

TeSys B - Bar-mounted variable composition contactors

Catalog 2020

Green Premium™

An industry leading portfolio of offers delivering sustainable value

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading # of PEP's*
- Circularity instructions

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.

CO₂ and P&L impact through... Resource Performance

Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_2 emissions.

Cost of ownership optimization through... Circular Performance

We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance

Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation

Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

Discover what we mean by green Check your products!

Tesys TeSys B - Bar-mounted variable composition Contactors

S.	
C	
t	
ō	
()	
ŋ	

Presentation Variable composition (bar-mounted) contactors	10
CV1B, CV3B, LC1B Selection guide	15
CV1B, CV3B, LC1B Characteristics	39
CV1B, CV3B, LC1B Accessories, spare parts	73
CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors	103
CR1B Magnetic latching contactor	113
Standards and tests description	125
Variable composition contactors - CF452 order form	136

Variable composition contactors,

The use of a variable composition contactor (also called bar-mounted contactor) becomes evident when the specification of the application can no longer be met with a standard contactor.

- High power load: > 400 kW.
- AC main supply from 1000 to 3000 V.
- Very inductive DC load: L/R > 15 ms.

- DC main supply with low current but voltage over 1000 V.
- High operating frequency: up to 1200 op./h.
- High durability: several millions of operations.

Some examples

The fact sheets are available at http://www.se.com/

Application form ref. EDCED110013EN

Application form ref. EDCED110014EN

Application form ref. EDCED110017EN

Videos

Very high power contactors - TeSys B - 1 - Discovery

Discover Schneider Electric's TeSys B bar contactors that are designed to cut out considerable electric arcs. See how they are manufactured in the Schneider Electric factory and check out the presentation of the range.

Very high power contactors -**TeSys** B - 2 - Applications Discover very high-power applications for which Schneider Electric's TeSys B bar contactors offer great advantages.

for very high power applications

Application form ref. EDCED110015EN

Application form ref. EDCED110016EN

Application form ref. EDCED110019EN

Application form ref. EDCED110020EN

Very high power contactors -TeSys B - 3 - Technology

Discover how Schneider Electric's TeSys B bar contactors cut out electric arcs of up to several thousand Amps: 'magnetic blowing'.

TeSys TeSys contactors Panorama

Applications		Equipmen	t based on st	Equipment requiring low consumption contactors which can be switched directly from solid state outputs				
			DF 533683_1.eps	PB112369eps		re din din	DF 533683_1aps	
		DF533682_1 eps		B DF533694_1.eps				8
Rated operational current A	C-3	6 A	616 A	9150 A	115800 A	7501800 A	612 A	925 A
Ā	C-1	12 A	20 A	25200 A	2002100 A	8002750 A	20 A	2040 A
Max. rated operational voltag	e	690 V	690 V	690 V	1000 V	1000 V	690 V	690 V
Number of poles		2 or 3	3 or 4	3 or 4	2, 3 or 4	14	3 or 4	3
Contactor type references		LC1SK LP1SK	LC1K LC7K LP1K	LC1D	LC1F	LC1B	LP4K	LC1D
Pages	Please con solutions. C	sult our catalo Control and pr	Please consult our catalogue "Motor starter solutions. Control and protection components".					

Motors, resistive circuits, rotor short-circuiting devices, electro lifting magnets, hoisting, mines, DC motors, high operating rates. Variable composition bar mounted contractors Equipment requiring magnetic latching contactors contactors. PB110869.eps

Applications conforming to "NATO" specifications and references. Shockproof contactors

DF533688_1.eps

1501800 A	801800 A	-	12630 A
2502750 A	802750 A	802340 A	25850 A
1000 V	∼ 1000 V 440 or 1500 V	3000 V	690 V or 1000 V
14	16	18	3 or 4
0045	011.	OF .	LC1FGeee
CR1F CR1B	CV●	CE• CS•	
	CV.		

Life Is On Schneider

TeSys TeSys B Variable composition contactors Panorama

Variable composition contactors

Applications

- Motor switching in categories AC-3. Resistive load switching: heating, lighting. Distribution circuit switching: line contactor.
- Supply changeover switching: circuit coupling.
 - Transformer, capacitor.

Contactors	Туре	CV1B						
	Size	F	G ⁽¹⁾	н	J ⁽¹⁾	к	L ⁽¹⁾	
Rated operational current	AC-3	80 A		250 A		460 A		
	AC-4/DC-5	72 A/-		205 A/-		380 ⁽²⁾ /630 A ⁽³⁾		
	AC-1	80 A		300 A		630 A		
Max. rated operational vol	Max. rated operational voltage			690 V \sim		690 V \sim ⁽²⁾ /1000 V \sim ⁽³⁾		
Available with configuration	on type command	A - B - C - D						

(1) CV1B legacy size 'G', 'J', 'L' please consult us.
(2) With PN1 type poles.
(3) With PN3 type poles.

