

An industry leading portfolio of offers delivering sustainable value

N
 Green Premium

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
CO_{2} and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_{2} emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance
Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

Tesys

TeSys B - Bar-mounted variable composition Contactors

Variable composition contactors,

The use of a variable composition contactor (also called bar-mounted contactor) becomes evident when the specification of the application can no longer be met with a standard contactor.

- High power load: > 400 kW.
- AC main supply from 1000 to 3000 V .
- Very inductive DC load: L/R > 15 ms.
- DC main supply with low current but voltage over 1000 V.
- High operating frequency: up to 1200 op./h.
- High durability: several millions of operations.

Some examples

The fact sheets are available at http://www.se.com/

Application form ref. EDCED110013EN

Application form ref. EDCED110017EN

Application form ref. EDCED110014EN

Application form ref. EDCED110018EN

Videos

Very high power contactors - TeSys B-1 - Discovery Discover Schneider Electric's TeSys B bar contactors that are designed to cut out considerable electric arcs. See how they are manufactured in the Schneider Electric factory and check out the presentation of the range.

Very high power contactors -TeSys B - 2 - Applications Discover very high-power applications for which Schneider Electric's TeSys B bar contactors offer great advantages.

for very high power applications

Application form ref. EDCED110015EN

Application form ref. EDCED110019EN

Application form ref. EDCED110016EN

Application form ref. EDCED110020EN

TeSys

TeSys contactors
Panorama

TeSys

TeSys B Variable composition contactors
Panorama

Variable composition contactors


```
- Motor switching in categories AC-3.
    - Resistive load switching: heating, lighting.
    - Distribution circuit switching: line contactor
    - Supply changeover switching: circuit coupling.
    - Transformer, capacitor
```


Contactors	Type
	Size

Rated operational current AC-3

AC-3
$A C-4 / D C-5$

Max. rated operational voltage

Available with configuration type command

| CV1B | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | $\mathbf{J}^{(1)}$ | $\mathbf{H}^{(1)}$ | | |
| F | | | | |

80 A	250 A	460 A
72 A/-	205 A/-	$\begin{aligned} & 380^{(2)} \\ & / 630 \mathrm{~A}^{(3)} \\ & \hline \end{aligned}$
80 A	300 A	630 A
690 V	690 V	$\begin{aligned} & 690 \mathrm{~V} \sim^{(2)} \\ & 11000 \mathrm{~V} \sim^{(3)} \end{aligned}$

A-B-C-D

Available control circuit configuration

Type A
a.c. supply ~

Type B
d.c. supply ---

(1) CV1B legacy size ‘G', 'J’, 'L'please consult us.
(2) With PN1 type poles.
(3) With PN3 type poles.

Standard and high performance contactors

- Motor switching in categories AC-4, DC-5.
- Inductive circuit switching: crane electromagnets.
- High voltage d.c. switching: railway locomotives.
- Load switching at high operating rates.

| CV3B | G ${ }^{(1)}$ | $\mathbf{J}^{(1)}$ | $\mathbf{K}^{(1)}$ |
| :--- | :--- | :--- | :--- | :--- |
| F | | 250 A | |
| 80 A | | $208 / 300 \mathrm{~A}$ | |
| $80 / 80 \mathrm{~A}$ | 300 A | | |
| 80 A | | | |
| $1000 \mathrm{~V} \sim$ | | $1000 \mathrm{~V} \sim$ | |

CV3B and LC1B			
\mathbf{L}	\mathbf{M}	\mathbf{P}	\mathbf{R}
800 A	1000 A	1500 A	1800 A
$720 / 800 \mathrm{~A}$	$830 / 1000 \mathrm{~A}$	$1200 / 1800 \mathrm{~A}$	$1500 / 2500 \mathrm{~A}$
800 A	1250 A	2000 A	2750 A
$1000 \mathrm{~V} \sim$	$1000 \mathrm{~V} \sim$	$1000 \mathrm{~V} \sim$	$1000 \mathrm{~V} \sim$
	(B: special conditions - contact us)		

Type C
a.c. supply via economy resistor

Type D
d.c. supply via economy resistor

(1) CV3B legacy size ' G ', 'J', 'K', please consult us.

TeSys

TeSys B Variable composition contactors
Panorama

Variable composition contactors

Applications

- Excitation circuit control of synchronous machine.

Max. rated operational voltage

Available with
configuration
type command

	$\begin{aligned} & \text { CVXB: C-D } \\ & \text { CRXB:E-F } \end{aligned}$
Type C	Type D

(1) CRXB - CVXB legacy size 'G', 'J', please consult us.

Specific contactors

Variable composition contactors (or bar-mounted contactors) - 3 groups

- Low power switching contactors:
- type CV1B•, 80 to 630 A
- type CV3Be, 80 to 500 A.

For motor control, the references of the CV1 contactors are given on page 17 and for the CV3 on page 19.
For other applications, the composition of the commercial references is described on Symbol combination table, see pages 37 and 38 or use the configuration software "bar contactor soft-customer.xls" to download on: www.se.com.

■ Increased power switching contactors:

- type LC1B•, 800 to 2750 A. References shown on page 19.

■ Specific contactors (large number of main poles, pole arrangement, customised fixing and dimensions, component referencing, etc.) :

- type CV1•B, 80 to 1000 A
- type CV3•B, 80 to 2750 A.

To order these contactors, complete the Order form on page 136.

1 Mounting bar
2 Rotating armature shaft
3 Electromagnet
4 Main pole
5 Instantaneous auxiliary contacts
Variable composition contactors are particularly suited for switching a.c. or d.c. motors and other circuits and are capable of providing a high number of operating cycles.
Their variable composition design allows them to be built to customer specification.

Applications

These variable composition contactors are ideally suited for the most frequently encountered applications:

■ Switching a.c. squirrel cage and slip-ring motors in all utilisation categories (AC-2, AC-3, AC-4).
■ Switching d.c. motors in all utilisation categories (DC-2, DC-3, DC-4, DC-5).
\square Switching a.c. resistive loads (category AC-1) and d.c. resistive loads (category DC-1).

- Switching distribution circuits (category AC-1).

■ Short-circuiting of rotor resistors.
■ Switching capacitors, power factor correction.

- Switching transformer primaries.

■ Switching inductive circuits with high time constant (L/R > 15 ms)
Example: alternator excitation circuit.
■ Severe duty requirements and main pole arrangements comprising 1 to 6 N/O and/or N/C poles.

N/O pole 80... 2750 A .

N/C pole $80 \ldots 1000$ A.

1 Fixed contact
2 Moving contact
3 Arc chamber
4 Blow-out coil
5 Pole pressure spring
6 Braided conductor
7 Rotating armature shaft (moving contact actuator)
8 Mounting bar
9 Terminal lugs

Power circuit

The principal function of a main pole is to make and break the supply current. It is designed to continuously carry its nominal operational current.

Making the current

On energisation of the electromagnet coil, the armature shaft rotates and the moving contact makes with the fixed contact. The contact pressure, maintained by the pole pressure spring, is sufficient to overcome the electrodynamic forces of transient current peaks (e.g.: switching a transformer, starting a motor, etc.).

Breaking the current

On de-energisation of the electromagnet coil, the contacts separate and electrical arcing is dissipated by the blow-out coil and arc chamber. To optimise the performance of the magnetic blow-out, the blow-out coil can be selected to suit the operational current, which is particularly important when switching d.c.
The N/C pole operates in a reverse manner to the N/O pole, i.e. the contacts are closed whilst the electromagnet coil is de-energised and open during energisation.

Main pole types

CV1 contactors

■ 690 V ~, 220 V -.- / pole

- N/O poles 80... 630 A (PN1)
\square N/C poles 80... 630 A (PR1).

- Variants:

- no-load breaking poles
- N/O poles 80...630 A (PN5)
- N/C poles 80... 630 A (PR5).
\square arc chambers with splitters for dispersing the electric arc: $1000 \mathrm{~V} \sim / 440 \mathrm{~V}=-$ per pole
- N/O poles 80... 630 A (PN3)
- N/C poles 500...630 A (PR3).

CV3 contactors

■ 1000 V ~, 440 V --. / pole
\square N/O poles 0... 300 A (PA3)
\square N/C poles 80... 300 A (PR3)

- N/O poles 750...2750 A (PA1).

■ Variants:

\square high making capacity poles $750 \ldots 2750 \mathrm{~A}$ (PA2)
\square high breaking capacity poles and poles with reduced safety clearances (arc chambers with closed splitters) $750 \ldots 2750$ A (PA1PX8)
\square no-load breaking poles

- N/O poles 750... 2750 A (PA5).

TeSys B Variable composition contactors

Electromagnet EB1

1 Electromagnet core
2 Coil
3 Electromagnet armature

Electromagnet EK

1 Electromagnet core
Coil
3 Electromagnet armature

Control circuit

■ 2 types of electromagnet: E shaped core and U shaped core.

- 2 types of coil: type WB1 and type WB2.

E-shaped electromagnet and coil type WB1 for AC / DC network

$■$ Electromagnet with E shaped laminated iron core, type EB ${ }^{(1)}$
\square with central air gap machined in armature
\square with single coil type WB1 fitted on centre limb of core.
The upper limb incorporates a shading ring, the armature rotates.
■ Coil - direct a.c. 50 or $\mathbf{6 0 ~ H z}$ supply

- 20 to 500 V
- 1200 operations/hour.

At the moment of inrush, with the armature open, the coil impedance is low and power consumption is high.
In the sealed state the armature is closed, the coil impedance increases and power consumption is low.
The inrush current is 6 to 10 times higher than the sealed current.
■ Electromagnet directly DC powered or via individual rectifier $(50-400 \mathrm{~Hz})$:
\square the electromagnet is mounted with the reduction in consumption

- 12 to 500 V
- 120 operations/hour.

■ Electromagnet powered via individual rectifier ($50-400 \mathrm{~Hz}$):
\square the electromagnet is mounted with the reduction in consumption - 12 to 500 V

ㅁ 120 operations/hour.
At the moment of inrush, the full actuating voltage is applied to the coil and the inrush current is determined by the coil resistance.
In the sealed state an additional resistor is switched automatically in series with the coil, so as to reduce power consumption.
This economy resistor is switched by a N/C auxiliary contact which is adjusted to open only when the armature is fully closed.
The inrush current is 15 to 40 times higher than the sealed current.
Coils type WB1, used in conjunction with laminated iron cores, have a much higher inrush current than sealed current, whatever the nature of the supply current.

When establishing the current and selecting the supply voltage rating, it is important to take into account the line voltage drop due to the inrush current.

Electromagnet with U shaped core and coil type WB2 for d.c. supply

■ Electromagnet with U shaped solid iron core, type EK:
$\square 2$ similar coils type WB2 connected in series, one coil being fitted to each limb of the core
\square the armature rotates.
■ Electromagnet for d.c. supply

- 12 to 500 V
- 1200 operations/hour.

The coils for this type of electromagnet have a considerable number of turns so as to obtain sufficient magnetic flux to attract the armature.

Due to its simplicity and relatively slow movements the assembly is very robust and, therefore, has increased mechanical durability.
(1) CRX, CVXB legacy size ' G ', 'J'. Please consult us

Instantaneous and time delay auxiliary contacts

Signalling, electrical interlocking and slave functions can be achieved by using auxiliary contacts.

Instantaneous auxiliary contacts suitable for use with all contactor types:
■ 1 block of 3 instantaneous N/O contacts and 2 N/C instantaneous contacts, reference LA1BN32A.

Delayed auxiliary contacts can be mounted onto contactors CV1 and CV3: - On the block LA1BN32A, 1 block of N/O ON-delayed contact + 1 N/C ON-delayed contact , references LADT0 (delay from 0.1 to 3 s), LADT2 (0.1 to 30 s), LADT4 (10 to 180 s)
■ On the block ref. LA1BN32A: 1 block of N/O OFF-delayed contact + 1 N/C OFF-delayed contact, references LADR0 (delay from 0.1 to 3 s), LADR4 (10 to 180 s)

The delayed contacts are established or separate some time after the closing or opening of the contactor which operates them. This time is adjustable.

On the block LA1BN32A all TeSys D contactors additives can be mounted with the exception of LA6DK, LAD6K, LADN01, LADN10 and LAD8N.

Assembling reversing/changeover contactor pairs

Mounting accessories

For applications involving the switching of reversing motors or changeover circuits, contactors of different ratings can easily be mounted vertically and interlocked. Mechanical interlock kits are available and auxiliary contacts can be used for electrical interlocking.

CV1B, CV3B, LC1B Selection guide

Selection guide 16
TeSys CV1B Variable composition contactors -
Use in category AC-3 16
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-3 18
TeSys CV1B Variable composition contactors - Use in category AC-1 20
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-1 22
TeSys CV1B Variable composition contactors - Use in category AC-2, AC-4 24
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-2, AC-4 25
TeSys CV1B Variable composition contactors - Use in category DC-1 26
TeSys CV3B, LC1B Variable composition contactors - Use in category DC-1 28
TeSys CV1B Variable composition contactors - Use in category DC-3, DC-5 30
TeSys CV3B, LC1B Variable composition contactors - Use in category DC-3, DC-5 32
TeSys CV1B, CV3B, LC1B Variable composition contactors for rotor-starting motors 34
TeSys CRXB, CVXB, CWXB, CR1B and others for specific use 35
TeSys CV1B, CV3B, CV1BK ordering process 36
TeSys CV1BK ordering process 38

TeSys CV1B Variable composition contactors - Use in category AC-3

Selection guide

CV1B for control of motors $\leqslant 690 \mathrm{~V}$ in AC-3
Selection guide for utilisation category AC-3
according to required electrical durability
Rated operational current in At $\square \leqslant 55^{\circ} \mathrm{C}$

	Size					
	F	$\mathbf{G}^{(1)}$	H	$\mathbf{J}^{(1)}$	K	$\mathbf{L}^{(1)}$
Maximum operating rate in operating cycles/hour	$\mathbf{1 2 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 2 0 0}$			
$\leqslant 440 \mathrm{~V}$	80	250	460			
500 V	50	200	450			
690 V	35	150	400			

Nominal operational power at $\square \leqslant 55^{\circ} \mathrm{C}$						
CV1 contactors	Size					
	F	G ${ }^{1)}$	H	$J^{(1)}$	K	$\mathbf{L}^{(1)}$
Maximum operating rate in operating cycles/hour	1200		1200		1200	
220/230 V	22		75		140	
$380 / 400 \mathrm{~V}$	37		132		250	
$415 / 440$ V	37		140		260	
500 V	30		110		315	
660/690 V	22		110		315	

(1) CV1B legacy size 'G', 'J', 'L', please consult us.

Electrical durability (Ue $\leqslant 440$ V)

CV1B contactors - references according to motor power ratings in category AC-3

1) For other compositions, make up the contactor reference as explained on page 36.
(2) Standard control circuit voltages (variable delivery, please contact us):

Volts	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 7}$	$\mathbf{2 0 8}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$
50 Hz	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	-	K6	-	L6	M6	P6	U6	Q6	V6	R6
$50 / 60 \mathrm{~Hz}$	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
$\overline{---~}$	ED	FD	KD	GD	-	MD	PD	UD	QD	VD	-
-+ Econ.R. ${ }^{(3)}$	ER	FR	KR	GR	-	MR	PR	UR	QR	VR	-
$-\cdots$											

For other voltages: please consult your Regional Sales Office.
(3) Econ.R.: Economy resistor.

TeSys CV3B, LC1B Variable composition contactors - Use in category AC-3

Selection guide

CV3B and LC1B for motor control $\leqslant 1000 \mathrm{~V}$ in AC-3

Selection guide for utilisation category AC-3 according to required electrical durability						
Rated operational current in A at $\square \leqslant 55^{\circ} \mathrm{C}$						
Contactors CV3 and LC1B	Size					
	F	H	L	M	P	R
Maximum operating rate in operating cycles/hour	1200	1200	120	120	120	120
$\leqslant 440 \mathrm{~V}$	80	290	800	1000	1500	1800
500 V	80	250	800	1000	1500	1800
690 V	70	240	750	900	1000	1100
1000 V	70	220	500	500	600	700

Nominal operational power at $\square \leqslant 55^{\circ} \mathbf{C}$ Contactors CV3 and LC1B	\mathbf{F}	\mathbf{H}	L	\mathbf{M}	P	R
Maximum operating rate in operating cycles/hour $220 / 230 ~ V ~$	$\mathbf{1 2 0 0}$	$\mathbf{1 2 0 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 0}$
$380 / 400 \mathrm{~V}$	22	75	220	280	425	500
415 V	37	132	400	500	750	900
440 V	37	132	425	530	800	900
500 V	45	132	450	560	800	900
$660 / 690 \mathrm{~V}$	45	160	500	600	750	900
1000 V	55	200	560	670	750	900

Electrical durability (Ue $\leqslant 440 \mathrm{~V}$)

Electrical durability (Ue $\leqslant 690$ V)

CV3BF

CV3B, LC1B contactor - references according to standard motor power ratings in category AC-3

(1) For other compositions, make up the contactor reference as explained on page 36. (2) Standard control circuit voltages (variable delivery, please contact us):											
Volts	48	110	120	127	208	220	230	240	380	400	440
50 Hz	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	-	K6	-	L6	M6	P6	U6	Q6	V6	R6
$50 / 60 \mathrm{~Hz}$	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
--	ED	FD	KD	GD	-	MD	PD	UD	QD	VD	-
$\overline{--}+$ Econ.R. ${ }^{(3)}$	ER	FR	KR	GR	-	MR	PR	UR	QR	VR	-

For other voltages: please consult your Regional Sales Office.
(3) Econ.R.: Economy resistor.

Contactors for motor control in category AC-3, from 750 to 1800 A (~or -)

Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3							Maximum rated operational current in AC-3	Instantaneous auxiliary contacts per contacto			Basic reference, to be completed by adding the voltage code ${ }^{(4)}$	Frequently used voltage codes			Veight
$\begin{aligned} & 220 \text { V } 380 \\ & 230 \text { V } 400 \end{aligned}$		415	$440 \mathrm{~V}$	$500 \mathrm{~V}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$1000 \mathrm{~V}$									
kW	A								kg						
220	400	425	450	500	560	530	800	2	2		LC1BL33•22	G	P	V	57.000
								3	1		LC1BL33-31	G	P	V	57.000
								1	3		LC1BL33-13	G	P	V	57.000
								4	-		LC1BL33•40	G	P	V	57.000
280	500	530	560	600	670	530	1000	2	2		LC1BM33•22	G	P	V	60.000
								3	1		LC1BM33.31	G	P	V	60.000
								1	3		LC1BM33•13	G	P	V	60.000
								4	-		LC1BM33•40	G	P	V	60.000
425	750	800	800	700	750	670	1500	2	2		LC1BP33•22	G	P	V	94.000
								3	1		LC1BP33-31	G	P	V	94.000
								1	3		LC1BP33-13	G	P	V	94.000
								4	-		LC1BP33•40	G	P	V	94.000
500	900	900	900	900	900	750	1800	2	2		LC1BR33-22	G	P	V	129.000
								3	1		LC1BR33-31	G	P	V	129.000
								1	3		LC1BR33•13	G	P	V	129.000
								4	-		LC1BR33•40	G	P	V	129.000

(4) Standard control circuit voltages (variable delivery, please contact us):

Volts	$\mathbf{4 8}$	110	120	125	127	220	230	240	380	400	415	440	500
$\sim 50 \ldots 400 \mathrm{~Hz}$	-	F	K	-	G	M	P	U	Q	V	N	R	S
--	ED	FD	-	GD	-	MD	-	UD	-	-	-	$R D$	SD

[^0]TeSys CV1B Variable composition contactors - Use in category AC-1

Selection guide

CV1B for control of resistive circuits $\leqslant 690 \mathrm{~V}$ in AC-1
Selection guide for utilisation category AC-1 according to required electrical durability
Maximum rated operational current (open-mounted device)

CV1 contactors			Size		
			F	H	K
Maximum opera in operating cycl	ing rate es/hour		1200	1200	1200
Connections					
Cable	C.s.a.	mm^{2}	25	185	-
Bars	Number		-	-	2
	C.s.a.	mm	-	-	40×5
$\leqslant 40^{\circ} \mathrm{C}$		A	80	300	630
$\leqslant 55^{\circ} \mathrm{C}$		A	80	300	600
$\leqslant 70^{\circ} \mathrm{C}$		A	80	300	550

Increase in operational current by paralleling of poles
Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

■ 2 poles in parallel: $K=1.6$
■ 3 poles in parallel: $K=2.25$
■ 4 poles in parallel: $\mathrm{K}=2.8$.

Example: 2 poles in parallel.

$$
\text { Electrical durability (Ue } \leqslant 440 \mathrm{~V} \text {) }
$$

CV1BK

LA1BN32A

Resistive circuits control $\leqslant 690$ V in AC-1
Selection of contactor size for utilisation category AC-1
Maximum possibilities of the contactor, new design (size F to H)

For another combination, please contact us.
Maximum possibilities of the standard contactor (size K)

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LADN01, LADN10, LAD6K and LAD8N).

- Size K, up to 5 instantaneous contacts and 1 time delay contact.

Electromagnet and coil(s)

- For direct a.c. control
- For direct d.c. control
- For a.c. or d.c. control via economy resistor
(accessories: economy resistor + contact, rectifier).
Auxiliary contact blocks per contactor

Contact type	Composition		Control circuit			Reference	Weight
		4	direct	direct	~ or - with economy resistor		
Contactor - Size F-H-K							
Instantaneous	3	2	1	1	1	LA1BN32	0.060
Time delay							
On-delay	1	1	1	1	1	LADT• ${ }^{(1)}$	0.060
Off-delay	1	1	1	1	1	LADR• ${ }^{(1)}$	0.060

(1) Choose additives $L A D T \bullet$ and $L A D R \bullet$ from the TeSys D range.

TeSys CV3B, LC1B Variable composition contactors - Use in category AC-1

Selection guide

CV3B and LC1B for control of resistive circuits $\leqslant 1000 \mathrm{~V}$ in AC-1
Selection guide for utilisation category AC-1
according to required electrical durability
Maximum rated operational current (open-mounted device)
CV3 and LC1B
Maximum operating rate
Size

F	H	L	M	P	R
1200	1200	120	120	120	120

in operating cycles/hour
Connections

	Cable	C.s.a.	$\mathbf{m m}^{2} \mathbf{2 5}$	120	-	-	-	-
Bars	Number		-	-	2	2	3	3
	C.s.a.	$\mathbf{m m}$	-	-	50×5	80×5	100×5	100×10
$\leqslant 40^{\circ} \mathrm{C}$		A	80	250	800	1250	2000	2750
$\leqslant 55^{\circ} \mathrm{C}$		A	80	250	700	1100	1750	2400
$\leqslant 70^{\circ} \mathrm{C}$		A	80	250	600	900	1500	2000

Increase in operational current by paralleling of poles
Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

■ 2 poles in parallel: $K=1.6$

- 3 poles in parallel: $K=2.25$
- 4 poles in parallel: $K=2.8$.

Example: 2 poles in parallel.
Electrical durability (Ue $\leqslant 440$ V)

CV3BF

LA1BN32A

ZC4GM1

Resistive circuits control $\leqslant 1000 \mathrm{~V}$ in AC-1

Selection of contactor size for utilisation category AC-1

Maximum possibilities of the contactor
CV3B contactors are characterised by their extensive composition alternatives:
\square Poles ${ }^{(1)}$

Size $\mathbf{F}-\mathbf{H}$ N/O poles	
0	N/C poles
1	1
1	0
2	1
2	0
3	1
4	0

Size $\mathbf{L}-\mathbf{M}-\mathbf{P} \mathbf{- R}$	
N/O poles	\mathbf{N} / \mathbf{C} poles
1	0
2	0
3	0
4	0

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LAD6K, LADN01, LADN10 and LAD8N).
■ Size L, up to 5 instantaneous contacts and 1 time delay contact.
Electromagnet and coil(s)

- For direct a.c. control
- For direct d.c. control
- For a.c. or d.c. control via economy resistor
(accessories: economy resistor + contact, rectifier).

(1) For possible compositions, see page 36.
(2) Choose additives $L A D T \bullet$ and $L A D R \bullet$ from the TeSys D range.

CV1B for motor control $\leqslant 690$ V in AC-2 and AC-4

Selection guide for utilisation categories AC-2 and AC-4 according to required electrical durability

Maximum current broken in A

Related to maximum operating rate (operating cycles/hour) and on-load factor

CV1B contactors ${ }^{(1)}$		Size		
		F	H	K
Operating cycles/hour ${ }^{(2)}$ and on-load factor	Thermal limit zone	Maximum current broken in A		
From 150 and 15% to 300 and 10 \%	A	165	520	1300
From 150 and 20 \% to 600 and 10%	B	145	460	1150
From 150 and 30% to 1200 and 10 \%	C	120	380	950
From 150 and 55% to 1200 and 20 \%	D	90	280	700
From 150 and 85 \% to 1200 and 35%	E	70	220	550

Counter current braking (plugging)
The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Example: contactor size selection

For an on-load factor of 17% at 180 operating cycles per hour, the above curve indicates zone B . If the maximum current broken is 200 A , the table above will lead to the selection of a size H contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1 million operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size K would be recommended.
(1) To obtain the complete reference of the contactor see the Symbol combination table on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.
(2) Do not exceed the maximum limit for the mechanical operating cycles.
(3) See curve at foot of page for thermal limit zone.

CV3B and LC1B for motor control $\leqslant 1000 \mathrm{~V}$ in AC-2 and AC-4

Selection guide for utilisation categories AC-2 and AC-4 according to required electrical durability

Thermal limits

Related to maximum operating rate (operating cycles/hour) and on-load factor							
Contactors CV3 ${ }^{(1)}$ and LC1B		Size					
		F	H	L	M	P	R
Operating cycles/hour ${ }^{(2)}$ and on-load factor	Thermal limit zone ${ }^{(3)}$	Maximum current broken depending on the duty Thermal limit at ambient temperature $\leqslant 55^{\circ} \mathrm{C}$					
From 150 and 15% to 300 and 10 \%	A	165	520	2250	3000	4500	5400
From 150 and 20 \% to 600 and 10 \%	B	145	460	2000	2400	3750	5000
From 150 and 30% to 1200 and 10%	C	120	380	1500	2000	3000	3600
From 150 and 55 \% to 1200 and 20 \%	D	90	280	1000	1500	2000	2500
From 150 and 85% to 1200 and 35%	E	70	220	750	1000	1500	1800

Counter current braking (plugging)

The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Example:

For an on-load factor of 17% at 180 operating cycles per hour, the above curve indicates zone B. If the maximum current broken is 90 A , the table above will lead to the selection of a size F contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1100000 operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size H would be recommended.

Electrical durability (Ue $\leqslant 690 \mathrm{~V}$)

Control of 3 phase asynchronous squirrel cage motors with "motor stalled" stop.
The current lc cut in AC-4 is $6 \times$ le. (le = rated current drawn by the motor).
Size

(1) To obtain the complete reference of the contactor see the Symbol combination table on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.
(2) Do not exceed the maximum limit for the mechanical operating cycles.
(3) See curve at the previous page for thermal limit zone.

CV1B for circuit control $\leqslant 1000$ V - DC-1 category

Selection guide for utilisation categorie DC-1
The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L / R
- the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant of the circuit $\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$ and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage (time constant of the circuit $\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$)

CV1B contactors ${ }^{(1)}$		Size		
		F	H	K
1 pole PN1	V	250	250	250
2 poles PN1 in series	V	500	500	500
1 pole PN3	V	-	-	500
2 poles PN3 in series	V	-	-	1000

Normal operation: Ue $\geqslant \mathrm{U}$ supply.

| Rated operational current in A at $\square \leqslant 40^{\circ} \mathrm{C}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| CV1B contactors | Size | | |
| | F | H | K |
| | 80 | 300 | 630 |

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel

The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor refer to page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

CV1B for circuit control $\leqslant 1000$ V - DC-1 category

Selection guide for utilisation categorie DC-1 according to required electrical durability

Power broken

Utilisation categories U broken Ibroken Pbroken
DC-1: Non inductive or slightly inductive loads Ue le Uex le

Electrical durability (time constant $\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken $\mathrm{x} \operatorname{l}$ broken.
The table gives the values of Uc and Ic for the various utilisation categories.

Two-pole switching (time constant L/R $\leqslant 1 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

CV3B, LC1B for circuit control $\leqslant 1500$ V - DC-1 category

Selection guide for utilisation categorie DC-1

The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L / R
the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant L/R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage

Operational voltage	500 V	1
1000 V	2	
1500 V	Please, consult us	

Normal operation: Ue $\geqslant \mathrm{U}$ supply.

Rated operational current in A at $\square \leqslant 40^{\circ} \mathrm{C}$

Contactor size CV3B ${ }^{(1)}$		CV3B and LC1B			
F	H	L	M	P	R
80	300	800	1000	1800	2500

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current

Increase in rated operational current by connecting 2 poles in parallel The equivalent operational current for 2 poles in parallel is equal to $2 \times$ le $\times 0.8$

(1) To obtain the complete reference of the contactor refer on page 37.

