Product Environmental Profile

PowerPact™ R-frame Molded Case Circuit Breaker with Micrologic™ Trip Unit
Product Environmental Profile - PEP

Product overview
The main purpose of the PowerPact™ R-frame Molded Case Circuit Breaker (MCCB) with Micrologic™ trip unit product range is to protect electrical systems from damages caused by overloads and short circuits.

This range consists of:
- Current rating from 600A to 3000A
- 2, 3 or 4 poles
- Fixed or I-line circuit breaker

The representative product used for the analysis is the RLF36300CU43A PowerPact R-frame 3 Poles 3000A 600V MCCB.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 64 lbs (29.03 kg) to 85 lbs (38.56 kg) including packaging. It is 83.63 lbs (37.93 kg) for the PowerPact R-frame 3P 3000A 600V (ref. RLF36300CU43A). The constituent materials are distributed as follows:

- PET Polyethene Terephthalate 0.9%
- PPA Polyphthalamide 2.5%
- PC Polycarbonate 2.6%
- UP Polyester 11.1%
- Brass 0.1%
- Ferrous alloys 0.2%
- Bronze 0.3%
- Iron 1.3%
- Steel 28.4%
- PA Polyamide 0.3%
- LCP polymer 0.3%
- Cardboard 9.6%
- Paper 2.1%
- Cables and connectors 0.5%
- Other material under 0.26% with a total of 0.8%
- Copper 39.1%

Substance assessment
Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website.
Manufacturing

The PowerPact R-frame Molded Case Circuit Breaker product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized. The PowerPact R-frame Molded Case Circuit Breaker packaging weight is 9.96 lbs (4.2 kg). It consists of Cardboard 8.13 lbs (3689.05g), Paper 1.76 lbs (798.84g) and Polyethylene film 0.06 lbs (29.41g).

The product distribution flows have been optimised by setting up local distribution centers close to the market areas.

Use

The products of the PowerPact R-frame Molded Case Circuit Breaker range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is between 32.4 W and 810.0 W for the PowerPact R-frame MCCB with Micrologic™ trip unit product range. It is 810.0 W for the referenced RLF36300CU43A PowerPact R-frame 3P 3000A 600V MCCB.

This thermal dissipation represents less than 0.03% of the power which passes through the product.

The product range does not require special maintenance operations.

End of life

At end of life, the products in the PowerPact R-frame Molded Case Circuit Breaker range have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains printed circuit board that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website Green Premium website (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

The recyclability potential of the products has been evaluated using the "ECO DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is 69%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:
- The calculation was performed on the RLF36300CU43A
- Product packaging: is included
- Installation components: no special components included.
- Scenario for the Use phase: this product range is included in the category Energy Passing product. Assumed service lifetime is 20 years and use scenario is power dissipation is 810.0 W full load, loading rate is 30% and service uptime 100%.
- The geographical representative area for the assessment is the United States, and the electrical power model used for calculation is the American model.
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)
Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5.3, and with its database version 2013-02.

The Use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: the Raw Material Depletion impacts of the products of the family may be proportional extrapolated by the mass of the product. The AA, ED, GWP and HWP environmental indicators of the other products in this family may be proportional extrapolated by the electricity use of the product. The other environmental indicators of the other products in this family; half the impact may be proportionally extrapolated by electricity use and the second half may be proportionally extrapolated by the mass of the product.

System approach

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Acidification (AA)</td>
<td>The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.</td>
</tr>
<tr>
<td>Air Toxicity (AT)</td>
<td>This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>This indicator gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.</td>
</tr>
<tr>
<td>Global Warming (GW)</td>
<td>The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>This indicator quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.</td>
</tr>
<tr>
<td>Ozone Depletion (OD)</td>
<td>This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.</td>
</tr>
<tr>
<td>Photochemical Ozone Creation (POC)</td>
<td>This indicator quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).</td>
</tr>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.</td>
</tr>
<tr>
<td>Water Eutrophication (WE)</td>
<td>Eutrophication is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO₄³-(phosphate).</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.</td>
</tr>
</tbody>
</table>

PEP achieved with Schneider-Electric TT01 V9 and TT02 V18 procedures in compliance with ISO14040 series standards.