Standard and high performance contactors

- Motor switching in categories AC-4, DC-5. Inductive circuit switching: crane electromagnets. High voltage d.c. switching: railway locomotives. Load switching at high operating rates.

CV3B				CV3B and LC1B				
F	G ⁽¹⁾	н	J ⁽¹⁾	K ⁽¹⁾	L	м	Р	R
80 A		250 A			800 A	1000 A	1500 A	1800 A
80/80 A		208/300 A			720/800 A	830/1000 A	1200/1800 A	1500/2500 A
80A		300 A			800 A	1250 A	2000 A	2750 A
1000 V \sim		1000 V \sim			1000 V \sim	1000 V \sim	1000 V \sim	1000 V \sim
		A - B - C - D			C - D (B: special conditions - contact us)			

Type C

a.c. supply via economy resistor

(1) CV3B legacy size 'G', 'J', 'K', please consult us.

Type D

d.c. supply via economy resistor

TeSys TeSys B Variable composition contactors Panorama

Variable composition contactors

Applications

Excitation circuit control of synchronous machine.

Contactors Type	CRXB - CV	CRXB - CVXB contact N/O									
Size	F	G ⁽¹⁾	н	J ⁽¹⁾	к	L	Μ	Ρ	R		
DC current rating	80 A		300 A		630 A	800 A	1250 A	2000 A	2750 A		
Max. rated operational voltage				850	V						
Available with configuration type command					8: C - D 8: E - F						
Available control circuit configuration	Туре С				Туре D						
	a.c. supply vi	a economy re	sistor		d.c. supply vi	a economy res	sistor				
	страни с										

(1) CRXB - CVXB legacy size 'G', 'J', please consult us.

Specific contactors

Applications

Contactors	Туре	CR1B cor	CR1B contact N/O									
	Size	F	G ⁽¹⁾	Н	J	К	L	М	Ρ	R		
Rated operational current	AC-3	80 A		250 A		460 A	800 A	1000 A	1500 A	1800 A		
	AC-4/DC-5	80/80 A		208/300 A		380/500 A	720/800 A	830/1000 A	1200/1800A	1500/2500 A		
	AC-1	80A		300 A		500 A	800 A	1250 A	2000 A	2750 A		
Max. rated ope	erational voltage	690 V \sim		690 V \sim		690 V \sim	1000 V \sim	1000 V \sim	1000 V \sim	1000 V \sim		
Available with type command						E-F						

Type E

(1) CR1B legacy size 'G', 'J', please consult us.

Type F

Control with magnetic locking (d.c. supply)

Not provided: S1: latching pushbutton. S2: unlatching pushbutton.

Variable composition contactors (or bar-mounted contactors) - 3 groups

- Low power switching contactors:
- □ type CV1B●, 80 to 630 A
- □ type CV3B●, 80 to 500 A

For motor control, the references of the CV1 contactors are given on page 17 and for the CV3 on page 19.

For other applications, the composition of the commercial references is described on Symbol combination table, see pages 37 and 38 or use the configuration software "bar contactor soft-customer.xls" to download on: www.se.com.

Increased power switching contactors:

□ type LC1B•, 800 to 2750 A. References shown on page 19.

■ Specific contactors (large number of main poles, pole arrangement, customised fixing and dimensions, component referencing, etc.):

- □ type CV1•B, 80 to 1000 A
- □ type CV3•B, 80 to 2750 A.

To order these contactors, complete the Order form on page 136.

- 1 Mounting bar
- 2 Rotating armature shaft
- 3 Electromagnet
- 4 Main pole
- 5 Instantaneous auxiliary contacts

Variable composition contactors are particularly suited for switching a.c. or d.c. motors and other circuits and are capable of providing a high number of operating cycles.

Their variable composition design allows them to be built to customer specification.

Applications

These variable composition contactors are ideally suited for the most frequently encountered applications:

Switching a.c. squirrel cage and slip-ring motors in all utilisation categories (AC-2, AC-3, AC-4).

Switching d.c. motors in all utilisation categories (DC-2, DC-3, DC-4, DC-5).

Switching a.c. resistive loads (category AC-1) and d.c. resistive loads (category DC-1).

- Switching distribution circuits (category AC-1).
- Short-circuiting of rotor resistors.
- Switching capacitors, power factor correction.
- Switching transformer primaries.
- Switching inductive circuits with high time constant (L/R > 15 ms)
- Example: alternator excitation circuit.

■ Severe duty requirements and main pole arrangements comprising 1 to 6 N/O and/or N/C poles.

N/O pole 80...2750 A

N/C pole 80...1000 A.

- 1 Fixed contact
- 2 Moving contact
- Arc chamber 3
- 4 Blow-out coil
- 5 Pole pressure spring
- 6 Braided conductor
- 7 Rotating armature shaft (moving contact actuator)
- Mounting bar 8
- Terminal lugs 9

Power circuit

The principal function of a main pole is to make and break the supply current. It is designed to continuously carry its nominal operational current.

