## Easy series



Catalog 2024
Molded-case circuit breakers and
switch-disconnectors from 16 to 630A .



## An industry leading portfolio of offers delivering sustainable value

## Green

More than $75 \%$ of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
$\mathrm{CO}_{2}$ and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of $\mathrm{CO}_{2}$ emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide loT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

## Peace of mind through... Well-being Performance

Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.



## EasyPact CVS is...Reliable



Conforms to IEC 60947-2 for circuit breaker

- Tested at renown international laboratories like KEMA
- Complete range* with Ics = 100\% Icu


High electrical \& Mechanical endurance

- 30000 mechanical operations for 100A
- 12000 electrical operations for 100A


Reliable accessories

- Continuous rated shunt coils
- Multifunctional Aux./Alarm contact
- Unique electrical fault trip indication (SDE)


## EasyPact CVS offer protection

 for human as well as Electrical installation

- Earth leakage protection through Vigi Module to protect human against leakage current


## Fault current limitation technology

- EasyPact CVS Double break mechanism ensures high fault current limitation
@ Reduces thermal stresses on the electrical distribution network
@ Increases the life of cables and installation


Current limitation technology



## EasyPact CVS is...Simple

Only two frame sizes* up to 630A
Frame-I 100-250A
Frame-II 400-630A

- Common and snap-fit accessories up to 630A
- Single OF contact for ON/OFF, Trip indication
- Single Shunt coil for remote tripping
- Single Under Voltage coil
- EasyPact CVS share same footprint of Compact Family MCCBs.
- mounting dimensions
- easy retrofitting
- system upgradeability



## EasyPact CVS Stands for Customer Value

## EasyPact CVS 100 to 630 A



## Panel builders

- Only two frame sizes up to 630A

■ Common accessories for complete range (ON/OFF/Trip Auxiliaries/Shunt/UV etc.)
■ Line load reversibility for entire range
■ Suitable for class II switchboards


## End Users

■ Isolation as a standard feature enhances safety
■ Excellent current limiting capability reduces stresses on cables, busbars and loads

- Continuous rated accessories increase system reliability
- Modular earth leakage protection ensure human/installation protection



## OEMs

■ High endurance and maintenance-free operation assure continuous performance of machines
■ Unique common accessories help standardisation of components


## Contractors

■ Sufficient pole pitch helps to terminate Copper and Aluminum busbars or cables
■ Easy availability of the product due to a small number of frame size
■ Designed to perform in demanding applications
$>$ Do you strain to find circuit breakers that are simple as well as flexible and safe?
$>$ Has it been difficult to find high quality circuit breakers at the right price point?
$>$ Do you need the reach, support and accessibility of a global leader, with the value of a local supplier?

## Gain peace of mind, quality, and value for your installations



# 4 



## General contents EasyPact ${ }^{\text {mi }}$ CVS

## Presentation

Functions
and characteristics

Installation
recommendations

Dimensions
and connection

Additional characteristics
D-1

Catalogue numbers

## Functions and characteristics

## Functions and characteristics

Introduction ..... A-2
General Characteristics ..... A-2
Characteristics and Performance ..... A-4
Protection of Distribution Systems ..... A-6
TM-D Thermal-magnetic Trip Units ..... A-6
ETS 2.2/2.3 electronic Trip Unit and Accessories ..... A-7
Earth-leakage Protection ..... A-9
Motor Protection ..... A-10
MA Instantaneous Trip Units ..... A-10
Switch-disconnectors ..... A-12
Accessories and Auxiliaries ..... A-14
Overview ..... A-14
Device Installation ..... A-15
Connection of Plug-in Devices ..... A-16
Insulation of Live Parts ..... A-17
Connection of Devices ..... A-18
Selection of Auxiliaries ..... A-20
Indication Contacts ..... A-21
Remote Tripping ..... A-22
Rotary Handles ..... A-23
Motor Mechanism ..... A-24
PowerTag Energy M250/M630 ..... A-25
Locks and Sealing Accessories ..... A-29
Escutcheons and Protection Collars ..... A-30


Standardised characteristics indicated on the rating plate:

1. Type of device: frame size and breaking capacity class
2. Ui: rated insulation voltage.
3. Uimp: rated impulse withstand voltage.
4. Ics: service breaking capacity.
5. Icu: ultimate breaking capacity for various values of the rated operational voltage Ue
6. Ue: operational voltage.
7. Suitable for Isolation symbol.
8. Reference standard

Note: when the circuit breaker is equipped with an extended rotary handle, the door must be opened to access the rating plate.

## Compliance with standards

EasyPact CVS circuit breakers and auxiliaries comply with the following international recommendations:

- IEC 60947-1: general rules
- IEC 60947-2: circuit breakers
- IEC 60947-3: switch-disconnectors


## Pollution degree

EasyPact CVS circuit breakers are certified for operation in pollution-degree III environments as defined by IEC standards 60947-1 and 60664-1 (industrial environments).

## Climatic withstand

EasyPact CVS circuit breakers have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1: dry cold ( $-55^{\circ} \mathrm{C}$ )
- IEC 60068-2-2: dry heat ( $+85^{\circ} \mathrm{C}$ )
- IEC 60068-2-30: damp heat ( $95 \%$ relative humidity at $55^{\circ} \mathrm{C}$ )
- IEC 60068-2-52 severity level 2 : salt mist.


## Environment

EasyPact CVS respects the European environment directive EC/2002/95 concerning the restriction of hazardous substances (RoHS). All EasyPact CVS production sites have set up an ISO 14001 certified environmental management system.

## Ambient temperature

- EasyPact CVS circuit breakers can be used between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. For temperatures higher than $50^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{C}\right.$ for circuit breakers used to protect motor feeders), devices must be derated (see page B-2).
- Circuit breakers should be put into service under normal ambient, operatingtemperature conditions. Exceptionally, the circuit breaker can be put into service when the ambient temperature is between $-35^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$.
- The permissible storage-temperature range for EasyPact CVS circuit breakers in the original packing is $-50^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$.


## Electromagnetic compatibility

EasyPact CVS circuit breakers with ETS 2.2/2.3 electronic trip unit have successfully passed the tests defined by the following standards for EMC: - IEC/EN 60947-2, Annex F: Immunity tests for circuit breakers with electronic protection

## Introduction <br> General Characteristics



EasyPact CVS100/160/250/400/630 with terminal shields


EasyPact CVS100/160/250


EasyPact CVS100/160/250 with direct rotary handle


EasyPact CVS100/160/250 with extended rotary handle


EasyPact CVS400 / 630


EasyPact CVS400 / 630 with
direct rotary handle


EasyPact CVS400/630 with extended rotary handle

## Suitable for isolation with positive contact indication

All EasyPact CVS circuit breakers are suitable for isolation as defined in IEC standard 60947-2:

- The isolation position corresponds to the O (OFF) position.
- The operating handle cannot indicate the OFF position unless the contacts are effectively open.
- Padlocks cannot be installed unless the contacts are open.

Installation of a rotary handle does not alter the reliability of the positionindication system.
The isolation function is certified by tests guaranteeing:

- The mechanical reliability of the position-indication system
- The absence of leakage currents
- Over voltage withstand capacity between upstream and downstream connections. The tripped position does not ensure isolation with positive contact indication. Only the OFF position guarantees isolation.


## Installation in class II switchboards

All EasyPact CVS circuit breakers are class II front face devices. They can be installed through the door of class II switchboards (as per IEC standards 61140 and 60664-1) without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle.

## Degree of protection

The following indications are in accordance with standards IEC 60529 (IP degree of protection) and IEC 62262 (IK protection against external mechanical impacts).
Bare circuit breaker with Escutcheon:
■ with toggle: IP40, IK07 front face
■ with extended rotary handle: IP 54, IK08
Circuit breaker installed in a switchboard:
■ with toggle: IP40, IK07 front face
■ with extended rotary handle: IP 54, IK08

## Protection degree

Protection degree of the product, according to IEC60259, depends on its configuration:

| Colours | Definition |
| :--- | :--- |
|  | IP54: front extended rotary handle |
| IP40: front cover, side, back, terminal shield, direct rotary handle |  |
|  | IP20: power connection cover |
|  | maybe IP20 or less depending on the kind of power connections and cable size <br> used |

[^0]

| Common characteristics |  |  |  |
| :---: | :---: | :---: | :---: |
| Rated voltages |  |  |  |
| Insulation voltage (V) | Ui |  | 690 |
| Impulse withstand voltage (kV) | Uimp |  | 8 |
| Operational voltage (V) | Ue | AC $50 / 60 \mathrm{~Hz}$ | 440 |
| Suitability for isolation |  | IEC/EN 60947-2 | yes |
| Utilisation category |  |  | A |
| Pollution degree |  | IEC 60664-1 | 3 |

## Circuit breakers

Performance


| Protection |  |  |
| :---: | :---: | :---: |
| Short-circuit protection | Magnetic only |  |
| Overload/short-circuit protection | Thermal magnetic |  |
|  | Electronic |  |
|  | with neutral protection (Off-0.5-1) |  |
| Earth-leakage protection | By Vigi module |  |
| Installation/connections |  |  |
| Dimensions and weights |  |  |
| Dimensions (mm) | Fixed, front connections | 3P |
| W $\times \mathrm{H} \times \mathrm{D}$ |  | 4P |
| Weight (kg) | Fixed, front connections | 3 P |
|  |  | 4P |
| Connections |  |  |
| Connection terminals | Pitch | Without/ <br> With spreaders |
| Large Cu or Al cables | Cross-section | $\mathrm{mm}^{2}$ |

Note: (1) F and $N$ types breaking capacity levels

## Functions

and characteristics

## Introduction

Characteristics and Performance

|  | S10 |  | CVS160 |  |  | CVS250 |  |  | CVS400 |  |  | CVS630 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 |  |  | 160 |  |  | 250 |  |  | 400 |  |  | 630 |  |  |
| 3,4 |  |  | 3,4 |  |  | 3,4 |  |  | 3,4 |  |  | 3,4 |  |  |
| B | F | N |  | F | N |  | F | N |  | N | H | F | N | H |
| 40 | 70 | 90 | 40 | 70 | 90 | 40 | 70 | 90 | 40 | 70 | 100 | 40 | 70 | 100 |
| 25 | 36 | 50 |  | 36 | 50 |  | 36 | 50 |  | 50 | 70 | 36 | 50 | 70 |
| 20 | 36 | 50 |  | 36 | 50 |  | 36 | 50 |  | 42 | 65 | 30 | 42 | 65 |
| 40 | 70 | 90 |  | 70 | 90 |  | 70 | 90 |  | 70 | 100 | 40 | 70 | 100 |
| 25 | 36 | 50 |  | 36 | 50 |  | 36 | 50 |  | 50 | 70 | 36 | 50 | 70 |
| 15 | 18 | 38 | 15 | 18 | 38 | 15 | 18 | 38 | 23 | 32 | 49 | 23 | 32 | 49 |
| 30000 |  |  | 25000 |  |  | 20000 |  |  | 15000 |  |  | 15000 |  |  |
| $\begin{aligned} & 30000 \\ & 12000 \end{aligned}$ |  |  | $\begin{aligned} & 25000 \\ & 12000 \end{aligned}$ |  |  | 20000 |  |  | 12000 |  |  | 8000 |  |  |


| ■ | $\square$ | $\square$ | $\square$ | $\square$ |
| :---: | :---: | :---: | :---: | :---: |
| - | $\square$ | $\square$ | - ${ }^{(1)}$ | - ${ }^{(1)}$ |
| $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| - | $\square$ | $\square$ | $\square$ | $\square$ |
| $\square$ | $\square$ | - | - | $\square$ |
| $105 \times 161 \times 86$ | $105 \times 161 \times 86$ | $105 \times 161 \times 86$ | $140 \times 255 \times 110$ | $140 \times 255 \times 110$ |
| $140 \times 161 \times 86$ | $140 \times 161 \times 86$ | $140 \times 161 \times 86$ | $185 \times 255 \times 110$ | $185 \times 255 \times 110$ |
| 1.8 | 1.8 | 2.0 | 4.7 | 5.2 |
| 2.2 | 2.3 | 2.6 | 6.3 | 7.1 |
| $35 / 45 \mathrm{~mm}$ | \|35/45 mm | \|35/45 mm | $\begin{aligned} & 45 / 52.5 \mathrm{~mm} \\ & 45 / 70 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & 45 / 52.5 \mathrm{~mm} \\ & 45 / 70 \mathrm{~mm} \end{aligned}$ |
| 300 | 300 | 300 | $4 \times 240$ | 4×240 |

TM-D thermal-magnetic trip units can be used on
EasyPact CVS100-630 circuit breakers with performance levels $B / F / N / H$.

## TM-D thermal-magnetic trip units



## Protection <br> $\qquad$ <br> TM-D trip units are used mainly in electrical distribution applications for protection of cables supplied by transformers.

Thermal protection (Ir)
Thermal protection operates according to:

- Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to

250 A), corresponding to settings from 11 to 250 A for the range of trip units
$\square$ a non-adjustable time delay.
Magnetic protection (li)
Short-circuit protection with a fixed or adjustable pick-up li that initiates instantaneous tripping if exceeded.
■ TM-D: fixed pick-up, li, for 16 to 250 A ratings and adjustable from 5 to $10 \mathrm{x} \ln$ for 400 A ratings, 4.2 to $8.3 x \ln$ for 600 A rating, 5 to $10 x \ln$ for 630 A rating.

## Protection versions

■ 3-pole:

- 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D).
- 4-pole:
- 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

(1) For temperatures not equal to $50^{\circ} \mathrm{C}$, the thermal protection characteristics are modified. See the temperature derating table on page $\mathrm{B}-2$.

Note: All the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

## Protection of Distribution Systems <br> ETS 2.2/2.3 Electronic Trip Unit and <br> Accessories

ETS 2.2/2.3 electronic trip units can be used on EasyPact CVS100-630 circuit breakers with performance levels $B / F / \mathrm{N} / \mathrm{H}$.


## ETS 2.2/2.3 electronic trip unit



Circuit breakers equipped with ETS 2.2 (100-250A) / 2.3 (400/630A) trip units can be used to protect distribution systems supplied by transformers.
Protection
Settings are made using the adjustment dials with adjustment possibilities.

## Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuits: Short-time protection with fixed time delay (Isd)
Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow discrimination with the downstream device.

## Short-circuits: Non-adjustable instantaneous protection

Instantaneous short-circuit protection with a fixed pick-up.

## Neutral protection

■ On 3-pole circuit breakers, neutral protection is not possible

- On four-pole circuit breakers, neutral protection may be set using a three-position switch:
- 4P 3D: neutral unprotected
$\square 4 \mathrm{P} 3 \mathrm{D}+\mathrm{N} / 2$ : neutral protection at half the value of the phase pick-up, i.e. $0.5 \times \mathrm{lr}$ - 4P 4D: neutral fully protected at Ir


Functions
and characteristics

## Protection of Distribution <br> Systems <br> ETS 2.2/2.3 Electronic Trip Unit and Accessories

| ETS 2.2/2.3 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ratings (A) | In at $50{ }^{\circ} \mathrm{C}{ }^{(1)}$ |  | 40 | 100 | 160 | 250 | 400 | 630 |  |  |  |
| Circuit breaker | CVS100 <br> CVS160 <br> CVS250 <br> CVS400 <br> CVS630 |  |  |  |  |  |  |  |  |  |  |
| L Long-time protection ( 40 A - 250 A ) |  |  |  |  |  |  |  |  |  |  |  |
| Pick-up (A) Ir |  |  | value depending on trip unit rating ( In ) and setting on dial |  |  |  |  |  |  |  |  |
| tripping between 1.05 and 1.20 Ir | $\begin{aligned} & \mathrm{In}=40 \mathrm{~A} \\ & \mathrm{In}=100 \mathrm{~A} \\ & \mathrm{In}=160 \mathrm{~A} \\ & \mathrm{In}=250 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \text { Ir }= \\ & \text { Ir }= \\ & \text { Ir }= \\ & \text { Ir }= \end{aligned}$ | $\begin{aligned} & 18 \\ & 40 \\ & 63 \\ & 100 \end{aligned}$ | $\begin{aligned} & 18 \\ & 45 \\ & 70 \\ & 110 \end{aligned}$ | $\begin{aligned} & 20 \\ & 50 \\ & 80 \\ & 125 \end{aligned}$ | $\begin{aligned} & 23 \\ & 55 \\ & 90 \\ & 140 \end{aligned}$ | $\begin{aligned} & 25 \\ & 63 \\ & 100 \\ & 160 \end{aligned}$ | $\begin{aligned} & 28 \\ & 70 \\ & 110 \\ & 175 \end{aligned}$ | $\begin{aligned} & 32 \\ & 80 \\ & 125 \\ & 200 \end{aligned}$ | $\begin{aligned} & 36 \\ & 90 \\ & 150 \\ & 225 \end{aligned}$ | $\begin{aligned} & 40 \\ & 100 \\ & 160 \\ & 250 \end{aligned}$ |
| Time delay (s) accuracy 0 to - $20 \%$ | tr | keypad setting <br> $1.5 \times \mathrm{Ir}$ <br> $6 \times \mathrm{Ir}$ <br> $7.2 \times \mathrm{Ir}$ | non- 400 16 11 | stable |  |  |  |  |  |  |  |
| Thermal memory |  |  | 20 minutes before and after tripping |  |  |  |  |  |  |  |  |
| $L$ Long-time protection (400 A / 630 A) |  |  |  |  |  |  |  |  |  |  |  |
| Pick-up (A) |  | Ir | value depending on trip unit rating ( In ) and setting on dial |  |  |  |  |  |  |  |  |
| tripping between <br> 1.05 and 1.20 Ir | $\begin{array}{ll} \text { In }=400 \mathrm{~A} & \text { Ir }= \\ \text { In }=630 \mathrm{~A} & \mathrm{Ir}= \end{array}$ |  | 160 180 <br> 250 280 <br> non-adjustable  |  | $\begin{aligned} & 200 \\ & 315 \end{aligned}$ | $\begin{aligned} & 230 \\ & 370 \end{aligned}$ | $\begin{aligned} & 250 \\ & 400 \end{aligned}$ | $\begin{aligned} & 280 \\ & 440 \end{aligned}$ | $\begin{aligned} & 320 \\ & 505 \end{aligned}$ | $\begin{aligned} & 360 \\ & 565 \end{aligned}$ | $\begin{aligned} & 400 \\ & 630 \end{aligned}$ |
| Time delay (s) accuracy 0 to - $20 \%$ | tr | keypad setting $1.5 \times \mathrm{lr}$ <br> $6 \times \mathrm{Ir}$ $7.2 \times \mathrm{Ir}$ | $\begin{array}{\|l} \text { non- } \\ 200 \\ 8 \\ 5.5 \end{array}$ | stable |  |  |  |  |  |  |  |
| Thermal memory |  |  | 20 minutes before and after tripping |  |  |  |  |  |  |  |  |
| So Short-time protection with fixed time delay |  |  |  |  |  |  |  |  |  |  |  |
| Pick-up (A) accuracy $\pm 10 \%$ | $\mid s d=\operatorname{lr} \times \ldots$ |  | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
|  | tsd <br> Non-trippin <br> Maximum |  | $\begin{array}{\|l} \text { non- } \\ 20 \\ 80 \end{array}$ | stable |  |  |  |  |  |  |  |
| 1 Instantaneous protection |  |  |  |  |  |  |  |  |  |  |  |
| Pick-up (A) <br> accuracy $\pm 15$ \% | Non-tripping time Maximum break time |  | $\begin{aligned} & 10 \mathrm{~ms} \\ & 50 \mathrm{~ms} \text { for }\|>\| i \end{aligned}$ |  |  |  |  |  |  |  |  |

[^1]
# Earth-leakage Protection Add-on Protection Against Insulation Faults Using a Vigi Module 

A Vigi module can be added to any three or four-pole CVS100 to 630 circuit breakers to form a Vigi CVS.


Vigi CVS100 to 630


1. Sensitivity setting
2. Time-delay setting (for selective earth-leakage protection).
3. Lead-seal fixture for controlled access to settings.
4. Test button simulating an earth-fault for regular checks on the tripping function
5. Reset button (reset required after earth-fault tripping).
6. Rating plate

## Circuit breaker with add-on Vigi module (Vigi CVS)

■ For general characteristics of circuit breakers, see pages A-2 and A-3.
■ Add-on Vigi modules: Earth-leakage protection is achieved by installing a Vigi module (characteristics and selection criteria on next page) directly on the circuit breaker terminals. It directly actuates the trip unit (magnetic, thermal-magnetic or ETS).

## Vigi CVS100 to 630 circuit breakers with earthleakage protection

Addition of the Vigi module does not alter circuit-breaker characteristics:

- compliance with standards
- degree of protection, class II front-face insulation
- positive contact indication
- electrical characteristics
- trip-unit characteristics
- installation and connection modes
- indication, measurement and control auxiliaries
- installation and connection accessories.

| Dimensions and weights | CVS100 to 250 | CVS400/630 |  |
| :--- | :--- | :--- | :--- |
| Dimensions | 3-pole | $105 \times 236 \times 86$ | $140 \times 355 \times 110$ |
| W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ | 4-pole | $140 \times 236 \times 86$ | $185 \times 355 \times 110$ |
| Weight $(\mathrm{kg})$ | 3-pole | 2.5 | 8.8 |
|  | 4-pole | 3.2 | 10.8 |

Vigi earth-leakage protection modules
Compliance with standards

- IEC 60947-2, annex B.
- Decree dated 14 November 1988 (for France).

■ IEC 60755, class A, immunity to DC components up to 6 mA

- operation down to $-25^{\circ} \mathrm{C}$ as per VDE 664.

Vigi module selection

| Type | CVS100 to 250 | CVS400/630 |
| :---: | :---: | :---: |
| Number of poles | $3,4{ }^{\text {(1) }}$ | 3, $4^{(1)}$ |
| Protection characteristics |  |  |
| Sensitivity <br> $1 \Delta n(A)$ | adjustable $0.03-0.3-1-3-10$ | adjustable $0.3-1-3-10-30$ |
| Time delay | adjustable | adjustable |
| Intentional delay (ms) | $0-60^{(2)}-150{ }^{(2)}-300{ }^{(2)}$ | 0-60-150-300 |
| Max. break time (ms) | $<40<150<300<800$ | < $40<150<300<800$ |
| Rated voltage <br> V AC $50 / 60 \mathrm{~Hz}$ | 200... 440 | 200... 440 |

## Operating safety

The Vigi module is a user safety device. It must be tested at regular intervals (every 6 months) via the test button.


CVS100 to 630 circuit breakers, equipped with an MA magnetic trip unit with adjustable thresholds, offer:

- short-circuit protection
- suitability for isolation.

CVS100 to 630 circuit breakers with trip unit are supplied ready-assembled

MA magnetic trip units for EasyPact CVS100-630A


Circuit breakers with an MA trip unit are combined with a thermal relay and a contactor or a starter.