For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.
Selection guide for utilisation categorie DC-1 according to
required electrical durability

| Power broken | | | |
| :--- | :--- | :--- | :--- | :--- |
| Utilisation category | U broken | I broken | Pbroken |
| DC-1: Non inductive or slightly inductive loads | Ue | le | Uexle |

Electrical durability (time constant $\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$)
The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.
Power broken per pole (time constant $L / R \leqslant 1 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

CV1B for circuit control $\leqslant 850$ V - DC-3, DC-5 category

Selection guide for utilisation categories DC-3 and DC-5
The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
- the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant of the circuit $\mathrm{L} / \mathrm{R} \leqslant 15 \mathrm{~ms}$ and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side),

Number of poles to be connected in series according to the operational
voltage (time constant of the circuit $\mathbf{L} / \mathbf{R} \leqslant 15 \mathrm{~ms}$)

CV1 B contactors ${ }^{(1)}$		Size		
	F	H	K	
1 pole PN1	V	220	220	220
2 poles PN1 in series	V	440	440	440
1 pole PN3	V	-	-	440
2 poles PN3 in series	V	-	-	850

Normal operation: Ue $\geqslant \mathrm{U}$ supply.
With breaking during counter current braking (plugging): Ue $\geqslant 1.5 \mathrm{U}$ supply.

Rated operational current in A at $\square \leqslant 40^{\circ} \mathrm{C}$			
	Size		
CV1B contactors	F	H	K
	80	300	630

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel

The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor refer on page 37 For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

| Selection guide for utilisation categories DC-3 and DC-5 | | |
| :--- | :--- | :--- | :--- | :--- |
| according to required electrical durability | | |
| Power broken U broken Ibroken P broken
 Utilisation categories Ue 2.5 le Uex2.5 le
 DC-3: Shunt motors, reversing, inching Ue 2.5 le Uex2.5 le
 DC-5: Shunt motors, reversing, inching | | |

Electrical durability (time constant $\mathrm{L} / \mathrm{R} \leqslant 15 \mathrm{~ms}$)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.
Two-pole switching (time constant $L / R \leqslant 15 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

CV3B, LC1B for circuit control $\leqslant 1500$ V - DC-3, DC-5 category
Selection guide for utilisation categories DC-3 and DC-5
The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L / R
- the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant L / R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage and time constant L/R (in ms) of the circuit							
Time constant in ms		15	30	60	90	120	150
Operational voltage	125 V	1	1	1	2	2	2
	225 V	1	1	2	3	3	4
	330 V	1	2	3	3	4	-
	440 V	1	2	3	4	-	-
	850 V	2	3	4	-	-	-
	$\begin{aligned} & 1200 \text { V } \\ & \text { (consult us) } \end{aligned}$	3	4	-	-	-	-
	1500 V (consult us)	4	-	-	-	-	-

Normal operation: Ue \geqslant U supply.
With breaking during counter current braking (plugging): Ue $\geqslant 1.5 \mathrm{U}$ supply.

Rated operational current in A at $\square \leqslant 40^{\circ} \mathrm{C}$						
Contactor size CV3B ${ }^{(1)}$			CV3B and LC1B			
F	H	H	L	M	P	R
80	300	300	800	1000	1800	2500

Increase in rated operational current by connecting 2 poles in parallel
The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor refer on page 37 For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

Selection guide for utilisation categories DC-3 and DC-5 according to required electrical durability			
Power broken			
Utilisation category	U broken	I broken	P broken
DC-3: Shunt motors, reversing, inching	Ue	2.5 le	Uex2.5 le
DC-5: Series motors, reversing, inching	Ue	2.51 le	Uex 2.5 le

Electrical durability (time constant $\mathrm{L} / \mathrm{R} \leqslant 15 \mathrm{~ms}$)
The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.
Power broken per pole (time constant $L / R \leqslant 15 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Example: 30 kW motor, $500 \mathrm{~V}-70$ A in category $D C-3$: P broken $=U e \times 2.5 \mathrm{le}=500 \times 2.5 \times 70=$
86 kW or 43 kW per pole.
For a 2-pole size F contactor, the curve gives an electrical durability of 6×10^{5} operating cycles.

Electrical durability depending on the time constant

■ According to the time constant L/R.
■ $L / R \leqslant 15 \mathrm{~ms}$, read the number of operating cycles directly from the curves.

- $15<L / R \leqslant 30 \mathrm{~ms}$, the number of operating cycles is equal to the number read
from the curves $x \frac{15}{L / R}$.
■ L/R > 30 ms , please consult your Regional Sales Office.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

CV1B, CV3B, LC1B for rotor-starting motors

Selection guide for rotor circuits of slip-ring motors

In simple starting systems the contactors which short-circuit the rotor current are subjected to a static voltage, the value of which, decreasing with time, is lower the further away the contactors are located from the rotor terminals. As a result, the operational rotor voltage is deducted from the maximum operational voltage. In this way, it is possible to use contactors with a rated insulation voltage lower than the rotor voltage.

In this application, making and breaking are easy. The selection table below takes into account a ratio of 2 between the maximum rotor operational voltage (Uer) and the stator operational voltage (Ues). This ratio is proposed in starter standard IEC 60947-4.

With counter current braking, the rotor operational voltage will be equal to the insulation voltage.

In a system with slowdown or braking, the selection of the contactors concerned should, in addition, take into account the breaking conditions.

The use of magnetic blow-out contactors is recommended in the event of control by a manually operated master controller.

Multiplying factor for rotor voltage and current, depending on type of contactor connection

As far as the current flowing through a rotor circuit contactor is concerned, the short time rating should be taken into account (see pages 40 and 58) according to the starting time. Only the final rotor short-circuit contactor takes account of the continuous current.

Hoisting applications

For this type of application contactor selection is made according to the duty requirements, required durability, type of connection, etc.
Please consult your Regional Sales Office.

Other versions:
For rotor voltage above 3000 V ~, please consult your Regional Sales Office.

Contactors to use with excitation circuit control for synchronous machine (CRXB, CVXB, CWXB)

The proposed contactors are equiped with either latching solenoids (contactor CRXB) or consumption reduction device (contactor CVXB) Synchronous alternators must have their induction circuit DC powered to generate an output voltage. This power supply is delivered by a bridge rectifier fed itself by the alternator. Synchronous generators are used for the production of energy in power plants.

Magnetic latching contactors, CR1B

These contactors prevent unwanted opening of the poles in the event of a control circuit supply failure.
The holding-in of a contactor is often necessary so as to avoid on-load breaking (for example an excitation circuit).
Furthermore, the fact that no power is consumed by the coil when the contactor is latched leads to energy savings on a separate control circuit supply (particularly useful when using a battery supply). These contactors incorporate an electromagnet with a core made of non-aging magnetic steel and the coil supply can be d.c. or rectified a.c.
The contactor latches in the operated position following energisation of the electromagnetic coil and remains latched when the coil is de-energised, the contactor armature being held closed by remanent magnetism.
The contactor is unlatched by the application of a reversed polarity current, at a value less than the pull-in current, which neutralises the remanent magnetism. CR1 B contactors are available in all sizes from 80 to 2750 A.
The control supply can be d.c. or rectified a.c.
Please refer to our "Motor starter solutions - Control and protection components" catalogue.

Contactors for furnaces and induction heating applications

 (CE1-CS1, CE5-CE6, CS5-CS6)Induction heating covers all applications where metals (or a metal part) are heated in crucible or "channel" furnaces, or in dies, by the induction of a.c. currents at various frequencies.
There are several frequency ranges which, for industrial purposes, can be grouped as follows:

- 50 Hz to 400 Hz :
- industrial mains power frequencies from 50 to 250 Hz
\square intermediate frequencies of 350 Hz and 400 Hz .
■ Maximum operating limits for contactors (single-pole and 6-pole):
\square frequency range up to 500 Hz
- supply voltage up to 3000 V
- currents up to 2340 A.

Please refer to our "Contactors for furnaces and induction heating applications" catalogue.

Contactor for the grounding of supply rail tram (CV1BKS)

Designed for networks up to 1000 V DC (high closing capacity up to 43 kA) to ensure the grounding of the rail when it loses power.
But also under fault condition in the event that the rail remains supplied after the passage of the tram.
View the application form CV1BKS on the site: www.se.com

From assembly definition to contactor ordering

Contactor assembly definition
The criteria required to define the composition of a contactor are:

- the number of N/O and N/C power poles
- the current and power supply voltage
(note: on a d.c. supply, the time constant $\frac{L}{R}$ of the load must be known in order to define the number of poles to be wired in series to break the arc)
- the control circuit voltage
- the number of auxiliary contacts.

Contactor ordering - product reference composition
For all contactors:
■ configuration software "bar contactor soft-customer.xls"
Link for download: https://www.se.com/ww/en/product-range-download/667-tesys-b/\#/software-firmware-tab

- from order form page 136.

For contactors CV1BF/BH/BK, CV3BF/BH:
■ software or selection tables below.
Checking of contactor possible assemblies
CV1B and CV3B have some restrictions:

- in rated operational current (le) per power pole
- in number of N/O - N/C power poles
- in number of auxiliary contacts.

Please refer to tables below.

Rated operational current per poles - codes per contactor type				
Contactor	type	CV1BF CV3BF	CV1BH CV3BH	CV1BK
Rated operational current ${ }^{(1)}$	11 A	E	-	-
	13A	M	-	-
	20 A	N	-	-
	40 A	P	-	-
	50 A	Q	Q	-
	80 A	F	F	-
	125 A	-	R	1
	200 A	-	G	S
	250 A	-	-	H
	300 A	-	H	-
	320 A	-	-	-
	400 A	-	-	U
	470 A	-	-	-
	500 A	-	-	V
	630 A	-	-	K
	1000 A	-	-	-
	0 no magnetic blowing	Z	Z	Z

(1) Other rating: contact us.

CV1B contac	er	po				
Contactor type	CV1BF		CV1BH		CV1BK	
Pole type	N/O	N/C	N/O	N/C	N/O	N/C
Number of poles	5	0	4	0	4	0
	0	2	0	2	0	2
	2	1	2	1	2	1

CV3B contactors: maximum number of power poles

Contactor type	CV3BF		CV3BH	
Pole type	N/O	N/C	N/O	N/C
Number of poles	5	0	4	0
	0	2	0	2
	1	2	-	-
	3	1	2	1
CV1B/CV3B contactors: maximum number of auxiliary contacts				
Contactor type	CV1B		CV3B	
Pole type	N/O	N/C	N/O	N/C
	$4+1$ time delay if necessary			

Examples

■ Switching of single-phase capacitor: $400 \mathrm{~V}-80 \mathrm{~A}-1$ N/O main pole. $220 \mathrm{~V} / 50 \mathrm{~Hz}$.
control circuit voltage, 3 N/O and 2 N/C auxiliary contacts. Reference: CV1BF1F0ZM5A.
. Switching of d.c. heating circuits: $800 \mathrm{~V}-250 \mathrm{~A}-2$ N/O main poles - 48 V --.
control circuit, instantaneous auxiliary contact 1 N/O + 1 on-delay. Reference: CV3BH2H0ZEDA + LADT0, 2 or 4.

Other versions

To obtain a composition with more main poles or with more than 4 auxiliary contacts, please use order form CF 452, on page 136.

Product reference coding table											
			$\begin{aligned} & \text { © } \\ & \stackrel{y}{6} \\ & \text { 心 } \end{aligned}$	$\frac{\text { N }}{\mathbf{N}}$					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{x} \\ & \dot{x} \end{aligned}$
Type of contactor related to application											
$\sim 690 \mathrm{~V}$, -- $220 \mathrm{~V} / \mathrm{pole}$			CV1B								
$\sim 1000 \mathrm{~V}$, -- $440 \mathrm{~V} / \mathrm{pole}$			CV3B								
Contactor size AC-1/AC-3											
CV1: 80/80 A	CV3: 80			F*							
CV1: 300/250A	CV3: 30			H*							
Number of poles											
N/O poles	0 N/O				0						
	1 N/O				1						
	$2 \mathrm{~N} / \mathrm{O}$				2						
	$3 \mathrm{~N} / \mathrm{O}$				3						
	4 N/O				4						
N/C poles	$0 \mathrm{~N} / \mathrm{C}$						0				
	1 N/C						1				
Operational current (determines the blow-out coil size)											
CV1BF/CV3BF	CV1BH/CV3BH										
AC DC	AC	DC									
0 A breaking	0 A breaking					Z		Z			
0.9 A	0.7 A	1.05A				A		A			
$1.75 \mathrm{~A} \quad 1.9 \mathrm{~A}$	1.25A	1.95A				B		B			
3.6 A 4A	2.5 A	3.85 A				C		C			
$6.8 \mathrm{~A} \quad 7.6 \mathrm{~A}$	4.7 A	7.5A				D		D			
$11 \mathrm{~A} \quad 12 \mathrm{~A}$	8 A	12A				E		E			
$13 \mathrm{~A} \quad 14.5 \mathrm{~A}$	10A	15A				M		M			
20 A 22A	17 A	24 A				N		N			
$40 \mathrm{~A} \quad 45 \mathrm{~A}$						P		P			
50 A	60 A	90 A				Q		Q			
80 A 80A	80 A	120 A				F		F			
125A	130 A	190A				R		R			
200 A	200 A	200 A				G		G			
300 A	300 A	300 A				H		H			
Control circuit voltage											
24 V									B		
48 V									E		
110 V									F		
120 V									K		
127 V									G		
208 V									L		
220 V									M		
230 V									P		
240 V									U		
380 V									Q		
400 V									V		
Operating frequency											
50 Hz										5	
60 Hz										6	
$50 / 60 \mathrm{~Hz}$ (with rectifier + economy resistor)										7	
\#--										D	
--- with economy resistor										R	
Auxiliary contacts (LA1BN32 + additives (fitted as standard))											
Instantaneous	$3 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$										A

Instantaneous
$3 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$
To check whether the symbol combinations are possible, refer to the selection information and guide on page 36.
If in doubt, fill out order form CF 452, on page 136.

* Can use any additives in the range of contactors TeSys D except LA6DK, and LAD6K LAD8N.

Important information for use by Schneider Electric

To place an order in SAP GRC switch-LOGOS
Example: Order the contactor CV1BH2HCZM5A

- enter in the Reference product "CV1BH"

■ in the field "Technical text", specify "CV1BH2H02M5A".

TeSys CV1BK ordering process
Selection guide

Product reference coding table

		๗	$\stackrel{N}{\omega}$		2			-		$\stackrel{3}{4}$
Type of contactor related to application										
$\sim 690 \mathrm{~V}$, -- $220 \mathrm{~V} / \mathrm{pole}$		CV1B								
$\sim 1000 \mathrm{~V}$, -- $440 \mathrm{~V} / \mathrm{pole}$										
Contactor size AC-1/AC-3										
CV1: 630/460 A			K							
Number of poles										
N/O poles	$0 \mathrm{~N} / \mathrm{O}$			0						
	$1 \mathrm{~N} / \mathrm{O}$			1						
	$2 \mathrm{~N} / \mathrm{O}$			2						
zzzzzzzzzz	$3 \mathrm{~N} / \mathrm{O}$			3						
	$4 \mathrm{~N} / \mathrm{O}$			4						
$\overline{\mathrm{N} / \mathrm{C} \text { poles }}$	$0 \mathrm{~N} / \mathrm{C}$				0					
	$1 \mathrm{~N} / \mathrm{C}$				1					
	$2 \mathrm{~N} / \mathrm{C}$				2					
Type of poles										
$\sim 690 \mathrm{~V},-\mathrm{-} 220 \mathrm{~V} /$ pole	Type 1 pole (PN1)						1			
$\sim 1000 \mathrm{~V}$, -. $440 \mathrm{~V} / \mathrm{pole}$	Type 3 pole (PN3)						3			
Operational current (determines the blow-out coil size)										
0 A breaking				Z		Z				
150 A				1		1				
250A				S		S				
300 A				H		H				
400 A				U		U				
500 A				V		V				
630 A				K		K				
Control circuit voltage										
24 V								B		
48 V								E		
110 V								F		
120 V								K		
127 V								G		
208 V								L		
220 V								M		
230 V								P		
240 V								U		
380 V								Q		
400 V								V		
415 V								N		
440 V								R		
480 V								T		
500 V								S		
600 V								X		
Operating frequency										
50 Hz									5	
60 Hz									6	
$50 / 60 \mathrm{~Hz}$ (with rectifier + economy resistor)									7	
---									D	
--- with economy resistor									R	
Auxiliary contacts (LA1BN32 auxiliary contact block)										
3 N/O - instantaneous	1 aux. contact block									A
$2 \mathrm{~N} / \mathrm{C}$ - instantaneous	2 aux. contact blocks									B

To check whether the symbol combinations are possible, refer to the selection information and guide on page 36.
If in doubt, fill out order form CF 452, on page 136.

CV1B, CV3B, LC1B Characteristics

TeSys CV1B
Envir. \& pole characteristics 40
TeSys CV1B with a.c. or d.c control circuit 40
TeSys CV1B, CV3B with a.c. control circuit 42
Control circuit characteristics 42
TeSys CV1B, CV3B with d.c. control circuit. 44
TeSys CV1B size F to H for direct a.c. 46
Dimensions 46
TeSys CV1B size K for direct a.c. 47
TeSys CV1B size F to H for direct d.c. 48
TeSys CV1B size K for direct d.c. 49
TeSys CV1B, size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor 50
TeSys CV1B, size J to L, for rectified a.c. with economy resistor, d.c. with economy resistor 51
Schemes 52
TeSys CV1B for rectified a.c. with economy resistor, d.c. with economy resistor 52
Setting 53
TeSys CV1B installation, maintenance, setting 53
TeSys CV3B, LC1B
Envir. \& pole characteristics 58
TeSys CV3B, LC1B with a.c. or d.c control circuit. 58
Control circuit characteristics 60
TeSys CV3B, LC1B size L to R with a.c. or d.c control circuit with economy resistor 60
Dimensions 61
TeSys CV3B size F, H, for direct a.c 61
TeSys CV3B size F, H, for direct d.c 62
TeSys CV3B size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor 63
TeSys CV3B size L to R, LC1B 64
TeSys CV3B, LC1B Mechanical interlocking 65
Schemes 66
TeSys CV3B, LC1B Variable composition contactors 66
Setting 67
TeSys CV3B, LC1B installation, maintenance, setting 67

TeSys CV1B with a.c. or d.c control circuit

Envir. \& pole characteristics

CV1B with a.c. or d.c control circuit (envir. \& pole characteristics)

Characteristics

CV1B contactor size

Environment

Rated insulation voltage (Ui)	Conforming to IEC 60947-4	V	690
Conforming to standards			IEC 60947-4
Product certifications			Bureau veritas, Register of shipping (CEI), CSA
Degree of protection	Conforming to IEC 60529		IP00
Protective treatment			TC
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	-60...+80
	Operation	${ }^{\circ} \mathrm{C}$	-5...+55 (0.85...1.10 Un)
	Permissible for operation	${ }^{\circ} \mathrm{C}$	$-30 \ldots+70$ at Uc
Maximum operating altitude		m	2000
Operating positions			$\pm 23^{\circ}$ possible, in relation to normal vertical mounting plane
Shock and vibration resistance			4 gn for frequencies y $30 \mathrm{~Hz}, 2 \mathrm{gn}$ for frequencies $>30 \mathrm{~Hz}$

Pole characteristics in AC	
Rated operational current (le)	In AC-3, Ue $\leqslant 440 \mathrm{~V}, \square \leqslant 55^{\circ} \mathrm{C}$
	$\ln \mathrm{AC}-1, \mathrm{Ue} \leqslant 440 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$
Rated operational voltage (Ue)	Up to
Frequency limits of the operational current	Without derating
	Derating coefficient
Rated making capacity	$\cos \square=0.35$
Rated breaking capacity	$\cos \square=0.35 \quad 220 / 400 \mathrm{~V}$
	$415 / 440 \mathrm{~V}$
	500 V
	660/690 V
	1000 V
Power dissipated per pole for	AC-3
the above operational currents	AC-1

Pole characteristics in DC

Rated operational current (le)	DC-1, Ue $\leqslant 250 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$		A	80
	DC-1, Ue $\leqslant 500 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$		A	-
	DC-3, DC-5, Ue $\leqslant 220 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$		A	80
	DC-3, DC-5, Ue $\leqslant 440 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$		A	-
Rated operational voltage (Ue)	(L/R $\leqslant 1 \mathrm{~ms}$)		A	250
	(L/R $\leqslant 15 \mathrm{~ms}$)		A	220
Rated making capacity	(L/R $\leqslant 15 \mathrm{~ms}$)		A	160
Rated breaking capacity	(L/R $\leqslant 1 \mathrm{~ms}$)	Single-pole 250 V	A	320
		2 -pole 250 V	A	320
		2-pole 500 V	A	240
	(L/R $\leqslant 15 \mathrm{~ms}$)	Single-pole 220 V	A	320
		2 -pole 220 V	A	320
		2-pole 440 V	A	240
	(L/R $\leqslant 1 \mathrm{~ms}$)	Single-pole 500 V	A	-
		2 -pole 500 V	A	-
		2-pole 1000 V	A	-
	(L/R $\leqslant 15 \mathrm{~ms}$)	Single-pole 440 V	A	-
		2 -pole 440 V	A	-
		2-pole 850 V	A	-
Power dissipated per pole for the above operational currents	DC-1		W	9.6
	DC-3, DC-5		W	9.6

80
80
690
$50 / 60$
$100 \mathrm{~Hz}: 0.9-150 \mathrm{~Hz}: 0.8-250 \mathrm{~Hz}: 0.7-400 \mathrm{~Hz}: 0.5$
1000
900
800
800
320
-
7.6
9.6

the above operational currents

Number of poles

Conventional thermal current
Short time rating
From cold state,
with no current flowing
for previous 60 minutes
at $\theta \leqslant 40^{\circ} \mathrm{C}$

	For 10 min	A	13
Short-circuit protection by fuses	Ue $\leqslant 440 \mathrm{~V} \quad$ Type aM / type g1	A	80
Average impedance per pole	At lth and 50 Hz	m	1.5
Cabling Bar		mm x mm	
Cable with lug		nb \times mm ${ }^{2}$	1
Cable with connector		nbx mm ${ }^{2}$	2
Bolt diameter		mm	\varnothing
Tightening torque	Power circuit connections	N.m	9

250	460	460
300	630	630
690	609	1000
2500	4600	4600
2400	4200	4200
2200	4100	4100
2000	3800	4100
1800	3200	3800
-	-	3200
35	55	55
51	103	103
300	630	630
-	-	630
300	630	630
-	-	630
250	250	500
220	220	440
4000	6500	6500
1200	2500	2500
1200	2520	2520
900	1500	1500
1200	2500	2500
1200	2520	2520
900	1500	1500
-	-	2500
-	-	2520
-	-	2500
-	-	2500
-	-	2520
-	-	2500
51	103	103
51	103	103

300	630
2400	5000
2000	3600
1200	2260
1000	1900
600	1280
410	880
$315 / 400$	$630 / 800$
0.57	0.26
-	63×6
1×185	2×185
1×185	-
$\varnothing 10$	$\varnothing 12$
35	58

TeSys CV1B, CV3B with a.c. control circuit
Control circuit characteristics

CV1B, CV3B with a.c. control circuit
Characteristics

Note: coperating characteristics stated are for an inductive circuit, such as the coil of the contactor electromagnet. Cos \square inrush and sealed $=0.3$.
(1) Please consult us.
(2) The closing time " N / O " or opening time " N / C " are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

Characteristics			
Auxiliary contact characteristics			
Type of contacts			Auxiliary contact LA1BN32A (size F to H)
Rated operational voltage (Ue)	Up to	V	690
Conventional thermal current (Ith)	For ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	A	10
Short-circuit protection	Conforming to IEC 60947-5-1		gG fuse: 10 A
Rated making capacity	Conforming to \quad I rms IEC 60947-5-1	A	$\sim: 140,-\ldots: 250$
Tightening torque	Philips head $\mathrm{n}^{\circ} 2$ and $\varnothing 6$	N.m	1.2
Screw clamp connections	Flexible 1 conductor	mm^{2}	1... 4
	conductor without cable end	mm^{2}	1... 4
	Flexible 1 conductor	mm^{2}	1... 4
	conductor with 2 conductors cable end	mm^{2}	1...2.5
	Solid conductor 1 conductor	mm^{2}	1... 4
	without cable 2 conductors end	mm^{2}	1... 4
	Tightening torque	N.m	1.7
Mechanical durability In millions of operating cycles			1

Rated operational power of contacts in AC (conforming to IEC 60947-5-1)
a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet:
making current ($\cos \square 0.7$) $=10$ times the power broken ($\cos \square 0.4$).

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 5}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
1 million operating cycles	VA	60	120	$\mathbf{2 8 0}$	560	960	1050	1440
3 million operating cycles	VA	16	32	80	160	280	300	420
10 million operating cycles	VA	4	8	20	40	70	80	100

Rated operational power of contacts in DC
(conforming to IEC 60947-5-1)
d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the power.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
$\mathbf{1}$ million operating cycles	VA	120	90	75	68	61
3 million operating cycles	VA	70	50	38	33	28
10 million operating cycles	VA	25	18	14	12	10

TeSys CV1B, CV3B with d.c. control circuit
Control circuit characteristics

CV1B, CV3B with d.c control circuit

Characteristics

Control circuit characteristics

CV1B contactor size			F	H	K
Rated control circuit voltage (Uc)	Direct d.c. ${ }^{\text {V }}$		12... 500		
	d.c. with economy resistor	V	24...500		
Control voltage limits ($\theta \leqslant 55^{\circ} \mathrm{C}$ and at Uc)					
Operation		V	0.85...1.1 Uc		
Drop-out	Direct d.c.	V	0.1...0.65 Uc		
	d.c. with economy resistor	V	0.2...0.5 Uc		
Coil consumption					
Direct d.c.	Inrush and sealed	W	20... 27	42... 52	80... 105
d.c. with economy resistor	Inrush	W	95	200	300
	Sealed	W	6	13	6
Average operating time ${ }^{(1)}$					
Direct d.c.	Closing "N/O"	ms	130	160	250
	Opening " N / C "	ms	30	32	130
d.c. with economy resistor	Closing "N/O"	ms	40	35	75
	Opening " N / C "	ms	12	14	15
Mechanical durability at Uc Direct d.c. supply	In operatingcycles \quad* New design		5×10^{6}	5×10^{6}	-
			10×10^{6}	20×10^{6}	10×10^{6}
d.c. with economy resistor	In operating cycles		1.2×10^{6}	1.2×10^{6}	1.2×10^{6}
Maximum operating rate ($\theta \leqslant 55^{\circ} \mathrm{C}$)					
Direct d.c.	In operating cycles/hour		1200	1200	1200
d.c. with economy resistor	In operating cycles/hour		120	120	120

(1) The closing time "N/O" or opening time "N/C" are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

Characteristics			
Auxiliary contact characteristics (cont.)			
Type of contacts			Auxiliary contact LA1BN32A (size F to H)
Rated operational voltage (Ue)	Up to	V	690
Conventional thermal current (Ith)	For ambient temperature $\leqslant 60^{\circ} \mathrm{C}$	A	10
Short-circuit protection	Conforming to IEC 60947-5-1		gG fuse: 10 A
Rated making capacity	Conforming to I rms IEC 60947-5-1	A	~: 140, ---: 250
Tightening torque	Philips head $\mathrm{n}^{\circ} 2$ and $\varnothing 6$	N.m	1.2
Screw clamp connections	Flexible 1 conductor	mm^{2}	1... 4
	conductor without cable end	mm^{2}	1... 4
	Flexible 1 conductor	mm^{2}	1... 4
	conductor with 2 conductors cable end	mm^{2}	1... 2.5
	Solid conductor 1 conductor	mm^{2}	1... 4
	without cable 2 conductors end	mm^{2}	1... 4
	Tightening torque	N.m	1.7
Mechanical durability In millions of operating cycles			1

Rated operational power of contacts in AC (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet:
making current ($\cos \square 0.7$) $=10$ times the power broken ($\cos \square 0.4$).

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 5}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$	$\mathbf{6 0 0}$
1 million operating cycles	VA	60	120	$\mathbf{2 8 0}$	560	960	1050	1440
3 million operating cycles	VA	16	32	80	160	280	300	420
10 million operating cycles	VA	4	8	20	40	70	80	100

Rated operational power of contacts in DC

(conforming to IEC 60947-5-1)

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the power.

	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{4 4 0}$
$\mathbf{1}$ million operating cycles	VA	120	90	$\mathbf{7 5}$	68	61
3 million operating cycles	VA	70	50	38	33	28
10 million operating cycles	VA	25	18	14	12	10

TeSys CV1B size F to H for direct a.c.
Dimensions

CV1B size F to H for direct a.c.

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.

