Instruction Bulletin

SE Electronic Trip Circuit Breaker
with MICROLOGIC® Trip System

Retain for future use.
HAZARD CATEGORIES AND SPECIAL SYMBOLS

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

FCC NOTICE

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. This Class A digital apparatus complies with Canadian ICES-003.

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

Provides additional information to clarify or simplify a procedure.
TABLE OF CONTENTS

SECTION 1: GENERAL INFORMATION
- SEF Circuit Breakers .. 6
- SED Circuit Breaker .. 6
- Trip Unit ... 6
- Ampere Rating .. 6
- Sensor Size .. 7
- Frame Size .. 7
- Current Rating .. 7
- Interrupting Ratings .. 7

SECTION 2: RECEIVING AND LIFTING CIRCUIT BREAKER
- Receiving Circuit Breaker .. 8
- Lifting Circuit Breaker ... 8

SECTION 3: SEF CIRCUIT BREAKER
- Factory-installed SEF Circuit Breaker 9
- Field-installed SEF Circuit Breaker 9
 - Enclosure Door/Cover ... 9
 - Enclosure Size .. 10
 - Wire Bending Space ... 10
 - Ventilation ... 11
 - Bussing .. 11
- Install SEF Circuit Breaker ... 13
- Install Arc Barriers .. 14
- Inspect SEF Circuit Breaker ... 14
- Check SEF Circuit Breaker Operation 14
 - Charge Closing Springs .. 14
 - Close Circuit Breaker ... 15
 - Open Circuit Breaker .. 16
- Remove SEF Circuit Breaker 16

SECTION 4: SED CIRCUIT BREAKER
- Install SED Circuit Breaker ... 17
- Check SED Circuit Breaker Operation 19
 - Manually Charge Closing Springs 19
 - Close Circuit Breaker .. 19
 - Open Circuit Breaker .. 20
- Check Drawout Operation .. 20
- Remove SED Circuit Breaker 22

SECTION 5: TRIP UNIT OPERATION
- Current Rating .. 24
- Rating Plug ... 24
- Ammeter/Trip Indicator ... 25
- Memory Feature .. 25
- Ground-fault Detection .. 25
- Trip Characteristics .. 26
- Trip Unit Functions .. 26
 - Long-time Trip Function 26
 - Short-time Trip Function 27
 - Instantaneous Trip Function 27
 - Ground-fault Trip Function 28
 - Ground-fault Alarm Function 28
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Trip Unit Adjustments and Control Wiring</td>
</tr>
<tr>
<td></td>
<td>Trip Unit Adjustments</td>
</tr>
<tr>
<td></td>
<td>Trip Unit Settings</td>
</tr>
<tr>
<td></td>
<td>Adjust Trip Unit</td>
</tr>
<tr>
<td></td>
<td>Control Wiring</td>
</tr>
<tr>
<td></td>
<td>Circuit Breaker Accessories</td>
</tr>
<tr>
<td></td>
<td>Communicating with a POWERLOGIC® System</td>
</tr>
<tr>
<td></td>
<td>Zone-selective Interlocking (ZSI)</td>
</tr>
<tr>
<td></td>
<td>Ground-fault Protection</td>
</tr>
<tr>
<td></td>
<td>Test Ground-fault Feature</td>
</tr>
<tr>
<td></td>
<td>Check Installation</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker</td>
</tr>
<tr>
<td></td>
<td>Place Circuit Breaker in Service</td>
</tr>
<tr>
<td></td>
<td>Seal Trip Unit</td>
</tr>
<tr>
<td>7</td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td>Routine Maintenance</td>
</tr>
<tr>
<td></td>
<td>SEF Circuit Breaker</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker</td>
</tr>
<tr>
<td></td>
<td>Primary Injection Testing</td>
</tr>
<tr>
<td>8</td>
<td>Accessories</td>
</tr>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>Shunt Trip</td>
</tr>
<tr>
<td></td>
<td>Shunt Close (Remote Close)</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Switch</td>
</tr>
<tr>
<td></td>
<td>Undervoltage Trip</td>
</tr>
<tr>
<td></td>
<td>Alarm Switch</td>
</tr>
<tr>
<td></td>
<td>Spring Charging Motor</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker Cell Switch</td>
</tr>
<tr>
<td></td>
<td>Close Button Cover</td>
</tr>
<tr>
<td></td>
<td>SEF Circuit Breaker Padlock Attachment</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker Padlock Attachment</td>
</tr>
<tr>
<td></td>
<td>Circuit Breaker Key Interlock</td>
</tr>
<tr>
<td></td>
<td>SEF Circuit Breaker Key Interlock</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker Key Interlock</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker Cell Keying Kit</td>
</tr>
<tr>
<td></td>
<td>Restraint Interface Module</td>
</tr>
<tr>
<td></td>
<td>Universal Test Set</td>
</tr>
<tr>
<td></td>
<td>Communications Adapter</td>
</tr>
<tr>
<td>9</td>
<td>Repacking Circuit Breaker</td>
</tr>
<tr>
<td></td>
<td>Equipment Required</td>
</tr>
<tr>
<td></td>
<td>Materials Required</td>
</tr>
<tr>
<td></td>
<td>Repacking</td>
</tr>
<tr>
<td>10</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td></td>
<td>SED Circuit Breaker Troubleshooting</td>
</tr>
<tr>
<td></td>
<td>SEF Circuit Breaker Troubleshooting</td>
</tr>
<tr>
<td></td>
<td>Before Working on Circuit Breaker</td>
</tr>
<tr>
<td></td>
<td>Internally-mounted Accessories</td>
</tr>
<tr>
<td></td>
<td>Interlocks</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Cover Interlock</td>
</tr>
<tr>
<td></td>
<td>Key Interlock (Optional)</td>
</tr>
<tr>
<td></td>
<td>Cell Door Interlock</td>
</tr>
<tr>
<td></td>
<td>Push–to–open Padlock Attachment (Optional)</td>
</tr>
</tbody>
</table>
APPENDIX 1: DIMENSIONS

SED (Drawout) Circuit Breaker .. 54
SEF (Fixed-Mounted) Circuit Breaker ... 55
Neutral Current Transformer .. 57
SEFM40CK Terminal Connector Kit .. 58

APPENDIX 2: WIRING DIAGRAMS

Terminal Connectors for SE Circuit Breaker 60
AC Auxiliary Switches .. 61
AC/DC Auxiliary Switches ... 62
Alarm Switches .. 63
Shunt Trip ... 63
Undervoltage Trip ... 64
Shunt Close ... 64
Spring Charging Motor .. 65
Ground-Fault Systems .. 66
 Ground-fault Test Circuit ... 66
 303W (Three-phase, Three-wire) Residual Ground-fault Sensing System ... 66
 304W (Three-phase, Four-wire) Residual Ground-fault Sensing System ... 67
 304W (Three-phase, Four-wire) Source Ground-sensing System ... 68
Zone-Selective Interlocking ... 69
 Ground-fault Zone-selective Interlocking ... 69
 Short-time Zone-selective Interlocking ... 70
CIM3F Communications Adapter Connections 71
SED4000 A Circuit Breaker Cooling Fan .. 71

APPENDIX 3: CATALOG NUMBERS

... 72

INDEX: .. 73
SECTION 1—GENERAL INFORMATION

SE electronic trip circuit breakers with MICROLOGIC® trip systems are available in either fixed-mounted (SEF) or drawout (SED) construction. For both constructions, the circuit breaker case is factory sealed and must not be opened for any reason. Opening the case voids UL Listing and all warranties. No user-serviceable parts are located inside the molded case.

SEF CIRCUIT BREAKERS

A. Rear-mounted power terminals permit cable connections or bolted bus connections
B. Terminal blocks for connection to control wiring
C. Side plates bolt to the switchboard frame to support the circuit breaker
D. Electronic trip unit provides adjustable tripping functions

SED CIRCUIT BREAKER

The SED circuit breaker is designed to mount in a drawout carriage inside an enclosure.

The drawout carriage includes rails to install and withdraw the circuit breaker, copper bussing to provide the main electrical connections to the circuit breaker, and interlocks to ensure safe operation.

A. Plug-on pressure connection to make the line and load connections
B. Plug-on pressure connection for control wiring
C. Circuit breaker installs in drawout carriage using drawout rails
D. Electronic trip unit provides adjustable tripping functions

TRIP UNIT

The trip unit includes all the trip function adjustments and a receptacle for the rating plug. Indicators will show if a trip was due to an overload, short-circuit or ground-fault condition. The trip unit can be sealed to prevent tampering by unauthorized personnel.

AMPERE RATING

The maximum current that a circuit breaker can carry is called the ampere rating. It is determined by the mathematical equation:

\[
\text{Ampere Rating} (P) = \text{Sensor Size} (S) \times \text{Rating Plug Multiplier} \%
\]
SENSOR SIZE

The circuit breaker sensor size is the maximum ampere rating possible for a specific circuit breaker. It is based on the size of the current sensor inside the circuit breaker. (Current sensors are integral to the circuit breaker and cannot be removed or replaced.)

SE circuit breakers are available in eight sensor sizes: 400, 800, 1200, 1600, 2000, 2500, 3000 and 4000 amperes. The sensor size is indicated on the faceplate on the front of the circuit breaker.

FRAME SIZE

The maximum ampere rating a circuit breaker family can carry is called the frame size. All SE circuit breakers have a 4000 A frame size and are the same physical size.

The rating plug applies a multiplier (ranging from 0.4 to 1.0) to the sensor size. The rating plug multiplier value is printed on the face of the rating plug along with the mathematical equation used to obtain the ampere rating. (The rating plug catalog number is ARPXXX, with XXX being the multiplier value stated as a percentage.)

CURRENT RATING

Continuous current carrying capacity of the circuit breaker is determined by multiplying the circuit breaker sensor size by the rating plug multiplier and the trip unit long-time pickup switch setting. All SE circuit breakers are rated for 100% continuous loading.

\[
\text{Current Rating} = \text{Sensor Size} \times \text{Rating Plug Multiplier} \times \text{Long-time Pickup Switch Setting}
\]

<table>
<thead>
<tr>
<th>Sensor Size</th>
<th>Rating Plug Multiplier</th>
<th>Long-time Pickup Switch Setting</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>100%</td>
<td>1.0</td>
<td>1200</td>
</tr>
</tbody>
</table>

INTERRUPTING RATINGS

The maximum amount of current the circuit breaker is designed to safely interrupt is called the ampere interrupting rating (AIR).

Table 1: Interrupting Ratings

<table>
<thead>
<tr>
<th>Circuit Breaker</th>
<th>UL Listed Interrupting Rating(^1)</th>
<th>30-cycle Short-time Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240 Vac</td>
<td>480 Vac</td>
</tr>
<tr>
<td>SEF, SED</td>
<td>150 000</td>
<td>100 000</td>
</tr>
<tr>
<td>SEHF, SEHD</td>
<td>200 000</td>
<td>150 000</td>
</tr>
</tbody>
</table>

\(^1\) Interruption rating is value shown or interruption rating of switchboard, whichever is lower.
SECTION 2—RECEIVING AND LIFTING CIRCUIT BREAKER

RECEIVING CIRCUIT BREAKER
Immediately inspect all equipment for shipping damage. If damage is found or suspected, file a claim as soon as possible with carrier and notify nearest Square D representative.

Also inspect circuit breakers and equipment after installation BEFORE energizing switchboard.

NOTE: Protective tape is placed over arc vents to keep debris out of circuit breaker. Do not remove tape prior to installation.

If equipment must be stored before installation, store in a clean dry place, protected from dirt and water. Provide ample air circulation and heat, if necessary, to prevent condensation.

LIFTING CIRCUIT BREAKER

Lift circuit breaker using supplied lifting adapter (A). Insert lifting adapter hooks into two holes at upper rear of circuit breaker and position adapter so hooks extend out through two holes (B) on top of circuit breaker.

Lifting must be done using a hoist capable of lifting 300 lbs. (136 kg) or more. Connect hoist to lifting adapter and lift circuit breaker slowly.

Although not recommended, the circuit breaker can be lifted from below using a platform, supporting weight of circuit breaker in area (C). The auxiliary cover and current transformers can be damaged if used to support the weight of the circuit breaker.
SECTION 3—SEF CIRCUIT BREAKER

FACTORY-INSTALLED SEF CIRCUIT BREAKER

SEF circuit breakers are normally factory installed in switchboards. For factory-installed circuit breakers:

1. Disconnect all power to enclosure.
2. Inspect circuit breaker as instructed on page 14.

FIELD-INSTALLED SEF CIRCUIT BREAKER

Enclosure Door/Cover

An SE circuit breaker cover must have:

• at least three 1/4-20 securing screws on each side
or
• at least three 1/4-20 securing screws on one side and a minimum of three hinges on opposite side

Figure 5: SE Enclosure Door Dimensions

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-3000 A</td>
<td>7.13 in.</td>
<td>26.45 in.</td>
</tr>
<tr>
<td>4000 A</td>
<td>10.13 in.</td>
<td>32.45 in.</td>
</tr>
</tbody>
</table>

DANGER

HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

• This equipment must be installed and serviced only by qualified electrical personnel.
• Turn off all power supplying this equipment before working on or inside equipment.
• Always use a properly rated voltage sensing device to confirm power is off.
• Replace all devices, doors and covers before turning on power to this equipment.

Failure to follow this instruction will result in death or serious injury.
Enclosure Size

Shaded area is minimum SE mounting area. DO NOT locate additional equipment or structural members in this area.