## ection

Magnetic protection (li)
Short-circuit protection with an adjustable pick-up li that initiates instantaneous tripping if exceeded.
$\square \mathbf{I}=\ln \mathbf{x} \ldots$ is set on an adjustment dial in multiples of the rating:
$\square 6$ to $14 \times \ln$ ( 2.5 to 100 A ratings)

- 9 to $14 \times \ln$ ( 150 to 220 A ratings)
$\square 6$ to $13 \times \ln$ (320 to 500 A ratings)


## Protection version

- 3-pole (3P 3D): 3-pole frame (3P) equipped with detection on all 3 poles (3D).

Motor protection up to $\mathbf{2 5 0} \mathbf{~ k W}$

| Motor protection rating (kW) |  |  |  |
| :--- | :--- | :--- | :--- |
| CVS100/160/250 |  | $1.1 \ldots 110$ |  |
| CVS400/630   $18.5 \ldots 250$ <br> Breaking <br> capacity (kA rms) B 25 - <br> 380/415V F 36 36 <br>  N 50 50 <br>  H  70 |  |  |  |


| MA trip units |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ratings (A) | In at $65^{\circ} \mathrm{C}$ | 2.5 | 6.3 | 12.5 | 25 | 50 | 100 | 150 | 220 |
| Circuit breaker | CVS100 | $\square$ | $\square$ | - | $\square$ | - | - | - | - |
|  | CVS160 | - | - | - | - | - | $\square$ | $\square$ | - |
|  | CVS250 | - | - | - | - | - |  | - | - |
| Short-circuit protection (magnetic) |  |  |  |  |  |  |  |  |  |
| Pick-up (A) CVS100 CVS160/250 | $\mathbf{l i}=\ln \times \ldots$ | setting <br> 6... $14 \times \ln$ |  |  |  |  |  | setting$9 . . .14 \times \ln$ |  |
| MA trip units |  |  |  |  |  |  |  |  |  |
| Ratings (A) | In at $65^{\circ} \mathrm{C}$ | 320 | 500 |  |  |  |  |  |  |
| Circuit breaker | CVS400 <br> CVS630 |  |  |  |  |  |  |  |  |
| Short-circuit protection (magnetic) |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Pick-up (A) } \quad \text { li= } \ln \times \ldots \\ & \text { CVS } 400 / 630 \end{aligned}$ |  | setting$6 \ldots 13 \times \ln$ |  |  |  |  |  |  |  |

Installation standards require upstream protection. However, EasyPact CVS100 to 630 NA switchdisconnectors are self-protected by their high-set magnetic release.


EasyPact CVS100 to 250 NA


EasyPact CVS400 to 630 NA

Switch-disconnectors
Electrical characteristics as per IEC 60947-3 and EN 60947-3
Conventional thermal current (A) Ith $50^{\circ} \mathrm{C}$

Number of poles
Operational current (A) depending le
AC $50 / 60 \mathrm{~Hz}$
on the utilisation category
220/240 V
$380 / 415 \mathrm{~V}$
440 V


Additional indication and control auxiliaries
Indication contacts

| Voltage releases | $M X$ shunt release |  |
| :--- | :--- | :--- |
|  | $M N$ undervoltage release |  |
| Installation/connections |  |  |
| Dimensions $(\mathrm{mm})$ | fixed, front connections | $3 P$ |
| $\mathrm{~W} \times \mathrm{H} \times \mathrm{D}$ |  | 4 P |
| Weight $(\mathrm{kg})$ | fixed, front connections | $3 P$ |
|  |  | 4 P |

Functions<br>and characteristics<br>\section*{Switch-Disconnectors}<br>Characteristics and Performance

| CVS100NA | CVS160NA | CVS250NA | CVS400NA | CVS630NA |
| :---: | :---: | :---: | :---: | :---: |
| 100 | 160 | 250 | 400 | 630 |
| 3, 4 | 3,4 | 3,4 | 3,4 | 3,4 |
| $\begin{aligned} & \text { AC22A / AC23A } \\ & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & \text { AC22A / AC23A } \\ & 160 \\ & 160 \\ & 160 \end{aligned}$ | $\begin{aligned} & \text { AC22A / AC23A } \\ & 250 \\ & 250 \\ & 250 \end{aligned}$ | $\begin{aligned} & \text { AC22A / AC23A } \\ & 400 \\ & 400 \\ & 400 \end{aligned}$ | $\begin{aligned} & \text { AC22A / AC23A } \\ & 630 / 500 \\ & 630 / 500 \\ & 630 / 500 \end{aligned}$ |
| $\begin{aligned} & 2.6 \\ & 75 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 75 \end{aligned}$ | $\begin{aligned} & 4.9 \\ & 75 \end{aligned}$ | $\begin{aligned} & 7.1 \\ & 105 \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 105 \end{aligned}$ |
| $\begin{aligned} & 1800 \\ & 1800 \\ & 690 \end{aligned}$ | $\begin{aligned} & 2500 \\ & 2500 \\ & 960 \end{aligned}$ | $\begin{aligned} & 3500 \\ & 3500 \\ & 1350 \end{aligned}$ | $\begin{aligned} & 5000 \\ & 5000 \\ & 1930 \end{aligned}$ | $\begin{aligned} & 6000 \\ & 6000 \\ & 2320 \end{aligned}$ |
| 30000 | 25000 | 20000 | 15000 | 15000 |
| AC22A / AC23A |
| 8000 | 8000 | 6500 | 4000 | 2500 |
| - |  |  | - |  |
| $\square$ |  |  |  |  |
| $\begin{array}{\|l} 105 \times 161 \times 86 \\ 140 \times 161 \times 86 \\ 1.5 \text { to } 1.8 \\ 2.0 \text { to } 2.2 \end{array}$ |  |  | $\begin{aligned} & 140 \times 255 \times 110 \\ & 185 \times 255 \times 110 \\ & 5.2 \\ & 6.8 \end{aligned}$ |  |

## Accessories and auxiliaries <br> Overview

Insulation accessories


## Accessories and Auxiliaries Device Installation

CVS circuit breakers may be installed horizontally, vertically or flat on their back, without derating performance levels.

## Fixed circuit breakers

Fixed circuit breakers are designed for standard connection using bars or cables with lugs. Bare-cable connectors are available for connection to bare copper or aluminium cables.


Mounting on a backplate.


Mounting on rails.


Mounting on DIN rail (with adaptor).


Mounting on a Prisma mounting plate.

## Accessories and Auxiliaries Connection of Plug-in Devices

The same accessories as for fixed devices may be used

## Bars or cables with lugs

The plug-in base is equipped with terminals which, depending on their orientation, serve for front and rear connection.
For rear connection of a base mounted on a backplate, the terminals must be replaced
by insulated, long right-angle terminal extensions.
For EasyPact CVS630 devices, connection most often requires the 52.5 or 70 mm pitch spreaders.


Front connection.


Front connection with spreaders.


Rear connection of a base mounted on a backplate.

## Connection accessories

All accessories for fixed devices (bars, lugs, terminal extensions and spreaders) maybe used with the plug-in base.

## Bare cables

All terminals may be equipped with bare-cable connectors. See the "Connection of fixed devices" section.


With a 100 to 250 A base.


With a 400/630 A base.


## Adapter for plug-in base

The adapter is a plastic component for the 100 to 250 base and the $400 / 630$ base that enables use of all the connection accessories of the fixed device.
It is required for interphase barriers and the long and short terminal shields.


Adapter for 100 to 250 A - 3P
base.
Connection with bars or cables with lugs.


Adapter for 400/630 A - 4P base.
Connection with spreaders and interphase barriers.

## Accessories and Auxiliaries <br> Insulation of Live Parts

Terminal shields are identical for fixed and plug-in versions and cover all applications up to 1000 V . They exist for the 100 to 250 A and 400/630 A ratings, in long and short versions.


Long terminal shields.


Short terminal shields.


1. Partially cut removable squares
2. Grids with break marks.

3. Partially cut removable squares
4. Grids with break marks.

5. Partially cut removable squares
6. Grids with break marks.


## Terminal shields

Insulating accessories used for protection against direct contact with power circuits. They provide IP40 degree of protection and IK07 mechanical impact protection.

## Terminal-shield types

EasyPact CVS100 to 250 and CVS400/630 3P or 4P can be equipped with:
■ short terminal shields

- long terminal shields.

All terminal shields have holes or knock-outs in front for voltage-presence indicators.

## Short terminal shields

They are used with:
■ plug-in version in all connection configurations

- fixed version with rear connection.


## Long terminal shields

They are used for front connection with cables or insulated bars.
They comprise two parts assembled with captive screws, forming an IP40 cover.

- The top part is equipped with sliding grids with break marks for precise adaptation to cables or insulated bars.
■ The rear part completely blocks off the connection zone. Partially cut squares can be removed to adapt to all types of connection for cables with lugs or copper bars.
Long terminal shields may be mounted upstream and downstream of:
■ Fixed devices
- The base of plug-in version, thus completing the insulation provided by the mandatory short terminal shields on the device
■ The one-piece spreader for CVS100 to 250
■ The 52.5 mm spreaders forCVS400/630.


## Terminal shields and pitch

Combination possibilities are shown below.

| Circuit breaker <br> Short terminal shields | CVS100 to 250 | CVS400/630 |  |
| :--- | :--- | :--- | :--- |
| Pitch (mm) | 35 | 45 |  |
| Long terminal shields |  |  | 52.5 |
| Pitch (mm) | 35 | 45 |  |

## Interphase barriers

Safety accessories for maximum insulation at the power-connection points:

- they clip easily onto the circuit breaker
- single version for fixed devices and adapters on plug-in bases
- not compatible with terminal shields
- the adapter for the plug-in base is required for mounting on plug-in version.


## Rear insulating screens

Safety accessories providing insulation at the rear of the device.
Their use is mandatory for devices with spreaders, installed on backplates, when terminal shields are not used.
The available screen dimensions are shown below.

| Circuit breaker | CVS100 to 250 | CVS400/630 |
| :--- | :--- | :--- |
| 3P W $\times \mathrm{H} \times$ thickness $(\mathrm{mm})$ | $140 \times 105 \times 1$ | $203 \times 175 \times 1.5$ |
| $4 \mathrm{PW} \times \mathrm{H} \times$ thickness $(\mathrm{mm})$ | $175 \times 105 \times 1$ | $275 \times 175 \times 1.5$ |

Fixed circuit breakers are designed for standard front connection using bars or cables with lugs. Cable connectors are available for bare cables. Rear connection is also possible.


Insulated bar.


Small lug for AI cables.


## Front connection

Bars or cables with lugs

## Standard terminals

EasyPact CVS100 to 630 come with terminals comprising snap-in nuts with screws:
■ EasyPact CVS100: M6 nuts and screws.

- EasyPact CVS160/250: M8 nuts and screws

■ EasyPact CVS400/630: M10 nuts and screws.
These terminals may be used for:

- direct connection of insulated bars or cables with lugs
- terminal extensions.

Interphase barriers or terminal shields are recommended. They are mandatory for certain connection accessories (in which case the interphase barriers are provided).

## Bars

When the switchboard configuration has not been tested, insulated bars are mandatory.
Maximum size of bars

| EasyPact CVS circuit breaker | 100 to 250 | $400 / 630$ |  |
| :--- | :--- | :--- | :--- |
| Without spreaders | pitch $(\mathrm{mm})$ | 35 | 45 |
|  | maximum bar size $(\mathrm{mm})$ | $20 \times 3$ | $32 \times 8$ |
| With spreaders | pitch $(\mathrm{mm})$ | 45 | 52.5 |
|  | maximum bar size $(\mathrm{mm})$ | $32 \times 2$ | $40 \times 6$ |

## Crimp lugs

There are two modules of lugs, for aluminium and copper cables.
Interphase barriers or long terminal shields must be used with narrow lugs. The lugs are supplied with interphase barriers.

| EasyPact CVS circuit breaker |  | 100 to 250 | $400 / 630$ |
| :--- | :--- | :--- | :--- | :--- |
| Copper cables | size $\left(\mathrm{mm}^{2}\right)$ | 150,185 | 240,300 |
|  | crimping | hexagonal barrels or punching |  |
| Aluminium cables | size $\left(\mathrm{mm}^{2}\right)$ | 150,185 | 240,300 |
|  | crimping | hexagonal barrels |  |

## Terminal extensions

Extensions with anti-rotation ribs can be attached to the standard terminals to provide numerous connection possibilities in little space:

- straight terminal extensions
- right-angle terminal extensions


## Spreaders

Spreaders may be used to increase the pitch:
■ CVS100 to 250: the 35 mm pitch can be increased to 45 mm

- CVS400/630: the 45 mm pitch can be increased to 52 or 70 mm .

Bars, cable lugs or cable connectors can be attached to the ends.
Pitch ( mm ) depending on the type of spreader

| EasyPact CVS circuit breaker | CVS100 to $\mathbf{2 5 0}$ | CVS400/630 |
| :--- | :--- | :--- |
| Without spreaders | 35 | 45 |
| With spreaders | 45 | 52.5 or 70 |

## Accessories and Auxiliaries Connection of Devices

## Bare cables

Bare-cable connectors may be used for both copper and aluminium cables.
1-cable connectors for EasyPact CVS100 to 250
The connectors snap directly on to the device terminals or are secured by clips to right-angle and straight terminal extensions as well as spreaders.
1-cable connectors for EasyPact CVS400 to 630
The connectors are screwed directly to the device terminals.
2-cable connectors for EasyPact CVS100 to 250 and 400/630
The connectors are screwed to device terminals or right-angle terminal extensions.

Maximum size of cables depending on the type of connector

| EasyPact CVS circuit breaker |  | 100/160 | 250 | 400 | 630 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Steel connectors | 1.5 to $95 \mathrm{~mm}^{2}$ | $\square$ |  |  |  |
| Aluminium connectors | 25 to $95 \mathrm{~mm}^{2}$ | $\square$ | $\square$ |  |  |
|  | 120 to $185 \mathrm{~mm}^{2}$ | $\square$ | - |  |  |
|  | 2 cables 50 to $120 \mathrm{~mm}^{2}$ | $\square$ | - |  |  |
|  | 2 cables 35 to $240 \mathrm{~mm}^{2}$ |  |  | $\square$ | - |
|  | 35 to $300 \mathrm{~mm}^{2}$ |  |  | - | $\square$ |

## Rear connection

Device mounting on a backplate with suitable holes enables rear connection.

## Bars or cables with lugs

Rear connections for bars or cables with lugs are available in two lengths. Bars may be positioned flat, on edge or at $45^{\circ}$ angles depending on how the rear connections are positioned.
The rear connections are simply fitted to the device connection terminals. All combinations of rear connection lengths and positions are possible on a given device.


One contact model provides circuit-breaker status indications (OF - SD - SDE - SDV).


Indication contacts.

These common-point changeover contacts provide remote circuit-breaker status information.
They can be used for indications, electrical locking, relaying, etc.
They comply with the IEC 60947-5 international recommendation.

## Functions

Breaker-status indications, during normal operation or after a fault
A single type of contact provides all the different indication functions:
■ OF (ON/OFF) indicates the position of the circuit breaker contacts

- SD (trip indication) indicates that the circuit breaker has tripped due to:
- an overload
$\square$ a short-circuit
$\square$ an earth fault (Vigi)
- operation of a voltage release
- operation of the "push to trip" button
$\square$ disconnection when the device is ON.
The SD contact returns to de-energised state when the circuit breaker is reset.
■ SDE (fault-trip indication) indicates that the circuit breaker has tripped due to:
$\square$ an overload
$\square$ a short-circuit
$\square$ an earth fault (Vigi)
■ SDV indicates that the circuit breaker has tripped due to an earth fault. It returns de-energised state when the Vigi module is reset.


## Installation

- OF, SD, SDE and SDV functions: a single type of contact provides all these different indication functions, depending on where it is inserted in the device. The contacts clip into slots behind the front cover of the circuit breaker (or the Vigi module for the SDV function).
The SDE function on a CVS100-630 A equipped with a magnetic, thermalmagnetic or ETS 2 trip unit requires the SDE adaptor.


## Electrical characteristics of auxiliary contacts

| Contacts |  |  | Standard |  |  |  | Low level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Types of contacts <br> Rated thermal current (A) |  |  | All |  |  |  | OF, SD, SDE, SDV 5 |  |  |  |
| Minimum load |  |  | 100 mA at 24 V DC |  |  |  | 1 mA at 4 V DC |  |  |  |
| Utilisation cat. (IEC 60947-5-1) |  |  | AC12 | AC15 | DC12 | DC14 | AC12 | AC15 | DC12 | DC14 |
| Operational current (A) | 24 V | AC/DC | 6 | 6 | 6 | 1 | 5 | 3 | 5 | 1 |
|  | 48 V | AC/DC | 6 | 6 | 2.5 | 0.2 | 5 | 3 | 2.5 | 0.2 |
|  | 110 V | AC/DC | 6 | 5 | 0.6 | 0.05 | 5 | 2.5 | 0.6 | 0.05 |
|  | 220/24 | AC | 6 | 4 | - | - | 5 | 2 | - | - |
|  | 250 V | DC | - | - | 0.3 | 0.03 | 5 | - | 0.3 | 0.03 |
|  | 380/44 | AC | 6 | 2 | - | - | 5 | 1.5 | - | - |

Accessories and Auxiliaries
Remote Tripping

$M X$ or $M N$ voltage release.


Opening conditions of the MN release.


Closing conditions of the MN release.


MN release with a
time-delay unit.


Opening conditions of the MX release.

Note: circuit breaker opening using an MN or MX release must be reserved for safety functions. This type of tripping increases wear on the opening mechanism. Repeated use reduces the mechanical endurance of the circuit breaker by $50 \%$.

## MN undervoltage release

- This release trips the circuit breaker when the control voltage drops below a tripping threshold
■ The tripping threshold is between 0.35 and 0.7 times the rated voltage
■ Circuit breaker closing is possible only if the voltage exceeds 0.85 times the rated voltage.
Characteristics

| Power supply | V AC | $50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240$ |
| :--- | :--- | :--- |
|  |  | $50 \mathrm{~Hz}: 380 / 415 \quad 60 \mathrm{~Hz}: 208 / 277$ |
| Operating threshold | Opening | $12-24-30-48-60-125-250$ |
|  | Closing | 0.35 to 0.7 Un |
| Operating range |  | 0.85 Un |
| Consumption (VA or W) |  | 0.85 to 1.1 Un |
| Response time $(\mathrm{ms})$ |  | Pick-up: $10-$ Hold: 5 |

## Time-delay unit for an MN release

A time delay unit for the MN release eliminates the risk of nuisance tripping due to a transient voltage dip lasting $\leqslant 200 \mathrm{~ms}$. For shorter micro-outages, a system of capacitors provides temporary supply to the MN at $\mathrm{U}>0.7$ to ensure no tripping. The correspondence between MN releases and time-delay units is shown below.

| Power supply | Corresponding MN release |
| :---: | :---: |
| Unit with fixed delay 200 ms |  |
| 48 V AC | 48 V DC |
| 220 / 240 V AC | 250 V DC |
| Unit with adjustable delay ( $0.5 \mathrm{~s}, 0.9 \mathrm{~s}, 1.5 \mathrm{~s}, 3 \mathrm{~s}$ ) |  |
| 48-60 V AC/DC | 48 V DC |
| 100-130 V AC/DC | 125 V DC |
| 220-250 V AC/DC | 250 V DC |

## MX shunt release

The MX release opens the circuit breaker via an impulse-type ( $\geqslant 20 \mathrm{~ms}$ ) or maintained order.

## Opening conditions

When the MX release is supplied, it automatically opens the circuit breaker. Opening is ensured for a voltage $\mathrm{U} \geqslant 0.7 \times \mathrm{Un}$.

## Characteristics

| Power supply | V AC | $50 / 60 \mathrm{~Hz}: 24-48-100 / 130-200 / 240$ |
| :--- | :--- | :--- |
|  |  | $50 \mathrm{~Hz}: 380 / 415 \quad 120 \mathrm{~Hz}: 208 / 277$ |
| OpC | $12-24-30-48-60-125-250$ |  |
| Consumption (VA or W) |  | 0.7 to 1.1 Un |
| Response time $(\mathrm{ms})$ | Pick-up: 10 |  |

## Circuit breaker control by MN or MX

When the circuit breaker has been tripped by an MN or MX release, it must be reset before it can be reclosed.
MN or MX tripping takes priority over manual closing.
In the presence of a standing trip order, closing of the contacts, even temporary, is not possible.
Connection using wires up to $1.5 \mathrm{~mm}^{2}$ to integrated terminal blocks.

## Accessories and Auxiliaries Rotary Handles

There are two types of rotary handle:

- direct rotary handle
- extended rotary handle.


EasyPact CVS with a rotary handle.


EasyPact CVS with an extended rotary handle installed at the back of a switchboard, with the keylock option and key


## Direct rotary handle

## Standard handle

Degree of protection IP40, IK07.
The direct rotary handle maintains:

- visibility of and access to trip-unit settings
- suitability for isolation

■ indication of the three positions O (OFF), I (ON) and tripped

- access to the "push to trip" button.

Device locking
The rotary handle facilitates circuit-breaker locking.

- Padlocking:
- standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied


## Extended rotary handle

Degree of protection IP54, IK08.
The extended rotary handle makes it possible to operate circuit breakers installed at the back of switchboards, from the switchboard front.
It maintains:

- visibility of and access to trip-unit settings
- suitability for isolation
- indication of the three positions O (OFF), I (ON) and tripped.


## Device and door padlocking

Padlocking locks the circuit-breaker handle and disables door opening:

- standard situation, in the OFF position, using 1 to 3 padlocks, shackle diameter 5 to 8 mm , not supplied


## Parts of the extended rotary handle

- A unit that replaces the front cover of the circuit breaker (secured by screws).
- An assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is installed vertically or horizontally.
■ An extension shaft that must be adjusted to the distance. The min/max distance
between the back of circuit breaker and door is:
- 185... 600 mm for EasyPact CVS100 to 250
- 209... 600 mm for EasyPact CVS 400/630.


## Manual source-changeover systems

Additional accessory interlocks two devices with rotary handle to create a source-changeover system. Closing of one device is possible only if the second is open.
This function is compatible with direct or extended rotary handles. Up to three padlocks can be used to lock in the OFF or ON position.

EasyPact CVS Motor Mechanism can be used on CVS100-630 circuit breakers / switch disconnectors to achieve remote closing and opening.

When equipped with a motor mechanism module, EasyPact CVS circuit breakers feature very high mechanical endurance as well as easy and reliable operation:

- Remote control via electric signal
- Direct local control on the front panel of the circuit breaker through the manual operating mechanism


1. Push-to-trip button
2. Position indicator (ON/OFF/TRIP)
3. Slide cover for Manual/Auto mode selection switch
4. Handle for Manual mode operation
5. Handle insertion point

## Operation

The type of operation is selected using the slide cover for manual/auto mode.

