dérivation, les éléments suivants sont également fournis :

D	Câble de dérivation COM : connecteur Molex femelle 24 broches vers DB9 femelle (RS-232), deux jeux de fils à paires torsadées (RS-485)
E	Couplieur femelle/femelle Ethernet CAT5 en option (uniquement si vous avez commandé l’option Ethernet)
F	Câble de dérivation E/S en option : connecteur Molex femelle 16 broches pour 16 fils nus à raccorder aux modules d’E/S (uniquement si vous avez commandé l’option E/S internes)
3. Vérifiez que la référence qui figure sur l’étiquette d’identification avant correspond bien à la référence indiquée sur votre bon de commande ou d’achat (voir «Étiquette sur panneau avant» page 77) :

4. Vérifiez que vous disposez de tous les autres équipements et accessoires nécessaires à votre installation : convertisseur Ethernet ou RS-232 vers RS-485, câble optique, plombage de facturation, etc.

Outils recommandés
- Tournevis dynamométrique avec embouts cruciforme nº 2 Phillips et jeu de douilles
- Tournevis plat de précision
- Pince coupante, à dénuder et à sertir
- Mini-pince à bec effilé
- Logiciel de configuration de compteurs ION Setup (installez la dernière version téléchargeable sur le site)

Mesures de sécurité

L’installation, le raccordement, les essais et l’entretien doivent être effectués conformément aux normes électriques nationales et locales.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
</table>

RISQUE D’ÉLECTROCUTION, D’EXPLOSION OU D’ARC ÉLECTRIQUE

- Portez un équipement de protection individuelle (EPI) approprié et observez les règles de sécurité en matière de travaux électriques. Consultez la norme NFPA 70E aux États-Unis, la norme CSAZ462 ou les réglementations locales applicables.
- Coupez toute alimentation électrique de l’appareil et de l’équipement dans lequel il est installé avant toute intervention.
- Utilisez toujours un appareil de vérification de tension correctement calibré pour vérifier que l’alimentation est coupée.
- Ne dépassez pas les valeurs limites maximales nominales de l’appareil.
- N’utilisez pas cet appareil pour les applications critiques de commande ou de protection dans lesquelles la sécurité du personnel ou de l’équipement dépend du fonctionnement du circuit de commande.
- Ne court-circuitez jamais le secondaire d’un transformateur de tension (TT).
- N’ouvrez jamais le circuit d’un transformateur de courant (TC).
- Utilisez toujours des TC externes mis à la terre pour les entrées de courant.
- Considérez le câblage des communications et des E/S raccordé aux multiples dispositifs comme sous tension et dangereux jusqu’à preuve du contraire.
- N’effectuez ni essai de rigidité diélectrique ni test d’isolement sur cet appareil.
- Raccordez la borne de terre de protection avant de mettre l’appareil sous tension.
- Replacez tous les dispositifs, couvercles et portes avant de mettre l’appareil sous tension.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

<table>
<thead>
<tr>
<th>REMARQUE</th>
</tr>
</thead>
</table>

N’effectuez ni essai de rigidité diélectrique ni test d’isolement sur le ION8650 car les circuits internes de protection contre les surtensions commencent à fonctionner à des niveaux inférieurs aux tensions d’essai diélectrique habituelles. Pour plus d’informations sur les spécifications de l’équipement et les essais en usine, contactez votre représentant local Schneider Electric.
Modèles disponibles

Le compteur ION8650 est disponible en trois modèles :

<table>
<thead>
<tr>
<th>Modèle</th>
<th>Mémoire</th>
<th>Enregistreurs de données</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION8650A</td>
<td>128 MB</td>
<td>50 (800 voies)</td>
<td>Compteur de classe A pour l’analyse de la qualité de l’énergie avec détection des transitoires à 1024 échantillons/période, papillotement (flicker), prise en charge des captures d’onde de QÉ, interharmoniques, surveillance de la qualité de l’énergie selon EN50160 et configuration Modbus maître</td>
</tr>
<tr>
<td>ION8650B</td>
<td>64 MB</td>
<td>45 (720 voies)</td>
<td>Compteur de classe S avec surveillance de la qualité de l’énergie selon EN 50160 et configuration Modbus maître</td>
</tr>
<tr>
<td>ION8650C</td>
<td>32 MB</td>
<td>5 (80 voies)</td>
<td>Compteur de base pour la facturation de l’énergie</td>
</tr>
</tbody>
</table>

1 Rendez-vous sur www.schneider-electric.com pour plus d’informations sur ces différents modèles.

Options des compteurs

Le numéro de modèle (montré dans «Étiquette sur panneau avant» page 77) indique les options du compteur.

<table>
<thead>
<tr>
<th>Option</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentation</td>
<td>E</td>
<td>Alimentation triphasée (auto-alimentation)</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Alimentation auxiliaire – standard</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>Alimentation auxiliaire – haute tension</td>
</tr>
<tr>
<td>Communications</td>
<td>A0</td>
<td>Port optique infrarouge sur panneau avant, RS-232/RS-485, RS-485</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>Port optique infrarouge sur panneau avant, RS-232/RS-485, RS-485, Ethernet, modem interne</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>Port optique infrarouge sur panneau avant, RS-232/RS-485, RS-485, Ethernet</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>Port optique infrarouge sur panneau avant, RS-232/RS-485, RS-485, modem interne</td>
</tr>
<tr>
<td>Entrées/sorties internes</td>
<td>A</td>
<td>Pas d’entrées/sorties logiques</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 sorties logiques statiques de type C et 3 entrées logiques de type A</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4 sorties logiques statiques de type C, 1 sortie logique statique de type A, 1 sortie logique de type A</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Notification de panne Ethernet</td>
</tr>
</tbody>
</table>

1 Reportez-vous à «Recommandations pour une grande précision de mesures» page 75 pour des recommandations au moment de choisir une option d’alimentation.

2 L’alimentation triphasée standard est alimentée par les connexions de mesure de tension du compteur. Assurez-vous que votre réseau répond aux spécifications de tension en état stable du compteur.

3 Le modèle ION8650C peut communiquer simultanément seulement par un maximum de 3 ports (port optique infrarouge plus 2 autres ports de communication). Les modèles ION8650A et ION8650B peuvent communiquer simultanément par tous les ports de communication.

4 Les communications Ethernet sont nécessaires pour certaines fonctions. Voir «Option Ethernet» page 86 pour une liste des services.

5 Il est possible d’ajouter des entrées et sorties par le biais d’un module d’extension E/S (à commander séparément).

Étiquette sur panneau avant

<table>
<thead>
<tr>
<th>A</th>
<th>Ampérage d’essai</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Classe de précision</td>
</tr>
<tr>
<td>C</td>
<td>Constante de test (fréquence impulsions LED)</td>
</tr>
<tr>
<td>D</td>
<td>Fréquence</td>
</tr>
<tr>
<td>E</td>
<td>Plage de courant</td>
</tr>
<tr>
<td>F</td>
<td>Configuration de broches</td>
</tr>
<tr>
<td>G</td>
<td>Tension d’entrée nominale</td>
</tr>
<tr>
<td>H</td>
<td>Configuration de câblage</td>
</tr>
</tbody>
</table>

I | Rapport de transformateur de tension (VTR) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Rapport de transformateur de courant (CTR)</td>
</tr>
<tr>
<td>K</td>
<td>Constante watt-heure primaire</td>
</tr>
<tr>
<td>L</td>
<td>Coefficient transformateur (VTR x CTR)</td>
</tr>
<tr>
<td>M</td>
<td>Schéma interne du compteur (vue de l’avant)</td>
</tr>
<tr>
<td>N</td>
<td>Code à barres ANSI</td>
</tr>
<tr>
<td>O</td>
<td>Numéro de modèle</td>
</tr>
<tr>
<td>P</td>
<td>Numéro de série</td>
</tr>
</tbody>
</table>
Présentation du panneau avant

Facteurs de forme du compteur de tableau

Le compteur de tableau s’insère dans une ouverture de boîtier de tableau FT-21. Plusieurs configurations de broches de boîtier de tableau sont disponibles :