Figure 6: SE Mounting Area

Table 2: Enclosure Dimensions

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Minimum Mounting</th>
<th>Minimum Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Half Width W1</td>
<td>Width W2</td>
</tr>
<tr>
<td>400 A, 800 A, 1200 A, 1600 A</td>
<td>15 in. [381 mm]</td>
<td>30 in. [762 mm]</td>
</tr>
<tr>
<td>2000 A, 2500 A, 3000 A</td>
<td>18 in. [457 mm]</td>
<td>36 in. [914 mm]</td>
</tr>
<tr>
<td>4000 A in 3Ø3W system</td>
<td>21 in. [533 mm]</td>
<td>42 in. [1067 mm]</td>
</tr>
<tr>
<td>4000 A in 3Ø4W system</td>
<td>24 in. [608 mm]</td>
<td>48 in. [1219 mm]</td>
</tr>
</tbody>
</table>

Wire Bending Space

Refer to UL 891 and the National Electrical Code (NEC) for wire bending requirements. Adequate conduit entry area must be available.

NOTE: Terminal connector kit SEFM40CK is required for all 4000 A SEF circuit breaker mounting. Enclosure design must allow for installation of terminal connector kit. THE UL LISTING IS VOID UNLESS TERMINAL CONNECTOR KIT IS USED. See Appendix A for dimensions of terminal connector kit.
Ventilation

The SE circuit breaker requires unrestricted ventilation openings in the enclosure. See Table 3 for amount of ventilation required. These values are based on one SE circuit breaker per enclosure.

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Ventilation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 A, 800 A, 1200 A, 1600 A</td>
<td>NONE</td>
</tr>
<tr>
<td>2000 A</td>
<td>154 in.(^2) (99 355 mm(^2)) on front of enclosure, place equal amounts at top and bottom of enclosure front.</td>
</tr>
<tr>
<td>2500 A</td>
<td>308 in.(^2) (198 710 mm(^2)) in back of enclosure, place equal amounts at top and bottom of enclosure back.*</td>
</tr>
<tr>
<td>3000 A</td>
<td>308 in.(^2) (198 710 mm(^2)) in back of enclosure, place equal amounts at top and bottom of enclosure back, with 6 in. (152 mm) of clearance behind enclosure.* If there is less than 6 in. (152 mm) of clearance behind enclosure, add an additional 308 in. (198 710 mm(^2)) of ventilation to enclosure front.</td>
</tr>
<tr>
<td>4000 A</td>
<td>388 in.(^2) (250 323 mm(^2)) in back of enclosure, place equal amounts at top and bottom of enclosure back.</td>
</tr>
</tbody>
</table>

*Ventilation can be located on front. However, available circuit breaker mounting space will be reduced.

Bussing

- Size bussing per UL 891.
- Install cables using 75\(^\circ\)C insulated wire per NEC Table 310-16

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE

The SEF circuit breaker is not designed to support bussing or terminal extensions. All bussing and terminal extensions MUST be supported by means other than circuit breaker tangs.

Failure to follow this instruction can result in equipment damage.

A. 400–2000 A Circuit Breaker

Figure 7: 400–2000 A Circuit Breaker Bussing Method
B. 2500–3000 A Circuit Breaker

1. Add terminal extensions.
2. Mount extensions as shown in Figure 8.

Table 4: Extension Sizes

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Copper Terminal Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>2500 A</td>
<td>3</td>
</tr>
<tr>
<td>3000A</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE: The supply terminal extensions must have 1/4 in. (6.4 mm) minimum spacing between bus bars. See Figure 9.

3. Cable the 2500 A SEF circuit breaker using 75°C insulated wire per NEC Table 310-16. Cable the 3000 A SEF circuit breaker using 90°C insulated wire based on ampacity of 75°C wire per NEC Table 310-16.

C. 4000 A Circuit Breaker

NOTE: The UL Listing is void unless terminal connector kit SEFM40CK is used. See Appendix A for dimensional drawings of SEFM40CK kit.

1. Mount four terminal connectors (A) per phase (from SEFM40CK kit) to circuit breaker.
2. Install hex head bolts, Belleville washers and hex nuts (provided) (B). Torque to 70 lb-ft (95 N·m).
3. Torque KEPS nuts (C) to 225 lb-in (25 N·m).
4. Bus with four 1/4 x 6 in. (6 x 152 mm) copper bus bars per phase or copper bus of equivalent cross-sectional area. If aluminum bus is desired, perform tests per UL 891 for acceptability.
5. If cabling, use 90°C insulated wire based on ampacity of 75°C wire per NEC Table 310-16.
INSTALL SEF CIRCUIT BREAKER

DANGER
HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE

- Install circuit breaker ONLY when switchboard section is secured to avoid tipping.
- Circuit breaker weighs over 280 lbs. (127 kg) and must be lifted using lifting adapter and hoist capable of lifting 300 lbs. (136 kg).

Failure to follow this instruction will result in death, serious injury or equipment damage.

1. Insert hooks of the supplied lifting adapter (A) into the two holes at upper rear of circuit breaker and position adapter so hooks extend out through two holes (B) on top of circuit breaker. Connect hoist capable of lifting 300 lbs. (136 kg) or more to lifting adapter and lift circuit breaker slowly.

2. Install circuit breaker into enclosure. Make sure circuit breaker is secure.

3. Remove hoist and lifting adapter. Store lifting adapter outside of the switchboard.

DANGER
HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

Energizing the circuit breaker with lifting adapter installed could result in a cross–phase condition. The lifting adapter must be removed from the circuit breaker before proceeding with installation.

Failure to follow this instruction will result in death or serious injury.
INSTALL ARC BARRIERS

1. Install front (A), top (B) and rear (C) arc barriers around circuit breaker. Make arc barriers from 0.188 in. (5 mm) thick insulating material with a UL 94V-0 Flammability Rating.

2. Support rear arc barrier (C) with a nonmagnetic barrier support angle (D) at least 0.125 in. (3 mm) thick with 2 in. (51 mm) flanges and length L. Rigidly mount support to enclosure frame members.

3. Mount top arc barrier (B) to rear arc barrier with four angle brackets (E). The top arc barrier must extend to front of enclosure.

4. Mount front arc barrier behind circuit breaker behind the gas shield. Mount front arc barrier to top arc barrier with four angle brackets.

INSPECT SEF CIRCUIT BREAKER

Inspect circuit breaker when equipment is first installed and again before placing circuit breaker in service. If damage such as loose power terminals, distorted connectors or any loose parts in switchboard section is found, contact Square D.

Make sure all bus and circuit breaker connections are properly torqued. Refer to Switchboard Installation/Maintenance Manual for torque values.

CHECK SEF CIRCUIT BREAKER OPERATION

Charge Closing Springs

Electrically Charge Closing Springs

SE circuit breakers have a two-step stored energy mechanism: closing spring charging and contact closing are two distinct operations. Closing springs must be fully charged to close circuit breaker.

SE circuit breakers can be provided with an electrical operation system to automatically charge closing springs and permit remote circuit breaker operation. Refer to Section 8 for more information.
Manually Charge Closing Springs

CAUTION

HAZARD OF HANDLE DAMAGE
Do not apply excessive force to handle.
Failure to follow this instruction can result in equipment damage.

NOTE: The circuit breaker is shipped with springs discharged. (Closing spring indicator reads DISCHARGED.)

1. Rotate closing spring charging handle (A) out to operating position.
2. Move handle up and down 25 full strokes (B) until handle disengages and moves freely in both directions. (Closing spring indicator reads CHARGED.)
3. Return handle to stored position.

Close Circuit Breaker

NOTE: Safety interlocks prevent closing of circuit breaker if certain conditions are not met. Refer to Section 10—Troubleshooting for information about these interlocks.

2. When circuit breaker closes, contact position indicator (B) reads CLOSED and closing springs indicator (C) reads DISCHARGED.

The circuit breaker can be manually recharged when circuit breaker is closed. If an electrical operation system is provided and connected to a power source, closing springs start charging automatically when circuit breaker is closed.
Open Circuit Breaker

Open circuit breaker by pushing Push-to-Open button (A).

The contact position indicator (B) will read OPEN.

Figure 15: Open Circuit Breaker

REMOVE SEF CIRCUIT BREAKER

1. Disconnect all power supplying this equipment before working on or inside equipment.
2. Remove the circuit breaker in reverse order of installation.

DANGER

HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE
- Remove circuit breaker ONLY when switchboard section is secured to avoid tipping.
- Circuit breaker weighs over 280 lbs. (127 kg) and must be lifted using lifting adapter and hoist capable of lifting 300 lbs. (136 kg).

Failure to follow this instruction will result in death, serious injury or equipment damage.

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE
Arc vents must be covered with tape before moving or servicing circuit breaker. If any object drops into arc vents, return circuit breaker to Square D.

Failure to follow this instruction can result in equipment damage.

3. If arc vents are not already covered with tape, cover them with tape at this time.

Figure 16: Cover Arc Vents
SECTION 4—SED CIRCUIT BREAKER

SED circuit breakers mount in carriage assemblies equipped with drawout rails and bussing specifically designed for them. Square D equipment has the carriage assembly already in the equipment. If installing SED circuit breaker in other than Square D equipment, a carriage assembly is required. Install carriage assembly according to the instructions shipped with it.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION</td>
</tr>
<tr>
<td>• This equipment must be installed and serviced only by qualified electrical personnel.</td>
</tr>
<tr>
<td>• Turn off all power supplying this equipment before working on or inside equipment.</td>
</tr>
<tr>
<td>• Always use a properly rated voltage sensing device to confirm power is off.</td>
</tr>
<tr>
<td>• Replace all devices, doors and covers before turning on power to this equipment.</td>
</tr>
<tr>
<td>HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE</td>
</tr>
<tr>
<td>Install circuit breaker ONLY when switchboard section is secured to avoid tipping.</td>
</tr>
<tr>
<td>Failure to follow this instruction will result in death, serious injury or equipment damage.</td>
</tr>
</tbody>
</table>

INSTALL SED CIRCUIT BREAKER

1. Disconnect all power to enclosure.
2. Inspect power connectors and main power terminals of the circuit breaker. With a lint-free cloth, remove any foreign material which can be stuck to the joint compound on the power connector. If joint compound has been removed, replace only with Square D joint compound PJC8311.
3. Pull out drawout rails (A) until they drop into the horizontal position.

Figure 17: Drawout Rails

A A
DANGER
HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE

Circuit breaker weighs over 280 lbs. (127 kg) and must be lifted using lifting adapter and hoist capable of lifting 300 lbs. (136 kg).

Failure to follow this instruction will result in death, serious injury or equipment damage.

4. Insert hooks of the supplied lifting adapter (A) into the two holes at upper rear of circuit breaker and position adapter so hooks extend out through two holes (B) on top of circuit breaker. Connect hoist capable of lifting 300 lbs. (136 kg) or more to lifting adapter and lift circuit breaker slowly.

5. Lower circuit breaker until all four drawout wheels (A) are on the extended rails, positioning the front wheels as shown.

6. Remove hoist and lifting adapter. Store lifting adapter outside of the switchboard.

7. Inspect circuit breaker when equipment is first installed and again before placing circuit breaker in service. If damage such as loose power terminals, distorted connectors or any loose parts in switchboard section is found, contact Square D. Make sure all bus and circuit breaker connections are properly torqued. Refer to Switchboard Installation/Maintenance Manual.

8. Push circuit breaker toward carriage. Make sure the secondary terminal connector (A) is in alignment with the terminal in the carriage (B).

DANGER
HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

Energizing the circuit breaker with lifting adapter installed could result in a cross-phase condition. The lifting adapter must be removed from the circuit breaker before proceeding with installation.

Failure to follow this instruction will result in death or serious injury.
CHECK SED CIRCUIT BREAKER OPERATION

Manually Charge Closing Springs

CAUTION

HAZARD OF HANDLE DAMAGE
Do not apply excessive force to handle.
Failure to follow this instruction can result in equipment damage.

NOTE: The circuit breaker is shipped with springs discharged. (Closing spring indicator reads DISCHARGED.)

1. Rotate closing spring charging handle (A) out to operating position.
2. Move handle up and down 25 full strokes (B) until handle disengages and moves freely in both directions. (Closing spring indicator reads CHARGED.)
3. Return handle to stored position.

Close Circuit Breaker

NOTE: Safety interlocks prevent closing of circuit breaker if certain conditions are not met. Refer to Section 10—Troubleshooting for information about these interlocks.

2. When circuit breaker closes, contact position indicator (B) reads CLOSED and closing springs indicator (C) reads DISCHARGED.

The circuit breaker can be manually recharged when circuit breaker is closed. If an electrical operation system is provided and connected to a power source, closing springs start charging automatically when circuit breaker is closed.
Open Circuit Breaker

Open circuit breaker by pushing Push-to-Open button (A).

The contact position indicator (B) will read OPEN.

Figure 22: Open Circuit Breaker

Check Drawout Operation

NOTE: This check must be done with circuit breaker resting on the drawout rails in front of the carriage.

1. Open the drawout access cover (A).
2. Insert drawout crank (Cat. No. SEDC) (B) over the drawout mechanism operating shaft.

3. Make sure drawout mechanism is in the disconnected (DISC) position.
 If mechanism is not in the disconnected position, turn crank counterclockwise until the stop is reached and the position indicator points to DISC.
 Levering device arms on sides of the circuit breaker will be approximately 40° above horizontal and point to the rear.