CV1B contactor size	Number of N/O poles	Number of N/C poles	Dimensions L ${ }^{(1)}$		a	a1
F	0	1	225	445	-	210
	1	0	225	445	-	210
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	345	445	-	330
$\overline{\mathrm{H}}$	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity						
CV1 B	380 V		500 V		600 V	
	X1	X2	X1	X2	X1	X2
F	50	80	60	100	80	120
H	70	100	80	120	100	150

Rating of contactor CV1 B	$\boldsymbol{\varnothing}$	$\mathbf{b}^{(2)(3)}$	$\mathbf{b 1}^{(2)}$	$\mathbf{c}^{(2)}$	$\mathbf{c 1}$	L1	\mathbf{N}	$\mathbf{P}^{(4)}$	\mathbf{Q}
F	M6	76	71	112	17	15	97	40	20
\mathbf{H}	M6	55	128	140	47	20	164	50	57

(1) Bar pre-drilled at 225-285-345-385-445.
(2) Where 2 dimensions are given, the first is for a contactor fitted with an EB1 electromagnet and the second, for a contactor fitted with an EC1 electromagnet.
(3) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}$ - size $\boldsymbol{L}, b=141 \mathrm{~mm}$.
(4) +20 mm if intermediate bearing fitted.

CV1B size K, for direct a.c.

Dimensions

Dimension a: position of electromagnet according to the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4GM auxiliary contact blocks in addition to the maintaining contact.

CV1B contactor size	\varnothing	$\mathbf{b}^{(1)(2)}$	b1 ${ }^{(1)}$	$C^{(1)}$	c1	L1	N	P ${ }^{(3)}$	Q	Q1 ${ }^{(3)}$
K	M12	141	214	215	45	30	237	100	71	74

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity						
CV1B	380 V		500 V		600 V	
	X1	X2	X1	X2	X1	X2
K PN1 pole	90	90	120	120	160	160
K PN3 pole	40	40	60	60	80	80

CV1B contactor size	Number of poles ${ }^{(4)}$		Number of LA1BN32 auxilliary contact module		
		Dimensions	0	1	2
K	$1 \mathrm{~N} / \mathrm{O}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{array}{\|l} 345 \\ 335 \\ \hline \end{array}$	$\begin{aligned} & 385 \\ & 375 \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \end{aligned}$
	$2 \mathrm{~N} / \mathrm{O}$	a	$\begin{aligned} & 445 \\ & 435 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$
	$3 \mathrm{~N} / \mathrm{O}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$
	$4 \mathrm{~N} / \mathrm{O}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 760 \\ 750 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 760 \\ 750 \\ \hline \end{array}$
	1 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 345 \\ & 335 \\ & \hline \end{aligned}$	$\begin{aligned} & 385 \\ & 375 \\ & \hline \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \\ & \hline \end{aligned}$
	2 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \\ & \hline \end{aligned}$

(1) Where 2 dimensions are given, the first is for a contactor fitted with an EB1 electromagnet and the second, for a contactor fitted with an EC1 electromagnet.
(2) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}$ - size $\boldsymbol{G}, b=84 \mathrm{~mm}$ - size $\mathbf{L}, b=141 \mathrm{~mm}$.
(3) +20 mm if intermediate bearing fitted.
(4) N/O poles (Normally Open), N/C poles (Normally Closed).

TeSys CV1B size F to H for direct d.c.
Dimensions

CV1B size F to H , for direct d.c.

Dimensions

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.

CV1B contactor size	Number of N/O poles	Number of N/C poles	Dimensions L ${ }^{(1)}$		a	a1
F	0	1	225	445	-	210
	1	0	225	445	-	210
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	345	445	-	330
$\overline{\mathrm{H}}$	0	1	345	540	281	-
	1	0	345	540	281	-
	1	1	385	540	350	-
	2	0	385	540	350	-
	2	1	445	540	425	-
	3	0	445	540	425	-
	4	0	540	540	500	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1B	380 V		500 V		600 V	
	X1	X2	X1	X2	X1	X2
F	50	80	60	100	80	120
H	70	100	80	120	100	150

CV1B contactor size	\varnothing	$\mathbf{b}^{(2)}$	b1	\mathbf{c}	$\mathbf{c 1}$	L1	\mathbf{N}	$\mathbf{P}^{(3)}$	\mathbf{Q}
\mathbf{F}	M6	78	92	142	17	20	97	40	40
\mathbf{H}	M6	56	154	140	47	20	164	75	57

[^1]
CV1B size K, for direct d.c.

Dimensions

CV1B contactor size	\varnothing	$b^{(1)}$	b1	c	c1	L1	N	$\mathbf{P}^{(2)}$	Q	Q1 ${ }^{(2)}$
K	M12	141	214	215	45	30	237	100	71	74

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1B contactor size	Number of poles ${ }^{(3)}$	Dimensions	Number of LA1BN32 auxilliary contact module		
			0	1	2
K	1 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 345 \\ & 321 \end{aligned}$	$\begin{array}{\|l\|} 385 \\ 361 \\ \hline \end{array}$	$\begin{aligned} & 385 \\ & 361 \\ & \hline \end{aligned}$
	2 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 445 \\ & 421 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 540 \\ 517 \end{array}$	$\begin{array}{\|l\|} \hline 540 \\ 517 \\ \hline \end{array}$
	3 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 540 \\ & 517 \end{aligned}$	$\begin{array}{\|l\|} \hline 635 \\ 611 \end{array}$	$\begin{array}{\|l} 635 \\ 611 \\ \hline \end{array}$
	4 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 635 \\ & 611 \end{aligned}$	$\begin{array}{\|l\|} \hline 760 \\ 736 \\ \hline \end{array}$	$\begin{aligned} & 760 \\ & 736 \\ & \hline \end{aligned}$
	1 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 345 \\ & 321 \end{aligned}$	$\begin{array}{\|l\|} \hline 385 \\ 361 \\ \hline \end{array}$	$\begin{array}{\|l} 385 \\ 361 \\ \hline \end{array}$
	2 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 445 \\ & 421 \end{aligned}$	$\begin{array}{\|l\|} \hline 540 \\ 517 \end{array}$	$\begin{array}{\|l\|l\|} \hline 540 \\ 517 \end{array}$

[^2]TeSys CV1B, size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor

Dimensions

CV1B, size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor

Dimensions

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.
No maintaining contact for this version.
The economy resistor and N/C contact (included in the dimensions) are mounted on the contactor and wired in parallel.

CV1B contactor size	Number of N/O poles	Number of N/C poles	Dime L ${ }^{(1)}$ min	ions max	a	a1
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	385	445	-	370
H	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1 B	$\begin{aligned} & 380 \mathrm{~V} \\ & \mathrm{X} 1 \end{aligned}$	X2		$500 \mathrm{~V}$			600 V X 1	X	
F	50	80		60	100		80	120	
H	70	100		80	120		100	150	
CV1B contactor size	\varnothing	$b^{(2)}$	b1	c	c1	L1	N	$\mathbf{P}^{(3)}$	Q
F	M6	76	72	112	17	15	97	40	20
H	M6	65	128	140	47	20	164	75	57

[^3]CV1B, size J to L, for rectified a.c. with economy resistor, d.c. with economy resistor

CV1B contactor size	\varnothing	$\mathrm{b}^{(1)}$	b1	c	c1	L1	N	$\mathbf{P}^{(2)}$	Q	Q1 ${ }^{(2)}$
K	M12	141	214	215	45	30	237	100	71	74

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity						
CV1B	380 V		500 V		600 V	
	X1	X2	X1	X2	X1	X2
K PN1 pole	90	90	120	120	160	160
K PN3 pole	40	40	60	60	80	80

CV1B contactor size	Number of poles ${ }^{(3)}$	Dimensions	Number of LA1BN32 auxilliary contact module		
K	1 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 345 \\ & 335 \end{aligned}$	$\begin{aligned} & 385 \\ & 375 \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \end{aligned}$
	2 N/O	$\begin{aligned} & \bar{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$	$\begin{aligned} & 540 \\ & 531 \end{aligned}$
	3 N/O	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 540 \\ 531 \\ \hline \end{array}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$
	$4 \mathrm{~N} / \mathrm{O}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & 635 \\ & 625 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 760 \\ 750 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 760 \\ 750 \\ \hline \end{array}$
	1 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 345 \\ & 335 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 385 \\ 375 \end{array}$	$\begin{array}{\|l\|} \hline 445 \\ 435 \end{array}$
	2 N/C	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & 445 \\ & 435 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 540 \\ 531 \end{array}$	$\begin{array}{\|l\|} \hline 540 \\ 531 \end{array}$

[^4]TeSys CV1B for rectified a.c. with economy resistor,
d.c. with economy resistor

Schemes

Sirect a.c. control circuit supply (scheme a)

Direct d.c. control circuit supply (scheme b)

3-wire control

Dotted lines show optional wiring and external items required.

a.c. control circuit supply via rectifier and economy resistor

(1) Optional protection relay. Must be latching type for 2-wire control.
(2) Rr: economy resistor.
d.c. control circuit supply via rectifier and economy resistor

It is essential to check that the control circuit contacts have ratings compatible with the voltage and power consumption of the operating coil of the contactor. If not, an intermediate "KA" auxiliary relay must be fitted and wired as shown.
(1) Rr: economy resistor.

Installation and maintenance of CV1B contactors

Fixing
In general, bar mounted contactors are fixed on 2 vertical uprights.

The fixing dimensions of the support bars are standardised as is the diameter of the fixing holes.

At each end of each bar there is a cut-out with notches, one vertical, the other horizontal.

For contactors:

- CV1BK.

The use of LA9B103 bar mounting brackets is recommended, see page 74 .

Tightening

In order to obtain good mechanical resistance to vibration, we recommend that the bar be fixed directly to the 2 uprights using screws of diameter recommended for the contactor size.

Maintenance

Bar mounted contactors require no special mechanical maintenance.
We recommend a periodic check of the main contacts.
Contacts which have performed numerous breaks may look as if they are worn. It is only by checking the compression gap that the degree of wear can be evaluated.

Never make adjustments to the compression gap before the contacts are replaced.
When the compression gap has reduced to 20-50 \% of its initial value, replace all of the contactor's contacts

After each change of contacts:

- Align the contacts to the initial compression dimension.
- Check the contact pressure of each contact (contactor closed electrically or wedged mechanically).
■ Clean the inner side walls of the arc chambers by scraping.
■ Check tightness of the adjustment screws and nuts.
Note: $\$ the contacts must never be filed, cleaned or greased.

Replacement parts

- Please see pages 76 to 101.

Setting characteristics

■ Please see page 54 .

TeSys CV1B installation, maintenance, setting

Electromagnet for d.c. supply
Electromagnet EK1
Setting closing travel (E) and compression gap (e)

Setting characteristics of N/C poles

These characteristics apply to all forms of electromagnet power supply.

CV1 contactor size		F	G	H	J	K	L
Opening stroke (b)	mm	4	6	6	7.5	7.5	7.5
Contact pressure force (F)	daN	0.6	0.7	1	1.6	4	8

[^5]| Setting characteristics of contactors CV1B, sizes F to L on a.c. supply | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct a.c. $50 / 60 \mathrm{~Hz}$ supply with standard power electromagnet EB1 | | | | | | | | |
| CV1B contactor size | | | F | G | H | J | K | L |
| Electromagnet | | | EB1EA40 | EB1GA40 | EB1HA40 | EB1JB40 | EB1KB40 | EB1KB40 |
| Armature closing travel (E) | | mm | 15 ± 1 | 16 ± 1 | 21 ± 1 | 21/24 | 28/33 | 28/33 |
| Compression travel (e) | | mm | 5/5.5 | 5.5/6 | 6.5/7 | 6/7 | 8/9 | 8.5/9 |
| Coil | | WB1EA・ャ๑ WB1GA・ャ๑ | | | WB1HA••• | WB1JB••• | WB1KB••• | WB1KB••• |
| Pull-in voltage | | V | 0.8 Uc | | | | | |
| Drop-out voltage | | V | 0.5...0.7 Uc | | | | | |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | 3 | 4.5 | 7 | 10.5 | 20 | $20^{(1)}$ |
| | 2 poles | daN | 1.5 | 2.2 | 3.5 | 5.2 | 10 | $10^{(1)}$ |
| | 3 poles | daN | 1 | 1.5 | 2.3 | 3.5 | 6.6 | - |
| | 4 poles | daN | 0.75 | 1.1 | 1.7 | 2.6 | 5 | - |
| Direct a.c. $50 / 60 \mathrm{~Hz}$ supply with increased power electromagnet EC1 | | | | | | | | |
| CV1B contactor size | | | F | G | H | J | K | L |
| Electromagnet Armature closing travel (E) | | mm | EC1EA40 | EC1GA40 | EC1HA40 | EC1JB40 | - | - |
| | | 16 ± 1 | 21 ± 1 | 21/24 | 28/33 | - | - |
| Compression travel (e) | | | mm | 5.5/6 | 6.5/7 | 6/7 | 8/9 | - | - |
| Pull-in voltage | | V | WB1GA $\bullet \bullet \bullet$ | WB1HA••• | WB1JB••๑ | WB1KB••• | - | - |
| | | 0.8 Uc | - | - |
| Drop-out voltage | | | V | 0.5...0.7 Uc | | | | - | - |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | 2.2 | 3 | - | - | - | - |
| | 2 poles | daN | 1.5 | 2 | - | - | - | - |
| | 3 poles | daN | 1 | 1.5 | 2.6 | 5 | - | - |
| | 4 poles | daN | 0.8 | 1.2 | 2.1 | 4 | - | - |
| a.c. $40 / 400 \mathrm{~Hz}$ supply via individual rectifier and economy resistor | | | | | | | | |
| CV1B contactor size | | | F | G | H | J | K | L |
| Electromagnet | | | EB1EA40 | EB1GA40 | EB1HA40 | EB5JB40 | EB5KB40 | EB5KB40 |
| Armature closing travel (E) | | mm | 15 ± 1 | 16 ± 1 | 21 ± 1 | 21/24 | 28/33 | 28/33 |
| Compression travel (e) | | mm | 5/5.5 | 5.5/6 | 6.5/7 | 6/7 | 8/9 | 8/9 |
| Coil Pull-in voltage | | V | WB1 EA••• | WB1GA••• | WB1HA $\bullet \bullet$ | WB1JB••๑ | WB1KB••• | WB1KB••• |
| | | $0.73 \pm 0.02 \mathrm{Uc}$ |
| Drop-out voltage | | | V | 0.2...0.52 Uc | | | | | |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | 3 | 4.5 | 7 | 10.5 | 20 | $20^{(1)}$ |
| | 2 poles | daN | 1.5 | 2.2 | 3.5 | 5.2 | 10 | $10^{(1)}$ |
| | 3 poles | daN | 1 | 1.5 | 2.3 | 3.5 | 6.6 | $13^{(1)}$ |
| | 4 poles | daN | 0.75 | 1.1 | 1.7 | 2.6 | 5 | $10^{(1)}$ |
| | 5 poles | daN | 0.75 | 1 | - | - | - | - |

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.

TeSys CV1B installation, maintenance, setting

Setting

[^6](2) If = current flowing through the 2 coils, at ambient temperature, after switch-on at Uc.

TeSys CV3B, LC1B with a.c. or d.c control circuit

Envir. \& pole characteristics

CV3B, LC1B with a.c. or d.c control circuit
Characteristics

Contactor	Type		CV3B	
	Size		F	H
Environment				
Rated insulation voltage (Ui)	$\begin{aligned} & \text { Conforming to } \sim \\ & \text { IEC 60947-4 }= \end{aligned}$	V	1000	1000
		V	1000	1000
Conforming to standards			IEC 60947-4	
Product certifications			Bureau veritas, CSA	
Degree of protection	Conforming to IEC 60529		IP00	
Protective treatment			TC	
Ambient air temperature around the device	Storage	${ }^{\circ} \mathrm{C}$	-60...+80	
	Operation	${ }^{\circ} \mathrm{C}$	$-5 \ldots+55$ (0.85...1.1 Un)	
	Permissible for operation at Uc	${ }^{\circ} \mathrm{C}$	$-30 \ldots+70$ at Uc	
Maximum operating altitude		m	2000	
Operating positions				$\pm 23^{\circ}$ possible, in relation to normal vertical mounting plane
Pole characteristics in AC			Pole PA3	
Rated operational current (le)	AC-3, Ue $\leqslant 440 \mathrm{~V}, \square \leqslant 55^{\circ} \mathrm{C}$	A	80	250
	AC-1, Ue $\leqslant 440 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$	A	80	300
Rated operational voltage (Ue)	Up to	V	1000	1000
Frequency limits of the operational current	Without derating	Hz	50/60	
	Derating coefficient	Hz	$100 \mathrm{~Hz}: 0.9-150 \mathrm{~Hz}: 0.8-250 \mathrm{~Hz}: 0.7-400 \mathrm{~Hz}: 0.5$	
Rated making capacity	$\cos \square=0.35$	A	1000	2500
Rated breaking capacity on ~ supply ($\cos \square=0.35$) I rms conforming to IEC 60947-4-1	$\cos \square=0.35$ up to 440 V $\frac{500 \mathrm{~V}}{660 / 690 \mathrm{~V}}$ $\frac{1000 \mathrm{~V}}{}$	A	900	2200
		A	900	2200
		A	800	2100
		A	700	2000
Power dissipation per pole for the above operational currents	AC-3	W	9.6	35
	AC-1	W	9.6	51
Pole characteristics in DC			Pole PA3	
Rated operational current (le)	DC-1, Ue $\leqslant 500 \mathrm{~V}, \square \leqslant 40^{\circ} \mathrm{C}$	A	80	300
	$\begin{aligned} & \mathrm{DC}-3 \text { to } \mathrm{DC}-5, \mathrm{Ue} \leqslant 440 \mathrm{~V}, \mathrm{~T} \\ & \leqslant 40^{\circ} \mathrm{C} \end{aligned}$	A		300
Rated operational voltage (Ue)	$\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$		500	500
	L/R $\leqslant 15 \mathrm{~ms}$		440	440
Rated making capacity	L/R $\leqslant 15 \mathrm{~ms}$	A	1400	3500
Rated breaking capacity	$L / R \leqslant 1 \mathrm{~ms}$ Single-pole-500 V	A	1000	3000
	2-pole-500 V	A	1000	3000
	2-pole-1000 V	A	1000	3000
	L/R $\leqslant 15 \mathrm{~ms}$ Single-pole-440 V	A	1000	3000
	2-pole-440 V	A	1000	3000
	2-pole-850 V	A	1000	3000
Power dissipation per pole for the above operational currents	In DC-1	W	9.6	35
	From DC-3 to DC-5	W	9.6	35
General pole characteristics			Pole PA3	
Number of poles			1... 4	
Conventional thermal current	$\square \leqslant 40^{\circ} \mathrm{C}$	A	80	300
Short time rating From cold state, with no current flowing for previous 60 minutes at $\square \leqslant 40^{\circ} \mathrm{C}$	For 1 s	A	800	2400
	For 5s	A	640	2300
	For 10 s	A	640	2280
	For 30 s	A	380	1300
	For 1 min	A	320	1100
	For 3 min	A	200	680
	For 10 min	A	130	440
Short-circuit protection by fuse	Ue $\leqslant 440$ V Type aM / typeg1	A	80/125	250/315
Average impedance per pole	At lth and 50 Hz	m	1.5	0.57
Cabling	Number of bars or conductor		1	1
	Bar	mm	-	32×4
	Cable with lug	mm^{2}	25	120
	Cable with connector	mm^{2}	-	-
	Bolt diameter	mm	$\varnothing 6$	$\varnothing 10$
Tightening torque	Power circuit connections	N.m	9	35

Bureau veritas, Register of shipping (CEI), German Lloyd

TeSys CV3B, LC1B size L to R with a.c. or d.c control circuit
 with economy resistor

Control circuit characteristics

CV3B L to R, LC1B with a.c. or d.c control circuit (with economy resistor)

Characteristics									
CV3B and LC1B contactors sizes				L	M		P		R
Control circuit characteristics									
Rated control circuit voltage (Uc)	d.c. with economy resistor		V	48... 500 on 3-pole contactor 60... 500 on 4 -pole contactor					
	a.c. with economy resistor		V	110... 500					
Control voltage limits ($\square \leqslant 55^{\circ} \mathrm{C}$ and at Uc)	Operation		V	0.85...1.1 Uc					
	Drop-out		V	0.3...0.5 Uc			0.35	5 Uc	0.4...0.5 Uc
Maximum consumption (coil + economy resistor) d.c. with economy resistor ${ }^{(1)}$	Composition	1 pole	W	Inrush: 520-Sealed: 10					
		2 poles	W	Inrush: 800 - Sealed: 20					
		3 poles	W	Inrush: 1100 - Sealed: 31					
		4 poles	W	Inrush: 1400 - Sealed: 47					
a.c. with economy resistor	Composition	1 pole	VA	Inrush: 620 - Sealed: 10					
		2 poles	VA	Inrush: 1000 -Sealed: 20					
		3 poles	VA	Inrush: 1100 - Sealed: 31					
		4 poles	VA	Inrush: 1600 - Sealed: 47					
Average operating time at Uc ${ }^{(1)}$	Closing "N/O"		ms	100... 150					
	Opening "N/C"		ms	20... 40					
Mechanical durability at Uc	In operating cycles			$1,2 \times 10^{6}$					
Maximum operating rate $\left(\square \leqslant 55^{\circ} \mathrm{C}\right)$	In operating cycles/hour			120					
Auxiliary contact characteristics									
Type of contacts				Instantaneous ZC4GM					
Rated thermal current (lth)			A	20					
Operational power a.c.	1×10^{6} operating cycles		V	48 110/127		220/240		380/415	440/500
			W	900	2200	4000		4000	4000
	3×10^{6} operating cycles		W	800	1300	1500		1500	1500
	10×10^{6} operating cycles		W	450	500	500		500	500
Occasional making and breaking capacity a.c.			W	5000	14000	23000		35000	45000
Operational power d.c.	1×10^{6} operating cycles		V	$24 \quad 48$		110	220	440	600
			W	300	280	250	250	230	100
	3×10^{6} operating cycles		W	115	105	95	90	85	50
	10×10^{6} operating cycles		W	45	40	35	33	30	20
Occasional making and breaking capacity d.c.			W	5000	6000	1600	800	400	240
Cabling	With cable end		mm^{2}	1 or $2 \times 4 \mathrm{~mm}^{2}$ conductors					
	Without cable end		mm^{2}	1 or $2 \times 6 \mathrm{~mm}^{2}$ conductors					
Tightening torque			N.m	1.2					

[^7]CV3B size F , H , for direct a.c.

Dimensions

Sizes F, H

Dimension L: fixing centres depending on the number of N/O or N/C main poles.

CV3B contactor size	Number of N/O poles	Number of N/C poles	Dim L min	ions max	a	a1
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
H	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

CV3B contactor size									Minimum electrical clearance	
	\varnothing	b	b1	c	c1	L1	P	Q	X1	X2
F	M6	76	120	15	157	15	50	46	25	15
H	M6	62	188	52	176	20	60	57	60	55

TeSys CV3B size F, H, for direct d.c.
Dimensions

CV3B size F, H, for direct d.c.
Dimensions

Dimension L: fixing centres depending on the number of N/O or N/C main poles.

CV3B contactor size	Number of N/O poles	Number of N/C poles	Dimensions L		a	a1
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
$\overline{\mathrm{H}}$	0	1	345	540	284	-
	1	0	345	540	284	-
	1	1	385	540	353	-
	2	0	385	540	353	-
	2	1	445	540	428	-
	3	0	445	540	428	-
	4	0	540	540	503	-

CV3B contactor size									Minimum electrical clearance	
	\varnothing	b	b1	c	c1	L1	P	Q	X1	X2
F	M6	78	120	15	157	20	50	48	25	15
H	M6	62	188	52	176	20	60	57	60	55

CV3B size F, H, for rectified a.c. with economy resistor,
d.c. with economy resistor

Dimensions

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4 GM auxiliary contact blocks in addition to the maintaining contact.

CV3B contactor size	Number of N/O poles	Number of N/C poles	Dim L min	ions max	a	a1
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
H	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

CV3B contactor size									Minimum electrical clearance	
	\varnothing	b	b1	c	c1	L1	P	Q	X1	X2
F	M6	75	120	17	149	15	50	48	25	153
H	M10	62	188	52	176	20	60	57	60	55

TeSys CV3B size L to R, LC1B
Dimensions

CV3B size L to R, LC1B

CV3B and LC1B contactor size	L				M				P				R			
Number of poles ${ }^{(1)}$	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
a	50	50	50	50	63	63	63	63	100	100	100	100	125	125	125	125
b	59	59	59	59	55	55	55	55	55	55	55	55	50	50	50	50
c	16	16	16	16	20	20	20	20	20	20	20	20	25	25	25	25
L	345	445	540	760	345	445	540	760	385	540	760	1065	445	635	885	1065
M	285	385	480	-	285	385	480	-	325	480	700	-	385	575	825	-
M1	-	-	-	308	-	-	-	308	-	-	-	455	-	-	-	455
M2	-	-	-	392	-	-	-	392	-	-	-	550	-	-	-	550
N	121	121	121	121	125	125	125	125	125	125	125	125	130	130	130	130
P	100	100	100	100	100	100	100	100	150	150	150	150	195	195	195	195
Q1	100	100	100	100	100	100	100	100	110	110	110	110	130	130	130	123
R	122	122	122	122	157	157	157	157	173	173	173	173	173	173	173	173
S	10	10	10	10	17	17	17	17	20	20	20	20	20	20	20	20
T	30	30	30	30	30	30	30	30	60	60	60	60	60	60	60	60
\emptyset	9	9	9	9	11	11	11	11	11	11	11	11	11	11	11	11

(1) N/O poles (Normally Open).

Minimum electrical clearance
Values X1 and X2 are given for a breaking capacity of $10 \ln$ (3-phase ~ current).

CV3B and LC1B contactor size		L	M	P	R
3 -phase ~ voltage					
380/440 V	X1	100	100	150	200
	X2	150	150	200	250
500 V	X1	100	100	150	200
	X2	150	150	220	250
660/690 V	X1	150	150	200	200
	X2	200	200	250	250
1000 V	X1	200	200	200	250
	X2	250	250	250	300

Mechanical interlocking
Mounting
Reversing contactor pairs LC1B and CV3B, Sizes L, M, P, R (for assembly by the user)

L : see dimensions.

$\begin{array}{l}\text { Contactor } \\ \text { rating }\end{array}$	Electromagnet	$\begin{array}{l}\text { Supply voltage } \\ \text { (in V) }\end{array}$	$\begin{array}{l}\text { Interaxis } \\ \text { (in mm) } \\ \text { CV1B (}\end{array}$
			690 V)

TeSys CV3B, LC1B Variable composition contactors
Schemes

Schemes

Direct a.c. control circuit supply (scheme a)

Direct d.c. control circuit supply (scheme b)

3-wire control

Dotted lines show optional wiring and external items required.

a.c. control circuit supply via rectifier and economy resistor

(1) Optional protection relay. Must be latching type for 2-wire control.
(2) Rr: economy resistor.

d.c. control circuit supply via rectifier and economy resistor

It is essential to check that the control circuit contacts have ratings compatible with the voltage and power consumption of the operating coil of the contactor If not, an intermediate "KA" auxiliary relay must be fitted and wired as shown.
(1) Rr: economy resistor

Installation and maintenance of CV3B and LC1B contactors

Fixing
In general, bar mounted contactors are fixed on 2 vertical uprights.
The fixing dimensions of the support bars are standardised as is the diameter of the fixing holes.

At each end of each bar there is a cut-out with notches, one vertical, the other horizontal.

For contactors:

- CV3B, sizes L to R
- LC1B

The use of LA9B103 bar mounting brackets is recommended, see page 74 .

Tightening

In order to obtain good mechanical resistance to vibration, we recommend that the bar be fixed directly to the 2 uprights using screws of diameter recommended for the contactor size.

Maintenance

Bar mounted contactors require no special mechanical maintenance.
We recommend a periodic check of the main contacts.
Contacts which have performed numerous breaks may look as if they are worn. It is only by checking the compression gap that the degree of wear can be evaluated.

Never make adjustments to the compression gap before the contacts are replaced.
When the compression gap has reduced to $20-50 \%$ of its initial value, replace all of the contactor's contacts.

After each change of contacts:

- Align the contacts to the initial compression dimension.
- Check the contact pressure of each contact (contactor closed electrically or wedged mechanically).
- Clean the inner side walls of the arc chambers by scraping.
- Check tightness of the adjustment screws and nuts.

Note: $\$ the contacts must never be filed, cleaned or greased.

Replacement parts
■ Please see pages 76 to 101 .
Setting characteristics

- Please see page 68.

TeSys CV3B, LC1B installation, maintenance, setting

Setting characteristics of contactors CV3B, sizes F to K
Electromagnet for a.c. supply

Electromagnet EB1

Setting closing travel (E) and compression gap (e)

Electromagnet for d.c. supply
Electromagnet EK1
Setting closing travel (E) and compression gap (e)

Setting characteristics of N/C poles

These characteristics apply to all forms of electromagnet power supply.

