Limit switches XC Special range

Catalogue

Simplyeasy!

Limit switches

 XC Special range- Selection guide page 2
- Limit switches XC range: general
\square Presentation and terminology page 16
\square Contact blocks page 17
\square Mounting page 19
\square Setting-up page 20
Reminder of standards page 22
For very severe applications, XC2J
\square Presentation and characteristics page 24
\square Complete switches, fixed boby page 26
\square Variable composition: fixed or plug-in body page 28
\square Adaptable sub-assemblies page 30
For low temperature applications (-40 ${ }^{\circ} \mathrm{C}$) page 36
-For high temperature applications (+120 $\left.{ }^{\circ} \mathrm{C}\right)$. page 39■ For hoisting and mechanical handling applications, XCR and XCKMRFor conveyor belt shift monitoring, XCRT
\square Presentation and characteristics page 42
\square Switches XCR and XCKMR page 46
\square Switches XCRT page 48
- Subminiature format and microswitches
\square General page 56
\square DIN 41635 B format, sealed page 58
\square DIN 41635 A format page 60
\square Sealed design, pre-cabled page 62
Overtravel limit switches, XF9
\square Presentation page 64
\square Characteristics page 65
\square References page 66
\square Dimensions page 67
Reference index page 68

Design/Applications		Miniature format	Miniature format for mobile equipments	Compact format, CENELEC EN 50047
		Metal, pre-cabled	Metal, pre-cabled	Plastic, 1 cable entry
Enclosure		Metal	Metal	Plastic, double insulated
Modularity		Head, body and connection modularity	Head and body modularity	Head, body and cable entry modularity
Conformity/Certifications		¢¢, UL, CSA, CCC, EAC	C¢, UL, CSA	CENELEC EN 50047 UL, CSA, CCC, EAC
Body dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$) in mm		$30 \times 50 \times 16$	$30 \times 50 \times 20.5$	$31 \times 65 \times 30$
Head		Linear movement (plunger) Rotary movement (lever) Rotary movement, multidirectional Same heads for ranges XCMD, XCMV, XCKD, XCKP and XCKT		
Contact blocks				
2 electrically separate contacts	snap action with positive opening operation	-	-	-
	slow break with positive opening operation	-	-	-
2 same polarity contacts	snap action	-	-	-
	slow break	-	-	-
3 electrically separate contacts	snap action with positive opening operation	-	-	-
	slow break with positive opening operation	-	-	-
4 electrically separate contacts	snap action with positive opening operation	-	-	-
	slow break with positive opening operation	-	-	-
4 contacts $(2 \times 2$ same snap actionpolarity contacts)		-	-	-
Degree of protection IPIK		IP 66, IP 67, IP 68, IK 06	IP 66, IP 67, IP 69, IK 04, IK 06 depending on model	IP 66, IP 67, IK 04,
Operating temperature		$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ depending on heads		
Raccordement Screw terminals		-	-	1 entry for ISO M16 or M20 Pg 11, Pg 13.5 cable gland or $1 / 2^{\prime \prime}$ NPT, PF $1 / 2$
Pre-cabled		$\varnothing 7.5$ PVR, CEI, halogen free depending on model	$\begin{aligned} & \varnothing 6,4 \\ & \text { PvR } \end{aligned}$	-
Connector		Integral or remote M12 or remote $7 / 8^{\prime \prime}$-16UN	M12, Deutsch DT04-4P or AMP Superseal 1.5	M12
Type reference		XCMD	XCMV	XCKP
Pages		Please refer to our catalogue "Limit switches XC Standard"		

Compact format, CENELEC EN 50047		Compact format, with reset	
Plastic, 2 cable entries	$\begin{array}{\|l} \hline \text { Metal, } \\ 1 \text { cable entry } \end{array}$	Plastic 1 cable entry	Plastic, 2 cable entries
Plastic, double insulated	Metal	Plastic, double insulated	
Head and body modularity	Head, body and connection modularity	-	
CENELEC EN 50047, UL, CSA, CCC, EAC		C¢, UL, CSA, EAC	
$58 \times 51 \times 30$	$31 \times 65 \times 30$	$31 \times 65 \times 30$	$58 \times 51 \times 30$
Linear movement (plunger) Rotary movement (lever) Rotary movement, multidirectiona Same heads for ranges XCMD, XCMV, XCKD, XCKP and XCKT		Linear movement (plunger) Rotary movement (lever)	
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
IP 66, IP 67, IK 04	IP 66, IP 67, IK 06	IP 66, IP 67, IK 04	
$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$			
2 entries for ISO M16 or Pg 11 cable gland or 1/2" NPT (using adaptor)	1 entry for ISO M16 or M20 Pg 11, Pg 13.5 cable gland or $1 / 2^{\prime \prime}$ NPT, PF 1/2	1 entry for ISO M20 or Pg 13.5 cable gland or $1 / 2^{\prime \prime}$ NPT	2 entries for ISO M16 or Pg 11 cable gland or $1 / 2^{\prime \prime}$ NPT (using adaptor)
-			
-	M12	-	
XCKT	XCKD	XCPR	XCTR

Limit switches
 XC Basic range

Miniature format	Compact format EN 50047		Compact format, with reset knob
Plastic, pre-cabled	Plastic, 1 cable entry	Plastic, 2 cable entries	Plastic, 1 cable entry

C \subset, UL, CSA, CCC, EAC
$31 \times 65 \times 30$

Plastic, double insulated				
-				
¢¢, cULus, Ccc	¢ $¢$, UL, CSA, CCC, EAC	CENELEC EN 50047, UL, CSA, CCC, EAC		¢¢, UL, CSA, CCC, EAC
$30 \times 50 \times 16$	$30 \times 50 \times 16$	$31 \times 65 \times 30$	$59 \times 51 \times 30$	$31 \times 65 \times 30$
Linear movement (plunger) Rotary movement (lever) Rotary movement, multidirectional				
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	
-	-	-	-	
-	-	-	-	
IP 66, IP 67, IK 04	IP $65,1 \mathrm{~K} 04$			
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$				
-	-	1 entry for ISO M20 or Pg 11 cable gland Other cable entries. ISO M16 x 1.5 or PF 1/2 (G1/2)	2 entries for ISO M16 or Pg 11 cable gland or $1 / 2^{\text {" NPT (using adaptor) }}$	1 entry for ISO M20 or Pg 11 cable gland Other cable entries. SO M16 x 1.5 or PF 1/2 (G1/2)
$\varnothing 4.2 \mathrm{~mm}$ PvR, lateral or axial cable output, depending on model	$\varnothing 7.5$ PvR, CEI, halogen free, depending on model	-		
XCMH	XCMN	XCKN	XCNT	XCNR

Overtravel limit switches
XF9 range

Enclosure	Metal	Metal or oolyester	Metal or plastic	Polyester
Modularity	Head and body modularity	-	-	-
Conformity/Certifications	¢ $¢$, UL, CSA, EAC	(ϵ, CSA (XCR) CCC (XCR), EAC	C¢, UL, CSA, CCC, EAC	¢¢, UL
Body dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$) in mm	$40 \times 81 \times 41$	$85 \times 95 \times 75$	$118 \times 77 \times 59$ (metal) $118 \times 77 \times 67$ (plastic)	Depending on model
Head	Linear movement (plunger) or rotary movement (lever)	Rotary movement (lever)	$\underset{\substack{\text { Rotary movement } \\ \text { (lever) }}}{ }$	-
Contact blocks				
2 same polarity contacts snap action	-	-	-	-
4 electrically separate contacts snap action with positive opening operation	-	-	-	-
slow break with positive opening operation	-	-	-	-
4 contacts (2×2 same polarity contacts), snap action	-	-	-	-
Degree of protection IPIK	IP 65, IK 08	IP 54, IK 07 or IP 65, depending on model	IP 66, I 07 (metal) IP $65,1 \mathrm{~K} 04$ (plastic)	IP 67 or IP 40 depending on model IP 00 (tags)
Operating temperature	$-25^{\circ} \mathrm{C} . .+70^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C}$ or + $120^{\circ} \mathrm{C}$ (XC 2 J depending on model)	$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} .+105^{\circ}{ }^{\circ} \mathrm{C}, \\ & -40^{\circ} \mathrm{C}+125^{\mathrm{C}} \\ & \text { selodèle } \end{aligned}$
Connection				
Screw terminals (entry for cable gland)	1 entry with integral cable gland	1 tapped entry for Pg 13.5 cable gland	3 tapped entries for Pg 13.5 cable gland or tapped M20x 1.5 , depending on mode	Tag connections or pre-wired, depending on model
Type reference	XC2J	XCR XCRT	XCKMR XCKVR	XEP
Pages	26	46 and 48	52	58

Safety detection solutions

 XCS safety switches| Switch type |
| :--- |
| Applications |
| |
| Design |

Case	
Features	
Conformity to standards	Products
	Machine assemblies
Product certifications	
Dimensions ($w \times h \times d$) in $m m$	Switch
	Fixings Centers
Head	
Contact blocks	
Degree of protection	
Ambient air temperature	For operation
Connection	Screw terminals (cable entry via cable gland)
	Pre-cabled
Type reference	
Pages	

Pages

XCS safety limit switches	
Protection of operators by stopping the machine when the gate is opened. All machines with quick rundown time.	
Miniature format	Compact format
Pre-cabled	With 1 cable entry

Metal	Plastic	Metal
-		
EN/EC 60947-5-1, ENIISO 13849-1, ENIEC 62061, UL 508, CSA C22-2 no. 14		
ENIIEC 60204-1, EN/ISO 14119		
UL, CSA, CCC, EAC		
$30 \times 50 \times 16$	$31 \times 34 \times 89$	
20	$20 / 22$	
Plunger or rotary head Head adjustable in 15° steps through 360° Linear (plunger) or rotary (lever) actuation		
NC contacts with positive opening operation		
2 NC + 1 NO break before make, slow break $2 \mathrm{NC}+1 \mathrm{NO}$ and $2 \mathrm{NC}+2 \mathrm{NO}$ snap action	XCSD: 2 NC + 1 NO break before make, slow break or snap action XCSP: 2 NC + 1 NO snap action	
IP 66, IP 67 and IP 68	\|P 66 and IP 67	
$-25 \ldots+70^{\circ} \mathrm{C}$		
-	Tapped entry for Pg 13.5, ISO M20 cable gland or tapped $1 / 2$ " NPT	
$\mathrm{L}=1,2$ or 5 m	-	
Xcsm	XCSP	XCSD

```
XCS lever or spindle-operated safety switches
Protection of operators by stopping the machine when the Protection of operators by stopping the machine when the guard hinge rotates through 5*
operating lever (attached to hinged machine guard) is
|isplaced by 5}\mp@subsup{5}{}{\circ}\mathrm{ .
#
Compact format
With 1 or 2 cable entries
```