## Automatic

When the switch is in the "auto" position, circuit-breaker ON and OFF is controlled by two impulse-type or maintained signals.
Following tripping due to an electrical fault, manual reset is mandatory after fault is cleared.

## Manual

When the switch is in the "manual" position, circuit-breaker ON and OFF is controlled by the handle.

## Installation and Connections

All installation (fixed, plug-in) and connection possibilities are maintained. Motor-mechanism module connections are made behind its front cover to integrated terminals, for cables up to $2.5 \mathrm{~mm}^{2}$.

| Characteristics |  |  |  |
| :--- | :--- | :--- | :--- |
| EasyPact CVS Motor <br> Mechanism | MT100 to 250 | MT400/630 |  |
| Response time (ms) | opening | 350 | 500 |
| closing | 700 | 1000 |  |
| Operating frequency | cycles/minute max. | 3 | 2 |
| Control voltage (V) | DC | $110-230$ |  |
|  | AC 50/60Hz | $110-230,400$ |  |
| Electrical endurance | DC(W) | opening | 25000 |
| Consumption | closing | 150 | 20000 |
|  | VC(VA) | opening |  |
|  | closing | 300 |  |

Notes: CVS Motor Mechanism is not applicable to IT earthing system.

## Accessories and Auxiliaries <br> Additional Measurement Module: <br> PowerLogic ${ }^{\text {TM }}$ PowerTag Energy Monoconnect 250 A \& 630 A



PowerLogic PowerTag M250 3P

> PowerTag Energy Web

PowerTag Energy M250/M630 is a class 1 energy meter, as per IEC 6155712, that incorporates features required to perform accurate real-time measurements (U, V, I, P, PF) and get energy values up to 250 A or 630 A , depending on the model.

Used together with a gateway or a Panel Server to collect and process the data, the PowerTag Energy M250/M630 provides circuit monitoring and diagnosis down to load level.

The PowerTag Energy M250/M630 is designed for CVS up to 630A for 3P and $3 P+N$ electrical networks.

Thanks to its integrated design, the PowerTag Energy M250/M630 does not require any specific wiring and is compatible with the same connection accessories as the device it is mounted on.

## Functions

PowerTag Energy M250/M630 measures the following values in accordance with the IEC 61557-12 standard
PMD-II/DD/K70/1:

- Energy (4 quadrants):
- Active energy (kWh): total and partial, delivered and received.
- Active energy per phase (kWh): total.
- Reactive energy (kVARh): partial, delivered and received.

■ Real-time measurement values:

- Voltages (V): phase-to-phase (U12, U23, U31) and phase-to-neutral (V1N, V2N, V3N).
- Currents (A): per phase (I1, I2, I3).
- Power:
- Active power (W): total and per phase.
- Reactive power (VAR): total.
- Apparent power (VA): total.
- Frequency (Hz).
- Power factor.

■ Voltage loss alarms:

- PowerTag Energy sends a "voltage loss" alarm and the current-per-phase value before being de-energized.
- At "voltage loss", PowerTag Energy adds an overload alarm if the current is higher than the rated current of the associated protective device.
Note: Functions listed above depends on Concentrator/Gateway.

> PowerTag Energy Catalog


## Accessories and Auxiliaries

Additional Measurement Module:
PowerLogic ${ }^{\text {TM }}$ PowerTag Energy Monoconnect 250 A \& 630 A

## Installation

The module is self-powered and is installed for fixed devices directly on the bottom side of the circuit breaker. For plug-in devices, it has to be installed on the base itself, top or bottom.
PowerTag Energy M250/M630 3P has to be used with 3P devices, and an external neutral voltage tap is provided in case of the installation has a neutral to provide phase-to-neutral voltages, active energy per phase and power per phase.

PowerTag Energy M250/M630 3P+N has to be used with 4P devices.


Important notice : A derating coefficient may apply for the circuit-breaker on which the PowerTag is mounted on. Refer to the temperature derating table.

In case of retrofit, following points have to been checked:
■ Clearance to be able to add PowerTag Energy module and to respect bending radius of cables.
■ Condition of power connectors: to be replaced if damaged.
■ Tightening torques depending on the connector used.

## Accessories and Auxiliaries

## Additional Measurement Module:

PowerLogic ${ }^{\text {TM }}$ PowerTag Energy Monoconnect 250 A \& 630 A

Technical specifications

| Main characteristics |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage | Un | Phase-to-neutral |  | 230 V AC $\pm 20 \%$ |
|  |  | Phase | hase | $400 \vee \mathrm{AC} \pm 20 \%$ |
| Frequency |  |  |  | $50 / 60 \mathrm{~Hz}$ |
| Maximum current | Imax |  |  | 250 A / 630 A |
| Maximum operating current |  |  |  | $1.2 \times$ Imax |
| Saturation current |  |  |  | $2 \times 1$ max |
| Maximum consumption |  |  |  | 3.7 VA |
| Starting current | Ist |  |  | $160 \mathrm{~mA} / 400 \mathrm{~mA}$ |
| Basic current | Ib |  |  | $40 \mathrm{~A} / 100 \mathrm{~A}$ |
| Additional characteristic |  |  |  |  |
| Operating temperature |  |  |  | $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage temperature |  |  |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Overvoltage category |  | As per IEC 61010-1 |  | Cat. IV |
| Measuring category |  | As per IEC 61010-2-030 |  | Cat. III |
| Pollution degree |  |  |  | 3 |
| Altitude |  |  |  | Up to 2000 m without derating ${ }^{(1)}$ |
| Degree of protection device |  |  |  | IP20 |
|  |  |  |  | IK07 |
| Radio-frequency communication |  |  |  |  |
| ISM band 2.4 GHz |  |  |  | 2.4 GHz to 2.4835 GHz |
| Channels |  | As per | 802.15 .4 | 11 to 26 |
| Isotropic Radiated Power |  | Equiva | EIRP) | 0 dBm |
| Maximum transmission time |  |  |  | $<5 \mathrm{~ms}$ |
| Channel occupancy |  | For 1 device |  | messages sent every 5 seconds |
| Characteristics of measuring functions |  |  |  |  |
| Function | Symbol | Performance category as per IEC 61557-12 (PMD-II/DD/K70/1) |  | Measuring range (250 A / 630 A) |
|  |  | Class | Measuring range ( $250 \mathrm{~A} / 630 \mathrm{~A}$ ) |  |
| Total active power (Active power per phase) | P | 1 | 4 to $250 \mathrm{~A} / 10$ to 630 A | 88 W (29 W) to 416 kW / 222 W (74 W) to 1048 kW |
| Total reactive power | $Q_{\text {A }}$ | 2 |  | 88 VAR to 416 kVAR / 221 VAR to 1048 kVAR |
| Total apparent power | $\mathrm{S}_{\mathrm{A}}$ | 2 |  | 88 VA to 416 kVA / 221 VA to 1048 kVA |
| Active energy: per phase, total, partial | $\mathrm{E}_{\mathrm{a}}$ | 1 |  | 0 to $281.10^{9} \mathrm{kWh}$ |
| Partial reactive energy | $\mathrm{E}_{\text {rA }}$ | 2 |  | 0 to $281.10^{9} \mathrm{kVARh}$ |
| Frequency | f | 1 | 45 to 55 Hz | 45 to 65 Hz |
| Phase current | 1 | 1 | 8 to $250 \mathrm{~A} / 20$ to 630 A | 160 mA to $500 \mathrm{~A} / 400 \mathrm{~mA}$ to 1260 A |
| Voltages (Line to Line) | U | 0.5 | Un $\pm 20$ \% | 320 to 480 VAC |
| Power factor | $\mathrm{PF}_{\mathrm{A}}$ | 1 | From 0.5 inductive to 0.8 capacitive | -1 to 1 |

[^2]
## Accessories and Auxiliaries

Additional Measurement Module:
PowerLogic ${ }^{\text {TM }}$ PowerTag Energy Monoconnect 250 A \& 630 A

PowerTag Energy 250 A
PowerTag Energy 630 A

(1) neutral on the right when mounted on top side
(2) when plate mounted, need to add an intercalary wedging plate under the PowerTag module with following dimensions:


$3 P+N$


## Accessories and Auxiliaries



Rotary-handle locking using a padlock or a keylock.


[^3]
## Locks

Locking in the OFF position guarantees isolation as per IEC 60947-2. Padlocking systems can receive up to three padlocks with shackle diameters ranging from 5 to 8 mm (padlocks not supplied). Certain locking systems require an additional accessory.

| Control device | Function | Means | Required accessories |
| :---: | :---: | :---: | :---: |
| Toggle | Lock in OFF position | Padlock | Removable device |
|  | Lock in OFF or ON position | Padlock | Fixed device |
| Direct rotary Standard handle | Lock in <br> - OFF position OFF or ON position | Padlock | - |
|  |  | Keylock | Locking device + keylock |
| Extended rotary handle | Lock in <br> - OFF position - OFF or ON position with door opening prevented ${ }^{(2)}$ | Padlock | - |
|  | Lock in OFF position | Padlock | UL508 control accessory |
|  | OFF or ON position inside the switchboard | Keylock | Locking device + keylock |

(1) Following a simple modification of the mechanism.
(2) Unless door locking has been voluntarily disabled.

## Sealing accessories



## Accessories and Auxiliaries

Escutcheons are an optional feature mounted on the switchboard door. They increase the degree of protection to IP40, IK07. Protection collars maintain the degree of protection, whatever the position of the device (connected, disconnected).

## IP40 escutcheons for fixed devices

There are three types of an escutcheon with a gasket which are screwed to the door cut-out:

- three escutcheons for all control types (toggle, handle or motor mechanism)
- a wide model for Vigi modules that can be combined with the above.


Escutcheon for toggle without and with access to the trip unit.


Escutcheon for Vigi module.

## Installation recommendations

## Installation recommendations

## Functions and characteristics

Operating conditions and temperature derating ..... B-2
Installation in switchboards ..... B-4
Power supply and weights ..... B-4
Safety clearances and minimum distances ..... B-5
Installation example ..... B-6
Power loss/Resistance ..... B-8
Dimensions and connection ..... C-1

Additional characteristics

# Operating conditions and temperature derating 

When thermal-magnetic trip units are used at ambient temperatures other than $50^{\circ} \mathrm{C}$, the Ir pick-up is modified.


Electronic trip units are not affected by variations in temperature. If the trip units are used in hightemperature environments, the ETS setting must nevertheless take into account the temperature limits of the circuit breaker.


Temperature derating curve for CVS100.


## Altitude derating

Altitude does not significantly affect the characteristics of EasyPact CVS circuit breakers up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air.

| Altitude (m) | $\mathbf{2 0 0 0}$ | $\mathbf{3 0 0 0}$ | $\mathbf{4 0 0 0}$ | 5000 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Impulse withstand voltage Uimp (kV) | 8 | 7 | 6 | 5.2 |
| Current ratio | 1,00 | 0,96 | 0,93 | 0,90 |
| Ui | 690 | 600 | 520 | 450 |
| Ue | 440 | 400 | 400 | 380 |

## Vibrations

CVS devices resist electromagnetic or mechanical vibrations
Tests are carried out in compliance with standard IEC 60068-2-6 for the levels
required by merchant-marine inspection organisations (Veritas, Lloyds, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$

- 13.2 to 100 Hz : constant acceleration 0.7 g .

Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

## Degree of protection

CVS circuit breakers have been tested for degree of protection (IP) and mechanical impact protection (IK). See page A-3.

The overload protection is calibrated at $50^{\circ} \mathrm{C}$ in the lab. This means that when the ambient temperature is less than or greater than $50^{\circ} \mathrm{C}$, the Ir protection pick-up is slightly modified.
To obtain the tripping time for a given temperature

- see the tripping curves for $50^{\circ} \mathrm{C}$ (see pages D-2 and D-5)
- determine tripping times corresponding to the Ir value (thermal setting on the device), corrected for the ambient temperature as indicated in the tables below.

Settings of CVS100 to 630 equipped with TM-D trip units as a function of the temperature
The table indicates the real $\operatorname{lr}(A)$ value for a given rating and temperature.

|  | Temperature ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (A) | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |
| 16 | 18.9 | 18.6 | 18.2 | 17.9 | 17.5 | 17.2 | 16.8 | 16.4 | 16 | 15.6 | 15.2 | 14.8 | 14.3 |
| 25 | 29.6 | 29 | 28.5 | 28 | 27.4 | 26.8 | 26.2 | 25.6 | 25 | 24.4 | 23.7 | 23 | 22.4 |
| 32 | 37.9 | 37.2 | 36.5 | 35.8 | 35.1 | 34.3 | 33.6 | 32.8 | 32 | 31.2 | 30.4 | 29.5 | 28.6 |
| 40 | 47.3 | 46.5 | 45.6 | 44.7 | 43.8 | 42.9 | 42 | 41 | 40 | 39 | 37.9 | 36.9 | 35.8 |
| 50 | 59.2 | 58.1 | 57 | 55.9 | 54.8 | 53.6 | 52.4 | 51.2 | 50 | 48.7 | 47.4 | 46.1 | 44.7 |
| 63 | 74.5 | 73.2 | 71.8 | 70.4 | 69 | 67.6 | 66.1 | 64.6 | 63 | 61.4 | 59.8 | 58.1 | 56.3 |
| 80 | 94.7 | 93 | 91.2 | 89.4 | 87.6 | 85.8 | 83.9 | 82 | 80 | 78 | 75.9 | 73.8 | 71.6 |
| 100 | 118.3 | 116.2 | 114 | 111.8 | 109.5 | 107.2 | 104.9 | 102.5 | 100 | 97.5 | 94.9 | 92.2 | 89.4 |
| 125 | 147.9 | 145.2 | 142.5 | 139.8 | 136.9 | 134 | 131.1 | 128.1 | 125 | 121.8 | 118.6 | 115.2 | 111.8 |
| 160 | 189.3 | 185.9 | 182.4 | 178.9 | 175.3 | 171.6 | 167.8 | 164 | 160 | 155.9 | 151.8 | 147.5 | 143.1 |
| 200 | 236.6 | 232.4 | 228 | 223.6 | 219.1 | 241.5 | 209.8 | 204.9 | 200 | 194.9 | 189.7 | 184.4 | 178.9 |
| 250 | 295.8 | 290.5 | 285 | 279.5 | 273.9 | 268.1 | 262.2 | 256.2 | 250 | 243.7 | 237.2 | 230.5 | 223.6 |
| 320 | 377.6 | 371.2 | 364.8 | 358.4 | 352 | 342.4 | 336 | 326.4 | 320 | 310.4 | 304 | 294.4 | 284.8 |
| 400 | 472 | 464 | 456 | 448 | 440 | 428 | 420 | 408 | 400 | 388 | 380 | 368 | 356 |
| 500 | 590 | 580 | 570 | 560 | 550 | 535 | 525 | 510 | 500 | 485 | 475 | 460 | 445 |
| 600 | 708 | 696 | 684 | 672 | 660 | 642 | 630 | 612 | 600 | 582 | 570 | 552 | 534 |
| 630 | 740 | 727 | 714 | 701 | 687 | 673 | 659 | 645 | 630 | 615 | 599 | 583 | 567 |

[^4]
## Operating conditions and temperature derating

CVS 100-630 (equipped with ETS 2.2/2.3 electronic trip unit)
The table below indicates the maximum long-time (LT) protection setting Ir (A) depending on the ambient temperature


Additional derating coefficient for an add-on module
For fixed or plug-in circuit breakers equipped with an add-on module, the coefficients in the table below must be applied.

| Type of device | Circuit breaker | Trip unit | Plug-in | Vigi add-on module | PowerTag Energy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fixed | CVS100 | $\begin{aligned} & \text { TMD100 } \\ & \text { ETS } 2.2 \end{aligned}$ | 1 | 1 | 1 |
|  | CVS160 | $\begin{aligned} & \text { TMD160 } \\ & \text { ETS } 2.2 \end{aligned}$ | 1 | 1 | 1 |
|  | CVS250 | $\begin{aligned} & \text { TMD250 } \\ & \text { ETS } 2.2 \end{aligned}$ | 1 | 1 | 1 |
|  | CVS400 | $\begin{aligned} & \text { TMD320 } \\ & \text { TMD400 } \\ & \text { ETS } 2.3 \end{aligned}$ | $\begin{array}{\|l} 0.96 \\ 0.92 \\ 1 \end{array}$ | $\begin{array}{\|l} 0.98 \\ 0.94 \\ 0.97 \end{array}$ | 1 |
|  | CVS630 | TMD500 TMD600 TMD630 ETS 2.3 | $\begin{aligned} & 0.88 \\ & 0.82 \\ & 0.8 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.89 \\ & 0.85 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.86 \\ & 1 \end{aligned}$ |
| Plug-in | CVS100 | $\begin{aligned} & \text { TMD100 } \\ & \text { ETS } 2.2 \end{aligned}$ | - | 1 | 1 |
|  | CVS160 | $\begin{aligned} & \text { TMD160 } \\ & \text { ETS } 2.2 \\ & \hline \end{aligned}$ | - | 1 | $\begin{aligned} & 0.84 \\ & 1 \end{aligned}$ |
|  | CVS250 | $\begin{aligned} & \text { TMD250 } \\ & \text { ETS } 2.2 \end{aligned}$ | - | $\begin{array}{\|l\|} \hline 0.84 \\ 0.86 \end{array}$ | $\begin{array}{\|l} 0.84 \\ 1 \end{array}$ |
|  | CVS400 | $\begin{aligned} & \text { TMD320 } \\ & \text { TMD400 } \\ & \text { ETS } 2.3 \end{aligned}$ | - | $\begin{aligned} & \hline 0.88 \\ & 0.88 \\ & 0.97 \end{aligned}$ | $\begin{array}{\|l} 0.87 \\ 0.87 \\ 1 \end{array}$ |
|  | CVS630 | TMD500 TMD600 TMD630 ETS 2.3 | - | $\begin{aligned} & 0.73 \\ & 0.73 \\ & 0.68 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.69 \\ & 1 \end{aligned}$ |

# Installation in Switchboards <br> Power Supply and Weights 



## Power supply from the top or bottom

CVS circuit breakers can be supplied from either the top or the bottom, even when equipped with a Vigi earth-leakage protection module, without any reduction in performance. This capability facilitates connection when installed in a switchboard.
All connection and insulation accessories can be used on circuit breakers supplied either from the top or bottom.

## Weight

The table below presents the weights (in kg ) of the circuit breakers and the main accessories.

| Type of device |  | Circuit breakers |  | Vigi | PowerTag | Motor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CVS with TM-D | CVS with ETS |  |  |  |
| CVS100 | 3P 3D | 1.64 | 2.04 | 0.87 | 0.25 | 0.99 |
|  | 4P 4D | 2.01 | 2.81 | 1.13 | 0.30 |  |
|  | 4P 3D | 2.01 | 2.81 | 1.13 | 0.30 |  |
| CVS160 | 3P 3D | 1.60 | 2 | 0.87 | 0.25 |  |
|  | 4P 4D | 2.08 | 2.88 | 1.13 | 0.30 |  |
|  | 4P 3D | 2.08 | 2.88 | 1.13 | 0.30 |  |
| CVS250 | 3P 3D | 1.79 | 2.19 | 0.87 | 0.25 |  |
|  | 4P 4D | 2.39 | 3.19 | 1.13 | 0.30 |  |
|  | 4P 3D | 2.39 | 3.19 | 1.13 | 0.30 |  |
| CVS400 | 3P 3D | 4.37 | 4.71 | 2.8 | 0.8 | 2.7 |
|  | 4P 4D | 5.83 | 6.32 | 3 | 1 |  |
|  | 4P 3D | 5.83 | 6.32 | 3 | 1 |  |
| CVS630 | 3P 3D | 4.80 | 5.24 | 2.8 | 0.8 |  |
|  | 4P 4D | 6.40 | 7.14 | 3 | 1 |  |
|  | 4P 3D | 6.40 | 7.14 | 3 | 1 |  |

## General rules

When installing a circuit breaker, minimum distances (safety clearances) must be maintained between the device and panels, bars and other protection devices installed nearby. These distances, which depend on the ultimate breaking capacity, are defined by tests carried out in accordance with standard IEC 60947-2.
If installation conformity is not checked by type tests, it is also necessary to:
$\square$ use insulated bars for circuit-breaker connections
$■$ segregate the busbars using insulating screens.
For CVS100 to 630 devices, terminal shields and interphase barriers are recommended and may be mandatory depending on the operating voltage of the device and type of installation (fixed, withdrawable, etc.).

## Power connections

The table below indicates the rules to be respected for CVS100 to 630 devices to ensure the insulation of live parts for fixed devices.

CVS100 to 630: rules to be respected to ensure the insulation of live parts


[^5]
## Safety clearance

Minimum distance between two adjacent circuit breakers


Minimum distance between circuit breaker and front or rear panels


Note: if $\mathrm{F}<8 \mathrm{~mm}$ : an insulating screen or long terminal shield is mandatory.

Minimum distance between circuit breaker and top, bottom or side panels


Devices without accessories.

Minimum safety clearances for CVS100 to 630

| Dimensions (mm) circuit breaker | Insulation, insulated bars or painted sheet metal |  |  | Bare sheet metal |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C1 | D1 | D2 | C1 | D1 | D2 | A1 |
| CVS100-250 U $\leq 440 \mathrm{~V}$ | 0 | 30 | 30 | 5 | 35 | 35 | 0 |
| CVS400-630 U $\leq 440 \mathrm{~V}$ | 0 | 30 | 30 | 5 | 60 | 60 | 0 |

## Installation in Switchboards <br> Installation Example



Live busbars

Clearances with respect to live bare busbars
Minimum clearances for CVS100 to 630

| Operating voltage | Clearances with respect to live bare busbars |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | spacing $\leqslant \mathbf{6 0} \mathbf{~ m m}$ | spacing $\mathbf{> 6 0} \mathbf{~ m m ~}$ |  |  |
|  | F1 | F2 | F1 | F2 |
| $\mathrm{U}<440 \mathrm{~V}$ | 350 | 350 | 80 | 80 |
| $\mathrm{U}=440 \mathrm{~V}$ | 350 | 350 | 120 | 120 |

These clearances can be reduced for special installations as long as the configuration is checked by tests.

# Power Loss / Resistance <br> EasyPact CVS Equipped with <br> Thermal Magnetic Trip Units 

EasyPact CVS thermal power loss values are used to calculate total temperature rise in the switchboard in which the circuit breakers are installed.


With a Vigi module, the deviation of the $N$ and $L 3$ bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars

The values indicated in the tables below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$.