CV3 B contactor size					
Opening stroke (b)	mm	F	G	H	J - K No pole
Contact pressure force (F)	daN	0.6	0.7	1	Switch as standard (consult us)

[^8]| Setting characteristics of contactors CV3B, sizes F to K on a.c. supply | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct a.c. $50 / 60 \mathrm{~Hz}$ supply with standard power electromagnet EB1 | | | | | | | |
| CV3B contactor size | | | F | G | H | J | K |
| Electromagnet | | | EB1EA40 | EB1GA40 | EB1HA40 | EB1GA40 | EB1KA40 |
| Armature closing travel (E) | | mm | 15 ± 1 | 16 ± 1 | 21 ± 1 | 16 ± 1 | 21 ± 2 |
| Compression travel (e) | | mm | 5/5.5 | 5.5/6 | 6.5/7 | 5.5/6 | 6.5/7 |
| Coil Pull-in voltage | | | WB1EA••• | WB1GA••• | WB1HA••• | WB1GA••• | WB1HA••• |
| | | V | 0.8 Uc | | | | |
| Drop-out voltage | | V | 0.4...0.7 Uc | | | | |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | 3 | 4.5 | 7 | $4.4{ }^{(1)}$ | $7{ }^{(1)}$ |
| | 2 poles | daN | 1.5 | 2.2 | 3.5 | $2.2{ }^{(1)}$ | $3.4{ }^{(1)}$ |
| | 3 poles | daN | 1 | 1.5 | 2.3 | - | - |
| | 4 poles | daN | - | 1.1 | 1.7 | - | - |
| Direct a.c. $50 / 60 \mathrm{~Hz}$ supply with increased power electromagnet EC1 | | | | | | | |
| CV3B contactor size | | | F | G | H | J | K |
| Electromagnet | | | EC1EA40 | EC1GA40 | EC1HA40 | EC1GA40 | EC1HB40 |
| Armature closing travel (E) | | mm | 16 ± 1 | 21 ± 1 | 23 ± 1 | 21 ± 1 | 23 ± 1 |
| Compression travel (e) | | mm | 5.5/6 | 6.5/7 | 7 ± 0.3 | 6.5/7 | 7 ± 0.3 |
| Coil Pull-in voltage | | | WB1GA••• | WB1HA••• | WB1JB••ө | WB1HA $\bullet \bullet$ | WB1JB••๑ |
| | | V | 0.8 Uc | | | | |
| Drop-out voltage | | V | 0.25...0.7 Uc | | | | |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | - | - | - | $3{ }^{(1)}$ | $5.2{ }^{(1)}$ |
| | 2 poles | daN | 1.4 | 2 | - | $2.2{ }^{(1)}$ | $3.5{ }^{(1)}$ |
| | 3 poles | daN | 1.1 | 1.5 | 2.6 | - | - |
| | 4 poles | daN | 0.85 | 1.2 | 2.1 | - | - |
| a.c. $50 / 400 \mathrm{~Hz}$ supply via individual rectifier and economy resistor | | | | | | | |
| CV3 B contactor size | | | F | G | H | J | K |
| Electromagnet | | | EB1EA40 | EB1GA40 | EB1HA40 | EB1GA40 | EB1HA40 |
| Armature closing travel (E) | | mm | 15 ± 1 | 16 ± 1 | 21 ± 1 | 16 ± 1 | 21 ± 1 |
| Compression travel (e) | | mm | 5/5.5 | 5.5/6 | 6.5/7 | 5.5/6 | 6.5/7 |
| Coil Pull-in voltage | | | WB1EA••• | WB1GA••• | WB1HA••• | WB1GA••• | WB1HA $\bullet \bullet \bullet$ |
| | | V | $0.73 \pm 0.02 \mathrm{Uc}$ | | | | |
| Drop-out voltage | | V | | | | | |
| N/O poles Contact pressure setting (F) per pole according to the contactor composition | 1 pole | daN | | | | $4.4{ }^{(1)}$ | $7{ }^{(1)}$ |
| | 2 poles | daN | 1.5 | 2.2 | 3.5 | $2.2{ }^{(1)}$ | $3.4{ }^{(1)}$ |
| | 3 poles | daN | 1 | 1.5 | 2.3 | - | - |
| | 4 poles | daN | 0.75 | 1.1 | 1.7 | - | - |
| | 5 poles | daN | 0.75 | 1 | - | - | - |

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.

TeSys CV3B, LC1B installation, maintenance, setting
Setting

(1) $2 \times$ GB poles in parallel for size J and $2 \times H B$ poles in parallel for size K.
(2) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.
(3) If = current flowing through the 2 coils. at ambient temperature. after switch-on at Uc.

Setting characteristics on --- or ~ supply with economy resistor (and rectifier ~)							
CV3B or LC1B contactor size			L	M	P	R	
Electromagnet Armature closing travel (E)		mm	EB5KB50	EB5KB50	EB5KB50	EB5KB50	
		30 ± 2	30 ± 2	30 ± 2	30 ± 2		
Compression travel (e)			mm	10 ± 0.5	10 ± 0.5	10 ± 0.5	10 ± 0.5
Coil Pull-in voltage		V	WB1KB•••	WB1KB•••	WB1KB•••	WB1KB•••	
		$0.73 \pm 0.02 \mathrm{Uc}$					
Drop-out voltage			V	0.25...0.5 Uc	0.25...0.5 Uc	0.25...0.5 Uc	0.25...0.5 Uc
N/O poles Contact pressure setting (F) per pole according to the contactor composition	1 pole	daN	30 ± 3	30 ± 3	$30 \pm 3{ }^{\text {(1) }}$	$30 \pm 3^{(2)}$	
	2 poles	daN	30 ± 3	30 ± 3	$30 \pm 3{ }^{(1)}$	$30 \pm 3^{(2)}$	
	3 poles	daN	30 ± 3	30 ± 3	$30 \pm 3^{(1)}$	$30 \pm 3^{(2)}$	
	4 poles	daN	30 ± 3	30 ± 3	$30 \pm 3{ }^{(1)}$	$30 \pm 3^{(2)}$	

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.
(2) Each pole has 3 contacts; the force must be applied evenly to each of these contacts.

CV1B, CV3B, LC1B
 Accessories - Spare parts

Accessories - Spare parts 74
Mounting accessories for CV1B, CV3B, LC1B 74
Mechanical interlock for assembly of vertically mounted reversing CV1B, CV3B, LC1B contactor pairs 75
CV3B, LC1B - Spare parts 76
CV1B - Complete pre-assembled poles 78
CV1B, CV3B, LC1B - Complete pre-assembled electromagnets (without coil) 83
CV1B, CV3B - Electromagnets and direct a.c. coils 84
CV1B - Electromagnets and direct a.c. coils 88
CV1B, CV3B - Electromagnets and direct d.c. coils 89
CV1B - Electromagnets and direct d.c. coils 91
CV1B, CV3B - Electromagnets and d.c. coils with economy resistor - rectified a.c. coils with economy resistor. 92
CV1B - Electromagnets and d.c. coils with economy resistor - rectified a.c. coils with economy resistor. 97
LC1B - Single pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor 98
LC1B - 2-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor. 99
LC1B - 3-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor 100
LC1B - 4-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor 101

TeSys CV1B, CV3B, LC1B Variable composition contactors

Accessories - Spare parts

LA9B103

PN1GB81-PN1GB82

DZ6MZ•

Mounting accessories for CV1B, CV3B, LC1B
References

Mounting and cabling accessories					
Description		Contactors		Reference	Weight
		Type	Size		kg
Mounting plates with bar support block, 36 mm fixing centres 120 or 150 mm		LC1B and CV3B	L to R	LA9B103	1.650
Pole connecting links for cabling from the front	Top connection	CV1B and CV3 B	G	PN1GB81	0.130
		$\overline{\mathrm{CV} 1 B}$ and CV3B	H	PN1HB81	0.160
		CV1B	J	PN1JB81	0.250
		CV1B	K	PN1KB81	0.500
	Bottom connection	CV1B and CV3B	G	PN1GB82	0.100
		$\overline{C V 1 B}$ and CV3B	H	PN1HB82	0.110

Description	Specification	Length	Sold in lots of	Unit reference	Weight
		mm			kg
Pre-drilled, "Z" profile uprights suitable for building chassis for variable composition contactors	-	1020	-	DZ6MZ121	2.590
		1320	-	DZ6MZ151	3.350
		1420		DZ6MZ161	3.600
		1620		DZ6MZ181	4.110
		1820		DZ6MZ200	4.620
		1920	-	DZ6MZ211	4.870
Notched clamp nuts for fixing on pre-drilled "Z" profile uprights	M6	-	100	DZ5MF6	-
	M8	-	100	DZ5MF8	-
Square nuts	M10	-	10	DZ6MZ904	-

for fixing on
pre-drilled
Z" profile uprights

TeSys CV1B, CV3B, LC1B Variable composition contactors Accessories - Spare parts

EZ2LB0602

EZ2LB0601

References					
For contactors CV1B ${ }^{(1)}$ (Building reversing contactor pairs using contactors of identical size) ${ }^{\text {() }}$					
CV1B contactor size	Electromagnet	Supply voltage	Fixing centres	Reference	Weight
			mm		kg
$F^{(4)}$	EB1~	-	180	EZ2EA0301 ${ }^{(2)}$	0.030
	EC1~	-	200	EZ2EA0302 ${ }^{(2)}$	0.050
	EK1--	-	180	EZ2EA032 ${ }^{(2)}$	0.110
$\mathbf{G}^{(5)}$	-	< 440 V	200	EZ2GA0602200 ${ }^{(3)}$	0.285
		$\geqslant 440 \mathrm{~V}$	240	EZ2GA0602240	0.310
$\mathbf{H}^{(5)}$	-	< 440 V	220	EZ2HA0602220 ${ }^{(3)}$	0.315
		$\geqslant 440 \mathrm{~V}$	260	EZ2HA0602260	0.370
$J^{(5)}$	-	< 440 V	320	EZ2JA0602320 ${ }^{(3)}$	0.750
		$\geqslant 440 \mathrm{~V}$	400	EZ2JA0602400	0.780
K and L ${ }^{(5)}$	-	< 440 V	400	EZ2KA0602400 ${ }^{(3)}$	1.260
		$\geqslant 440 \mathrm{~V}$	500	EZ2KA0602500	1.700

For contactors CV3 B ${ }^{(1)}$ (Building reversing contactor pairs using contactors of identical size) ${ }^{(*)}$				
CV3 B contactor size	Electromagnet	Fixing centres	Reference	Weight
		mm		kg
$F^{(4)}$	EB1 ~	240	EZ2EA033 ${ }^{(2)}$	0.030
	EC1~	240	EZ2EA031 ${ }^{(2)}$	0.220
	EK1 ---	240	EZ2EA0602240	0.310
$\mathbf{G}^{(5)}$	-	260	EZ2GA0602260 ${ }^{(3)}$	0.310
$\mathbf{H}^{(5)}$	-	320	EZ2HA0602320 ${ }^{(3)}$	0.370
$J^{(5)}$	-	280	EZ2JA0602280 ${ }^{(3)}$	0.750
$\overline{\mathbf{K}^{(5)}}$	-	340	EZ2HA0602360 ${ }^{(3)}$	1.260
L to $\mathrm{R}^{(5)(6)}$	-	600	EZ2LB0602	1.560

For contactors LC1B

Specifications

- Positive mechanical interlock between two vertically mounted contactors of the same or different size.
■ Connecting rod with cranks mounted on the right-hand, pole side ${ }^{(2)}$.

Description	Fixing centres	Reference	Weight
	$\mathbf{m m}$		$\mathbf{k g}$
Mechanical interlock and locking device components	600	EZ2LB0601	1.280

(*) For the interlocking of two contactors of different ratings or the triple interlocking: contact us.
(1) The mechanical interlock must be adjusted so that when one of the contactors is closed, the other contactor has approximately 1 to 2 mm of free play at its stop.
(2) This assembly is mounted on the electromagnets, which must be aligned.
(3) Kit comprising: 1 rod, 1 upper crank with threaded clevis, 1 lower crank with plain clevis, 2 right-hand side mounting bearings.
(4) Left mounting.
(5) Right mounting
(6) Dimensions see page 64.

TeSys CV3B, LC1B Variable composition contactors
Accessories - Spare parts

ZC2GG1

PN1HB80

PN1HB50

PN3KB50
76
Life Is (1)n
CV3B, LC1B - Spare parts

References					
Spare parts					
Description	Composition	Contactors		Reference	Weight kg
		Type	Size		
Instantaneous auxiliary contacts	$\begin{aligned} & 3 \text { "N/O" + } \\ & 2 \text { "N/C" } \end{aligned}$	CV1B	F to H	LA1BN32A	0.060
Time delay auxiliary contacts (")					
On-delay 1 C/O	$\begin{aligned} & 1 \text { "N/O" + } \\ & 1 \text { "N/C" } \end{aligned}$			LADT•	0.060
$\begin{aligned} & \text { Off-delay } \\ & 1 \text { C/O } \end{aligned}$	$\begin{aligned} & 1 \text { "N/O" + } \\ & 1 \text { "N/C" } \end{aligned}$			LADR•	0.060
Spare parts					
Description		Composition		Reference	Weight kg
Instantaneous auxiliary contacts		1 "N/O"		ZC4GM1	0.030
		1 "N/C"		ZC4GM2	0.030
Time delay auxiliary contacts		$\begin{aligned} & 1 \text { "N/C" + } 1 \text { " } \mathrm{N} / \mathrm{O} " \\ & \text { on-delay } \end{aligned}$		ZC2GG1	0.455
		$1 \text { "N/C" + } 1 \text { " } \mathrm{N} / \mathrm{O} \text { " }$off-delay		ZC2GG5	0.455

Spare parts Sets of contacts				
Description	Number of sets required per contactor pole	CV1B contactors size	Reference	Weight
1 fixed contact + 1 moving contact	1	F	PN1FB80	0.035
	1	G	PN1GB80	0.060
	1	H	PN1HB80	0.115
	1	K	PN1JB80	0.195
	PN1KB80	0.345		
	2	L	PN1KB80	0.790

Arc chamber only				
Description	Type of poles	CV1B contactors size	Reference	Weight kg
Standard type arc chamber	PN1 or PR1	F	PN1FB50	0.220
		G	PN1GB50	0.360
		H	PN1HB50	0.580
		J	PN1JB50	1.380
		K	PN1KB50	1.880
		L	PN1LB50	4.380
Arc chamber with splitters	PN3 or PR3	J	PN3JB50	1.860
		K	PN3KB50	2.390
		L	PN3LB50	4.780

$\overline{\text { Coils }}$
(*) Choose additives LADT• and LADR• from the TeSys D range.

ZC2GG1

PA2GB80

PA1LB80 (PA1LB76 + PA1LB75)

PA1LB89

CV3B, LC1B - Spare parts

References							
Spare parts							
Description		Composition	Contactors		Reference	Weight	
		Type	Size		kg		
Instantaneous auxiliary contac			$\begin{aligned} & 3 " \mathrm{~N} / \mathrm{O} \text { " + } \\ & 2 \text { "N/C" } \end{aligned}$	CV3B	F to H	LA1BN32A	0.060
Time delay auxiliary contacts ${ }^{\text {() }}$							
on-delay		$\begin{aligned} & 1 \text { "N/O" + } \\ & 1 \text { "N/C" } \end{aligned}$			LADT•	0.060	
off-delay		$\begin{aligned} & 1 \text { "N/O" + } \\ & 1 \text { "N/C" } \end{aligned}$			LADR•	0.060	
Spare parts							
Description	Composition		Contactors		Reference	Weight	
			Type	Size		kg	
Instantaneous auxiliary contact	1 "N/O"		$\begin{aligned} & \text { CV3B and } \\ & \text { LC1B } \end{aligned}$	All	ZC4GM1	0.030	
	1 "N/C"		CV3B and LC1B	All	ZC4GM2	0.030	
Time delay auxiliary contacts	$\begin{aligned} & 1 \text { "N/C" + } 1 \text { "N/O" } \\ & \text { on-delay } \end{aligned}$		CV3B	F to K	ZC2GG1	0.455	
	$\begin{aligned} & 1 \text { "N/C" + } 1 \text { "N/O" } \\ & \text { off-delay } \end{aligned}$		CV3B	F to K	ZC2GG5	0.455	

Spare parts

Description	Number of sets required per contactor pole	Contactors		Reference	Weight
		Type	Size		
1 fixed contact $+$ 1 moving contact	1	CV3B	F	PA2FB80	0.070
	1	CV3B	G	PA2GB80	0.160
	1	CV3B	H	PA2HB80	0.220
	2	CV3B	J	PA2GB80	0.320
	2	CV3B	K	PA2HB80	0.440
	1	CV3B and LC1B	L	PA1LB80	0.420
	1	CV3B and LC1B	M	PA1LB80	0.420
	2	CV3B and LC1B	P	PA1LB80	0.840
	3	CV3B and LC1B	R	PA1LB80	1.260
Moving contact only (1 finger)	1	CV3B and LC1B	L to R	PA1LB75	0.220
Fixed contact only (1 finger)	1	CV3B and LC1B	L to R	PA1LB76	0.200
Blow-out horn (1 finger)	1	CV3B and LC1B	L to R	PA1LB89	0.120

Coils See pages 84 to 101.

[^9]TeSys CV1B Variable composition contactors
Accessories - Spare parts

PN1FB00•

PR5GB00•

PR1GB00•

CV1B - Complete pre-assembled poles

Complete pre-assembled poles Blow-out coils only, with housing and core						
$\begin{aligned} & \text { Size } \\ & \text { (1) } \end{aligned}$	Maximum current for continuous duty		Complete poles		Blow-out coils	
	\sim	--.	N/O	N/C	PN1 and PR1	Economy resistor
	A	A				\square
For contactors CV1BF						
A	0.35	0.4	PN1FB0003	PR1FB0003	PN1FA5103	19
	0.6	0.7	PN1FB0004	PR1FB0004	PN1FA5104	6.1
	0.9	1	PN1FB0005	PR1FB0005	PN1FA5105	2.5
B	1.3	1.45	PN1FB0006	PR1FB0006	PN1FA5106	1.335
	1.75	1.9	PN1FB0007	PR1FB0007	PN1FA5107	0.747
C	2.2	2.45	PN1FB0008	PR1FB0008	PN1FA5108	0.425
	2.6	3	PN1FB0009	PR1FB0009	PN1FA5109	0.272
	3.6	4	PN1FB0010	PR1FB0010	PN1FA5110	0.1655
D	4.3	4.8	PN1 FB0011	PR1 FB0011	PN1 FA5111	0.1135
	4.85	5.4	PN1 FB0012	PR1 FB0012	PN1 FA5112	0.0854
	6.8	7.6	PN1FB0014	PR1FB0014	PN1FA5114	0.052
E	7.4	8.2	PN1FB0015	PR1FB0015	PN1FA5115	0.045
	9.7	11	PN1FB0016	PR1FB0016	PN1FA5116	0.019
	11	12	PN1FB0018	PR1FB0018	PN1FA5118	0.017
M	13	14.5	PN1FB0020	PR1FB0020	PN1FA5120	0.0125
N	20	22	PN1FB0025	PR1FB0025	PN1FA5125	0.0043
P	40	45	PN1FB009	PR1FB009	PN1FA519	Bar
Q	50	55	PN1FB007	PR1FB007	PN1FA517	Bar
F	80	80	PN1FB004	PR1FB004	PN1FB514	Bar
\bar{Y}	Witho or blo	chamber	PN5FB00	PR5FB00	-	-

For contactors CV1BG						
	0.25	0.38	PN1GB0003	PR1GB0003	PN1GA5103	28
	0.45	0.67	PN1GB0004	PR1GB0004	PN1GA5104	9
	0.7	1.05	PN1GB0005	PR1GB0005	PN1GA5105	3.77
	1	1.45	PN1GB0006	PR1GB0006	PN1GA5106	1.8
	1.25	1.95	PN1GB0007	PR1GB0007	PN1GA5107	1.02
	1.6	2.55	PN1GB0008	PR1GB0008	PN1GA5108	0.6
	2.1	3.3	PN1GB0009	PR1GB0009	PN1GA5109	0.38
	2.5	3.85	PN1GB0010	PR1GB0010	PN1GA5110	0.27
	3	4.8	PN1GB0011	PR1GB0011	PN1GA5111	0.175
	3.5	5.5	PN1GB0012	PR1GB0012	PN1GA5112	0.123
	4.7	7.5	PN1GB0014	PR1GB0014	PN1GA5114	0.07
	5.5	8.85	PN1GB0015	PR1GB0015	PN1GA5115	0.051
	6.2	10	PN1GB0016	PR1GB0016	PN1GA5116	0.041
	8	12	PN1GB0018	PR1GB0018	PN1GA5118	0.026
	10	15	PN1GB0020	PR1GB0020	PN1GA5120	0.017
	12	19	PN1GB0022	PR1GB0022	PN1GA5122	0.011
	17	24	PN1GB0025	PR1GB0025	PN1GA5125	0.0068
	40	55	PN1GB009	PR1GB009	PN1GA519	Bar
Q	55	80	PN1GB007	PR1GB007	PN1GA517	Bar
R	125	125	PN1GB003	PR1GB003	PN1GA513	Bar
G	200	200	PN1GB002	PR1GB002	PN1GB512	Bar
\bar{Y}	Without arc chamber or blow-out		PN5GB00	PR5GB00	-	-

[^10]

PN1HB00•

CV1B - Complete pre-assembled poles

Complete pre-assembled poles

Blow-out coils only, with housing and core

$\underset{(1)}{ } \text { Size }$	Maximum current for continuous duty		Complete poles		Blow-out coils	
	\sim	--	N/O	N/C	PN1 and PR1	Economy resistor
	A	A				\square
For contactors CV1BH						
	0.25	0.38	PN1HB0003	PR1HB0003	PN1HA5103	36.5
	0.45	0.67	PN1HB0004	PR1HB0004	PN1HA5104	12.25
	0.7	1.05	PN1HB0005	PR1HB0005	PN1HA5105	5.1
	1	1.45	PN1HB0006	PR1HB0006	PN1HA5106	2.66
	1.25	1.95	PN1HB0007	PR1HB0007	PN1HA5107	1.39
	1.6	2.55	PN1HB0008	PR1HB0008	PN1HA5108	0.828
	2.1	3.3	PN1HB0009	PR1HB0009	PN1HA5109	0.512
	2.5	3.85	PN1HB0010	PR1HB0010	PN1HA5110	0.345
	3	4.8	PN1HB0011	PR1HB0011	PN1HA5111	0.237
	3.5	5.5	PN1HB0012	PR1HB0012	PN1HA5112	0.1755
	4.7	7.5	PN1HB0014	PR1HB0014	PN1HA5114	0.094
	5.5	8.85	PN1HB0015	PR1HB0015	PN1HA5115	0.0716
	6.2	10	PN1HB0016	PR1HB0016	PN1HA5116	0.0525
	8	12	PN1HB0018	PR1HB0018	PN1HA5118	0.0355
	10	15	PN1HB0020	PR1HB0020	PN1HA5120	0.022
	13	19	PN1HB0022	PR1HB0022	PN1HA5122	0.0152
	17	24	PN1HB0025	PR1HB0025	PN1HA5125	0.0096
	60	90	PN1HB007	PR1HB007	PN1HA517	Bar
	80	120	PN1HB005	PR1HB005	PN1HA515	Bar
R	130	190	PN1HB003	PR1HB003	PN1HA513	Bar
G	200	200	PN1HB002	PR1HB002	PN1HA512	Bar
H	300	300	PN1HB001	PR1HB001	PN1HB511	Bar
Y	Witho or blo	chamber	PN5HB00	PR5HB00	-	-

TeSys CV1B Variable composition contactors
Accessories - Spare parts

PR5JB00•

PN1LB00•

Complete pre-assembled poles Blow-out coils only, with housing and core						
$\underset{\text { (1) }}{\text { Size }}$	Maximum	Complete poles				Blow-out coils
	~/×.	Standard		Arc chamber with splitters		
		N/O	N/C	N/O	N/C	PN1 and PR1
	A					
For contactors CV1BJ						
	110	PN1JB009	PR1JB009	PN3JB009	PR3JB009	PN1JB5139
	150	PN1JB007	PR1JB007	PN3JB007	PR3JB007	PN1JB5137
	185	PN1JB004	PR1JB004	PN3JB004	PR3JB004	PN1JB5134
S	250	PN1JB003	PR1JB003	PN3JB003	PR3JB003	PN1JB5133
T	320	PN1JB002	PR1JB002	PN3JB002	PR3JB002	PN1JB5132
J	470	PN1JB001	PR1JB001	PN3JB001	PR3JB001	PN1JB5131
Y	Without arc chamber or blow-out	PN5JB00	PR5JB00	-	-	-
For contactors CV1BK						
	150	PN1KB009	PR1KB009	PN3KB009	PR3KB009	PN1KB5159
	235	PN1KB006	PR1KB006	PN3KB006	PR3KB006	PN1KB5156
	290	PN1KB004	PR1KB004	PN3KB004	PR3KB004	PN1KB5154
U	400	PN1KB003	PR1KB003	PN3KB003	PR3KB003	PN1KB5153
V	500	PN1KB002	PR1KB002	PN3KB002	PR3KB002	PN1KB5152
K	630	PN1KB001	PR1KB001	PN3KB001	PR3KB001	PN1KB5151
Y	Without arc chamber or blow-out	PN5KB00	PR5KB00	-	-	-
For contactors CV1BL						
	240	PN1LB009	PR1LB009	PN3LB009	PR3LB009	PN1LB5189
	375	PN1LB006	PR1LB006	PN3LB006	PR3LB006	PN1LB5186
	460	PN1LB004	PR1LB004	PN3LB004	PR3LB004	PN1LB5184
K	640	PN1LB003	PR1LB003	PN3LB003	PR3LB003	PN1LB5183
	800	PN1LB002	PR1LB002	PN3LB002	PR3LB002	PN1LB5182
L	1000	PN1LB001	PR1LB001	PN3LB001	PR3LB001	PN1LB5181
Y	Without arc chamber or blow-out	PN5LB00	PR5LB00	-	-	-

PR3FB00•

Complete pre-assembled poles Blow-out coils only, with housing and core						
Size ${ }^{(1)}$	Maximum current for continuous duty		Complete poles		Blow-out coils	
	\sim	-.	N/O	N/C	PA3 and PR3	Economy resistor
	A	A				\square
For contactors CV3BF						
A	0.35	0.4	PA3FB0003	PR3FB0003	PA1FA5103	19
	0.6	0.7	PA3FB0004	PR3FB0004	PA1FA5104	6.1
	0.9	1	PA3FB0005	PR3FB0005	PA1FA5105	2.5
B	1.3	1.45	PA3FB0006	PR3FB0006	PA1FA5106	1.335
	1.75	1.9	PA3FB0007	PR3FB0007	PA1FA5107	0.747
C	2.2	2.45	PA3FB0008	PR3FB0008	PA1FA5108	0.425
	2.6	3	PA3FB0009	PR3FB0009	PA1FA5109	0.272
	3.6	4	PA3FB0010	PR3FB0010	PA1FA5110	0.1655
D	4.3	4.8	PA3FB0011	PR3FB0011	PA1FA5111	0.1135
	4.85	5.4	PA3FB0012	PR3FB0012	PA1FA5112	0.0854
	6.8	7.6	PA3FB0014	PR3 FB0014	PA1FA5114	0.052
E	7.4	8.2	PA3FB0015	PR3FB0015	PA1FA5115	0.045
	9.7	11	PA3FB0016	PR3FB0016	PA1FA5116	0.019
	11	12	PA3FB0018	PR3FB0018	PA1FA5118	0.017
M	13	14.5	PA3FB0020	PR3FB0020	PA1FA5120	0.0125
N	20	22	PA3FB0025	PR3FB0025	PA1FA5125	0.0043
P	40	45	PA3FB009	PR3 FB009	PA1FA519	Bar
Q	50	55	PA3FB007	PR3FB007	PA1FA517	Bar
F	80	80	PA3FB004	PR3FB004	PA1FB514	Bar
For contactors CV3BG						
	0.25	0.38	PA3GB0003	PR3GB0003	PA1GA5103	28
	0.45	0.67	PA3GB0004	PR3GB0004	PA1GA5104	9
	0.7	1.05	PA3GB0005	PR3GB0005	PA1GA5105	3.77
	1	1.45	PA3GB0006	PR3GB0006	PA1GA5106	1.8
	1.25	1.95	PA3GB0007	PR3GB0007	PA1GA5107	1.02
	1.6	2.55	PA3GB0008	PR3GB0008	PA1GA5108	0.6
	2.1	3.3	PA3GB0009	PR3GB0009	PA1GA5109	0.38
	2.5	3.85	PA3GB0010	PR3GB0010	PA1GA5110	0.27
	3	4.8	PA3GB0011	PR3GB0011	PA1GA5111	0.175
	3.5	5.5	PA3GB0012	PR3GB0012	PA1GA5112	0.123
	4.7	7.5	PA3GB0014	PR3GB0014	PA1GA5114	0.07
	5.5	8.85	PA3GB0015	PR3GB0015	PA1GA5115	0.051
	6.2	10	PA3GB0016	PR3GB0016	PA1GA5116	0.041
	8	12	PA3GB0018	PR3GB0018	PA1GA5118	0.026
	10	15	PA3GB0020	PR3GB0020	PA1GA5120	0.017
	12	19	PA3GB0022	PR3GB0022	PA1GA5122	0.011
	17	24	PA3GB0025	PR3GB0025	PA1GA5125	0.0068
	40	55	PA3GB009	PR3GB009	PA1GA519	Bar
Q	55	80	PA3GB007	PR3GB007	PA1GA517	Bar
R	125	125	PA3GB003	PR3GB003	PA1GA513	Bar
G	200	200	PA3GB002	PR3GB002	PA1GB512	Bar