\bigcirc		
Plastic, double insulated		
2 types of lever: straight or elbowed (flush with rear of switch) 3 lever positions: to left, center or to right	2 types of spindle: length 30 mm or 80 mm	
ENIEC 60947-5-1, EN/ISO 13849-1, ENIEC 62061, UL 508, CSA C22-2 no.14, JIS C4520		
ENIEC 60204-1, EN/ISO 14119		
UL, CSA, CCC, EAC		
$30 \times 87.5 \times 30$	$30 \times 96 \times 30$	$52 \times 117 \times 30$
20122	20122	$20 / 22$ or 40.3
Turret head: 4 positions Rotary actuation (lever)	Turret head: 4 positions Rotary actuation (spindle)	
Slow break safety contacts with positive opening operation NC contacts open when lever or spindle displaced by more than 5°		
$1 \mathrm{NC}+1 \mathrm{NO}$ break before make 2 NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1 \mathrm{NO}$ break before make	$1 \mathrm{NC}+1$ NO break before make ${ }_{2}$ NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1 \mathrm{NO}$ break before make	$1 \mathrm{NC}+2$ NO break before make $2 \mathrm{NC}+1$ NO break before make 3 NC \qquad
IP 67		
$-25 . .+70^{\circ} \mathrm{C}$		
1 tapped entry for Pg 11, ISO M16 cable gland or tapped 1/2" NPT	1 tapped entry for Pg 11, ISO M16 cable gland or tapped 1/2" NPT	2 tapped entries for Pg 11, ISO M16 cable gland or tapped 1/2" NPT
-	-	-
XCSPL	XCSPR	XCSTR
Please refer to our catalogue "Safety switches XCS range"		

Safety detection solutions
XCS safety switches

| XCS key-operated safety switches |
| :--- | :--- | :--- | :--- |
| All heavy industrial machines with quick rundown time (1) |

Safety detection solutions
XCS safety switches

Switch type		XCS key-operated safety switches, locking and unlocking by solenoid	
Applications		Protection of operators by stopping the machine when the actuating key (attached to machine guard) is withdrawn from the head of the switch. All industrial machines with long rundown time (1)	
Design		Slim format	
		With 3 cable entries	With 3 cable entries
Case		Plastic	Metal
Features		Locking and unlocking of actuating key using a solenoid (either on energization or on de-energization). Manual unlocking (auxiliary release using special tool) of actuating key in abnormal conditions.	Locking and unlocking of actuating key by solenoid (either on energization or on de-energization) Manual unlocking (auxiliary release using key lock) of actuating key in abnormal conditions. 1 Emergency release mushroom head pushbutton (only for XCSLF $\bullet \bullet \bullet \bullet 4 \bullet \bullet$ and XCSLF $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$).
Conformity to standards	Products	EN/EC 60947-5-1, ENIISO 13849-1, ENIEC 62061, UL 508 and CSA C22-2 no. 14	
	Machine assemblies	ENIEC 60204-1, EN/ISO 14119	
Product certifications		UL, CSA, CCC, EAC	
$\begin{aligned} & \text { Dimensions } \\ & (\mathrm{w} \times \mathrm{h} \times \mathrm{d} \text { or } \varnothing \text {) in } \mathrm{mm} \end{aligned}$	Switch	$51 \times 205 \times 43.5$	
	Fixings Centers	30×153.3	
Head		Turret head: 8 positions for insertion of actuating key.	
Resistance to forcible withdrawal of the actuator	$\mathrm{F}_{\text {max }}$	1400 N	1400 N 3000 N
	$\mathrm{F}_{\text {2n }}$	1100 N	2300 N
Contact blocks or outputs		Main safety contacts actuated by the actuating key; auxiliary contacts actuated by solenoid. Contact states given with key inserted and solenoid not energized. Slow break and NC positive opening operation	
	Main contacts	$1 \mathrm{NC}+1 \mathrm{NO}$ break before make 2 NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make $2 \mathrm{NC}+1$ NO break before make 3 NC	
	$\overline{\text { Auxiliary contacts }}$	$1 \mathrm{NC}+1 \mathrm{NO}$ break before make 2 NC $1 \mathrm{NC}+2 \mathrm{NO}$ break before make ${ }_{3}^{2 \mathrm{NCC}}+1 \mathrm{NO}$ break before make 3 NC	
Degree of protection		\|P66/P 67	
Ambient air temperature	For operation	$-25 . .+60^{\circ} \mathrm{C}$	
	For storage	$-40 . . .70^{\circ} \mathrm{C}$	
Connection	Terminals	Spring terminals, 3 cable entries. Tapped entry for ISO M20 cable gland or tapped $1 / 2$ " NPT.	
	Connector	M23 (18 + 1 PE)	
Type reference		XCSLE	XCSLF
Pages		Please refer to our catalogue "Safety switches XCS range"	

XCS key-operated safety switches, locking and unlocking by solenoid (continued)
 rotection of operatars by stopping in the actuating key (attached to machine guard) is withdrawn from the head of the switch. Al ectangular

With 2 cable entries

Safety detection solutions
XCS safety switches

Switch type Applications
Design

\section*{	Case
Features	}

Conformity to standards	Products
	Machine assemblies
	RFID protocol
Product certifications	
Dimensions ($\mathbf{w} \times \mathrm{h} \times \mathrm{d}$ or Ø) in mm	Switch
	Transponder
	Fixings Centers
	Reader
	Transpo

Contact blocks

or outputs \quad Safety output | Transponder |
| :--- |

ontact states given in

Degree of protection	Conforming to ENIICC 60529 Conforming to DIN 40050
Ambient air temperature	For operation For storage
Connection	Pre-cabled Connector Confoming to ENIEC 60947-5-2- A3 and ENIEC 61076
Type reference	

Pages

Contactless system composed of a microprocesssor-controlled switch and a transponder
factory-paired with a unique code. Multiposition sensor transponder.
15 mm
Standalone RFID switch $\begin{aligned} & \text { Disy-chain RID switch for } \\ & \text { directseries connection }\end{aligned}$

Possible functionng without
association with a safety
control unit (Integrated Externa
Device Monitoring (EDM) and
Device Monitoring (ED
Start/Restart
ENIEC 60947-5-2, ENNIEC 60947-5-3, UL 508, CSA C22.2
SLL (IEC 61508), SLLCL 3 (IEC 62061), PLe-C 4 (ENis
508, CSAC22.2 1384-1)
EN/EC 60204-1, EN/ISO 14119
Based on ISO 15693
C ϵ, CULus, TÜV, FCC, EAC, IC, RCM, E2, ECOLAB
$\begin{array}{lll}30 \times 108.3 \times 15 & 30 \times 118.6 \times 5 & 30 \times 108.3 \times 15\end{array}$

$\frac{50 \times 15}{}$
-
$\frac{74 . .7}{30 .}$

$\frac{744 . .78}{30 . .34}$
2 OSSDs (Safety outputs PNP NO). OSSDs are in the ON state when the gate is closed Maximum current 400 mA Maximum current 200 mA

XCS safety coded magnetic safety switches for detection without contact
Protection of operators by stopping the machine when the gate is opened
All light industrial machines fitted with access gates with imprecise guidance and/or subjected to frequent washing
This safety sensor is suitable for machine with low inertia.

| Miniature rectangular format | Compact rectangular format | |
| :--- | :--- | :--- | :--- |
| Pre-cabled | Cylindrical format | |

Pre-cabled or M8 connector on flying lead	Pre-cababled or M12 connector on flying lead