Making the current

On energisation of the electromagnet coil, the armature shaft rotates and the moving contact makes with the fixed contact. The contact pressure, maintained by the pole pressure spring, is sufficient to overcome the electrodynamic forces of transient current peaks (e.g.: switching a transformer, starting a motor, etc.).

Breaking the current

On de-energisation of the electromagnet coil, the contacts separate and electrical arcing is dissipated by the blow-out coil and arc chamber. To optimise the performance of the magnetic blow-out, the blow-out coil can be selected to suit the operational current, which is particularly important when switching d.c. The N/C pole operates in a reverse manner to the N/O pole, i.e. the contacts are closed whilst the electromagnet coil is de-energised and open during energisation.

Main pole types

CV1 contactors

- 690 V ~, 220 V / pole
- □ N/O poles 80...630 A (PN1)
- □ N/C poles 80...630 A (PR1).

Variants:

- □ no-load breaking poles
- N/O poles 80...630 A (PN5)
- N/C poles 80...630 A (PR5).

 \Box arc chambers with splitters for dispersing the electric arc: 1000 V \sim / 440 V \equiv per pole

- N/O poles 80...630 A (PN3)
- N/C poles 500...630 A (PR3).

CV3 contactors

- 1000 V ~, 440 V / pole
- □ N/O poles 0...300 A (PA3)
- □ N/C poles 80...300 A (PR3)
- □ N/O poles 750...2750 A (PA1).
- Variants:
- □ high making capacity poles 750...2750 A (PA2)
- □ high breaking capacity poles and poles with reduced safety clearances (arc
- chambers with closed splitters) 750...2750 A (PA1PX8)
- □ no-load breaking poles
 - N/O poles 750...2750 A (PA5).

Electromagnet EB1

- Electromagnet core
- 2 Coil
- 3 Electromagnet armature

Control circuit

- 2 types of electromagnet: E shaped core and U shaped core.
- 2 types of coil: type WB1 and type WB2.

E-shaped electromagnet and coil type WB1 for AC / DC network

- Electromagnet with E shaped laminated iron core, type EB (1)
- □ with central air gap machined in armature, □ with single coil type **WB1** fitted on centre limb of core. The upper limb incorporates a shading ring, the armature rotates.
- Coil direct a.c. 50 or 60 Hz supply
- □ 20 to 500 V

□ 1200 operations/hour.

At the moment of inrush, with the armature open, the coil impedance is low and power consumption is high.

In the sealed state the armature is closed, the coil impedance increases and power consumption is low.

The inrush current is 6 to 10 times higher than the sealed current.

- Electromagnet directly DC powered or via individual rectifier (50-400 Hz):
- □ the electromagnet is mounted with the reduction in consumption
- □ 12 to 500 V
- □ 120 operations/hour.
- Electromagnet powered via individual rectifier (50-400 Hz):
- □ the electromagnet is mounted with the reduction in consumption
- □ 12 to 500 V
- □ 120 operations/hour.

At the moment of inrush, the full actuating voltage is applied to the coil and the inrush current is determined by the coil resistance.

In the sealed state an additional resistor is switched automatically in series with the coil, so as to reduce power consumption.

This economy resistor is switched by a N/C auxiliary contact which is adjusted to open only when the armature is fully closed.

The inrush current is 15 to 40 times higher than the sealed current.

Coils type WB1, used in conjunction with laminated iron cores, have a much higher inrush current than sealed current, whatever the nature of the supply current.

When establishing the current and selecting the supply voltage rating, it is important to take into account the line voltage drop due to the inrush current.

Electromagnet with U shaped core and coil type WB2 for d.c. supply

■ Electromagnet with U shaped solid iron core, type EK:

□ 2 similar coils type WB2 connected in series, one coil being fitted to each limb of the core

□ the armature rotates.

- Electromagnet for d.c. supply
- □ 12 to 500 V
- □ 1200 operations/hour.

The coils for this type of electromagnet have a considerable number of turns so as to obtain sufficient magnetic flux to attract the armature.

Due to its simplicity and relatively slow movements the assembly is very robust and, therefore, has increased mechanical durability.

(1) CRX, CVXB legacy size 'G', 'J'. Please consult us.

Electromagnet EK

- Electromagnet core 1
- Coil 2
- 3 Electromagnet armature

Instantaneous and time delay auxiliary contacts

Signalling, electrical interlocking and slave functions can be achieved by using auxiliary contacts.

Instantaneous auxiliary contacts suitable for use with all contactor types:
 ■ 1 block of 3 instantaneous N/O contacts and 2 N/C instantaneous contacts, reference LA1BN32A.

Delayed auxiliary contacts can be mounted onto contactors CV1 and CV3: ■ On the block LA1BN32A, 1 block of N/O ON-delayed contact + 1 N/C ON-delayed contact , references LADT0 (delay from 0.1 to 3 s), LADT2 (0.1 to 30 s), LADT4 (10 to 180 s)

■ On the block ref. LA1BN32A: 1 block of N/O OFF-delayed contact + 1 N/C OFF-delayed contact, references LADR0 (delay from 0.1 to 3 s), LADR4 (10 to 180 s).