Figure 23: Insert Drawout Crank

Figure 24: Disconnect Position
4. Place circuit breaker in test position.
 Rotate crank clockwise until the test position is reached.
 Levering device arms on sides of the circuit breaker are approximately horizontal and point to the rear.

5. Place circuit breaker in connected (CONN) position.
 Turn crank clockwise until a stop is reached.
 Circuit breaker position indicator points to CONN.
 Levering device arms on sides of the circuit breaker are approximately horizontal and point to the front.

6. Return circuit breaker to disconnected position.
 Rotate the crank counterclockwise through test position. Rotate until stop is reached.
 Drawout position indicator must point to DISC.

7. Lift drawout access cover and remove crank.
 Allow drawout access cover to close.
REMOVE SED CIRCUIT BREAKER

1. Turn off all power supplying this equipment before working on or inside equipment.
2. Open the circuit breaker by pushing the Push-to-Open button (A).

3. Place circuit breaker in disconnected position:
 a. Lift access cover
 b. Insert drawout crank.
 c. Rotate the crank clockwise until stop is reached.
 d. Drawout position indicator must point to DISC.
4. Lift drawout access cover and remove crank. Allow drawout access cover to close.
5. Remove switchboard door retaining screws and open the door.
6. Pull out circuit breaker.
 a. Extend drawout rails until they drop into a horizontal position.
 b. Roll circuit breaker out onto the drawout rails until drawout wheels are in the first rail stop at the front of the rails.

DANGER
HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE
- Remove circuit breaker ONLY when switchboard section is secured to avoid tipping.
- Circuit breaker weighs over 280 lbs. (127 kg) and must be lifted using lifting adapter and hoist capable of lifting 300 lbs. (136 kg).

Failure to follow this instruction will result in death, serious injury or equipment damage.
7. Insert hooks of the supplied lifting adapter (A) into the two holes at upper rear of circuit breaker and position adapter so hooks extend out through two holes (B) on top of circuit breaker. Connect hoist capable of lifting 300 lbs. (136 kg) or more to lifting adapter and lift circuit breaker slowly.

8. Lower circuit breaker onto flat surface capable of supporting its weight.

Figure 31: SE Circuit Breaker Lifting Adapter

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE

Arc vents must be covered with tape before moving or servicing circuit breaker. If any object drops into arc vents, return circuit breaker to Square D.

Failure to follow this instruction can result in equipment damage.

9. Cover arc vents with tape if not already covered.

Figure 32: Cover Arc Vents
SECTION 5—TRIP UNIT OPERATION

SE circuit breakers are equipped with the MICROLOGIC Full-function Trip System (Figure 33), which provides adjustable tripping functions and characteristics using true root-mean-square (RMS) current sensing.

Adjustable rotary switches allow the user to set the proper overcurrent or ground current protection required in the electrical system. If trip currents and time delays exceed set values, the trip system trips the circuit breaker.

The trip unit indicator will flash at 90% of the long-time pickup level and will be lit continuously above 100% of the pickup level.

CURRENT RATING

Determine current rating by multiplying the circuit breaker sensor size by the rating plug multiplier and the trip unit long-time pickup switch setting. For example:

<table>
<thead>
<tr>
<th>Sensor Size</th>
<th>Rating Plug Multiplier</th>
<th>Long-time Pickup Switch Setting</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>0.75</td>
<td>0.5</td>
<td>1125</td>
</tr>
</tbody>
</table>

The label on the circuit breaker marked “Configuration as Shipped” gives the circuit breaker configuration as it left the factory. See Appendix C for available field-installable rating plug kits.

RATING PLUG

Rating plugs are available with multipliers ranging from 0.40 to 1.00. If the rating plug is not installed, the circuit breaker will operate safely, but the rating plug multiplier will default to 0.40.

NOTE: Ground-fault values are based on the sensor size of the circuit breaker and are not affected by changing the rating plug.

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE

Rating plug and ammeter/trip indicator are subject to damage from static charge. Do not handle these devices by their contacts. If either is removed, hold it against the metal circuit breaker enclosure at least two seconds before reinstalling.

Failure to follow this instruction can result in equipment damage.
AMMETER/TRIP INDICATOR

The ammeter/trip indicator monitors current in phases A, B and C, and ground-fault current. Each value can be viewed one at a time using the phase select/indicator reset button. (Phase values are displayed in true RMS. Ground-fault current values are displayed in calculated RMS based on measured peak current.)

The bar graph at the base of the window indicates the level of operating current as a function of the programmed ampere rating of the circuit breaker.

The window displays “OVERLOAD,” “SHORT CIRCUIT,” or “GROUND FAULT” when the circuit breaker trips. Reset indicator by pushing the phase select/indicator reset button.

The phase select/indicator reset button can be pressed at any time to test that the ammeter/trip indicator is functioning. The window will display a battery symbol. If this does not occur, contact Square D for a replacement ammeter/trip indicator. Ammeter/trip indicator must be installed in trip unit for test function to work.

MEMORY FEATURE

NOTE: If checking trip times, wait 15 minutes after circuit breaker trips before resetting to allow memory to reset completely to zero.

GROUND-FAULT DETECTION

NOTE: Circuit breakers with ground-fault alarm will not trip if a ground fault occurs.

MICROLOGIC trip systems feature a memory circuit for intermittent overload or ground-fault conditions. This allows the circuit breaker to respond to a series of on (I) and off (O) overload conditions which could cause conductor overheating, but go undetected in a conventional electronic trip device.

If the circuit breaker trips due to an overload condition, wait at least one minute before resetting the circuit breaker. This allows the memory to clear itself sufficiently for the circuit breaker to be turned on (I).

Circuit breakers with integral ground-fault detection provide ground-fault tripping or alarm on grounded neutral systems. They can be applied on three-phase, four-wire circuits, on three-phase, three-wire circuits where the neutral is grounded but not carried throughout the system, or on grounded delta systems. These circuit breakers utilize a residual sensing scheme for ground-fault detection.

Circuit breakers with integral ground-fault tripping provide ground-fault protection for equipment.

Circuit breakers with integral ground-fault alarm provide ground-fault monitoring and alarm through the POWERLOGIC® system. This feature meets NEC Sections 700–7(d) and 700–26 for emergency systems.

Circuit breakers with either ground-fault feature are equipped with an internal ground-fault test feature. The ground-fault test system is built into the circuit breaker and eliminates the need for any additional test equipment, such as monitor panels. See Appendix B for wiring diagrams.
TRIP CHARACTERISTICS

Trip settings are used to obtain a coordinated system in which a downstream circuit breaker will trip before an upstream circuit breaker. Figure 36 shows the various parts of the trip curve affected by the trip settings.

NOTE: Settings and descriptions in this section are general descriptions of the trip unit functions and are not representative of all options. For detailed information, refer to the published trip curve for that specific circuit breaker rating and functions.

Properly adjusting the MICROLOGIC trip settings will result in a characteristic trip curve that falls above and to the right of the branch circuit breaker characteristic curve. Under overload or short-circuit conditions, the branch circuit breaker will trip first.

For more information on a system coordination study, contact the local field office.

TRIP UNIT FUNCTIONS

Long-time Trip Function

Long-time Pickup Switch — sets maximum current level (based on circuit breaker ampere rating) which circuit breaker will carry continuously. If current exceeds this value, circuit breaker will trip after the preset delay time.

Long-time Delay Switch — sets length of time that circuit breaker will carry a sustained overcurrent below the short-time pickup current level before tripping. Delay bands are labeled in seconds of overcurrent at six times the ampere rating. For maximum coordination, there are eight delay bands.

Indicator — the trip unit indicator (A) will flash at 90% of the long-time pickup level and will be lit continuously above 100% of the pickup level.

NOTE: Turn circuit breaker off (O) before adjusting trip unit switches.

Figure 36: Trip Curve

Figure 37: Long-time Trip Switches
Short-time Trip Function

Short-time Pickup Switch — sets current level (based on circuit breaker ampere rating) between the long-time pickup level and the instant. pickup level at which circuit breaker will trip after the preset short-time delay.

Short-time Delay Switch— sets length of time circuit breaker will carry an overcurrent which exceeds the short-time pickup level but is less than the instant. pickup level. The delay can be set to four positions of $I^2 t$ ramp function ($I^2 t$ IN) or four positions of fixed time delays ($I^2 t$ OUT).

Instantaneous Trip Function

Instant. Pickup Switch— sets current level (based on circuit breaker ampere rating) at which circuit breaker will trip with no intentional time delay.

In circuit breakers with both short-time and instantaneous trip, the instantaneous trip will override the short-time function if the instant. pickup is adjusted at the same or lower setting than the short-time pickup.

In circuit breakers with both short-time and instantaneous trip, the adjustable instantaneous trip can be disabled by setting instant. pickup to OFF. A high-level instantaneous override remains in effect.

Figure 38: Short-time Trip Switches

Instantaneous Trip Switch

DANGER

HAZARD OF ELECTRIC SHOCK OR BURN

- High voltages can cause the electrical system to carry overcurrent for longer than design capabilities allow when turning instantaneous trip to OFF.
- Turning instantaneous trip to OFF must be done only by qualified electrical personnel.

Failure to follow this instruction will result in death, serious injury or equipment damage.
Ground–fault Trip Function

Ground-fault Pickup Switch — sets current level (based on circuit breaker ampere rating) at which circuit breaker will trip after the preset ground-fault delay.

Ground-fault Delay Switch — sets length of time circuit breaker will carry ground–fault current which exceeds ground-fault pickup level before tripping. Delay can be adjusted with four positions of $I^2 t$ ramp function ($I^2 t$ IN) or four positions of fixed time delays ($I^2 t$ OUT).

NOTE: Ground-fault values are based on circuit breaker sensor size only, not rating plug multiplier. Changing the rating plug multiplier has no effect on ground-fault values.

Ground–fault Alarm Function

Ground-fault Alarm Switch — sets current level (based on circuit breaker sensor size) at which circuit breaker will signal the POWERLOGIC system that a ground fault is present.

NOTE: Ground-fault values are based on circuit breaker sensor size only, not rating plug multiplier. Changing the rating plug multiplier has no effect on ground-fault values.
SECTION 6—TRIP UNIT ADJUSTMENTS AND CONTROL WIRING

TRIP UNIT ADJUSTMENTS

Circuit breakers are shipped with trip unit adjustments set at their lowest settings, except for the long-time pickup switch, which is set at 1.0.

NOTE: Turn circuit breaker off (O) before adjusting switches.

Trip Unit Settings

Actual settings for a specific application must be determined by a qualified consultant or plant engineer to provide proper coordination with other circuit breakers in the distribution system. For a detailed description of trip unit operation and available trip functions, refer to Section 5—Trip Unit Operation.

Adjust Trip Unit

1. Remove plastic cover.
 a. Place a small straight-blade screwdriver in slot in cover.
 b. Exert pressure upward and outward.

2. Set switches to desired level using a small straight-blade screwdriver.

3. Replace plastic cover. DO NOT seal trip unit cover at this time.

Figure 41: Remove Plastic Cover

Figure 42: Set Switches

Figure 43: Replace Plastic Cover
CONTROL WIRING

Control power wiring must be connected to provide power for proper operation of any internal electrical accessories. Use a control power transformer of sufficient size for the circuit breaker configuration (see Table 5).

Table 5: Control Power Transformer

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Minimum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breakers with ground-fault option but without accessories.</td>
<td>150 VA</td>
</tr>
<tr>
<td>Circuit breakers with accessories, with or without ground-fault option.</td>
<td>500 VA</td>
</tr>
<tr>
<td>Two or three circuit breaker throwover systems.</td>
<td>1000 VA</td>
</tr>
</tbody>
</table>

Wiring diagrams for individual accessories can be found in Appendix B—Wiring Diagrams.

Terminal connectors are supplied on SE circuit breakers to permit connection of control wiring. Control wiring for circuit breakers which have been factory installed in switchboard is pre-wired. Any additional customer wiring must be made to the terminal connectors.

NOTE: Ground the circuit breaker side plates whenever control power wiring such as test power is connected to a circuit breaker which is not mounted in the switchboard.

Circuit Breaker Accessories

Wire factory-installed accessories according to wiring diagrams in Appendix B.

Communicating with a POWERLOGIC® System

To network a circuit breaker to a POWERLOGIC® system, use a MICROLOGIC® Communication Adapter, Cat. No. CIM3F. Install the communications adapter according to the installation instructions that come with the adapter kit.
Zone-selective Interlocking (ZSI)

Zone-selective interlocking (ZSI) allows electronic trip circuit breakers to communicate fault information with each other. This permits faster tripping and reduces switchboard or panelboard stresses without a loss of circuit breaker coordination.

Circuit breakers must be coordinated using a system coordination study for ZSI to work effectively. For more information on a system coordination study, contact the local field office.

Coordination is done by adjusting the MICROLOGIC trip settings to obtain a system in which a downstream circuit breaker will trip before an upstream circuit breaker under overload, short-circuit or ground-fault conditions.

During a short-circuit or ground-fault condition on a ZSI system, the circuit breaker directly ahead of the fault sends a signal upstream via control wiring to restrain upstream devices from tripping and then trips with no intentional time delay to clear the fault. Upstream devices which receive a restraint signal obey their short-time and/or ground-fault delay settings to maintain coordination in other areas of the system. Upstream devices which do not receive a restraint signal trip with no intentional time delay.