[^11]TeSys CV3B Variable composition contactors
Accessories - Spare parts

Complete pre-assembled poles Blow-out coils only, with housing and core						
Size ${ }^{(1)}$	Maximum current for continuous duty		Complete poles		Blow-out coils	
			N/O	N/C	PA3 and PR3	Economy resistor
	A	A				\square
For contactors CV3BH						
	0.25	0.38	PA3HB0003	PR3HB0003	PA1HA5103	36.5
	0.45	0.67	PA3HB0004	PR3HB0004	PA1HA5104	12.25
	0.7	1.05	PA3HB0005	PR3HB0005	PA1HA5105	5.1
	1	1.45	PA3HB0006	PR3HB0006	PA1HA5106	2.66
	1.25	1.95	PA3HB0007	PR3HB0007	PA1HA5107	1.39
	1.6	2.55	PA3HB0008	PR3HB0008	PA1HA5108	0.828
	2.1	3.3	PA3HB0009	PR3HB0009	PA1HA5109	0.512
	2.5	3.85	PA3HB0010	PR3HB0010	PA1HA5110	0.345
	3	4.8	PA3HB0011	PR3HB0011	PA1HA5111	0.237
	3.5	5.5	PA3HB0012	PR3HB0012	PA1HA5112	0.1755
	4.7	7.5	PA3HB0014	PR3HB0014	PA1HA5114	0.094
	5.5	8.85	PA3HB0015	PR3HB0015	PA1HA5115	0.0716
	6.2	10	PA3HB0016	PR3HB0016	PA1HA5116	0.0525
	8	12	PA3HB0018	PR3HB0018	PA1HA5118	0.0355
	10	15	PA3HB0020	PR3HB0020	PA1HA5120	0.022
	12	19	PA3HB0022	PR3HB0022	PA1HA5122	0.0152
	17	24	PA3HB0025	PR3HB0025	PA1HA5125	0.0096
	60	90	PA3HB007	PR3HB007	PA1HA517	Bar
	80	120	PA3HB005	PR3HB005	PA1HA515	Bar
R	130	190	PA3HB003	PR3HB003	PA1HA513	Bar
G	200	200	PA3HB002	PR3HB002	PA1HA512	Bar
H	300	300	PA3HB001	PR3HB001	PA1HB511	Bar
Size ${ }^{(1)}$	Maximum current for continuous duty		Complete poles (No N/C poles)		Blow-out coils	
	\sim	-	N/O	-	PA3	
	A	A				
For contactors CV3BJ						
	80	110	PA3JB009		$2 \times$ PA1GA519	
	110	160	PA3JB007		$2 \times$ PA1GA517	
S	250	250	PA3JB003		$2 \times$ PA1GA513	
T	320	320	PA3JB002		$2 \times$ PA1GB512	
For contactors CV3BK						
	120	180	PA3KB007		$2 \times$ PA1HA517	
	160	240	PA3KB005		$2 \times$ PA1HA515	
U	260	380	PA3KB003		$2 \times$ PA1HA513	
v	400	400	PA3KB002		$2 \times$ PA1HA512	
K	500	500	PA3KB001		$2 \times$ PA1HB511	
Size	Maximum current for continuous duty		Complete poles		Blow-out coils	Arc chamber
	~/-..		Standard	With magnetic compensator		
A						
For contactors CV3BL, M, P, R						
-	800		PA1LB00	PA2LB00	PA1LB51	PA1LB50
	1250		PA1MB00	PA2MB00	PA1LB51	PA1LB50
	2000		PA1PB00	PA2PB00	PA1PB51	PA1PB50
	2750		PA1RB00	PA2RB00	PA1RB51	PA1RB50

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

EB1GA40

EK1GA40

EB5KB40

CV1B, CV3B, LC1B - Complete pre-assembled electromagnets (without coil)

Electromagnets			
Supply	Type	Reference	Weight
For contactors CV1BF and CV3BF			
direct \sim	1	EB1EA40	1.020
	1	EC1EA40	1.650
\sim or ... with	1	EB1EA40	1.020
direct $=$	2	EK1EA40	1.760

For contactors CV1BG, CV3BG and CV3BJ			
direct ~	1	EB1GA40	1.720
	1	EC1GA40	2.880
~ or … with	1	EB1GA40	1.720
direct --	2	EK1GA40	1.950

For contactors CV1BH, CV3BH and CV3BK			
direct ~	1	EB1HA40	2.810
	3	EC1HB40	4.590
~ or ... with	1	EB1HA40	2.810
direct ---	2	EK1HA40	3.740

For contactors CV1BJ			
direct ~	3	EB1JB40	4.030
	3	EC1JB40	11.430
~ or -.. with	3	EB5JB40	4.190
direct --	2	EK1JA40	3.740

For contactors CV1BK and CV1BL			
direct ~	3	EB1KB40	9.830
~ or -.. with	3	EB5KB40	10.490
direct -.	2	EK1KA40	13.200
For contactors CV3B and LC1BL, M, P and R			
~ or .-. with	3	EB5KB50	10.600
direct --	2	EK1KA50	13.900

TeSys CV1B, CV3B Variable composition contactors
Accessories - Spare parts

CV1B, CV3B - Electromagnets and direct a.c. coils

References			
For contactors ${ }^{(1)}$			CV3B
Contactor	Type	CV1B	Size
		F	
Associated electromagnet		EB1EA40	EB1EA40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

WB1EA•

Coils						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V		\square	H		\square	H
$\underline{24}$	WB1EA024	0.50	0.038	WB1EA022	0.45	0.032
48	WB1EA048	2.22	0.15	WB1EA043	1.80	0.12
110	WB1EA110	12.54	0.80	WB1EA100	10.1	0.66
127	WB1EA127	14.83	1.07	WB1EA127	14.83	1.07
$\underline{220}$	WB1EA220	50.4	3.2	WB1EA200	41.5	2.6
240	WB1EA240	62.7	3.8	WB1EA220	50.4	3.2
380	WB1EA380	156.2	9.6	WB1EA365	148.6	8.8
400	WB1EA400	182	10	WB1EA380	156.2	9.6
440	WB1EA455	233	14	WB1EA400	182	10
450	WB1EA455	233	14	WB1EA432	199.1	12
500	WB1EA500	284	16	WB1EA455	233	14
550	WB1EA550	347	20	WB1EA500	284	16
600	-	-	-	-	-	-

L: inductance closed circuit at Un max.
R: resistance at $20^{\circ} \mathrm{C} \pm 10 \%$.
Specifications
■ Operating range: 0.85 to 1.1 Uc.

- Coil supply transformer power: 100 VA.
- Coil weight, all voltages : 180 grams.

Average consumption								
	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	220	90	270	110	225	75	275	95
Sealed	35	13	55	19	35	13	55	10

Power factor $\mathbf{c o s}$	
$\mathbf{5 0 ~ H z}$	$\mathbf{6 0 ~ H z}$
0.40	0.34
0.35	0.37

WB1GA•

References						
For contactors ${ }^{(1)}$						
Contactor	Type	CV1B				
	Size	F	G	F	G	J 2 poles)
Associated electromagnet	EC1EA40	EB1GA40	EC1EA40	EB1GA40	EB1GA40	

Associated electromagnet EC1EA40 EB1GA40 EC1EA40 EB1GA40 EB1GA40
(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V		\square	H		\square	H
24	WB1GA024	0.40	0.026	WB1GA021	0.28	0.020
48	WB1GA048	1.32	0.10	WB1GA044	1.19	0.088
110	WB1GA110	7.66	0.55	WB1GA095	5.29	0.41
127	WB1GA130	11.09	0.66	WB1GA110	7.66	0.55
220	WB1GA220	33.74	2.2	WB1GA200	27.38	1.8
240	WB1GA250	47.33	2.8	WB1GA220	33.74	2.2
380	WB1GA380	85.48	6	WB1GA345	77.56	5.4
400	WB1GA400	110.71	7.3	WB1GA345	77.56	5.4
440	WB1GA440	123.32	8.9	WB1GA400	110.71	7.3
450	WB1GA480	136.22	10.6	WB1GA400	110.71	7.3
500	WB1GA500	143.98	11.5	WB1GA440	123.32	8.9
550	WB1GA550	212.39	14	WB1GA500	143.98	11.5
600	WB1GA600	259.73	16	-	-	-

L: inductance closed circuit at Un max.
R: resistance at $20^{\circ} \mathrm{C} \pm 10 \%$.

Specifications

■ Operating range: 0.85 to 1.1 Uc.

- Coil supply transformer power: 160 VA.
- Coil weight, all voltages : 220 grams.

Average consumption

Average consumption								
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	345	130	415	160	370	130	475	165
Sealed	45	16	65	25	50	19	75	30

Power factor $\mathbf{c o s}$	
$\mathbf{5 0 ~ H z}$	$\mathbf{6 0 ~ H z}$
0.38	0.35
0.35	0.37

TeSys CV1B, CV3B Variable composition contactors
Accessories - Spare parts

WB1HA

References					
For contactors ${ }^{(1)}$					
Contactor Type	CV1B		CV3B		
Size	G	H	G, J	H	K (2 poles)
Associated electromagnet	EC1GA40	EB1 HA40	EC1GA40	EB1 HA40	EB1HA40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition

Coil						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V		\square	H		\square	H
24	WB1HA024	0.26	0.021	WB1HA022	0.21	0.018
48	WB1HA048	0.94	0.085	WB1HA044	0.77	0.071
110	WB1HA110	4.84	0.44	WB1HA097	3.46	0.34
127	WB1HA130	7.27	0.62	WB1HA120	5.35	0.53
220	WB1HA220	17.55	1.8	WB1HA200	15.77	1.5
240	WB1HA250	24.93	2.3	WB1HA220	17.55	1.8
380	WB1HA380	54.52	5.3	WB1HA345	48.94	4.4
400	WB1HA400	64.52	5.9	WB1HA365	51.68	4.9
440	WB1HA440	78.1	7.1	WB1HA400	64.52	5.9
450	WB1HA480	86.03	8.5	WB1HA400	64.52	5.9
500	WB1HA500	101.9	9.2	WB1HA440	78.1	7.1
550	WB1HA550	113.3	11.1	WB1HA500	101.9	9.2
600	WB1HA600	153.8	13.2	WB1HA550	113.3	11.1

L: inductance closed circuit at Un max
R : resistance at $20^{\circ} \mathrm{C} \pm 10 \%$

Specifications

■ Operating range: 0.85 to 1.1 Uc .

- Coil supply transformer power: 250 VA.

■ Coil weight, all voltages : 280 grams.
Average consumption

	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	500	155	615	190	560	170	675	200
Sealed	60	22	85	35	65	25	95	40

Power factor $\mathbf{c o s} \square$	
$\mathbf{5 0 ~ \mathbf { ~ H z }}$	$\mathbf{6 0 ~ \mathbf { ~ H z }}$
0.31	0.30
0.38	0.39

TeSys CV1B, CV3B Variable composition contactors
 Accessories - Spare parts

References					
For contactors ${ }^{(1)}$				CV3B	
Contactor	Type	CV1B			
	Size	H	J	H	K
Associated electromagnet	EC1HB40	EB1JB40	EC1HB40	EC1HB40	

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V		\square	H		\square	H
48	WB1JB317	0.30	0.065	WB1JB315	0.21	0.043
110	WB1JB326	1.56	0.34	WB1JB323	1.19	0.25
127	WB1JB328	2.26	0.408	WB1JB326	1.56	0.34
220	WB1JB335	6.29	1.37	WB1JB332	4.84	1.02
240	WB1JB337	7.99	1.77	WB1JB334	5.15	1.14
380	WB1JB342	19.37	4.10	WB1JB340	15	3.09
400	WB1JB343	22.76	4.54	WB1JB340	15	3.09
440	WB1JB344	27.65	5.50	WB1JB342	19.37	4.10
450	WB1JB345	30.60	6.54	WB1JB342	19.37	4.10
500	WB1JB346	35.13	7.10	WB1JB344	27.65	5.50
550	WB1JB347	43.18	8.59	WB1JB345	30.60	6.54
600	WB1JB348	53.04	10.2	WB1JB346	35.13	7.10

L: inductance closed circuit at Un max.
R: resistance at $20^{\circ} \mathrm{C} \pm 10 \%$.
Specifications
■ Operating range: 0.85 to 1.1 Uc.
■ Coil supply transformer power: 400 VA .

- Coil weight, all voltages : 560 grams.

Average consumption								
	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	700	120	840	145	915	140	1100	165
Sealed	80	28	110	45	115	41	170	65

Power factor $\mathbf{c o s} \square$	
$\mathbf{5 0 ~ H z}$	$\mathbf{6 0 ~ H z}$
0.17	0.15
0.38	0.38

TeSys CV1B Variable composition contactors

Accessories - Spare parts

CV1B - Electromagnets and direct a.c. coils

References			
For contactors ${ }^{(1)}$			
Contactor	Type	CV1B	
	Size	J	

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V		\square	H		\square	H
110	WB1KB151	0.46	0.175	-	-	-
127	WB1KB166	0.59	0.228	WB1KB151	0.46	0.175
220	WB1KB154	1.87	0.700	WB1KB163	1.14	0.487
240	WB1KB154	1.87	0.700	WB1KB162	1.37	0.580
380	WB1KB155	5.06	2.10	WB1KB141	3.30	1.35
400	WB1KB132	5.95	2.32	WB1KB142	4.11	1.70
440	WB1KB123	7.35	2.80	WB1KB155	5.06	2.10
450	WB1KB123	7.35	2.80	WB1KB155	5.06	2.10
500	WB1KB133	9.54	3.63	WB1KB132	5.95	2.32
550	WB1KB121	11.66	4.40	WB1KB123	7.35	2.80
600	WB1KB121	11.66	4.40	WB1KB133	9.54	3.63

L: inductance closed circuit at Un max.
R : resistance at $20^{\circ} \mathrm{C} \pm 10 \%$.

Specifications

■ Operating range: 0.85 to 1.1 Uc .
■ Coil supply transformer power: 800 VA.
■ Coil weight, all voltages : 1.120 kilograms.

Average consumption								
	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	2300	320	3060	430	2350	280	2750	330
Sealed	205	65	385	140	205	70	330	120

Power factor $\mathbf{c o s} \square$	
$\mathbf{5 0 ~ H z}$	$\mathbf{6 0 ~ H z}$
0.14	0.12
0.36	0.36

TeSys CV1B, CV3B Variable composition contactors
 Accessories - Spare parts

WB2EA•

CV1B, CV3B - Electromagnets and direct d.c. coils

References						
For contactors						
Contactor	Type	CV1B		CV3B		
	Size	F	G	F	G	J (2 poles)
Associated electromagnet		EK1EA40	EK1GA40	EK1EA40	EK1GA40	EK1GA40

Coils				
Voltage		Coil (unit characteristics) ${ }^{(1)}$		
$\begin{aligned} & \text { Coils } \\ & 20 \text { to } 26 \text { W } \end{aligned}$	$\begin{aligned} & \text { Coils } \\ & 26 \text { to } 37 \text { W } \end{aligned}$	$\begin{aligned} & \text { Resistance } \\ & \text { at } 20^{\circ} \mathrm{C} \pm 10 \% \end{aligned}$	Reference	Weight
V	V	\square	50 Hz -60 Hz	kg
-	24	8.4	WB2EA600	0.400
24	-	13.5	WB2EA530	0.400
-	48	40	WB2EA400	0.400
48	-	52	WB2EA375	0.400
-	110	202	WB2EA265	0.400
110	127	247	WB2EA250	0.400
127	-	394	WB2EA224	0.400
-	220	740	WB2EA190	0.400
-	240	900	WB2EA180	0.400
220-240	-	1140	WB2EA170	0.400
-	380	1865	WB2EA150	0.400
-	400	2415	WB2EA140	0.400
380	440-450	3075	WB2EA132	0.400
400-440	500	3800	WB2EA125	0.400
450	550-600	4850	WB2EA118	0.400
500-550	-	5850	WB2EA112	0.400
600	-	7200	WB2EA106	0.400

Specifications
Operating range: 0,85 to 1,1 Uc (IEC 60947-4).

Average consumption of the 2 coils (inrush and sealed)	CV1 and CV3	F	Standard power Increased power	20 to 26 W 26 to 37 W
	CV1 and CV3	G	$26-37 \mathrm{~W}$	
Time constant when sealed	CV1 and CV3	F	75 ms	
	CV1 and CV3	G	100 ms	
Duty			100%	

(1) The EK1 electromagnet always has two identical coils connected in series.
(2) For contactors CV1F and CV3F the selection of 20-26 W or 26-37 W coils depends on the composition of the contactor: i.e. number of poles and auxiliary contacts.

TeSys CV1B, CV3B Variable composition contactors
Accessories - Spare parts

WB2HA

CV1B, CV3B - Electromagnets and direct d.c. coils

References					
For contactors			CV3B		
Contactor	Type	CV1B		H	K
	Size	H	J	H	
Associated electromagnet	EK1HA40	EK1JA40	EK1HA40	EK1HA40	

| Coils
 Voltage | | | |
| :--- | :--- | :--- | :--- | ---: |
| $\mathbf{1 0 0}$ Coil (unit characteristics) ${ }^{(1)}$ | | | |

Specifications

■ Operating range: 0,85 to $1,1 \mathrm{Uc}$.

Power consumption of both coils (inrush and sealed)	CV1 and CV3 H		100% duty	42 to 52 W
	CV1	J		
	CV3	K	K	50% duty

(1) The EK1 electromagnet always has two identical coils connected in series.
(2) Coil selection depends on the composition of the contactor.
50% duty implies an energised time less than or equal to 2 minutes and a de-energised time longer than or equal to the energised time.

WB2KA

CV1B - Electromagnets and direct d.c. coils

References			
For contactors			
Contactor	CV1B		
	K	L	
Associated electromagnet	EK1KA40	EK1KA40	
Coils			
Operating range	Coil (unit characteristics) ${ }^{(1)}$		
	$\begin{aligned} & \text { Resistance } \\ & \text { at } 20^{\circ} \mathrm{C} \pm 10 \% \end{aligned}$	Unit reference	Weight
V	\square		kg
24	3	WB2KA1120	1.710
48	11.9	WB2KA800	1.710
110	60	WB2KA530	1.710
127	92	WB2KA475	1.710
220	238	WB2KA375	1.710
240	302	WB2KA355	1.710
380	766	WB2KA280	1.710
400	964	WB2KA265	1.710
440	1218	WB2KA250	1.710
450	1218	WB2KA250	1.710
500-550	1490	WB2KA236	1.710
600	1877	WB2KA224	1.710

Specifications

■ Operating range: 0.85 to 1.1 Uc

- Average consumption of the 2 coils (inrush and sealed): 80 to 105 W
- Time constant when sealed: 180 ms .
- Duty: 100 \%.
(1) The EK1 electromagnet always has two identical coils connected in series

TeSys CV1B, CV3B Variable composition contactors

Accessories - Spare parts

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References			
For contactors			
Contactor	Type	CV1B	CV3B
	Size	F	F
Associated		EB1EA40	EB1EA40

Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5 TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist.	I inrush	Resistor		Number		Reference	Weight
		$\begin{aligned} & \text { at } 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	± 10 \% at Un max	Unit reference	Total resistance	of contacts ZC4 GM2			
V	V	\square	A		\square				kg
-	24	3.3	5.66	DR2SC0047	47	1	U	WB1EA058	0.180
24	-	7	3.72	DR2SC0100	100	1	U	WB1EA085	0.180
48	48	24.6	1.98	DR2SC0330	330	1	U	WB1EA163	0.180
-	110	104	0.980	DR2SC1500	1500	1	U	WB1EA315	0.180
110	-	127.9	0.906	DR2SC1800	1800	1	U	WB1EA345	0.180
-	127	156.3	0.793	DR2SC2200	2200	1	U	WB1EA380	0.180
127	-	199.2	0.697	DR2SC2700	2700	1	U	WB1EA432	0.180
220	220-240	418.2	0.526	DR2SC6800	6800	1	U	WB1EA595	0.180
240	-	581.7	0.433	DR2SC8200	8200	1	S	WB1EA720	0.180
380	380-400	1425.5	0.322	DR2SC2201	22000	1	S	WB1EA1175	0.180
400	500	1374.5	0.267	DR2SC1001	$\begin{aligned} & 10000 \\ & +10000 \end{aligned}$	2	S	WB1EA970	0.180
450-500	-	2355.1	0.219	DR2SC1801	$\begin{aligned} & 18000 \\ & +18000 \end{aligned}$	2	S	WB1EA1430	0.180

Specifications
■ Operating range: 0.85 to 1.1 Uc .

- Time constant when sealed: 9 ms .

■ Maximum operating rate: 120 operating cycles/hour ($\square \leqslant 55^{\circ} \mathrm{C}$).

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	70	150	85	-	180	-
Sealed (coil)	0.25	0.7	-	0.3	-	0.75
Economy resistor	10	11	-	4.5	-	11

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

WB1GA•

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

| References
 For contactors
 Contactor Type CV1B CV3B
 Size G G
 EB1GA40 EB1GA40 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Associated electromagnet | | | EB1GA40 |

Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist.	I inrush	Resistor		Number		Reference	Weight
		$\begin{aligned} & \text { at } 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \pm 10 \% \\ & \text { at Un } \\ & \text { max } \\ & \hline \end{aligned}$	Unit reference	Total resistance	of contacts ZC4GM2			
V	V	\square	A		\square				kg
-	24	1.87	11.1	DR2SC0039	39	1	U	WB1GA054	0.220
24	-	4.17	6	DR2SC0082	82	1	U	WB1GA085	0.220
-	48	7.26	5.36	DR2SC0150	150	1	U	WB1GA105	0.220
48	-	11.09	4.43	DR2SC0220	220	1	U	WB1GA130	0.220
-	110	47.33	2.23	DR2SC1000	1000	1	U	WB1GA250	0.220
110-127	127	85.48	1.53	DR2SC1500	1500	1	U	WB1GA380	0.220
-	220	212.39	0.95	DR2SC3900	3900	1	U	WB1GA550	0.220
220-240	240	259.73	0.96	DR2SC4700	4700	1	S	WB1GA600	0.220
-	380-400	609.71	0.60	DR2SC1201	12000	1	S	WB1GA905	0.220
380-400	440-450	604.08	0.46	$\begin{aligned} & \text { DR2SC1001 } \\ & \text { DR2SC8200 } \end{aligned}$	$\begin{aligned} & 10000 \\ & +8200 \end{aligned}$	1	S	WB1GA1160	0.220
440-450	500	1029.53	0.47	DR2SC1001	$\begin{aligned} & 10000 \\ & +10000 \end{aligned}$	2	S	WB1GA1170	0.220
500-550	-	1495.16	0.39	DR2SC1501	$\begin{aligned} & 15000 \\ & +15000 \end{aligned}$	2	-	WB1GA1480	0.220

Specifications
■ Operating range: 0,85 to 1,1 Uc.

- Time constant when sealed: 11 ms .
- Maximum operating rate: 120 operating cycles/hour ($\square \leqslant 55^{\circ} \mathrm{C}$).

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	130	250	160	-	300	-
Sealed (coil)	0.35	0.5	-	0.4	-	0.65
Economy resistor	6.5	11	-	7	-	12

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

TeSys CV1B, CV3B Variable composition contactors

Accessories - Spare parts

WB1HA

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References				
For contactors				
Contactor	Type	CV1B	CV3B	K (2 poles)
	Size	H	H	EB1HA40

Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist.	l inrush	Resistor		Number		Reference	Weight
		$\begin{aligned} & \text { at } 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	± 10 \% at Un max.	Unit reference	Total resistance	of contacts ZC4GM2			
V	V	\square	A		\square				kg
-	24	1.34	12	DR2SC0027	27	1	U	WB1HA060	0.280
24	-	2.61	9	DR2SC0047	47	1	U	WB1HA082	0.280
48	48	10.24	4.8	DR2SC0180	180	1	U	WB1HA160	0.280
-	110	54.52	1.9	DR2SC0820	820	1	U	WB1HA380	0.280
110	-	64.52	1.85	DR2SC1200	1200	1	U	WB1HA400	0.280
127	127	78.10	1.66	DR2SC1500	1500	1	U	WB1HA440	0.280
-	220-240	221.80	0.97	DR2SC3900	3900	1	U	WB1HA765	0.280
220-240	-	228.20	1.07	DR2SC3900	3900	1	S	WB1HA660	0.280
380	380-400	729.20	0.52	DR2SC1201	12000	1	S	WB1HA1500	0.280
400-450	450-500	704.40	0.64	DR2SC1201	12000	2	S	WB1HA1150	0.280

Specifications

Operating range: 0.85 to 1.1 Uc

- Time constant when sealed: 12 ms .
- Maximum operating rate: 120 operating cycles/hour $\left(\square \leqslant 55^{\circ} \mathrm{C}\right)$.

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	150	280	180	-	340	-
Sealed (coil)	0.4	0.75	-	0.4	-	0.8
Economy resistor	7.5	14	-	8	-	15

(1) a.c. ($50-400 \mathrm{~Hz}$) with individual rectifier and economy resistor, see scheme on page 52.
(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References		
For contactors		
Contactor Type	CV1B	CV3B
Size	J	K (3 and 4 poles)
Associated electromagnet	EB1JB40 (d.c.)	EC1HA40
	EB5JB40 (rectified)	EC1HA40

WB1JB

Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist.	I inrush	Resistor		Number of		Reference	Weight
		$\begin{aligned} & \text { at } 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \pm 10 \% \\ & \text { at Un } \\ & \max \end{aligned}$	Unit reference	Total resist.	$\begin{aligned} & \text { contacts } \\ & \text { ZC4GM2 } \end{aligned}$			
V	V	\square	A		\square				kg
-	24	2.26	8.52	DR2SC0047	47	1	U	WB1JB328	0.560
24	-	3.90	6.33	DR2SC0082	82	1	U	WB1JB331	0.560
-	48	11.95	3.70	DR2SC0220	220	1	U	WB1JB339	0.560
48	-	15.79	3.13	DR2SC0330	330	1	U	WB1JB341	0.560
-	110	53.04	1.90	DR2SC1000	1000	1	U	WB1JB348	0.560
110	127	76.59	1.47	DR2SC1500	1500	1	U	WB1JB428	0.560
127	-	95.85	1.32	DR2SC1800	1800	1	U	WB1JB429	0.560
220	220-240	242	0.93	DR2SC4700	4700	1	U	WB1JB432	0.560
240	-	371.30	0.76	DR2SC6800	6800	1	S	WB1JB433	0.560
-	380	565.60	0.63	DR2SC1001	10000	1	S	WB1JB434	0.560
380-400	400-450	881.90	0.50	$\begin{aligned} & \text { DR2SC1001 + } \\ & \text { DR2SC8200 } \end{aligned}$	$\begin{aligned} & 10000 \\ & +8200 \end{aligned}$	1	S	WB1JB435	0.560
440-500	500	1328.10		DR2SC1501 + DR2SC1201	$\begin{aligned} & 15000 \\ & +12000 \end{aligned}$	2	S	WB1JB436	0.560
Specifications									
■ Operat - Time co - Maximu	g range: 0, stant when operating	o $1,1 \mathrm{Uc}$. aled: 25 m e: 120 op	ms . erating cy	cles/hour ($\square \leqslant 55$					

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	130	220	160	-	270	-
Sealed (coil)	0.35	0.7	-	0.4	-	0.765
Economy resistor	6.5	13	-	7	-	13

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

TeSys CV1B, CV3B Variable composition contactors

Accessories - Spare parts

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References									
For contactors									
Contactor		Type		CV1B			CV3B		
		Size		K			L (2 poles)		
Associated electromagnet				EB5KB40			EB5KB40		
Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist. at $20^{\circ} \mathrm{C}$ ± 10 \%	linrush ± 10 \% at Un max.	Resistor		Number of contacts ZC4GM2		Reference	Weight
min.	min.			Unit reference	Total resist.				
V	V	\square	A		\square				kg
$\underline{24}$	-	1.9	13	DR2SC0100	100	1	-	WB1KB154	1.120
-	48	5.9	6.8	DR2SC0270	270	1	U	WB1KB132	1.120
48	-	9.5	5.3	DR2SC0470	470	1	U	WB1KB133	1.120
-	110	33.1	3.2	DR2SC1500	1500	1	U	WB1KB124	1.120
110	127	50.9	2.3	DR2SC2200	2200	1	U	WB1KB122	1.120
127	-	61.3	2.1	DR2SC2700	2700	1	U	WB1KB135	1.120
-	220	159.9	1.3	DR2SC8200	8200	1	U	WB1KB137	1.120
220-240	240	199.6	1.2	DR2SC1001	10000	1	S	WB1KB126	1.120
-	380	382	0.82	DR2SC1801	18000	1	S	WB1KB127	1.120
380-400	400-450	507	0.84	DR2SC1201	$\begin{aligned} & 12000 \\ & +12000 \\ & \hline \end{aligned}$	1	S	WB1KB128	1.120
440-500	500	770	0.64	DR2SC1801	$\begin{aligned} & 18000 \\ & +18000 \end{aligned}$	2	S	WB1KB129	1.120

Specifications

Operating range: 0.85 to 1.1 Uc

- Time constant when sealed: 45 ms

Maximum operating rate: 120 operating cycles/hour ($\square \leqslant 55^{\circ} \mathrm{C}$).