The delayed contacts are established or separate some time after the closing or opening of the contactor which operates them. This time is adjustable.

On the block LA1BN32A all TeSys D contactors additives can be mounted, with the exception of LA6DK, LAD6K, LADN01, LADN10 and LAD8N.

Assembling reversing/changeover contactor pairs Mounting accessories

For applications involving the switching of reversing motors or changeover circuits, contactors of different ratings can easily be mounted vertically and interlocked. Mechanical interlock kits are available and auxiliary contacts can be used for electrical interlocking.

CV1B, CV3B, LC1B Selection guide

Selection guide TeSys CV1B Variable composition contactors - Use in category AC-3	
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-3	
TeSys CV1B Variable composition contactors - Use in category AC-1	. 20
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-1	. 22
TeSys CV1B Variable composition contactors - Use in category AC-2, AC-4	. 24
TeSys CV3B, LC1B Variable composition contactors - Use in category AC-2 , AC-4	. 25
TeSys CV1B Variable composition contactors - Use in category DC-1	. 26
TeSys CV3B, LC1B Variable composition contactors - Use in category DC-1	. 28
TeSys CV1B Variable composition contactors - Use in category DC-3 , DC-5	. 30
TeSys CV3B, LC1B Variable composition contactors - Use in category DC-3, DC-5	. 32
TeSys CV1B, CV3B, LC1B Variable composition contactors for rotor-starting motors	. 34
TeSys CRXB, CVXB, CWXB, CR1B and others for specific use	. 35
TeSys CV1B, CV3B, CV1BK ordering process	. 36
TeSys CV1BK ordering process	. 38

TeSys TeSys CV1B Variable composition contactors - Use in category **AC-3** Selection guide

CV1B for control of motors \leq 690 V in AC-3

Selection guide for utilisation category AC-3 according to required electrical durability Rated operational current in A at □ ≤ 55 °C										
CV1 contactors Size										
	F	G (1)	н	J ⁽¹⁾	К	L (1)				
Maximum operating rate in operating cycles/hour	1200		1200		1200					
≤440 V	80		250		460					
500 V	50		200		450					
690 V	35		150		400					

Nominal operational power at □ ≤ 55 °C

CV1 contactors	Size								
	F	G (1)	н	J ⁽¹⁾	к	L (1)			
Maximum operating rate in operating cycles/hour	1200		1200		1200				
220/230 V	22		75		140				
380/400 V	37		132		250				
415/440 V	37		140		260				
500 V	30		110		315				
660/690 V	22		110		315				

(1) CV1B legacy size 'G', 'J', 'L', please consult us.

TeSys TeSys CV1B Variable composition contactors - Use in category AC-3

Selection guide

CV1B contactors - references according to motor power ratings in category AC-3

Refe	erenc	es									
3-pol	e cont	actors	for mo	tor co	ntrol						
of 3-p	Standard power ratings of 3-phase motors 50-60 Hz in category AC-3				Maximum rated opera- tional current, category	tane auxi cont per	ous liary tacts	Basic reference, to be completed by adding the voltage code (1) (2)	Frequently used voltage codes	Weight	
220 V 230 V	380 V 400 V	415 V	440 V	500 V	660/ 690 V	AC-3 Contactor					
kW	kW	kW	kW	kW	kW	Α					kg
22	37	37	37	30	22	80	3	2	CV1BF3F0Z●●A	E5 F5 M5 Q5	4.000
75	132	140	140	110	110	250	3	2	CV1BH3H0Z●●A	E5 F5 M5 Q5	11.000
140	250	260	260	315	315	460	1	1	CV1BK3K0Zee11	F5 M5 Q5	40.000

For other compositions, make up the contactor reference as explained on page 36.
 Standard control circuit voltages (variable delivery, please contact us):

Volts	48	110	120	127	208	220	230	240	380	400	440
50 Hz	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	_	K6	_	L6	M6	P6	U6	Q6	V6	R6
50/60 Hz	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
	ED	FD	KD	GD	_	MD	PD	UD	QD	VD	-
+ Econ.R. ⁽³⁾	ER	FR	KR	GR	-	MR	PR	UR	QR	VR	_

For other voltages: please consult your Regional Sales Office.