<table>
<thead>
<tr>
<th>Boîtier de compteur avec panneau de dérivation</th>
<th>Boîtier de compteur avec câble de dérivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voir «Compteur de tableau avec panneau de dérivation arrière» page 87 pour les détails.</td>
<td>Voir «Compteur de tableau avec câble de dérivation arrière» page 88 pour les détails.</td>
</tr>
<tr>
<td>Composants du panneau arrière :</td>
<td>Câbles fournis :</td>
</tr>
<tr>
<td>• Connecteur Molex 14 broches (pour l’option d’extension d’E/S externes)</td>
<td>• Câble à connecteur Molex 24 broches (utilisé avec le câble de dérivation COM pour les communications série RS-232 et RS-485)</td>
</tr>
<tr>
<td>• Connecteurs de repiquage à ressort (pour le raccordement de communications RS-485, IRIG-B et les E/S internes en option)</td>
<td>• Câble à 2 fils pour raccordement IRIG-B</td>
</tr>
<tr>
<td>• Connecteur DB9 mâle (communications RS-232)</td>
<td>Câbles en option :</td>
</tr>
<tr>
<td>• Prise RJ-45 (option Ethernet)</td>
<td>• Câble Ethernet avec prise RJ-45 (option Ethernet)</td>
</tr>
<tr>
<td>• Prise téléphonique RJ-11 (option modem)</td>
<td>• Câble téléphonique avec prise RJ-11 (option modem)</td>
</tr>
<tr>
<td>• Barrettes de raccordement (option à alimentation auxiliaire)</td>
<td>• Câble à connecteur Molex 16 broches (option E/S interne)</td>
</tr>
<tr>
<td></td>
<td>• Câble d’alimentation CA (option à alimentation auxiliaire)</td>
</tr>
</tbody>
</table>
Dimensions du compteur de tableau

Boîtier de tableau FT-21 avec panneau de dérivation

Boîtier de tableau FT-21 avec câble de dérivation

Installation
Étape 1 : Installation du boîtier de tableau

1. Coupez et isolez complètement l’alimentation. Utilisez un dispositif de détection de tension adéquat pour vérifier que l’alimentation est coupée.

3. Placez le compteur sur une surface solide. Tournez en sens antihoraire la vis moletée (A) au fond du couvercle de tableau pour le libérer.
4. Tirez légèrement le fond du couvercle vers vous, puis soulevez-le pour le dégager des pattes de fixation supérieures (B). Mettez le couvercle de côté.
5. Baissez (ouvrez) tous les contacteurs de levier (C).
6. Poussez les leviers de verrouillage (D) de façon à déverrouiller le châssis du compteur (levier gauche vers le haut, levier droit vers le bas).
7. Saisissez la poignée de support supérieur (E) et sortez délicatement le châssis du compteur. Mettez-le de côté.

8. Insérez le boîtier FT-21 dans le trou de montage.
9. Posez les rondelles de blocage et les écrous (F) sur les goujons de montage arrière. Serrez avec une clé à douille manométrique ou un serre-écrou.
10. Alignez le châssis du compteur avec le tableau et faites délicatement glisser le châssis dans le tableau, en poussant sur la partie inférieure du cadran pour que le compteur s’enclenche bien sur les connecteurs arrière.
11. Poussez les leviers de verrouillage (G) pour verrouiller le châssis du compteur sur le boîtier (levier gauche vers le bas, levier droit vers le haut).
12. Remontez (fermez) tous les contacteurs de levier (H).

13. Replacez le couvercle en alignant les fentes du haut avec les pattes de fixation (I) du boîtier.
14. Fermez le couvercle et serrez la vis moletée à la main (J).
Étape 2 : Raccordement des entrées de tension et de courant du boîtier de tableau

Raccordement électrique
Installiez des fusibles 2 A (non fournis) dans les circuits d’entrée de mesure de tension comme indiqué dans les schémas de raccordement électrique ci-dessous. Le circuit d’alimentation auxiliaire, si applicable, doit lui aussi être muni d’un fusible. Voir «Étape 4 : Raccordement de l’alimentation auxiliaire en option» page 86 pour les détails.

REMARQUE
Le boîtier amovible FT-21 intègre des blocs de court-circuitage qui court-circuitent automatiquement les entrées de courant lorsque le compteur est retiré.

Utilisation de transformateurs de potentiel

<table>
<thead>
<tr>
<th>Tension nominale d’un système en étoile</th>
<th>Requiert PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 V CA L-N ou 208 V CA L-L</td>
<td>Non</td>
</tr>
<tr>
<td>277 V CA L-N ou 480 V CA L-L</td>
<td>Non</td>
</tr>
<tr>
<td>347 V CA L-N ou 600 V CA L-L</td>
<td>Oui</td>
</tr>
<tr>
<td>Supérieure à 347 V CA L-N ou 600 V CA L-L</td>
<td>Oui</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tension nominale d’un système en triangle</th>
<th>Requiert PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jusqu’à 480 V CA L-L</td>
<td>Non</td>
</tr>
<tr>
<td>Supérieure à 480 V CA L-L</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Mode volts et bornes de raccordement applicables

Les diagrammes qui suivent indiquent les bornes à l’arrière du boîtier de tableau à utiliser pour le raccordement d’un compteur de configuration 9, 29/36 ou 35 à votre réseau électrique. Vous devez sélectionner le mode volts correct comme indiqué dans le tableau ci-dessous. Voir «Menus de configuration du panneau avant» page 90.

Les diagrammes suivants illustrent les conventions de raccordement courantes pour les types de services électriques pris en charge par les divers facteurs de forme du compteur ION8650. Après avoir terminé le raccordement électrique, le montage et la procédure d’installation, reportez-vous à «Étape 10 : Vérification du raccordement à l’aide des diagrammes de phaseur» page 94 pour plus d’informations sur le fonctionnement du compteur et les différents systèmes et modes volts, ainsi que pour la vérification du câblage de phase correct.

1 Si vous utilisez le compteur de tableau dans un raccordement électrique de configuration 36, vous devez régler le mode volts sur 29S 4 fils étoile.
Configuration 9 (3 éléments)

Régalez le mode volts du compteur sur **9S 4 fils étoile/triangle**. Plage de mesure de la tension : 57-277 V L-N.

Configuration 9, étoile 4 fils, sans TP, 3 TC

Configuration 9, étoile 4 fils, 3 TP, 3 TC

Configuration 9, étoile 3 fils, 3 TP, 3 TC

Configuration 9, étoile 3 fils, 3 TP, 2 TC

Configuration 9, triangle 4 fils, sans TP, 3 TC

(terre en prise médiane)

REMARQUE

Avant d’effectuer une installation avec la configuration 9, 4 fils en triangle (schéma de gauche), reportez-vous à la note technique sur la terre en prise médiane Red/High Leg Delta (disponible sur www.schneider-electric.com).
Configurations 29 et 36 (2½ éléments)

Réglez le mode volts du compteur sur 29S 4 fils étoile. Plage de mesure de la tension : 57-277 V L-N.

<table>
<thead>
<tr>
<th>Configuration 29 ou 36, étoile 4 fils, sans TP, 3 TC</th>
<th>Configuration 29 ou 36, étoile 4 fils, 2 TP, 3 TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration 35 (2 éléments)

Réglez le mode volts du compteur sur 35S 3 fils étoile. Plage de mesure de la tension : 120-480 V L-L.

<table>
<thead>
<tr>
<th>Configuration 35, triangle 3 fils, 2 TP, 2 TC</th>
<th>Configuration 35, étoile 4 fils, 2 TP, 3 TC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Cette configuration peut affecter certains calculs de paramètres du compteur. Contactez le Technical Support Service clientèle pour plus de détails.
Étape 3 : Préparation de la mise à la terre

RISQUE D’ÉLECTROCUTION, D’EXPLOSION OU D’ARC ÉLECTRIQUE

Ne connectez jamais \(V_{\text{ref}} \) à la terre si vous utilisez le diagramme de raccordement de la configuration 35, triangle 3 fils, sans TP, 2 TC.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

La mise à la terre correcte du compteur est nécessaire pour les motifs suivants :

- Établir une connexion sûre à la terre de protection
- Protéger les circuits électroniques du compteur
- Préserver la précision du compteur
- Filtrer les bruits dans le compteur
- Assurer le bon fonctionnement des ports de communication
- Assurer la conformité avec les réglementations locales et nationales

1. Retirez toute trace de peinture, de rouille ou d’autres revêtements ou contaminants susceptibles de gêner la mise à la terre.
2. Utilisez une cosse circulaire ou à fourche et un fil de 2,08 mm\(^2\) (14 AWG) pour connecter la masse du boîtier de tableau à la terre de protection.
Étape 4 : Raccordement de l'alimentation auxiliaire en option
Cette section ne s'applique que si vous avez commandé l’option d'alimentation auxiliaire pour votre compteur.

⚠️ DANGER

RISQUE D’ÉLECTROCUTION, D’EXPLOSION OU D’ARC ÉLECTRIQUE
- Coupez toute alimentation électrique de l'appareil et de l’équipement dans lequel il est installé avant toute intervention.
- Utilisez toujours un appareil de vérification de tension correctement calibré pour vérifier que l’alimentation est coupée.
- Vérifiez que la source d'alimentation du compteur est conforme aux spécifications de l’option d'alimentation de votre compteur.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

- Installez un fusible à temporisation de calibre approprié 3 A (non fourni) sur la borne L/+.
- N’installez pas de fusible sur la borne d'alimentation N/– du compteur si cette borne est mise à la terre.
- Raccordez la borne G à la terre.