3 approach directions

\qquad
20 mm

ENIEC 60947-5-1, ENISO 13849-1, ENIEC 62061, UL 508 and CSA C22-2 no. 14
ENIEC 60204-1, EN/ISO 14119

-		
ENIEC 60947-5-1, EN/ISO 13849-1, ENIEC 62061, UL 508 and CSA C22-2 no. 14		
ENIEC 60204-1, ENIISO 14119		
-		
UL, CSA, EAC, ECOLAB		
$16 \times 51 \times 7$	$25 \times 88 \times 13$	$\varnothing 30, \mathrm{~L} 38.5$
-		
16	78	-
$\xrightarrow{-}$		
-		
-		
```1 NC + 1 NO staggered 2 NC staggered Independent Reed-type contacts operated by coded magnet.```	$1 \mathrm{NC}+1 \mathrm{NO}$ staggered 2 NC staggered $2 \mathrm{NC}+1 \mathrm{NO}$ (NC staggered)   $2 \mathrm{NC}+1 \mathrm{NO}(\mathrm{NC}$ staggered) $1 \mathrm{NC}+2 \mathrm{NO}(\mathrm{NO}$ staggered	$\begin{aligned} & 1 \mathrm{NC}+1 \text { NO staggered } \\ & 2 \mathrm{NC} \text { staggered } \end{aligned}$
To be used with safety control units.		
IP 66 and IP 67 for pre-cabled version, IP 67 for connector on flying lead version		
-		
$-25 . . .85^{\circ} \mathrm{C}$		
-		
$L=2,5$ or 10 m		
M8, on 0.15 m flying lead	M12, on 0.15 mflying lead	
-	-	-
XCSDMC	XCSDMP	XCSDMR
Please refer to our catalogue "Safety switches XCS range"		

UL, CSA, EAC, ECOLAB
$16 \times 51 \times 7 \quad 25 \times 88 \times 13 \quad \varnothing 30, L 38.5$
approach direction

Presentation, terminology

## Limit switches

XC range
General

## Presentation

## Terminology

## Electromechanical detection

Limit switches are used in all automated installations and also in a wide variety of applications, due to the numerous advantages inherent to their technology
They transmit data to the logic processing system regarding:

- presence/absence,
- passing,
- positioning,
end of travel.


## Simplicity of installation, advantages

## - From an electrical viewpoint

- galvanic separation of circuits,
- models suitable for low power switching combined with good electrical durability,
- very good short-circuit withstand in coordination with appropriate fuses,
- total immunity to electromagnetic interference,
high rated operational voltage.
- From a mechanical viewpoint
- NC contacts with positive opening operation,
- high resistance to the different ambient conditions encountered in industry (standard tests and specific tests under laboratory conditions),
high repeat accuracy, up to 0.01 mm on the tripping points.


## Detection movements

■ Linear movement (plunger)
Rotary movement (lever)

- Multi-directional movement


Rated value of a quantity
Utilisation categories:

This replaces the term "nominal value"

- It is the fixed value for a specific function.
- AC-15 replaces AC-11: control of an electromagnet on AC, test $10 \mathrm{le} / \mathrm{l}$.
- AC-12: control of a resistive load on AC or static load isolated by opto-coupler.
- DC-13 replaces DC-11: control of an electromagnet on DC, test le/le.
Positive opening travel ■ Minimum travel from the initial movement of contact actuator to the position required to accomplish positive opening operation.
Positive opening force ■ The force required on the contact actuator to accomplish positive opening operation.
Switching capacity
- Ithe is no longer a rated value but a conventional current used for heating tests.
Example: for category A300 the corresponding operational current, le maximum, is $6 \mathrm{~A}-120 \mathrm{~V}$ or $3 \mathrm{~A}-240 \mathrm{~V}$, the equivalent lthe being 10 A .
Positive opening operation ■ A limit switch complies to this specification when all the closed contact elements of the switch can be changed, with certainty, to the open position (no flexible link between the moving contacts and the operator of the switch, to which an actuating force is applied).
- All limit switches incorporating either a slow break contact block or a snap action NC + NO (form Zb), NC + NO + NO $\mathrm{NC}+\mathrm{NC}+\mathrm{NO}, \mathrm{NC}+\mathrm{NC}+\mathrm{NO}+\mathrm{NO}$ contact block are positive opening operation, in complete conformity with standard IEC 60947-5-1 Appendix K.


## Limit switches

XC range
General

## Contact blocks

$\checkmark$ Insulation voltage limit


		Range of use
Standard contacts	XE2SP2151，P3151	
	XE2NP・セゃセ	
service（frequent switching）	Contacts of XCMD XE3•P••••	
Gold flashed contacts on resistive load	Occasional service Infrequent switching， $\leqslant 1$ operating cycle／ day，and／or corrosive atmosphere	（1）

[^0]
## Snap action contacts

■ Snap action contacts are characterised by different tripping and reset points（differential travel）
－The displacement speed of the moving contacts is not related to the speed of the operator．
－This feature ensures satisfactory electrical performance in applications involving low speed actuators．

－Slow break contacts are characterised by identical tripping and resetting points．
－The displacement speed of the moving contacts is equal，or proportional，to the speed of the operator（which must not be less than $0.1 \mathrm{~m} / \mathrm{s}=6 \mathrm{~m} /$ minute）
The opening distance is also dependent on the distance travelled by the operator．


## Electrical durability for normal loads

－Normally，for inductive loads，the current value is less than 0.1 A （sealed），i．e．values of 3 to 40 VA sealed and 30 to 1000 VA inrush，depending on the voltage．
For this type of application the electrical durability will exceed 10 million operating cycles．
Application example：XCKJ161＋LC1D12••••（7 VA sealed， 70 VA inrush）．
Electrical durability＝ 10 million operating cycles．

## Switching capacity

1 Normal industrial PLC input type 1 （PLC：industrial programmable logic controllers）
2 Normal industrial PLC input type 2
3 Switching capacity conforming to IEC 60947－5－5，utilisation category AC－15，DC－13

A300	240 V	3 A	B300	240 V
Q300	250 V	0.27 A	R	

4 Switching capacity conforming to IEC 60947－5－1，utilisation category AC－15，DC－13

A300	120 V	6 A	B300	120 V
Q300	125 V	0.55 A	R300	125 V
0.27 A				

Electrical durability for small loads
■ The use of limit switches with programmable controllers is becoming more common．
－With small loads，limit switches offer the following levels of reliability：
－failure rate of less than 1 for 100 million operating cycles using snap action contacts （contacts XE2SP），
－failure rate of less than 1 for 20 million operating cycles using slow break contacts （contacts XE•NP and XE3SP）．
$\square$ failure rate of less than 1 for 5 million operating cycles using contacts XCMD．

## Limit switches

XC range
General

## Contact blocks (continued)



## Functional diagrams of snap action contacts

## ■ Example: $\mathrm{NC}+\mathrm{NO}$

A - Maximum travel of operator in millimetres or degrees.
$B$ - Tripping travel of contact.
C - Resetting travel of contact.
$D$ - Differential travel $=B-C$.
$P$ - Point from which positive opening is assured.
$\square$ Linear movement (plunger)
1 - Resetting point of contact.
2 - Tripping point of contact.
A - Maximum travel of operator in millimetres.
$B$ - Tripping travel of contact.
C - Resetting travel of contact.
$D$ - Differential travel $=B-C$.
$P$ - Point from which positive opening is assured.

- Rotary movement (lever)

1 - Resetting point of contact.
2 - Tripping point of contact.
A - Maximum travel of operator in degrees.
B - Tripping travel of contact.
C - Resetting travel of contact.
$D$ - Differential travel $=B-C$.
$P$ - Point from which positive opening is assured.

## Functional diagrams of slow break contacts

## ■ Example: NC + NO break before make

A - Maximum travel of operator in millimetres or degrees.
B - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
$P$ - Point from which positive opening is assured.

- Linear movement (plunger)

1-Tripping and resetting points of contact 21-22.
2 - Tripping and resetting points of contact 13-14
A - Maximum travel of operator in millimetres.
$B$ - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
$P$-Positive opening point.

- Rotary movement (lever)

1-Tripping and resetting points of contact 21-22.
2-Tripping and resetting points of contact 13-14.
A - Maximum travel of operator in degrees.
$B$ - Tripping and resetting travel of contact 21-22.
C - Tripping and resetting travel of contact 13-14.
$P$ - Positive opening point.

Contact blocks（continued）， mounting

## Limit switches

XC range
General

## Contact blocks（continued）



XE2•P screw clamp terminal connections


XE3•P screw clamp terminal connections

## Mounting

## Contact connections

■ Tightening torque：
$\square$ minimum tightening torque ensuring the nominal characteristics of the contact： $0.8 \mathrm{~N} . \mathrm{m}$ ，
$\square$ maximum tightening torque without damage to the terminals： 1.2 N．m for XE2•P， 1 N．m for XE3•P．
■ Connecting cable：cable preparation lengths：
－for XE2•P，$L=22 \mathrm{~mm}$ ，
$\square$ for XE2•P3ゃゃゃ，$L=45 \mathrm{~mm}$ ，

$\square$ for $X E 3 \bullet P, L=14 \mathrm{~mm}, L 1=11 \mathrm{~mm}$ ．


## Sweep of connecting cable

1 Recommended
2 To be avoided


Position of cable gland
1 Recommended
2 To be avoided


## Type of cam

1 Recommended
2 To be avoided


2


Mounting and fixing limit switches by the head
1 Recommended
2 Forbidden

XCKD，XCKP，XCKT，XCMD，XCMH and XCMN


## Limit switches

## XC range

General

Setting-up					
Tightening torque					
- The minimum torque is that required to ensure correct operation of the switch. The maximum torque is the value which, if exceeded, will damage the switch.					
Range	Item	Torque (N.m)		Torque (lb-in)	
		Min.	Max.	Min.	Max.
Compact design XCKD, XCKP, XCKT	Cover	0.8	1.2	7.08	10.62
	Fixing screw for lever on rotary head	1	1.5	8.85	13.27
Miniature design XCMD, XCMH, XCMN, XCMV	Fixing screw for the product	1	1.5	8.85	13.27
	Fixing screw for lever on rotary head	1	1.5	8.85	13.27
Compact design XCKN	Cover	0.8	1.2	7.08	10.62
	Fixing screw for lever on rotary head	1	1.5	8.85	13.27
Classic design XCKJ	Cover	1	1.5	8.85	13.27
	Fixing nut for lever on rotary head	1	1.5	8.85	13.27
Classic design XCKS	Cover	0.8	1.2	7.08	10.62
	Fixing nut for lever on rotary head ZCKD	1	1.5	8.85	13.27
	Fixing nut for lever on rotary head XCKS	0.8	1.2	7.08	10.62
	Fixing head on body	0.8	1.2	7.08	10.62
Classic design XCKM, XCKML, XCKL	Cover	0.8	1.2	7.08	10.62
	Fixing nut for lever on rotary head	1	1.5	8.85	13.27
XCMH, XCMN	XCKD, XCKP, XCKT, XCMD, XCMV				
(1) 2 spacers supplied with the switch.   (2) 2 screws $\varnothing 4 m m$ (not included).	All the heads can be adjusted in $15^{\circ}$ steps throughout $360^{\circ}$, in relation to the body.		rs can $360^{\circ}, i$	sted in on to th	eps zontal
XCKJ					
- Adjustable throughout $360^{\circ}$ in $5^{\circ}$ steps, or in $45^{\circ}$ steps by reversing the lever or its mounting.   1 Reversed a $=5^{\circ}$   2 Forward $\alpha=45^{\circ}$					



## Limit switches <br> XC range <br> General

## Direction of actuation programming



Head ZC2JE05