## Power loss per pole (P/pole) in Watts (W)

The value indicated is the power loss at $\mathrm{I}_{\mathrm{N}}, 50 / 60 \mathrm{~Hz}$, for a three-pole or four-pole circuit breaker. Measurement and calculation of power loss are carried out in compliance with the recommendations of Annex G of standard IEC 60947-2.

## Resistance per pole ( $\mathrm{R} / \mathrm{pole}$ ) in milliohms ( $\mathrm{m} \Omega$ )

The value of the resistance per pole is provided as a general indication for a new device.
The value of the contact resistance must be determined on the basis of the measured voltage drop, in accordance with the manufacturer's test procedure (ABT instruction document no. 1 - BEE-02.2-A).
Note: this measurement is not sufficient to determine the quality of the contacts, i.e. the capacity of the circuit breaker to carry its rated current.

## Additional power loss

Additional power loss is equal to the sum of the power dissipated by the following
■ Vigi module: note that the deviation of the N and L 3 bars required to pass through the toroid results in higher power losses compared to those of the L1 and L2 bars (diagram opposite). When calculating total power loss, use L1, L2, L3 for a 3P device and N, L1, L2, L3 for a 4P device
■ disconnecting contacts (plug-in and withdrawable devices)

- ammeter module
- transformer module.


## Calculation of total power loss

Total power loss at full rated load and $50 / 60 \mathrm{~Hz}$ is equal to the sum of the device and additional power losses per pole multiplied by the number of poles (2, 3 or 4 ). If a Vigi module is installed, it is necessary to differentiate between N and L3 on one hand and L1 and L2 on the other.

EasyPact CVS100 to 630 equipped with TM-D trip units

| Type of device 3/4 poles | Fixed device Rat. (A) | R/pole | P/pole |
| :---: | :---: | :---: | :---: |
| CVS100 | 16 | 11.91 | 3.05 |
|  | 25 | 6.91 | 4.32 |
|  | 32 | 4.43 | 4.54 |
|  | 40 | 4.125 | 6.60 |
|  | 50 | 3.30 | 8.25 |
|  | 63 | 1.92 | 7.62 |
|  | 80 | 1.86 | 11.90 |
|  | 100 | 1.37 | 13.70 |
| CVS160 | 100 | 0.77 | 7.70 |
|  | 125 | 0.69 | 10.78 |
|  | 160 | 0.55 | 14.08 |
| CVS250 | 160 | 0.46 | 11.78 |
|  | 200 | 0.39 | 15.60 |
|  | 250 | 0.3 | 18.75 |
| CVS400 | 320 | 0.24 | 24.00 |
|  | 400 | 0.19 | 30.00 |
| CVS630 | 500 | 0.17 | 40.80 |
|  | 600 | 0.15 | 53.80 |
|  | 630 | 0.15 | 59.50 |

EasyPact CVS100 to 630 equipped with TM-D trip units

| Type of device 3/4 poles | Rat.(A) | Additional power/pole |  | Plug-in | PowerTag Energy module |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Vigi (N,L3) | Vigi (L1,L2) |  |  |
| CVS100 | 16 | 0 | 0 | 0 | 0 |
|  | 25 | 0 | 0 | 0.1 | 0 |
|  | 32 | 0.06 | 0.03 | 0.15 | 0 |
|  | 40 | 0.1 | 0.05 | 0.2 | 0 |
|  | 50 | 0.15 | 0.08 | 0.3 | 0.1 |
|  | 63 | 0.3 | 0.15 | 0.4 | 0.1 |
|  | 80 | 0.4 | 0.2 | 0.6 | 0.1 |
|  | 100 | 0.7 | 0.35 | 1 | 0.2 |
| CVS160 | 100 | 0.7 | 0.35 | 1 | 0.2 |
|  | 125 | 1.1 | 0.55 | 1.6 | 0.3 |
|  | 160 | 1.8 | 0.9 | 2.6 | 0.5 |
| CVS250 | 160 | 1.8 | 0.9 | 2.6 | 0.5 |
|  | 200 | 2.8 | 1.4 | 4 | 0.8 |
|  | 250 | 4.4 | 2.2 | 6.3 | 1.3 |
| CVS400 | 320 | 2.05 | 1.03 | 6.14 | 2.24 |
|  | $400^{(1)}$ | 2.86 | 1.43 | 8.57 | 2.24 |
| CVS630 | $500^{(2)}$ | 4.08 | 2.04 | 12.2 | 5.56 |
|  | $600^{(3)}$ | 5.7 | 2.85 | 17.1 | 5.56 |
|  | 630 | 6.3 | 3.15 | 18.92 | 5.56 |

(1) The power loss value for Vigi module is given for 378A
(2) The power loss value for Vigi module is given for 451 A
(3) The power loss value for Vigi module is given for 534A

EasyPact CVS100 to 630 equipped with MA trip units


## Power Loss / Resistance

recommendations EasyPact CVS Equipped with Electronic Trip Units

The values indicated in the table below are typical values for a device at full rated load and $50 / 60 \mathrm{~Hz}$. The definitions and information are the same as that for circuit breakers equipped with thermal-magnetic trip units.

CVS100 to 630 equipped with electronic trip units

| Type of device <br> 3/4 poles | Fixed device <br> Rat. (A) | R/pole | P/pole |
| :--- | :--- | :--- | :--- |
| CVS100 | 40 | 0.658 | 1.29 |
| CVS100 | 100 | 0.562 | 4.36 |
| CVS160 | 160 | 0.309 | 9.31 |
| CVS250 | 250 | 0.452 | 18.99 |
| CVS400 | 400 | 0.15 | 24.00 |
| CVS630 | 630 | 0.12 | 47.63 |


| Type of device <br> 3/4 poles | Rat. (A) | Additional power/pole <br> Vigi (N,L3) |  | Plug-in | PowerTag <br> Energy |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CVS100 | 40 | 0.1 | 0.06 | 0.2 | module |
| CVS100 | 100 | 0.7 | 0.35 | 1 | 0 |
| CVS160 | 160 | 1.8 | 0.9 | 2.6 | 0.5 |
| CVS250 | 250 | 4.4 | 2.2 | 6.3 | 1.3 |
| CVS400 | 400 | 3.2 | 1.6 | 9.6 | 2.24 |
| CVS630 | $630^{(4)}$ | 6.5 | 3.25 | 19.49 | 5.56 |

(4) The power loss value for Vigi module is given for 570A

## Installation

recommendations

## Dimensions and connection

## Dimensions and Connection

Functions and Characteristics ..... A-1
Installation Recommendations ..... B-1
Dimensions and Mounting ..... C-2
EasyPact CVS100 to 630 ..... C-2
Vigi CVS100 to 630 ..... C-3
EasyPact CVS100 to 630 Plug-in ..... C-4
Direct Rotary Handle ..... C-6
Extended Rotary Handle ..... C-7
Motor Mechanism ..... C-8
PowerTag Energy M250 /630 ..... C-9
Front-panel Accessories ..... C-10
EasyPact and Vigi CVS100 to 630 ..... C-10
Front-panel Cutouts ..... C-11
EasyPact CVS100 to 630 ..... C-11
Vigi CVS100 to 630 ..... C-12
Direct Rotary Handle ..... C-13
Motor Mechanism ..... C-15
Power Connections ..... C-16
EasyPact and Vigi CVS100 to 630 ..... C-16
EasyPact and Vigi CVS100 to 630 Plug-in ..... C-19
Connection of Insulated Bars or Cables with Lugs ..... C-23
Connection of Bare Cables ..... C-24
Motor Mechanism ..... C-25
Additional Characteristics ..... D-1
Catalogue Numbers ..... E-1
EasyPact CVS100BS ..... F-1

## Dimensions and Mounting EasyPact CVS100 to 630


(1) The ØT holes are required for rear connection only.


On DIN rail with adaptor plate (CVS100 to 250)



C-2


| Type | A | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | B | B1 | B2 | C1 | C2 | C3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS100 to 250 | 80.5 | 161 | 94 | 145 | 178.5 | 155.5 | 236 | 169 | 220 | 253.5 | 52.5 | 105 | 140 | 81 | 86 | 126 |
| 62.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS400/630 | 127.5 | 255 | 142.5 | 200 | 237 | 227.5 | 355 | 242.5 | 300 | 337 | 70 | 140 | 185 | 95.5 | 110 | 168 |
| 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Type | E2 | E3 | E4 | E5 | E6 | E7 | E8 | F1 | F2 | F3 | G1 | G2 | G3 | G4 | G5 | $\boldsymbol{\varnothing}$ ( |
| U |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS100 to 250 | 125 | 70 | 140 | 137.5 | 200 | 145 | 215 | 35 | 17.5 | 70 | 95 | 75 | 13.5 | 23 | 17.5 | 24 |
| CVS400/630 | 200 | 113.5 | 227 | 200 | 300 | 213.5 | 327 | 45 | 22.5 | 90 | - | - | - | - | - | 32 |



Interphase barriers. Short terminal shields.

Long terminal shields (also available for CVS400/630 spreaders with 52.5 mm pitch: $B 1=157.5 \mathrm{~mm}, \mathrm{~B} 2=210 \mathrm{~mm}$ ).

Adapter for base, required to mount long terminal shields or interphase barriers.

Mounting
Through front panel (N)


3P
CVS100 to 250


## 3P

CVS400 to 630


Mounting
On backplate (M)
3P
Front connection (an insulating screen is supplied with the base and must be fitted between the base and the backplate)


Connection by exterior-mounted rear connectors

(1) The ØT1 holes are required for rear connection only (for two-pole circuit breakers, the middle holes are not required).

Connection by interior-mounted rear connectors

(1) The $\varnothing T 1$ holes are required for rear connection only (for two-pole circuit breakers, the middle holes are not required).


3P


4P


C8: without keylock
C9: with keylock
Type
CVS100 to 250
CVS400/630

| A14 | A15 | A18 |
| :--- | :--- | :--- |
| 27.5 | 73 | 9 |
| 40 | 123 | 24.6 |

Dimensions
Fixed circuit breaker



| Cutout for shaft (mm) |  |
| :--- | :--- |
| Type | R1 |
| CVS100/160/250 | min. 171 <br> max. 600 |
| CVS400/630 | min. 195 <br> max. 600 |

Dimensions and front-panel cutout


| Type | A18 | B10 |
| :--- | :--- | :--- |
| CVS100 to 250 | 9 | 9.25 |
| CVS400/630 | 24.6 | 5 |

Fixed circuit breaker


Dimensions
Plug-in circuit breaker


| Type | A14 | A15 | A16 | A17 | B | B1 | B2 | B8 | B9 | C4 | C5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | D1

Dimensions and Mounting
Additional Measurement Module:
PowerLogic ${ }^{\text {TM }}$ PowerTag Energy Monoconnect 250 A \& 630 A


(1) Only for PowerTag M630

(1) Only for PowerTag M630

| mm | A | 4P | B | C | D | E | F | G | H |  | 1 |  | $J$ |  | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | 3 P |  |  |  |  |  |  |  | 3P | 4P | 3P | 4P | 3P | 4P |  |  |  |
| CVS100-250 | 105 | 140 | 52.5 | 80.5 | 201 | 120.5 | 72 | 14 | $3 \varnothing 6$ | 6 Ø6 | 35 | 70 | 17.5 | 17.5 | 125 | 62.5 | 40 |
|  | 4.13 | 5.51 | 2.06 | 3.17 | 7.91 | 4.74 | 2.83 | 0.55 | 3 Ø0.23 | 6 Ø0.23 | 1.34 | 2.75 | 0.68 | 0.68 | 4.92 | 2.46 | 1.57 |
| CVS400-630 | 140 | 185 | 70 | 127.5 | 320 | 192.5 | 96 | 14 | 6 Ø6 | 6 Ø6 | 45 | 90 | 22.5 | 22.5 | 200 | 100 | 65 |
|  | 5.51 | 7.28 | 2.75 | 5.02 | 12.59 | 7.57 | 3.78 | 0.55 | 6 Ø0.23 | 6 Ø0.23 | 1.77 | 3.5 | 0.88 | 0.88 | 7.87 | 3.93 | 2.56 |
| CVS100-250 with plug-in base | 105 | 140 | 52.5 | 109 | 260 | 151 | 72 | 14 | $3 \varnothing 6$ | 6 Ø6 | 35 | 70 | 17.5 | 17.5 | 155 | 77.5 | 55 |
|  | 4.13 | 5.51 | 2.06 | 4.29 | 10.23 | 5.94 | 2.83 | 0.55 | 3 Ø0.23 | 6 Ø0.23 | 1.34 | 2.75 | 0.68 | 0.68 | 6.10 | 3.05 | 2.16 |
| CVS400-630 with plug-in | $\begin{aligned} & 140 \\ & 5.51 \end{aligned}$ | $\begin{aligned} & 185 \\ & 7.28 \end{aligned}$ | 70 | 153 | 406 | 253 | 100 | 14 | 4 Ø06 | 6 Ø6 | 45 | 90 | 22.5 | 22.5 | 250 | 125 | 83 |
|  |  |  | 2.75 | 6.02 | 15.98 | 9.96 | 3.93 | 0.55 | 4 Ø0. 23 | 6 Ø0.23 | 1.77 | 3.5 | 0.88 | 0.88 | 9.84 | 4.92 | 3.26 |

Dimension and connection

Front-panel Accessories
EasyPact and Vigi CVS100 to 630

## IP40 front-panel escutcheons

For toggle


For rotary handle or module and protection collar






For Vigi


| Type | A1 | A2 | A3 | B1 | M2 | M3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CVS100 to 250 | 91 | 114 | 101 | 157 | 115 | 102 |
| CVS400/630 | 123 | 164 | 151 | 189 | 155 | 142 |

Dimension and connection

Front-panel Cutouts
EasyPact CVS100 to 630


For toggle with access to trip unit



| Type | P3 | P4 | R | R1 |
| :--- | :--- | :--- | :--- | :--- |
| CVS100 to 250 | 88 | 83 | 14.5 | 29 |
| CVS400/630 | 112 | 107 | 31.5 | 63 |

Dimension and connection

Front-panel Cutouts
Vigi CVS100 to 630


# Dimension and connection 

Front-panel Cutouts
Direct Rotary Handle

Fixed circuit breakers
CVS100 to 250


Y

CVS400/630


Bare sheet metal with access to the trip unit


With IP30 front-panel escutcheon




Y


Front-panel Cutouts
Direct Rotary Handle

Fixed circuit breakers (cont.)
With IP30 front-panel escutcheon with access to the trip unit

${ }_{\mathrm{Z}} \mathrm{P}^{\mathrm{P}}$


CVS400/630


Y

With IP40 front-panel escutcheon


Y


| Type | P10 | P11 | P12 |
| :--- | :--- | :--- | :--- |
| CVS100 to 250 | 89 | 90 | 123 |
| CVS400/630 | 112 | 113 | 147 |

Dimension and connection

Front-panel Cutouts
Motor Mechanism


| Type | D1 | P6 |
| :--- | :--- | :--- |
| CVS100 to 250 | 75 | 182.5 |
| CVS400/630 | 100 | 230.5 |

Dimension and
Power Connections connection


Front connection without accessories

CVS100 to 250



Cables with lugs/bars

CVS400/630


Bars/cables with lugs

## Connection with accessories

Long and short rear connectors


## Connection with accessories (cont.)

Bare-cable connectors




Distribution connectors (for CVS100 to 250 only)


Right-angle terminal extensions (upstream only)


Connection with accessories (cont.)
Spreaders


3P


4P
CVS100 to 250


CVS400/630


Connection locations


| Type | A4 | A5 | B1 | D1 |
| :--- | :--- | :--- | :--- | :--- |
| CVS100 to 250 | 100 | 200 | 35 | 75 |
| CVS400/630 | 156.5 | 313 | 45 | 100 |

Note:

- for mounting on a backplate, the insulating screen supplied with the plug-in base must be installed.

Connection without accessories
Front connection: mounting on backplate (M) or rails (V)


Rear connection: mounting through front panel (N) or on rails (V)

$$
\text { CVS100 to } 250
$$



CVS400 to 630


## Power Connections <br> EasyPact CVS100 to 630 plug-in

## Connection without accessories

Bare-cable connections: mounting on backplate (M) or rails (V)

CVS100 to 250


CVS400 to 630



Bare-cable connections: mounting through front panel (N) or on rails (V)


CVS100 to 250


CVS400 to 630

Dimension and
Power Connections
connection

## Connection without accessories (cont.)

$45^{\circ}$ extensions: mounting through front panel $(N)$ or on rails $(V)$

CVS100 to 250


CVS400 to 630


Double-L extensions: mounting on backplate (M) or rails (V)
CVS100 to 250


Double-L extensions: mounting through front panel ( N ) or on rails (V)
CVS100 to 250


## Power Connections <br> EasyPact CVS100 to 630 Plug-in

Connection without accessories (cont.)
Spreaders: mounting on backplate (M) or rails (V)

| Type | E1 | E2 | E3 | F1 | F2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CVS100 to 250 | 114 | 45 | 159 | 130 | 11 |
| CVS400/630 | 135 | 52.5 | 187.5 | 195.5 | 15 |
|  | 170 | 70 | 240 | 209 | 15 |

CVS100 to 250


CVS400 to 630


Long insulated rear connectors: mounting on backplate (M) or rails (V)

Exterior-mounted rear connectors


Interior-mounted rear connectors


Long, insulated connectors are mandatory.

CVS400 to 630


CVS400 to 630


## Power Connections

Connection of Insulated Bars or Cables with Lugs to EasyPact and Vigi CVS100 to 630


Accessories for CVS100 to 250
Straight terminal
extensions


Spreaders:
separate parts


Accessories for CVS400 and 630
Spreaders made up of separate parts for 52.5 and 70 mm pitch


Accessories for CVS100 to 630
Right-angle terminal extensions


Tinned copper
To be mounted on upstream side.

| Direct connection to CVS100 to 630 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dimensions |  | CVS100 | CVS160/250 | CVS400/630 |
| Bars | L (mm) | $\leqslant 25$ | $\leqslant 25$ | $\leqslant 32$ |
|  | 1 (mm) | d + 10 | d + 10 | d +15 |
|  | $\mathrm{d}(\mathrm{mm})$ | $\leqslant 10$ | $\leqslant 10$ | $\leqslant 15$ |
|  | e (mm) | $\leqslant 6$ | $\leqslant 6$ | $3 \leqslant \mathrm{e} \leqslant 10$ |
|  | $\varnothing$ (mm) | 6.5 | 8.5 | 10.5 |
| Lugs | $\mathrm{L}(\mathrm{mm})$ | $\leqslant 25$ | $\leqslant 25$ | $\leqslant 32$ |
|  | $\varnothing$ (mm) | 6.5 | 8.5 | 10.5 |
| Torque ( Nm ) ${ }^{(1)}$ |  | 10 | 15 | 50 |
| Torque ( Nm ) ${ }^{(2)}$ |  | 5/5 | 5/5 | 20/11 |

(1) Tightening torque on the circuit breaker for lugs or bars.
(2) Tightening torque on fixed devices for rear connectors.

Connection with accessories to CVS100 to 250 (IEC 60228)

| Pole pitch |  |  |  |
| :---: | :---: | :---: | :---: |
| Without spreaders |  | 35 mm |  |
| With spreaders |  | 45 mm |  |
| Dimensions |  | With spreaders or terminal extensions |  |
|  |  | CVS100 | CVS160/250 |
| 0 Bars | L (mm) | $\leqslant 25$ | $\leqslant 25$ |
|  | 1 (mm) | $20 \leqslant 1 \leqslant 25$ | $20 \leqslant 1 \leqslant 25$ |
| $\uparrow$ | $\mathrm{d}(\mathrm{mm})$ | $\leqslant 10$ | $\leqslant 10$ |
| $400 \sqrt{-\varnothing}^{\square}$ | e (mm) | $\leqslant 6$ | $\leqslant 6$ |
| $\theta-\mathrm{d}$ - | $\varnothing(\mathrm{mm})$ | 6.5 | 8.5 |
| Lugs | $\mathrm{L}(\mathrm{mm})$ | $\leqslant 25$ | $\leqslant 25$ |
| $\pm 1$ | $\varnothing(\mathrm{mm})$ | 6.5 | 8.5 |
| Te Torqu | Nm) ${ }^{(1)}$ | 10 | 15 |

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.

Spreaders and straight, right-angle, $45^{\circ}$, double-L and edgewise terminal extensions are supplied with flexible interphase barriers.

Connection with accessories to CVS400 and 630 (IEC 60228) Pole pitch

(1) Tightening torque on the circuit breaker for spreaders or terminal extensions.

Spreaders and right-angle, $45^{\circ}$ and edgewise terminal extensions are supplied with flexible interphase barriers.


## Power Connections

Connection of Bare Cables to EasyPact and Vigi CVS100 to 630


Connection for CVS100 to 250


1-cable 2-cable
connector connector

|  | 1-cable connector | Steel $\leqslant 160 \mathrm{~A}$ | Aluminium$\leqslant 250 \mathrm{~A}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{L}(\mathrm{mm})$ | 25 | 25 |  |  |
|  | $\mathrm{S}\left(\mathrm{mm}^{2}\right) \mathrm{Cu} / \mathrm{Al}$ | 1.5 to $95^{(1)}$ | 25 to 50 | 70 to 95 | 120 to 185 150 max. flex. |
|  | Torque (Nm) | 12 | 20 | 26 | 26 |
|  | 2-cable connector |  |  |  |  |
|  | L (mm) | 25 or 50 |  |  |  |
|  | $\mathrm{S}\left(\mathrm{mm}^{2}\right) \mathrm{Cu} / \mathrm{Al}$ | $2 \times 50$ to $2 \times 120$ |  |  |  |
|  | Torque (Nm) | 22 |  |  |  |

(1) For flexible cables from 1.5 to $4 \mathrm{~mm}^{2}$, connection with crimped or self-crimping ferrules.

Connection to CVS400 and 630

1-cable connector

2-cable connector

| 1-cable connector | 2-cable connector |
| :--- | :--- |
| 30 | 30 or 60 |
| 35 to 300 rigid | $2 \times 35$ to $2 \times 240$ rigid |
| 240 max. flex. | 240 max. flex. |
| 31 | 31 |

S

Conductor materials and electrodynamic stresses
EasyPact CVS circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors (flexible or rigid bars, cables). In the event of a short-circuit, thermal and electrodynamic stresses will be exerted on the conductors. They must therefore be correctly sized and held in place by supports.
Electrical connection points on switchgear devices (switch-disconnectors, contactors, circuit breakers, etc.) should not be used for mechanical support. Any partition between upstream and downstream connections of the device must be made of non-magnetic material. Power Connections

The diagram is shown with circuits de-energized with all devices open

After tripping initiated by the "Push to trip" button or by the undervoltage (MN) release or the shunt (MX) release, device reset can be remote or manual.

Following tripping due to an electrical fault, manual reset is mandatory after fault is cleared.

