Product Environmental Profile

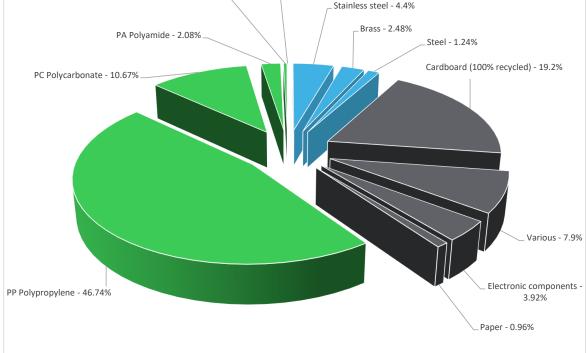
Mureva EVlink socket

as referent product for:

All EVlink sockets in Mureva range

General information

Reference product	Mureva EVlink socket - MUR36015
Description of the product	Mureva EVlink Socket is used to charge plug-in hybrid cars, electric vehicles, bicycles and scooters. It allows, for a typical car, a charging autonomy of 15 km/h on average and reinforced to withstand maximum current delivery over hours, when the installation allows it. Moreover, it enables frequently plugged-in and unplugged cables, permanent control over overheating and overcurrent, having an LED that displays the charging status as OFF, ON, AVAILABLE, or CHARGING. It is delivered with a convenient hook for hanging the controller and wire. It's able to manage and control energy through the Wiser gateway's connection to the Wiser Home App.
Description of the course	The indicators values of this Mureva EV link Socket can be extrapolated, based on the Mass and Energy values of the products, for other Mureva EV link sockets range of products.
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	To supply 1 kWh to one electrical vehicule, through a reinforced and connected domestic socket outlet, during 10 years, following the corresponding use case scenario described in PSR0018 and its annex
Declared unit	To ensure the recharging of electric vehicles through one reinforced and connected wall socket, in mode 1 or 2, characterized by max. power 3,7 kW, with a max. 16A current under 230V, during a reference lifetime of 10 years, with IP66 in accordance with EN 60529, and IK08 in accordance with the standard IEC 62262.


Constituent materials

PE Polyethylene - 0.372%_PET - <0.1%

PA Polyamide - 2.08%

Brass - 2.48%

Steel - 1.24%

 Plastics
 59,9%

 Others
 32,0%

 Metals
 8,1%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(1) Additional environmental information

End Of Life

Recyclability potential:

10%

Recyclability rate has been calculated based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the "ECO'DEEE recyclability and recoverability calculation method" was taken. If no data was found a conservative assumption was used (0% recyclability).

Reference service life time	10 years								
Product Category	Domestic EV socket								
Installation elements	The disposal of the packaging materials are accounted for during the installation phase (including transport to disposal).								
Use scenario	During 10 years of RLT, the product uses 0.85W of power when charging and 0.4W of electricity when it is in standby mode. Total power dissipation for the product in passive mode is 3.04W at 100% load rate and 8.74% use rate.								
Technological representativeness	The Modules of Technologies such as material production, manufacturing process and transport technology used in this PEP analysis (LCA-EIME in this case) are Similar and representative of the actual type of technologies used to make the product in production.								
Geographical representativeness	France								
	[A1 - A3]	[A5]	[B6]	[C1 - C4]					
Energy model used	Electricity Mix; Production mix; Low voltage; LV	Electricity Mix; Production mix; Low voltage; FR	Electricity Mix; Production mix; Low voltage; FR	Electricity Mix; Production mix; Low voltage; FR					

Mandatory Indicators for declared unit				Mureva EVlink socket - MUR36015				
Impact indicators	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Benefits
impact muicators	Offic	Total	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to climate change	kg CO2 eq	1,32E+01	7,35E+00	7,70E-02	2,33E-01	4,13E+00	1,43E+00	-1,95E-01
Contribution to climate change-fossil	kg CO2 eq	1,31E+01	7,29E+00	7,70E-02	2,22E-01	4,12E+00	1,43E+00	-1,94E-01
Contribution to climate change-biogenic	kg CO2 eq	7,82E-02	5,52E-02	0*	1,03E-02	1,06E-02	2,02E-03	-7,12E-04
Contribution to climate change-land use & land use change	kg CO2 eq	5,55E-09	5,55E-09	0*	0*	0*	0*	0,00E+00
Contribution to ozone depletion	kg CFC-11 eq	3,26E-06	3,17E-06	0*	1,54E-08	6,07E-08	7,00E-09	-4,61E-08
Contribution to acidification	mol H+ eq	6,56E-02	3,84E-02	4,87E-04	9,23E-04	2,39E-02	1,91E-03	-1,09E-03
Contribution to eutrophication, freshwater	kg (PO4)³- eq	2,21E-04	2,20E-05	2,88E-08	1,68E-06	1,96E-04	7,47E-07	-5,44E-07
Contribution to eutrophication marine	kg N eq	1,30E-02	8,28E-03	2,28E-04	2,45E-04	3,29E-03	9,33E-04	-1,15E-04
Contribution to eutrophication, terrestrial	mol N eq	1,44E-01	8,91E-02	2,50E-03	1,85E-03	4,73E-02	2,81E-03	-1,27E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	4,32E-02	3,15E-02	6,32E-04	4,93E-04	9,74E-03	8,12E-04	-4,61E-04
Contribution to resource use, minerals and metals	kg Sb eq	8,91E-04	8,89E-04	0*	0*	1,95E-06	0*	-3,91E-05
Contribution to resource use, fossils	MJ	9,13E+02	1,06E+02	1,07E+00	2,42E+00	7,92E+02	1,16E+01	-3,29E+00
Contribution to water use	m3 eq	1,53E+01	1,51E+00	0*	9,93E-02	2,99E-01	1,34E+01	-8,49E-02