Head ZCKE05


Head ZCKD05

■ XCKD, XCKP, XCKT and XCMD


Head ZCE05

## Specific cams for heads ZCKE09 and ZC2JE09

10.5 mm min.

22 mm min .




A = length of lever +11 mm
ZCKE09: $13<h<18 \mathrm{~mm}$ and $B=12 \mathrm{~mm}$ max.
ZC2JE09: $14<h<24 \mathrm{~mm}$ and $B=6 \mathrm{~mm}$ max.


## Form C, with end roller plunger



## Form E, with roller lever for 1 direction of actuation



Reminder of the standards
(continued)

## Limit switches

XC range
General

Reminder of the standards (continued)
CENELEC EN 50041
The European standards organisation CENELEC, which has 14 member countries, has defined in this standard the second type of limit switch.

(2) Maximum value
A: reference axis
B: optional elongated holes Sa: tripping threshold
H: differential travel
P: tripping point
E: cable entry

Form B, with end plunger (rounded)


Form D, with rod lever


Form C, with end roller plunger


Form F, with side plunger (rounded)


Form G, with side roller plunger


## Limit switches

XC Special range
For very severe applications, XC2J

## $\square$ With head for linear movement (plunger)



Page 26

- With head for rotary movement (lever)


Page 26

## General characteristics

## Limit switches

XC Special range
For very severe applications, XC2J

Environment characteristics						
Conformity to standards	Products	IEC/EN 60947-5-1, IEC 60337-1, VDE 0660-200, UL 508, CSA C22-2 n 14				
	Machine assemblies	IEC/EN 60204-1, NF C 79-130				
Product certifications	Standard version	CSA 300 V -.- HD, 60 W ~				
	Special version	UL 250 V ~ HD Listed, CSA $300 \mathrm{~V} \sim \mathrm{HD}, 60 \mathrm{~W}$ with 1/2" NPT tapped cable entry				
Protective treatment	Standard version	"TC"				
Ambient air temperature	For operation	$-25 . .+70^{\circ} \mathrm{C}$. Special adaptable sub-assemblies: $-40^{\circ} \mathrm{C}$ or $+120^{\circ} \mathrm{C}$				
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$				
Vibration resistance		$10 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to IEC 60068-2-6				
Shock resistance		25 gn ( 18 ms ) conforming to IEC 60068-2-27				
Electric shock protection		Class I conforming to IEC 60536 and NF C 20-030				
Degree of protection		IP 65 conforming to IEC 60529, IP 657 conforming to NF C 20-010				
Repeat accuracy		0.01 mm on the tripping points, with 1 million operating cycles for head with end plunger				
Cable entry		1 entry incorporating cable gland. Clamping capacity: $6 \ldots 13.5 \mathrm{~mm}$				
Contact block characteristics						
Rated operational characteristics		~AC-15; A300 (Ue = 240 V , le = 3 A )   … DC-13; Q300 ( $\mathrm{Ue}=250 \mathrm{~V}$, le = 0.27 A), conforming to IEC 60947-5-1 Appendix A, EN 60947-5-1				
Rated insulation voltage		500 V conforming to IEC 60947-5-1, group C conforming to NF C 20-040, 300 V conforming to CSA C22-2 n 14				
Resistance across terminals		$\leqslant 25 \mathrm{~m} \Omega$ conforming to NF C 93-050 method A or IEC 60255-7 category 3				
Short-circuit protection		10 A cartridge fuse type gG (gl)				
Connection Screw clamp terminals   Minimum actuation speed		XCKZ01: clamping capacity, $\min : 1 \times 0.5 \mathrm{~mm}^{2}, \max : 2 \times 2.5 \mathrm{~mm}^{2}$ XESP10•1: clamping capacity, $\min : 1 \times 0.75 \mathrm{~mm}^{2}$, max: $2 \times 1.5 \mathrm{~mm}^{2}$				
		$0.001 \mathrm{~m} /$ minute				
Electrical durability		- Conforming to IEC $60947-5-1$ Appendix C- Utilisation categories AC-15 and DC-13- Maximum operating rate: 3600 operating cycles/hourLoad factor: 0.5				
		XCKZ01, XESP1021, XESP1031				
	AC supply   $50 / 60 \mathrm{~Hz}$ ~   m inductive circuit					
	DC supply ---		Voltage V	24	48	120
			Power broken in $\mathbf{W}$ for 5 million operating cycles m	10	7	4

References, characteristics

## Limit switches

XC Special range
For very severe applications, XC2J
Complete switches, fixed body,
1 cable entry incorporating cable gland


Complementary characteristics not shown under general characteristics (page 25)

Switch actuation	On end	By $30^{\circ} \mathrm{cam}$	On end	By $30^{\circ} \mathrm{cam}$		By any moving part
Type of actuation			PE			
Maximum actuation speed	$0.5 \mathrm{~m} / \mathrm{s}$			$1.5 \mathrm{~m} / \mathrm{s}$		
Mechanical durability (in millions of operating cycles)	30	25	30			
Minimum tripping force or torque	18 N		26 N	With head ZC2JE01: 0.30 N.m With head ZC2JE05: 0.20 N.m		
Cable entry	1 tapped entry incorporating metal cable gland. Clamping capacity 6 to 13.5 mm					
Other versions	Switches with gold flashed contacts. Special protective treatments. Please consult our Customer Care Centre.					

## Dimensions

## Limit switches

XC Special range
For very severe applications, XC2J
Complete switches, fixed body,
1 cable entry incorporating cable gland

(1) Fixing from the rear: by 2 M5 screws.

Depth of thread on switch: 10 mm .
(2) 222 max
(3) 125 max.
(4) 148 max
$\varnothing$ : Fixing from the front via 2 holes $\varnothing 5.5$
Cable gland incorporated (all XC2JC models).

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Variable composition


ZC2JC1, JC2, JC18, JC28


Rotary head
Multi-directional head

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies (see operation page 34)				
1 step	Single-pole 1 CO snap action (XCKZ01)		ZC2JC1	0.355
	Double-pole 2 CO simultaneous, snap action (XESP1021)		ZC2JC2	0.355
2 step	Double-pole 2 CO staggered, snap action (XESP1031)		ZC2JC4	0.355



Plug-in bodies (see operation page 34)				
1 step	Single-pole CO snap action		ZC2JD1	0.380
	Double-pole 2 CO simultaneous, snap action		ZC2JD2	0.380
2 step	Double-pole 2 CO staggered, snap action		ZC2JD4	0.380


Bodies incorporating gold flashed contacts, for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies (see operation page 34)				
1 step	Single-pole 1 CO snap action (XCKZ018)	$\begin{array}{\|c\|c\|} \underset{\sim}{\sim} & \underset{\sim}{\mp} \\ \hline \end{array}$	ZC2JC18	0.355
	Double-pole 2 CO simultaneous, snap action (XESP1028)	$\begin{array}{\|c\|c\|c\|c\|} \sim & \mp & \underset{N}{N} & \bar{N} \\ \hdashline & \sim & N & N \end{array}$	ZC2JC28	0.360
2 step	Double-pole 2 CO staggered, snap action (XESP1038)	$\begin{array}{\|c\|c\|c\|c\|} \underset{\sim}{\sim} & \mp & \underset{N}{N} & \bar{N} \\ \hdashline & \sim & \underset{N}{N} & N \end{array}$	ZC2JC48	0.360

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies

Plunger heads   Type of operator	Compatible bodies	Maximum actuation   speed	Reference	Weight   kg
For actuation on end   End plunger   metal	ZC2J•1	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE61	0.195
	ZC2J•2			


Side plunger   metal	ZC2J•1   ZC2J•2	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE63	0.240
	ZC2J•4	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE83	0.240


For actuation by $\mathbf{3 0}$			
End ball bearing plunger			
ZC2J•1			
ZC2J•2			


End roller plunger   steel	ZC2J•1   ZC2J•2	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE62	0.200
	ZC2J $\bullet 4$	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE82	0.200


Side plunger with   horizontal roller   steel	ZC2J $\bullet 1$   ZC2J $\bullet 2$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE64	0.245
	ZC2J $\bullet 4$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE84	0.245


Side plunger with   vertical roller   steel	ZC2J•1   ZC2J•2	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE65	0.245
	ZC2J•4	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE85	0.245

ZC2JE•5

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


ZC2JE0•

Rotary heads (without operating lever)				
Type	Compatible bodies	Maximum actuation speed	Reference	Weight kg
Spring return (see operation page 34)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE01	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE04	0.210
Actuation from left	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE02	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE06	0.210
Actuation from right	$\begin{aligned} & \mathrm{ZC} 2 \mathrm{Z} \bullet 1 \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE03	0.210
	ZC2J•4	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE07	0.210
Actuation from left OR right (see page 22)	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE05	0.210
Stay put (see page 22)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•1 } \\ & \text { ZC2J•2 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE09	0.210


Multi-directional head (with operator)					
Type of operator	Compatible bodies	Maximum actuation   speed	Reference		Weight
---:					
kg					

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


| Contact blocks  <br> Type of contact  <br> Single-pole 1 CO <br> snap action Scheme | For body | Reference | Weight <br> kg |
| :--- | :--- | :--- | :--- | :--- | :--- |

Contact blocks with gold flashed contacts

Type of contact	Scheme	For body	Reference	Weight kg
Single-pole 1 CO snap action		ZC2JC18	XCKZ018	0.050
Double-pole 2 CO simultaneous, snap action	$\begin{array}{c\|c\|c\|c\|} \sim & \mp & \underset{N}{N} & \bar{N} \\ \hdashline & \sim & \underset{N}{N} & N \end{array}$	ZC2JC28	XESP1028	0.055

Double-pole 2 CO
staggered,
snap action


ZC2JC48 XESP1038
0.055

Operation, dimensions

## Limit switches

## XC Special range

For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


Heads ZC2JE83, ZC2JE84, ZC2JE85 with body ZC2J•4

Unactuated	$1^{\text {st }}$ step	$2^{\text {nd }}$ step
Heads ZC2JE04 with body ZC2J•4		
Unactuated	Actuated from left	Actuated from right

Heads ZC2JE06, ZC2JE07 with body ZC2J•4


## Dimensions

Fixed bodies
ZC2JC1, ZC2JC2, ZC2JC4


[^1](1) Incorporated cable gland
$\varnothing$ : Fixing from the rear by 2 M6 screws
Fixing from the front via 2 holes $\varnothing 5.5$ (remove front part of switch for access)

## Dimensions (continued)

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body
Adaptable sub-assemblies


Rotary heads (ZC2JE01 to ZC2JE07) with operating lever

ZC2JY11, ZC2JY12, ZC2JY13

## ZC2JY31

ZC2JY51


ZC2JY81

(1) 125 max.

(2) 148 max


Rotary heads (ZC2JE09) with operating lever ZC2JY61


ZC2JY71



Multi-directional heads ZC2JE70


## Limit switches

## XC Special range

For very severe applications, XC2J
Fixed or plug-in body, adaptable sub-assemblies for low temperature applications $\left(-40^{\circ} \mathrm{C}\right)$


ZC2JD•6

Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies				
1 step	Single-pole 1 CO snap action (XCK Z01)		ZC2JC16	0.355
	Double-pole 2 CO simultaneous, snap action (XES P1021)		ZC2JC26	0.355
2 step	Double-pole 2 CO staggered, snap action (XES P1031)		ZC2JC46	0.355
Plug-in bodies				
1 step	Single-pole CO snap action	$\begin{aligned} & \underset{\sim}{\sim} \mid \\ & \underset{\sim}{\tau} \\ & \hline \end{aligned}$	ZC2JD16	0.380