## Connection for CVS100 to 630



| Symbols |  |
| :--- | :--- |
| Q: | circuit breaker |
| PE: | Earth |
| S1(+): | power supply - AC/DC(+) |
| S1(-): | power supply - AC/DC(-) |
| R1: | remote control common terminal |
| R2: | remote closing order terminal |
| R4: | remote opening order terminal |
| SDE: | fault-trip indication (optional, not supplied) |

## Additional characteristics

## Additional Characteristics

Functions and Characteristics ..... A-1
installation Recommendations ..... B-1
Dimensions and Connection
Tripping Curves ..... D-2
EasyPact CVS100 to 630 Protection of Distribution Systems ..... D-2
EasyPact CVS100 to 250 Motor Protection ..... D-7
Current and Energy Limiting Curves ..... D-8
Coordination Between Circuit Breakers ..... D-10
Selectivity ..... D-14
Cascading ..... D-25
Use of LV Switches ..... D-28
Switch Disconnector Coordination ..... D-29
Motor Protection Coordination ..... D-30
Catalogue Numbers ..... E-1
EasyPact CVS100BS ..... F-1

Tripping curves
EasyPact CVS100 to 630
Protection of Distribution Systems

## TM magnetic trip units

TM16D


Reflex tripping

## TM32D



TM25D


Reflex tripping

$\square$ Reflex tripping

## Tripping curves <br> EasyPact CVS100 to 630 <br> Protection of Distribution Systems

TM magnetic trip units
TM50D


TM63D


TM125D/160D


## Tripping curves <br> EasyPact CVS100 to 630 <br> Protection of Distribution Systems

TM500D



TM600D



Tripping curves
EasyPact CVS100 to 630
Protection of Distribution Systems

ETS2.2 electronic trip units
ETS2.2 40... 160 A


ETS2.3 electronic trip units

ETS2.3400 A

$\square$ Reflex tripping.

ETS2.3 630 A


# Tripping curves <br> EasyPact CVS100 to 250 <br> Motor Protection 

MA magnetic trip units
MA2.5... MA100



MA500


## Tripping curves Current and Energy Limiting Curves

The limiting capacity of a circuit breaker is its aptitude to let through a current, during a shortcircuit, that is less than the prospective short-circuit current.


The exceptional limiting capacity of the EasyPact CVS range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wavefront).

## Ics = 100 \% Icu

The exceptional limiting capacity of the EasyPact CVS range greatly reduces the forces created by fault currents in devices.
The result is a major increase in breaking performance.
In particular, the service breaking capacity Ics is equal to $100 \%$ of Icu.
The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:

- break three times consecutively a fault current equal to 100\% of Icu
- check that the device continues to function normally, that is:
- it conducts the rated current without abnormal temperature rise
$\square$ protection functions perform within the limits specified by the standard
- suitability for isolation is not impaired.


## Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of shortcircuits on installations.

## Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

## Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

## Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

## Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

- the actual peak current (limited current)
$\square$ thermal stress ( $\mathrm{A}^{2} \mathrm{~s}$ ), i.e. the energy dissipated by the short-circuit in a conductor with a resistance of $1 \Omega$.


## Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor ( Cu or Al ) and their cross-sectional area (CSA). CSA values are given in $\mathrm{mm}^{2}$ and thermal stresses in $\mathrm{A}^{2} \mathrm{~s}$.

| CSA |  | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $4 \mathrm{~mm}^{2}$ | $6 \mathrm{~mm}^{2}$ | $10 \mathrm{~mm}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PVC | Cu | $2.97 \times 10^{4}$ | $8.26 \times 10^{4}$ | $2.12 \times 10^{5}$ | $4.76 \times 10^{5}$ | $1.32 \times 10^{6}$ |
|  | AI |  |  |  |  | $5.41 \times 10^{5}$ |
| PRC | Cu | $4.10 \times 10^{4}$ | $1.39 \times 10^{5}$ | $2.92 \times 10^{5}$ | $6.56 \times 10^{5}$ | $1.82 \times 10^{6}$ |
|  | AI |  |  |  |  | $7.52 \times 10^{5}$ |
| CSA |  | $16 \mathrm{~mm}^{2}$ | $25 \mathrm{~mm}^{2}$ | $35 \mathrm{~mm}^{2}$ | $50 \mathrm{~mm}^{2}$ |  |
| PVC | Cu | $3.4 \times 10^{6}$ | $8.26 \times 10^{6}$ | $1.62 \times 10^{7}$ | $3.31 \times 10^{7}$ |  |
|  | AI | $1.39 \times 10^{6}$ | $3.38 \times 10^{6}$ | $6.64 \times 10^{6}$ | $1.35 \times 10^{7}$ |  |
| PRC | Cu | $4.69 \times 10^{6}$ | $1.39 \times 10^{7}$ | $2.23 \times 10^{7}$ | $4.56 \times 10^{7}$ |  |
|  | AI | $1.93 \times 10^{6}$ | $4.70 \times 10^{6}$ | $9.23 \times 10^{6}$ | $1.88 \times 10^{7}$ |  |

## Current-limiting curves



Energy-limiting curves


# Coordination Between Circuit Breakers <br> Introduction to Selectivity 



Selectivity of over-current protection is covered by circuit breakers standards: IEC 60947-2 Annex A and IEC 60898-1
Annex D.
Selectivity of residual current protection is covered by IEC 60364 series and product standards IEC 60947-2 Annex B and M, IEC 61009-1.


Selectivity is essential to ensure continuity of supply and fast fault localization

## Selectivity (Discrimination)

Selectivity is achieved by overcurrent and earth fault protective devices if a fault condition, occurring at any point in the installation, is cleared by the protective device located immediately upstream of the fault, while all the other protective devices remain unaffected.

Selectivity is required for installation supplying critical loads where one fault on one circuit shall not cause the interruption of the supply of other circuits. In the IEC 60364 series it is mandatory for installation supplying safety services (IEC60364-5-56 2009 560.7.4). Selectivity may also be required by some local regulations or for some special applications like:
■ Medical location

- Marine

■ High-rise building.

Selectivity is highly recommended when power availability and reliability is critical due to the nature of the loads such as:

- Data centers
- Infrastructure (tunnel, airport...)

■ Critical processes.

From installation point of view: selectivity is achieved when the maximum shortcircuit current at a point of installation is below selectivity limit of the circuit breakers supplying this point of installation. Selectivity shall be checked for all circuits supplied by one source and for all types of fault:

- Overload

■ Short-circuit

- Earth fault.

When system can be supplied by different sources (Grid or Generator Set for instance) selectivity shall be checked in both cases.

## To know more:


https://www.electrical-installation.org/enwiki/Coordination between circuitbreakers\#Principles_of Selectivity

https://www.se.com/ww/en/download/document/LVPED318033EN/


Practical example of selectivity at several levels with Schneider Electric circuit breakers

# Coordination Between Circuit Breakers <br> Introduction to Selectivity 

Selectivity limits given in the selectivity tables are the best performance that can be achieved between two given circuit breakers. When the upstream circuit breaker is adjustable and its setting values are not specified, it is considered that it is set to its maximum values.
Nevertheless, high selectivity performance is possible with lower settings.

## How to use the selectivity tables

Combinations providing full selectivity are indicated by the symbol $T$ (up to downstream breaker Icu)
If selectivity is partial, the table indicates the maximum fault current value $(k A)$ until which selectivity is ensured.

## Requisite conditions

The value indicated in the tables are valid for operational rated voltage $380 \mathrm{~V} 400 \mathrm{~V} 415 \mathrm{~V} 50-$ 60 Hz . Following ratios shall be respected to avoid overlapping of tripping curves.

| Upstream | Downstream | Ir up / Ir down | Im up / Im down |
| :--- | :--- | :--- | :--- |
| TM | TM | 1.6 | 2 |
|  | MA + O/L | 3 | 2 |
| ETS | TM | 1.6 | 2 |
|  | ETS |  |  |
|  | MA + O/L = <br> separate overload <br> relay | 3 | $1.3(1)$ |
| Micrologic | TM <br> ETS | 1.6 | 2 |
|  | MA + O/L = <br> separate overload <br> relay | 3 | 2 |

When Magnetic threshold is adjustable, table is based on maximum setting Im (= 10xIr typically).
When tr is adjustable tr upstream $>\operatorname{tr}$ downstream.
When tsd is adjustable tsd upstream $>$ tsd downstream.


## Selectivity of RCDs

When circuit breakers are equipped with RCD function, selectivity tables are valid for short-circuit and earth fault with high amplitude current.

Residual Current Devices are by design very sensitive to fault and shall be coordinated properly to achieve total selectivity in addition to overcurrent protection.

Schneider Electric proposes a wide range of solutions with the RCD function.
All these devices from Schneider Electric are following by design the same rules for sensitivity and tripping time even if they are covered by different standard (IEC/EN 61009-1, IEC/EN 60947-2 Annex B or Annex M, IEC 61008). So, whatever the type of RCD is, the following rules apply:

■ the sensitivity of the upstream residual current device must be at least equal to three times the sensitivity of the downstream residual current device

- the upstream residual current device must be:
$\square$ of the selective (S) type (or setting) if the downstream residual current device is an instantaneous type,
$\square$ of the delayed (R) type (or setting) if the downstream residual current device is a selective type. The minimum non-tripping time of the upstream device will therefore be greater than the maximum tripping time of the downstream device for all current values.
$\mid \Delta n$ D1 $\geqslant 3 \times I \Delta n$ D2 \& $\Delta t(D 1)>\Delta t(D 2)$.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit |  | $\begin{aligned} & \text { EasyPact CVS100 B/F/N } \\ & \text { TM•D } \end{aligned}$ |  |  |  |  |  |  |  | CVS160 B/F/N TM•D |  |  | CVS250 B/F/N TM•D |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating <br> Im | $\begin{aligned} & 16 \\ & 190 \end{aligned}$ | $\begin{array}{\|l\|} \hline 25 \\ 300 \end{array}$ | $\begin{array}{\|l\|} 32 \\ 400 \end{array}$ | $\begin{aligned} & 40 \\ & 500 \end{aligned}$ | $\begin{aligned} & 50 \\ & 500 \end{aligned}$ | $\begin{aligned} & 63 \\ & 500 \end{aligned}$ | $\begin{aligned} & 80 \\ & 640 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} 100 \\ 800 \end{array}$ | $\begin{array}{\|l\|} 100 \\ 800 \end{array}$ | $\begin{aligned} & 125 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 160 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 160 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 200 \\ & 1000 \\ & 2000 \end{aligned}$ | $\begin{array}{\|l\|} \hline 250 \\ 1250 \\ 2500 \\ \hline \end{array}$ |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iC40, iC40N <br> B-C Curves <br> 1 P+N 240 V <br> 3P 3P+N415V | $\begin{aligned} & \leqslant 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \end{aligned}$ | 0.19 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{array}{\|l} 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & 2 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & 2 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline T \\ T \\ T \\ T \\ 2 \\ 1.5 \\ 1.5 \end{array}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & 4 \\ & 3.5 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |
| iC60a <br> B-C-D Curves <br> 1P 240V <br> 2,3,4P 415V | $\begin{aligned} & \leqslant 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$ | 0.19 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | 0.63 0.63 0.63 0.63 0.63 0.63 0.63 | $\begin{array}{\|l} \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array}$ | $\begin{aligned} & \mid \\ & T \\ & T \\ & T \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline T \\ & T \\ & T \\ & T \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \mid \\ & T \\ & T \\ & T \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & 4 \\ & 3.5 \\ & 3.5 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \\ & \hline \mathrm{~T} \\ & \mathrm{~T} \\ & \mathrm{~T} \\ & 4 \\ & 4 \end{aligned}$ |
| iC60N <br> B-C-D Curves <br> 1P 240V <br> 2,3,4P 415V | $\begin{aligned} & \leqslant 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$ | 0.19 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | 0.63 0.63 0.63 0.63 0.63 0.63 0.63 | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | T <br> T <br> T <br> 4 <br> 3.5 <br> 3.5 <br> 3 <br> 3 | $\begin{array}{\|l\|} \hline T \\ T \\ T \\ \hline 5.5 \\ 5.5 \\ 5 \\ 4 \\ 4 \end{array}$ |
| iC60H <br> B-C-D Curves <br> 1P 240 V <br> 2,3,4P 415V | $\begin{aligned} & \leqslant 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$ | 0.19 | $\begin{array}{\|l\|} \hline 0.3 \\ 0.3 \end{array}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | 0.63 0.63 0.63 0.63 0.63 0.63 0.63 | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | 10 10 10 4 3.5 3.5 3 3 | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 5.5 \\ & 5.5 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$ |
| iC60L <br> B-C-D-K-Z <br> Curves <br> 1P 240V <br> 2,3,4P 415V | $\begin{aligned} & \leqslant 10 \\ & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$ | 0.19 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | 0.63 0.63 0.63 0.63 0.63 0.63 0.63 | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | 6 6 6 2 1.5 1.5 1.5 1.5 | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | 10 10 10 4 3.5 3.5 3 3 | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 5.5 \\ & 5.5 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$ |
| iC120N <br> B-C-D Curves <br> 1P 240V <br> 2,3,4P 415V | $\begin{aligned} & 63 \\ & 80 \\ & 100 \\ & 125 \end{aligned}$ |  |  |  |  |  |  |  | 0.8 | 0.8 | $\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 3 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$ |
| iC120H <br> B-C-D Curves <br> 1P 240V <br> 2,3,4P 415V | $\begin{aligned} & 63 \\ & 80 \\ & 100 \\ & 125 \end{aligned}$ |  |  |  |  |  |  |  | 0.8 | 0.8 | $\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{array}{\|l\|} \hline 3 \\ 2.5 \\ 2.5 \\ 2.5 \\ \hline \end{array}$ |

[^6]Note: respect the basic rules of selectivity for overload and short-circuit, particularly for D curves downstream.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

$4 \quad$ Selectivity limit $=4 \mathrm{kA}$
$T$ Total selectivity, up to the breaking capacity of the downstream circuit breaker.

No Selectivity

[^7]$\mathrm{Ue} \leq 415 \mathrm{Vac}$


Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit | EasyPact CVS100 B/F/N TM•D |  |  |  |  |  |  |  | CVS160 B/F/N TM•D |  |  | CVS250 B/FIN TM•D |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream Rating Im | $\begin{aligned} & 16 \\ & 190 \end{aligned}$ | $\begin{aligned} & 25 \\ & 300 \end{aligned}$ | $\begin{array}{\|l\|} \hline 32 \\ 400 \end{array}$ | $\begin{aligned} & 40 \\ & 500 \end{aligned}$ | $\begin{aligned} & 50 \\ & 500 \end{aligned}$ | $\begin{aligned} & 63 \\ & 500 \end{aligned}$ | $\begin{aligned} & 80 \\ & 640 \end{aligned}$ | $\begin{aligned} & 100 \\ & 800 \end{aligned}$ | $\begin{aligned} & 100 \\ & 800 \end{aligned}$ | $\begin{aligned} & 125 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 160 \\ & 1250 \end{aligned}$ | $\begin{array}{\|l} \hline 160 \\ 1250 \end{array}$ | $\begin{aligned} & 200 \\ & 1000 \\ & 2000 \end{aligned}$ | $\begin{aligned} & 250 \\ & 1250 \\ & 2500 \end{aligned}$ |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iK60N $\leqslant 10$ <br> B-C Curves 16 <br> 1P 230V 20 <br> $2,3,4 \mathrm{P}$ 400V 25 <br>  32 <br>  40 <br>  50 <br>  63 | 0.19 | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 3 \\ & 2.5 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 3 \\ & 2.5 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 3 \\ & 2.5 \\ & 2 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & 5 \\ & 4.5 \\ & 4 \\ & 3 \end{aligned}$ | T T T T T T T 5 |


| Upstream <br> Trip Unit | $\begin{aligned} & \text { EasyPact CVS100 B/F/N } \\ & \text { ETS } \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { CVS160 B/F/N } \\ & \text { ETS } \end{aligned}$ |  |  | CVS250 B/F/N ETS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream Rating <br> Ir <br> Isd | $\begin{aligned} & 18 \\ & 10 x \mid r \end{aligned}$ | $\begin{aligned} & \quad 40 \\ & 32 \\ & 10 \times 1 r \end{aligned}$ | 40 10xIr | 40 <br> 10xIr | 50 10xIr | $\begin{array}{\|l} 100 \\ 63 \\ 10 x I r \end{array}$ | $\left\lvert\, \begin{aligned} & 80 \\ & 10 x I r \end{aligned}\right.$ | $\begin{aligned} & 100 \\ & 10 x I r \end{aligned}$ | $\begin{aligned} & 100 \\ & 10 \mathrm{xlr} \end{aligned}$ | $\begin{array}{\|l} 160 \\ 125 \\ 10 x I r \end{array}$ | $\begin{aligned} & 160 \\ & 10 x \operatorname{lr} \end{aligned}$ | $\begin{aligned} & 160 \\ & 10 x \operatorname{lr} \end{aligned}$ | $\begin{aligned} & 250 \\ & 200 \\ & 10 \mathrm{xIr} \end{aligned}$ | 250 <br> 10xIr |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iK60N $\leqslant 10$ <br> B-C Curves 16 <br> 1P 230V 20 <br> 2,3,4P 400V 25 <br>  32 <br>  40 <br>  50 <br>  63 | T | $\begin{aligned} & T \\ & 0.6 \end{aligned}$ | $\begin{aligned} & T \\ & 0.6 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & T \\ & T \\ & T \\ & T \\ & T \end{aligned}$ | $\begin{array}{\|l} \mathrm{T} \\ \mathrm{~T} \\ \mathrm{~T} \\ \mathrm{~T} \\ \mathrm{~T} \\ \mathrm{~T} \end{array}$ | $T$ $T$ $T$ $T$ $T$ $T$ 1 | T T T T T T 1 1 | T <br> T | T <br> T <br> T <br> T <br> T <br> T <br> T | T <br> T | T <br> T | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ |

4 Selectivity limit $=4 \mathrm{kA}$
$T$ Total selectivity, up to the breaking capacity of the downstream circuit breaker.
No Selectivity

Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit |  | $\begin{aligned} & \text { EasyPact CVS100 B/F/N } \\ & \text { TM•D } \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { CVS160 B/F/N } \\ & \text { TM•D } \end{aligned}$ |  |  | $\begin{aligned} & \text { CVS250 B/F/N } \\ & \text { TM•D } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating Im | $\begin{aligned} & 16 \\ & 190 \end{aligned}$ | $\begin{array}{\|l\|} \hline 25 \\ 300 \end{array}$ | $\begin{array}{\|l\|} \hline 32 \\ 400 \end{array}$ | $\begin{aligned} & 40 \\ & 500 \end{aligned}$ | $\begin{array}{\|l\|} \hline 50 \\ 500 \\ \hline \end{array}$ | $\begin{aligned} & 63 \\ & 500 \end{aligned}$ | $\begin{array}{\|l\|} \hline 80 \\ 640 \end{array}$ | $\begin{aligned} & 100 \\ & 800 \end{aligned}$ | $\begin{array}{\|l\|} \hline 100 \\ 800 \end{array}$ | $\begin{aligned} & 125 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 160 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 160 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 200 \\ & 1000 \\ & 2000 \end{aligned}$ | $\begin{aligned} & 250 \\ & 1250 \\ & 2500 \end{aligned}$ |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CVS100 BS } \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ |  | 0.3 | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | 0.63 0.63 0.63 0.63 0.63 0.63 | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 | $1-2$ $1-2$ $1-2$ $1-2$ $1-2$ $1-2$ $1-2$ $1-2$ $1-2$ | $\begin{aligned} & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \end{aligned}$ |
| $\begin{aligned} & \text { CVS100 B/F/N } \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 16 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ |  | 0.3 | 0.4 | $\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \end{array}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \\ & 1-2 \end{aligned}$ | $\begin{aligned} & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \end{aligned}$ |
| CVS160 B/F/N TM•D | $\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | 1.25 | 1.25 | $\begin{aligned} & 1-2 \\ & 1-2 \end{aligned}$ | $\begin{aligned} & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \end{aligned}$ |
| CVS100 B/F/N ETS40 CVS100 B/F/N ETS100 CVS160 B/F/N ETS160 | 40 <br> 100 <br> 160 |  |  |  |  |  | 0.5 | 0.63 | 0.8 | 0.8 | 1.25 | $\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1-2 \\ & 1-2 \end{aligned}$ | $\begin{aligned} & 1.25-2.5 \\ & 1.25-2.5 \\ & 1.25-2.5 \end{aligned}$ |

[^8]Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit |  | EasyPact CVS100 B/F/N ETS |  |  |  |  |  |  |  | CVS160 B/F/N ETS |  |  | CVS250 B/F/N ETS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | $\begin{aligned} & \text { Rating } \\ & \text { Ir } \\ & \text { Isd } \end{aligned}$ | $\begin{aligned} & 18 \\ & 10 \mathrm{xIr} \end{aligned}$ | $\begin{aligned} & 40 \\ & 32 \\ & 10 \mathrm{x} \mathrm{Ir} \end{aligned}$ | $\begin{aligned} & 40 \\ & 10 x \mid r \end{aligned}$ | $\begin{array}{\|l\|} \hline 40 \\ 10 x \mid r \end{array}$ | $\left\lvert\, \begin{aligned} & 50 \\ & 10 \times 1 r \end{aligned}\right.$ | $\begin{aligned} & 100 \\ & 63 \\ & 10 x \mid r \end{aligned}$ | $\begin{array}{\|l\|} \hline 80 \\ 10 x \mid r \end{array}$ | $\begin{aligned} & 100 \\ & 10 \mathrm{x} \mathrm{Ir} \end{aligned}$ | $\begin{aligned} & 100 \\ & 10 x \mid r \end{aligned}$ | $\begin{array}{\|l} 160 \\ 125 \\ 10 x \mid r \end{array}$ | $\begin{aligned} & 160 \\ & 10 \times \mathrm{Ir} \end{aligned}$ | $\begin{aligned} & 160 \\ & 10 \times \mathrm{lr} \end{aligned}$ | $\begin{aligned} & 20{ }^{2} \\ & 10 \mathrm{xlr} \end{aligned}$ | 250 <br> 10xIr |
| Selectivity Lim | (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CVS100 BS } \\ & \text { TM•D } \end{aligned}$ | 16 <br> 20 <br> 25 <br> 32 <br> 40 <br> 50 <br> 63 <br> 80 <br> 100 |  | 0.3 | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 | $\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$ |
| $\begin{aligned} & \text { CVS100 B/F/N } \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 16 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ |  | 0.3 | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$ |
| CVS160 B/F/N <br> TM•D | $\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | 1.6 | 1.6 | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$ |
| CVS100 B/F/N <br> ETS40 <br> CVS100 B/F/N <br> ETS100 <br> CVS160 B/F/N <br> ETS160 | 40 <br> 100 <br> 160 |  |  |  |  |  | 0.63 | 0.8 | 1 | 1 | 1.25 | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ | 2 <br> 2 | $\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$ |