(3) Econ.R.: Economy resistor.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category **AC-3** Selection guide

CV3B and LC1B for motor control \leq 1000 V in AC-3 Selection quide for utilisation category AC-3

Selection guide for			••••			
according to requir	ed elec	trical d	urabili	ty		
Rated operational curre	nt in A at	□ ≤ 55 °C				
Contactors	Size					
CV3 and LC1B	F	н	L	М	Р	R
Maximum operating rate in operating cycles/hour	1200	1200	120	120	120	120
≤440 V	80	290	800	1000	1500	1800
500 V	80	250	800	1000	1500	1800
690 V	70	240	750	900	1000	1100
1000 V	70	220	500	500	600	700
Nominal operational por	wer at □ ≤	55 °C				
Contactors	Size					
CV3 and LC1B	F	Н	L	М	Р	R
Maximum operating rate in operating cycles/hour	1200	1200	120	120	120	120
220/230 V	22	75	220	280	425	500
380/400 V	37	132	400	500	750	900
415 V	37	132	425	530	800	900
440 V	45	132	450	560	800	900
500 V	45	160	500	600	750	900
60/690 V	55	200	560	670	750	900

Electrical durability (Ue ≤ 440 V)

90

1000 V

250

530

530

670

750

Electrical durability (Ue ≤ 690 V)

18 Life Is On Schneider

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category AC-3

LC1BP

CV3B, LC1B contactor - references according to standard motor power ratings in category AC-3

Re	ferei	nces										
Cor	ntacto	ors foi	r moto	or con	itrol i	n categ	ory AC-3,	fron	1 80 to 4	60 A		
of 3- 50-6	-phase i0 Hz ii	e moto n categ / 415 \	rating rs gory A / 440 V	C-3	⁷ 660/ 690 V	1000 V	Maximum rated opera- tional current, category AC-3	tane aux con per	an- eous iliary tacts tactor	Basic reference, to be completed by adding the voltage code ^{(1) (2)}		Weight
kW	kW	kW	kW	kW	kW	kW	Α					kg
22	37	37	45	45	55	90	80	3	2	CV3BF3F0Z••A	E5 F5 M5 Q5	10.600
75	132	132	132	160	200	250	285	3	2	CV3BH3F0ZeeA	E5 F5 M5 Q5	15.000

(1) For other compositions, make up the contactor reference as explained on page 36.

(2) Standard control circuit voltages (variable delivery, please contact us):

			· ·				/				
Volts	48	110	120	127	208	220	230	240	380	400	440
50 Hz	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	_	K6	_	L6	M6	P6	U6	Q6	V6	R6
50/60 Hz	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
	ED	FD	KD	GD	-	MD	PD	UD	QD	VD	-
+ Econ.R. (3)	ER	FR	KR	GR	_	MR	PR	UR	QR	VR	-

For other voltages: please consult your Regional Sales Office.

(3) Econ.R.: Economy resistor.

Contactors for motor control in category AC-3, from 750 to 1800 A (\sim or =)

											•	,				
of 3-p	dard po ohase r tegory	notors	tings 50-60⊺	Hz			Maximu rated opera- tional current in AC-3	tane auxi cont		to by a vol	sic refe be comp adding tage co	bleted the	use vol			Weight
	/ 380 V / 400 V	415 V	440 V	500 V	660 V 690 V	1000 V			(
kW	kW	kW	kW	kW	kW	kW	Α									kg
220	400	425	450	500	560	530	800	2	2	LC	1BL33•	22	G	Ρ	٧	57.000
								3	1	LC	1BL33•	31	G	Ρ	٧	57.000
								1	3	LC.	1BL33•	13	G	Ρ	V	57.000
								4	-	LC	1BL33e	40	G	Ρ	V	57.000
280	500	530	560	600	670	530	1000	2	2	LC	1BM33e	22	G	Ρ	V	60.000
								3	1	LC.	1BM33e	31	G	Ρ	V	60.000
								1	3	LC	1BM33e	13	G	Ρ	V	60.000
								4	-	LC	1BM33	40	G	Ρ	٧	60.000
425	750	800	800	700	750	670	1500	2	2	LC	1BP33e	22	G	Ρ	V	94.000
								3	1	LC	1BP33e	31	G	Ρ	V	94.000
								1	3	LC	1BP33e	13	G	Ρ	V	94.000
								4	-	LC	1BP33e	40	G	Ρ	V	94.000
500	900	900	900	900	900	750	1800	2	2	LC	1BR33	22	G	Ρ	V	129.000
								3	1	LC	1BR33	31	G	Ρ	V	129.000
								1	3	LC	1BR33	13	G	Ρ	V	129.000
								4	-	LC	1BR33	40	G	Ρ	V	129.000
(4) Sta	andard	control	circuit v	oltages	s (varial	ble deliv	ery, please	contac	t us):							
Volts			48	110	•			220	,	240	380	400	41	5	440	500
\sim 50.	400 H	z	-	F	K	-	G	М	Ρ	U	Q	V	Ν		R	S
			ED	FD	_	GD	_	MD	-	UD	-	_	_		RD	SD

For voltages other than those listed above, please consult us.