Étape 5 : Raccordement des communications et des E/S en option

⚠️ AVERTISSEMENT

RISQUE LORS D’UTILISATION NON PRÉVUES
N’utilisez pas cet équipement pour les applications critiques de commande ou de protection dans lesquelles la sécurité du personnel ou de l’équipement dépend du fonctionnement du circuit de commande.

Le non-respect de ces instructions peut entraîner la mort ou des blessures graves.

Port optique avant
Utilisez un câble optique CEI type II pour communiquer avec le port optique avant du compteur.

Option Ethernet
Voici les paramètres par défaut du port de service IP pour les communications Ethernet.

<table>
<thead>
<tr>
<th>ION sur TCP</th>
<th>Modbus RTU</th>
<th>EtherGate (COM1)</th>
<th>EtherGate (COM4)</th>
<th>Modbus TCP</th>
<th>DNP sur TCP</th>
<th>FTP</th>
<th>IEC61850</th>
</tr>
</thead>
<tbody>
<tr>
<td>7700</td>
<td>7701</td>
<td>7801</td>
<td>7802</td>
<td>502</td>
<td>20000</td>
<td>21</td>
<td>102</td>
</tr>
</tbody>
</table>
Remarque

Les paramètres du port Ethernet sont configurables. Voir le Manuel de l’utilisateur de PowerLogic ION8650 pour d’autres informations sur le changement d’affectations de ports Ethernet.

Modèle ION8650C

Sur le modèle ION8650C, il est possible d’activer un maximum de deux ports de communication en plus du port optique avant. Le tableau ci-dessous indique les ports activés en usine :

<table>
<thead>
<tr>
<th>Option de communication</th>
<th>Code</th>
<th>Port de communication activé en usine</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 8 6 5 0 C 4 C O H 6 C 7 A 0 A</td>
<td>AD</td>
<td>RS-232/RS-485 et RS-485</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>Ethernet et modem interne (RS-232/RS-485 et RS-485 désactivés)</td>
</tr>
<tr>
<td></td>
<td>E1</td>
<td>RS-485 et Ethernet (RS-485 désactivé)</td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>RS-232/RS-485 et modem interne (RS-485 désactivé)</td>
</tr>
</tbody>
</table>

Remarque

Le port optique avant est toujours activé. Voir «Options des compteurs» page 77 pour une liste complète des options de communications disponibles.

Compteur de tableau avec panneau de dérivation arrière

<table>
<thead>
<tr>
<th>Connecteur</th>
<th>Détail des connexions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ethernet (en option)</td>
</tr>
<tr>
<td></td>
<td>Le cas échéant, utilisez un câble UTP Cat 5 UTP pour la connexion au réseau local/étendu.</td>
</tr>
<tr>
<td>B</td>
<td>Modem (en option)</td>
</tr>
<tr>
<td></td>
<td>Le cas échéant, utilisez un câble téléphonique RJ-11 pour raccorder la ligne modem.</td>
</tr>
<tr>
<td>C</td>
<td>Extension E/S (en option)</td>
</tr>
<tr>
<td></td>
<td>Si vous installez le module d'extension E/S en option, voyez “Raccordement du module d'extension E/S en option au compteur avec panneau de dérivation” ci-dessous pour les détails.</td>
</tr>
<tr>
<td>D</td>
<td>COM1 RS-232</td>
</tr>
<tr>
<td></td>
<td>Voir «Liasons RS-232» page 98.</td>
</tr>
<tr>
<td>E</td>
<td>Masse</td>
</tr>
<tr>
<td></td>
<td>Voir «Étape 3 : Préparation de la mise à la terre» page 85.</td>
</tr>
<tr>
<td>F</td>
<td>Entrées logiques</td>
</tr>
<tr>
<td></td>
<td>Si équipé, S1, S2, S3, SCOM</td>
</tr>
<tr>
<td>G</td>
<td>IRIG-B</td>
</tr>
<tr>
<td></td>
<td>Raccordez le dispositif de signal de sortie de synchronisation d’horloge IRIG-B.</td>
</tr>
<tr>
<td>H</td>
<td>Sorties logiques</td>
</tr>
<tr>
<td></td>
<td>Si équipé, C1, C2, C3, C4</td>
</tr>
<tr>
<td>I</td>
<td>COM1 RS-485 et COM2 ou COM4 RS-485</td>
</tr>
<tr>
<td>J</td>
<td>Alimentation auxiliaire (en option)</td>
</tr>
<tr>
<td></td>
<td>Si équipé, voir «Étape 4 : Raccordement de l’alimentation auxiliaire en option» page 86.</td>
</tr>
</tbody>
</table>

Raccordement du module d'extension E/S en option au compteur avec panneau de dérivation

À l’aide du câble fourni avec votre module d’extension E/S, raccordez le connecteur Molex 14 broches mâle au compteur et le connecteur Molex 24 broches mâle au module d’extension E/S.

Remarque

Utilisez uniquement les connecteurs E/S du module d’extension E/S. Les ports de communication du module d’extension E/S sont désactivés lorsque le module est connecté à un compteur avec option panneau de dérivation.
Compteur de tableau avec câble de dérivation arrière

1. Si vous n’utilisez pas le module d’extension E/S dans votre installation, connectez le câble de dérivation COM au câble du compteur (0,91 m) terminé par un connecteur Molex 24 broches.

2. Les connecteurs et fils doivent être munis de terminaisons comme suit :

<table>
<thead>
<tr>
<th>Câble</th>
<th>Détail des connexions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Câble Molex 24 broches</td>
<td>Raccordez au câble de dérivation COM ou au module d’extension E/S.</td>
</tr>
<tr>
<td>B Câble d’alimentation auxiliaire (en option)</td>
<td>Voir «Étape 4 : Raccordement de l’alimentation auxiliaire en option» page 86.</td>
</tr>
<tr>
<td>C Fil IRIG-B</td>
<td>Raccordez le dispositif de signal de sortie de synchronisation d’horloge IRIG-B. Fil rouge = IRIG-B (+) et fil noir = IRIG-B (-).</td>
</tr>
<tr>
<td>D Câble Molex 16 broches (en option)</td>
<td>Voir «Raccordement des E/S internes en option» page 89.</td>
</tr>
<tr>
<td>E Câble téléphonique RJ-11 (en option)</td>
<td>Raccordez à la ligne téléphonique du modem.</td>
</tr>
<tr>
<td>F Câble Ethernet RJ-45 (en option)</td>
<td>Raccordez au port Ethernet de réseau local/étendu.</td>
</tr>
</tbody>
</table>

Câble de dérivation COM

Utilisez ce câble si vous n’utilisez pas le module d’extension E/S dans votre installation. Connectez le câble Molex 24 broches (A) au câble de dérivation COM fourni. Voir ci-dessous pour les détails de connexion.

<table>
<thead>
<tr>
<th>Connexion de port</th>
<th>Fil ou connecteur</th>
<th>Raccorder au</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM1 (RS-232)1</td>
<td>Connecteur DB9 (du câble de dérivation)</td>
<td>Port série RS-232 de l’ordinateur</td>
</tr>
<tr>
<td>COM1 (RS-485)2</td>
<td>Fil blanc (du câble de dérivation)</td>
<td>RS-485 données +</td>
</tr>
<tr>
<td></td>
<td>Fil noir (du câble de dérivation)</td>
<td>RS-485 données –</td>
</tr>
<tr>
<td>Blindage commun RS-485</td>
<td>Fil nu (du câble de dérivation)</td>
<td>Blindage RS-485 (COM1 et COM4)</td>
</tr>
<tr>
<td>COM4 (RS-485)</td>
<td>Fil rouge (du câble de dérivation)</td>
<td>RS-485 données +</td>
</tr>
<tr>
<td></td>
<td>Fil noir (du câble de dérivation)</td>
<td>RS-485 données –</td>
</tr>
</tbody>
</table>

Option d’extension E/S

Si vous utilisez un module d’extension E/S dans votre installation, connectez le câble Molex 24 broches (A) directement au module d’extension E/S. Vous ne devez pas utiliser le câble de dérivation COM dans ce cas. Reportez-vous au Manuel d’installation de l’appareil d’extension E/S pour plus d’informations sur la terminaison des connecteurs de communication.

