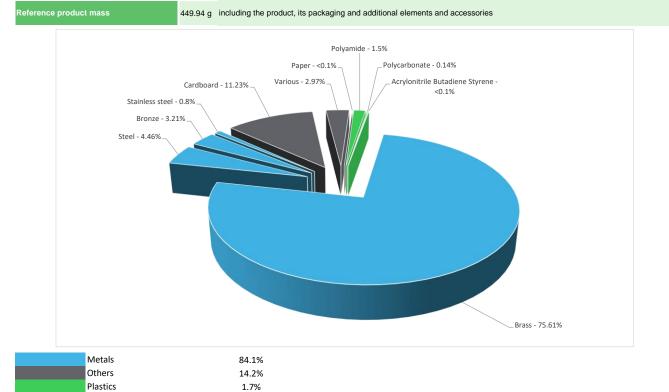
Product Environmental Profile


THERMOSTATIC RADIATOR VALVE

General information								
Reference product	THERMOSTATIC RADIATOR VALVE - 08 09 261SX							
Description of the product	A Thermostatic Radiator Valve (TRV) is a self-regulating valve fitted to hot water heating system radiator, to control the temperature of a soom by changing the flow of hot water to the radiator.							
Functional unit	Measure and control the temperature set by the user in a range of 8°C to 28°C in single or multiple zones depends on user, with a temperature step of 0.5°C and mechanically actuate the position of a valve, according to the appropriate use scenario, for the reference service life of the product of 20 years. Technical Characteristics: Minimum temperature setting : 8°C (frost position) Maximum static pressure : 10 bar Hysteresis : 0.45K Differential pressure influence : 0.15K Response time : 20 minutes Maximum flow temperature : 110°C							

Substance assessment

E

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/areen-premium/

Additional environmental information							
End Of Life	Recyclability potential:	93%	Recyclability rate has been calculated based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the "ECO'DEEE recyclability and recoverability calculation method" was taken. If no data was found a conservative assumption was used (0% recyclability).				

\mathcal{Q} Environmental impacts

Reference service life time	20 years							
Product category	Thermostats							
Installation elements	The disposal of the packaging materials are accounted for during the installation phase (including transport to disposal).							
Use scenario	There is no power consumpiton since the thermostat is manually operated and doesn't require any power to operate.							
Technological representativeness	The Modules of Technologies such as material production, manufacturing process and transport technology used in this PEP analysis (LCA-EIME in this case) are Similar and representative of the actual type of technologies used to make the product in production.							
Geographical representativeness	United Kingdom							
	[A1 - A3]	[A5]	[B6]	[C1 - C4]				
Energy model used	Electricity Mix; Production mix; Low voltage; UK	0	0	0				

Detailed results including all the impact indicators mentioned in PCRed4, are available in the LCA report and on demand in a digital format. Country Customer Care Center - http://www.schneider-electric.com/contact

Mandatory Indicators	THERMOSTATIC RADIATOR VALVE - 08 09 261SX							
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life	Loads and Benefits
		. etd.	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to climate change	kg CO2 eq	3.01E+00	1.80E+00	7.20E-02	8.93E-02	0*	1.04E+00	-1.82E+00
Contribution to climate change-fossil	kg CO2 eq	2.95E+00	1.75E+00	7.20E-02	8.53E-02	0*	1.04E+00	-1.82E+00
Contribution to climate change-biogenic	kg CO2 eq	5.72E-02	5.32E-02	0*	3.97E-03	0*	0*	-7.66E-03
Contribution to climate change-land use and land use change	kg CO2 eq	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	4.51E-07	4.42E-07	1.10E-10	5.91E-09	0*	2.91E-09	-5.20E-07
Contribution to acidification	mol H+ eq	5.54E-02	5.11E-02	4.80E-04	3.54E-04	0*	3.51E-03	-9.88E-03
Contribution to eutrophication, freshwater	kg (PO4)³⁻ eq	1.20E-05	1.11E-05	2.69E-08	6.45E-07	0*	1.75E-07	-6.22E-06
Contribution to eutrophication marine	kg N eq	3.17E-03	2.22E-03	2.26E-04	9.39E-05	0*	6.31E-04	-1.08E-03
Contribution to eutrophication, terrestrial	mol N eq	3.45E-02	2.45E-02	2.48E-03	7.09E-04	0*	6.89E-03	-1.17E-02
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.31E-02	9.81E-03	6.30E-04	1.89E-04	0*	2.52E-03	-4.34E-03
Contribution to resource use, minerals and metals	kg Sb eq	4.25E-04	4.25E-04	0*	0*	0*	0*	-2.61E-04
Contribution to resource use, fossils	MJ	1.08E+02	3.03E+01	1.00E+00	9.30E-01	0*	7.57E+01	-2.52E+01
Contribution to water use	m3 eq	6.19E+00	5.75E+00	0*	3.81E-02	0*	3.93E-01	-8.14E-01