TeSys TeSys CV1B Variable composition contactors - Use in category **AC-1** Selection guide

CV1B for control of resistive circuits ≤ 690 V in AC-1

Selection guide for utilisation category AC-1 according to required electrical durability Maximum rated operational current (open-mounted device) **CV1** contactors Size н κ F Maximum operating rate 1200 1200 1200 in operating cycles/hour Connections Cable C.s.a. **mm**² 25 185 2 Bars Number _ C.s.a. 40 x 5 mm ≤40 °C Α 80 300 630 ≤ 55 °C Α 80 300 600 ≤70 °C Α 80 300 550

Increase in operational current by paralleling of poles

Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

■ 2 poles in parallel: K = 1.6

■ 3 poles in parallel: K = 2.25

■ 4 poles in parallel: K = 2.8.

DF511252_1.eps

Electrical durability (Ue ≤ 440 V)

TeSys TeSys CV1B Variable composition contactors - Use in category **AC-1**

Selection guide

CV1BK

Selection of contactor size for utilisation category AC-1

Maximum possibilities of the contactor, new design (size F to H)

Maximum possibilities of the standard contactor (size K)

 N/O poles	L, / N/C poles
0	1
0 1 1 0 2 2 3 4	0
1	1
0	2
2	0
2	1
3	0
4	0

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LADN01, LADN10, LAD6K and LAD8N).

■ Size K, up to 5 instantaneous contacts and 1 time delay contact.

Electromagnet and coil(s)

- For direct a.c. control
- For direct d.c. control

For a.c. or d.c. control via economy resistor

(accessories: economy resistor + contact, rectifier).

Auxiliary contact blocks per contactor

, tanta y							
Contact	Con	nposition	Contro	l circuit		Reference	Weight
type		Ļ	∼ direct	 direct	\sim or $=$ with economy resistor	_	
							kg
Contactor -	Size	F-H-K					
Instantaneous	3	2	1	1	1	LA1BN32	0.060
Time delay							
On-delay	1	1	1	1	1	LADTe (1)	0.060
Off-delay	1	1	1	1	1	LADRe (1)	0.060

(1) Choose additives LADT • and LADR • from the TeSys D range.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category **AC-1** Selection guide

CV3B and LC1B for control of resistive circuits \leq 1000 V in AC-1

Se	Selection guide for utilisation category AC-1											
ac	according to required electrical durability											
Maximum rated operational current (open-mounted device)												
Con	tactors			Size								
CV3	CV3 and LC1B F H L M P R											
	Maximum operating rate 1200 1200 120 120 120 120 120 in operating cycles/hour											
Conr	nections											
	Cable	C.s.a.	mm²	25	120	-	-	-	_			
	Bars	Number		-	-	2	2	3	3			
		C.s.a.	mm	-	-	50 x 5	80 x 5	100 x 5	100 x 10			
≤40	°C		Α	80	250	800	1250	2000	2750			
≤ 55	°C		Α	80	250	700	1100	1750	2400			
≤70	°C		Α	80	250	600	900	1500	2000			

Increase in operational current by paralleling of poles

Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

- 2 poles in parallel: K = 1.6
- 3 poles in parallel: K = 2.25
- 4 poles in parallel: K = 2.8.

Example: 2 poles in parallel.

Electrical durability (Ue ≤ 440 V)

TeSys CV3B, LC1B Variable composition contactors - Use in category AC-1

TeSys

CV3BF

ZC4GM1

Resistive circuits control ≤ 1000 V in AC-1

Selection of contactor size for utilisation category AC-1

Maximum possibilities of the contactor

CV3B contactors are characterised by their extensive composition alternatives:

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LAD6K, LADN01, LADN10 and LAD8N).

Size L, up to 5 instantaneous contacts and 1 time delay contact.

Electromagnet and coil(s)

- For direct a.c. control
- For direct d.c. control
- For a.c. or d.c. control via economy resistor
- (accessories: economy resistor + contact, rectifier).

Auxiliant contract blocks for contractor, Size E. H.

Auxili	iary co	ntact	blocks f	or cont	actor - S	Size F - H		
Conta	ct	Com	position	Contro	l circuit		Reference	Weight
type			Ļ	\sim direct	 direct	\sim or $=$ with economy resistor		
		•	•					kg
Instanta	aneous	3	2	1	1	1	LA1BN32A	0.060
Time de	elay							
On	i-delay	1	1	1	1	1	LADTe (2)	0.060
Off	f-delay	1	1	1	1	1	LADRe (2)	0.060
Auxili	iary co	ntact	blocks f	or cont	actor - S	ize L-M-P-	R	
Conta	ct	Com	position	CV3 co	ntactor s	ize	Reference	Weight
type			Ļ		I	L to R		
								kg
Instanta	aneous	1	-	4	4	1	ZC4GM1	0.030
		-	1	4	4	4	ZC4GM2	0.030

(1) For possible compositions, see page 36.

(2) Choose additives LADT • and LADR • from the TeSys D range.