Brochage du connecteur Molex 24 broches

Le tableau ci-dessous décrit le câblage des communications série au connecteur Molex 24 broches. Suivez ces instructions si vous souhaitez raccorder les communications série du compteur sans utiliser le câble de dérivation COM :

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Couleur ou rayures du fil</th>
<th>Broche1</th>
<th>Couleur ou rayures du fil</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM4 RS-485 données +</td>
<td>Blanc/bleu</td>
<td>1 2</td>
<td>Bleu/bleu</td>
<td>COM4 RS-485 données –</td>
</tr>
<tr>
<td>N/A – ne pas utiliser</td>
<td>Noir/bleu</td>
<td>3 4</td>
<td>Noir</td>
<td>COM1 RS-232 CTS</td>
</tr>
<tr>
<td>COM1 RS-232 CD</td>
<td>Blanc</td>
<td>5 6</td>
<td>Rouge</td>
<td>COM1 RS-232 RXD</td>
</tr>
<tr>
<td>COM1 RS-232 TXD</td>
<td>Vert</td>
<td>7 8</td>
<td>Marron</td>
<td>COM1 RS-232 DTR</td>
</tr>
<tr>
<td>COM1 RS-232 RTS</td>
<td>Bleu</td>
<td>9 10</td>
<td>Orange</td>
<td>COM1 RS-232 terre</td>
</tr>
<tr>
<td>COM1 RS-485 données –</td>
<td>Rouge/bleu</td>
<td>11 12</td>
<td>Bleu/rouge</td>
<td>COM1 RS-485 données –</td>
</tr>
<tr>
<td>Blindage RS-485</td>
<td>Fil nu</td>
<td>13 14</td>
<td>Noir/orange, noir/vert</td>
<td>N/A – ne pas utiliser</td>
</tr>
</tbody>
</table>

1 Les broches 15 à 24 ne sont pas utilisées et doivent être laissées sans raccordement.
Raccordement des E/S internes en option

Cette section ne s’applique que si vous avez commandé l’option d’E/S internes pour votre compteur. Voir «Options des compteurs» page 77 pour déterminer l’option E/S internes de votre compteur. Pour des informations supplémentaires, voir le tableau des spécifications «Entrées(sorties internes» page 97.

1. Reliez le câble de dérivation E/S fourni au connecteur d’E/S internes du compteur (Molex 16 broches).

2. Les fils doivent être munis de terminaisons comme suit :

<table>
<thead>
<tr>
<th>E/S internes, option B</th>
<th>Fonction</th>
<th>Couleur ou rayures du fil</th>
<th>Broche</th>
<th>Couleur ou rayures du fil</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortie C1-K</td>
<td>Noir</td>
<td>12</td>
<td>Blanc</td>
<td></td>
<td>Sortie C1-Z</td>
</tr>
<tr>
<td>Sortie C2-Z</td>
<td>Rouge</td>
<td>3 4</td>
<td>Vert</td>
<td></td>
<td>Sortie C1-Y</td>
</tr>
<tr>
<td>Sortie C2-Y</td>
<td>Orange</td>
<td>5 6</td>
<td>Bleu</td>
<td></td>
<td>Sortie C2-K</td>
</tr>
<tr>
<td>Sortie C3-K</td>
<td>blanc/noir</td>
<td>7 8</td>
<td>Rouge/noir</td>
<td></td>
<td>Sortie C3-Z</td>
</tr>
<tr>
<td>Sortie C4-Z</td>
<td>Vert/noir</td>
<td>9 10</td>
<td>Orange/noir</td>
<td></td>
<td>Sortie C3-Y</td>
</tr>
<tr>
<td>Sortie C4-Y</td>
<td>Bleu/noir</td>
<td>11 12</td>
<td>Noir/bleu</td>
<td></td>
<td>Sortie C4-K</td>
</tr>
<tr>
<td>Entrée S2</td>
<td>Rouge/blanc</td>
<td>13 14</td>
<td>Vert/bleu</td>
<td></td>
<td>Entrée S1</td>
</tr>
<tr>
<td>Entrée SCOM</td>
<td>Bleu/bleu</td>
<td>15 16</td>
<td>Noir/rouge</td>
<td></td>
<td>Entrée S3</td>
</tr>
</tbody>
</table>

3. Reportez-vous à «Options de configuration supplémentaires» page 98 pour d’autres informations.

⚠️ REMARQUE

Toutes les entrées logiques sont attribuées par défaut. Toutes les sorties logiques à semi-conducteurs ne sont pas attribuées (utilisez Power Monitoring Expert ou le logiciel ION Setup pour configurer les sorties logiques).

Étape 6 : Mise sous tension du compteur

⚠️ DANGER

RISQUE D’ÉLECTROCUTION, D’EXPLOSION OU D’ARC ÉLECTRIQUE

- Ne mettez pas le compteur sous tension avant d’avoir raccordé la terre de protection.
- Les raccordements électriques sur les bornes du compteur ne doivent pas être accessibles à l’utilisateur après l’installation.
- Remettez en place tous les appareils, portes et couvercles avant de mettre l’appareil sous tension.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.

1. Fermez les fusibles des TP (ou les fusibles d’entrées directes de tension).
2. Ouvrez les blocs de court-circuitage des TC.
3. Mettez le compteur sous tension.
Vérification du fonctionnement du compteur
Lorsque vous mettez le compteur sous tension, l’écran du panneau avant s’allume et affiche brièvement un message indiquant que le compteur démarre, puis fait défiler les différents écrans.

Étape 7 : Configuration du compteur à l’aide du panneau avant
Les sections suivantes expliquent comment configurer le compteur à l’aide des boutons du panneau avant.

Navigation avec les boutons du panneau avant
1. Appuyez sur le bouton rond (ALT/ENTER) et maintenez pour accéder aux écrans de configuration du compteur.
2. Appuyez sur les touches de navigation haut et bas pour changer la sélection (élément en surbrillance).
3. Appuyez sur le bouton rond pour confirmer la sélection.
4. Pour revenir à l’écran précédent, sélectionnez RETURN puis appuyez sur le bouton rond.

Modification des valeurs de configuration du compteur
1. Pour modifier une valeur de configuration, employez l’une des méthodes suivantes :
 - Pour sélectionner une autre option dans une liste, appuyez sur les touches haut ou bas pour mettre l’élément de votre choix en surbrillance, puis appuyez sur le bouton rond pour confirmer la sélection.
 - Pour modifier une valeur numérique, appuyez sur les touches haut ou bas pour augmenter ou réduire le nombre. Appuyez pendant deux secondes sur la touche haut pour déplacer le curseur vers la gauche, sur la touche bas pour le déplacer vers la droite.
2. Appuyez sur le bouton rond pour confirmer la modification :
 - Entrez le mot de passe lorsque vous y êtes invité. Le mot de passe par défaut est « 0 » (zéro).
 - Sélectionnez YES à l’écran CONFIRM CHANGE, puis appuyez sur le bouton rond.

Menus de configuration du panneau avant
Le tableau ci-dessous liste les menus de configuration et décrit les registres de configuration. Le compteur affiche «Not Available» pour les modules ou fonctions en option qui ne sont pas disponibles.

Utilisez ION Setup pour configurer les registres de configuration qui ne sont pas accessibles par le biais du panneau avant.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts Mode (mode volts)</td>
<td>Configuration de raccordement du réseau électrique</td>
<td>9S 4 fils étoile/triangle, 29S 4 fils étoile, 35S 3 fils, 36S 4 fils étoile, «DEMO»</td>
<td>9S 4 Wire Wye/Delta</td>
</tr>
<tr>
<td></td>
<td>PT Primary (primaire TP)</td>
<td>Tension nominale de l’enroulement primaire du transformateur de potentiel</td>
<td>1.0 à 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>PT Secondary (secondaire TC)</td>
<td>Tension nominale de l’enroulement secondaire du transformateur de potentiel</td>
<td>1.0 à 999,999.00</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>CT Primary (primaire TC)</td>
<td>Courant nominal de l’enroulement primaire du transformateur de courant</td>
<td>1.0 à 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CT Secondary (secondaire TC)</td>
<td>Courant nominal de l’enroulement secondaire du transformateur de courant</td>
<td>1.0 à 999,999.00</td>
<td>5</td>
</tr>
<tr>
<td>Basic Setup (configuration de base)</td>
<td>VA Polarity (polarité VA)</td>
<td>Polarité du transformateur de potentiel sur VA</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VB Polarity (polarité VB)</td>
<td>Polarité du transformateur de potentiel sur VB</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>VC Polarity (polarité VC)</td>
<td>Polarité du transformateur de potentiel sur VC</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IA Polarity (polarité IA)</td>
<td>Polarité du transformateur de courant sur IA</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IB Polarity (polarité IB)</td>
<td>Polarité du transformateur de courant sur IB</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>IC Polarity (polarité IC)</td>
<td>Polarité du transformateur de courant sur IC</td>
<td>Normal (normale) ou inverse (inverse)</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Phase Rotation (sens de rotation des phases)</td>
<td>Sens de rotation des phases du système électrique</td>
<td>ABC, ACB</td>
<td>ABC</td>
</tr>
</tbody>
</table>
COM2 Setup (configuration COM2)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port.</td>
<td>Aucun, ION, Modbus RTU, Modbus maître ¹, DNP v3.00, DLMS, ModemGate, GPS : TrueTime/Datum, GPS : Arbitre, GPS : Arbitre-Vorne, Factory, EtherGate</td>
<td>ION</td>
<td></td>
</tr>
<tr>
<td>Baud Rate (vitesse de transmission)</td>
<td>Spécifie la vitesse de transmission du port COM choisi pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Transmit Delay (retard transmission)</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications série.</td>
<td>1 à 9.999</td>
<td>Provenant du numéro de série ²</td>
<td></td>
</tr>
<tr>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
<td></td>
</tr>
<tr>
<td>RTS/CTS Handshake (établissement liaison RTS/CTS)</td>
<td>Spécifie si le contrôle de flux est utilisé pour la communication par RS-232.</td>
<td>RTS with delay (avec retard), RTS/CTS</td>
<td>RTS with delay</td>
<td></td>
</tr>
<tr>
<td>RS485 Bias (polarité RS-485)</td>
<td>Spécifie si la polarité RS-485 doit être appliquée au port.</td>
<td>ON ou OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