$4 \quad$ Selectivity limit $=4 \mathrm{kA}$
$T$ Total selectivity, up to the breaking capacity of the downstream circuit breaker.
$\square$ No Selectivity

Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.

| Upstream Trip Unit |  | $\begin{aligned} & \text { CVS320 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | CVS400 F/N/H TM•D |  |  |  | $\begin{aligned} & \text { CVS500 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | CVS630 F/N/H TM•D |  |  |  | $\begin{aligned} & \text { CVS630 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating Setting $\operatorname{Im}(\mathrm{A})$ | $\begin{aligned} & 320 \\ & 225 \\ & \operatorname{lm}= \\ & 3200 \end{aligned}$ | $\begin{gathered} 255 \\ -10 \mathrm{ln} \end{gathered}$ | 290 | 320 | $\begin{aligned} & 400 \\ & 280 \\ & \mathrm{Im}= \\ & 4000 \end{aligned}$ | $\begin{aligned} & 320 \\ & -10 \mathrm{ln} \end{aligned}$ | 360 | 400 | $\begin{aligned} & 500 \\ & 350 \\ & 1 \mathrm{~m}= \\ & 5000 \end{aligned}$ | $\begin{gathered} 400 \\ -10 \mathrm{In} \end{gathered}$ | 450 | 500 | $\begin{aligned} & 600 \\ & 420 \\ & \text { Im }= \\ & 5000 \end{aligned}$ | $\begin{array}{r} 480 \\ -81 n \end{array}$ | 540 | 600 | $\begin{aligned} & 630 \\ & 441 \\ & \mathrm{Im}= \\ & 6300 \end{aligned}$ | $\begin{gathered} 504 \\ -10 \mathrm{In} \end{gathered}$ | 567 | 630 |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iK60N | $\leqslant 10$ | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| B-C Curves | 16 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| 1P 230 V | 20 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| 2,3,4P 400V | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 32 | T | T | T | T | T | T | T | T |  | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 50 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |


| Upstream Trip Unit |  | $\begin{aligned} & \text { CVS400 F/N/H } \\ & \text { ETS } \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \text { CVS630 F/N/H } \\ & \text { ETS } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating Setting | $\begin{aligned} & 400 \\ & 200 \\ & \text { Im }= \end{aligned}$ | $\begin{gathered} 250 \\ 2-10 \mathrm{lr} \end{gathered}$ | $\begin{aligned} & 280 \\ & \mathrm{li}=1 \end{aligned}$ |  | 360 | 400 | $\begin{aligned} & 630 \\ & 315 \\ & \mathrm{Im}= \end{aligned}$ | $\begin{gathered} 400 \\ 2-10 \mathrm{Ir} \end{gathered}$ | $\begin{aligned} & 440 \\ & \mathrm{li}=1 \end{aligned}$ |  | 570 | 630 |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iK60N | $\leqslant 10$ | T | T | T | T | T | T | T | T | T | T | T | T |
| B-C Curves | 16 | T | T | T | T | T | T | T | T | T | T | T | T |
| 1 P 230 V | 20 | T | T | T | T | T | T | T | T | T | T | T | T |
| 2,3,4P 400V | 25 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 32 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 50 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T |

$4 \quad$ Selectivity limit $=4 \mathrm{kA}$

T Total selectivity, up to the breaking capacity of the downstream circuit breaker. No Selectivity

Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit |  | $\begin{aligned} & \text { CVS320 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { CVS400 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { CVS500 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { CVS630 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  | $\begin{aligned} & \text { CVS630 F/N/H } \\ & \text { TM•D } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating <br> Ir (A) <br> Im (kA) | $\begin{array}{\|l} 320 \\ 225 \\ 3.2 \\ \text { Im }= \end{array}$ | $\begin{aligned} & 255 \\ & -10 \mathrm{In} \end{aligned}$ | 290 | 320 | $\begin{aligned} & 400 \\ & 280 \\ & 4 \\ & \mathrm{Im}= \end{aligned}$ | $\begin{array}{r} 320 \\ 5-10 \mathrm{In} \end{array}$ | 360 | 400 | $\begin{aligned} & 500 \\ & 350 \\ & 5 \\ & \mathrm{Im}= \end{aligned}$ | $\begin{gathered} 400 \\ 5-10 \mathrm{In} \end{gathered}$ | 450 | 500 | $\begin{aligned} & 600 \\ & 420 \\ & 5 \\ & \mathrm{Im}=2 \end{aligned}$ | $\begin{aligned} & 480 \\ & 1-8 \ln \end{aligned}$ | 540 | 600 | $\begin{array}{\|l} 630 \\ 441 \\ 6.3 \\ 1 \mathrm{~m}= \end{array}$ | $\begin{gathered} 504 \\ 5-10 \mathrm{In} \end{gathered}$ | 567 | 630 |
| Selectivity Limit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CVS100 BS } \\ & \text { TM•D } \end{aligned}$ | 16 20 25 32 40 50 63 80 100 | 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 | 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 | $\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{array}{\|l} 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \end{array}$ | 4 4 4 4 4 4 4 4 4 |  | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $7$ <br> 6 <br> 6 <br> 5 <br> 5 <br> 5 <br> 5 <br> 5 <br> 5 | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | 7 6 6 6 6 6 6 6 6 | $\begin{array}{\|l} \hline 7 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{array}$ | $\begin{array}{\|l\|} \hline 7 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{array}$ | $\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| CVS100 B/F/N | 16 | 3.2 | 3.2 | 3.2 | 3.2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| TM•D | $\begin{aligned} & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ | $\begin{array}{\|l} 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \end{array}$ | $\begin{array}{\|l} 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \end{array}$ | $\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{array}{\|l} 6 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| CVS 160 B/F/N TM•D | $\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{array}{\|l} 5 \\ 5 \\ 5 \end{array}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{array}{\|l} 6 \\ 6 \\ 6 \end{array}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| CVS 250 B/F/N TM•D | $\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$ |  |  | 3.2 | 3.2 | 4 | 4 | $\begin{aligned} & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $5$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{array}{\|l} 5 \\ 5 \end{array}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 6 \\ 6 \end{array}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$ |
| CVS100 B/F/N ETS | 40 100 | $\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$ | $4$ <br> 4 | $4$ <br> 4 | $4$ $4$ | 4 <br> 4 | $5$ $5$ | $5$ <br> 5 | $5$ $5$ | $5$ $5$ | $5$ $5$ | $5$ $5$ | $5$ $5$ | $5$ $5$ | $6$ $6$ | $6$ $6$ | 6 6 | 6 6 |
| CVS160 B/F/N ETS | 160 250 |  |  | 3.2 | 3.2 | 4 | 4 | 4 | 4 <br> 4 | 5 | $5$ <br> 5 | 5 <br> 5 | $5$ $5$ | 5 | $5$ $5$ | $5$ $5$ | 5 <br> 5 | 6 | 6 <br> 6 | 6 <br> 6 | 6 <br> 6 |
| CVS400 F/N/H TM-D | 320 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ |  |  | 6 | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ |
| CVS400 F/N/H ETS | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |  |  |  | 6 |

[^9]Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

# Selectivity Upstream: <br> EasyPact CVS400/600 F/N/H ETS 




| 4 | Selectivity limit $=4 \mathrm{KA}$ |
| :--- | :--- |
| $\top$ | Total selectivity, up to the breaking capacity of the downstream circuit breaker. |
|  |  |
|  | No Selectivity |

[^10]| Upstream Trip Unit |  | ComPact NS 630-1600 N/H <br> Micrologic 2 Isd = 101n |  |  |  |  |  | ComPact NS 630-1600 N/H <br> Micrologic 5,6 Inst 15In or OFF |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating Setting Ir (A) | 400 | $\begin{aligned} & 630 \\ & 630 \end{aligned}$ | $\begin{aligned} & 800 \\ & 800 \end{aligned}$ | $\begin{aligned} & 1000 \\ & 1000 \end{aligned}$ | $\begin{aligned} & 1250 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 1600 \\ & 1600 \end{aligned}$ | 400 | $\begin{aligned} & 630 \\ & 630 \end{aligned}$ | $\begin{aligned} & 800 \\ & 800 \end{aligned}$ | $\begin{aligned} & 1000 \\ & 1000 \end{aligned}$ | $\begin{aligned} & 1250 \\ & 1250 \end{aligned}$ | $\begin{aligned} & 1600 \\ & 1600 \end{aligned}$ |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CVS } 100 \text { BS } \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $T$ <br> $T$ <br> $T$ <br>  <br>  <br>  | $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{array}{\|l} \hline \mathrm{T} \\ \mathrm{~T} \end{array}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & T \\ & \hline \end{aligned}$ | $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ | $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ $T$ | T T T T T T T T T | $\begin{array}{\|l} \hline \mathrm{T} \\ \mathrm{~T} \end{array}$ |
| CVS $100 \mathrm{~B} / \mathrm{F} / \mathrm{N}$ | 16 | T | T | T | T | T | T | T | T | T | T | T | T |
| TM•D | $\begin{aligned} & 25 \\ & 32 \\ & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { T } \\ \text { T } \end{array}$ | $\begin{array}{\|c} T \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS100 B/F/N ETS | $\begin{aligned} & 40 \\ & 100 \end{aligned}$ | $\mathrm{T}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{array}{\|l\|} \mathrm{T} \\ \mathrm{~T} \end{array}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \end{array}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \end{array}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \end{array}$ |
| $\begin{aligned} & \text { CVS } 160 \mathrm{~B} / \mathrm{F} / \mathrm{N} \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & T \\ & T \\ & T \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS160 B/F/N ETS | $\begin{aligned} & 160 \\ & 250 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS160 B/F/N ETS | 160 | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 250 B/F/N TM•D | $\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{gathered} \mathrm{T} \\ \mathrm{~T} \\ \mathrm{~T} \end{gathered}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS250 B/F/N ETS | 250 | T | T | T | T | T | T | T | T | T | T | T | T |
| $\begin{aligned} & \text { CVS } 400 \mathrm{~F} / \mathrm{N} / \mathrm{H} \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 320 \\ & 400 \end{aligned}$ |  | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |  | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |
| $\begin{aligned} & \text { CVS } 630 \mathrm{~F} / \mathrm{N} / \mathrm{H} \\ & \text { TM•D } \end{aligned}$ | $\begin{aligned} & 500 \\ & 600 \\ & 630 \end{aligned}$ |  | T | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ |  | T | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{~T} \\ \mathrm{~T} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS $400 \mathrm{~F} / \mathrm{N} / \mathrm{H}$ ETU | $\begin{aligned} & 320 \\ & 400 \end{aligned}$ |  | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |  | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |
| CVS 630 F/N/H ETU | $\begin{aligned} & 500 \\ & 630 \end{aligned}$ |  |  | T | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |  |  | T | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$ |


$4 \quad$ Selectivity limit $=4 \mathrm{kA}$
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream Trip Unit |  | EasyPact MVS C 06 16 ET 2,5,6 |  |  |  |  | EasyPact MVS C 08-40N ET 2,5,6 |  |  |  |  |  |  |  | EasyPact MVS C 08-40H ET 2,5,6 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Downstream | Rating | 630 | 800 | 1000 | 1250 | 1600 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
|  | Setting Ir (A) | 630 | 800 | 1000 | 1250 | 1600 | $\begin{array}{llllllll}800 & 1000 & 1250 & 1600 & 2000 & 2500 & 3200 & 4000\end{array}$ |  |  |  |  |  |  |  | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
| Selectivity Limit (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CVS100 BS } \\ & \text { TM•D } \end{aligned}$ | 16 | T |  |  |  | T | T |  |  |  |  |  | T | T | T | T | T | T | T | T | T | T |
|  | 20 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 32 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 50 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS $100 \mathrm{~B} / \mathrm{F} / \mathrm{N}$ | 16 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| TM•D | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 32 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 50 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS100 B/F/N ETS |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 160 B/F/N | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| $\mathrm{TM} \cdot \mathrm{D}$ | 125 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS160 B/F/N ETS | 160 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 250 B/F/N | 160 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| TM•D | 200 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T |  |  | T | T | T | T |  | T | \| T | T | T | T | T | T | T | T |
| CVS250 B/F/N ETS | 250 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| $\text { CVS } 400 \text { F/N/H }$ | $320$ | T | $T$ | T | T | T | T | T | T | T | T | T | T | T |  | T | T | T | T | T | T | T |
| $\mathrm{TM} \cdot \mathrm{D}$ | $400$ |  | $\mathrm{T}$ | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS $630 \mathrm{~F} / \mathrm{N} / \mathrm{H}$ | 500 |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| TM•D | $600$ |  |  | T | T | T |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 630 |  |  |  | T | T |  |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS $400 \mathrm{~F} / \mathrm{N} / \mathrm{H}$ | 320 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| ETU | 400 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 630 F/N/H | 500 |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| ETU | 630 |  |  | T | T | T |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| Upstream Trip Unit |  | Eas 16 | $\begin{aligned} & \text { syPa } \\ & \text { ET } 2 \end{aligned}$ | ct M 2,5,6 | VS C |  |  | $\begin{aligned} & \text { syPac } \\ & 2,5,6 \end{aligned}$ |  | S C | -40 |  |  |  |  | $\begin{gathered} \text { syPac } \\ 2,5,6 \end{gathered}$ | $\text { et } M^{1}$ | SC | 8-4 |  |  |  |
| Downstream | Rating | 630 | 800 | 1000 | 1250 | 1600 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
|  | Setting Ir (A) | 630 | 800 | 1000 | 1250 | 1600 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
| Motor protection |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS 100 B/F/N | 2.5 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| $M A+O / L R$ | 6.3 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 12.5 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 50 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 160 B/F/N | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| MA + O/L R | 150 | T | T | T | T | T | T |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 250 B/F/N | 220 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| MA + O/L R |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS $400 \mathrm{~F} / \mathrm{N} / \mathrm{H}$ MA +0/L R | 320 |  |  | T | T | T |  | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| CVS 630 F/N/H MA + O/L R | 500 |  |  |  |  | T |  |  |  | T | T | T | T | T | T | T | T | T | T | T | T | T |


| 4 | Selectivity limit $=4 \mathrm{kA}$ |
| :--- | :--- |
| T | Total selectivity, up to the breaking capacity of the downstream circuit breaker. |
| $\square$ | No Selectivity |


| $\square$ |
| :--- | :--- |

Cascading is the legacy name used by Schneider Electric.
Product standards such as IEC/EN 60947,60898, 61009-1 call this performance of two circuitbreakers "back-up protection".

Low voltage Electrical installation standard IEC 60364 series and in particular IEC 60364-5-53
(2019) Clause 535.5 use the wording "Combined short-circuit protection".

In this document we'll keep "Cascading", but the three wordings are equivalent.

In North America and UL standards this performance is known as "Series rating".


D1 and D2 in series.


IEC 60947-2, Annex A
IEC 60364-4-43 (2008) § 434.5.1

## What is cascading?

Cascading is the use of the current limiting capacity of circuit breakers at a given point to permit installation of lower-rated and therefore lower-cost circuit breakers downstream. The upstream ComPact circuit breakers acts as a barrier against short-circuit currents. In this way, downstream circuit breakers with lower breaking capacities than the prospective short-circuit (at their point of installation) operate under their normal breaking conditions. Since the current is limited throughout the circuit controlled by the limiting circuit breaker, cascading applies to all switchgear downstream. It is not restricted to two consecutive devices.

## General use of cascading

With cascading, the devices can be installed in different switchboards. Thus, in general, cascading refers to any combination of circuit breakers where a circuit breaker with a breaking capacity less than the prospective Isc at its point of installation can be used. Of course, the breaking capacity of the upstream circuit breaker must be greater than or equal to the prospective short-circuit current at its point of installation. The combination of two circuit breakers in cascading configuration is covered by the following standards of:

- design and manufacture of circuit breakers (IEC 60947-2, Annex A),
- electrical distribution networks (IEC 60364-4-43 Ed 32008 § 434.5.1).


## Coordination between circuit breakers

The use of a protective device possessing a breaking capacity less than the prospective short-circuit current at its installation point is permitted as long as another device is installed upstream with at least the necessary breaking capacity. In this case, the characteristics of the two devices must be coordinated in such a way that the energy let through by the upstream device is not more than that which can be withstood by the downstream device and the cables protected by these devices without damage.
Cascading can only be checked by laboratory tests and the possible combinations can be specified only by the circuit breaker manufacturer.

## Cascading tables

## Schneider Electric cascading tables are:

- drawn up on the basis of calculations (comparison between the energy limited by the upstream device and the maximum permissible thermal stress for the downstream device)
- verified experimentally in accordance with IEC standard 60947-2.

Circuit breaker with Vigi module (Add-On Residual Current Device - RCD): When circuit breakers are equipped with Vigi module, the following cascading tables are still applicable.

## How to use the table

The reinforced breaking capacity given in the table shall be compared to the presumed short-circuit current (rms value) at the point of installation without taking in consideration the limitation effect of the upstream circuit-breaker.


Line to Earth Fault
(If)


Line to Neutral Fault (lk1)

## Difference between Line to Neutral and Line to earth fault regarding cascading

The number of poles breaking the current is different in case of line to neutral fault and line to earth fault.

The reinforced breaking capacity published in tables for a given "Line to Line" system voltage applies to all type of faults including line to earth.

## Application of cascading

Both "Industrial" circuit-breaker standard (IEC/EN 60947) and "residential" circuit breaker standards (IEC/EN 60898 \& 61009) define and provide test method for this "cascading" performance.

Anyway, Schneider Electric doesn't recommend to apply cascading in installation used by uninstructed persons. The following tables are therefore providing a "reinforced breaking capacity" according to IEC 60947-2, Annex A.
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Upstream |  | CVS100 | CVS100 |  |  | CVS160 |  |  | CVS250 |  |  | CVS400 |  |  | CVS630 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BS | B | F | N | B | F | N | B | F | N | F | N | H | F | N | H |
|  | $\begin{aligned} & \mathrm{Icu}(\mathrm{kA}) \\ & 415 \mathrm{~V} \end{aligned}$ | 25 | 25 | 36 | 50 | 25 | 36 | 50 | 25 | 36 | 50 | 36 | 50 | 70 | 36 | 50 | 70 |
| Downstream |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| iK60N | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |  |  |
| CVS100BS | 25 |  |  | 36 | 36 |  | 36 | 36 |  | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
| CVS100B | 25 |  |  | 36 | 36 |  | 36 | 36 |  | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
| CVS100F | 36 |  |  |  | 50 |  |  | 50 |  |  | 50 |  | 50 | 50 |  | 50 | 50 |
| CVS100N | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS160B | 25 |  |  |  | 36 |  |  | 36 |  | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
| CVS160F | 36 |  |  |  | 50 |  |  | 50 |  |  | 50 |  | 50 | 50 |  | 50 | 50 |
| CVS160N | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS250B | 25 |  |  |  |  |  |  |  |  |  |  | 36 | 36 | 36 | 36 | 36 | 36 |
| CVS250F | 36 |  |  |  |  |  |  |  |  |  |  |  | 50 | 50 |  | 50 | 50 |
| CVS250N | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CVS400F | 36 |  |  |  |  |  |  |  |  |  |  |  | 50 | 50 |  | 50 | 50 |
| CVS400N | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 70 |

Consult your SE representative


Functions and positions of LV switches<br>Switches are necessary in different level of low voltage installation for the following main applications:<br>- functional switching<br>- supplying installation from different sources (transfer-switching equipment)<br>- starting stopping equipments<br>- emergency switching<br>- switching off and disconnection for isolation of one circuit or switchboard for maintenance.

IEC 60364-5-53 Electrical installations of buildings - Part 5-53:
Selection and erection of electrical equipment
Isolation, switching and control standard provides requirement for isolation of circuits, functional switching, and emergency switching.

IEC 60204-1 Safety of machinery - Electrical equipment of machines - Part 1: General requirements
standard provides requirements for disconnection of machines.
"Suitability for isolation" is necessary to ensure people safety in open position.

## Suitable for isolation

## Switch-disconnector

"Isolation" function i.e. disconnection from supply is required for all circuits or equipment in order to guarantee the safety of people during repairs or maintenance.

Low voltage electrical installation standards (IEC 60364 series for example) provide requirements to ensure properly this function:

## Device for isolation shall:

■ isolate all live conductors (including neutral but not PEN)

- withstand specified impulse voltage in open position

■ have a leakage current below specified values in open position

- be lockable in the "open" position so as to prevent any risk of involuntary reclosing
- ensure that the isolating distance between open contacts of the device is visible or be clearly and reliably indicated by "off" or "open" marking.

These requirements are totally covered with devices compliant to IEC 60947-1/2/3 suitable for isolation.

This characteristic is clearly marked on product by the symbol of switch-disconnector.

## Coordination

All switches must be protected by an overcurrent protection device placed upstream.

The tables below give the coordination performance of circuit breakers and switchdisconnector of main Schneider Electric ranges: in the event of an overload or a short-circuit the circuit breaker proposed in the table will protect the switch-disconnector according to its electrodynamic withstand and short-time and permanent withstand.

## Additional characteristics

Switch Disconnector Coordination
Upstream: Circuit breaker EasyPact CVS or gG fuses
Downstream: Switch disconnector EasyPact CVS NA
$\mathrm{Ue} \leq 415 \mathrm{Vac}$

| Switch disconnector EasyPact NA |  | CVS100NA | CVS160NA | CVS250NA | CVS400NA | CVS630NA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Upstream protection = CVS |  |  |  |  |  |  |
| type / rating (A) <br> Conditional short circuit current making current | kA rms kA peak | $\begin{array}{\|l} \text { CVS100B/100 } \\ 25 \\ 53 \end{array}$ | $\begin{aligned} & \text { CVS160B/160 } \\ & 25 \\ & 53 \end{aligned}$ | $\begin{aligned} & \text { CVS250B/250 } \\ & 25 \\ & 53 \end{aligned}$ |  |  |
| type / rating (A) <br> Conditional short circuit current making current | kA rms kA peak | $\begin{aligned} & \text { CVS100F/100 } \\ & 36 \\ & 76 \end{aligned}$ | $\begin{aligned} & \text { CVS160F/160 } \\ & 36 \\ & 76 \end{aligned}$ | $\begin{aligned} & \text { CVS250F/250 } \\ & 36 \\ & 76 \end{aligned}$ | $\begin{aligned} & \text { CVS400F/400 } \\ & 36 \\ & 76 \end{aligned}$ | $\begin{aligned} & \text { CVS630F/630 } \\ & 36 \\ & 76 \end{aligned}$ |
| type / rating (A) <br> Conditional short circuit current making current | kA rms <br> kA peak | $\begin{aligned} & \text { CVS100N/100 } \\ & 50 \\ & 105 \\ & \hline \end{aligned}$ | CVS160N/160 <br> 50 <br> 105 | $\begin{aligned} & \text { CVS250N/250 } \\ & 50 \\ & 105 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { CVS } 400 N / 400 \\ & 50 \\ & 105 \end{aligned}$ | $\begin{aligned} & \text { CVS630N/630 } \\ & 50 \\ & 105 \\ & \hline \end{aligned}$ |
| type / rating (A) <br> Conditional short circuit current making current | kA rms <br> kA peak |  |  |  | $\begin{aligned} & \text { CVS } 400 \mathrm{H} / 400 \\ & 70 \\ & 154 \end{aligned}$ | $\begin{aligned} & \text { CVS630H/630 } \\ & 70 \\ & 154 \end{aligned}$ |
| Upstream protection $=\mathrm{gG}$ fuses |  |  |  |  |  |  |
| type / rating (A) <br> Conditional short circuit current making current | kA rms <br> kA peak | $\begin{array}{\|l} \hline \text { gG } 80 \\ 100 \\ 220 \\ \hline \end{array}$ | $\begin{aligned} & \text { gG } 125 \\ & 100 \\ & 220 \end{aligned}$ | $\begin{aligned} & \text { gG } 200 \\ & 100 \\ & 220 \end{aligned}$ | $\begin{aligned} & \text { gG } 315 \\ & 100 \\ & 220 \end{aligned}$ |  |

# Motor Protection Coordination Protection of Motor Circuit with Circuitbreaker 



## Introduction

A circuit supplying a motor may include one, two, three or four switchgear or controlgear devices fulfilling one or more functions.
When a number of devices are used, they must be coordinated for providing optimum operation of the motor.
Protection of a motor circuit involves a number of parameters that depend on:
■ the application (type of machine driven, starting frequency, etc.)