Allowable ZSI combinations are shown in Table 6. For double-ended or larger systems, systems containing devices not shown in the table, or if more inputs or outputs are needed than the number indicated in the table, contact the local field office.

Short-time delay and ground-fault delay can be interlocked either simultaneously or independently. Refer to Appendix B for an example of a zone-selective interlocking wiring diagram.

The circuit breaker may be self-restrained by connecting its input terminal to its own output terminal. This allows devices downstream to trip and clear the fault. Self-restrain the circuit breaker if:

- the circuit breaker is feeding another panel and
- there are no electronic trip circuit breakers or type GC Ground-fault Sensing Systems downstream from the circuit breaker being installed.

Table 6: ZSI Combinations

<table>
<thead>
<tr>
<th>MICROLOGIC #.0x Trip Units</th>
<th>Square D MICROLOGIC Series B Trip Units</th>
<th>Square D GC-100 Ground-fault Relay for Equipment Protection</th>
<th>Square D GC-200 Ground-fault Relay for Equipment Protection</th>
<th>Merlin Gerin STR58 Trip Units</th>
<th>Federal Pioneer USRC and USRCM Trip Units</th>
<th>Square D Add-on Ground Fault Module for Equipment Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 RRR RR1 51 51 5RR</td>
<td>R 26 R R R 15</td>
<td>RRR RR 15</td>
</tr>
<tr>
<td>R—RIM module is required to restrain any devices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numerical References—Maximum number of upstream circuit breakers which can be restrained without requiring a RIM Module.
The circuit breaker may be unrestrained by not connecting its input terminal to any output terminal. This results in the circuit breaker ignoring its programmed delay values and tripping with no intentional delay to clear the fault. An electronic trip circuit breaker is left unrestrained only if:

- there are no other overcurrent protection devices between it and the load that it is feeding and
- the load requires no intentional delay time before the circuit breaker trips.

To activate short-time zone-selective interlocking:

1. If system design requires circuit breaker to be self-restrained, self-restrain it by leaving factory-installed jumper between terminals 23 and 24. Otherwise, remove factory-installed jumper from short-time terminals 23 and 24.

2. To restrain other circuit breakers, connect short-time output (terminal 24) and equipment ground (common) (terminal 22) of circuit breaker to short-time inputs and equipment grounds (commons) of circuit breakers to be restrained.

3. To restrain this circuit breaker, connect short-time input (terminal 23) and common (terminal 22) of circuit breaker to short-time outputs and equipment grounds (commons) from circuit breakers doing restraining.

To activate ground-fault zone-selective interlocking repeat steps 1–3 above, using ground-fault terminals 20 and 21 and equipment ground (common) terminal 22.

If the distance between any two circuit breakers exceeds 1000 ft. (305 m), a restraint interface module will be required. See Section 8 — Accessories for more information.

NOTE: Jumpers to self-restrain circuit breakers must be in place unless zone-selective interlocking is activated. If jumpers are removed and zone-selective interlocking is not activated, circuit breaker will ignore its programmed delay and trip with no intentional delay.
Ground-fault Protection

If circuit breaker does not have integral ground-fault tripping or alarm, skip this subsection.

Three-phase, four-wire circuits require a neutral current transformer (CT). Connect neutral CT to circuit breaker control wiring terminals according to wiring diagrams in Appendix B, depending on type of ground-fault sensing required. All ground-fault circuit breakers include an integral ground-fault test feature which requires external 120 Vac (100 VA) power.

1. For ground-fault alarm, link circuit breaker into a POWERLOGIC system, using a MICROLOGIC Communications Adapter, Cat.No. CIM3F. Install communications adapter per the installation instructions which come with the adapter kit.

2. Connect neutral CT, if needed:
 A. Primary
 - If load is connected to bottom end of circuit breaker, connect load neutral to H1 terminal of neutral CT.
 - If supply power is connected to bottom end of circuit breaker, connect supply neutral to H1 terminal of neutral CT.

 NOTE: The equipment grounding connection must be upstream (line side) of the neutral CT and a neutral connection must exist from the supply transformer to the equipment.

 B. Secondary
 - Connect terminal X1 of the neutral CT to terminal 16 of the circuit breaker and terminal X2 of the neutral CT to terminal 17 of the circuit breaker, using no more than 25 ft. (7.6 m) of No. 14 AWG wire.

3. Connect ground-fault test power by connecting a 120 Vac power source to terminals 13 and 14.

Test Ground-fault Feature

Test ground-fault feature as described in the Ground-fault Field Test Procedure supplied with circuit breaker.
CHECK INSTALLATION

SED Circuit Breaker

1. Push circuit breaker into carriage until levering device arms (A) come into contact with the carriage assembly.
2. Make sure the secondary terminal connector (B) is in alignment with the terminal in the carriage.
3. Push drawout rails into switchboard to their stored position.
4. Close and secure door using previously removed screws.

Circuit breaker MUST be on drawout rails and in the disconnected (DISC) position. Refer to Section 4 — SED Circuit Breaker.

Figure 45: Levering Device Arms

Place circuit breaker in test position.

1. Open the drawout access cover (A).
2. Insert drawout crank (B) over the drawout mechanism operating shaft.
3. Rotate crank clockwise until test position is reached.
4. Lift drawout access cover and remove drawout crank, allowing drawout access cover to close.

NOTE: Drawout position indicator must be at midpoint in the test position before access cover will close.

5. Turn on control power. If circuit breaker is equipped with a spring charging motor and the closing springs are discharged, they will be charged automatically at this time.
6. Check operation of any accessories. Refer to Section 9 — Accessories for details. Correct any improper operation before proceeding.

Figure 46: Place in Test Position
Place circuit breaker in service as described in the Switchboard Installation/Maintenance Manual.

Seal Trip Unit

1. Put the clear plastic cover (A) in place.
2. Insert seals (B) through sealing posts (C).

CAUTION

HAZARD OF EQUIPMENT DAMAGE

Do not drive drawout mechanism beyond the connected position.

Failure to follow this instruction can result in equipment damage.

DANGER

HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

Faults can result from damage or incorrect installation practices that were undetected during pre-energizing inspection. Allow only qualified electrical personnel to be present during initial energizing of equipment.

Failure to follow this instruction will result in death or serious injury.
SECTION 7—MAINTENANCE

ROUTINE MAINTENANCE
Perform routine maintenance periodically and following any severe electrical fault.

ANGER
HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Replace all devices, doors and covers before turning on power to this equipment.

Failure to follow this instruction will result in death or serious injury.

1. Disconnect all power to circuit breaker and accessories.
2. Open the circuit breaker by pushing the Push-to-Open button.

SEF Circuit Breaker

SED Circuit Breaker

NOTE: If shipping circuit breaker to another location, repack as instructed in Section 9—Repacking Circuit Breaker

1. Remove circuit breaker from enclosure, see circuit breaker removal instructions in Section 4, page 22.
2. Mount filler plate to the cell door to cover the circuit breaker opening.
3. Cover arc vents with tape
4. Inspect the circuit breaker. If damage such as loose power terminals, distorted connectors or any loose parts in the switchboard section is found, contact Square D.

CAUTION
HAZARD OF CIRCUIT BREAKER DAMAGE
Cover arc vents with tape before moving or servicing circuit breaker. If any object drops into arc vents, return circuit breaker to Square D.

Failure to follow this instruction can result in equipment damage.

Figure 49: Opening the Circuit Breaker

Figure 50: Cover Arc Vents with Tape
5. Inspect line and load power connectors:
 — Check power connectors. They must be clean, with their joint compound of a soft consistency with no caking or residue and white to tan in color. If compound no longer has a soft uniform consistency, but is discolored with oil separation or a caked residue, overheating may have occurred. Consult the local field office.

6. Use joint compound, Cat. No. PJC8311, available from Square D, to relubricate the connectors following inspection.

Primary Injection Testing

Before conducting any tests refer to the National Electrical Manufacturers Association Guidelines for Inspection and Preventive Maintenance of Molded Case Circuit Breakers Used in Commercial and Industrial Applications (NEMA Standards Publication AB-4). This testing is to be done by qualified personnel only.

Primary injection test involves utilizing a high-current, low-voltage source to pass current through each pole of the circuit breaker. In order to properly perform primary injection testing, all of the secondary sensing wiring must be properly connected:

- Jumper terminal 16 to terminal 19
- Jumper terminal 17 to terminal 18
- Jumper terminal 20 to terminal 21
- Jumper terminal 23 to terminal 24
 For ground-fault breakers.

SEF circuit breakers are jumpered at the terminal blocks on the side of the circuit breaker. SEF circuit breakers require an adapter plug kit (Cat. No. SEPITK2) to perform testing safely.

To defeat ground-fault on SEF circuit breakers, place an additional jumper from terminal 16 to terminal 17.

To defeat ground-fault on SED circuit breakers, follow instructions with SEPITK2 to achieve the same jumper configurations.
SECTION 8—ACCESSORIES

GENERAL

UL Listed accessories described in this section are available for factory installation and field replacement. Labels on the circuit breaker indicate which accessories are installed in a particular circuit breaker.

Customer wiring to internal electrical accessories is connected to the terminal blocks either on the SEF circuit breaker or in the switchboard cell for SED circuit breakers. Wiring diagrams can be found in Appendix B. Table 7 lists the minimum size control power transformer necessary for accessory operation.

If checking operation of internally-operated accessories, refer to Section 10—Troubleshooting. To replace an accessory, follow the instructions in the field-replaceable accessory kit.

SHUNT TRIP

The shunt trip opens the circuit breaker electrically from a remote location using an external voltage source. The shunt trip includes a coil clearing contact which opens the shunt trip coil circuit when the circuit breaker opens. The shunt trip mounts behind the auxiliary cover in the right side of the accessory section and is field installable.

SHUNT CLOSE (REMOTE CLOSE)

NOTE: For circuit breakers with spring–charging motor only

The shunt close closes the circuit breaker electrically from a remote location, using an external power source. If control voltage is continuously applied to the shunt close circuit, an integral anti-pump feature prevents automatic reclosing after opening. The shunt close contains a fuse for overcurrent protection. The shunt close mounts behind the auxiliary cover in the right side accessory section and is factory installed and field replaceable.

Table 7: Control Power Transformer Requirements

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Minimum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breakers with ground-fault option but without accessories</td>
<td>150 VA</td>
</tr>
<tr>
<td>Circuit breakers with accessories, with or without ground-fault option</td>
<td>500 VA</td>
</tr>
<tr>
<td>Two or three circuit breaker throwover systems</td>
<td>1000 VA</td>
</tr>
</tbody>
</table>

NOTE: Attempting to electrically close a circuit breaker with an undervoltage trip without energizing the undervoltage trip first will cause the shunt close fuse to open.
UNDERVOLTAGE TRIP

The undervoltage trip accessory (UVR) opens the circuit breaker when voltage in the monitored circuit drops below 35%–70% of nominal voltage. Reclosure of the circuit breaker can occur only when the UVR supply voltage is above 80%–90% of nominal voltage. The monitored circuit can be wired in series with an externally-mounted normally-closed contact to open the circuit breaker from a remote location.

An integral adjustable delay feature provides the time delay necessary to avoid nuisance circuit breaker opening from momentary fluctuations in the monitored voltage source. The time delay is adjustable from 0.1 second to 1.5 seconds and is set by using a small screwdriver to rotate the adjusting screw (A) on the time delay unit. An interlock prevents mechanical closing of the circuit breaker under a low-voltage condition. The undervoltage trip mounts behind the auxiliary cover in the right side accessory section and is field installable.

NOTE: An undervoltage trip accessory in a circuit breaker must be energized prior to closing the circuit breaker either electrically or mechanically.

AUXILIARY SWITCH

The auxiliary switch is generally used for control circuits and indicator lights associated with circuit breaker operation. The auxiliary switch indicates the position of the circuit breaker main contacts as follows:

A contacts – open when circuit breaker is open and closed when circuit breaker is closed.

B contacts – closed when circuit breaker is open and open when circuit breaker is closed.

An auxiliary switch can be converted from type A to type B (and vice versa) in the field. Two kinds of auxiliary switches are available. The ac-rated switch (Fig. 61) is rated for ac use only. The dc-rated switch (Fig. 62) has an ac/dc rating and is primarily for use in dc control systems.

The auxiliary switch is mounted behind the auxiliary cover in the right side accessory section and is field installable.
ALARM SWITCH

The alarm switch indicates any automatic circuit breaker opening, whether due to an overload, short-circuit, ground-fault or undervoltage condition. It does not actuate when the circuit breaker opens due to a manual operation or a shunt trip. The alarm switch is reset by depressing the Push-to-Open button. The alarm switch has two switches, which can be wired as two normally-open contacts, two normally-closed contacts or one normally-open and one normally-closed contact. Switches can be converted in the field. The alarm switch mounts behind the auxiliary cover in the right side of the accessory section and is field installable.

SPRING CHARGING MOTOR

The spring charging motor automatically charges the circuit breaker closing springs. A complete electrical operation system must include a spring charging motor and shunt close to close the circuit breaker and either a shunt trip or an undervoltage trip to electrically open the circuit breaker.

Spring charging is initiated automatically whenever the closing springs are discharged and power is supplied to the charging motor. When the springs are completely charged, the motor circuit is disconnected and the closing spring indicator reads CHARGED. The spring charged contacts (terminals 47 and 48) close at this time. If control power is not available, spring charging can be done manually. The spring charging motor is mounted behind the auxiliary cover in the left accessory section, behind the transformer mounting plate. The spring charging motor is factory installed and field replaceable.