Inventory flows Indicators				THERMOSTATIC RADIATOR VALVE - 08 09 261SX					
Inventory flows	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Loads and Benefits	
inventory nows			[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]	
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	5.99E-01	5.30E-01	1.34E-03	6.67E-02	0*	7.42E-04	3.62E-01	
Contribution to use of renewable primary energy resources used as raw material	MJ	9.75E-01	9.75E-01	0*	0*	0*	0*	-8.83E-01	
Contribution to total use of renewable primary energy resources	MJ	1.57E+00	1.50E+00	1.34E-03	6.67E-02	0*	7.42E-04	-5.22E-01	
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw materia	_I MJ	1.07E+02	2.94E+01	1.00E+00	9.30E-01	0*	7.57E+01	-2.52E+01	

Internal

Contribution to use of non renewable primary energy resources used as raw material	MJ	8.92E-01	8.92E-01	0*	0*	0*	0*	0.00E+00
Contribution to total use of non-renewable primary energy resources	MJ	1.08E+02	3.03E+01	1.00E+00	9.30E-01	0*	7.57E+01	-2.52E+01
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	1.44E-01	1.34E-01	0*	8.88E-04	0*	9.15E-03	-1.90E-02
Contribution to hazardous waste disposed	kg	3.27E+01	3.23E+01	0*	0*	0*	4.09E-01	-1.91E+01
Contribution to non hazardous waste disposed	kg	1.90E+00	1.60E+00	2.52E-03	2.91E-01	0*	9.43E-03	-1.91E+00
Contribution to radioactive waste disposed	kg	2.53E-04	2.09E-04	1.80E-06	3.90E-05	0*	2.90E-06	-3.65E-04
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	4.09E-01	0*	0*	4.91E-02	0*	3.60E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to biogenic carbon content of the product	kg de C	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to biogenic carbon content of the associated packaging	kg de C	0.00E+00	0*	0*	0*	0*	0*	0.00E+00

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version 5.9.4, database version 2022-01 in compliance with ISO14044.

Detailed results including all the optional indicators mentioned in PCRed4, are available in the LCA report and on demand in a digital format.

Country Customer Care Center - http://www.schneider-electric.com/contact

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number	egistration number : ENVPEP2307025_V1		Drafting rules	PEP-PCR-ed4-2021 09 06				
Validity period 5 ye		5 years	Supplemented by	PSR-0005-ed3-EN-2023 06 06				
Date of issue		02/2024	Information and reference documents	www.pep-ecopassport.org				
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016								
Internal	Х	External						
The PCR review was conducted by a panel of experts chaired by Julie ORGELET (DDemain)								
PEP are compliant with XP C08-100-1 :2016 or EN 50693:2019								
The elements of the present PEP cannot be compared with elements from another program.								
Document in compliance with ISO 14021 : 2016 « Environmental labels and declarations. Type II environmental declarations »								

Schneider Electric Industries SAS Country Customer Care Center http://www.schneider-electric.com/contact 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com ENVPEP2307025_V1 Published by Schneider Electric ©2023 - Schneider Electric – All rights reserved

02/2024