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	215	380	260	-	460	-
Sealed (coil)	0.1	0.2	-	0.1	-	0.2
Economy resistor	4.5	8	-	5	-	9

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

CV1B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

| References
 For contactors
 Contactor Type
 Size | |
| :--- | :--- | :--- |
| Sissociated electromagnet L (3 and 4 poles) | EB5KB40 |

WB1KB

Coils									
Voltage		Coil		With economy resistor			Rectifier Reference DR5TE1• (2)	Coil	
d.c.	a.c. ${ }^{(1)}$	Resist.	I inrush	Resistor		Number of		Reference	Weight
		$\begin{aligned} & \text { at } 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & \pm 10 \% \\ & \text { at Un } \\ & \text { max. } \end{aligned}$	Unit reference	Total resist.	contacts ZC4GM2			
V	V	\square	A		\square				kg
24	-	1.85	14	DR2SC0068	68	1	-	WB1KB154	1.120
-	48	5.86	7.2	DR2SC0220	220	1	U	WB1KB132	1.120
48	-	7.2	6.8	DR2SC0270	270	1	U	WB1KB123	1.120
-	110	32.5	3.3	DR2SC1200	1200	1	U	WB1KB124	1.120
110	127	49.7	2.4	DR2SC1800	1800	1	U	WB1KB122	1.120
127	-	61	2.2	DR2SC2200	2200	1	U	WB1KB135	1.120
-	220	128	1.5	DR2SC4700	4700	1	U	WB1KB125	1.120
-	240	160	1.4	DR2SC5600	5600	1	U	WB1KB137	1.120
220-240	-	197	1.3	DR2SC6800	6800	1	S	WB1KB126	1.120
-	380	408	0.86	DR2SC1501	15000	1	S	WB1KB127	1.120
380-450	450-500	507	0.89	DR2SC1001	$\begin{array}{r} 10000 \\ +8200 \end{array}$	2	S	WB1KB128	1.120
500	-	785	0.63	DR2SC1501	$\begin{aligned} & 15000 \\ & +15000 \end{aligned}$	2	-	WB1KB129	1.120

Specifications

■ Operating range: 0.85 to 1.1 Uc .

- Time constant when sealed: 45 ms .

■ Maximum operating rate: 120 operating cycles/hour ($\square \leqslant 55^{\circ} \mathrm{C}$).

Average consumption	d.c. operation		a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	240	420	290	-	515	-
Sealed (coil)	0.2	0.3	-	0.2	-	0.3
Economy resistor	7	11	-	7.5	-	12

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52. (2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

TeSys LC1B Variable composition contactors
Accessories - Spare parts

LC1B - Single pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for - -- or \sim contactor control supply.
■ For d.c. operation, the following must be associated with the coil:

- 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).

■ For 50 to 400 Hz a.c. operation, the following must be associated with the coil:

- 1 individual rectifier (to be wired)
- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operating range min-max		Coil Economy resistor						Rectifier (for ~ only)	Coil	Weight
d.c.	a.c.	Resist. at $20^{\circ} \mathrm{C}$ ± 10 \%	$\begin{aligned} & \text { linrush } \\ & \pm 10 \% \\ & \text { at Un } \\ & \text { max } \end{aligned}$	Resistor		Contact		Reference	Reference	
				Unit reference	Total resist.		Reference			
V	V	\square	A		\square					kg
48	-	5.1	10.3	DR2SC0270	270	1	ZC4GM2	-	WB1KB155	1.120
-	110	25.5	4.3	DR2SC1200	1200	1	ZC4GM2	DR5TE1U	WB1KB134	1.120
110-127	127	33.1	4.2	DR2SC1800	1800	1	ZC4GM2	DR5TE1U	WB1KB124	1.120
220	220-240	94.8	2.3	DR2SC4700	4700	2	ZC4GM2	DR5TE1U	WB1KB139	1.120
240	-	123.9	1.9	DR2SC6800	6800	1	LC1DT20LDS135	DR5TE1U	WB1KB125	1.120
380-400	380-450	247.4	1.6	DR2SC1201	$\begin{aligned} & 6800 \\ & +5600 \end{aligned}$	1	LC1DT20TDS135	DR5TE1S	WB1KB138	1.120
440	500	382	$1.1{ }^{(2)}$	DR2SC1001	20000	1	LC1DT20VDS135	DR5TE1S	WB1KB127	1.120
450-500	-	506.7	$1{ }^{(3)}$	DR2SC1201	24000	1	LC1DT20RDS135	-	WB1KB128	1.120

Specifications

- Average coil consumption (low sealed consumption)
- d.c.: inrush 380...520 W, sealed 0.15...0.20 W
- a.c. (with rectifier): inrush $450 \ldots 620 \mathrm{VA}$, sealed $0.15 \ldots 0.20 \mathrm{VA}$.
- Time constant when sealed 25 ms .

■ Economy resistor consumption: $7 \ldots 10 \mathrm{~W}$

- Operating cycles/hour at $\square \leqslant 55^{\circ} \mathrm{C}: \leqslant 120$.
- Mechanical durability at Uc: 1.2 million operating cycles.

With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level $\leqslant 7$.
(1) For supply voltages of less than 110 V , beware of voltage drops caused by the inrush current.
(2) 2 resistors in series: 2×10000
(3) 2 resistors in series: $2 \times 12000 \square$

LC1B - 2-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for - -- or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
- 1 economy resistor arrangement (resistors +1 or 2 auxiliary contact(s) or 1 contactor).

■ For 50 to 400 Hz a.c. operation, the following must be associated with the coil:

- 1 individual rectifier (to be wired)
- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operating range min-max ${ }^{(1)}$		Coil Economy resistor						Rectifier (for ~only)	Coil	Weight
d.c.	a.c.	$\begin{aligned} & \text { Resist. } \\ & \text { at } \\ & 20^{\circ} \mathrm{C} \\ & \pm 10 \% \end{aligned}$	I inrush ± 10 \% at Un max	Resistors (2 in series)		Contact		Reference	Reference	
				Unit reference	Total resist.		Reference			
V	V	\square	A		\square					kg
48	-	3.22	15.8	DR2SC0068	2×68	1	ZC4GM2	-	WB1KB141	1.120
-	110	11.4	8.6	$\begin{aligned} & \hline \text { DR2SC0220 } \\ & \text { DR2SC0270 } \end{aligned}$	$\begin{aligned} & \hline 220 \\ & +270 \\ & \hline \end{aligned}$	1	ZC4GM2	-	WB1KB121	1.120
110	127	19.7	6	DR2SC0390	2x390	1	ZC4GM2	DR5TE1U	WB1KB140	1.120
127	-	25.2	5.4	DR2SC0470	2x470	2	ZC4GM2	DR5TE1U	WB1KB134	1.120
-	220	61	3.4	DR2SC1200	2x1200	2	ZC4GM2	DR5TE1U	WB1KB135	1.120
220	240	77.2	3	$\begin{aligned} & \hline \text { DR2SC1500 } \\ & \text { DR2SC1800 } \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline 1500 \\ +1800 \\ \hline \end{array}$	2	ZC4GM2	DR5TE1U	WB1KB136	1.120
240	-	94	3	$\begin{aligned} & \hline \text { DR2SC1800 } \\ & \text { DR2SC2200 } \end{aligned}$	$\begin{aligned} & \hline 1800 \\ & +2200 \end{aligned}$	1	LP1DT20LDS135	DR5TE1S	WB1KB139	1.120
-	380	160	2.1	DR2SC3300	2x3300	1	LP1DT20TDS135	DR5TE1S	WB1KB137	1.120
380	400-450	197	2	DR2SC3900	2x3900	1	LP1DT20TDS135	DR5TE1S	WB1KB126	1.120
400-500	500	257	1.9	$\begin{aligned} & \hline \text { DR2SC4700 } \\ & \text { DR2SC5600 } \end{aligned}$	$\begin{aligned} & \hline 4700 \\ & +5600 \end{aligned}$	1	LP1DT20VDS135	DR5TE1S	WB1KB138	1.120

Specifications

- Average coil consumption (low sealed consumption):
- d.c.: inrush 600... 800 W , sealed 0.35 ... 0.5 W
- a.c. (with rectifier): inrush $720 \ldots 1000 \mathrm{VA}$, sealed $0.35 \ldots 0.5 \mathrm{VA}$.
- Time constant when sealed 25 ms .
- Economy resistor consumption: $15 . . .20 \mathrm{~W}$.

■ Operating cycles/hour at $\square \leqslant 55^{\circ} \mathrm{C}: \leqslant 120$.

- Mechanical durability at Uc: 1.2 million operating cycles.
- With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level $\leqslant 7$.

[^12]TeSys LC1B Variable composition contactors
Accessories - Spare parts

LC1B - 3-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for --- or ~ contactor control supply

- For d.c. operation, the following must be associated with the coil:
- 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).

■ For 50 to 400 Hz a.c. operation, the following must be associated with the coil:

- 1 individual rectifier (to be wired),
- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Specifications

- Average coil consumption (low sealed consumption):
d.c.: inrush $900 \ldots 1100 \mathrm{~W}$, sealed $0.7 \ldots 1 \mathrm{~W}$
- a.c. (with rectifier): inrush $1100 \ldots 1300 \mathrm{VA}$, sealed $0.7 \ldots 1 \mathrm{VA}$
- Time constant when sealed 25 ms

■ Economy resistor consumption: 24... 30 W

- Operating cycles/hour at $\square \leqslant 55^{\circ} \mathrm{C}: \leqslant 120$
- Mechanical durability at Uc: 1.2 million operating cycles
- With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level $\leqslant 7$.
(1) For supply voltages of less than 110 V , beware of voltage drops caused by the inrush current.

LC1B - 4-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for - -- or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
- 1 economy resistor arrangement (resistors +1 or 2 auxiliary contact(s) or 1 contactor).

■ For 50 to 400 Hz a.c. operation, the following must be associated with the coil:

- 1 individual rectifier (to be wired),
- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Specifications

- Average coil consumption (low sealed consumption):
- d.c.: inrush 1100... 1400 W , sealed 1.2...1.6 W
a.c. (with rectifier): inrush $1300 \ldots 1600 \mathrm{VA}$, sealed 1.2...1.6 VA
- Time constant when sealed 25 ms

Economy resistor consumption: 35 ... 45 W

- Operating cycles/hour at $\square \leqslant 55^{\circ} \mathrm{C}$: $\leqslant 120$
- Mechanical durability at Uc: 1.2 million operating cycles
- With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level $\leqslant 7$.
(1) For supply voltages of less than 110 V, beware of voltage drops caused by the inrush current.

CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactor

Introduction 104
Description/characteristics 105
CVEB, CWEB 105
Description/characteristics 106
CRXB, CVXB, CWXB 106
Dimensions 107
CRXB, CVXB 107
Product references - coding principle 108
CVEB, CWEB, CRXB, CVXB, CWXB 108
Spare parts 111
CRXB, CVXB 111

CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors for synchronous motor excitation circuit

Introduction

Variable composition contactors CVE, CWE, CRXB, CVXB, CWXB are designed for switching the excitation circuits of synchronous machines, in particular electrical power station generators, for operational currents from 80 to 2750 A .
Example: Static excitation generator.
Basic scheme

1 Excitation contactor
2 Thyristor bridge
3 Discharge resistor Rd
4 Excitation winding

Operating principle

The voltage delivered by the generator is related to the current flowing through the excitation winding 4.

Start-up phase

■ The contactor 1 closes, off load.

- An adjustable auxiliary power supply generates current in the excitation winding 4
to allow power-up of the generator.
\square When the voltage delivered by the generator is sufficient to supply the excitation winding 4 via a thyristor bridge 2 , the auxiliary supply is switched off.

Stop phase

When a stop instruction is received, the thyristor bridge 2 operates for a few seconds as an inverter, then the excitation contactor 1 opens.
The function of the N/C pole is to discharge residual electromagnetic energy from the excitation winding 4 via the discharge resistor Rd 3 .

Under normal operating conditions, breaking is therefore easy, especially as the N/O poles and the N/C pole are make before break.
However, in the event of a problem, the contactor must be able to break.

Contactor selection

Selection is done according to the nominal operating voltage of the machine and the necessity or not to fully isolate the thyristor bridge coil of the power supply (1,2 , or 3 N/O poles).

[^13]
CVEB and CWEB contactors composition:

■ 2 or N/O poles with magnetic blow-out (80... 300 A)
■ 1 N/C pole without blow-out, overlapping contacts (possible mounting of a blow-out device)

- 1 electromagnet with d.c. supply
\square either mechanical latching (CWEB)
\square or with economy resistor (CVEB).
- 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contact heads (3 to 6 N/O contacts + 2 to 4 N/C contacts).
- 1 mounting bar, 1 rotary drive shaft.

The following can be added:
■ 1 or 2 blocks of 4 instantaneous auxiliary contacts LADN••, without increasing the overall size of the contactor
■ or 1 time delay block LADT• or LADR•
Note: it is not possible to fit a mechanical latch block type LA6DK•• on these contactors.

Characteristics						
CVEB, CWEB contactor sizes			F		H	
N/O pole			1 pole	2 poles	1 pole	2 poles
Rated current	$\theta \leqslant 40^{\circ} \mathrm{C}$	A	80	80	300	300
Maximum operating voltage	d.c	V	220	440	220	440
Rated insulation voltage According to IEC 60664-1	d.c	V	690	690	690	690
Making capacity	d.c	A	1600	1600	4000	4000
Breaking capacity	d.c L/R $=15 \mathrm{~ms}$	A	240	240	900	900
Overlap time with the N/C pole		ms	2	2	2	2
N/C pole						
Rated current	$\theta \leqslant 40^{\circ} \mathrm{C}$	A	80	80	300	300
Making capacity	d.c	A	1600	1600	4000	4000
Breaking capacity	d.c $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$	A	0	0	0	0
Permissible current	For 10 s	A	480	480	1400	1400

CRXB, CVXB and CWXB contactors composition:

- 1 to 3 N/O poles with magnetic blow-out ($80 \ldots 2750$ A)
- $1 \mathrm{~N} / \mathrm{C}$ pole without blow-out, overlapping contacts (possible mounting of a blow-
out device)
- 1 electromagnet with d.c supply
- or with economy resistor (CVXB)
- either with magnetic latching (CRXB)
- either with mechanical latching (CWXB)
- 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contacts (3 to 6 N/O
contacts +2 to $4 \mathrm{~N} / \mathrm{C}$ contacts)
- 1 mounting bar, 1 rotary drive shaft.

The following can be added:

- 1 or 2 blocks of 4 instantaneous auxiliary contacts type LADN \bullet e, without
increasing the overall size of the contactor.
- or 1 time delay block type LADT• or LADR•

Note: it is not possible to fit a mechanical latch block type LA6DK•• on these contactors.

Characteristics										
Size of contactors CeXB ${ }^{(1)}$		F					H			
N/O pole		1 pole $\mid 2$		2 poles	3 poles		1 pole	2 poles 3		3 poles
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A	80		80	80		300	300		300
Maximum operating voltage	V DC	440		850	1000		440	850 100		1000
Rated insulation voltage	V DC	1000 100		1000	1000		1000	1000 1		1000
Making capacity	A	1400 1		1400	1400 3		3500	3500 3		3500
Breaking capacity For U max	A	500		500	500		1200	1200 1		1200
Overlap time with the N/C pole	ms	2		2	2 L		2	2		2
N/C pole										
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A	80		80	80		300	300		300
Making capacity	A	1600		1600	1600 年		4000	4000		4000
Breaking capacity	A	0		0	0 0		0	0		0
Permissible current For 10s	A	480		480	480 140		1400	1400		1400
Characteristics										
Size of contactors C॰XB		K					L			
N/O pole		1 pole 2		2 pole	3 poles	1 pole		2 pole		3 poles
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A	630		630	630 800		800	800		800
Maximum operating voltage	V DC	440		850	1000 - 4		440	850 120		1200
Rated insulation voltage	V DC	1000		1000	1000		1500	1500 1		1500
Making capacity	A	6500		6500	6500		14000	14000 1		14000
Breaking capacity For U max	A	2500		2500	2500 320		3200	3200		3200
Overlap time with the N/C pole	ms	2		2	2		2	2		2
N/C pole										
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A	630		630	630		630	630		630
Making capacity	A	6500		6500	6500		6500	6500		6500
Breaking capacity	A	0		0	0		0	0		0
Permissible current For 10s	A	3600		3600	3600		3600	3600		3600
Characteristics										
Size of contactors C®XB		M			P			R		
N/O pole			2 poles	3 poles	1 pole	2 poles	3 poles	1 pole	2 poles	3 poles
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A		1250	1250	2000	2000	2000	2750	2750	2750
Maximum operating voltage	V DC	440	850	1200	440	850	1200	440	850	1200
Rated insulation voltage	V DC	1500	1500	1500	1500	1500	1500	1500	1500	1500
Making capacity	A	$\begin{array}{\|l\|} \hline 14000 \\ \hline 4400 \\ \hline \end{array}$	14000	14000	21000	21000	21000	25000	25000	25000
Breaking capacity For U max	A		4400	4400	7200	7200	7200	10000	10000	10000
Overlap time with the N/C pole	ms	2	2	2	2	2	2	2	2	2
N/C pole										
Rated current $\quad \theta \leqslant 40^{\circ} \mathrm{C}$	A	630	630	630	630	630	630	630	630	630
Making capacity	A	6500	6500	6500	6500	6500	6500	6500	6500	6500
Breaking capacity	A	0	0	0	0	0	0	0	0	0
Permissible current For 10s	A	3600	3600	3600	3600	3600	3600	3600	3600	3600

(1) CRX, CVXB legacy size 'G', 'J'. Please consult us.

Contactors CRXB and CVXB, sizes F to K

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4GM auxiliary contact blocks in addition to the maintaining contact.

CeXB contactor size	\varnothing	b	b1	C	c1	L	L1	P	Q	Q1	Minimum electrical clearance	
											X1	X2
F	M6	75	120	17	149	445	15	50	20	52	25	15
H	M10	62	188	52	176	540	20	60	57	57	60	55
K	M12	141	214	45	215	760	37	100	64	75	80	80

Contactors CRXB and CVXB, sizes L to R

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4GM auxiliary contact blocks in addition to the maintaining contact.

CeXB contactor size	\varnothing	b	C	C1	L	N	P	Q	R	Minimum electrical clearance	
										X1	X2
L	M8	59	16	392	760	121	100	100	122	200	250
M	M10	55	20	392	760	125	100	100	157	200	250
P	M10	55	20	487	885	125	150	110	173	200	250
R	M10	50	25	582	950	130	195	130	173	250	300

TeSys CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors
Product references - coding principle

Decoding a product reference (example)

(1) Standard construction without blow-out: code Y.

1 -Contactor

3 - Type of N/O poles
■ E = PN1
■ X= PA3 (FB to HB), PN3 (KB) and PA1 (LB to RB)
5 - Size of the contactor (in A)

F	H	K	L	M	P	R
80	300	630	800	1250	2000	2750

2 - Type of control circuit of the contactor
■ V = Electromagnet with economy resistor
■ R = Electromagnet with magnetic latching

- $\mathrm{W}=$ Electromagnet with mechanical latching

4 -Evolution

6 - Number of Noo poles
1,2 or 3 according to the scheme used by the customer

7 - Operating current (le)

| Code | Contactor
 BF
 le | Rep*
 blow-out | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- B = 2 blocks type LA1BN32 (standard configuration)

Performance label for the excitation contactors

TeSys CVEB，CWEB，CRXB，CVXB，CWXB Predefined composition contactors
Product references－coding principle

CVEB，CWEB contactors equipped with type 1 （PN1）N／O poles									
Control circuit						With economy resistor	With mechanical latching		
Operational voltage	Number of poles N／O	Number of poles N／C	Instantan auxiliary	tacts ${ }^{\text {（2）}}$	Rated operational current	Basic reference to be completed by adding the code of the blow－ out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ and of the aux． contacts	Basic reference to be completed by adding the code of the blow－ out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ and of the aux． contacts ${ }^{(3)}$		Scheme
V					A				
220 V DC	1	1	1，3 or 6	1,2 or 4	80	CVEBF1•1•⿰＊๑	CWEBF1•1•⿰७๑		1
					300	CVEBH1•1・セ＊＊	CWEBH1•1•＊＊॰		1
440 V DC	2	1	1,3 or 6	1，2 or 4	80	CVEBF2•1•＊＊॰	CWEBF2•1•＊＊๑		2
					300	CVEBH2•1••••	CWEBH2•1••७๑		2
CRXB，CVXB and CWXB contactors equipped with N／O poles type PA3（ F to H），PN3（J and K）or PA1（L to R）									
Control circuit						Economy resistor	Mechanical Magnetic latchlatching		
Operational voltage	Number of poles N／O	Number of poles N／C	Instantan auxiliary \square	tacts ${ }^{\text {（2）}}$	Rated operational current	Basic reference to be completed by adding the code of the blow－ out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ and of the aux． contacts	Basic reference to be Basic reference to be Scheme completed by adding completed by adding the code of the blow－the code of the blow－ out coils ${ }^{(1)}$ ，of the out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ control voltage ${ }^{(2)}$ and of the aux． and of the aux． contacts ${ }^{(3)}$ contacts ${ }^{(3)}$		
V					A				
440V DC	1	1	1,3 or 6	1,2 or 4	80	CVXBF1•1•⿰＊๑	CWXBF1•1•⿰७๑	CRXBF1•1•⿰७๑	1
					300	CVXBH1•1・セ＊॰	CWXBH1•1•⿰ゃ๑	CRXBH1•1••••	1
					630	CVXBK1•1・セゃ๑	CWXBK1•1・セ७๑	CRXBK1•1•＊＊॰	1
					800	CVXBL1•1••••	CWXBL1•1•••๑	CRXBL1•1••••	1
					1250	CVXBM1•1••＊•	CWXBM1•1••••	CRXBM1•1•＊＊•	1
					2000	CVXBP1•1•⿰ゃ๑	CWXBP1•1•⿰ゃ๑	CRXBP1•1••••	1
					2750	CVXBR1•1•＊＊•	CWXBR1•1•⿰ゃ๑	CRXBR1•1••＊॰	1
850V DC	2	1	1,3 or 6	1,2 or 4	80	CVXBF2•1•••๑	CWXBF2•1•⿰๑๑	CRXBF2•1•••๑	2
					300	CVXBH2•1••＊•	CWXBH2•1•＊＊•	CRXBH2•1•＊＊•	2
					630	CVXBK2•1•⿰ゃ๑	CWXBK2•1•⿰ゃ๑	CRXBK2•1••＊॰	2
					800	CVXBL2•1••••	CWXBL2•1••••	CRXBL2•1•＊••	2
					1250	CVXBM2•1••••	CWXBM2•1••••	CRXBM2•1•＊＊॰	2
					2000	CVXBP2•1•⿰ゃ๑	CWXBP2•1•＊＊॰	CRXBP2•1＊＊＊•	2
					2750	CVXBR2•1・セ＊＊	CWXBR2•1••＊॰	CRXBR2•1•＊＊•	2
1000V DC	3	1	1,3 or 6	1，2 or 4	80	CVXBF3•1•••๑	CWXBF3•1•••๑	CRXBF3•1•••๑	3
					300	CVXBH3－1•＊＊๑	CWXBH31・セ＊＊	CRXBH3＊1＊＊＊॰	3
					630	CVXBK3•1・セ・๑	CWXBK3•1・セ＊•	CRXBK3•1••••	3
1200V DC	3	1	1，3 or 6	1，2 or 4	800	CVXBL3•1•••๑	CWXBL3•1•••๑	CRXBL3•1•＊＊•	3
					1250	CVXBM3•1•••๑	CWXBM3•1•••๑	CRXBM3•1•＊＊॰	3
					2000	CVXBP3•1•••๑	CWXBP31•＊＊	CRXBP3＊1••••	3
					2750	CVXBR3•1••••	CWXBR3•1・セ७๑	CRXBR3•1••७๑	3

（1）For the codes of the blow－out coils，please refer page 108.
（2）Existing control voltages（other voltages，please consult us）．

Volts	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{2 5 0}$
DC	BD^{\star}	ED^{\star}	FD	GD	MD	PD	-	UD
AC	$\mathrm{B} 7^{*}$	$\mathrm{E} 7^{\star}$	F 7	G 7	M 7	P 7	$\mathrm{U7}$	-

[^14]TeSys CRXB, CVXB Predefined composition contactors
Coils

WB1GA

Coils and associated components									
Contactors	Usual voltage -.	Coil		Additional resistors				Automatic coil cut-out contact	
		Reference	R at $20^{\circ} \mathrm{C}$	R1	Reference	R2	Reference	No.	Reference
	V		W	W		W			
CRXBF21FD	110	WB1EA200	44	100	DR2SC0100	82	DR2SC0082	2	ZC4GM2
CRXBF21GD	125	WB1EA220	53	120	DR2SC0120	100	DR2SC0100	2	ZC4GM2
CRXBF21UD	250	WB1EA432	208	470	DR2SC0470	470	DR2SC0470	2	ZC4GM2
CRXBG21FD	110	WB1GA230	33	68	DR2SC0068	47	DR2SC0047	2	ZC4GM2
CRXBG21GD	125	WB1GA300	59	120	DR2SC0120	56	DR2SC0056	2	ZC4GM2
CRXBG21UD	250	WB1GA550	203	390	DR2SC0390	270	DR2SC0270	2	ZC4GM2
CRXBH21FD	110	WB1HA340	45	68	DR2SC0068	68	DR2SC0068	2	ZC4GM2
CRXBH21GD	125	WB1HA380	51	120	DR2SC0120	82	DR2SC0082	2	ZC4GM2
CRXBH21UD	250	WB1HA600	158	270	DR2SC0270	220	DR2SC0220	2	ZC4GM2
CRXBJ21FD	110	WB1JB348	55	120	DR2SC0120	100	DR2SC0100	2	ZC4GM2
CRXBJ21GD	125	WB1JB428	76.3	180	DR2SC0180	100	DR2SC0100	2	ZC4GM2
CRXBJ21UD	250	WB1JB432	244	680	DR2SC0680	330	DR2SC0330	2	ZC4GM2
CRXBK21FD	110	WB1KB124	32.5	100	DR2SC0100	68	DR2SC0068	2	ZC4GM2
CRXBK21GD	125	WB1KB124	32.5	100	DR2SC0100	68	DR2SC0068	2	ZC4GM2
CRXBK21UD	250	WB1KB137	160	390	DR2SC0390	390	DR2SC0390	2	ZC4GM2
CRXBL/M/P/21FD	110	WB1KB121	11.4	47	DR2SC0047	39	DR2SC0039	1	PR4FB0010
CRXBL/M/P/21GD	125	WB1KB140	19.7	100	DR2SC0100	47	DR2SC0047	1	PR4FB0009
CRXBL/M/P/21UD	250	WB1KB136	77.2	330	DR2SC0330	220	DR2SC0220	1	PR4FB0006
CRXBR21FD	110	WB1KB133	9.6	47	DR2SC0047	39	DR2SC0039	1	PR4FB0011
CRXBR21GD	125	WB1KB121	11.4	56	DR2SC0056	47	DR2SC0047	1	PR4FB0010
CRXBR21UD	250	WB1KB135	61	270	DR2SC0270	270	DR2SC0270	1	PR4FB0006
Contactors	Usual voltage	Coil			Economy resistor			Economy resistor contact	
		Reference	R at $20^{\circ} \mathrm{C}$		Reference		Total resistance	No.	Reference
	V		W				W		
CVXBF21FD	110	WB1EA290	88		DR2SC1500		1500	1	ZC4GM2
CVXBF21GD	125	WB1EA315	110		DR2SC1800		1800	1	ZC4GM2
CVXBF21UD	250	WB1EA550	367		DR2SC6800		6800	1	ZC4GM2
CVXBG21FD	110	WB1GA380	88		DR2SC1500		1500	1	ZC4GM2
CVXBG21GD	125	WB1GA380	88		DR2SC1500		1500	1	ZC4GM2
CVXBG21UD	250	WB1GA600	257		DR2SC5600		5600	1	ZC4GM2
CVXBH21FD	110	WB1HA400	62		DR2SC1200		1200	1	ZC4GM2
CVXBH21GD	125	WB1HA440	79		DR2SC1500		1500	1	ZC4GM2
CVXBH21UD	250	WB1HA750	303		DR2SC5600		5600	1	ZC4GM2
CVXBJ21FD	110	WB1JB428	76.3		DR2SC1200		1200	1	ZC4GM2
CVXBJ21GD	125	WB1JB429	97.5		DR2SC1500		1500	1	ZC4GM2
CVXBJ21UD	250	WB1JB433	388		DR2SC6800		6800	1	ZC4GM2
CVXBK21FD	110	WB1KB122	49.7		DR2SC2200		2200	1	ZC4GM2
CVXBK21GD	125	WB1KB135	61		DR2SC2700		2700	1	ZC4GM2
CVXBK21UD	250	WB1KB138	257		DR2SC1201		12000	1	ZC4GM2
CVXBL/M/P/21FD	110	WB1KB140	19.7		$2 \times$ DR2SC0330		660	1	ZC4GM2
CVXBL/M/P/21GD	125	WB1KB134	25.2		$2 \times$ DR2SC0470		940	2	ZC4GM2
CVXBL/M/P/21UD	250	WB1KB139	94		$\begin{aligned} & \text { DR2SC1800 } \\ & \text { + DR2SC2200 } \end{aligned}$		4000	1	LP1D12004UD
CVXBR21FD	110	WB1KB121	11.4		$\begin{aligned} & \text { DR2SC0180 } \\ & \text { + DR2SC0220 } \end{aligned}$		400	1	ZC4GM2
CVXBR21GD	125	WB1KB130	16.3		$2 \times$ DR2SC0270		540	2	ZC4GM2
CVXBR21UD	250	WB1KB136	77.2		$2 \times$ DR2SC1200		2400	1	ZC4GM2
							LP1D12004UD		

PN1JB80

PN1LB80

PN3KB50

Spare parts				
Sets of contacts for CRXB, CVXB contactors				
Description	Number of sets required per contactor pole	CRXB and CVXB contactor sizes	Reference	Weight
1 fixed contact	1	F	PA2FB80	0.070
1 moving contact	1	G	PA2GB80	0.160
	1	H	PA2HB80	0.220
	1	J	PN1JB80	0.320
	1	K	PN1KB80	0.440
	1	L	PA1LB80	0.420
	1	M	PA1LB80	0.420
	2	P	PA1LB80	0.420
	3	R	PA1LB80	0.420

Arc chamber only				
Description	Number of sets required per contactor pole	CRXB and CVXB contactor sizes	Reference	Weight kg
Arc chamber	1	F	PA2FB50	0.070
		G	PA2GB50	0.160
		H	PA2HB50	0.220
		J	PN3JB50	0.320
		K	PN3KB50	0.440
		L	PA1LB50	0.420
		M	PA1LB50	0.420
		P	PA1PB52	0.840
		R	PA1RB52	1.260

CR1B Magnetic latching contactors

Introduction 114
Selection guide 115
Product references 117
Characteristics 118
Dimensions 120
Schemes 121
Accessories and spare parts 122
Coils 123

Magnetic latching contactors

The magnetic latching contactors are equipped with a specific electromagnet allowing them to maintain position "ON" although the coil is fed by any current.