- the level of service continuity imposed by the load or the application

■ the applicable standards to ensure protection of life and property.
The necessary electrical functions are of very different natures:
■ protection (motor-dedicated for overloads)

- control (generally with high endurance levels)
- isolation.


## Protection functions

## Disconnection functions:

■ Isolate a motor circuit prior to maintenance operations.
Short-circuit protection:
Protect the starter and the cables against major overcurrents (> 10 In ).

## Control:

Start and stop the motor, and, if applicable:

- gradual acceleration
- speed control.

Overload protection:
Protect the starter and the cables against minor overcurrents (< 10 ln ).
Additional specific protection:

- limitative fault protection (while the motor is running)
- preventive fault protection (monitoring of motor insulation with motor off).

Overloads ( $<10 \mathrm{In}$ )
An overload may be caused by:

- an electrical problem, for instance on the mains (loss of a phase, voltage outside tolerances, etc.)
- a mechanical problem, for instance excessive torque due to abnormally high
demands by the process or motor damage (bearing vibrations, etc.)
A further consequence of these two origins is excessively long starting.
Impedant short-circuit ( $10<1<50 \mathrm{In}$ )
Deterioration of motor-winding insulation is the primary cause.
Short-circuit ( $\mathrm{I}>50 \mathrm{In}$ )
This type of fault is relatively rare. A possible cause may be a connection error during maintenance.


## Overload protection

Thermal relays provide protection against this type of fault. They may be:

- integrated in the short-circuit protective device
- separate

Short-circuit protection
This type of protection is provided by a circuit breaker.
Protection against insulation faults
This type of protection may be provided by:
■ a residual current device (RCD)

- an insulation monitoring device (IMD).


# Motor Protection Coordination Protection of Motor Circuit with Circuitbreaker 

## Applicable standards

A circuit supplying a motor must comply with the general rules set out in IEC standard 60947-4-1 and in particular with those concerning contactors, motor starters and their protection as stipulated in IEC 60947-4-1, notably:
■ coordination of the components of the motor circuit

- trip class for thermal relays
- contactor utilisation categories
- coordination of insulation.


## Coordination of the components of the motor circuit

## Two types of coordination

The standard defines tests at different current levels. The purpose of these tests is to place the switchgear and controlgear in extreme conditions.
Depending on the state of the components following the tests, the standard defines two types of coordination:

## - type 1:

Deterioration of the contactor and the relay is acceptable under two conditions:
$\square$ no danger to operating personnel
$\square$ no danger to any components other than the contactor and the relay

- type 2:

Only minor welding of the contactor or starter contacts is permissible and the contacts must be easily separated.
$\square$ following type-2 coordination tests, the switchgear and controlgear functions must be fully operational.

380V - 415 Vac

| EasyPact CVS motors |  |  |  |  |  |  |  | EasyPact TVS type 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P(kW) | $1(\mathrm{~A}) 380 \mathrm{~V}$ | $\mathrm{I}(\mathrm{A}) 415 \mathrm{~V}$ | le max | type | cal(A) | setting | $\operatorname{Irm}(\mathrm{A})$ | Contactor | O/L | Irth |
| 0.37 | 1.2 | 1.1 | 1.6 | CVS100-MA | 2.5 | $6 . .13$ | 22.5 | LC1E06 | LRE06 | 1..1.6 |
| 0.55 | 1.6 | 1.5 | 1.6 | CVS100-MA | 2.5 | $6 . .14$ | 32.5 | LC1E06 | LRE06 | 1..1.6 |
| 0.75 | 2 | 1.8 | 2.5 | CVS100-MA | 2.5 | $6 . .14$ | 32.5 | LC1E06 | LRE07 | 1.6..2.5 |
| 1.1 | 2.8 | 2.6 | 4 | CVS100-MA | 6.3 | 6.14 | 57 | LC1E06 | LRE08 | 2.5..4 |
| 1.5 | 3.7 | 3.4 | 4 | CVS100-MA | 6.3 | $6 . .14$ | 57 | LC1E06 | LRE08 | 2.5..4 |
| 2.2 | 5.3 | 4.8 | 6 | CVS100-MA | 6.3 | 6.14 | 82 | LC1E06 | LRE10 | $4 . .6$ |
| 3 | 7 | 6.5 | 8 | CVS100-MA | 12.5 | 6.14 | 113 | LC1E09 | LRE12 | 5.5..8 |
| 4 | 9 | 8.2 | 10 | CVS100-MA | 12.5 | $6 . .14$ | 138 | LC1E09 | LRE14 | $7 . .10$ |
| 5.5 | 12 | 11 | 12.5 | CVS100-MA | 12.5 | $6 . .14$ | 163 | LC1E12 | LRE16 | $9 . .13$ |
| 7.5 | 16 | 14 | 18 | CVS100-MA | 25 | $6 . .14$ | 250 | LC1E18 | LRE21 | 16.. 24 |
| 10 | 21 | 19 | 25 | CVS100-MA | 25 | $6 . .14$ | 325 | LC1E25 | LRE22 | $16 . .24$ |
| 11 | 23 | 21 | 25 | CVS100-MA | 25 | $6 . .14$ | 325 | LC1E25 | LRE22 | 16.24 |
| 15 | 30 | 28 | 32 | CVS100-MA | 50 | $6 . .14$ | 450 | LC1E32 | LRE32 | 23.32 |
| 18.5 | 37 | 34 | 40 | CVS100-MA | 50 | $6 . .14$ | 550 | LC1E40 | LRE355 | $30 . .40$ |
| 22 | 43 | 40 | 50 | CVS100-MA | 50 | $6 . .14$ | 650 | LC1E50 | LRE357 | $37 . .50$ |
| 30 | 59 | 55 | 63 | CVS100-MA | 100 | $6 . .14$ | 900 | LC1E65 | LRE359 | $48 . .65$ |
| 37 | 72 | 66 | 100 | CVS100-MA | 100 | $6 . .14$ | 1100 | LC1E80 | LRE363 | 63.80 |
| 45 | 85 | 80 | 100 | CVS100-MA | 100 | $6 . .14$ | 1300 | LC1E95 | LRE481 | 62.99 |
| 55 | 105 | 100 | 135 | CVS160-MA | 150 | $9 . .14$ | 1500 | LC1E120 | LRE482 | $84 . .135$ |
| 75 | 140 | 135 | 150 | CVS160-MA | 150 | $9 . .14$ | 1950 | LC1E200 | LRE483 | 124.198 |
| 90 | 170 | 160 | 185 | CVS250-MA | 220 | $9 . .14$ | 2420 | LC1E200 | LRE484 | 146.. 234 |
| 110 | 210 | 200 | 220 | CVS250-MA | 220 | $9 . .14$ | 2860 | LC1E200 | LRE484 | 146.234 |
|  |  |  | 265 | CVS400-MA | 320 | $6 . .13$ | 3500 | LC1E250 | LRE484 | 146.234 |
| 132 | 250 | 230 | 265 | CVS400-MA | 320 | $6 . .13$ | 3500 | LC1E300 | LRE485 | 174.. 279 |
| 160 | 300 | 270 | 315 | CVS400-MA | 320 | $6 . .13$ | 4160 | LC1E300 | LRE486 | 208.. 333 |
| 200 | 380 | 361 | 400 | CVS630-MA | 500 | $6 . .13$ | 5700 | LC1F400 | LR9-F73 79 | $300 . .500$ |
| 220 | 420 | 380 | 500 | CVS630-MA | 500 | $6 . .13$ | 6500 | LC1F500 | LR9-F73 79 | $300 . .500$ |
| 250 | 460 | 430 | 500 | CVS630-MA | 500 | $6 . .13$ | 6500 | LC1F500 | LR9-F73 79 | 300.. 500 |

(1)Separate mounting with LAEB1 terminal block.
(2)Separate mounting with LAEB3 terminal block.

Additional characteristics

## Catalogue numbers

## Catalogue numbers

| Functions and characteristics | $\mathrm{A}-1$ |
| :--- | :---: |
| Installation recommendations | $\mathrm{B}-1$ |
| Dimensions and connection | $\mathrm{C}-1$ |
| Additional characteristics | $\mathrm{D}-1$ |

EasyPact CVS100 to 250
E-3
EasyPact CVS400 to 630 ..... E-15
EasyPact CVS100BS ..... F-1

## EasyPact CVS100 to 250

CVS100/160/250 ..... E-3
With TM-D Thermal-magnetic Trip Unit ..... E-3
WWith MA Magnetic Trip Unit ..... E-4
With ETS 2.2 Electronic Trip Unit ..... E-5
With NA Switch-disconnector Unit ..... E-6
Accessories ..... E-7
CVS100/160/250 ..... E-7

## CVS100/160/250 <br> With TM-D Thermal-magnetic Trip Unit

EasyPact CVS100/160/250B
With TM-D thermal-magnetic trip unit

|  | EasyPact CVS100B (25 kA at 380/415 V) |  |  |
| :---: | :---: | :---: | :---: |
|  | Rating | 3P | 4P |
|  | TM16D | LV510770 | LV510792 |
|  | TM25D | LV510771 | LV510793 |
|  | TM32D | LV510772 | LV510794 |
|  | TM40D | LV510773 | LV510795 |
|  | TM50D | LV510774 | LV510796 |
|  | TM63D | LV510775 | LV510797 |
|  | TM80D | LV510778 | LV510798 |
|  | TM100D | LV510779 | LV510799 |
|  | EasyPac | 380/415 V) |  |
|  | Rating | 3P | 4P |
|  | TM100D | LV516621 | LV516631 |
|  | TM125D | LV516622 | LV516632 |
|  | TM160D | LV516623 | LV516633 |
|  | EasyPac | 380/415 V) |  |
|  | Rating | 3P | 4P |
|  | TM160D | LV525606 | LV525616 |
|  | TM200D | LV525607 | LV525617 |
|  | TM250D | LV525608 | LV525618 |

EasyPact CVS100/160/250F
With TM-D thermal-magnetic trip unit


EasyPact CVS100F ( 36 kA at $380 / 415$ V)

| Rating | 3P | 4P |
| :---: | :---: | :---: |
| TM16D | LV510802 | LV510822 |
| TM25D | LV510803 | LV510823 |
| TM32D | LV510804 | LV510824 |
| TM40D | LV510805 | LV510825 |
| TM50D | LV510806 | LV510826 |
| TM63D | LV510807 | LV510827 |
| TM80D | LV510808 | LV510828 |
| TM100D | LV510809 | LV510829 |
| EasyPact CVS160F ( 36 kA at $380 / 415$ V) |  |  |
| Rating | 3P | 4P |
| TM100D | LV516636 | LV516646 |
| TM125D | LV516637 | LV516647 |
| TM160D | LV516638 | LV516648 |
| EasyPact CVS250F ( 36 kA at $380 / 415 \mathrm{~V}$ ) |  |  |
| Rating | 3P | 4P |
| TM160D | LV525621 | LV525631 |
| TM200D | LV525622 | LV525632 |
| TM250D | LV525623 | LV525633 |

EasyPact CVS100/160/250N

## With TM-D thermal-magnetic trip unit



| EasyPact CVS100N (50 kA | at 380/415 V) |  |
| :--- | :--- | :--- |
| Rating | 3P | 4P |
| TM16D | LV510864 | LV510872 |
| TM25D | LV510865 | LV510873 |
| TM32D | LV510866 | LV510874 |
| TM40D | LV510867 | LV510875 |
| TM50D | LV510868 | LV510876 |
| TM63D | LV510869 | LV510877 |
| TM80D | LV510870 | LV510878 |
| TM100D | LV510871 | LV510879 |
| EasyPact CVS160N (50 kA at 380/415 V) |  |  |
| Rating | 3P | 4P |
| TM100D | LV516651 | LV516654 |
| TM125D | LV516652 | LV516655 |
| TM160D | LV516653 | LV516656 |
| EasyPact CVS250N (50 kA at 380/415 V) |  |  |
| Rating | 3P | 4P |
| TM200D | LV525634 | LV525636 |
| TM250D | LV525635 | LV525637 |

## CVS100/160/250

With MA Magnetic Trip Unit

## EasyPact CVS100/160/250F

## With MA magnetic trip unit



EasyPact CVS100F ( 36 kA at $380 / 415 \mathrm{~V}$ )

| EasyPact CVS100F (36 kA at 380/415 V) | 3P |
| :--- | :--- |
| Rating | LV510440 |
| MA2.5 | LV510441 |
| MA6.3 | LV510442 |
| MA12.5 | LV510443 |
| MA25 | LV510444 |
| MA50 | LV510445 |
| MA100 | 3P |
| EasyPact CVS160F (36 kA at 380/415 V) | LV516439 |
| Rating | LV516440 |
| MA100 | 3P |
| MA150 | LV525439 |

## EasyPact CVS100/160/250N

## With MA magnetic trip unit

EasyPact CVS100N (50 kA at 380/415 V)

Rating 3P

| MA2.5 | LV510450 |
| :--- | :--- |

MA12.5
MA25
MA50
LV510450
LV510451
LV510452
LV510453

MA100
LV510454
EasyPact CVS160N ( 50 kA at $380 / 415$ V)
Rating 3P
MA100
P

MA150
EasyPact CVS250N (50 kA at 380/415 V)
Rating
LV510455

MA220

## CVS100/160/250

With ETS 2.2 Electronic Trip Unit


## CVS100/160/250

With NA Switch-disconnector Unit

## EasyPact CVS100/160/250 NA switch-disconnector

With NA switch-disconnector unit


| EasyPact CVS100 NA | 3P | 4P |
| :--- | :--- | :--- |
| Rating | LV510425 | LV510426 |
| 100 |  |  |
| EasyPact CVS160 NA | LP | 4P |
| Rating | LV516425 |  |
| 160 | UP | 4P |
| EasyPact CVS250 NA | LV525425 | LV525426 |
| Rating |  |  |

## Accessories

CVS100/160/250

+ Vigi module
Vigi module


|  | 3P | 4P |
| :--- | :--- | :--- |
| CVS100/160 (200 to 440 V) | LV529488 | LV529489 |
| CVS250 (200 to 440 V) | LV529492 | LV529493 |

## Accessories

CVS100/160/250

## Plug-in version = fixed/FC device + plug-in kit

Kit for EasyPact


|  | 3P |  |
| :--- | :--- | :--- |
| Plug-in kit | LV429289 |  |
| Comprising: |  |  |
| Base | $+1 \times$ LV429266 |  |
| Power connections | $+3 \times$ LV429268 |  |
| Short terminal shields | $+2 \times$ LV429515 |  |
| Safety trip interlock | $+1 \times$ LV429270 |  |

Plug-in version accessories
Insulation accessories
Connection adapter for plug-in base
$3 P$
LV429306

Auxiliary connections
19-wire fixed connector (for base)
LV429273


| 19-wire moving connector (for circuit breaker) | LV429274 |
| :--- | :--- |



Plug-in base accessories

|  | Long insulated right angle terminal extensions | Set of 2 | LV429276 |
| :---: | :---: | :---: | :---: |
|  | 2 IP40 shutters for base |  | LV429271 |
|  | Base | 3P | LV429266 |
|  | Power connections | 3P | LV429268 |
|  | Short terminal shield | 3 P | LV429515 |
|  | Safety trip interlock | 3P | LV429270 |

## Accessories

CVS100/160/250

## Connection accessories (Cu or Al)




| Bare cable connectors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| - | Steel connectors | $1 \times\left(1.5\right.$ to $\left.95 \mathrm{~mm}^{2}\right) ; \leqslant 160 \mathrm{~A}$ | Set of 3 | LV429242 |
| 10 |  |  | Set of 4 | LV429243 |
| (8) | Aluminium connectors | $1 \times\left(25\right.$ to $\left.95 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$ | Set of 3 | LV429227 |
|  |  |  | Set of 4 | LV429228 |
|  |  | $1 \times\left(120\right.$ to $\left.185 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$ | Set of 3 | LV429259 |
|  |  |  | Set of 4 | LV429260 |
| $\infty$ | Clips for connectors |  | Set of 10 | LV429241 |
|  | Aluminium connectors for 2 cables ${ }^{(1)}$ | $2 \times\left(50\right.$ to $\left.120 \mathrm{~mm}^{2}\right) ; \leqslant 250 \mathrm{~A}$ | Set of 3 | LV429218 |
| ( |  |  | Set of 4 | LV429219 |
|  | 6.35 mm voltage tap for steel or alumin | nnectors | Set of 10 | LV429348 |

Terminal extensions


Spreaders from 35 to 45 mm pitch ${ }^{(1)}$
Set of 3
LV431563 LV431564
(1) Supplied with 2 or 3 interphase barriers


[^11]
## Accessories

CVS100/160/250

Electrical auxiliaries

## Auxiliary contacts (changeover)



| OF or SD or SDE or SDV | 29450 |
| :--- | :--- |

OF or SD or SDE or SDV low level
29452


SDE adaptor, mandatory for trip unit TM, MA and ETS2.2
LV429451


Motor Mechanism


|  |  |
| :--- | :--- |
| AC | 11 |
| DC | 11 |


| Voltage | MT100/160/250 |
| :--- | :--- |
| $110-230 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$ | LV435001 |
| $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ | LV435002 |
| $110-230 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$ | LV435001 |

Indication and Measurement Modules
PowerLogic PowerTag Energy M250
Rating (A)
3P
$3 P+N$

## 250 <br> LV434020 <br> LV434021

## Accessories

CVS100/160/250

## Rotary handles

## Direct rotary handle



With black handle
LV429337

## Extended rotary handle



Locks
Toggle locking device for 1 to 3 padlocks


With black handle
LV429338

By removable device
| 29370


By fixed device
29371

## Locking of rotary handle



## EasyPact CVS400 to 630

CVS400/630 ..... E-15
With TM-D Thermal-magnetic Trip Unit ..... E-15
With MA Magnetic Trip Unit ..... E-16
With ETS 2.3 Electronic Trip Unit ..... E-17
With NA Switch-disconnector Unit ..... E-18
Accessories ..... E-19
CVS400/630 ..... E-19

## CVS400/630

With TM-D Thermal-magnetic Trip Unit

EasyPact CVS400/630F
With TM-D thermal-magnetic trip unit
EasyPact CVS400F ( 36 kA at $380 / 415 \mathrm{~V}$ )


## EasyPact CVS400/630N

With TM-D thermal-magnetic trip unit


EasyPact CVS400N ( 50 kA at $380 / 415 \mathrm{~V}$ )

| Rating | 3P | 4P |
| :--- | :--- | :--- |
| TM320D | LV540415 | LV5 |


| TM320D | LV540415 |
| :--- | :--- |
| TM400D | LV540416 |

EasyPact CVS630N (50 kA at 380/415 V)
Rating $\mid 3 \mathbf{P}$

| TM500D | LV563415 |
| :--- | :--- |
| TM600D | LV563416 |

[^12]TM630D LV563417

## CVS400/630

With MA Magnetic Trip Unit

| With MA magnetic trip unit |  |  |
| :---: | :---: | :---: |
|  | EasyPact CVS400F ( 36 kA at $380 / 415 \mathrm{~V}$ ) |  |
|  | Rating | 3P |
|  | MA320 | LV540550 |
|  | EasyPact CVS400N ( 50 kA at $380 / 415 \mathrm{~V}$ ) |  |
|  | Rating | 3P |
|  | MA320 | LV540552 |
|  | EasyPact CVS400H ( 70 kA at $380 / 415 \mathrm{~V}$ ) |  |
|  | Rating | 3P |
|  | MA320 | LV563554 |
|  | EasyPact CVS630F (36 kA at 380/415 V) |  |
|  | Rating | 3P |
|  | MA500 | LV563550 |
|  | EasyPact CVS630N ( 50 kA at 380/415 V) |  |
|  | Rating | 3P |
|  | MA500 | LV563552 |
|  | EasyPact CVS630H ( 70 kA at 380/415 V) |  |
|  | Rating | 3P |
|  | MA500 | LV563554 |

## EasyPact CVS400/630F

ETS 2.3 electronic trip unit (LS $\mathrm{L}_{0}$ protection)


|  | 3P | 4P |  |
| :--- | :--- | :--- | :--- |
| EasyPact CVS400F (36 kA at 380/415 V) | 400 A | LV540505 | LV540506 |
| EasyPact CVS630F (36 kA at 380/415 V) | 630 A | LV563505 | LV563506 |

EasyPact CVS400/630N
ETS 2.3 electronic trip unit ( $\mathrm{LS}_{0} I$ protection)


|  |  | 3P | 4P |
| :--- | :--- | :--- | :--- |
| EasyPact CVS400N (50 kA at 380/415 V) | 400 A | LV540510 | LV540511 |
| EasyPact CVS630N (50 kA at 380/415 V) | 630 A | LV563510 | LV563511 |

## EasyPact CVS400/630H

ETS 2.3 electronic trip unit ( $\mathrm{LS}_{0}$ I protection)