SED CIRCUIT BREAKER CELL SWITCH

The cell switch is employed when SE circuit breakers are used in transfer schemes. The switch mechanically detects circuit breaker movement from the connected position to the test position and only permits operation of the transfer scheme when the circuit breaker is in the connected position. The cell switch is mounted on the left side of the drawout carriage and is available with up to eight convertible contacts with ratings equal to Class 8501 Type X relays (10 amperes continuous at 120 Vac, 60 Hz).
CLOSE BUTTON COVER

The close button cover, Cat. No. SE1CBC, restricts manual closing of the circuit breaker. The circuit breaker can be closed in an emergency by inserting a small screwdriver through the hole in the cover (A) and pushing the Push-to-Close button.

Figure 60: Close Button Cover

SEF CIRCUIT BREAKER PADLOCK ATTACHMENT

The padlock attachment, Cat. No. SE2PA, locks the SEF circuit breaker main contacts open. This field-installable accessory will accept up to three padlocks. Maximum shackle diameter is 3/8 in. (9.5 mm). The padlock attachment is mounted to the face of the circuit breaker as shown. When in use, it depresses the Push-to-Open button.

Figure 61: SEF Circuit Breaker Padlock Attachment

SED CIRCUIT BREAKER PADLOCK ATTACHMENT

Drawout circuit breakers can be padlocked open using the drawout mechanism lockout. To lock circuit breaker open, first move circuit breaker to the test position. (Circuit breaker cannot be padlocked in the disc position.) Then, with access cover still open, move lockout over to hold the access cover open. The lockout will accept up to three padlocks with a maximum shackle diameter of 3/8 in. (9.5 mm).

Figure 62: SED Circuit Breaker Padlock Attachment
In addition, a drawout carriage padlock hasp is provided on all drawout carriage assemblies and can be padlocked to prevent the installation of a circuit breaker.

CIRCUIT BREAKER KEY INTERLOCK

The key interlock is used for coordinating circuit breaker operation with other keyed devices. The key interlock must be purchased separately. When the interlock bolt is extended, the circuit breaker is held open.

WARNING

HAZARD OF UNINTENDED EQUIPMENT ACTION

- The circuit breaker key interlock can be defeated.
- Do NOT attempt to use the key interlock as a circuit breaker lockout.
- Read and understand this bulletin before using the key interlock.

Failure to follow this instruction can result in death, serious injury or equipment damage.

SEF Circuit Breaker Key Interlock

The SEF circuit breaker key interlock bracket with mounting hardware is supplied in a field-installable kit, Cat. No. SE1KI, and is designed for mounting on the right side plate above the cell door interlock.

Single bolt key interlocks with up to three cylinder locks (not provided) can be used. The Push-to-Open button must be depressed before the interlock bolt can be extended.

Figure 63: Drawout Carriage Padlocked

![Drawout Carriage Padlocked](image)

Figure 64: SEF Circuit Breaker Key Interlock

![SEF Circuit Breaker Key Interlock](image)
SED Circuit Breaker Key Interlock
The SED circuit breaker key interlock mechanism (A) mounts on the upper right side of the drawout carriage. The key interlock mounting bracket is factory installed and field replaceable.

Figure 65: SED Circuit Breaker Key Interlock

SED Circuit Breaker Cell Keying Kit
The SED circuit breaker cell keying kit (A) is installed on the SED circuit breaker and drawout carriage. It allows only a circuit breaker of a particular sensor size to be installed in the drawout carriage.

Figure 66: SED Circuit Breaker Cell Keying Kit

Restraint Interface Module
The restraint interface module, Cat. No. RIM32, is required on ZSI systems when:

- Distance between any two circuit breakers in the restraint system exceeds 1000 ft. (305 m).
- Interlocking circuit breakers and/or ground-fault modules need assistance to communicate. See page 31 for ZSI combinations requiring RIM32.

Figure 67: Restraint Interface Module
UNIVERSAL TEST SET

The universal test set is available to test all Square D circuit breakers with MICROLOGIC trip units. It has the ability to run trip unit tests automatically with prompts to the user for initial information. Test modules for each circuit breaker series are used to store data necessary for automatic tests for that type and sensor.

Testing can be done with a circuit breaker installed in the switchboard, but the zone-selective interlocking wires (restraint OUT) must be disconnected. If circuit breaker is connected to a POWERLOGIC system, the CIM3F Communications Adapter must be disconnected also. No other circuit breaker disassembly is required.

COMMUNICATIONS ADAPTER

The field-installable communications adapter, Cat. No. CIM3F, is used to allow the circuit breaker trip unit to communicate with a Square D POWERLOGIC communications network. This allows an SE circuit breaker to be networked in a PowerLogic system. See Appendix B for CIM3F wiring instructions.
SECTION 9—REPACKING CIRCUIT BREAKER

EQUIPMENT REQUIRED

- Hoist, lifting capacity 300 lbs. (136 kg)
- Banding or Strapping Equipment
- Lifting Adapter, supplied with circuit breaker

MATERIALS REQUIRED

- Tape, masking, duct, etc.
- Pallet
- Padding
- Large Plastic Sheet or Bag
- Packing Carton, 1300 lb. (590 kg) Class 2
- Bands or Straps
- Original packing materials or equivalent. (Original packing materials are available from Square D. Cat. No. SERETPKG.)

REPACKING

DANGER

HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow this instruction will result in death or serious injury.

1. Disconnect all power to circuit breaker and accessories.
2. Remove circuit breaker from switchboard. Instructions for removing the circuit breakers are in Sections 3 and 4.
3. Place padding and plastic bag or sheet on pallet.

Figure 70: Place Padding and Sheet on Pallet
Section 9—Repacking Circuit Breaker

DANGER

HAZARD OF PERSONAL INJURY OR EQUIPMENT DAMAGE

Circuit breaker weighs over 289 lbs. (127 kg) and must be lifted using lifting adapter and hoist capable of lifting 300 lbs. (136 kg).

Failure to follow this instruction will result in death or serious injury.

4. Insert hooks of lifting adapter (A) into the two holes at upper rear of circuit breaker and position adapter so hooks extend out through two holes (B) on top of circuit breaker. Connect hoist capable of lifting 300 lbs. (136 kg) or more to the lifting adapter and lift circuit breaker slowly.

![Figure 71: Lift Circuit Breaker](image)

5. Place circuit breaker on pallet so tangs are over wide retaining board and circuit breaker rests inside plastic bag.

6. Remove lifting adapter.

7. Pull plastic bag or sheet over circuit breaker and tape securely.

8. Secure circuit breaker to pallet using band or strap (A) to prevent shifting.

![Figure 72: Secure Circuit Breaker](image)

Plastic bag or sheet
Band or strap (A)

10. Secure unit for shipping using bands or straps.

![Figure 73: Secure Unit for Shipping](image)
SECTION 10—TROUBLESHOOTING

If problems occur during installation, refer to the following guide. If trouble persists, contact the local field office.

SED CIRCUIT BREAKER TROUBLESHOOTING

Table 8: SED Circuit Breaker Troubleshooting

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker will not close.</td>
<td>1. Closing springs are not fully charged. 2. Drawout access cover is not closed. 3. Auxiliary cover is not installed properly. 4. Trip unit is not properly mounted. 5. Undervoltage trip is not energized. 6. Shunt close fuse is open. 7. Key interlock is engaged. 8. Circuit breaker is already closed.</td>
<td>1. Charge closing springs. 2. Close drawout access cover. 3. Check auxiliary cover installation. 4. Check trip unit mounting. 5. Energize undervoltage trip. 6. Check shunt close fuse. 7. Check key interlock. 8. Check if circuit breaker is closed.</td>
</tr>
<tr>
<td>Cell door will not open.</td>
<td>Circuit breaker is installed in cradle with drawout mechanism past disconnected position.</td>
<td>Check circuit breaker position in cradle. Drawout mechanism must be in disconnected position.</td>
</tr>
<tr>
<td>Drawout mechanism will not operate.</td>
<td>Circuit breaker is closed.</td>
<td>Open circuit breaker.</td>
</tr>
<tr>
<td>Drawout access cover will not operate.</td>
<td>Circuit breaker is closed.</td>
<td>Open circuit breaker.</td>
</tr>
<tr>
<td>Drawout access cover will not close.</td>
<td>1. Circuit breaker is between connected and test position. 2. Access cover is locked open by the drawout mechanism lockout.</td>
<td>1. Check circuit breaker position. Circuit breaker must be either fully connected or withdrawn at least to the test position. 2. Check position of drawout mechanism lockout.</td>
</tr>
<tr>
<td>Drawout access cover cannot be padlocked open.</td>
<td>Circuit breaker is in the disconnected position.</td>
<td>Check circuit breaker position.</td>
</tr>
<tr>
<td>Circuit breaker cannot be pushed into carriage.</td>
<td>1. Drawout assembly is not completely in disconnected position. 2. Padlock installed in padlock hasp.</td>
<td>1. Check circuit breaker position. 2. Remove padlock from padlock hasp.</td>
</tr>
<tr>
<td>Auxiliary cover cannot be removed.</td>
<td>1. Circuit breaker is closed. 2. Drawout assembly is not completely in disconnected position.</td>
<td>1. Open circuit breaker. 2. Place drawout assembly completely in disconnected position.</td>
</tr>
</tbody>
</table>
SEF CIRCUIT BREAKER
TROUBLESHOOTING

Table 9: SEF Circuit Breaker Troubleshooting

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker will not close</td>
<td>1. Closing springs are not fully charged.</td>
<td>1. Charge closing springs.</td>
</tr>
<tr>
<td></td>
<td>2. Cell door is not closed.</td>
<td>2. Close cell door.</td>
</tr>
<tr>
<td></td>
<td>3. Auxiliary cover is not installed properly.</td>
<td>3. Check auxiliary cover installation.</td>
</tr>
<tr>
<td></td>
<td>4. Trip unit is not properly mounted.</td>
<td>4. Check trip unit mounting.</td>
</tr>
<tr>
<td></td>
<td>5. Undervoltage trip is not energized.</td>
<td>5. Energize undervoltage trip.</td>
</tr>
<tr>
<td></td>
<td>6. Shunt close fuse is open.</td>
<td>6. Check shunt close fuse.</td>
</tr>
<tr>
<td></td>
<td>7. Push-to-Open button is depressed.</td>
<td>7. Check Push-to-Open button.</td>
</tr>
<tr>
<td></td>
<td>8. Key interlock is engaged.</td>
<td>8. Check key interlock.</td>
</tr>
<tr>
<td></td>
<td>9. Circuit breaker is already closed.</td>
<td>9. Check if circuit breaker is closed.</td>
</tr>
<tr>
<td>Cell door will not open.</td>
<td>1. Circuit breaker is closed.</td>
<td>1. Open circuit breaker.</td>
</tr>
<tr>
<td></td>
<td>2. Push-to-Open button is not depressed.</td>
<td>2. Depress Push-to-Open button.</td>
</tr>
<tr>
<td>Auxiliary cover cannot be removed.</td>
<td>Circuit breaker is closed.</td>
<td>Open circuit breaker.</td>
</tr>
</tbody>
</table>

BEFORE WORKING ON CIRCUIT BREAKER

1. Disconnect all power to circuit breaker and accessories.

2. Open the circuit breaker by pushing the Push-to-Open button (A).

3. SED circuit breaker only: Place SED circuit breaker in disconnected position before doing any work on circuit breaker:
 a. Lift access cover (A).
 b. Insert drawout crank (B).
 c. Rotate drawout crank clockwise until stop is reached.
 d. Drawout position indicator (C) must point to DISC.
 e. Lift drawout access cover and remove crank. Allow drawout access cover to close.
INTERNALLY-MOUNTED ACCESSORIES

Internally-mounted accessories are located behind the circuit breaker auxiliary cover.

1. If circuit breaker is not mounted in a switchboard, connect a temporary ground wire to circuit breaker side plate (A).

2. To gain access to internally-mounted accessories remove the auxiliary cover:
 a. Loosen the four cover retaining screws (B).
 b. Remove auxiliary cover.

 NOTE: An interlock prevents removal of the auxiliary cover when circuit breaker is closed or when drawout mechanism is in any position other than disconnected.

3. Connect control wiring. Control wiring to internal electrical accessories is connected to the terminal connectors either on the SEF circuit breaker or in the switchboard cell for SED circuit breakers. Refer to Section 3—SEF Circuit Breaker for information regarding control wiring for the SEF circuit breaker and Section 4—SED Circuit Breaker for information regarding control wiring for the SED circuit breaker.

 Table 10 lists the minimum size control power transformer necessary for operation. See Appendix B for wiring diagrams.

4. Replace auxiliary cover (circuit breaker must be open).
 a. Firmly seat auxiliary cover (A) and align mounting holes.
 b. Hold auxiliary cover down against the spring tension of the auxiliary cover interlock and tighten mounting screws (B).

 NOTE: If auxiliary cover is not properly installed, the circuit breaker may not close or will not indicate OPEN condition.
INTERLOCKS

The SE circuit breaker includes safety interlocks to prevent unsafe or incorrect operation. Interlocks are provided to minimize the possibility of contact with energized parts or exposure to hazardous conditions. Some interlocks can be bypassed for the convenience of qualified maintenance personnel. Interlocks which are noted as being optional are available as accessories. For more information on those interlocks, refer to Section 8—Accessories.