COM3 Setup (configuration COM3)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port.</td>
<td>Aucun, ION, Modbus RTU, Modbus maître ¹, DNP v3.00, DLMS, GPS : TrueTime/Datum, GPS : Arbitre, GPS : Arbitre-Vorne, Factory</td>
<td>ION</td>
<td></td>
</tr>
<tr>
<td>Baud Rate (vitesse de transmission)</td>
<td>Spécifie la vitesse de transmission pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Transmit Delay (retard transmission)</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications.</td>
<td>1 à 9.999</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
<td></td>
</tr>
</tbody>
</table>

COM4 Setup (configuration COM4)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port.</td>
<td>Aucun, ION, Modbus RTU, Modbus maître ¹, DNP v3.00, DLMS, GPS : TrueTime/Datum, GPS : Arbitre, GPS : Arbitre-Vorne, Factory, EtherGate</td>
<td>ION</td>
<td></td>
</tr>
<tr>
<td>Baud Rate (vitesse de transmission)</td>
<td>Spécifie la vitesse de transmission pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Transmit Delay (retard transmission)</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications.</td>
<td>1 à 9.999</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
<td></td>
</tr>
<tr>
<td>RS485 Bias (polarité RS-485)</td>
<td>Spécifie si la polarité RS-485 doit être appliquée au port.</td>
<td>ON ou OFF</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Réseau (ports COM activés)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address (adresse IP)</td>
<td>Spécifie l’adresse Ethernet TCP/IP.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune) ⁴</td>
<td></td>
</tr>
<tr>
<td>Mask (masque)</td>
<td>Spécifie le masque de sous-réseau.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
<td></td>
</tr>
<tr>
<td>Gateway (parecalle)</td>
<td>Spécifie la passerelle Ethernet (le cas échéant).</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
<td></td>
</tr>
<tr>
<td>SMTP Address (adresse SMTP)</td>
<td>Spécifie l’emplacement du serveur SMTP.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
<td></td>
</tr>
<tr>
<td>MAC Adress (adresse MAC)</td>
<td>Adresse de contrôle d’accès au support.</td>
<td>Hexadécimal ⁵</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Activation du port</td>
<td>Spécifie si le port Ethernet est activé ou non</td>
<td>Webserver, FTP, DNP sur TCP, ION sur TCP, Modbus sur TCP, Modbus TCP, Telnet</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>COM1</td>
<td>Spécifie si COM1 (RS-232/RS-485) est activé.</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2</td>
<td>Spécifie si COM2 (modem) est activé.</td>
<td>Enabled (désactivé), Enabled (activé)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM3 (port optique avant)</td>
<td>Est toujours activé.</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM4</td>
<td>Spécifie si COM4 (RS-485) est activé.</td>
<td>Enabled (désactivé), Enabled (activé)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Spécifie si le port Ethernet est activé.</td>
<td>Enabled (désactivé), Enabled (activé)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo & Return (annuler et retour)</td>
<td>Sélectionnez cette option pour annuler les modifications et revenir au menu précédent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reboot (redémarrer)</td>
<td>Sélectionnez cette option pour redémarrer.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Schneider Electric. Tous droits réservés.
<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM2 Setup (configuration COM2) (modem)</td>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port.</td>
<td>Aucun, ION, Modbus RTU, Modbus maître(^1), DNP v3.00, DLMS, ModernGate, GPS : TrueTime/Datum, GPS : Arbitrer, GPS : Arbitrer-Vorne, Factory, EtherGate</td>
<td>ION</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>Spécifie la vitesse de transmission du port COM choisi pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Transmit Delay</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications série.</td>
<td>1 à 9.999</td>
<td>Provenant du numéro de série.(^2)</td>
</tr>
<tr>
<td></td>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td></td>
<td>RTS/CTS Handshake</td>
<td>Specifie si le contrôle de flux est utilisé pour la communication par RS-232.</td>
<td>RTS with delay (avec retard), RTS/CTS</td>
<td>RTS with delay</td>
</tr>
<tr>
<td></td>
<td>RS485 Bias</td>
<td>Spécifie si la polarité RS-485 doit être appliquée au port.</td>
<td>ON ou OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>COM3 Setup (configuration COM3) (Optique avant)</td>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port.</td>
<td>Aucun, ION, Modbus RTU, Modbus maître(^1), DNP v3.00, DLMS, GPS : TrueTime/Datum, GPS : Arbitrer, GPS : Arbitrer-Vorne, Factory</td>
<td>ION</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>Spécifie la vitesse de transmission pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Transmit Delay</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications.</td>
<td>1 à 9.999</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td>COM4 Setup (configuration COM4) (RS-485)</td>
<td>Protocole</td>
<td>Spécifie le protocole utilisé sur ce port</td>
<td>Aucun, ION, Modbus RTU, Modbus maître(^1), DNP v3.00, DLMS, GPS : TrueTime/Datum, GPS : Arbitrer, GPS : Arbitrer-Vorne, Factory, EtherGate</td>
<td>ION</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>Spécifie la vitesse de transmission pour les communications série.</td>
<td>300 à 115,200</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Transmit Delay</td>
<td>Spécifie le réglage du retard de transmission du port</td>
<td>0 à 1</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Unit ID (identification unité)</td>
<td>Identifie le compteur dans les communications.</td>
<td>1 à 9.999</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Serial Port (port série)</td>
<td>Données, bits de parité et bits d’arrêt pour le port</td>
<td>801, 802, 8N1, 8N2, 8E1, 8E2</td>
<td>8N1</td>
</tr>
<tr>
<td></td>
<td>RS485 Bias (polarité RS-485)</td>
<td>Spécifie si la polarité RS-485 doit être appliquée au port.</td>
<td>ON ou OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Réseau</td>
<td>IP Address (adresse IP)</td>
<td>Spécifie l’adresse Ethernet TCP/IP.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)(^4)</td>
</tr>
<tr>
<td></td>
<td>Mask (masque)</td>
<td>Spécifie le masque de sous-réseau.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
</tr>
<tr>
<td></td>
<td>Gateway (passerelle)</td>
<td>Spécifie la passerelle Ethernet (le cas échéant).</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
</tr>
<tr>
<td></td>
<td>SMTP Address (adresse SMTP)</td>
<td>Spécifie l'emplACEMENT du serveur SMTP.</td>
<td>0.0.0.0 à 255.255.255.255</td>
<td>None (aucune)</td>
</tr>
<tr>
<td></td>
<td>MAC Address (adresse MAC)</td>
<td>Adresse de contrôle d’accès au support.</td>
<td>Hexadécimal(^6)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Activation du port</td>
<td>Spécifie si le port Ethernet est activé ou non</td>
<td>Webserver, FTP, DNP sur TCP, ION sur TCP, Modbus sur TCP, Modbus TCP, Telnet</td>
<td>TBD</td>
</tr>
<tr>
<td>(ports COM activés)</td>
<td>COM1</td>
<td>Spécifie si COM1 (RS-232/RS-485) est activé.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COM2</td>
<td>Spécifie si COM2 (modem) est activé.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COM3</td>
<td>Spécifie si COM3 (port optique avant) est toujours activé.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COM4</td>
<td>Spécifie si COM4 (RS-485) est activé.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
<td>Spécifie si le port Ethernet est activé.</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undo & Return</td>
<td>Sélectionnez cette option pour annuler les modifications et revenir au menu précédent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reboot (redémarrer)</td>
<td>Sélectionnez cette option pour redémarrer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Étape 8 : Configuration des paramètres avancés avec ION Setup