EasyPact CVS400H ( 70 kA at $380 / 415 \mathrm{~V}$ ) 400 A

| 3P | 4P |
| :--- | :--- |
| LV540515 | LV540516 |
| LV563515 | LV563516 |

## CVS400/630

With NA Switch-disconnector Unit

## EasyPact CVS400/630 NA switch-disconnector

## NA switch disconnector

EasyPact CVS400 NA
EasyPact CVS630 NA

| 3P | 4P |
| :--- | :--- |
| LV540400 | LV540401 |
| LV563400 | LV563401 |

## Accessories

CVS400/630

+ Vigi module
Vigi module



## Accessories

CVS400/630

## Plug-in version = fixed/FC device + plug-in kit

## Kit for EasyPact



|  | 3P |
| :--- | :--- |
| Plug-in kit | LV432538 |
| Comprising: | $=1 \times$ LV432516 |
| Base | $+3 \times$ LV432518 |
| Power connections | $+2 \times$ LV432591 |
| Short terminal shields | $+1 \times$ LV432520 |

Plug-in version accessories
Insulation accessories
Connection adapter for plug-in base 3P

LV432584

|  | Connection adapter for plug-in base | 3P | LV432584 |
| :---: | :---: | :---: | :---: |
| Auxiliary connections |  |  |  |
|  | 19-wire fixed connector (for base) |  | LV429273 |
| $5$ | 19-wire moving connector (for circuit breaker) |  | LV432523 |
|  | 1 support for 3 moving connectors |  | LV432525 |
|  | 9-wire manual auxiliary connector (fixed + moving) |  | LV429272 |
| Plug-in base accessories |  |  |  |
|  | Long insulated right angle terminal extensions | Set of 2 | LV432526 |
|  | 2 IP40 shutters for base |  | LV432521 |
|  | Base | 3 P | LV432516 |
|  | Power connections | 3P | LV432518 |
| - | Short terminal shield | 3P | LV432591 |
|  | Safety trip interlock | 3 P | LV432520 |

## Accessories CVS400/630



## Accessories CVS400/630

## Electrical auxiliaries

## Auxiliary contacts (changeover)

$\stackrel{\text { ® }}{\stackrel{0}{0}}$


OF or SD or SDE or SDV
OF or SD or SDE or SDV low level
29450
29452

| Voltage releases |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Voltage | MX | MN |
|  | AC | 110-130 V 50/60 Hz | LV429386 | LV429406 |
|  |  | $220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and 208-277 V 60 Hz | LV429387 | LV429407 |
|  | DC | 24 V | LV429390 | LV429410 |

Motor Mechanism

AC

| Voltage | MT400/630 |
| :--- | :--- |
| $110-230$ V $50 / 60 \mathrm{~Hz}$ | LV435010 |
| $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ | LV435005 |
| $110-230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ | LV435010 |

Indication and Measurement Modules

## PowerLogic PowerTag Energy M630

## 630 <br> LV434022 <br> LV434023

## Rotary handle

## Direct rotary handle



Extended rotary handle
登
Standard extended rotary handle
LV432598


Locks
Toggle locking device for 1 to 3 padlocks


By removable device
29370

## By fixed device

32631

Locking of the rotary handle


Keylock adaptor (keylock not included)

| Ronis 1351B. 500 |
| :--- |
| Profalux KS5 B24 D4Z |

LV432604
Keylock (keylock adaptor not included)
Profalux KS5 B24 D4Z
41940
42888

## EasyPact" CVS100BS

## EasyPact CVS100BS

| Functions and characteristics Installation recommendations Dimensions and connection Additional characteristics Catalogue numbers | A-1 B-1 C-1 D-1 E-1 |
| :---: | :---: |
| Presentation | F-2 |
| EasyPact CVS100BS | F-2 |
| Overview | F-3 |
| Optimal Combination | F-3 |
| Functions and Characteristics | F-4 |
| General characteristics | F-4 |
| Protection of LV Power Distribution System <br> EasyPact CVS100BS <br> Installation and Connection <br> EasyPact CVS100BS <br> Electrical and Mechanical Accessories <br> EasyPact CVS100BS | F-5 F-6 F-7 |
| Technical Data Supplement | F-9 |
| Tripping Curve EasyPact CVS100BS Power Distribution Protection System | F-9 |
| Temperature and Altitude Derating | F-11 |
| Current-limiting | F-12 |
| Capacitor protection | F-13 |
| Catalogue numbers | F-14 |
| EasyPact CVS100BS | F-14 |
| Accessories | F-15 |
| Dimensions and Installation | F-18 |
| EasyPact CVS100BS | F-18 |

## EasyPact CVS100BS

Simplicity and perfection - That's what Schneider Electric brings to you.
EasyPact CVS100BS not only reflects high quality of Schneider Electric, but also features performance, protection functions, and performance/price ratio.

## EasyPact CVS100BS

■ up to 100A 3 Pole/4 Pole products

- Icu 25kA, Ics 17 kA
- Reliable protections of power distribution systems
- Flexible installation solutions including fixed, plug-in types
- Complete solutions for AC and DC networks


## More reliable and safer

Powerful current-limiting capacity to ensure more cost-effective and more reliable protection.

## Optimal Combination

## Modularized System

As shown below, a wide range of modules or accessories are available.


[^13]

EasyPact CVS100BS

## Compliance with standards

- IEC 60947-1: General rules (GB/T 14048.1)

■ IEC 60947-2: Circuit Breakers (GB/T 14048.2)
■ IEC 60947-4: Contactors and Motor Starters (GB 14048.4)
■ IEC 60946-5.1: Control circuit devices and Switching elements; automatic Control Components (GB 14048.5)

## Tropicalization

EasyPact CVS100BS circuit breakers have successfully passed the tests prescribed by following standards for extreme atmospheric conditions:

■ IEC 60068-2-30, damp heat (95\% relative humidity at $55^{\circ} \mathrm{C}$ )
■ IEC 60068-2-52 Salt mist (severity level 2)

## Positive contact indication

All EasyPact CVS100BS circuit breakers are suitable for isolation as defined in IEC standard 60947-2:

■ the isolation position corresponds to the O (OFF) position

- the operating handle cannot indicate the "OFF" position unless the contacts are effectively open
- padlocks may not be installed unless the contacts are open

Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.
The isolation function is certified by tests guaranteeing:
■ the mechanical reliability of the position indication system
■ the absence of leakage currents

- overvoltage withstand capacity between upstream and downstream connections


## Protection of LV Power Distribution System EasyPact CVS100BS



EasyPact CVS100BS


## Installation and Connection EasyPact CVS100BS

## Connection of electrical auxiliaries <br> Fixed configuration

Auxiliary circuits exit the device through a knock-out in the front cover.


EasyPact CVS100BS


## Electrical and Mechanical Accessories

EasyPact CVS100BS


EasyPact CVS100BS auxiliary contacts

All auxiliary contacts can be used to switch on/ off electronic loads.


EasyPact CVS100BS Voltage Release

EasyPact CVS100BS auxiliary switch
This auxiliary contact can display the status of circuit breakers remotely, and therefore can be used for indications electrical interlocking, relay control. etc.

## Functions

■ OF (On/off): Indicate the position of circuit breaker contacts.

- SD (Trip indication): Indicate trip conditions of circuit breakers due to overload, short-circuit, under-voltage or operation of the "push to trip" button. It returns to de-energised state when the circuit breaker is reset.


## EasyPact CVS100BS multifunctional auxiliary switch

■ OF/SD (Auxiliary + alarm): Indicate position of circuit breaker contacts and trip conditions of circuit breakers.

## Standard

These auxiliary contacts comply with IEC 60947-5.

## Installation and connection

■ This auxiliary contact clip into the slot behind the front cover of the circuit breaker.

- The conductor connected to the central terminal block has a cross-section up to $1.0 \mathrm{~mm}^{2}$.

| Electrical characteristics |  | In: 100A |  |
| :---: | :---: | :---: | :---: |
| Rated thermal current |  | 5 |  |
| Minimum load |  | 10mA, 24V |  |
| Utilisation (IEC 947-4-1) |  | AC12 | AC15 |
| Operating current (A) | 110 V | 5 | 3 |
|  | 220~240V | 3 | 2 |
|  | 380~440V | - | - |

## Voltage tripping

The voltage releases can trip the circuit breaker.
Under-voltage release (MN) trips the circuit breaker:

- When the tripping threshold drops below the rated voltage of the trip unit.
- The tripping threshold is 0.35 to 0.7 times the rated voltage.

■ If the circuit breaker can be closed when the voltage exceeds 0.85 times the rated voltage.
Circuit breaker tripping by an MN release meets the requirements of standard IEC60947-2.

## Shunt releases (MX)

The circuit breaker will trip by this release if the control voltage exceeds $0.7 \times$ Un. Control signals can be of the impulse type ( $\geq 20 \mathrm{~ms}$ ) or maintained.

## Operation

■ The circuit breaker can be reset locally or remotely after tripping by an MN or MX release.

- MN or MX tripping is faster than manual tripping (or trip by electric mechanism). In the presence of a standing trip order, other operations will not be executed. - Endurance:
$\square$ EasyPact CVS100BS circuit breaker, typically 50\% of the rated mechanical endurance of the circuit breaker


## Installation and connection

- The circuit breaker panel has MX and MN releases at the rear part.

■ Connection using wires up to $1.5 \mathrm{~mm}^{2}$.

| For EasyPact CVS100BS |  | EasyPact CVS100BS |  |
| :---: | :---: | :---: | :---: |
|  |  | AC | DC |
| Consumption | Pick-up (MX) | <10VA | < 10W |
|  | Seal-in (MN, MNR) | < 5VA | < 5W |
| Response time (ms) |  | < 50 | < 50 |

## Electrical and Mechanical Accessories EasyPact CVS100BS



EasyPact CVS100BS with a direct rotary handle


EasyPact CVS100BS with an extended rotary handle

Rotary handle
Two types of rotary handle are available:

- Direct rotary handle

■ Extended rotary handle

## Direct rotary handle

Protection degree: IP40, IK07, IP54
Operation

- Function:
$\square$ Suitability for isolation
$\square$ Indications of three positions including O (OFF), I (ON) and Tripped
$\square$ Access to "push-to-trip" button
■ Circuit breaker locking capability in the OFF position by 1 to 3 padlocks, with a shackle diameter 5 to 8 mm (not supplied)


## Installation

The front cover of the circuit breaker can be removed and replaced by the extended handle.

EasyPact CVS100BS series
The direct rotary handle is used in the following cases:
■ Switchboards in motor control center (MCC):
$\square$ Circuit-breaker closing is disabled if the door is open.
$\square$ Door opening is disabled when the circuit breaker is ON.

- Protection degree: IP43, IK07 (IP54, IK08)
$\square$ Machine tool control, in compliance with CNOMO E03.81.501N, with a protection degree of IP54, IK08


## Extended rotary handle

The circuit breaker on the switch cabinet can be operated with the rotary handle on the front.

Protection degree: IP55, IK08, IP54
Operation Functions:

- Suitability for isolation
- Indications of three positions including O (OFF), I (ON) and Tripped
$\square$ Access to trip unit settings, when the switchboard door is open.
- Circuit breaker closing is disabled if the door is open.

■ Circuit breaker locking capability in the OFF position by 1 to 3 padlocks, with a shackle diameter 5 to 8 mm (not supplied). These are used to prevent the door from being opened.

## The extended rotary handle is made up of:

- A unit that replaces the front cover of the circuit breaker ${ }^{(1)}$.

■ An assembly (handle and front plate) on the door that is always secured in the same position, whether the circuit breaker is horizontally or vertically installed. ■ An extension shaft that must be adjusted to the distance. The distance between the back of the circuit breaker and door is:
ㅁ EasyPact CVS100BS: 145~422mm

## Tripping Curve

## EasyPact CVS100BS <br> Power Distribution Protection System






## 50 A



## Tripping Curve

EasyPact CVS100BS
Power Distribution Protection System




## Temperature and Altitude Derating

## Temperature derating of trip units EasyPact CVS100BS

| Rating (A) | $40^{\circ} \mathrm{C}$ | $45^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $65^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 16.7 | 16.3 | 16.0 | 15.7 | 15.6 | 15.1 | 14.7 |
| 20 | 20.4 | 20.2 | 20.0 | 19.7 | 19.2 | 18.9 | 18.5 |
| 25 | 25.7 | 25.3 | 25.0 | 24.7 | 24.5 | 24.3 | 24.0 |
| 32 | 33.5 | 32.7 | 32.0 | 31.4 | 31.0 | 30.4 | 29.9 |
| 40 | 40.9 | 40.4 | 40.0 | 39.5 | 38.0 | 37.6 | 37.1 |
| 50 | 52.1 | 51.0 | 50.0 | 49.3 | 48.1 | 47.3 | 46.6 |
| 63 | 64.9 | 63.9 | 63.0 | 62.0 | 60.4 | 59.4 | 58.5 |
| 80 | 82.2 | 81.1 | 80.0 | 78.6 | 77.3 | 76.7 | 76.1 |
| 100 | 103.0 | 101.0 | 100.0 | 99.0 | 94.0 | 94.0 | 93.0 |

## Altitude Derating of trip units

Altitude does not significantly affect circuit-breaker characteristics up to 2000 m . Above this altitude, it is necessary to take into account the decrease in the dielectric strength and cooling capacity of air. It should be noted that the breaking capacity remained unchanged.

| EasyPact CVS100BS |  |  |  |
| :--- | :--- | :--- | :--- |
| Height (m) | 2000 | 2600 | 3900 |
| Dielectric strength (V) | 3000 | 2850 | 2400 |
| Maximum operation voltage (V) | 690 | 655.5 | 552 |
| Nominal current at $50^{\circ} \mathrm{C}(\mathrm{A})$ | $1 \times \ln$ | $0.95 \times \ln$ | $0.8 \times$ ln |

## Technical Data Supplement

Current-limiting capacity refers to the ability of a circuit breaker to limit short-circuit current.


Ics 17kA
Current-limiting performance of EasyPact CVS100BS series helps lower power generated by fault current, and consequently improves the breaking capacity of the circuit-breaker. Ics 17 kA .

## Extension of service life of electrical installation

Circuit breaker current-limiting technology greatly reduces damage to installation caused by short-circuit current.

## Thermal effect

lowers temperature rise and extend the service life of the cable.

## Mechanical effect

Risks of contact and busbar distortion and damage are greatly reduced since the electrodynamic force is decreased.

## Electromagnetic effect

Disturbance on surrounding measurement instrument is relieved.

## Current-limiting curve

Current-limiting capacity of a circuit breaker can be represented by two curves. It varies with the value of prospective short-circuit current (short-circuit current without any protective device).

- Actual peak current (current-limiting)
- Thermal effect ( $\mathrm{A}^{2} \mathrm{~s}$ ), which means energy loss of a $1 \Omega$ conductor carrying the short-circuit current.

Maximum allowable thermal stress of cable
The maximum allowable overheat values (in $\mathrm{A}^{2} \mathrm{~s}$ ), dependent on cable insulation material ( Cu or Al ) and cross-section ( $\mathrm{mm}^{2}$ ), are listed in the following table.

| Cross section $\left(\mathrm{mm}^{2}\right)$ | 1.5 | 2.5 | 4 | 6 | 10 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Copper | $2.97 \times 10^{4}$ | $8.26 \times 10^{4}$ | $2.12 \times 10^{5}$ | $4.76 \times 10^{5}$ | $1.32 \times 10^{6}$ |
| PVC | Aluminum | - | - | - | - | $5.41 \times 10^{5}$ |
| PRC | Copper | $4.10 \times 10^{4}$ | $1.39 \times 10^{5}$ | $2.92 \times 10^{5}$ | $6.56 \times 10^{5}$ | $1.82 \times 10^{6}$ |
|  | Aluminum | - | - | - | - | $7.52 \times 10^{5}$ |
| Cross section $\left(\mathrm{mm}^{2}\right)$ | 16 | 25 | 35 | 50 |  |  |
| PVC | Copper | $3.4 \times 10^{6}$ | $8.26 \times 10^{6}$ | $1.62 \times 10^{7}$ | $3.31 \times 10^{7}$ |  |
|  | $1.39 \times 10^{6}$ | $3.38 \times 10^{6}$ | $6.64 \times 10^{6}$ | $1.35 \times 10^{7}$ |  |  |
| PRC | Copper | $4.69 \times 10^{6}$ | $1.39 \times 10^{7}$ | $2.23 \times 10^{7}$ | $4.56 \times 10^{7}$ |  |





## EasyPact CVS100BS circuit breaker is suitable for capacitor protection following the rules below:

■ Inc = Nominal current of the capacitor

Inc = Nominal Current Capacitor (A)
$\operatorname{lnc}=\frac{Q c}{U \sqrt{3}}$
Qc = Reactive power (kVAR)
$\mathrm{U}=$ Nominal Voltage (V)

■ Inb = Nominal current of the circuit breaker

- Inb $=1.36 \times \operatorname{Inc}$ for standard equipment
$\square \operatorname{Inb}=1.5 \times \operatorname{Inc}$ for overrated type equipment
$\square \mathrm{Inb}=1.12 \times \mathrm{Inc}$ for detuned type equipment: 2.7 tuning
$\square \operatorname{Inb}=1.19 \times \operatorname{Inc}$ for detuned type equipment: 3.8 tuning
$\square \operatorname{Inb}=1.31 \times \operatorname{Inc}$ for detuned type equipment: 4.3 tuning
$\square$ the short-circuit (magnetic) protection-setting thresholds must enable passage of the energising transients: $10 \times \operatorname{lnc}$ for standard, overrated and detuned type equipment.

■ Icu = Ultimate breaking capacity of the circuit breaker
Icu short-circuit level is given by the installation.

## Example:

Table at 400 V AC -3 phases 50 Hz for standard equipment.

| Reactive power <br> (kVAR) | Inc <br> (A) | Inb <br> (A) | Breaking capacity to Circuit Breaker <br> 30 kA |
| :--- | :--- | :--- | :--- |
| 7.5 | 11 | 16 | LV510930 |
| 10 | 14 | 20 | LV510931 |
| 15 | 22 | 30 | LV510933 |
| 20 | 29 | 40 | LV510934 |
| 30 | 43 | 60 | LV510936 |
| 40 | 58 | 80 | LV510937 |
| 50 | 72 | 100 | LV510938 |

EasyPact CVS100BS
With TM-D thermal magnetic trip unit
EasyPact CVS100BS ( 25 kA at $380 / 415 \mathrm{~V}$ )

| Rating | 3P | 4P |
| :--- | :--- | :--- |
| TM16D | LV510930 |  |
| TM20D | LV510931 |  |
| TM25D | LV510932 | LV510952 |
| TM32D | LV510933 | LV510953 |
| TM40D | LV510934 | LV510954 |
| TM50D | LV510935 | LV510955 |
| TM63D | LV510936 | LV510956 |
| TM80D | LV510937 | LV510957 |
| TM100D | LV510938 | LV510958 |

Connection accessories
Cable lugs
$\leqslant 50 \mathrm{~A}$
Cables from 2.5 to $16 \mathrm{~mm}^{2}$

| Set of 2 | EZALUG0502 |
| :--- | :--- |
| Set of 3 | EZALUG0503 |


| > 50A | Cables from 10 to $50 \mathrm{~mm}^{2}$ | Set of 2 | EZALUG1002 |
| :---: | :---: | :---: | :---: |
|  | 24 V | Set of 3 | EZALUG1003 |

## Spreaders

0
Spreaders for 3P breaker
Set of 3
Spreaders for 4P breaker
Set of 4
EZASPDR3P

Terminal shields
Terminal shields for 3P breaker
Set of 2
Set of 2
EZATSHD3P
Terminal shields for 4P breaker
EZATSHD4P


Terminal protectors
Terminal protectors
Set of 4
EZATPTR4


Phase barriers
Phase barriers
Set of 2
EZAFASB2


## Electrical auxiliaries

Indication contacts


Auxiliary switch（AX）
EZAUX10


| Alarm switch（AL） | EZAUXO1 |
| :--- | :--- |



Auxiliary switch＋alarm switch（ $A X+A L$ ）
EZAUX11

Voltage releases

|  |  | Voltage | MX／SHT |
| :---: | :---: | :---: | :---: |
|  |  | 100－130V | EZASHT100AC |
|  |  | 200－277V | EZASHT200AC |
|  |  | 380－480V | EZASHT380AC |
|  | DC | 24 V | EZASHT024DC |
| Shunt trip（SHT） |  |  |  |
| 目 目 |  | Voltage | MN／UVR |
|  | AC | 110－130V | EZAUVR200AC |

## Rotary handles

Direct rotary handle ( for 3/4P breaker )


Direct rotary handle (black)
EZAROTDS

Extended rotary handle (for 3/4P breaker )


## Installation accessory

DIN rail adaptor

| For $2 \times 1 \mathrm{P}$ or $1 \times 2 \mathrm{P}$ or $1 \times 3 \mathrm{P}$ breaker | EZADINR |
| :--- | :--- |



Note: for 4P breaker, use 2 adaptors

Plug-in 100 A


| Kit, plug-in base 3P 15 A-50 A | EZAPLUG3L |
| :--- | :--- |
| Kit, plug-in base 3P $60 \mathrm{~A}-100 \mathrm{~A}$ | EZAPLUG3H |
| Fishbone connectors set of 3 | EZAFSHB3 |

## Dimensions



## Backplate mounting

3P


4P




3P



Front panel cutout (large)

3P



4P



Interphase barrier


## Direct rotary handle



Extended rotary handle


3P,4P


3P,4P


## Life Is UUn <br> Schneider $S$ Electric

## Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $928298512 €$
www.se.com


[^0]:    

[^1]:    1) If the trip units are used in high-temperature environments, the ETS $2.2 / 2.3$ setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.
[^2]:    ${ }^{\text {(1) }}$ Above 2000 m, please consult us.

[^3]:    Sealing accessories.

[^4]:    Thermal-protection curve with minimum and maximum values.

[^5]:    (1) Long terminal shields provide a degree of protection of IP40 (ingress) and IK07 (mechanical impact).

[^6]:    4 Selectivity limit $=4 \mathrm{kA}$
    $T$ Total selectivity, up to the breaking capacity of the downstream circuit breaker.
    $\square$ No Selectivity

[^7]:    Note: respect the basic rules of selectivity for overload and short-circuit, particularly for D curves downstream.

[^8]:    $4 \quad$ Selectivity limit $=4 \mathrm{kA}$

    T Total selectivity. up to the breaking capacity of the downstream circuit breaker.
    No Selectivity

[^9]:    4 Selectivity limit $=4 \mathrm{kA}$
    $T \quad$ Total selectivity, up to the breaking capacity of the downstream circuit breaker.
    No Selectivity

[^10]:    Note: respect the basic rules of selectivity for overload and short-circuit. See Introduction.

[^11]:    1) Supplied with 2 or 3 interphase barriers.
[^12]:    4P
    LV563421
    LV563422
    LV563423

[^13]:    1. Breaking unit
    2. $M N$ and $M X$ voltage releases
    3. Direct rotary handle
    4. Extended rotary handle
    5. Short terminal shield
    6. Long terminal shield
    7. Connection accessories
    8. Terminal protectors