Auxiliary Cover Interlock

The auxiliary cover interlock

- prevents circuit breaker from being closed when auxiliary cover is removed and
- prevents removal of the auxiliary cover when the circuit breaker is closed.

Bypassing Auxiliary Cover Interlock

1. Turn off all power to system.
2. To close circuit breaker with auxiliary cover removed, depress interlock arm while closing circuit breaker.

Key Interlock (Optional)

The key interlock

- coordinates circuit breaker operation with other keyed devices, or
- ensures circuit breaker is off (O) when maintaining downstream equipment.

NOTE: Push-to-Open button must be depressed before the interlock bolt can be extended.
Cell Door Interlock

- prevents cell door from being opened when circuit breaker is closed and
- prevents circuit breaker from being closed when cell door is open.

The cell door interlock minimizes the possibility of contact with energized parts or exposure to exhaust gases from interruption.

The cell door interlock is located on the side of the circuit breaker (A) and can be bypassed for the convenience of qualified personnel. If circuit breaker cell has arc barriers in place, the interlock can be disabled. (See Section 3 for a description of arc barriers.)

Bypassing Cell Door Interlock

When circuit breaker is closed, the door can be opened by

- removing screws securing the door, or
- inserting a screwdriver into the slot in the front of the door and applying an upward force with screwdriver to release the cell door latch.

When the door is open, the circuit breaker can be closed by bypassing the interlock.

Depress the interlock lever while closing the circuit breaker to defeat the interlock
Disabling Cell Door Interlock

DANGER

HAZARD OF ELECTRIC SHOCK, BURN OR EXPLOSION

Do not disable cell door interlock on SEF circuit breakers unless circuit breaker cell has arc barriers in place. (See Section 3 for description of arc barriers.)

Failure to follow this instruction will result in death or serious injury.

To disable the cell door interlock:

1. Remove interlock restraint bracket.
 a. Loosen 12-24 X 7/16 in. SEMS screw.
 b. Lift bracket off cell door interlock assembly.

2. Push interlock lever in.

3. While maintaining force (A) to hold interlock lever in, install interlock restraint bracket:
 a. Install interlock restraint bracket so tab (B) is toward bracket and screw is aligned with screw hole
 b. With tab (B) securely seated in slot (C), tighten screw.

Figure 81: Remove Interlock Restraint Bracket

Figure 82: Push in Interlock Lever

Figure 83: Install Interlock Restraint Bracket
Push–to–open Padlock Attachment (Optional)

NOTE: For SEF circuit breaker only.

Drawout Access Cover Interlock

NOTE: For SED circuit breaker only.

The drawout access cover interlock (A)

- prevents closing of circuit breaker while drawout access cover is open
 and
- prevents opening of drawout access cover while circuit breaker is closed

The drawout access cover is held open if circuit breaker drawout mechanism is between the connected and test positions.

Drawout Mechanism Lockout

NOTE: For SED circuit breaker only.

The drawout mechanism lockout prevents access to the drawout mechanism, preventing movement of circuit breaker on the drawout rails. It can be used to lock the circuit breaker in either the connected or test position. It can also be used to hold the drawout access cover open, preventing closing of circuit breaker.

Drawout Carriage Padlock Hasp

NOTE: For SED circuit breaker only.

The drawout carriage padlock hasp prevents a circuit breaker from being inserted into a drawout carriage.

A padlock installed on the padlock hasp interferes with circuit breaker movement, keeping the circuit breaker on the drawout rails.

SED 4000 A Circuit Breaker Interlock

NOTE: For SED circuit breaker only.

The SED 4000 A circuit breaker interlock prohibits installation of the SED 4000 A fan-cooled circuit breaker into any cell other than the cell designed for it.
APPENDIX 1—DIMENSIONS

SED (DRAWOUT) CIRCUIT BREAKER

Figure 86: SED Circuit Breaker

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SED</td>
<td>400–1200A</td>
<td>18.44 in.</td>
<td>17.32 in.</td>
<td>12.96 in.</td>
<td>3.00 in.</td>
<td>2.75 in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[468 mm]</td>
<td>[440 mm]</td>
<td>[329 mm]</td>
<td>[76 mm]</td>
<td>[70 mm]</td>
</tr>
<tr>
<td>SEHD</td>
<td>1600–3000A</td>
<td>18.44 in.</td>
<td>17.32 in.</td>
<td>12.96 in.</td>
<td>3.00 in.</td>
<td>4.00 in.</td>
</tr>
<tr>
<td></td>
<td>400–3000A</td>
<td>[468 mm]</td>
<td>[440 mm]</td>
<td>[329 mm]</td>
<td>[76 mm]</td>
<td>[102 mm]</td>
</tr>
<tr>
<td>SED</td>
<td>4000A</td>
<td>19.44 in.</td>
<td>18.32 in.</td>
<td>13.96 in.</td>
<td>3.50 in.</td>
<td>4.00 in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[479 mm]</td>
<td>[465 mm]</td>
<td>[355 mm]</td>
<td>[89 mm]</td>
<td>[102 mm]</td>
</tr>
</tbody>
</table>

Dimensions: in. [mm]
SEF (FIXED-MOUNTED) CIRCUIT BREAKER

Figure 87: Type SEF with 1600–4000 A Sensors
Type SEHF with 400–4000 A Sensors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>400 A–3000 A</td>
<td>6.10 in. [155 mm]</td>
<td>1.12 in. [29 mm]</td>
<td>1.75 in. [45 mm]</td>
<td>1.12 in. [29 mm]</td>
<td>1.75 in. [45 mm]</td>
<td>3.00 in. [76 mm]</td>
<td>4.10 in. [104 mm]</td>
</tr>
<tr>
<td>4000 A</td>
<td>8.10 in. [206 mm]</td>
<td>1.50 in. [38 mm]</td>
<td>2.00 in. [51 mm]</td>
<td>1.20 in. [31 mm]</td>
<td>1.60 in. [41 mm]</td>
<td>3.75 in. [94 mm]</td>
<td>5.35 in. [136 mm]</td>
</tr>
</tbody>
</table>

Dimensions: in. [mm]
Figure 88: Type SEF with 400–1200 A Sensors

Top View

Front View

Side View

Dimensions: in. [mm]

SE Electronic Trip Circuit Breaker
Appendix 1—Dimensions
48040-495-07
09/2002

© 1997–2002 Schneider Electric All Rights Reserved
Figure 89: Neutral Current Transformer

400–3000 A

Dimensions: in. [mm]

4000 A

Dimensions: in. [mm]
SEFM40CK TERMINAL CONNECTOR KIT

For Use with Type SEF Circuit Breakers with 4000 A Sensors

Figure 90: SEFM40CK Terminal Connector Kit, Back View

- Aluminum Spacer 0.25 x 1.24 Dia. [6 x 32]
- 1/2-13 Hex Head Bolt
- 1/2-13 Hex Nut
- 2-1/4 in. Belleville Washer
- Torque to 840 in-lbs [95 N·m]
- Circuit Breaker Terminals
- Circuit Breaker Mounting Holes
- Terminal Connectors
- 3/8-16 KEPS Nut Torque to 225 in-lbs [25 N·m]
- 3/8-16 x 30.50 in. Threaded Rod
- 0.69 x 28.50 in. Insulated Tube
- Steatite Bus Support 1.25 x 2.00 [32 x 51] Dia.

Dimensions: in. [mm]
Figure 91: SEFM40CK Terminal Connector Kit, Side View

- Inside Surface of Door/Cover: 23.87 in. [606 mm]
- Copper Bus Bars (4 per phase): 0.25 in. [6 mm]
- SE Circuit Breaker: 17.80 in. [452 mm]
- 0.56 x 0.75 in. [14 x 19 mm] Elongated Holes
- Bottom of Compartment: 2.50 in. [63 mm]
- 3.00 in. [76 mm]
- 8.00 in. [203 mm]

Dimensions: in. [mm]
APPENDIX 2—WIRING DIAGRAMS

TERMINAL CONNECTORS FOR SE CIRCUIT BREAKER

Figure 92: Terminal Connector Layout

Table 11: Terminal Connection

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Connection</th>
<th>Terminal No.</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Alarm Switch 1</td>
<td>27, 28</td>
<td>Auxiliary Switch 2</td>
</tr>
<tr>
<td>3, 4</td>
<td>Alarm Switch 2</td>
<td>29, 30</td>
<td>Auxiliary Switch 3</td>
</tr>
<tr>
<td>5, 6</td>
<td>Undervoltage Trip</td>
<td>31, 32</td>
<td>Auxiliary Switch 4</td>
</tr>
<tr>
<td>7, 8</td>
<td>Shunt Close</td>
<td>33, 34</td>
<td>Auxiliary Switch 5</td>
</tr>
<tr>
<td>9, 10</td>
<td>Shunt Trip</td>
<td>35, 36</td>
<td>Auxiliary Switch 6</td>
</tr>
<tr>
<td>11, 12</td>
<td>Spring Charging Motor</td>
<td>37, 38</td>
<td>Auxiliary Switch 7</td>
</tr>
<tr>
<td>13, 14</td>
<td>Ground-fault Test</td>
<td>39, 40</td>
<td>Auxiliary Switch 8</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>41</td>
<td>CIM3F—Red</td>
</tr>
<tr>
<td>16, 17</td>
<td>Ground-fault Sensing</td>
<td>42</td>
<td>CIM3F—Black</td>
</tr>
<tr>
<td>18, 19</td>
<td>Ground-fault Sensing</td>
<td>43</td>
<td>CIM3F—Blue</td>
</tr>
<tr>
<td>20, 21</td>
<td>Ground-fault Zone Interlock</td>
<td>44</td>
<td>CIM3F—Orange</td>
</tr>
<tr>
<td>22</td>
<td>Equipment Ground (Common)</td>
<td>45, 46</td>
<td>Fan Cooling (SED 4000 A only)</td>
</tr>
<tr>
<td>23, 24</td>
<td>Short-time Zone Interlock</td>
<td>47, 48</td>
<td>Spring Charged Contact</td>
</tr>
<tr>
<td>25, 26</td>
<td>Auxiliary Switch 1</td>
<td>49, 50</td>
<td>Jumpered Internally in Control Plug</td>
</tr>
</tbody>
</table>

1Circuit breakers with spring charging motors only.
AC AUXILIARY SWITCHES

Wiring notes:

1. Connect yellow leads to common terminal.
2. Switch type A is OPEN when circuit breaker is open (wire normally–closed contact using blue leads).
3. Switch type B is CLOSED when circuit breaker is open (wire normally–open contact using blue leads).
4. Due to the limited number of available control terminals, switches can be wired as either A or B.

Figure 93: AC Auxiliary Switches as Viewed from Front of Circuit Breaker

Table 12: AC Auxiliary Switch Configuration

<table>
<thead>
<tr>
<th>Accessory Suffix</th>
<th>Switch 1</th>
<th>Switch 2</th>
<th>Switch 3</th>
<th>Switch 4</th>
<th>Switch 5</th>
<th>Switch 6</th>
<th>Switch 7</th>
<th>Switch 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>X X</td>
</tr>
<tr>
<td>B4</td>
<td>X X</td>
</tr>
<tr>
<td>C4</td>
<td>X X</td>
</tr>
<tr>
<td>A8</td>
<td>X X</td>
</tr>
<tr>
<td>B8</td>
<td>X X</td>
</tr>
<tr>
<td>C8</td>
<td>X X</td>
</tr>
</tbody>
</table>
AC/DC AUXILIARY SWITCHES

Switch Ratings:
- (1 ampere minimum)
- 10 A 120 Vac 50/60 Hz
- 10 A 125 Vdc
- 1/4 HP 120 Vac 50/60 Hz
- 1/4 HP 125 Vdc

Wiring notes:
1. Connect yellow leads to common terminal.
2. Switch type A is open when circuit breaker is open (wire normally–closed contact using blue leads).
3. Switch type B is closed when circuit breaker is open (wire normally–open contact using blue leads).
4. Due to the limited number of available control terminals, switches can be wired as either A or B.

Figure 94: AC/DC Auxiliary Switches

![Diagram of AC/DC Auxiliary Switches]

Table 13: AC/DC Auxiliary Switch Configuration

<table>
<thead>
<tr>
<th>Accessory Suffix</th>
<th>Switch 1</th>
<th>Switch 2</th>
<th>Switch 3</th>
<th>Switch 4</th>
<th>Switch 5</th>
<th>Switch 6</th>
<th>Switch 7</th>
<th>Switch 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>E4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
ALARM SWITCHES

Switch Ratings:
- (0.04 ampere minimum)
- 10 A 120/240 Vac 50/60 Hz
- 1/4 HP 120 Vac 50/60 Hz

NOTE: Alarm switches are actuated if the circuit breaker is opened as the result of an overload, short-circuit, ground-fault, or undervoltage condition. Alarm switches are not actuated if the circuit breaker is opened by the manual Push-to-Trip or shunt trip operations.