Certaines fonctions restent désactivées jusqu’à ce que vous changez certains paramètres de configuration, par exemple pour régler le registre NomVolts du module Sag/Swell de façon à activer les fonctions de qualité de l’énergie. Reportez-vous au manuel d’utilisation du ION8650 pour une explication détaillée de toutes les fonctions du compteur.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Valeur</th>
<th>Description</th>
<th>Plage (valeurs)</th>
<th>Valeur par défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Labels (étiquettes phases)</td>
<td>Indique comment sont repérées les phases</td>
<td>123, ABC, RST, XYZ, RYW, RWB</td>
<td>ABC</td>
<td></td>
</tr>
<tr>
<td>PF Symbol (symbole FP)</td>
<td>Spécifie la paire de symboles employée pour indiquer le facteur de puissance.</td>
<td>CAP/IND (capacitif/inductif), LD/LG (avance/retard), +/-</td>
<td>LD/LG</td>
<td></td>
</tr>
<tr>
<td>Digit Group (notation nombres)</td>
<td>Symboles utilisés pour délimiter les milliers et les décimales</td>
<td>1000 ou 1000,0 ou 0,000,0</td>
<td>1000,0</td>
<td></td>
</tr>
<tr>
<td>Date Format (format date)</td>
<td>Indique le format d’affichage de la date.</td>
<td>YYYY/MM/DD (aaaa/mm/jj), MM/DD/YYYY (mm/jj/aaaa), DD/MM/YYYY (jj/mm/aaaa)</td>
<td>MM/DD/YYYY</td>
<td></td>
</tr>
<tr>
<td>Volt Decimal (décimales tension)</td>
<td>Nombre de décimales affichées pour la tension</td>
<td>1 à 123456789.XXX</td>
<td>1,XX</td>
<td></td>
</tr>
<tr>
<td>Current Decimal (décimale courant)</td>
<td>Nombre de décimales affichées pour le courant</td>
<td>1 à 123456789.XXX</td>
<td>1,XX</td>
<td></td>
</tr>
<tr>
<td>Power Decimal (décimales puissance)</td>
<td>Nombre de décimales affichées pour les valeurs de puissance</td>
<td>1 à 123456789.XXX</td>
<td>1,XX</td>
<td></td>
</tr>
<tr>
<td>Frequence de mise à jour</td>
<td>Spécifie la fréquence d’actualisation de l’affichage en secondes.</td>
<td>1 s à 6 s</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>Contrast (contraste)</td>
<td>Spécifie le contraste de l’écran (valeur plus élevée pour un contraste plus net).</td>
<td>0 à 9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Backlight TO (durée rétroéclairage)</td>
<td>Durée pendant laquelle le rétroéclairage de l’afficheur avant reste allumé après la dernière pression sur une touche</td>
<td>0 à 7200 (seconds)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>DMD Lock TO (durée verrouillage DMD)</td>
<td>Durée minimale permise entre deux réinitialisations des valeurs moyennes</td>
<td>0 à 518400 (seconds)</td>
<td>2160000 s (25 jours)</td>
<td></td>
</tr>
<tr>
<td>Test Mode TO (durée mode test)</td>
<td>Durée pendant laquelle l’appareil reste en mode test avant de revenir au mode normal.</td>
<td>60 à 21600 (seconds)</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Display Scale (échelle affichage)</td>
<td>Coefficient d’échelle appliqué aux valeurs avant leur affichage</td>
<td>1.00 à 999999</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Delta Vectors (vecteurs triangle)</td>
<td>Indique si les valeurs sont divisées ou multipliées par l’échelle d’affichage avant d’être affichées.</td>
<td>Multiply (multiplier) ou Divide (diviser)</td>
<td>Divide</td>
<td></td>
</tr>
<tr>
<td>Modify Passwd (modifier mot de passe)</td>
<td>Changements du mot de passe en sécurité de base</td>
<td>0 - 99.999.999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Disable Security (désactiver sécurité)</td>
<td>Retire l’exigence de mot de passe pour USER0 (panneau avant) lorsque la sécurité avancée n’est pas activée.</td>
<td>Disabled (désactivée), Enabled (activée)</td>
<td>Mot de passe activé</td>
<td></td>
</tr>
<tr>
<td>Web Config (config. web)</td>
<td>Permet la configuration par une interface de serveur web.</td>
<td>Disabled (désactivée), Enabled (activée)</td>
<td>Enabled</td>
<td></td>
</tr>
</tbody>
</table>

1 Le ION8650 C (spécifications C) ne prend pas en charge le protocole Modbus maître.
3 Une fois qu’elle a été entrée, l’adresse 0.0.0.0 est affichée comme “None” (Aucune) sur le panneau avant.
4 Pour modifier le paramètre NONE, appuyez sur la touche haut pendant deux secondes pour passer en mode édition.
5 L’adresse MAC est réglée en usine et indiquée à titre de référence uniquement.
6 Applicable uniquement au ION8650C (spécifications C). Voir «Changement de ports de communication actifs pour le ION8650C» page 99.
7 Paramétrer le délai de rétroéclairage sur 0 résultats si le rétroéclairage reste toujours allumé.
8 Cette option n’est disponible qu’en sécurité de base. Si la sécurité avancée est activée, le message NOT AVAILABLE (non disponible) s’affiche sur le panneau avant.
9 Pour activer ou désactiver la sécurité de base du compteur, voir «Sécurité du compteur» page 98.
Étape 9 : Affichage des données du compteur

Par défaut, les écrans NORM (normal) sont affichés. Appuyez sur le bouton rond (ALT/ENTER) pour passer en mode ALT (autre). Utilisez les touches haut et bas pour parcourir les écrans.

Écrans NORM

<table>
<thead>
<tr>
<th>Écran</th>
<th>Contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kWh fournis/reçus</td>
</tr>
<tr>
<td>kVARh</td>
<td>kVARh fournis/reçus</td>
</tr>
<tr>
<td>kVArh</td>
<td>kVArh fournis/reçus</td>
</tr>
<tr>
<td>Peak Demand Delivered (maximum de la valeur moyenne fournie)</td>
<td>Valeur maximale de kW, kVAR, kVA fournie (avec horodatage)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Écran</th>
<th>Contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écrans ALT</td>
<td></td>
</tr>
<tr>
<td>Écran</td>
<td>Contenu</td>
</tr>
<tr>
<td>Name Plate 1 (plaque signalétique 2)</td>
<td>Propriétaire, version du logiciel embarqué, TAG 1 et 2</td>
</tr>
<tr>
<td>Name Plate 2 (plaque signalétique 2)</td>
<td>Réglages du calcul de valeur moyenne par fenêtre glissante</td>
</tr>
<tr>
<td>Event Log</td>
<td>Evénements haute priorité les plus récents (255)</td>
</tr>
<tr>
<td>Phasor Diagram (diagramme des phaseurs)</td>
<td>Phaseurs et valeurs de courants/tensions de phases</td>
</tr>
<tr>
<td>Instantaneous Voltage</td>
<td>Tension de phase, tension moyenne (L-N ou L-L)</td>
</tr>
<tr>
<td>Instantaneous Current</td>
<td>Courant de phase, courant moyen</td>
</tr>
<tr>
<td>Instantaneous Power</td>
<td>Total kW, total kvar, total kVA, facteur de puissance</td>
</tr>
<tr>
<td>Instantaneous Demand</td>
<td>kW fournis/reçus</td>
</tr>
<tr>
<td>Flicker1</td>
<td>Mesures de papillotement pour V1, V2 et V3</td>
</tr>
<tr>
<td>Harmoniques de tension (3 écrans)</td>
<td>Histogrammes harmoniques de tension par phase</td>
</tr>
<tr>
<td>Harmoniques de courant (3 écrans)</td>
<td>Histogrammes harmoniques de courant par phase</td>
</tr>
<tr>
<td>Taux TOU actif</td>
<td>Tarif facturation TOU actif</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Écran</th>
<th>Contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écran</td>
<td>Contenu</td>
</tr>
<tr>
<td>Saison TOU active</td>
<td>Saison de facturation TOU active</td>
</tr>
<tr>
<td>TOU Energy by Rate</td>
<td>Valeurs kWh fournis pour chaque tarif TOU</td>
</tr>
<tr>
<td>kW Peak Demand</td>
<td>Maximum kW fournis pour chaque tarif TOU</td>
</tr>
<tr>
<td>Past Billing Energy</td>
<td>kWh fournis dans la période de facturation précédente (FP)</td>
</tr>
<tr>
<td>Prev Billing Peak Demand</td>
<td>Maximum kW fournis dans FP</td>
</tr>
<tr>
<td>Past Season Energy</td>
<td>kWh fournis pour chaque tarif TOU dans FP</td>
</tr>
<tr>
<td>Past Season Peak Demand</td>
<td>Maximum kW fournis pour chaque tarif TOU dans FP</td>
</tr>
<tr>
<td>Past Billing/Season Energy</td>
<td>kWh fournis/reçus dans FP et saison</td>
</tr>
<tr>
<td>Past Bill/Season Pk Dem</td>
<td>Maximum kW moyenne de fenêtre glissante reçus dans FP et saison</td>
</tr>
<tr>
<td>Facturation Passée/Energie de Saison</td>
<td>kVARh fournis/reçus dans FP et saison</td>
</tr>
<tr>
<td>Fact. Passée/Season Pk Demand</td>
<td>Max. kVARh fournis/reçus dans FP et saison</td>
</tr>
<tr>
<td>Facturation Passée/Energie de Saison</td>
<td>kVArh fournis/reçus dans FP et saison</td>
</tr>
</tbody>
</table>

Mode TEST

Le mode Test permet de modifier certains paramètres dans un compteur à verrouillage matériel ou de vérifier la précision du compteur. Reportez-vous au Manuel d’utilisation du ION8650 et à la note technique Vérification de la précision du ION8650 pour plus d’informations.