	Double-pole 2 CO simultaneous, snap action		ZC2JD26	0.380
2 step	Double-pole 2 CO staggered, snap action		ZC2JD46	0.380


Plunger heads				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation on end				
End plunger metal	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE616	0.195
	ZC2J•46	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE816	0.195
Side plunger metal	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \\ & \hline \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE636	0.240
	ZC2J•46	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE836	0.240


For actuation by $30^{\circ} \mathrm{cam}$				
End ball bearing plunger	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	0.1 m/s	ZC2JE666	0.205
End roller plunger steel	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE626	0.200
	ZC2J•46	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE826	0.200
Side plunger with horizontal roller steel	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \\ & \hline \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE646	0.245
	ZC2J•46	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE846	0.245
Side plunger with vertical roller steel	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE656	0.245
	ZC2J•46	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE856	0.245

$\qquad$

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed or plug-in body, adaptable sub-assemblies for low
temperature applications $\left(-40^{\circ} \mathrm{C}\right)$


ZC2JE0•6

Rotary heads (without operating lever)				
Type	Compatible bodies	Maximum actuation speed	Reference	Weight kg
Spring return				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE016	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE046	0.210
Actuation from left	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE026	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE066	0.210
Actuation from right	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE036	0.210
	ZC2J•46	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE076	0.210
Actuation from left OR right (see page 22)	$\begin{aligned} & \hline \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE056	0.210
Stay put (see page 22)				
Actuation from left AND right	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1.5 \mathrm{~m} / \mathrm{s}$	ZC2JE096	0.210


Multi-directional head (with operator)				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation by any moving part				
"Cat's whisker"	$\begin{aligned} & \text { ZC2J•16 } \\ & \text { ZC2J•26 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$ in any direction	ZC2JE706	0.190

## Limit switches

## XC Special range

For very severe applications, XC2J
Fixed or plug-in body, adaptable sub-assemblies for low temperature applications $\left(-40^{\circ} \mathrm{C}\right)$

Operating levers for rotary heads

Description	Reference	Weight   kg
For actuation by $\mathbf{3 0 ^ { \circ }} \mathbf{\text { cam }}$		
Roller lever (1)	Thermoplastic	ZC2JY11


Steel	ZC2JY13	0.040
Steel, ball bearing mounted	ZC2JY12	0.040


Variable length	Thermoplastic	ZC2JY31	0.045


For actuation by any moving part
$\begin{array}{lll}\text { Rigid rod lever } \quad \text { Steel } \boxtimes 3 \mathrm{~mm}, \mathrm{~L}=125 \mathrm{~mm}(1) & \text { ZC2JY51 } & 0.035\end{array}$

Spring lever (1)	ZC2JY81	0.040


Spring-rod lever (1)	ZC2JY91	0.040



ZC2JY71


ZC2JY61


For actuation by specific cam (only for operation with head ZC2 JE096, see page 22)
Forked arm with rollers 1 track $\quad$ ZC2JY71 0.055
thermoplastic
(1)

(1) Adjustable throughout $360^{\circ}$
Other versions Other operating levers for rotary heads.

Please consult our Customer Care Centre.

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$


Bodies with contacts for plunger or rotary head				
Type	With contact block	Scheme	Reference	Weight kg
Fixed bodies				
1 step	Single-pole 1 CO snap action (XCK Z015)		ZC2JC15	0.355
	Double-pole 2 CO   simultaneous,   snap action   (XES P10215)		ZC2JC25	0.355
2 step	Double-pole 2 CO staggered, snap action (XES P10315)		ZC2JC45	0.355
Plunger heads				
Type of operator	Compatible bodies	Maximum actuation speed	Reference	Weight kg
For actuation on end				
End plunger metal	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE615	0.195
	ZC2JC45	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE815	0.195
Side plunger metal	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE635	0.240
	ZC2JC45	$0.5 \mathrm{~m} / \mathrm{s}$	ZC2JE835	0.240


For actuation by $30^{\circ} \mathrm{cam}$				
End ball bearing plunger	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$0.1 \mathrm{~m} / \mathrm{s}$	ZC2JE665	0.205
End roller plunger steel	$\begin{aligned} & \text { ZC2JC15 } \\ & \text { ZC2JC25 } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE625	0.200
	ZC2JC45	$1 \mathrm{~m} / \mathrm{s}$	ZC2JE825	0.200


Side plunger with   horizontal roller   steel	ZC2JC15   ZC2JC25	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE645	0.245
	ZC2JC45	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE845	0.245


Side plunger with   vertical roller   steel	ZC2JC15   ZC2JC25	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE655	0.245
	ZC2JC45	$0.6 \mathrm{~m} / \mathrm{s}$	ZC2JE855	0.245


Operation:	Dimensions:
page 34	pages 34 and 35

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$

$\left.\begin{array}{lllll}\hline \begin{array}{l}\text { Rotary heads (without operating lever) } \\ \text { Type } \\ \text { Compatible } \\ \text { bodies }\end{array} & \begin{array}{l}\text { Maximum actuation } \\ \text { speed }\end{array} & \begin{array}{c}\text { Reference }\end{array} & \begin{array}{r}\text { Weight } \\ \text { Spring return }\end{array} \\ \begin{array}{l}\text { Actuation from } \\ \text { left AND right }\end{array} & \begin{array}{lll}\text { ZC2JC15 } \\ \text { ZC2JC25 }\end{array} & 1.5 \mathrm{~m} / \mathrm{s} & \text { ZC2JE015 }\end{array}\right] .0 .210$

| Stay put (see page 22) |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| Actuation from ZC2JC15 | $1.5 \mathrm{~m} / \mathrm{s}$ | ZC2JE095 | 0.210 |

ZC2JC25
$\left.\begin{array}{|lllll}\hline \text { Multi-directional head (with operator) } & \text { Maximum actuation } & \text { Reference } & \begin{array}{l}\text { Weight } \\ \text { speed }\end{array} \\ \hline \text { Type of operator } & \text { Compatible } \\ \text { bodies }\end{array}\right]$

## Limit switches

XC Special range
For very severe applications, XC2J
Fixed body, adaptable sub-assemblies for high
temperature applications $\left(+120^{\circ} \mathrm{C}\right)$


ZC2JY51


ZC2JY815


ZC2JY715


Operating levers for rotary heads			
Description		Reference	Weight
For actuation by $30^{\circ} \mathrm{cam}$			
Roller lever (1)	Thermoplastic	ZC2JY115	0.030
	Steel	ZC2JY13	0.040
	Steel, ball bearin	ZC2JY12	0.040


Offset roller   lever (1)	Thermoplastic	ZC2JY215	0.035
Variable length   roller lever (1)	Thermoplastic	ZC2JY315	0.035
Variable length   offset roller   lever (1)	Thermoplastic	ZC2JY415	0.040
For actuation by any moving part    Rigid rod lever Steel $\square 3 \mathrm{~mm}, \mathrm{~L}=125 \mathrm{~mm} \mathrm{(1)}$	ZC2JY51	0.035	
Spring lever (1)		ZC2JY815	0.040
Spring-rod lever (1)	ZC2JY915	0.040	

For actuation by specific cam (only for operation with head ZC2JE095, see page 22)

Forked arm with rollers   thermoplastic (1)	1 track	ZC2JY715	0.055
	2 track	ZC2JY615	0.055


Contact blocks				
Type of contact	Scheme	For body	Reference	Weight kg
Single-pole 1 CO snap action		ZC2JC15	XCKZ015	0.050
Double-pole 2 CO simultaneous, snap action		ZC2JC25	XESP10215	0.045
Double-pole 2 CO staggered, snap action		ZC2JC45	XESP10315	0.045

(1) Adjustable throughout $360^{\circ}$
Other versions Other operating levers for rotary heads. Please consult our Customer Care Centre.

Operation:	Dimensions:
page 34	pages 34 and 35

## Limit switches

XC Special range
For hoisting and material handling applications, XCR
$\square$ With head for rotary movement operators, spring return to off position
1 contact actuation position per direction


Page 46
$\square$ With head for rotary movement operators, stay put
1 contact actuation position per direction


Page 46

## Limit switches

XC Special range
For hoisting and material handling applications, XCKMR and XCKVR
For conveyor belt shift monitoring applications, XCRT

## - XCKMR (metal)



Page 52
$\square$ With head for rotary movement operators, spring return to off position
2 contact actuation positions per direction
1 contact actuated at $10^{\circ}$, other contact at $18^{\circ}$



Page 48

## General characteristics

## Limit switches

XC Special range
For hoisting and material handling applications, XCR, XCKMR and XCKVR
For conveyor belt shift monitoring applications, XCRT

Environment characteristics				
Limit switches		XCR and XCRT	XCKMR (metal)	XCKVR (plastic)
Conformity to standards	Products	$\begin{aligned} & \text { EN/IEC 60947-5-1, } \\ & \text { CSA C22-2 n } 14, \text { CCC } \end{aligned}$	EN/IEC 60947-5-1,   CSA C22-2 n ${ }^{\circ} 14$, UL 508, CCC	
	Machine assemblies	EN/IEC 60204-1		
Product certifications		XCRA, B, E, F: C€, CSA, UL CCC, EAC	C€, UL, CSA, CCC, EAC	
Protective treatment	Standard version	"TC"		
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+70^{\circ} \mathrm{C}$
Vibration resistance	Conforming to EN/IEC 60068-2-6	$9 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$	$25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$	$25 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$
Shock resistance	Conforming to EN/IEC 60068-2-27	XCRA, B, E, F: 68 gn, XCRT: 30 gn ( 18 ms )	50 gn	50 gn
Electric shock protection		Class I conforming to IEC 6053		Class II conforming to IEC 60536
Degree of protection	Conforming to EN/IEC 60529	XCRA, B, E, F: IP 65 XCRT: IP 65	IP 66	IP 65
Degree of protection against mechanical impacts	Conforming to IEC 62262	IK 07	IK 07	IK 04
Materials	Enclosure	Metal (except XCRT315: polyester)	Zamak ZP3	(PBT + PC) - GF 30 FR (Valox)
	Cover	Metal (except XCRT315: polyester)	DC03 steel	(PBT + PC) - GF 30 FR (Valox)
	Head	Metal	Zamak ZP3	(PBT + PC) - GF 30 FR (Valox)
Cable entry		1 tapped entry for Pg 13.5 cable gland	3 tapped entries for Pg 13.5 cable gland or tapped M20 $\times 1.5$	1 tapped entry M20 $\times 1.5$. 2 breakout holes for ISO M20 cable gland
Contact block chara	cteristics			