Inventory flows Indicators for declared u	Mureva EVlink socket - MUR36015							
Inventory flows	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Benefits
		. 5	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	7,56E+01	2,11E+00	0*	1,74E-01	7,33E+01	6,41E-02	1,81E-02
Contribution to use of renewable primary energy resources used as raw material	MJ	1,07E-01	1,07E-01	0*	0*	0*	0*	-6,98E-02
Contribution to total use of renewable primary energy resources	MJ	7,57E+01	2,22E+00	0*	1,74E-01	7,33E+01	6,41E-02	-5,18E-02
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw materia	_I MJ	9,00E+02	9,22E+01	1,07E+00	2,42E+00	7,92E+02	1,16E+01	-3,29E+00
Contribution to use of non renewable primary energy resources used as raw material	MJ	1,33E+01	1,33E+01	0*	0*	0*	0*	0,00E+00
Contribution to total use of non-renewable primary energy resources	MJ	9,13E+02	1,06E+02	1,07E+00	2,42E+00	7,92E+02	1,16E+01	-3,29E+00
Contribution to use of secondary material	kg	1,96E-01	1,96E-01	0*	0*	0*	0*	0,00E+00
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00

Contribution to net use of freshwater	m³	3,94E-01	3,52E-02	0*	2,31E-03	6,96E-03	3,49E-01	-1,98E-03
Contribution to hazardous waste disposed	kg	1,01E+01	9,46E+00	0*	2,75E-03	6,15E-02	5,56E-01	-2,98E+00
Contribution to non hazardous waste disposed	kg	3,87E+00	2,30E+00	2,70E-03	7,57E-01	3,97E-01	4,13E-01	-1,99E-01
Contribution to radioactive waste disposed	kg	2,25E-03	1,97E-03	1,92E-06	1,02E-04	1,67E-04	1,67E-05	-5,03E-05
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to materials for recycling	kg	1,78E-01	0*	0*	1,28E-01	0*	4,99E-02	0,00E+00
Contribution to materials for energy recovery	kg	1,16E-08	1,16E-08	0*	0*	0*	0*	0,00E+00
Contribution to exported energy	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to biogenic carbon content of the product	kg de C	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to biogenic carbon content of the associated packaging	kg de C	0,00E+00	0*	0*	0*	0*	0*	0,00E+00

^{*} represents less than 0.01% of the total life cycle of the reference flow

3,54942E-05 = correction factor (declared unit vs functional unit)

Mandatory Indicators for functional unit (Mureva EVlink socket - MUR36015 (for 1 kWh)							
Impact indicators	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Benefits
impact muicators	Offic	Total	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to climate change	kg CO2 eq	4,69E-04	2,61E-04	2,73E-06	8,26E-06	1,46E-04	5,09E-05	-6,92E-06
Contribution to climate change-fossil	kg CO2 eq	4,66E-04	2,59E-04	2,73E-06	7,89E-06	1,46E-04	5,08E-05	-6,89E-06
Contribution to climate change-biogenic	kg CO2 eq	2,78E-06	1,96E-06	0*	3,67E-07	3,77E-07	7,17E-08	-2,53E-08
Contribution to climate change-land use & land use change	kg CO2 eq	1,97E-13	1,97E-13	0*	0*	0*	0*	0,00E+00
Contribution to ozone depletion	kg CFC-11 eq	1,16E-10	1,13E-10	0*	5,47E-13	2,15E-12	2,48E-13	-1,64E-12
Contribution to acidification	mol H+ eq	2,33E-06	1,36E-06	1,73E-08	3,28E-08	8,48E-07	6,77E-08	-3,86E-08
Contribution to eutrophication, freshwater	kg (PO4)³- eq	7,84E-09	7,83E-10	1,02E-12	5,97E-11	6,97E-09	2,65E-11	-1,93E-11
Contribution to eutrophication marine	kg N eq	4,61E-07	2,94E-07	8,10E-09	8,68E-09	1,17E-07	3,31E-08	-4,07E-09
Contribution to eutrophication, terrestrial	mol N eq	5,09E-06	3,16E-06	8,89E-08	6,55E-08	1,68E-06	9,98E-08	-4,52E-08
Contribution to photochemical ozone formation - human health	kg COVNM eq	1,53E-06	1,12E-06	2,24E-08	1,75E-08	3,46E-07	2,88E-08	-1,64E-08
Contribution to resource use, minerals and metals	kg Sb eq	3,16E-08	3,16E-08	0*	0*	6,93E-11	0*	-1,39E-09
Contribution to resource use, fossils	MJ	3,24E-02	3,75E-03	3,81E-05	8,60E-05	2,81E-02	4,13E-04	-1,17E-04
Contribution to water use	m3 eq	5,42E-04	5,36E-05	0*	3,53E-06	1,06E-05	4,74E-04	-3,01E-06