Étape 10 : Vérification du raccordement à l’aide des diagrammes de phaseur

Vous pouvez afficher le diagramme de phaseur du compteur depuis le panneau avant ou via ION Setup. L’afficheur de phaseur disponible dans ION Setup permet de vérifier le raccordement du compteur. Reportez-vous à l’aide en ligne de ION Setup pour plus d’informations.
Étoile – Rotation ABC
Mode de volts applicables : 9S 4 fils étoile/triangle et 29S 4 fils étoile,

Étoile – Rotation ACB
Mode de volts applicables : 9S 4 fils étoile/triangle et 29S 4 fils étoile,

Triangle 3 fils – Rotation ABC
Mode de volts applicables : 35S - 3 fils

Triangle 3 fils – Rotation ACB
Mode de volts applicables : 35S - 3 fils

Triangle 4 fils (terre en prise médiane)
Diagrammes de phaseur du ION8650 en mode 9S 4 fils étoile/triangle à FP = 1

On suppose que la charge triphasée est dominante.

La charge triangle triphasée est coupée.
Charge monophasée uniquement.
Spécifications

Les informations contenues dans cette section sont sujettes à modification sans préavis. Veuillez contacter votre représentant local Schneider Electric pour les dernières mises à jour.

Environnement

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degré de pollution</td>
<td>2</td>
</tr>
<tr>
<td>Altitude</td>
<td>Moins de 3000 m au-dessus du niveau de la mer</td>
</tr>
<tr>
<td>Plage de fonctionnement</td>
<td>−40 à 85 °C interne Température ambiante max. −40 à 70 °C</td>
</tr>
<tr>
<td>Température de fonctionnement de l’afficheur</td>
<td>−20 à 80 °C</td>
</tr>
<tr>
<td>Humidité</td>
<td>5 à 95 % HR sans condensation</td>
</tr>
</tbody>
</table>

Entrées de mesure

Entrées de mesure de la tension

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Va, Vb, Vc, Vref</th>
<th>Configuration 29 et 36 Va, Vc, Vref</th>
<th>Configuration 35 : Vab, Vcb, Vref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de connecteur (non fourni)</td>
<td>Circulaire ou à fourche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section de fil recommandée</td>
<td>5,26 mm² (10 AWG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension nominale</td>
<td>Configuration 9, 29 et 36 57-277 V L-N eff. (−20%,+25%)</td>
<td>Configuration 35 : 100-480 V L-N eff. (−20 %, +25 %)</td>
<td></td>
</tr>
<tr>
<td>Tension maximum, compteurs à alimentation auxiliaire</td>
<td>Configuration 9, 29 et 36 347 V L-N rms, 600 V L-L rms</td>
<td>Configuration 35 : 600 V L-L rms</td>
<td></td>
</tr>
<tr>
<td>Tenue diélectrique</td>
<td>2500 V eff., 60 Hz pendant 1 minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension nominale de tenue aux chocs</td>
<td>6 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie de mesure/installation</td>
<td>CAT III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage de fréquence fondamentale de fonctionnement</td>
<td>42-69 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impédance d’entrée</td>
<td>5 MΩ par phase (phase-Vref)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusible (non fourni)</td>
<td>2 A à température (voir diagrammes de raccordement)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entrées de mesure du courant

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Ia, Ib, Ic</th>
<th>Configuration 35 : Ia, Ic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de connecteur (non fourni)</td>
<td>Circulaire ou à fourche</td>
<td></td>
</tr>
<tr>
<td>Section de fil recommandée</td>
<td>5,26 mm² (10 AWG)</td>
<td></td>
</tr>
<tr>
<td>Courant de démarrage, classe 2/10/20</td>
<td>0,001 A eff.</td>
<td></td>
</tr>
<tr>
<td>Dépassement</td>
<td>à 24 A eff.</td>
<td></td>
</tr>
<tr>
<td>Plage de tension nominale ANSI C12.20, classes de courant combinées 2, 10 et 20 CEI 62053-22, combinaison 1 A et 5 A nominal, Imax = 20 A eff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surcharge</td>
<td>500 A eff. pendant 1 s</td>
<td></td>
</tr>
<tr>
<td>Essai de type de tenue diélectrique</td>
<td>2500 V eff., 60 Hz pendant 1 minute</td>
<td></td>
</tr>
<tr>
<td>Tension max.</td>
<td>600 V eff.</td>
<td></td>
</tr>
<tr>
<td>Tension nominale de tenue aux chocs</td>
<td>6 kV</td>
<td></td>
</tr>
<tr>
<td>Catégorie de mesure/installation</td>
<td>CAT III</td>
<td></td>
</tr>
<tr>
<td>Charge, classe 2/10/20</td>
<td>0,05 VA par phase à 1 A</td>
<td></td>
</tr>
</tbody>
</table>

Terre

| Utilisez un fil de 2,08 mm² (14 AWG) | |

Alimentation, standard (auto-alimentation)

<table>
<thead>
<tr>
<th>Type</th>
<th>Triphasée (via entrées de détection de tension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de tension nominale</td>
<td>Configurations 9, 29 et 36 : 69-277 V L-N eff. (120-480 V L-L eff.), 42-69 Hz</td>
</tr>
<tr>
<td>Tension nominale de tenue aux chocs</td>
<td>6 kV</td>
</tr>
<tr>
<td>Charge</td>
<td>Nominal : 4 W, 8 VA/phase, fonctionnement triphasé</td>
</tr>
<tr>
<td>Micro-coupure maximale : minimum garanti</td>
<td>6 périodes à la fréquence nominale (min. 50 Hz), à 120 V L-N eff. (208 V L-L eff.), triphasé</td>
</tr>
</tbody>
</table>

Alimentation, source auxiliaire – tension standard

<table>
<thead>
<tr>
<th>Type</th>
<th>Monophasé, via câble externe avec prise type NEMA 5-15 mise à la terre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de tension nominale</td>
<td>CA : 65-120 V L-N eff., 42-69 Hz CC : 80-170 V CC</td>
</tr>
<tr>
<td>Tension nominale de tenue aux chocs</td>
<td>6 kV</td>
</tr>
<tr>
<td>Charge</td>
<td>Normale : 7 W, 14 VA; Maximale : 11 W, 18 VA</td>
</tr>
<tr>
<td>Micro-coupure maximale : minimum garanti</td>
<td>6 périodes à la fréquence nominale (min. 50 Hz), à 65 V L-N de tension minimum</td>
</tr>
</tbody>
</table>
Alimentation, source auxiliaire – haute tension

| Type | Monophasé, via câble externe avec prise type NEMA mise à la terre |
| Plage de tension nominale | CA : 160-277 V L-N eff.
CC : 200-390 V CC |
Tension nominale de tenue aux chocs	6 kV
Charge	Normale : 8 W, 14 VA; Maximum : 11 W, 19 VA
Micro-coupure maximale : minimum garanti	6 périodes à la fréquence nominale (min. 50 Hz), à 160 V L-N de tension minimum