Use
The specific properties of magnetic latching contactors make them suitable for many uses:
Properties Use

Memory retention of the sequence in automatic Refineries, power plants, excitation circuits. equipment, in the event of loss of the control
voltage.

Energy saving, as no current is drained when the contactor is activated.	Contactor staying activated for long periods. Examples: refineries, alimentation energy, ST distribution.
Change of state "Work" / "Rest"	Selective opening control.
by current pulse sent to the coil.	No unexpected opening or closing of power poles
Insensitivity to main perturbations.	Passer diverter, for use with 1000 V
Use of contactors beyond breaking capacity as they are activated off-load.	
Silent contactor when locked in ON position	

Electro-magnet operation of the CR1B contactors

The CR1B magnetic latching contactors are equipped with a single coil, supplied with direct current or alternating current through a rectifier.
The latching is obtained by direct feeding of the coil with a current in a given direction.
The unlatching is produced by a current of opposite direction, adjusted by resistors.
Range
■ The magnetic latching contactors are available from 80 to 630 A (Size F to K).
■ The characteristics of N/O and N/C poles are identical to those of CV1 and CV3B
(Size F to K)
■ For other characteristics and mounting dimensions, please contact us.
■ For ratings of 800 to 2750 A , see next page.

TeSys CR1B Magnetic latching contactors
 Selection guide

CR1B contactors for direct starting of squirrel cage motors

In continuous or intermittent service up to 30 operating cycles per hour.
CR1B contactor, thermal relay product reference - selection according to motor power

$\begin{aligned} & \text { Motor }{ }^{(1)} \\ & 220 / 230 \mathrm{~V} \end{aligned}$		380 / 400 V		415 V		440 V		3-poles contactor	Differential thermal relay 3-poles		3 type fuses aM BS-88	
P	In	P	In	P	In	P	In	Ref. ${ }^{(2)}$	Ref.	Adjustment range	Rating	
kW	A	kW	A	kW	A	kW	A			A	A	A
220	700	355	635	400	650	425	650	CR1BL33	LR1F800	500-800	800	1000
-	-	375	670	425	690	445	680	CR1BL33	LR1F800	500-800	800	1000
-	-	400	710	445	730	450	690	CR1BL33	LR1F800	500-800	800	1000
-	-	-	-	450	740	475	730	CR1BL33	LR1F800	500-800	800	1000
250	800	425	760	475	780	500	780	CR1BM33	LR1F800	500-800	800	1000
257	826	445	790	500	820	530	825	CR1BM33	LR1F1000	630-1000	1000	1250
280	900	450	800	530	870	560	870	CR1BM33	LR1F1000	630-1000	1000	1250
295	948	475	850	560	920	600	920	CR1BM33	LR1F1000	630-1000	1000	1250
300	980	500	900	600	978	630	965	CR1BM33	LR1F1000	630-1000	1000	1250
315	990	530	950	-	-	-	-	CR1BM33	LR1F1000	630-1000	1000	1250

(1) The ratings are for standard $220 / 230 \mathrm{~V}, 380 / 400 \mathrm{~V}$, 415 or 440 V motors. The overload relays should preferably be set to the motor full-load current shown on the motor rating plate. For other power ratings, select the overload relay with the appropriate range; the associated contactor and fuses must have ratings equal to or immediately greater than In.
(2) Reference to be completed on page 117.

CR1B rating - selection according to operational current - category AC-3

CR1B contactor rating		L	M	P	R
Rated operational current ($\square \leqslant 55^{\circ} \mathrm{C}$)					
440 V	A	750	1000	1500	1800
500 V	A	750	900	1200	1500
660 V	A	700	800	900	1100
1000 V	A	400	400	500	600
Operational power ($\square \leqslant 55^{\circ} \mathrm{C}$) (normalized motor power)					
220 / 230 V	kW	220	280	425	500
380 / 400 V	kW	400	500	750	900
415 V	kW	425	530	800	900
440 V	kW	450	560	800	900
500 V	kW	500	600	750	900
660 V	kW	560	670	750	900
1000 V	kW	530	530	670	750

Maximum operating rate of 120 operating cycles/hour, at rated operational power with an on-load factor $\leqslant 85 \%$.

CR1B rating selection according to electrical durability in category AC-3 (Ue $\leqslant 440 \mathrm{~V}$)

For 660 V , multiply the number of operating cycles by 0.8 .

TeSys CR1B Magnetic latching contactors

Selection guide

CR1B contactors for control of resistive circuits - power factor $\geqslant 0.95$.

CR1B contactor rating			L	M	P	R
Maximum operational current ($\square \leqslant 55^{\circ} \mathrm{C}$)						
Number of bars			2	2	3	4
Cabling c.s.a.		mm^{2}	50×5	80×5	100×5	100×5
Rated operationnal current in category AC-1 at ambient air temperature	$\leqslant 40^{\circ} \mathrm{C}$	A	800	1250	3000	2750
	$\leqslant 55{ }^{\circ} \mathrm{C}$	A	700	1100	1750	2400
	$\leqslant 70{ }^{\circ} \mathrm{C}$	A	600	900	1500	2000

Increase in rated operational current by paralleling of poles

Apply the following coefficients to the above currents:
■ 2 poles in parallel: $K=1.60$
■ 3 poles in parallel: $\mathrm{K}=2.25$
■ 4 poles in parallel: $\mathrm{K}=2.8$.
these coefficients take into account an often unbalanced distribution of current between the poles
Maximum operating rate in operating cycles 120/hour.

CR1B rating - selection according to electrical durability in category AC-1 (Ue $\leqslant 440 \mathrm{~V}$)

For 660 V , multiply the number of operating cycles by 0.8 .

CR1B contactors for switching the primaries of 3-phase transformers

Conditions of use

■ Maximum operational voltage: $1000 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

- Maximum ambient temperature: $55^{\circ} \mathrm{C}$.

At power up, there is usually a suden inrush current. It reaches almost instantly its peak value and then decreases so approximately exponentially to its rapid steady state value.
The value depends on:

- characteristics of the magnetic circuit and the windings (section of kernel design field, number of turns, dimensions of the coils...)
- characteristics of magnetic metal sheets used (residual induction and saturation induction)

■ of the magnetic state of the circuit and the instantaneous value of the alternating voltage of the network at the time of activation.
When a transformer is switched on, there is generally an initial current surge which can reach 20 to 40 times the rated current for the power ratings shown below.
This current reaches its peak value almost instantaneously and then decreases in a largely exponential manner, quickly dropping back down to its steady state value.

CR1B contactor ratings			L	M	P	R
Prospective peak current at switch-on		A	18000	18000	24000	30000
Maximum operational power ${ }^{(1)}$	220 / 230 V	kVA	230	230	300	380
	380400 V	kVA	400	400	530	660
	415 / 440 V	kVA	450	450	560	700
	500 V	kVA	480	480	600	750
	660 V	kVA	600	600	800	950
	1000 V	kVA	700	700	1000	1200

[^15]

CR1BL33

CR1B Magnetic latching contactors - Product references

Maximum thermal current in category AC-1	Rated operational current in category AC-3	Composition	Number of Instantaneous auxiliary contacts		Basic reference, to be completed by adding the voltage code	Weight
A	A		N/C	N/O		kg
800	750	1 pole	2	1	CR1BL31-21 ${ }^{(2)}$	32.000
		2 poles	2	1	CR1BL32-21 ${ }^{(2)}$	45.000
		3 poles	2	1	CR1BL33021 ${ }^{(2)}$	58.000
		4 poles	2	1	CR1BL34021 ${ }^{(2)}$	72.000
1250	1000	1 pole	2	1	CR1BM31-21 ${ }^{(2)}$	31.000
		2 poles	2	1	CR1BM32-21 ${ }^{(2)}$	44.000
		3 poles	2	1	CR1BM33-21 ${ }^{(2)}$	57.000
		4 poles	2	1	CR1BM34-21 ${ }^{(2)}$	71.000
2000	1500	1 pole	2	1	CR1BP31-21 ${ }^{(2)}$	41.000
		2 poles	2	1	CR1BP32021 ${ }^{(2)}$	65.000
		3 poles	2	1	CR1BP33021 ${ }^{(2)}$	94.000
		4 poles	2	1	CR1BP34*21 ${ }^{(2)}$	120.000
2750	1800	1 pole	2	1	CR1BR31-21 ${ }^{(2)}$	52.000
		2 poles	2	1	CR1BR32•21 ${ }^{(2)}$	85.000
		3 poles	2	1	CR1BR33-21 ${ }^{(2)}$	129.000
		4 poles	2	1	CR1BR34021 ${ }^{(2)}$	160.000

(1) Standard control circuit voltages:

Volts	$\mathbf{1 1 0}$	$\mathbf{1 2 5}$	$\mathbf{1 2 7}$	$\mathbf{2 0 0}$	$\mathbf{2 2 0}$	$\mathbf{2 4 0}$	$\mathbf{2 5 0}$	$\mathbf{3 8 0}$	$\mathbf{4 1 2}$	$\mathbf{4 4 0}$	$\mathbf{5 0 0}$
$\sim 50-400 \mathrm{~Hz}$	F	-	G	L	M	U	-	Q	N	R	S
$-=$	FD	GD	-	-	MD	UD	UCD	-	-	RD	SD

For other voltages, see tables of references coils page 123 or consult us.
(2) Other configurations, see below.

Other configurations for CR1B

For other configurations of auxiliary contacts, replace the number 21 (2 "N/O" +1 "N/C") by the reference of the chosen configuration.
Example: LC1BP33•30.

1 "N/O" +2 "N/C"		
3 "N/O"	\longrightarrow	12
30		

Spare parts see page 122.
Note: the protection coil control circuit against short circuits must be performed by a fuse coordinated with the cable section used: $1.5 \mathrm{~mm}^{2}$ for copper: 12 A fuse maximum (BS88 or g1).

TeSys CR1B Magnetic latching contactors

Characteristics

Characteristics according to ratings

CR1B contactor rating				L	M	P	R				
Number of poles				1,2,3 or 4							
Rated operational voltage			V	1000							
Environment											
Terminal protection cover against accidental contact				Without							
Protective treatment				TC							
Ambient air temperature		storage	${ }^{\circ} \mathrm{C}$	-60 ... +80							
		operation	${ }^{\circ} \mathrm{C}$	$-15 \ldots+60$							
Maximum operating altitude			m	3000							
Maximum inclination				$\pm 30^{\circ}$ occasional, in relation to normal vertical mounting plane							
Pole characteristics											
Rated operational voltage conforming to		BS 775 and IEC 158-1	V	1000							
		VDE 0110 grC	V	1500							
Frequency limits by operational current			Hz	50-60							
Operational current	Distribution ($\square \leqslant 40^{\circ} \mathrm{C}$) AC-1		A	800	1250	2000	2750				
	Motor	AC-3	A	750	1000	1500	1800				
	$\left(\square \leqslant 40^{\circ} \mathrm{C}, \mathrm{U}\right.$	AC-4	A	750	1000	1500	1800				
Rated making capacity I rms conforming to IEC 158-1			A	10000	10000	15000	18000				
Rated breaking capacity conforming to IEC 158-1		220-380-415-440 V	A	10000	10000	15000	18000				
		500 V	A	9000	9000	12000	15000				
		660 V	A	8000	8000	9000	11000				
		1000 V	A	4000	4000	5000	6000				
Permissible short time rating From cold state, with no current flowing for previous 60 minutes at $\square \leqslant 40^{\circ} \mathrm{C}$		for 1 s	A	9600	9600	12000	15000				
		for 5 s	A	9600	9600	12000	15000				
		for 10 s	A	7000	8000	9600	12000				
		for 30 s	A	4800	5200	6400	8000				
		for 1 min	A	3500	3800	5200	6300				
		for 3 min	A	2100	2400	3600	4400				
		for 10 min	A	1200	1800	2800	3600				
Short-circuit protection by fuses (max. rating)	Distribution	type g1-BS 88	A	800	1200	$1000 \times 2^{(1)}$	$1200 \times 2{ }^{(1)}$				
	Motor circuit	type aM	A	800	1200	$800 \times 2{ }^{(1)}$	$1000 \times 2{ }^{(1)}$				
	With thermal overload relay	type g1-BS 88	A	1000	1500	$1000 \times 2^{(1)}$	$1200 \times 2{ }^{(1)}$				
Average impedance per pole			$\mathrm{m} \Omega$	0.18	0.18	0.13	0.09				
Power dissipated per pole		AC-1	W	115	280	520	680				
		$\overline{\text { AC-3 }}$	W	88	180	290	360				
Number of bars				2	2	3	4				
Bar Control circuit characteristics			mm	50×5 80×5 100×5			100×10				
			Control circuit characteristics								
Rated control voltage		$50 / 60 \mathrm{~Hz}$	V				110 to 500				
		400 Hz and $=$-.	V	110 to 500							
Voltage limits \sim and $=-$		latching	Un	0.85 to 1.1							
		unlatching	Un	0.85 to 1.1							
Maximum operating rate in mechanical operating cycles (at $\square \leqslant 40^{\circ} \mathrm{C}$)			man./h	120							
Mechanical durability			man.	1 million							
Average consumption at $50 / 60 \mathrm{~Hz}$	Latching	1 pole	VA	650	650	650	650				
		2 poles	VA	1100	1100	1100	1100				
		3 poles	VA	1650	1650	1650	1650				
		4 poles	VA	1850	1850	1850	1850				
	Unlatching	1 pole	VA	110	110	110	110				
		2 poles	VA	125	125	125	125				
		3 poles	VA	165	165	165	165				
		4 poles	VA	175	175	175	175				
Average consumption at 400 Hz and $=-$	Latching	1 pole	VA	600	600	600	600				
		2 poles	VA	1000	1000	1000	1000				
		3 poles	VA	1500	1500	1500	1500				
		4 poles	VA	1700	1700	1700	1700				
	Unlatching	1 pole	VA	100	100	100	100				
		2 poles	VA	115	115	115	115				
		3 poles	VA	150	150	150	150				
		4 poles	VA	160	160	160	160				
Average operating time at nominal voltage				The closing time " C " is measured from the moment the coil supply is switched on to initial contact of the main poles. The opening time "O" is measured from the moment the coil supply is switched off to the moment the main poles separate.							
Operating in a.c. or d.c.		Latching	ms	100-150	100-150	100-150	100-150				
		Unlatching	ms	20-40	20-40	20-40	20-40				

Note: the arcing time depends on the circuit switched by the main poles. For 3-phase applications the arcing time is usually less than 10 ms . The load is isolated from the supply after a time equal to the sum of the opening time and the arcing time.
Characteristics of instantaneous auxiliary contacts (type ZC4GM for CR1B contactors)

Rated thermal current	A	20
Rated insulation voltage conforming to	IEC 337-1	
	VDE 0110 grC	
Cabling	Number of bars	
	Bar c.s.a.	750

(1) Parallel cabling must be done only according the instructions of the fuses manufacturer.

TeSys CR1B Magnetic latching contactors

Characteristics

Characteristics								
Characteristics of instantaneous auxiliary contacts (type ZC4GM for CR1B contactors)								
Operational power	in a.c.	V	110/127	220	380		415/440	500
	1 million operating cycles	VA	2000	4000	4000		4000	3500
	occasional making capacity	VA	14000	23000	35000		45000	35000
			Electrical durability (valid for up to 2400 operating cycles/hour) on an inductive load such as the coil of an electromagnet: making current (cos 0.7) $=10$ times the power broken ($\cos \square 0.4$).					
Operational power	in d.c.	V	110	220	440		500	
	1 million operating cycles	VA	250	250	230		200	
	occasional making capacity	VA	1600	800	400		360	
			Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the load.					
Setting characteristics for control circuit								
CR1B contactor rating			L	M		P		R
Electromagnet		Ref.	ET1-KB50					
Air gap of the magnetic circuit		mm	5/100					
Pick-up travel (E)		mm	30					
Pull-in travel (e)		mm	10					
N° of the return spring of the moving part			1×292 (1 pole contactors) 2×292 (2 poles, 3 poles, 4 poles contactors)					
Type of coil			WB1-KB					
Pull-in cold voltage ($\square=20^{\circ} \mathrm{C}$)		Un	0.75					
Drop-out voltage		Un	0.30 to 0.50					
Adjustment ofapplication force (F) according to contactor compositionon the contact per pole								
Number of springs	1 pole		201	201		201		155
	2 poles		201	201		201		155
	3 poles		201	201		201		155
	4 poles		201	201		201		155
Application force (F) to contact per pole	1 pole	daN	30	30		$30{ }^{(1)}$		$30^{(2)}$
	2 poles	daN	30	30		$30^{(1)}$		$30^{(2)}$
	3 poles	daN	30	30		$30^{(1)}$		$30^{(2)}$
	4 poles	daN	30	30		$30{ }^{(1)}$		$30^{(2)}$
Switch pole setting	Opening gap (b.), electro-magnet closed	mm	2 ± 0.5					
	Beginning of opening, during closing action (F)	mm	12 to 14					
	Application force (F)	daN	0.900					

(1) Each pole has 2 contacts: the force must be applied evenly to each of these contacts.
(2) Each pole has 3 contacts: the force must be applied evenly to each of these contacts.

Electromagnet ET1-KB50

N/O pole

N/C pole

TeSys CR1B Magnetic latching contactors
Dimensions

Common side view
Drilling plan of busbars connections

Diameter of screw: 12 mm .

Type	Rating (A)	Number of poles	\mathbf{L}	\mathbf{M}	$\mathbf{M 1}$	$\mathbf{M 2}$	\mathbf{b}	\mathbf{c}	$\boldsymbol{\varnothing}$	\mathbf{a}	\mathbf{T}	\mathbf{S}	\mathbf{R}	\mathbf{N}	\mathbf{P}	$\mathbf{Q 1}$
CR1BL	800	1	345	285	-	-	59	16	9	50	30	10	122	121	100	100

Minimum electrical clearance

Rating of contactor CR1B		L	M	P	R
~ 3-phase voltage					
380/440 V	X1	100	100	150	200
	X2	150	150	200	250
500 V	X1	100	100	150	200
	X2	150	150	220	250
660 V	X1	150	150	200	200
	X2	200	200	250	250
1000 V	X1	200	200	200	250
	X2	250	250	250	300

Contactor CR1B

TeSys CR1B Magnetic latching contactors
Accessories and spare parts

Accessories for CR1B contactors

Description	Application	Reference	Weight
Mechanical interlock ${ }^{(3)}$ with mounting	For vertical assembly of reversing contactors and CR1 B changeover contactor pairs	EZ2LB0601	kg
accessories		LA9B103	1.560
Kit containing 2 mounting brackets			1.620

(3) Positive mechanical interlocking between 2 vertically mounted contactors of identical or different ratings. Connecting rods and cranks assembled on right-hand sides, crank pins on the pole side.
Vertical fixing centre distance between the two contactors: 600 mm .

Spare parts for CR1B contactors

Description	For contactors	Number of sets required per pole	Reference	Weight kg
Sets of contacts (1 moving contact, 1 fixed contact)	CR1BL	1	PA1LB80	0.420
	CR1BM	1	PA1LB80	0.420
	CR1BP	2	PA1LB80	0.420
	CR1BR	3	PA1LB80	0.420
Description	For contactors	Composition	Reference	Weight
				kg
Moving contact only (for one finger)	CR1B		PA1LB75	0.220
Fixed contact only (for one finger)	CR1B		PA1LB76	0.200
Blow-out horn only (for 1 finger)	CR1B		PA1LB89	0.120
Arc chambers (for a single pole)	CR1BL		PA1LB50	3.700
	CR1BM		PA1LB50	3.700
	CR1BP		PA1PB50	6.200
	CR1BR		PA1RB50	8.500
Auxiliary contact blocks	CR1B	1 contact N/C	ZC4GM1	0.030
	CR1B	1 contact N/O	ZC4GM2	0.030
	CR1B	1 contact N/C	ZC4GM9	0.030
	CR1B	1 contact N/O	ZC4GM8	0.030
Switch pole for automatic cut-out coil	CR1B		PR4FB00•• ${ }^{(1)}$	0.600
Set of moving and fixed contacts for switch pole	CR1B		PV1FA80	0.035
Arc chamber for switch pole	CR1B		PN1FB50	0.220

[^16]

ZC4GM1

WB1KB

Coils for CR1B contactors

Usual voltage		Coils		Spare parts				
－－	$50-400 \mathrm{~Hz}$	Resistance$\left(\square=20^{\circ} \mathrm{C}\right)$	Reference	Additional resistors		Cut－out contact		Rectifier for～
				R1	R2		Type	
V	V	Ω		，	Ω			
For CR1B•31		1 pole						
－	110／120	19.7	WB1KB140	68	47	2	ZC4GM2 or ZC4GM8	DR5TE1U
110 ／ 125	－	25.2	WB1KB134	68	68	2	ZC4GM2 or ZC4GM8	－
－	220／240	77.2	WB1KB136	220	180	2	ZC4GM2 or ZC4GM8	DR5TE1U
220	－	94	WB1KB139	270	220	2	ZC4GM2 or ZC4GM8	－
250	－	128	WB1KB125	330	270	3	ZC4GM2 or ZC4GM8	－
－	380／400	197	WB1KB126	470	470	3	ZC4GM2 or ZC4GM8	DR5TE1S
－	415／440	257	WB1KB138	1000	470	3	ZC4GM2 or ZC4GM8	DR5TE1S
For CR1B•32		2 poles						
－	110	9.6	WB1KB133	10	33	1	PR4FB0011	DR5TE1U
110	120／127	11.4	WB1KB121	47	39	1	PR4FB0010	DR5TE1U
125	－	19.7	WB1KB140	100	47	1	PR4FB0009	－
－	220	32.5	WB1KB124	120	120	1	PR4FB0007	DR5TE1U
220	240	49.7	WB1KB122	220	150	1	PR4FB0007	DR5TE1U
250	－	77.2	WB1KB136	330	220	1	PR4FB0006	－
－	380／400	128	WB1KB125	470	470	1	PR4FB0005	DR5TE1S
－	415／440	160	WB1KB137	680	560	1	PR4FB0004	DR5TE1S
For CR1B•33		3 poles						
－	110	7.2	WB1KB123	39	27	1	PR4FB0012	DR5TE1U
110	120／127	9.6	WB1KB133	47	39	1	PR4FB0011	DR5TE1U
125	－	11.4	WB1KB121	56	47	1	PR4FB0010	－
220	240	32.5	WB1KB124	180	120	1	PR4FB0008	DR5TE1U
250	－	61	WB1KB135	270	270	1	PR4FB0006	－
－	380／400	94	WB1KB139	470	390	1	PR4FB0005	DR5TE1S
－	415／440	128	WB1KB125	680	470	1	PR4FB0004	DR5TE1S
For CR1B•34		4 poles						
－	110	5.8	WB1KB132	33	27	1	PR4FB0014	DR5TE1U
110	120／127	7.2	WB1KB123	47	33	1	PR4FB0012	DR5TE1U
125	－	11.4	WB1KB121	56	45	1	PR4FB0010	－
－	220	25.2	WB1KB134	150	120	1	PR4FB0008	DR5TE1U
－	240	32.5	WB1KB124	180	150	1	PR4FB0007	DR5TE1U
250	－	49.7	WB1KB122	270	220	1	PR4FB0007	－
－	380	77.2	WB1KB136	390	390	1	PR4FB0006	DR5TE1S
－	400／440	94	WB1KB139	560	470	1	PR4 FB0005	DR5TE1S

（1）For hot and humid conditions＂TH treatment＂，the references of the coils are supplemented by the letters＂TH＂．
Example：WB1KB135TH．
Reference of resistance ：DR2SC0010 for 10 ohms and
DR2SC0470 for 470 ohms

Weight of the various elements：
\square coil WB1KBゃゃゃ $\quad 1.120$ kg
－contact ZC4GM • $\quad 0.030 \mathrm{~kg}$
－switch PR4FB00 • 0.600 kg
rectifier DRSTEl $\quad 0.100 \mathrm{~kg}$
－resistance DR2SC0 e • 0.030 kg

Standards and tests description

Standardization 128
Current of asynchronous squirrel cage motors at nominal load - Common values 131
Degrees of protection provided by enclosures: IP Code 132
Degrees of protection provided by enclosures: IK code 133
Protective treatment of equiment according to climatic environment 134
CF 452 - Customer requirements specification form 136

TeSys B Variable composition contactors
Standards and tests description

Characteristics with their description

The rarefied atmosphere at high altitude reduces the dielectric strength of the air and hence the rated operational voltage of the contactor. It also reduces the cooling effect of the air and hence the rated operational current of the contactor (unless the temperature drops at the same time).