Inventory flows for functional unit (1k	Mureva EVlink socket - MUR36015 (for 1 kWh)							
Inventory flows	Unit	Total	Manufact.	Distribution	Installation	Use	End of Life	Benefits
ilivelitory flows	Onic	Total	[A1 - A3]	[A4]	[A5]	[B1 - B7]	[C1 - C4]	[D]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2,68E-03	7,48E-05	0*	6,17E-06	2,60E-03	2,27E-06	6,41E-07
Contribution to use of renewable primary energy resources used as raw material	MJ	3,80E-06	3,80E-06	0*	0*	0*	0*	-2,48E-06
Contribution to total use of renewable primary energy resources	MJ	2,69E-03	7,86E-05	0*	6,17E-06	2,60E-03	2,27E-06	-1,84E-06
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	_{al} MJ	3,19E-02	3,27E-03	3,81E-05	8,60E-05	2,81E-02	4,13E-04	-1,17E-04
Contribution to use of non renewable primary energy resources used as raw material	MJ	4,74E-04	4,74E-04	0*	0*	0*	0*	0,00E+00
Contribution to total use of non-renewable primary energy resources	MJ	3,24E-02	3,75E-03	3,81E-05	8,60E-05	2,81E-02	4,13E-04	-1,17E-04
Contribution to use of secondary material	kg	6,94E-06	6,94E-06	0*	0*	0*	0*	0,00E+00
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00

Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to net use of freshwater	m³	1,40E-05	1,25E-06	0*	8,21E-08	2,47E-07	1,24E-05	-7,02E-08
Contribution to hazardous waste disposed	kg	3,58E-04	3,36E-04	0*	9,76E-08	2,18E-06	1,97E-05	-1,06E-04
Contribution to non hazardous waste disposed	kg	1,37E-04	8,16E-05	9,58E-08	2,69E-05	1,41E-05	1,47E-05	-7,07E-06
Contribution to radioactive waste disposed	kg	8,00E-08	6,98E-08	6,82E-11	3,61E-09	5,92E-09	5,92E-10	-1,79E-09
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to materials for recycling	kg	6,31E-06	0*	0*	4,54E-06	0*	1,77E-06	0,00E+00
Contribution to materials for energy recovery	kg	4,11E-13	4,11E-13	0*	0*	0*	0*	0,00E+00
Contribution to exported energy	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to biogenic carbon content of the product	kg de C	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to biogenic carbon content of the associated packaging	kg de C	0,00E+00	0*	0*	0*	0*	0*	0,00E+00

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version 5.9.4, database version 2022-01 in compliance with ISO14044.

Detailed results, including all the optional indicators mentioned in PCRed4, and the split of the Use Phase (B1 to B7), are available

on demand in a digital format - Country Customer Care Center - http://www.schneider-electric.com/contact

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

The majority of environmental indicators are most significantly impacted by the manufacturing phase. ADPe and GWPlu are the hotspots in the manufacturing phase that are most affected by electronic components (99.8% and 100%, respectively).

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-00974-V01.01-EN	Drafting rules	PEP-PCR-ed4-2021 09 06
Verifier accreditation N°	VH48	Supplemented by	PSR-0018-ed1-EN-2021 09 13
Date of issue	05/2023	Information and reference documents	www.pep-ecopassport.org
		Validity period	5 years

Independent verification of the declaration and data, in compliance with ISO 14025: 2010

Internal External X

The PCR review was conducted by a panel of experts chaired by Julie ORGELET (DDemain)

PEP are compliant with XP C08-100-1 :2016 or EN 50693:2019

The elements of the present PEP cannot be compared with elements from another program.

Document in compliance with ISO 14025 : 2010 « Environmental labels and declarations. Type III environmental declarations »

Schneider Electric Industries SAS

Country Customer Care Center

http://www.schneider-electric.com/contact

35, rue Joseph Monier

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

CS 30323

Published by Schneider Electric

SCHN-00974-V01.01-EN ©2023 - Schneider Electric – All rights reserved

05/2023