Entrées/sorties internes

| Type | 4 sorties statiques de type C (options d’E/S B et C)
1 sortie statique de type A (option C uniquement) |
Câble	1,3 à 0,13 mm² (16-26 AWG)
Tension de charge max.	130 V CA / 200 V CC
Courant de charge max.	100 mA
Résistance sous tension	30 Ω normale, 50 Ω maximum
Résistance hors tension	400 MΩ minimum
Isolation	2000 V efficace, 60 Hz pendant 1 min (terre)
1500 V crête (entre les entrées ou les sorties) (CAT II)	
Tension nominale de tenue aux chocs	2500 V crête (terre)
1500 V crête (entre les entrées ou les sorties) (CAT II)	
Fréquence de mise à jour	20 ms (précision = +/- 7 ms), sans compter le retard de communication. Des changement d’état ont lieu dans les 20 ms. 1/2 cycle pour les E/S internes
Type de signal	Continu ou impulsions
Fusible	Protéger avec un fusible de 100 mA à temporisation, du type Littlefuse série 201 à 100 mA.
Fréquence max. transitions sortie	50 par seconde
Largeur min. impulsion	1 ms
Résolution temporelle	Demi-alternance ou 1 s
Dispositif de suppression de transitoires pour les sorties logiques	Installez selon les schémas de la section «Sorties logiques» page 102. Le dispositif de suppression de transitoires doit satisfaire aux spécifications suivantes : Polarisation = bidirectionnelle. Tension de claquage = 300 V maximum. Puissance dissipée en crête = 10 kW pendant 10 ms (minimum) et 1,5 kW pendant 1 milliseconde (minimum).
Temps d’attente de changement d’état	20 ms (sortie logique)
40 ms (modules d’entrées logiques)	
Schémas de commande	Utilisez des mécanismes intermédiaires permettant de désactiver les commandes de relais pour l’entretien

Communications

| RS-232/RS-485 | Cable DB9 |
| RS-485 | Câble à paire torsadée blindée |
| Modem | Modem 56k universel
Cordon téléphonique FCC section 68 RJ-11 |
| Port optique infrarouge | Port optique ANSI Type II |
| RS-485 | Câble à paire torsadée blindée |
| Ethernet | 100BASE-T Catégorie 3 UTP (min.)
Câble Ethernet RJ-45 |
| IRIG-B | Tension nominale = 5 V CC +/- 10 %, Tension max. = 8 V CC
Câble à paire torsadée blindée de 0,33 mm² (22 AWG) |
Appendix A Options de configuration supplémentaires

Sécurité du compteur

Désactivation/activation de la sécurité via le panneau avant

Désactiver la sécurité

Activer la sécurité
Pour activer la sécurité du compteur, vous devez d’abord changer le mot de passe :
1. Sélectionnez le menu de configuration «Modify Passwd». Utilisez les touches de navigation haut et bas pour changer le mot de passe. Appuyez sur le bouton rond pour confirmer la sélection. Sélectionnez «Yes» pour confirmer.
2. Sélectionnez le menu de configuration «Disable Security».

Liaisons RS-232

<table>
<thead>
<tr>
<th>Options de connexion du câble RS-232¹</th>
<th>Directement à l’ordinateur</th>
<th>Connexion directe au modem externe</th>
<th>Module d’extension E/S vers ordinateur</th>
<th>Module d’extension E/S vers modem externe</th>
</tr>
</thead>
</table>

¹ Uniquement applicable aux compteurs avec option câble de dérivation. Pour les compteurs avec option panneau de dérivation, utilisez les connecteurs à l’arrière du compteur.
Désactivation/activation des ports COM via le panneau avant

D’un point de vue sécuritaire, il est recommandé de désactiver les ports COM que vous n’utilisez pas.

1. Appuyez sur le bouton ALT/ENTER et maintenez la pression pendant quelques secondes. Le menu SETUP (configuration) apparaît.
2. Utilisez les boutons de navigation pour mettre en surbrillance le port COM que vous voulez configurer (de COM1 à COM 4) et appuyez sur ALT/ENTER pour le sélectionner.
3. Utilisez les boutons de navigation pour mettre en surbrillance le paramètre Protocole et appuyez sur ALT/ENTER pour le sélectionner.
4. Sélectionnez Aucun dans la liste des protocoles disponibles.
5. Sélectionnez YES pour confirmer la modification.

Désactivation/activation des ports Ethernet via le panneau avant

D’un point de vue sécuritaire, il est recommandé de désactiver les ports Ethernet que vous n’utilisez pas.

1. Appuyez sur le bouton ALT/ENTER et maintenez la pression pendant quelques secondes. Le menu SETUP (configuration) apparaît.
2. Utilisez les boutons haut et bas pour sélectionner NETWORK SETUP (configuration réseau) et appuyez sur ALT/ENTER.
3. Faites défiler jusqu’à PORT ENABLE (activer port) et appuyez sur ALT/ENTER.
4. Sélectionnez le port que vous voulez changer et appuyez sur ALT/ENTER. Sélectionnez YES pour activer le port et NO pour le désactiver.
5. Sélectionnez YES pour confirmer la modification. Entrez le mot de passe du compteur si vous y êtes invité.

Changement de ports de communication actifs pour le ION8650C

Le compteur ION8650C permet plusieurs communications simultanées sur le port optique avant et sur un maximum de deux autres ports de communication. Si vous avez commandé l’option Ethernet et/ou modem interne avec ce compteur, vous devez d’abord désactiver l’un des ports de communication actifs avant d’en activer un autre à la place (par exemple le port série COM1).

Remarque

Le changement de ports de communication actifs prend effet après redémarrage du compteur.

1. Sélectionnez le menu de configuration ENABLED COM PORTS sur le panneau avant. Sélectionnez CONTINUE.
2. Sélectionnez le port de communication actif à désactiver (par exemple Ethernet). Sélectionnez DISABLED. Saisissez le mot de passe d’accès au compteur lorsque vous y êtes invité, puis sélectionnez YES pour confirmer la modification.
3. Sélectionnez le port de communication à activer (par exemple COM1). Sélectionnez ENABLED. Sélectionnez YES pour confirmer la modification.
4. Sélectionnez REBOOT. Sélectionnez YES lorsque vous y êtes invité. Entrez le mot de passe du compteur si nécessaire.
Option d’entrées/sorties internes

Pour des spécification d'E/S détaillées, reportez-vous au tableau «Entrées/sorties internes» page 97.

Entrées logiques

Reportez-vous à l’exemple de numéro de pièce de la section «Raccordement des E/S internes en option» page 89 pour déterminer le nombre d’entrées logiques sur votre compteur. Les entrées logiques de type A sont réglées en usine pour l’autoexcitation (utilisation de l’alimentation électrique interne).

Configuration de l’entrée logique pour l’excitation externe

Suivez les instructions ci-dessous pour configurer l’entrée logique pour l’alimentation externe.

1. Coupez et isolez complètement l’alimentation. Utilisez un dispositif de détection de tension nominale adéquat pour vérifier que l’alimentation est hors service.

1 Ces diagrammes représentent l’option d’E/S internes B.

DANGER

RISQUE D’ÉLECTROCUTION, D’EXPLOSION OU D’ARC ÉLECTRIQUE

- Portez un équipement de protection individuelle (EPI) approprié et observez les règles de sécurité en matière de travaux électriques. Consultez la norme NFPA 70E aux États-Unis, ou les réglementations locales applicables.
- Cet appareil doit impérativement être installé et entretenu par un électricien qualifié.
- Coupez toute alimentation électrique de l’appareil et de l’équipement dans lequel il est installé avant toute intervention.
- Utilisez toujours un appareil de vérification de tension correctement calibré pour vérifier que l’alimentation est coupée.

Le non-respect de ces instructions entraînera la mort ou des blessures graves.
3. À l’aide d’un tournevis cruciforme n° 2, desserrez d’un tour les deux vis de charnière arrière (A).

4. Retirez les deux vis de fixation avant (B) et mettez-les de côté.

5. Faites délicatement basculer le châssis du compteur. Les broches d’excitation et les cavaliers sont situés dans un renfoncement en bas à gauche du compteur.

7. Remontez le châssis du compteur, réinstallez les vis de fixation et serrez les vis de charnière.

L’excitation interne de l’entrée logique est à présent désactivée ; une alimentation externe peut être utilisée pour les contacts externes. Reportez-vous au tableau des spécifications «Entrées/sorties internes» page 97 pour plus d’informations.
Sorties logiques

⚠️ AVERTISSEMENT

RISQUE LORS D’UTILISATION NON PRÉVUES

N’utilisez pas cet équipement pour les applications critiques de commande ou de protection dans lesquelles la sécurité du personnel ou de l’équipement dépend du fonctionnement du circuit de commande.

Le non-respect de ces instructions peut entraîner la mort ou des blessures graves.

Reportez-vous à l’exemple de références dans «Raccordement des E/S internes en option» page 89 pour déterminer quelles sorties numériques possède votre compteur.

Exemple de raccordement de sortie logique de type C

Exemples de raccordements de sortie logique de type A

- Fusibles à temporisation 100 mA
- Transitoire Suppression Dispositif
- Alimentation
- Relais externe
- Alimentation externe 130 V CA / 200 V CC max.
PowerLogic™ ION8650
with WebMeter™
Switchboard meter installation guide

ION, ION Enterprise, Modbus, Modicon, Power Measurement, PowerLogic, Schneider Electric, Square D, and WebMeter are either trademarks or registered trademarks of Schneider Electric in France, the USA and other countries. All other trademarks are property of their respective owners.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

© 2018 Schneider Electric.
All rights reserved. / Reservados todos los derechos. / Tous droits réservés.