No derating is necessary up to 3000 m .
Derating factors to be applied above this altitude for main pole operational voltage and current (a.c. supply) are as follows

Altitude	$\mathbf{3 5 0 0} \mathbf{~ m}$	$\mathbf{4 0 0 0} \mathbf{~ m}$	$\mathbf{4 5 0 0} \mathbf{~ m}$	$\mathbf{5 0 0 0} \mathbf{~ m}$
Rated operetional voltage	0.90	0.80	0.70	0.60
Rated operational current	0.92	0.90	0.88	0.86

Ambient air temperature	The temperature of the air surrounding the device, measured near to the device. The operating characteristics are given : - with no restriction for temperatures between -5 and $+55^{\circ} \mathrm{C}$, - with restrictions, if necessary, for temperatures between -50 and $+70^{\circ} \mathrm{C}$.
Rated operational current (le)	This is defined taking into account the rated operational voltage, operating rate and duty, utilisation category and ambient temperature around the device.
Rated conventional thermal current (lth) ${ }^{(1)}$	The current which a closed contactor can sustain for a minimum of 8 hours without its temperature rise exceeding the limits given in the standards.
Permissible short time rating	The current which a closed contactor can sustain for a short time after a period of no load, without dangerous overheating.
Rated operational voltage (Ue)	This is the voltage value which, in conjunction with the rated operational current, determines the use of the contactor or starter, and on which the corresponding tests and the utilisation category are based. For 3-phase circuits it is expressed as the voltage between phases. Apart from exceptional cases such as rotor short-circuiting, the rated operational voltage Ue is less than or equal to the rated insulation voltage Ui.
Rated control circuit voltage (Uc)	The rated value of the control circuit voltage, on which the operating characteristics are based. For a.c. applications, the values are given for a near sinusoidal wave form (less than 5% total harmonic distortion).
Rated insulation voltage (Ui)	This is the voltage value used to define the insulation characteristics of a device and referred to in dielectric tests determining leakage paths and creepage distances. As the specifications are not identical for all standards, the rated value given for each of them is not necessarily the same.
Rated impulse withstand voltage (Uimp)	The peak value of a voltage surge which the device is able to withstand without breaking down.
Rated operational power (expressed in kW)	The rated power of the standard motor which can be switched by the contactor, at the stated operational voltage.
Rated breaking capacity ${ }^{(2)}$	This is the current value which the contactor can break in accordance with the breaking conditions specified in the IEC standard.
Rated making capacity ${ }^{(2)}$	This is the current value which the contactor can make in accordance with the making conditions specified in the IEC standard.

Pole impedance	The impedance of one pole is the sum of the impedance of all the circuit components between the input terminal and the output terminal. The impedance comprises a resistive component (R) and an inductive component $(\mathrm{X}=\mathrm{L}=\mathrm{L} \square)$.
The total impedance therefore depends on the frequency and is normally given for 50 Hz.	
This average value is given for the pole at its rated operational current.	

[^17]
Contactor utilization categories conforming to IEC 60947-4

The standard utilisation categories define the current values which the contactor must be able to make or break.

These values depend on

- the type of load being switched : squirrel cage or slip ring motor, resistors,
- the conditions under which making or breaking takes place: motor stalled, starting or running, reversing, plugging.

Category AC-1	This category applies to all types of a.c. load with a power factor equal to or greater than 0.95 ($\cos \square \geqslant 0.95$).
	Application examples: heating, distribution.
Category AC-2	This category applies to starting, plugging and inching of slip ring motors. On closing, the contactor makes the starting current, which is about 2.5 times the rated current of the motor. On opening, it must break the starting current, at a voltage less than or equal to the mains supply voltage.
Category AC-3	This category applies to squirrel cage motors with breaking during normal running of the motor. On closing, the contactor makes the starting current, which is about 5 to 7 times the rated current of the motor. On opening, it breaks the rated current drawn by the motor; at this point, the voltage at the contactor terminals is about 20 \% of the mains supply voltage. Breaking is light. Application examples: all standard squirrel cage motors: lifts, escalators, conveyor belts, bucket elevators, compressors, pumps, mixers, air conditioning units, etc.
Category AC-4	This category covers applications with plugging and inching of squirrel cage and slip ring motors. The contactor closes at a current peak which may be as high as 5 or 7 times the rated motor current. On opening it breaks this same current at a voltage which is higher, the lower the motor speed. This voltage can be the same as the mains voltage. Breaking is severe Application examples: printing machines, wire drawing machines, cranes and hoists, metallurgy industry.

d.c. applications

Category DC-1	This category applies to all types of d.c. load with a time constant (L/R) of less than or equal
to 1 ms.	

Category DC-3	This category applies to starting, counter-current braking and inching of shunt motors.
	Time constant $\leqslant 2$ ms.
	On closing, the contactor makes the starting current, which is about 2.5 times the rated motor

- On closing, the contactor makes the starting current, which is about 2.5 times the rated motor current.
■ On opening, the contactor must be able to break 2.5 times the starting current at a voltage which is less than or equal to the mains voltage. The slower the motor speed, and therefore the lower its back e.m.f., the higher this voltage.
Breaking is difficult.

Category DC-5

This category applies to starting, counter-current braking and inching of series wound motors. Time constant $\leqslant 7.5 \mathrm{~ms}$.
On closing, the contactor makes a starting current peak which may be as high as 2.5 times the rated motor current. On opening, the contactor breaks this same current at a voltage which is higher, the lower the motor speed. This voltage can be the same as the mains voltage. Breaking is severe.

Utilization categories for auxiliary contacts \& control relays conforming to IEC 60947-5

a.c. applications

Category AC-14 ${ }^{(1)}$ This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is less than 72 VA.

Application example: switching the operating coil of contactors and relays.

Category AC-15 ${ }^{(1)}$	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is more than 72 VA.
	Application example: switching the operating coil of contactors.

d.c. applications

Category DC-13 ${ }^{(2)}$

This category applies to the switching of electromagnetic loads for which the time taken to reach 95% of the steady state current $(T=0.95)$ is equal to 6 times the power P drawn by the load (with $P \leqslant 50 \mathrm{~W}$).

Application example: switching the operating coil of contactors without economy resistor

Standardization

Conformity to standards

Schneider Electric products satisfy, in the majority of cases, national (for example: BS in Great Britain, NF in France, DIN in Germany), European (for example: CENELEC) or international (IEC) standards. These product standards precisely define the performance of the designated products (such as IEC 60947 for low voltage equipment).
When used correctly, as designated by the manufacturer and in accordance with regulations and correct practices, these products will allow users to build equipment, machine systems or installations that conform to their appropriate standards (for example: IEC 60204-1, relating to electrical equipment used on industrial machines).
Schneider Electric is able to provide proof of conformity of its production to the standards it has chosen to comply with, through its quality assurance system.
On request, and depending on the situation, Schneider Electric can provide the following:

- a declaration of conformity,
- a certificate of conformity (ASEFA/LOVAG),
- a homologation certificate or approval, in the countries where this procedure is required or for particular specifications, such as those existing in the merchant navy.

Code	Certification authority		Country
	Name	Abbreviation	
ANSI	American National Standards Institute	ANSI	USA
BS	British Standards Institution	BSI	Great Britain
CEI	Comitato Elettrotecnico Italiano	CEI	Italy
DIN/VDE	Verband Deutscher Electrotechniker	VDE	Germany
EN	Comité Européen de Normalisation Electrotechnique	CENELEC	Europe
GOST	Gosudarstvenne Komitet Standartov	GOST	Russia
IEC	International Electrotechnical Commission	IEC	Worldwide
JIS	Japanese Industrial Standards Committee	JISC	Japan
NBN	Institut Belge de Normalisation	IBN	Belgium
NEN	Nederlands Normalisatie Institut	NNI	Netherlands
NF	Union Technique de l'Electricité	UTE	France
SAA	Standards Association of Australia	SAA	Australia
UNE	Asociacion Española de Normalizacion y Certificacion	AENOR	Spain

European EN standards

These are technical specifications established in conjunction with, and with approval of, the relative bodies within the various CENELEC member countries (European Union, European Free Trade Association and many central and eastern European countries having "member" or "affiliated" status). Prepared in accordance with the principle of consensus, the European standards are the result of a weighted majority vote. Such adopted standards are then integrated into the national collection of standards, and contradictory national standards are withdrawn European standards incorporated within the French collection of standards carry the prefix NF EN. At the 'Union Technique de l'Electricité' (Technical Union of Electricity) (UTE), the French version of a corresponding European standard carries a dual number: European reference (NF EN ...) and classification index (C ...).
Therefore, the standard NF EN 60947-4-1 relating to motor contactors and starters, effectively constitutes the French version of the European standard EN 60947-4-1 and carries the UTE classification C 63-110.
This standard is identical to the British standard BS EN 60947-4-1 or the German standard DIN EN 60947-4-1.
Whenever reasonably practical, European standards reflect the international standards (IEC). With regard to automation system components and distribution equipment, in addition to complying with the requirements of French NF standards, Schneider Electric brand components conform to the standards of all other major industrial countries.

Regulations

European Directives

Opening up of European markets assumes harmonisation of the regulations pertaining to each of the member countries of the European Union.
The purpose of the European Directive is to eliminate obstacles hindering the free circulation of goods within the European Union, and it must be applied in all member countries. Member countries are obliged to transcribe each Directive into their national legislation and to simultaneously withdraw any contradictory regulations. The Directives, in particular those of a technical nature which concern us, only establish the objectives to be achieved, referred to as "essential requirements".
The manufacturer must take all the necessary measures to ensure that his products conform to the requirements of each Directive applicable to his production.
As a general rule, the manufacturer certifies conformity to the essential requirements of the Directive(s) for his product by affixing the C \in mark.
The C€ mark is affixed to Schneider Electric brand products concerned, in order to comply with French and European regulations.

Significance of the C \in mark

- The C \in mark affixed to a product signifies that the manufacturer certifies that the product conforms to the relevant European Directive(s) which concern it; this condition must be met to allow free distribution and circulation within the countries of the European Union of any product subject to one or more of the E.U. Directives.
- The C \in mark is intended solely for national market control authorities.
- The C \in mark must not be confused with a conformity marking.

Standardization

European Directives (continued)

For electrical equipment, only conformity to standards signifies that the product is suitable for its designated function, and only the guarantee of an established manufacturer can provide a high level of quality assurance.
For Schneider Electric brand products, one or several Directives are likely to be applicable, depending on the product, and in particular:

- the Low Voltage Directive 2006/95/EC: the C \in mark relating to this Directive has been compulsory since $16^{\text {th }}$ January 2007.
- the Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC and $93 / 68 / E E C$: the C \in mark on products covered by this Directive has been compulsory since 1st January 1996.

ASEFA-LOVAG certification

The function of ASEFA (Association of French Testing Stations for Low Voltage Industrial Electrical Equipment) is to carry out tests of conformity to standards and to issue certificates of conformity and test reports. ASEFA laboratories are authorised by the French authorisation committee (COFRAC).
ASEFA is now a member of the European agreement group LOVAG (Low Voltage Agreement Group). This means that any certificates issued by LOVAG/ASEFA are recognised by all the authorities which are members of the group and carry the same validity as those issued by any of the member authorities.

Quality labels

When components can be used in domestic and similar applications, it is sometimes
recommended that a "Quality label" be obtained, which is a form of certification of conformity.

Code	Quality label	Country
CEBEC	Comité Electrotechnique Belge	Belgium
KEMA-KEUR	Keuring van Electrotechnische Materialen	Netherlands
NF	Union Technique de l'Electricité	France
ÖVE	Österreichischer Verband für Electrotechnik	Austria
SEMKO	Svenska Electriska Materiel Kontrollanatalten	Sweden

Product certifications

In some countries, the certification of certain electrical components is a legal requirement. In this case, a certificate of conformity to the standard is issued by the official test authority.
Each certified device must bear the relevant certification symbols when these are mandatory:

Code	Certification authority	Country
CSA	Canadian Standards Association	Canada
UL	Underwriters Laboratories	USA
CCC	China Compulsory Certification	China

Note on certifications issued by the Underwriters Laboratories (UL). There are two levels of approval:
"Recognized" ($\mathbf{7} \mathbf{1}$) The component is fully approved for inclusion in equipment built in a workshop, where the operating limits are known by the equipment manufacturer and where its use within such limits is acceptable by the Underwriters Laboratories.
The component is not approved as a "Product for general use" because its manufacturing characteristics are incomplete or its application possibilities are limited.
A "Recognized" component does not necessarily carry the certification symbol.
"Listed" (UL) The component conforms to all the requirements of the classification applicable to it and may therefore be used both as a "Product for general use" and as a component in assembled equipment. A "Listed" component must carry the certification symbol.

Marine classification societies

Prior approval (= certification) by certain marine classification societies is generally required for electrical equipment which is intended for use on board merchant vessels.

Code	Classification authority	Country
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
LR	Lloyd's Register	Great Britain
NKK	Nippon Kaiji Kyokaï	Japan
RINA	Registro Italiano Navale	Italy
RRS	Register of Shipping	Russia

Note

For further details on a specific product, please refer to the "Characteristics" pages in this catalogue or consult your Regional Sales Office.

TeSys B Variable composition contactors

Standards and tests description

Tests of contactors (conforming to IEC 60947-4-1)

		Electrical durability: making and breaking conditions						Occasional duty: making and breaking conditions					
a.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
		1	U	cos \square	1	U	cos \square	1	U	$\boldsymbol{\operatorname { c o s }} \square$	1	U	$\boldsymbol{\operatorname { c o s }} \square$
Resistors, non inductive or slightly inductive loads	AC-1	le	Ue	0.95	le	Ue	0.95	1.5 le	1.05 Ue	0.8	1.5 le	1.05 Ue	0.8
Motors													
Slip ring motors: starting, breaking.	AC-2	2.5 le	Ue	0.65	2.5 le	Ue	0.65	4 le	1.05 Ue	0.65	4 le	1.05 Ue	0.65
Squirrel cage motors: starting, breaking whilst motor running.	AC-3												
	$\underline{\mathrm{le}}{ }^{(1)}$	6 le	Ue	0.65	1 le	0.17 Ue	0.65	10 le	1.05 Ue	0.45	8 le	1.05 Ue	0.45
	$l e>{ }^{(2)}$	6 le	Ue	0.35	1 le	0.17 Ue	0.35	10 le	1.05 Ue	0.35	8 le	1.05 Ue	0.35
Squirrel cage motors: starting, reversing, inching	AC-4												
	le ${ }^{(1)}$	6 le	Ue	0.65	6 le	Ue	0.65	12 le	1.05 Ue	0.45	10 le	1.05 Ue	0.45
	le > ${ }^{(2)}$	6 le	Ue	0.35	6 le	Ue	0.35	12 le	1.05 Ue	0.35	10 le	1.05 Ue	0.35

d.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
		1	U	L/R (ms)									
Resistors, non inductive or slightly inductive loads	DC-1	le	Ue	1	le	Ue	1	1.5 le	1.05 Ue	1	1.5 le	1.05 Ue	1
Shunt wound motors:	DC-3	2.51 le	Ue	2	2.51 le	Ue	2	4 le	1.05 Ue	2.5	4 le	1.05 Ue	2.5

starting,
reversing

starting,
reversing
inching

Tests of control relays and auxiliary contacts (conforming to IEC 60947-4-1)

		Electrical durability: making and breaking conditions						Occasional duty: making and breaking conditions					
a.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
		1	U	$\boldsymbol{\operatorname { c o s }} \square$	1	U	$\boldsymbol{\operatorname { c o s }} \square$	1	U	$\boldsymbol{\operatorname { c o s }} \square$	1	U	$\boldsymbol{\operatorname { c o s }} \square$
Electromagnets													
$\leqslant 72 \mathrm{VA}$	AC-14	-	-	-	-	-	-	6 le	1.1 Ue	0.7	6 le	1.1 Ue	0.7
> 72 VA	AC-15	10 le	Ue	0.7	le	Ue	0.4	10 le	1.1 Ue	0.3	10 le	1.1 Ue	0.3
d.c. supply													
Typical applications	Utilisation category	Making			Breaking			Making			Breaking		
		1	U	L/R (ms)	1	U	L/R (ms)	I	U	L/R (ms)		U	L/R (ms)
Electromagnets	DC-13	le	Ue	$6 \mathrm{P}^{(3)}$	le	Ue	$6 \mathrm{P}^{(3)}$	1.1 le	1.1 Ue	$6 \mathrm{P}^{(3)}$	1.1 le	1.1 Ue	$6 \mathrm{P}^{(3)}$

(1) le $\leqslant 17$ A for electrical durability, le $\leqslant 100 \mathrm{~A}$ for occasional duty.
(2) $l e>17$ A for electrical durability, $l e>100 \mathrm{~A}$ for occasional duty.
(3) The value $6 P$ (in watts) is based on practical observations and is considered to represent the majority of d.c. magnetic loads up to the maximum limit of $P=50$ Wi.e. $6 P=300 \mathrm{~ms}=L / R$.
Above this, the loads are made up of smaller loads in parallel. The value 300 ms is therefore a maximum limit whatever the value of current drawn.

Current of asynchronous squirrel cage motors at nominal load - Common values

3-phase 4-pole motors												
Current values for power in kW					Current values for power in hp							
Rated operational power	Indicative rated operational current values at:			rrent $690 \text { V }$	Rated operational power ${ }^{(2)}$	Indicative rated operational current values at:						
kW	A	A	A	A	hp	A	A	A	A	A	A	A
0.06	0.35	0.2	0.16	0.12	1/2	4.4	2.5	2.4	2.2	1.3	1.1	0.9
0.09	0.52	0.3	0.24	0.17	3/4	6.4	3.7	3.5	3.2	1.8	1.6	1.3
0.12	0.7	0.44	0.32	0.23	1	8.4	4.8	4.6	4.2	2.3	2.1	1.7
0.18	1	0.6	0.48	0.35	$1^{1 / 2}$	12	6.9	6.6	6	3.3	3	2.4
0.25	1.5	0.85	0.68	0.49	2	13.6	7.8	7.5	6.8	4.3	3.4	2.7
0.37	1.9	1.1	0.88	0.64	3	19.2	11	10.6	9.6	6.1	4.8	3.9
0.55	2.6	1.5	1.2	0.87	5	30.4	17.5	16.7	15.2	9.7	7.6	6.1
0.75	3.3	1.9	1.5	1.1	$7^{1 / 2}$	44	25.3	24.2	22	14	11	9
1.1	4.7	2.7	2.2	1.6	10	56	32.2	30.8	28	18	14	11
1.5	6.3	3.6	2.9	2.1	15	84	48.3	46.2	42	27	21	17
2.2	8.5	4.9	3.9	2.8	20	108	62.1	59.4	54	34	27	22
3	11.3	6.5	5.2	3.8	25	136	78.2	74.8	68	44	34	27
4	15	8.5	6.8	4.9	30	160	92	88	80	51	40	32
5.5	20	11.5	9.2	6.7	40	208	120	114	104	66	52	41
7.5	27	15.5	12.4	8.9	50	260	150	143	130	83	65	52
11	38	22	17.6	12.8	60	-	177	169	154	103	77	62
15	51	29	23	17	75	-	221	211	192	128	96	77
18.5	61	35	28	21	100	-	285	273	248	165	124	99
22	72	41	33	24	125	-	359	343	312	208	156	125
30	96	55	44	32	150	-	414	396	360	240	180	144
37	115	66	53	39	200	-	552	528	480	320	240	192
45	140	80	64	47	250	-	-	-	604	403	302	242
55	169	97	78	57	300	-	-	-	722	482	361	289
75	230	132	106	77	350	-	-	-	828	560	414	336
90	278	160	128	93	400	-	-	-	954	636	477	382
110	340	195	156	113	450	-	-	-	1030	-	515	412
132	400	230	184	134	500	-	-	-	1180	786	590	472
160	487	280	224	162								
200	609	350	280	203								
250	748	430	344	250								
315	940	540	432	313								
355	1061	610	488	354								
400	1200	690	552	400								
500	1478	850	680	493								
560	1652	950	760	551								
630	1844	1060	848	615								
710	2070	1190	952	690								
800	2340	1346	1076	780								
900	2640	1518	1214	880								
1000	2910	1673	1339	970								

(1) Values conforming to standard IEC 60072-1 (at 50 Hz).
(2) Values conforming to standard UL 508 (at 60 Hz).

Note: These values are given as a guide. They may vary depending on the type of motor, its polarity and the manufacturer.

TeSys B Variable composition contactors
Standards and tests description

Degrees of protection provided by enclosures: IP Code

Degrees of protection against the penetration of solid bodies, water and personnel access to live parts

The European standard EN 60529 dated October 1991, IEC publication 529 ($2^{\text {nd }}$ edition - November 1989), defines a coding system (IP code) for indicating the degree of protection provided by electrical equipment enclosures against accidental direct contact with live parts and against the ingress of solid foreign objects or water. This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gasses, fungi or vermin.
Certain equipment is designed to be mounted on an enclosure which will contribute towards achieving the required degree of protection (example : control devices mounted on an enclosure).
Different parts of an equipment can have different degrees of protection (example : enclosure with an opening in the base).
Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

IP eee code

The IP code comprises 2 characteristic numerals (e.g. IP 55) and may include an additional letter when the actual protection of personnel against direct contact with live parts is better than that indicated by the first numeral (e.g. IP 20C).
Any characteristic numeral which is unspecified is replaced by an X (e.g. IP XXB).

Degrees of protection provided by enclosures: IK code

The European standard EN 50102 dated March 1995 defines a coding system (IK code) for indicating the degree of protection provided by electrical equipment enclosures against external mechanical impact.
Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.
Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

IKeゃ code

The IK code comprises 2 characteristic numerals (e.g. IK 05).
2 characteristic numerals:
corresponding to a value of impact energy.

Protective treatment of equiment according to

climatic environment

Depending on the climatic and environmental conditions in which the equipment is placed, Schneider Electric can offer specially adapted products to meet your requirements.

In order to make the correct choice of protective finish, two points should be remembered:

- the prevailing climate of the country is never the only criterion
- only the atmosphere in the immediate vicinity of the equipment need be considered.

All climates treatment "TC"

This is the standard treatment for Schneider-electric brand equipment and is suitable for the vast majority of applications. It is the equivalent of treatments described as "Klimafest", "Climateproof".
In particular, it meets the requirements specified in the following publications:
■ Publication UTE C 63-100 (method I), successive cycles of humid heat at:
$+40^{\circ} \mathrm{C}$ and 95% relative humidity.
■ DIN 50016 - Variations of ambient conditions within a climatic chamber:
$+23^{\circ} \mathrm{C}$ and 83% relative humidity
$+40^{\circ} \mathrm{C}$ and 92% relative humidity.

It also meets the requirements of the following marine classification societies: BV-LR-GL-DNV-RINA.

Characteristics

■ Steel components are usually treated with zinc. When they have a mechanical function, they may also be painted.

- Insulating materials are selected for their high electrical, dielectric and mechanical characteristics.
■ Metal enclosures have a stoved paint finish, applied over a primary phosphate protective coat, or are galvanised (e.g. some prefabricated busbar trunking components).

Limits for use of "TC" (All climates) treatment
■ "TC" treatment is suitable for the following temperatures and humidity:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Relative humidity (\%)
20	95
40	50
50	TC" treatment is therefore suitable for all latitudes and in particular tropical and
equatorial regions where the equipment is mounted in normally ventilated industrial	
premises. Being sheltered from external climatic conditions, temperature variations	
are small, the risk of condensation is minimised and the risk of dripping water is	
virtually non-existent.	

Extension of use of "TC" (All climates) treatment

In cases where the humidity around the equipment exceeds the conditions described above, or in equatorial regions if the equipment is mounted outdoors, or if it is placed in a very humid location (laundries, sugar refineries, steam rooms, etc.), "TC" treatment can still be used if the following precautions are taken:

- The enclosure in which the equipment is mounted must be protected with a "TH" finish (see next page) and must be well ventilated to avoid condensation and dripping water (e.g. enclosure base plate mounted on spacers).
■ Components mounted inside the enclosure must have a "TC" finish.
■ If the equipment is to be switched off for long periods, a heater must be provided (0.2 to 0.5 kW per square decimetre of enclosure), that switches on automatically when the equipment is turned off. This heater keeps the inside of the enclosure at a temperature slightly higher than the outside surrounding temperature, thereby avoiding any risk of condensation and dripping water (the heat produced by the equipment itself during normal running is sufficient to provide this temperature difference).
■ Special considerations for "Operator dialog" and "Detection" products: for certain pilot devices, the use of "TC" treatment can be extended to outdoor use provided their enclosure is made of light alloys, zinc alloys or plastic material. In this case, it is also essential to ensure that the degree of protection against penetration of liquids and solid objects is suitable for the applications involved.

"TH" treatment for hot and humid environments

This treatment is suitable for hot and humid atmospheres where installations are regularly subject to condensation, dripping water and the risk of fungi.

In addition, plastic insulating components are resistant to attacks from insects such as termites and cockroaches. These properties have often led to this treatment being described as "Tropical Finish", but this does not mean that all equipment installed in tropical and equatorial regions must systematically have undergone "TH" treatment. On the other hand, certain operating conditions in temperate climates may well require the use of "TH" treated equipment (see limitations for use of "TC" treatment).

Special characteristics of "TH" treatment

■ All insulating components are made of materials which are either resistant to fungi or treated with a fungicide, and which have increased resistance to creepage (Standards IEC 60112, NF C 26-220, DIN 5348).
■ Metal enclosures receive a top-coat of stoved, fungicidal paint, applied over a rust inhibiting undercoat. Components with "TH" treatment may be subject to a surcharge ${ }^{(1)}$. Please consult your Regional Sales Office.

| Protective treatment selection guide | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Surrounding
 environment | Duty cycle | Internal
 heating of
 enclosure
 when not | Type of
 in use | Protective
 treatment |

These treatments cover, in particular, the applications defined by methods I and II of guide UTE C 63-100.

Special precautions for electronic equipment

Electronic products always meet the requirements of "TC" treatment. A number of them are "TH" treated as standard.

Some electronic products (for example: programmable controllers, flush mountable controllers CCX and flush mountable operator terminals XBT) require the use of an enclosure providing a degree of protection to at least IP 54, as defined by standards IEC 60664 and NF C 20 040, for use in industrial applications or in environmental conditions requiring "TH" treatment.

These electronic products, including flush mountable products, must have a degree of protection to at least IP 20 (provided either by their own enclosure or by their installation method) for restricted access locations where the degree of pollution does not exceed 2 (a test booth not containing machinery or other dust producing activities, for example).

Special treatments

For particularly harsh industrial environments, Schneider Electric is able to offer special protective treatments. Please consult your Regional Sales Office.
(1) A large number of the Schneider Electric brand products are "TH" treated as standard and are, therefore, not subject to a surcharge.

TeSys B Variable composition contactors
CF 452 - Customer requirements specification form

Download the configuration software "bar contactor soft-customer.xls" on:
https://www.se.com/ww/en/product-range-download/667-tesys-b/\#/software-firmware-tab

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $928298512 €$
www.se.com

[^0]: For voltages other than those listed above, please consult us

[^1]: (1) Bar pre-drilled at 225-285-345-385-445.
 (2) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}$.
 (3) +20 mm if intermediate bearing fitted.

[^2]: (1) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}-\operatorname{size} \boldsymbol{G}, b=84 \mathrm{~mm}-$ size $\boldsymbol{L}, b=141 \mathrm{~mm}$.
 (2) +20 mm if intermediate bearing fitted.
 (3) N/O poles (Normally Open), N/C poles (Normally Closed).

[^3]: (1) Bar pre-drilled at 225-285-345-385-445.
 (2) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}$ - size $\boldsymbol{L}, b=141 \mathrm{~mm}$.
 (3) +20 mm if intermediate bearing fitted.

[^4]: (1) With N/C main pole: size \boldsymbol{F} and $\boldsymbol{H}, b=95 \mathrm{~mm}-$ size $\mathbf{G}, b=84 \mathrm{~mm}-$ size $L, b=141 \mathrm{~mm}$.
 (2) +20 mm if intermediate bearing fitted.
 (3) N/O poles (Normally Open), N/C poles (Normally Closed).

[^5]: The operating force for a N/C pole is approximately equal to the force of 2 N/O poles.

[^6]: Each pole has 2 contacts, the force must be applied evenly to each of these contacts.

[^7]: (1) The closing time "N/O" or opening time "N/C" are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

[^8]: The operating force for a N/C pole is approximately equal to the force of 2 N/O poles.

[^9]: *) Choose additives LADT• and LADR• from the TeSys D range.

[^10]: (1) For devices with symbol combinations, the figures corresponding to the current are in bold.

[^11]: (1) For devices with symbol combinations, the figures corresponding to the current are in bold.

[^12]: (1) For supply voltages of less than 110 V , beware of voltage drops caused by the inrush current.

[^13]: Note: The N/C pole, which is used for machine de-excitation, has no arc chambers. Its breaking capacity is nil. Re-energisation of the contactor must therefore be avoided during the de-excitation phase.
 If there is any risk of this happening, it is advisable to add an off-delay function that prevents pick-up of the contactor for the 10 seconds following drop-out.

[^14]: « K to R rating：please consult us．
 （3） 1 auxiliary contact type ZC4GM1（code 1）or 1 auxiliary contact type ZC4GM2（code 2）
 or 1 auxiliary contacts block type LA1BN32（3 N／O contacts +2 N／C contacts）（code A）
 or 2 auxiliary contacts blocks type LA1BN32（6 N／O contacts +4 N／C contacts）（code B）．

[^15]: (1) Maximum operational power corresponding to a current peak at switch-on of 30 In

[^16]: (1) Reference to be completed, see page 117.

[^17]: (1) Conventional thermal current, in free air, conforming to IEC standards.
 (2) For a.c. applications, the breaking and making capacities are expressed by the rms value of the symmetrical component of the short-circuit current. Taking into account the maximum asymmetry which may exist in the circuit, the contacts therefore have to withstand a peak asymmetrical current which may be twice the rms symmetrical component.
 Note: these definitions are extracted from standard IEC 60947-1.