TeSys TeSys CV1B Variable composition contactors - Use in category **AC-2, AC-4** Selection guide

CV1B for motor control ≤ 690 V in AC-2 and AC-4

Selection guide for utilisation categories AC-2 and AC-4 according to required electrical durability

Maximum current broken in A

Related to maximum operating rate (operating cycles/hour) and on-load factor

OVID CONtactors		0126			
		F	Н	К	
Operating cycles/hour ⁽²⁾ and on-load factor	Thermal limit zone ⁽³⁾	Maximum	current broken in A		
From 150 and 15 % to 300 and 10 %	Α	165	520	1300	
From 150 and 20 % to 600 and 10 %	В	145	460	1150	
From 150 and 30 % to 1200 and 10 %	С	120	380	950	
From 150 and 55 % to 1200 and 20 %	D	90	280	700	
From 150 and 85 % to 1200 and 35 %	E	70	220	550	

Counter current braking (plugging)

The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Electrical durability (Ue ≤ 440 V)

Example: contactor size selection

For an on-load factor of 17 % at 180 operating cycles per hour, the above curve indicates zone B. If the maximum current broken is 200 A, the table above will lead to the selection of a size H contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1 million operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size K would be recommended.

⁽¹⁾ To obtain the complete reference of the contactor see the Symbol combination table on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

⁽²⁾ Do not exceed the maximum limit for the mechanical operating cycles.

⁽³⁾ See curve at foot of page for thermal limit zone.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category AC-2, AC-4

CV3B and LC1B for motor control ≤ 1000 V in AC-2 and AC-4 Selection guide for utilisation categories AC-2 and AC-4

according to required electrical durability

Thermal limits										
Related to maximum	n operating r	ate (opera	ting cycles/hou	ir) and on-loa	d fact	or				
Contactors CV3 (1)		Size	Size							
and LC1B		F	н	L	М	Ρ	R			
Operating cycles/hour ⁽²⁾ and on-load factor	Thermal limit zone ⁽³⁾		m current broker limit at ambient							
From 150 and 15 % to 300 and 10 %	Α	165	520	2250	3000	4500	5400			
From 150 and 20 % to 600 and 10 %	В	145	460	2000	2400	3750	5000			
From 150 and 30 % to 1200 and 10 %	С	120	380	1500	2000	3000	3600			
From 150 and 55 % to 1200 and 20 %	D	90	280	1000	1500	2000	2500			
From 150 and 85 % to 1200 and 35 %	E	70	220	750	1000	1500	1800			

Counter current braking (plugging)

The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Example:

For an on-load factor of 17 % at 180 operating cycles per hour, the above curve indicates zone B. If the maximum current broken is 90 A, the table above will lead to the selection of a size F contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1 100 000 operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size H would be recommended.

Electrical durability (Ue ≤ 690 V)

Control of 3 phase asynchronous squirrel cage motors with "motor stalled" stop. The current lc cut in AC-4 is 6 x le. (le = rated current drawn by the motor).

(1) To obtain the complete reference of the contactor see the Symbol combination table on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office

(2) Do not exceed the maximum limit for the mechanical operating cycles.

25

⁽³⁾ See curve at the previous page for thermal limit zone.

TeSys TeSys CV1B Variable composition contactors - Use in category **DC-1** Selection guide

CV1B for circuit control ≤ 1000 V - DC-1 category

Selection guide for utilisation categorie DC-1

The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
 the thermal operating conditions.
- Maximum operational voltage Ue

This depends on the time constant of the circuit $L/R \le 1$ ms and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage (time constant of the circuit $L/R \le 1$ ms)

CV1B contactors (1)		Size	Size					
		F	Н	к				
1 pole PN1	v	250	250	250				
2 poles PN1 in series	v	500	500	500				
1 pole PN3	v	_	-	500				
2 poles PN3 in series	V	-	_	1000				

Normal operation: Ue \geq U supply.

Rated operational current in A at □ ≤ 40 °C							
CV1B contactors	Size						
	F	н	к				
	80	300	630				

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel

The equivalent operational current for 2 poles in parallel is equal to 2 x le x 0.8.

(1) To obtain the complete reference of the contactor refer to page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office. **TeSys TeSys** CV1B Variable composition contactors - Use in category **DC-1**

CV1B for circuit control ≤ 1000 V - DC-1 category

Selection guide for utilisation categorie DC-1 according to							
required electrical durability							
Power broken							
Utilisation categories	U broken	l broken	P broken				
DC-1: Non inductive or slightly inductive loads	Ue	le	Ue x le				

Electrical durability (time constant L/R ≤ 1 ms)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:

P broken = U broken x I broken. The table gives the values of Uc and Ic for the various utilisation categories.

Two-pole switching (time constant L/R ≤ 1 ms)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60 % or 300 operating cycles/hour at 30 % on-load factor, at the rated operational current le.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category DC-1 Selection guide

CV3B, LC1B for circuit control ≤ 1500 V - DC-1 category

Selection guide for utilisation categorie DC-1 The selection of the contactor size and number of poles to be connected in series is

made according to:

the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
- the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant L/R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage **Operational voltage** 500 V

1000 V 2 1500 V Please, consult us

Normal operation: Ue ≥ U supply.

