Product Environmental Profile

POWERBUS BUSWAY

Product Environmental Profile - PEP

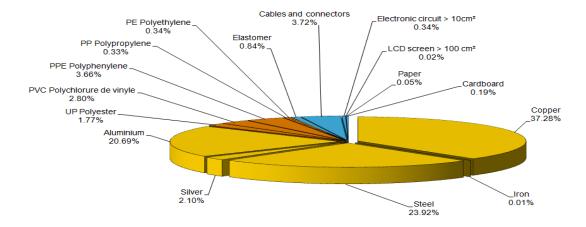
Product overview

The main purpose of the POWERBUS BUSWAY is to deliver scalable and flexible overhead power distribution with the highest tap-off density on the market. Simple modularity minimizes unintended downtime, improves safety while optimizing energy efficiency.

This range consists of: 100 A, 225 A, and 400 A, up to 600 V maximum rating.

The representative product used for the analysis is Powerbus Busway, which consists of:

- 1 x 400A power feed box with metering: PBCF4A400ATBM1B,
- 3 x 10ft straight components: PBCE4A400AST120B,
- 2 x 4ft straight components: PBCE4A400AST048B,
- 3 components for changing direction (PBCP4A400ALRB, PBCP4A400ALLB, PBCP4A400ACRB),
- · 4 plug-in units (PBPQOU4A100CEGL620, PBPEDU4A100COOS460,


PBPEDU4A100CEGL520M1T, PBPEGX4A100T)

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 200000 g and 300000 g including packaging. It is 265901 g for the POWERBUS BUSWAY. The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website.

(http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

Manufacturing

The POWERBUS BUSWAY is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The POWERBUS BUSWAY packaging weight is 629 g. It consists of Paper (130 g) and Cardboard (500 g). The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Product Environmental Profile - PEP

Use

The products of the POWER BUS range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use. The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is between 0 W and 1300 W for the POWER BUS product range. It is1295 W for the referenced POWER BUS .This thermal dissipation represents less than 0.001% of the power which passes through the product.

End of life

At end of life, the products in the POWER BUS have been optimized to decrease the amount of waste and allow recovery of the product components and materials. This product range contains PCB's that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website Green Premium website (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page). The recyclability potential of the products has been evaluated using the "ECO DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME). According to this method, the potential recyclability ratio is: 81%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modelling hypothesis and method:

- The calculation was performed on the POWER BUS
- Product packaging: Is included
- Installation components: No special components included.
- Scenario for the Use phase: this product range is included in the category "Energy passing product: (assumed service life is 20 years and use scenario is Product dissipation is 1295 W, loading rate is 30% and service uptime percentage is 100%
- The geographical representative area for the assessment is US and the electrical power model used for calculation is European model. End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

Environmental indicators	Unit	POWERBUS					
		S = M + D + I + U + E	М	D	- 1	U	E
Air Acidification (AA for PEP)	kg H+ eq	2.81E+00	7.08E-01	4.95E-01	0.00E+00	1.58E+00	2.71E-02
Air toxicity (AT for PEP)	m³	4.32E+09	1.58E+09	7.36E+08	0.00E+00	1.96E+09	4.03E+07
Energy Depletion (ED for PEP)	MJ	3.19E+05	4.60E+04	3.75E+04	0.00E+00	2.34E+05	2.06E+03
Global Warming Potential (GWP for PEP)	kg CO₂ eq.	1.69E+04	2.33E+03	2.66E+03	0.00E+00	1.18E+04	1.46E+02
Hazardous Waste Production (HWP for PEP)	kg	3.07E+02	1.11E+02	3.30E-03	0.00E+00	1.96E+02	1.81E-04
Ozone Depletion Potential (ODP for PEP)	kg CFC- 11 eq.	1.31E-03	6.62E-04	5.05E-06	0.00E+00	6.41E-04	2.77E-07
Photochemical Ozone Creation Potential (POCP for PEP)	kg C₂H₄ eq.	5.52E+00	7.69E-01	5.94E-01	0.00E+00	4.13E+00	3.26E-02
Raw Material Depletion (RMD for PEP)	Y-1	2.12E-10	2.12E-10	5.44E-14	0.00E+00	2.65E-13	2.99E-15
Water Depletion (WD for PEP)	dm3	6.93E+04	3.52E+04	2.77E+02	0.00E+00	3.38E+04	1.52E+01
Water Eutrophication (WE for PEP)	kg PO₄³⁻ eq.	2.25E-01	1.92E-01	4.95E-03	0.00E+00	2.77E-02	2.71E-04
Water Toxicity (WT for PEP)	m³	5.99E+03	1.40E+03	1.14E+03	0.00E+00	3.39E+03	6.24E+01

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5.0, and with its database version 2.1. The **USE** phase is the life cycle phase which has the greatest impact on the majority of environmental indicators. Extrapolation rules for product range: "Depending on the impact analysis, the environmental indicators (without RMD/ODP/WD) of other products in this family may be proportional extrapolated by energy consumption values". For RMD, impact may be proportional extrapolated by mass of the product. For ODP and WD, impact may be proportional extrapolated by both mass of product and energy consumption values.

System approach

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Product Environmental Profile - PEP

Glossary

Raw Material Depletion (RMD)

This indicator quantifies the consumption of raw materials during the life cycle of

the product. It is expressed as the fraction of natural resources that disappear each

year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil,

hydroelectric, nuclear or other sources.

This indicator takes into account the energy from the material produced during

combustion. It is expressed in MJ.

Water Depletion (WD)

This indicator calculates the volume of water consumed, including drinking water

and water from industrial sources. It is expressed in dm³.

Global Warming (GW)

The global warming of the planet is the result of the increase in

the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is

quantified in gram equivalent of CO2.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of

the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent

of CFC-11.

Air Toxicity (AT)

This indicator represents the air toxicity in a human environment. It takes into

account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC)

This indicator quantifies the contribution to the "smog" phenomenon

(the photochemical oxidation of certain gases which generates ozone) and is

expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA)

The acid substances present in the atmosphere are carried by rain.

A high level of acidity in the rain can cause damage to forests.

The contribution of acidification is calculated using the acidification potentials of the

substances concerned and is expressed in mode equivalent of H+.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually

accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the

water volume needed to dilute these substances down to acceptable

concentrations.

Hazardous Waste Production (HWP)

This indicator calculates the quantity of specially treated waste created during all

the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the

production of electrical power, etc.

It is expressed in kg.

PEP in compliance with Schneider-Electric TT01 V5 and TT02 V15 procedures

PEP established according to PCR PEPecopassport PEP- PCR-ed 1-FR-2009 12 18 rules

© 2013 - Schneider Electric – All rights reserved

www.schneider-electric.com