<table>
<thead>
<tr>
<th>Accessory Suffix</th>
<th>Switch 1</th>
<th>Switch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.O.</td>
<td>N.C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4, E4, B8, E8</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A4, D4, A8, D8</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C4, F4, C8, F8</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Figure 95: Alarm Switches as Viewed from Front of Circuit Breaker

SHUNT TRIP

The minimum size control power transformer to be supplied is as follows:
- Circuit breakers without accessories, with ground-fault option = 150 VA
- Circuit breakers with accessories, with or without ground-fault option = 500 VA
- Two or three circuit breaker throwover systems = 1000 VA

The minimum size control power transformer to be supplied is as follows:
- Circuit breakers without ground-fault option = 150 VA
- Circuit breakers with ground-fault option = 500 VA
- Two or three circuit breaker throwover systems = 1000 VA

Table 14: Alarm Switch Configurations

<table>
<thead>
<tr>
<th>Accessory Suffix</th>
<th>Switch 1</th>
<th>Switch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.O.</td>
<td>N.C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4, E4, B8, E8</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A4, D4, A8, D8</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C4, F4, C8, F8</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 15: Shunt Trip Information

<table>
<thead>
<tr>
<th>Catalog Number Suffix†</th>
<th>Series 2 Catalog Number Suffix</th>
<th>Accessory Kit Number</th>
<th>Rating Voltage</th>
<th>Amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, S1, ES1</td>
<td>S1</td>
<td>S3ST120AC2</td>
<td>120 Vac</td>
<td>10 A</td>
</tr>
<tr>
<td>T2, S2, ES2, ES5, ET5</td>
<td>T1</td>
<td>S3ST024DC2</td>
<td>24 Vdc</td>
<td>12 A</td>
</tr>
<tr>
<td>T3, S3, ES3, ES6, ET6</td>
<td>T2</td>
<td>S3ST048DC2</td>
<td>48 Vdc</td>
<td>24 A</td>
</tr>
<tr>
<td>T4, S4, ES4, ES7, ET7</td>
<td>T4</td>
<td>S3ST125DC2</td>
<td>125 Vdc</td>
<td>10 A</td>
</tr>
</tbody>
</table>

† Suffix numbers T1 through T4 are UVR/shunt trip combination Series 3 and newer.
UNDERVOLTAGE TRIP

The minimum size control power transformer to be supplied is as follows:

- Circuit breakers without accessories, with ground-fault option = 150 VA
- Circuit breakers with accessories, with or without ground-fault option = 500 VA
- Two or three circuit breaker throwover systems = 1000 VA

NOTE: Energize the undervoltage trip accessory prior to closing the circuit breaker either electrically or mechanically. An attempt to close the circuit breaker electrically without energizing the undervoltage trip accessory will cause the fuse on the shunt close to open.

Table 16: Undervoltage Trip Information

<table>
<thead>
<tr>
<th>Catalog Number Suffix</th>
<th>Accessory Kit Number</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1, T1–T4, ET1–ET7</td>
<td>SEUVR120AC2</td>
<td>120 Vac 100 mA</td>
</tr>
</tbody>
</table>

SHUNT CLOSE

The minimum size control power transformer to be supplied is as follows:

- Circuit breakers without accessories, with ground-fault option = 150 VA
- Circuit breakers with accessories, with or without ground-fault option = 500 VA
- Two or three circuit breaker throwover systems = 1000 VA

NOTE: Energize the undervoltage trip accessory, if installed, prior to closing the circuit breaker either electrically or mechanically. An attempt to close the circuit breaker electrically without energizing the undervoltage trip accessory will cause the fuse on the shunt close to open.

Table 17: LITTELFUSE® Information

<table>
<thead>
<tr>
<th>Shunt Close Catalog No.</th>
<th>LITTELFUSE® BAG Type Catalog No.</th>
<th>Ampere Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3SC120AC2</td>
<td>361005</td>
<td>5</td>
</tr>
<tr>
<td>S3SC024DC2</td>
<td>361005</td>
<td>5</td>
</tr>
<tr>
<td>S3SC048DC2</td>
<td>362010</td>
<td>10</td>
</tr>
<tr>
<td>S3SC125DC2</td>
<td>361005</td>
<td>5</td>
</tr>
</tbody>
</table>

1 LITTELFUSE is a registered trademark of Littelfuse Inc.

Table 18: Shunt Close Information

<table>
<thead>
<tr>
<th>Catalog Number Suffix</th>
<th>Catalog Number Suffix-Series 2</th>
<th>Accessory Kit Number</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1, EV1, ES5, ES6, ES7, ET5, ET6, ET7</td>
<td>C1</td>
<td>S3SC120AC2</td>
<td>120 Vac 10 A</td>
</tr>
<tr>
<td>ES2</td>
<td>D1</td>
<td>S3SC024DC2</td>
<td>24 Vdc 12 A</td>
</tr>
<tr>
<td>ES3</td>
<td>D2</td>
<td>S3SC048DC2</td>
<td>48 Vdc 24 A</td>
</tr>
<tr>
<td>ES4</td>
<td>D4</td>
<td>S3SC125DC2</td>
<td>125 Vdc 10 A</td>
</tr>
</tbody>
</table>

© 1997–2002 Schneider Electric All Rights Reserved
SPRING CHARGING MOTOR

Figure 99: Spring Charging Motor Wiring Diagram

- **Spring Charging Motor**
- **Motor Control Switch** (Closed when closing springs are discharged.) Motor control switch is not accessible.
- **Spring Charged Contact** (Closed when closing springs are charged electrically.) Spring charged contact is not accessible.

Table 19: Spring Charging Motor Information

<table>
<thead>
<tr>
<th>Catalog No. Suffix</th>
<th>Accessory Kit Number</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Voltage</td>
</tr>
<tr>
<td>ES1, EV1, ET1</td>
<td>S3MOT120AC2</td>
<td>120 Vac</td>
</tr>
<tr>
<td>ES2</td>
<td>S3MOT024DC2</td>
<td>24 Vdc</td>
</tr>
<tr>
<td>ES3</td>
<td>S3MOT048DC2</td>
<td>48 Vdc</td>
</tr>
<tr>
<td>ES4</td>
<td>S3MOT125DC2</td>
<td>125 Vdc</td>
</tr>
</tbody>
</table>
GROUND-FAULT SYSTEMS

Ground-fault Test Circuit

3Ø3W (Three-phase, Three-wire) Residual Ground-fault Sensing System

1. SE circuit breakers furnished with the ground-fault protection for equipment feature must be wired as shown for use on three-phase, three-wire systems. SEF circuit breakers have factory-installed jumper wires on the terminal blocks. SED circuit breakers must have jumper wires installed on the switchboard carriage terminal blocks.

2. Before doing any primary injection testing, refer to Section 7–Maintenance.

3. For location of terminal connections, see Terminal Connector for SE Circuit Breaker at beginning of this appendix.

Figure 100: Ground-fault Test Circuit

Figure 101: 3Ø3W Residual Ground-fault Sensing System
3Ø4W (Three-phase, Four-wire) Residual Ground-fault Sensing System

1. Connect neutral current transformer into neutral of power system:
 — For forward fed systems, the load neutral must be connected to the “H1” end of the neutral current transformer.
 — For reverse fed systems, the supply neutral must be connected to the “H1” end of the neutral current transformer.

2. Connect neutral current transformer terminals to circuit breaker terminals:
 — If neutral current transformer is labeled Series 3, connect terminal X1 of neutral current transformer to circuit breaker terminal 16 and connect terminal X2 of neutral current transformer to circuit breaker terminal 17.
 — If neutral current transformer is not labeled Series 3, connect terminal X1 of neutral current transformer to circuit breaker terminal 17 and connect terminal X2 of neutral current transformer to circuit breaker terminal 16.

Do not use more than 14 feet (4.27 m) of No. 14 wire for this connection.

3. Ground terminal 1 of neutral current transformer only if no other ground exists in control system. (Check NEC requirements and connect to equipment ground bars.)

4. SE circuit breakers furnished with the ground-fault protection for equipment feature must be wired as shown for use on three-phase, four-wire systems. SEF circuit breakers have factory-installed jumper wires on the terminal blocks. SED circuit breakers must have jumper wires installed on the switchboard carriage terminal blocks.

5. Before doing any primary injection testing, refer to Section 7—Maintenance.

CAUTION

HAZARD OF EQUIPMENT DAMAGE.

Conductors attached to circuit breaker bottom terminations must have their associated neutral conductor(s) connected to end of neutral current transformer identified as H1.

Failure to follow this instruction can result in equipment damage.

Figure 102: 3Ø4W Residual Ground-fault Sensing System Wiring Diagram

Table 20: Neutral Current Transformer Connections

<table>
<thead>
<tr>
<th>Neutral Current Transformer</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 3 48162-151-52</td>
<td>Connect terminal X1 of neutral current transformer to circuit breaker terminal 16.</td>
</tr>
<tr>
<td>48162-144-51</td>
<td>Connect terminal X2 of neutral current transformer to circuit breaker terminal 17.</td>
</tr>
<tr>
<td>48162-142-51</td>
<td>Connect terminal X1 of neutral current transformer to circuit breaker terminal 17.</td>
</tr>
<tr>
<td>48040-104-51</td>
<td>Connect terminal X2 of neutral current transformer to circuit breaker terminal 16.</td>
</tr>
<tr>
<td>48162-151-51</td>
<td>Connect terminal X1 of neutral current transformer to circuit breaker terminal 16.</td>
</tr>
<tr>
<td>48162-144-50</td>
<td>Connect terminal X2 of neutral current transformer to circuit breaker terminal 17.</td>
</tr>
<tr>
<td>48162-142-50</td>
<td>Connect terminal X1 of neutral current transformer to circuit breaker terminal 17.</td>
</tr>
<tr>
<td>48162-104-50</td>
<td>Connect terminal X2 of neutral current transformer to circuit breaker terminal 16.</td>
</tr>
</tbody>
</table>
3Ø4W (Three-phase, Four-wire) Source Ground-sensing System.

1. Remove jumper wires connecting terminals 16 to 19 and terminals 17 to 18 (if installed).
2. Install jumper wire (No. 18 wire or larger) between terminals 16 and 17.
3. Connect a neutral current transformer (CT) into conductor connecting power system neutral-to-ground (equipment ground conductor). Polarity of CT is not important to source ground sensing.
4. Connect terminals X1 and X2 of current transformer to circuit breaker terminals 18 and 19. DO NOT use more than 14 feet (4.27 m) of No. 14 wire for this connection.
5. Ground circuit breaker terminal 19 only if no other ground exists in control system. (Check NEC requirements and connect to equipment ground bars.)
6. Before doing any primary injection testing, refer to Section 7—Maintenance.

Figure 103: 3Ø4W Source Ground-sensing System
ZONE-SELECTIVE INTERLOCKING

Ground-fault Zone-selective Interlocking

1. Ground-fault time-delay tripping will be based on trip unit setting if circuit breaker is restrained by a self-restraint jumper wire between terminals 20 and 21. If jumper wire is removed, circuit breaker will trip approximately 0.07 seconds after ground-fault pickup point is exceeded.

2. Ground-fault time-delay tripping based on trip unit setting will also occur if circuit breaker is restrained by a restraint signal from a downstream circuit breaker. Use No.14 or No.16 cable, twisted in pairs, and run separately from power cables. Connect one cable from downstream circuit breaker output terminal to input terminal 20 and other cable from downstream circuit breaker equipment ground (common) terminal 22. If cable length exceeds 1000 ft. (305 m) between circuit breakers, a restraint interface module (Cat. No. RIM32) will be required.

3. Output from one circuit breaker can restrain tripping of multiple circuit breakers. See Section 6, Table 8.

4. Some ZSI installations require a restraint interface module, Cat. No. RIM32. See Section 6, Table 8.

CAUTION

HAZARD OF EQUIPMENT DAMAGE.
Do not apply more than 12 volts to terminals 20 and 21.
Failure to follow this instruction can result in trip unit damage from excessive voltage.

Figure 104: Connections for ground-fault delay coordination.

- 20 Input from ground-fault restraint
- 21 Output from ground-fault restraint
- 22 Equipment ground (common)

Figure 105: Typical Connections for Ground-fault Zone-selective Interlocking
Short-time Zone-selective Interlocking

1. Short-time time-delay tripping will be based on trip unit setting if circuit breaker is restrained by a self-restraint jumper wire between terminals 23 and 24. If jumper wire is removed, circuit breaker will trip approximately 0.07 seconds after short-time pickup point is exceeded.

2. Short-time time-delay tripping based on trip unit setting will also occur if circuit breaker is restrained by a restraint signal from a downstream circuit breaker. Use No.14 or No.16 cable, twisted in pairs, and run separately from power cables. Connect one cable from downstream circuit breaker output terminal to input terminal 23 and other cable from downstream circuit breaker equipment ground (common) to equipment ground (common) terminal 22. If cable length exceeds 1000 ft. (305 m) between circuit breakers, a restraint interface module (Cat. No. RIM32) will be required.

3. Output from one circuit breaker can restrain tripping of multiple circuit breakers. See Section 6, Table 8.

4. Some ZSI installations require a restraint interface module, Cat. No. RIM32. See Section 6, Table 8.

Figure 106: Connections for short-time delay coordination.

- 22 Equipment ground (common)
- 23 Input to short-time restraint
- 24 Output from short-time restraint

Figure 107: Typical Connections for Short-time Zone-selective Interlocking
CIM3F COMMUNICATIONS ADAPTER CONNECTIONS

Figure 108: CIM3F Communications Adapter Connections

To POWERLOGIC product interface for MICROLOGIC circuit breakers (Class 3050 Type PIF3). Refer to PIF3 instruction bulletin for wiring instructions.