Rated operational characteristics	Conforming to EN/IEC 60947-5-1 Appendix A	XCRA, B, E, F: $\begin{aligned} & \sim \mathrm{AC}-15 ; \text { A300 }(\mathrm{Ue}=240 \mathrm{~V}, \\ & \mathrm{le}=3 \mathrm{~A}), \text { Ithe }=10 \mathrm{~A} \\ & =-\mathrm{DC}-13 ; \text { Q300 }(\mathrm{Ue}=250 \mathrm{~V}, \\ & \mathrm{le}=0.27 \mathrm{~A}) \end{aligned}$   XCRT: $\begin{aligned} & \sim A C-15 ; \text { B300 }(\mathrm{Ue}=240 \mathrm{~V}, \\ & \mathrm{le}=1.5 \mathrm{~A} / \mathrm{Ue}=120 \mathrm{~V}, \\ & \mathrm{le}=3 \mathrm{~A}) \\ & =-\mathrm{DC}-13 ; \mathrm{R} 300(\mathrm{Ue}=250 \mathrm{~V}, \\ & \mathrm{le}=0.1 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \sim \text { AC-15; A300 (Ue = } 240 \mathrm{~V} \\ & =-\mathrm{DC}-13 ; \text { Q150 (Ue }=125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =3 \mathrm{~A}), \text { Ithe }=10 \mathrm{~A} \\ & e=0.55 \mathrm{~A}) \end{aligned}$
Rated insulation voltage		$\mathrm{Ui}=500 \mathrm{~V}$ degree of pollution 3 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 50	conforming to EN/IEC 60947   8, CSA C22-2 n 14	
Rated impulse withstand volt		U imp $=6 \mathrm{kV}$ conforming to EN/	IEC 60947-1, IEC 60664	
Positive operation (depending	on model)	NC contacts with positive opening operation conforming to EN/IEC 60947-5-1 Section 3 (except XCRT)	NC contacts with positive op EN/IEC 60947-5-1 Section 3	ing operation conforming to ontacts 21-22)
Resistance across terminals		$\leqslant 25 \mathrm{~m} \Omega$ conforming to NF C 93	-050 method A or IEC 60255-	category 3
Short-circuit protection		10 A cartridge fuse type gG (gl)		
Connection	Screw clamp terminals	Clamping capacity   XE2N P2151 ou XCRT:   $\mathrm{min}: 1 \times 0.5 \mathrm{~mm}^{2}$, $\max : 2 \times 2.5 \mathrm{~mm}^{2}$   XE2S P2151:   min: $1 \times 0.34 \mathrm{~mm}^{2}$,   max: $2 \times 1.5 \mathrm{~mm}^{2}$	Clamping capacity   $\min : 1 \times 0.5 \mathrm{~mm}^{2}$   $\max : 2 \times 2.5 \mathrm{~mm}^{2}$	
Minimum actuation speed		XE2SP2151 or XCRT:   $0.01 \mathrm{~m} / \mathrm{mn}$	XE2NP2151 or XCKMR and XCKVR : $6 \mathrm{~m} / \mathrm{mn}$	

General characteristics (continued)

## Limit switches

XC Special range
For hoisting and material handling applications, XCR,
XCKMR and XCKVR
For conveyor belt shift monitoring applications, XCRT

## Contact block characteristics (continued)

Conforming to EN/IEC 60947-5-1 Appendix C
Utilisation categories AC-15 and DC-13
Maximum operating rate: 3600 operating cycles/hour
Load factor: 0.5


AC supply
$\sim 50 / 60 \mathrm{~Hz}$
$\sim 50 / 60 \mathrm{~Hz}$
$m$ inductive circuit


XCRT contacts


DC supply ---		Voltage V	24	48	120
	Power broken in $\mathbf{W}$ for 5 million operating cycles $m$	XE2SP2151	10	7	4
		XE2NP2151	13	9	7
		XCRT contacts	10	7	4

For XE2SP2151 on ~ or --- NC and NO contacts simultaneously loaded to the values shown with reverse polarity.

References, characteristics

## Limit switches

XC Special range
For hoisting and material handling applications, XCR Complete switches with 1 cable entry


Complementary characteristics

Lever maximum actuation speed		$1.5 \mathrm{~m} / \mathrm{s}$	
Mechanical durability		10 million operating cycles	
Minimum torque	For tripping	0.45 N.m	0.60 N.m
	For positive opening	0.75 N.m	0.70 N.m
Cable entry		1 entry tapped for Pg 13.5 cable gland conforming to NF C 68-300 (DIN Pg 13.5) Clamping capacity 9 to 12 mm	
		(3) For a limit switch with watertight reinforced seal (IP 65), add 1 to the end of the reference. Example: XCRF17 becomes XCRF171.   (4) For XCRE18 and XCRE58, the rotation is not limited.	

## Dimensions:

page 50

## Limit switches

XC Special range
For hoisting and material handling applications, XCR


Separate components				
Description	For switches	Type	Reference	Weight kg
$\mathrm{Rod}, \square 6 \mathrm{~mm}$	XCRA XCRB XCRE XCRF	$\mathrm{L}=200 \mathrm{~mm}$	XCRZ03	0.020
	XCRF	$\mathrm{L}=300 \mathrm{~mm}$	XCRZ04	0.030
Roller lever thermoplastic roller	$\begin{aligned} & \text { XCRA } \\ & \text { XCRB } \end{aligned}$	-	XCRZ02	0.050
Large roller lever thermoplastic roller	$\begin{aligned} & \text { XCRA } \\ & \text { XCRB } \end{aligned}$	-	XCRZ05	0.090
Quick fixing/ release bracket	XCRA, XCRB XCRE, XCRF	-	XCRZ09	0.520
Contact block (2 contacts) with mounting plate	XCRA, XCRB XCRE, XCRF	$\begin{aligned} & \text { 2-pole NC + NO } \\ & \text { snap action } \end{aligned}$	XCRZ12	0.135
		2-pole NC + NO break before make, snap action	XCRZ15	0.135

References, characteristics

## Limit switches

## XC Special range

For conveyor belt shift monitoring applications, XCRT
Complete switches with 1 cable entry


Complementary characteristics


Dimensions
page 51
page 51

## Limit switches

XC Special range
For conveyor belt shift monitoring applications, XCRT


Separate components				
Description	Type	For switches	Reference	Weight   $\mathbf{k g}$
Roller with lever	Zinc plated steel	XCRT115   XCRT215	XCRZ901	0.230


Stainless steel	XCRT115	XCRZ902	0.230


| XCRT315 XCRZ903 | 0.230 |
| :--- | :--- | :--- |



XCRZ09

Quick fixing/release   bracket	-	XCRT115   XCRT215	XCRZ09	0.520
Contact block   (2 contacts) with   mounting plate	Single-pole CO   snap action	XCRT•15	XCRZ42	0.135



XCRZ42

## Limit switches

XC Special range
For hoisting and material handling applications, XCR

XCRA11, XCRB11, XCRA51, XCRB51


XCRA15, XCRB15, XCRA55, XCRB55


XCRA12, XCRB12, XCRA52, XCRB52


XCRE18, XCRE58, XCRF17, XCRF57

(1) 1 tapped entry for Pg 13.5 cable gland.
(2) Rod length: 200 mm .
(3) Rod + roller length: 160 mm
(4) Rod length: 300 mm for XCRF17 and XCRF57, 200 mm for XCRE18 and XCRE58.

Supplementary fixing using 2 adjustable lugs (included with switch)
Horizontally positioned
Vertically positioned


[^2]| Characteristics: | References: |
| :--- | :--- |
| pages 44 to 46 | page 46 |

## Limit switches

XC Special range
For conveyor belt shift monitoring applications, XCRT

XCRT115, XCRT215


XCRT315

(1) 200 max., 104 min.
(2) $90^{\circ} \mathrm{max}$.
(3) 1 tapped entry for Pg 13.5 cable gland.
(4) $70^{\circ} \max$
(5) 1 plain entry for Pg 13.5 cable gland.

Supplementary fixing using 2 adjustable lugs (included with XCRT115 and XCRT215) Horizontally positioned

Vertically positioned



[^3]| Characteristics: | References: | Operation: |
| :--- | :--- | :--- |
| pages 44 to 48 | page 48 | page 48 |

References, characteristics

## Limit switches

XC Special range
For hoisting and material handling applications, XCKMR and XCKVR
Complete switches with 3 cable entries

Type of operating head		\| Rotary				
Material		Metal		Plastic		
Type of operator		With cruciform metal rods	With cruciform metal rods, reversed head	With cruciform metal rods	With cruciform metal rods, reversed head	
References						
"By pass" switches						
$2 \times 2$-pole NC+NO   break before make, slow break (XE2NP2151)	$2 \times 2$-pole $\mathrm{NC}+\mathrm{NO}$ break before make, slow break (XE2NP2151)	\| XCKMR24SR1H29	-	XCKVR24SR1H29	-	
"Single speed" switches						
$2 \times 2$-pole NC+NO   break before make, slow break (XE2NP2151)	$2 \times 2 \text {-pole NC+NO }$   break before make, slow break (XE2NP2151)	XCKMR44D1H29	XCKMR44D2H29	XCKVR44D1H29	XCKVR44D2H29	
"Double speed" switches ( $\Theta$ NC contact with positive opening operation on contacts 21-22)						
$2 \times 2$-pole NC+NC   break before make, slow break (non interchangeable contacts)		XCKMR54D1H29 (1)	XCKMR54D2H29 (1)	XCKVR54D1H29	XCKVR54D2H29	
Weight (kg)		0.684	0.684	0.320	0.320	
Complementary characteristics						
Switch actuation		Horizontal		Horizontal		
Permissible actuation area on the rods		Between 65 and 95 mm from the axis of the fixing screws on the body				
Minimum actuation speed		$6 \mathrm{~m} / \mathrm{mn}$		$6 \mathrm{~m} / \mathrm{mn}$		
Maximum actuation speed (2)		$1.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$		
Minimum force or torque	For tripping	0.5 N.m		0.5 N.m		
	For positive opening	0.75 N.m		0.75 N.m		
Mechanical durability		2 million operating cycles		1 million operating cycles		
Setting up		Rods included with the switch: for customer assembly				
References of separate components						
	-	Description		Reference		Weight kg
-		Rod $\square 6 \mathrm{~mm}, \mathrm{~L}=200 \mathrm{~mm}$		XCRZ03		0.020
	XCRZ03R	Rod $\nabla 6 \mathrm{~mm}$, L = 200 mm with red mark		XCRZ03R		0.020
		Plastic cable gland IS	M20	DE9PEM20010		0.010
DE9PEM20010		(1) For complete switches with entry for Pg 13.5 cable gland, delete H 29 from the end of the reference. Example: XCKMR54D1H29 becomes XCKMR54D1.   (2) For an actuation point on the rod between 65 and 95 mm from the axis of the fixing screws on the body.				

## Dimensions

## Limit switches

XC Special range
For hoisting and material handling applications,
XCKMR and XCKVR
Complete switches with 3 cable entries

(1) XCKMR $\bullet \bullet \bullet H 29=3$ tapped entries ISO M20 x 1.5

XCKMR••• $=3$ tapped entries for Pg 13.5 cable gland.
(2) 2 centring holes $\emptyset 3.9 \pm 0.2$, for cover fixing holes alignment.
$\varnothing$ : 2 elongated holes $6.2 \times 6.5$, inclined at $26^{\circ} 30^{\prime}$ to the vertical axis, for M5 screws.
Plastic limit switches
XCKVR24SR1H29, XCKVR44D2H29 and Same front view

XCKVR44D1H29 and XCKVR54D2H29


[^4]
## Limit switches

XC Special range
For hoisting and material handling applications,
XCKMR and XCKVR
Complete switches with 3 cable entries

Operation
Limit switches XCK॰R24SR1H29: "By pass"

$180^{\circ}$


$$
\begin{array}{l:l:l}
\frac{14}{22} & \frac{13}{21} & \underbrace{14}_{\text {Contact (A) }} \\
\frac{22}{22} & \frac{13}{\text { Contact }^{(B)}}
\end{array}
$$


$90^{\circ}$


$0^{\circ}$


$90^{\circ}$


$180^{\circ}$

(1) Triangle symbol marked on top of head.

Or
Limit switches XCK॰R44DっH29: "Single speed"

$180^{\circ}$


14	13	
22	21	$\underbrace{14}_{\text {Contact }}(\mathbb{A})$
22	$\frac{13}{21}$	
Contact (B)		


$90^{\circ}$


14	13	$\frac{14}{22}$	$\frac{13}{21}$
$(\mathbb{A})$	21		
Contact (B)			


$0^{\circ}$

$\overbrace{\text { Contact }}^{22}:$
(A)

$90^{\circ}$


14	$\frac{13}{22}$	$\begin{array}{c}14 \\ \text { Contact }\end{array}$	$(\mathrm{A})$
22	21		
Contact (B)			


(1) Triangle symbol marked on top of head.

Or direction of rotation.

## Limit switches

XC Special range
For hoisting and material handling applications,
XCKMR and XCKVR
Complete switches with 3 cable entries

Operation (continued)
Limit switches XCK•R54D•••ง: "Double speed"

(1) Triangle symbol marked on top of head.
or
direction of rotation.

Presentation, terminology, characteristics, mounting

## Miniature snap switches <br> XC Special range <br> Miniature design <br> General



Mechanical characteristics


T1: bounce time
T: changeover time


## Mounting

## Electromechanical detection

■ XC miniature snap switches, featuring electromechanical technology, assure the following functions:

- detection of presence or absence
- detection of position.

Actuation of the operator (plunger or lever) on the miniature snap switch causes the electrical contact to change state. This information can then be processed by a PLC controlling the installation. XC miniature snap switches can be used both in industrial applications and the building sector.

## Features

■ XC miniature snap switches incorporate a CO snap action, single break, contact. They are characterised by:

- high electrical ratings for their very small size,
- short tripping travel,
low tripping force,
$\square$ high repeat accuracy on the tripping points,
long service life.


## Forces

- Maximum tripping force:
maximum force which must be applied to the operator to move it from the rest (unactuated) position to the trip position (tripping point).
- Minimum release force:
value to which the force on the operator must be reduced to allow the snap action mechanism to return to its rest (unactuated) position.
- Maximum permissible end of travel force:
maximum force that can be applied to the operator at the end of its travel without damaging the switch.


## Position/Travel

1 Tripping point: position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state.
A Differential travel: distance between the tripping point and the position at which the snap action mechanism returns to its initial state on release of the operator.
2 Overtravel limit: position of the operator when an extreme force has moved it to the effective end of its available travel.
B Overtravel: distance between the tripping point and the overtravel limit.
The reference point for the figures given for forces and travel is a point $F$, which is situated on the plunger in the case of a basic switch or at 3 mm from the end of the plain lever in the case of a lever operated switch.

## Changeover time

- This is the time taken by the moving contact when moving from one fixed contact to another until it becomes fully stable (contact bounce included).
- This time is related to the inter-contact distance, the mechanical characteristics of the snap action mechanism and the mass of the moving element. However, due to the snap action mechanisms used, the time is largely independent to the speed of operation. It is normally less than 20 milliseconds (including bounce times of less than 5 ms ).


## Operating speed and maximum usable operating rate

- Our miniature snap switches are suitable for a wide range of operating speeds: generally, from $1 \mathrm{~mm} / \mathrm{mn}$ to $1 \mathrm{~m} / \mathrm{s}$.
- The maximum usable operating rate on a light electrical load may be as high as 10 operations/second.


## Mounting and operation

- To conform to the leakage paths and air gaps in standards EEC 24 - EN/IEC 61058 EN/IEC 60947
$\square$ an insulation pad must be inserted between the snap switch and the fixing surface if the latter is metal
- manual operation of a metal actuator must only be carried out with the aid of an intermediate actuator made of an insulating material.
- The installer must ensure adequate protection against direct contact with the output terminals.


## Actuation method

- Direct operation:
$\square$ the plunger should preferably be actuated along its axis. However, the majority of our miniature snap switches will accept skewed operation provided the angle of actuation is not more than $45^{\circ}$
The travel of the actuator must not be limited to only reaching the tripping point. The actuator must always be operated in such a manner so that the plunger reaches a point at least 0.5 times the stated overtravel value of the switch. Steps must also be taken to ensure that it does not reach its end of travel nor exceed the maximum permissible end of travel force.


## Mounting, characteristics <br> (continued)

## Characteristics (continued)



## Actuation method (continued)

## Lever operators

- when actuation is by a roller lever, force should preferably be applied in the direction shown in the diagrams opposite.
$\square$ where the movements involved are fast, the ramp should be so designed as to ensure that the operator is not subjected to any violent impact or abrupt release.


## Fixing - Tightening torque

■ The tightening torque of the fixing screws must conform to the following values:

Ø of fixing screw		$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{3 . 5}$	$\mathbf{4}$
Tightening torque (cm.N)	Maximum	25	35	60	100	150
	Minimum	15	25	40	60	100

## Resistance to mechanical shock and vibration

- Resistance to shock and vibration depends on the mass of the moving parts and on the forces holding the contacts together.
■ In general, for a miniature snap switch without accessory:
vibration > 10 gn, 10 to 500 Hz ,
shock $>50 \mathrm{gn}, 11 \mathrm{~ms} 1 / 2$ sine wave.


## Operating curves

- These indicate the electrical life of the miniature snap switches under standard conditions $\left(20^{\circ} \mathrm{C}\right.$, 1 cycle/2 seconds), by showing the number of switching operations which can be performed with given types of load. For sealed snap switches, the operating rate is 1 cycle/6s


## Insulation resistance

■ The insulation resistance of the miniature snap switches is generally greater than $50,000 \mathrm{M} \Omega$, measured at 500 V DC.

## Dielectric strength

- The dielectric strength of our miniature snap switches is generally superior to:
- 1500 Volts between live parts and earth,
- 1000 Volts between contacts,

ㅁ 600 Volts between contacts for switches with an inter-contact distance less than 0.3 mm .

## Miniature snap switches

XC Special range
Miniature design
General


Electrical characteristics


## References, <br> dimensions

## Miniature snap switches

XC Special range
Subminiature design, DIN 41635 B format, sealed

## References

Subminiature design, DIN 41635 B format, sealed

(1) In order to avoid damage to the fixing spigots, removal of the lever from complete products is not recommended.
(2) Switches sold in lots of 5 .
(3) A, B: lever fixing positions.

## Miniature snap switches

XC Special range
Subminiature design, DIN 41635 B format, sealed

Switch type		XEP4E1W7, XEP4E1FD	XEP4E1W7A326, XEP4E1FDA326	XEP4E1W7A454, XEP4E1FDA454
		Plunger	Flat lever	Roller lever
Environment characteristics				
Lever fixing position (1)		-	A	A
Switch actuation		On end	Horizontal	
Product certifications		C€, IEC 60947-5-1, EN 60947-5-1, c UR us, UL 1054, EN 61058		
Degree of protection		IP 67 XEP4E1FD $\bullet \bullet$, case IP 67 and tags IP 00 XEP4E1W7 $\bullet \bullet \bullet$		
Operating temperature		$-40 \ldots+105^{\circ} \mathrm{C}$ XEP4E1FD $\bullet \bullet$, $-40 \ldots+125^{\circ} \mathrm{C}$ XEP4E1W ${ }^{\text {co }}$		
Materials	Case	Polyester		
	Lever	-	Stainless steel	Stainless steel, glass reinforced polyamide roller
	Contact	AgCdO		
	Tags	Tinned brass XEP4E1W7•••		
Mechanical characteristics				
	Lever fixing position (1)			
Maximum tripping force	A	2.5 N	0.63 N	0.83 N
	B	2.5 N	1.25 N	1.67 N
Minimum release force	A	0.80 N	0.20 N	0.27 N
	B	0.80 N	0.40 N	0.53 N
Maximum permissible end of travel force	A	10 N	2.5 N	3.33 N
	B	10 N	5 N	6.67 N
Tripping point (TP) (2)	A	$8.40^{+/-0.3} \mathrm{~mm}$	$10.7^{+/-1.7 ~ m m ~}$	$15.5^{+/-1.4} \mathrm{~mm}$
	B	$8.40^{+/-0.3} \mathrm{~mm}$	$9.6{ }^{+/-1.0} \mathrm{~mm}$	$14.5{ }^{+/-0.9} \mathrm{~mm}$
Maximum differential travel	A	0.13 mm	0.52 mm	0.39 mm
	B	0.13 mm	0.26 mm	0.20 mm
Minimum overtravel	A	0.60 mm	2.40 mm	1.80 mm
	B	0.60 mm	1.20 mm	0.90 mm
Inter-contact distance		0.4 mm		
Mechanical durability		2 million operating cycles		
Electrical characteristics				
Operational characteristics		AC-15: B300 (Ue: 240 V, le: 1.5 A)   DC-13: R300 (Ue: 250 V, le: 0.1 A) conforming to IEC 60947-5-1, EN 60947-5-1 Appendix A 125-250 V AC 6.0 A conforming to UL 1054   6 (1)A 250 V AC 10000 cycles conforming to EN 61058		
Thermal current		7.5 A on $250 \mathrm{~V}(50 / 60 \mathrm{~Hz})$		
Connection		XEP4E1W7 and XEP4E1W7••๑: 2.8 mm clip tags XEP4E1FD and XEP4E1FD•••: pre-cabled (horizontally in-line), $3 \times 0.5 \mathrm{~mm}^{2}$, length 0.5 m		
Operating curves				
XEP4E1••				



[^5]References,
dimensions

## Miniature snap switches

XC Special range
Miniature design, DIN 41635 A format


ZEP3L524

(1) In order to avoid damage to the fixing spigots, removal of the lever from complete products is not recommended.
(2) Switches sold in lots of 10.
(3) Levers only for mounting on basic (plunger) snap switches (XEP3S•W2, XEP3S W3, XEP3S७W6), in fixing positions A, B or C.

Miniature snap switches<br>XC Special range<br>Miniature design, DIN 41635 A format



[^6]
## References, dimensions

Miniature snap switches
XC Special range
Sealed design
Pre-cabled

Type of head	Plunger (fixing by the body)



XC011L2


## Characteristics

## Miniature snap switches

XC Special range
Sealed design
Pre-cabled


[^7]

## Functions

The overtravel limit switches for power circuit switching are specifically designed to ensure the safety of hoisting equipment.

They directly break the power supply to the hoist motor if the load being handled accidentally exceeds the operating limits of the equipment.

Their mechanism is designed to ensure breakage of the power supply in the event of a malfunction and therefore, an overtravel limit switch cannot be used in place of an end of travel limit switch. It must only be used as a back-up device in the event of failure of the latter, or any other component forming part of an automated control circuit monitoring for excessive overtravel.

## Description

XF9D••๑ overtravel limit switches are housed in an aluminium alloy case.
XF9F•e७ overtravel limit switches are housed in a sheet steel enclosure.

They are equipped with power contacts from Schneider Electric contactors.

## Operation

## Mounting and operating precautions

It is recommended that the overtravel limit switch be connected as near as possible to the motor, in order to minimise the risk of shunting.

The switch must be positioned in such a manner so as to avoid any damage in the event of the load exceeding the end of travel limits.

In order to ensure positive operation, the operating lever of the overtravel limit switch must be actuated directly by the moving part being monitored. It is essential that the use of any flexible or deformable intermediate actuators be avoided.

## Manual reset switches - resetting after tripping

- Before resetting the overtravel limit switch ensure that the cause of its tripping is located and rectified.
- Rotate and hold lever up against end stop.
- Simultaneously press the reset button (XF9D), using accessory included with switch, or operate the reset lever (XF9F) and turn the control station switch away from the trip position.
- Rotate lever back to its initial position.

Characteristics:	References:   page 66	Dimensions:   page 67

## Overtravel limit switches

## For power circuits, XF9 range

Environment							