Figure 109: SE Circuit Breakers (CB) in a Typical POWERLOGIC system

SED4000 A CIRCUIT BREAKER COOLING FAN

1. Switch ratings: 10 ampere, 120 Vac.
2. Fan rating: 120 Vac.
3. Thermal switch contacts close when current through circuit breaker nears 4000 amperes.
4. Fan push-to-test button will operate cooling fan.

For location of terminal connections, see Terminal Connector for SE Circuit Breaker at beginning of this appendix

Figure 110: SED4000 A Circuit Breaker Cooling Fan Wiring Diagram
APPENDIX 3—CATALOG NUMBERS

Table 21: Neutral Current Transformers

<table>
<thead>
<tr>
<th>Circuit Breaker Sensor Size</th>
<th>Neutral Current Transformer Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 A</td>
<td>SE04NCT</td>
</tr>
<tr>
<td>800–1200 A</td>
<td>SE12NCT</td>
</tr>
<tr>
<td>1600–3000 A</td>
<td>SE30NCT</td>
</tr>
<tr>
<td>4000 A</td>
<td>SE40NC5</td>
</tr>
</tbody>
</table>

Table 22: Field–installable Accessory Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padlock Attachment</td>
<td>SE2PA</td>
</tr>
<tr>
<td>Close Button Cover</td>
<td>SE1CBC</td>
</tr>
<tr>
<td>Key Interlock Bracket</td>
<td>SE1K1</td>
</tr>
<tr>
<td>Drawout Crank</td>
<td>SEDC</td>
</tr>
</tbody>
</table>

Table 23: Field-installable Rating Plug Kits

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP040</td>
<td>0.400</td>
</tr>
<tr>
<td>ARP050</td>
<td>0.500</td>
</tr>
<tr>
<td>ARP056</td>
<td>0.563</td>
</tr>
<tr>
<td>ARP058</td>
<td>0.583</td>
</tr>
<tr>
<td>ARP060</td>
<td>0.600</td>
</tr>
<tr>
<td>ARP063</td>
<td>0.625</td>
</tr>
<tr>
<td>ARP067</td>
<td>0.667</td>
</tr>
<tr>
<td>ARP070</td>
<td>0.700</td>
</tr>
<tr>
<td>ARP075</td>
<td>0.750</td>
</tr>
<tr>
<td>ARP080</td>
<td>0.800</td>
</tr>
<tr>
<td>ARP083</td>
<td>0.833</td>
</tr>
<tr>
<td>ARP088</td>
<td>0.875</td>
</tr>
<tr>
<td>ARP090</td>
<td>0.900</td>
</tr>
<tr>
<td>ARP100</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 24: Field-replaceable Accessory Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Rating</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Charging Motor Replacement Kit</td>
<td>120 Vac 24 Vdc 48 Vdc 125 Vdc</td>
<td>S3MOT120AC2 S3MOT024DC2 S3MOT048DC2 S3MOT125DC2</td>
</tr>
<tr>
<td></td>
<td>24 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 Vdc</td>
<td></td>
</tr>
<tr>
<td>Shunt Close Replacement Kit</td>
<td>120 Vac 24 Vdc 48 Vdc 125 Vdc 120Vac</td>
<td>S3SC120AC2 S3SC024DC2 S3SC048DC2 S3SC125DC2 S3ST120AC2</td>
</tr>
<tr>
<td></td>
<td>24 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 Vdc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120Vac</td>
<td></td>
</tr>
<tr>
<td>Shunt Trip Replacement Kit</td>
<td>24 Vdc</td>
<td>S3ST024DC2</td>
</tr>
<tr>
<td></td>
<td>48 Vdc</td>
<td>S3ST048DC2</td>
</tr>
<tr>
<td></td>
<td>125 Vdc</td>
<td>S3ST125DC2</td>
</tr>
<tr>
<td>Undervoltage Trip Replacement Kit</td>
<td>120 Vac</td>
<td>S3UVR120AC2</td>
</tr>
<tr>
<td>Auxiliary Switch Replacement Kit</td>
<td>4 ac/dc 4 ac/dc add on 4 ac only 8 ac only</td>
<td>S34DCB2 S34CT2 S34AC2 S38AC2</td>
</tr>
<tr>
<td>Alarm Switch Replacement Kit</td>
<td>2 ac only</td>
<td>S3AS2</td>
</tr>
</tbody>
</table>
INDEX

A

<table>
<thead>
<tr>
<th>Accessories</th>
<th>operation 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm switch</td>
<td>wiring 63</td>
</tr>
<tr>
<td>ammeter/trip indicator</td>
<td>25</td>
</tr>
<tr>
<td>auxiliary switch</td>
<td>operation 39</td>
</tr>
<tr>
<td></td>
<td>wiring 61, 62</td>
</tr>
<tr>
<td>catalog numbers</td>
<td>72</td>
</tr>
<tr>
<td>cell keying kit</td>
<td>43</td>
</tr>
<tr>
<td>cell switch</td>
<td>40</td>
</tr>
<tr>
<td>close button cover</td>
<td>41</td>
</tr>
<tr>
<td>communications adapter</td>
<td>operation 30, 44</td>
</tr>
<tr>
<td></td>
<td>wiring 71</td>
</tr>
<tr>
<td>control power transformer</td>
<td>30, 49</td>
</tr>
<tr>
<td>general information</td>
<td>38</td>
</tr>
<tr>
<td>internally-mounted</td>
<td>49</td>
</tr>
<tr>
<td>key interlock</td>
<td>42</td>
</tr>
<tr>
<td>lifting adapter</td>
<td>8, 13, 18, 23</td>
</tr>
<tr>
<td>padlock attachment</td>
<td>SED circuit breaker 41</td>
</tr>
<tr>
<td></td>
<td>SEF circuit breaker 41</td>
</tr>
<tr>
<td></td>
<td>replacing 38</td>
</tr>
<tr>
<td>restraint interface module</td>
<td>43</td>
</tr>
<tr>
<td>shunt close</td>
<td>operation 38</td>
</tr>
<tr>
<td></td>
<td>wiring 64</td>
</tr>
<tr>
<td>shunt trip</td>
<td>operation 38</td>
</tr>
<tr>
<td></td>
<td>wiring 63</td>
</tr>
<tr>
<td>spring charging motor</td>
<td>operation 40</td>
</tr>
<tr>
<td></td>
<td>wiring 65</td>
</tr>
<tr>
<td>trip indicator. See Ammeter/trip indicator</td>
<td>troubleshooting 47</td>
</tr>
<tr>
<td>undervoltage trip</td>
<td>operation 39</td>
</tr>
<tr>
<td></td>
<td>wiring 64</td>
</tr>
<tr>
<td>universal test set</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>wiring 30</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>neutral current transformer 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>SED circuit breaker</td>
<td>54</td>
</tr>
<tr>
<td>SEF circuit breaker</td>
<td>with 1600-4000 A sensors 55</td>
</tr>
<tr>
<td></td>
<td>with 400-1200 A sensors 56</td>
</tr>
<tr>
<td>SEFM40CK terminal connector</td>
<td>58</td>
</tr>
<tr>
<td>SEHF circuit breaker</td>
<td>with 400-4000 A sensors 55</td>
</tr>
<tr>
<td></td>
<td>dimensions 58</td>
</tr>
<tr>
<td>Disabling cell door interlock</td>
<td>52</td>
</tr>
<tr>
<td>Drawout access cover</td>
<td>interlock 53</td>
</tr>
<tr>
<td></td>
<td>operation 20, 34</td>
</tr>
<tr>
<td>Drawout carriage</td>
<td>description 6</td>
</tr>
<tr>
<td></td>
<td>padlock 41</td>
</tr>
<tr>
<td></td>
<td>padlock hasp 53</td>
</tr>
<tr>
<td></td>
<td>requirement 17</td>
</tr>
<tr>
<td>Drawout circuit breaker. See SED circuit breaker</td>
<td></td>
</tr>
<tr>
<td>Drawout crank</td>
<td>20, 34</td>
</tr>
<tr>
<td>Drawout mechanism</td>
<td>check operation 20</td>
</tr>
<tr>
<td></td>
<td>lockout 53</td>
</tr>
<tr>
<td></td>
<td>Drawout rails 17</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Electronic trip unit. See Trip unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Fan, cooling</th>
<th>operation 37</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wiring 71</td>
</tr>
<tr>
<td>Filler plate</td>
<td>36</td>
</tr>
<tr>
<td>Fixed-mounted circuit breaker. See SEF circuit breaker</td>
<td></td>
</tr>
<tr>
<td>Frame size</td>
<td>7</td>
</tr>
</tbody>
</table>

G

| Ground-fault alarm | description 25 |
Index

Inspect circuit breaker 8
Installation
arc barriers 14
SED circuit breaker 34
SEF circuit breaker 9
Instantaneous trip
function 27
pickup switch 27
Integral ground fault See Ground-fault
Interlock
auxiliary cover 50
bypassing 50
cell door
bypassing 51
disabling 52
drawout access cover 53
drawout carriage padlock 41
drawout carriage padlock hasp 53
drawout mechanism lockout 53
key 53
push-to-open padlock attachment 53
SED 4000 A circuit breaker 53
trip unit 41
Internally-mounted accessories 49
Interrupting rating 7

Joint compound 37

Key interlock 42, 50

Lifting adapter 8, 13, 23
Lifting circuit breaker 13, 23
Long-time trip
delay switch 26
function 26
pickup switch 27

Maintenance 36
Memory feature, trip unit 25
MICROLOGIC trip unit See Trip unit
Motor, spring charging 40

N
Neutral current transformer 33, 68
catalog numbers 72
dimensions 57

Open circuit breaker
SED circuit breaker 20
SEF circuit breaker 16

P
Packing circuit breaker 45
Padlock attachment
push-to-open 53
SED Circuit Breaker 41
SEF circuit breaker 41
Padlock hasp 53
POWERLOGIC system 25, 30, 71
Primary injection testing. See Testing
Push-to-close bushing
SED circuit breaker 19
SEF circuit breaker 15
Push-to-open button
SED circuit breaker 20
SEF circuit breaker 16
Push-to-open padlock attachment 53

Rails, drawout 6, 17
Rating
ampere 7
current 7
interrupting 7
Rating plug 7
catalog numbers 7, 72
multiplier 7
operation 24
Receiving
inspection 8
storage 8
Remote close. See Shunt close
Removal
SED circuit breaker 22
SEF circuit breaker 16
Repacking 45
RestRAINT interface module 32, 43, 69, 70
RIM32. See RestRAINT interface module

Safety interlocks. See Interlocks
Sealing the trip unit. See Interlocks
Sealing the trip unit
SED (drawout) circuit breaker 4000 A circuit breaker 53
accessories 38
carriage assembly 17
charging the closing springs 19
check drawout operation 20
check installation 34
check operation 19, 20
closing 19
cooling fan check 37

SEF (fixed-mounted) circuit breaker
4000 A terminal kit 12
accessories 38
bussing 11
charging the closing springs 14, 15
check installation 34
check operation 14
closing 15
description 6
dimensions 55
closure
door/cover 11
size 10
ventilation 11
wire bending space 10
factory-installed 9
field-installed 9
inspect installation 14
installation 13
interlocks 50
key interlock 42
lifting 13, 18
opening 16
push-to-close button 15
push-to-open button 16
receiving inspection 8
removal 16
storage 8
troubleshooting 48
ventilation 11
wire bending requirements 10
SEFM40CK terminal connector. See Terminal connector kit
Sensor size 7
Short-time trip
delay switch 27
function 27
pickup switch 27
zone-selective interlocking 31
wiring 70
Shunt close
operation 38
wiring 64
Shunt trip
operation 38
wiring 64
Spring charging motor
operation 40
wiring 65
Switch
alarm 40
auxiliary 39
cell 40
System coordination 26

T
Tape, arc vent 16
Terminal connections 58
Terminal connector kit (SEFM40CK) 58
connections 60
description 12
requirements for 10
Terminal connectors 30, 49, 60
Test set, universal 44
Testing
ground fault 33
primary injection 37
trip unit 44
Transformer
control power 30, 34, 49
neutral current 33, 72
dimensions 57
Trip characteristics 26
Trip curve 26
Trip indicator. See Ammeter/trip indicator
Trip system 6
Trip unit
adjustable switches 29
adjustments 29
ammeter/trip indicator 25
control wiring 30
description 6
calculations 26
functions 26
ground-fault alarm 28
ground-fault trip 28
instantaneous trip 27
integral ground-fault detection 25
long-time trip 27
short-time trip 27
memory feature 25
operation 24
rating plug 24
setting current rating 24
testing 26
trip characteristics 26
trip curve 26
Troubleshooting 48
accessories 47, 48
SED circuit breaker 47
SEF circuit breaker 42
W
Warranty 6
Wire bending requirements 10
Wiring
cooling fan 71
SED 4000 A cooling fan 71
Wiring diagrams
alarm switch 63
auxiliary switch 61, 62
communication module 71
ground-fault
3Ø3W residual ground-fault sensing 66
3Ø4W residual ground-fault sensing 67
3Ø4W source ground-sensing 68
short-circuit 64
shunt trip 63
spring charging motor 65
terminal connections 60
undervoltage trip 64
zone-selective interlocking
ground-fault 69
short-time 70
Wiring, control power. See Control wiring
Z
Zone-selective interlocking
activating 32
allowable combinations 31
wiring
ground-fault 69
short-time 70
ZSI. See Zone-selective interlocking

U
Undervoltage trip
adjustable delay 39
operation 39
wiring 64
Universal test set 44
V
Ventilation 11
Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.