Overtravel limit switch type			XF9D251	XF9D651	XF9F1151   XF9F1152	XF9F1851   XF9F1852	\| XF9F2651 XF9F2652
Conformity to standards			IEC 60158-1, NF C 63-110, VDE 0660, IEC 60947-1, IEC 60947-4				
Product certification	3-phase		CSA				
			$\begin{aligned} & 20 \mathrm{HP} \\ & 40 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \mathrm{HP} \\ & 80 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \mathrm{HP} \\ & 175 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \mathrm{HP} 40 \mathrm{~A}, \\ & 200 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{HP} \\ & 428 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$
	Single-phase, 2-pole		$\begin{aligned} & 3 \mathrm{HP} \\ & 40 \mathrm{~A}, 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{HP} \\ & 80 \mathrm{~A}, 230 \mathrm{~V} \end{aligned}$	-	-	-
Protective treatment	Standard version		"TC"				
	Special version		"TH" on request				
Ambient air temperature	For storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$				
	For operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$				
Degree of protection $\begin{array}{l}\text { Conforming to } \\ \text { IEC/EN } 60529\end{array}$			IP 54		IP 43		
Housing			Aluminium alloy case		Sheet steel enclosure		
Cable entry			2 tapped entries for $n^{\circ} 21$ cable gland	3 tapped entries for $\mathrm{n}^{\circ} 29$ cable gland	2 entries incorporating $\mathrm{n}^{\circ} 36$ plastic cable gland		
Contact block characteristics							
Number of poles			4		3		
Rated operational current (le)	For 2-pole scheme	A	50	130	-	-	-
	For 3-pole scheme on AC-3	A	25	65	115	185	265
Conventional thermal current (Ithe) at $\theta \leqslant 40^{\circ} \mathrm{C}$	For 2-pole scheme	A	80	160	-	-	-
	For 3-pole scheme	A	40	80	200	275	350
Rated insulation voltage (Ui)	Conforming to IEC 60158-1, IEC 947-4, VDE 0110 Group C	V	500		660		
	Conforming to CSA 22-2 n ${ }^{\circ} 14$	V	600				
Rated breaking capacity (I rms)	Conforming to    IEC 60158-1    For 2-pole scheme    200 V	A	400	1000	1100	1600	2200
		A	180	630	900	1200	1750
Connection Min./max. cable c.s.a.   Flexible wiring, without cable end   Flexible wiring, with cable end   Solid wiring, without cable end	1 conductor	$\mathrm{mm}^{2}$	1.5/10	2.5/25	-	-	-
	2 conductors	mm ${ }^{2}$	1.5/6	2.5/16	-	-	-
	1 conductor	$\mathrm{mm}^{2}$	1/6	2.5/16	-	-	-
	2 conductors	$\mathrm{mm}^{2}$	1/4	2.5/6	-	-	-
	1 conductor	mm ${ }^{2}$	1.5/6	2.5/25	-	-	-
	2 conductors	mm ${ }^{2}$	1.5/6	4/16	-	-	-
	1 conductor	$\mathrm{mm}^{2}$	-	-	95	150	240
	2 conductors	$\mathrm{mm}^{2}$	-	-	95	150	240


Presentation:	References:	Dimensions:
page 64	page 66	page 67




References of accessories (Schneider Electric products)		
Auxiliary contact blocks		Reference
Description	For use with switches	Weight
N/C + N/O instantaneous	XF9Feee	LADN11


Replacement parts			
Description	For use with switches	Reference	Weight kg
Contact set comprising per pole: - 2 fixed contacts,	XF9F115	LA5FF431	0.270
- 1 moving contact, - 2 deflectors,	XF9F185	LA5FG431	0.350
clamping screw and washers	XF9F265•	LA5FH431	0.660
Arc chambers	XF9F115	LA511550	0.490
	XF9F185	LA518550	0.670
	XF9F265	LA526550	0.920


Presentation:	Characteristics:	Dimensions:
page 64	page 65	page 67

Overtravel limit switches
For power circuits, XF9 range

Dimensions
XF9D251

(1) 2 elongated holes $\varnothing 6 \times 8.5$ (removable fixing lugs)
(2) 6 mm square rod, length 200 (can be mounted at $90^{\circ}$ ).
(3) 2 tapped entries for $n^{\circ} 21$ cable gland.
$13^{\circ}=$ contact actuation, $75^{\circ}=$ maximum travel.

## XF9F•••1 <br> Manual resetting


(1) 2 entries incorporating $n^{\circ} 36$ plastic cable gland.
(2) 4 holes $\varnothing 8.5$ to be drilled by user (for attaching fixing lugs to enclosure base).

## XF9D651


(1) 2 elongated holes $\varnothing 6 \times 8.5$ (removable fixing lugs).
(2) 6 mm square rod, length 200 (can be mounted at $90^{\circ}$ ).
(3) 3 plain entries for $n^{\circ} 29$ cable gland.
$13^{\circ}=$ contact actuation, $75^{\circ}=$ maximum travel.
XF9F•••2
Automatic resetting

(1) 2 entries incorporating $n^{\circ} 36$ plastic cable gland.
(2) 4 holes $\varnothing 8.5$ to be drilled by user (for attaching fixing lugs to enclosure base).

Presentation:	Characteristics:	References:
page 64	page 65	page 66


D		XEP3S1W3B524	60
DE9PEM20010	52	XEP3S1W3B529	60
L		XEP3S1W6	60
LA511550	66	XEP3S1W6B524	60
LA518550	66	XEP3S1W6B529	60
LA526550	66	XEP3S2W2B524	60
LA5FF431	66	XEP3S2W2B529	60
LA5FG431	66	XEP3S2W3	60
LA5FH431	66	XEP3S2W3B524	60
LADN11	66	XEP3S2W3B529	60
X		XEP3S2W6	60
XC010L2	62	XEP3S2W6B529	60
XC011L2	62	XEP4E1FD	58
XCKMR24SR1H29	52	XEP4E1FDA326	58
XCKMR44D1H29	52	XEP4E1FDA454	58
XCKMR44D2H29	52	XEP4E1W7	58
XCKMR54D1H29	52	XEP4E1W7A326	58
XCKMR54D2H29	52	XEP4E1W7A454	58
XCKVR24SR1H29	52	XESP1021	33
XCKVR44D1H29	52		38
XCKVR44D2H29	52	XESP10215	41
XCKVR54D1H29	52	XESP1028	33
XCKVR54D2H29	52	XESP1031	33
XCKZ01	33		
	38	XESP10315	41
XCKZ015	41	XESP1038	33
XCKZ018	33	XF9D251	66
XCRA11	46	XF9D651	66
XCRA12	46	XF9F1151	66
XCRA15	46	XF9F1152	66
XCRA51	46	XF9F1851	66
XCRA52	46	XF9F1852	66
XCRA55	46	XF9F2651	66
XCRB11	46	XF9F2652	66
XCRB12	46	Z	
XCRB15	46	ZC2JC1	26
XCRB51	46		29
XCRB52	46	ZC2JC15	39
XCRB55	46	ZC2JC16	36
XCRE18	46	ZC2JC18	29
XCRE58	46	ZC2JC2	29
XCRF17	46	ZC2JC25	39
XCRF57	46	ZC2JC26	36
XCRT115	48	ZC2JC28	29
XCRT215	48	ZC2JC4	29
		ZC2JC45	39
XCRT315	48	ZC2JC46	36
XCRZ02	47	ZC2JC48	29
XCRZ03	$\begin{aligned} & 47 \\ & 52 \end{aligned}$	ZC2JD1	29
XCRZ03R	52	ZC2JD16	36
XCRZ04	47	ZC2JD2	29
XCRZ05	47	ZC2JD26	36
XCRZ09	47	ZC2JD4	29
	49	ZC2JD46	36
XCRZ12	47	ZC2JE01	26
XCRZ15	47		31
XCRZ42	49	ZC2JE015	40
XCRZ901	49	ZC2JE016	37
XCRZ902	49	ZC2JE02	31
XCRZ903	49	ZC2JE025	40
XEP3S1W2	60	ZC2JE026	37
XEP3S1W2B524	60	ZC2JE03	31
XEP3S1W2B529	60	ZC2JE035	40
XEP3S1W3	60	ZC2JE036	37


ZC2JE04	31	ZC2JY31	26
ZC2JE045	40		32
ZC2JE046	37		8
ZC2JE05	26	ZC2JY315	41
	31	ZC2JY415	41
ZC2JE056	37	ZC2JY51	26
ZC2JE06	31		38
ZC2JE065	40		41
ZC2JE066	37	ZC2JY61	32
ZC2JE07	31		38
ZC2JE075	40	ZC2JY615	41
ZC2JE076	37	ZC2JY71	32
ZC2JE09	31	ZC2JY715	41
ZC2JE095	40		28
ZC2JE096	37	ZC2JY81	32
ZC2JE61	26		38
	30	ZC2JY815	41
ZC2JE615	39	ZC2JY91	32
ZC2JE616	36		38
ZC2JE62	26	ZC2JY915	41
	30	ZEP3L524	60
ZC2JE625	39		
ZC2JE626	36		
ZC2JE63	26		
	30		
ZC2JE635	39		
ZC2JE636	36		
ZC2JE64	30		
ZC2JE645	39		
ZC2JE646	36		
ZC2JE65	30		
ZC2JE655	39		
ZC2JE656	36		
ZC2JE66	30		
ZC2JE665	39		
ZC2JE666	36		
ZC2JE70	31		
ZC2JE705	40		
ZC2JE706	37		
ZC2JE81	30		
ZC2JE815	39		
ZC2JE816	36		
ZC2JE82	30		
ZC2JE825	39		
ZC2JE826	36		
ZC2JE83	30		
ZC2JE835	39		
ZC2JE836	36		
ZC2JE84	30		
ZC2JE845	39		
ZC2JE846	36		
ZC2JE85	30		
ZC2JE855	39		
ZC2JE856	36		
ZC2JY11	26		
	32		
	38		
ZC2JY115	41		
ZC2JY12	32		
	38		
	41		
ZC2JY13	32		
	38		
	41		
ZC2JY215	41		

## www.tesensors.com

The information provided in this catalogue contains description of products sold by TMSS France, its subsidiaries and other affiliated companies ('Offer') with technical specifications and technical characteristics of the performance of the corresponding Offer.

The content of this document is subject to revision at any time without notice due to continued progress in methodology, design and manufacturing.
To the extent permitted by applicable law, no responsibility or liability is assumed by TMSS France, its subsidiaries and other affliated companies for any type of damage arising out of or in connexion with (a) informational content of this catalogue not conforming with or exceeding the technical specifications, or (b) any error contained in this catalogue, or (c) any use, decision, act or omission made or taken on the basis of or in reliance on any information contained or referred to in this catalogue.

NEITHER TMSS FRANCE, ITS SUBSIDIARIES, NOR ITS OTHER AFFILIATES, AS THE CASE MAYBE, MAKE NO WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO WHETHER THIS CATALOGUE OR ANY INFORMATION CONTAINED THEREIN SUCH AS PRODUCTS WILL MEET REQUIREMENTS, EXPECTATIONS OR PURPOSE OF ANY PERSON MAKING USE THEREOF.

Telemecanique ${ }^{\text {TM }}$ Sensors is a trademark of Schneider Electric Industries SAS used under license by TMSS France. Any other brands or trademarks referred to in this catalogue are property of TMSS France or, as the case may be, of its subsidiaries or other affiliated companies. All other brands are trademarks of their respective owners.

This catalogue and its content are protected under applicable copyright laws and provided for informative use only.
No part of this catalogue may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of TMSS France. Copyright, intellectual, and all other proprietary rights in the content of this catalogue (including but not limited to audio, video, text, and photographs) rests with TMSS France, its subsidiaries, and other affliated companies or its licensors. All rights in such content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.

As standards, specifications and design change from time to time, please ask for confirmation of the information given in this publication.


[^0]:    （1）Usable up to $48 \mathrm{~V} / 10 \mathrm{~mA}$ ．

[^1]:    (1) Incorporated cable gland
    (2) Fixing from the rear by 2 M5 screws, depth of thread on switch: 10 mm
    $\varnothing$ : Fixing from the front via 2 holes $\varnothing 5.5$

[^2]:    Ø: 1 elongated hole $\varnothing 6 \times 8$

[^3]:    Ø: 1 elongated hole Ø $6 \times 8$.

[^4]:    (1) 1 tapped entry ISO M20 $\times 1.5$.
    (2) 2 knock-out holes for ISO M20 cable gland (reference: DE9PEM20010).
    $\varnothing$ : 2 elongated holes $6.2 \times 6.5$, inclined at $26^{\circ} 30^{\prime}$ to the vertical axis, for M5 screws.

[^5]:    (1) Miniature snap switches fitted with a lever are supplied with the lever fixed in position A (see page 58). For basic (plunger) snap switches, it is possible to fix the lever in position $A$ or $B$, depending on the required tripping conditions (see page 58).
    (2) Position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state

[^6]:    (1) Miniature snap switches fitted with a lever are supplied with the lever fixed in position $B$ (see page 60). For basic (plunger) snap switches, it is possible to fix the lever in position A, B or C, depending on the required tripping conditions (see page 60).
    (2) Position of the operator in relation to the switch fixings (fixing hole centre line) at the instant the switch contact changes state.

[^7]:    (1) Manual actuation must be made by an intermediate insulated part, in order to meet basic safety requirements.

    One of the two fixing holes must also be used as an earth protection terminal.
    (2) Distance between the base of the switch and the top of the plunger at the instant the contact changes state (see dimensions, page 62).