Rated operational current in A at □ ≤ 40 °C Contactor size CV3B (1) CV3B and LC1B F н L М Ρ R 80 300 800 1000 1800 2500

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel

The equivalent operational current for 2 poles in parallel is equal to 2 x le x 0.8.

(1) To obtain the complete reference of the contactor refer on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category DC-1

Selection guide

Selection guide for utilisation categorie DC-1 according to required electrical durability							
Power broken							
Utilisation category	U broken	l broken	P broken				
DC-1: Non inductive or slightly inductive loads	Ue	le	Ue x le				

Electrical durability (time constant L/R ≤ 1 ms)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:

P broken = U broken x I broken.

The table gives the values of Uc and Ic for the various utilisation categories.

Power broken per pole (time constant $L/R \le 1$ ms)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60 % or 300 operating cycles/hour at 30 % on-load factor, at the rated operational current le.

TeSys TeSys CV1B Variable composition contactors - Use in category **DC-3**, **DC-5** Selection guide

CV1B for circuit control ≤ 850 V - DC-3, DC-5 category

Selection guide for utilisation categories DC-3 and DC-5

The selection of the contactor size and number of poles to be connected in series is made according to:

- the maximum operational voltage Ue
- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
 the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant of the circuit $L/R \le 15$ ms and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage (time constant of the circuit $L/R \le 15$ ms)

CV1 B contactors (1)		Size	Size			
		F	н	К		
1 pole PN1	v	220	220	220		
2 poles PN1 in series	v	440	440	440		
1 pole PN3	v	_	_	440		
2 poles PN3 in series	V	-	-	850		

Normal operation: Ue \geq U supply.

With breaking during counter current braking (plugging): Ue \ge 1.5 U supply.

Rated operational current in A at □ ≤ 40 °C							
CV1B contactors	Size						
	F	н	К				
	~~	300	000				

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel

The equivalent operational current for 2 poles in parallel is equal to 2 x le x 0.8.

(1) To obtain the complete reference of the contactor refer on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office. TeSys TeSys CV1B Variable composition contactors - Use in category DC-3, DC-5

Selection guide

Selection guide for utilisation categories DC-3 and DC-5 according to required electrical durability								
Power broken								
Utilisation categories	U broken	l broken	P broken					
DC-3: Shunt motors, reversing, inching	Ue	2.5 le	Ue x 2.5 le					
DC-5: Shunt motors, reversing, inching	Ue	2.5 le	Ue x 2.5 le					

Electrical durability (time constant L/R < 15 ms)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:

P broken = U broken x I broken.

The table gives the values of Uc and Ic for the various utilisation categories.

Two-pole switching (time constant L/R ≤ 15 ms)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60 % or 300 operating cycles/hour at 30 % on-load factor, at the rated operational current le.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category DC-3, DC-5 Selection guide

CV3B, LC1B for circuit control ≤ 1500 V - DC-3, DC-5 category

Selection guide for utilisation categories DC-3 and DC-5 The selection of the contactor size and number of poles to be connected in series is

made according to:

■ the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant L/R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Operati

Number of poles to be connected in series according to the operational voltage and time constant L/R (in ms) of the circuit Time c

J		-, -					
constant in ms		15	30	60	90	120	150
ional voltage	125 V	1	1	1	2	2	2
	225 V	1	1	2	3	3	4
	330 V	1	2	3	3	4	-
	440 V	1	2	3	4	-	-
	850 V	2	3	4	_	-	-
	1200 V (consult us)	3	4	-	-	-	-
	1500 V (consult us)	4	-	-	_	-	-

Normal operation: Ue ≥ U supply.

With breaking during counter current braking (plugging): Ue \ge 1.5 U supply.

Rated operational current in A at □ ≤ 40 °C							
Contactor size CV3B (1) CV3B and LC1B							
F	н	н	L	М	Р	R	
80	300	300	800	1000	1800	2500	

Increase in rated operational current by connecting 2 poles in parallel The equivalent operational current for 2 poles in parallel is equal to 2 x le x 0.8.

(1) To obtain the complete reference of the contactor refer on page 37. For customised compositions or dimensional specifications, please use the Order form on page 136 or consult your Regional Sales Office.

TeSys TeSys CV3B, LC1B Variable composition contactors - Use in category DC-3, DC-5

Selection guide

Selection guide for utilisation categories DC-3 and DC-5 according to required electrical durability							
Power broken							
Utilisation category	U broken	l broken	P broken				
DC-3: Shunt motors, reversing, inching	Ue	2.5 le	Ue x 2.5 le				
DC-5: Series motors, reversing, inching	Ue	2.5 le	Ue x 2.5 le				

Electrical durability (time constant L/R ≤ 15 ms)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:

P broken = U broken x I broken.

The table gives the values of Uc and Ic for the various utilisation categories.

Power broken per pole (time constant L/R ≤ 15 ms)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Example: 30 kW motor, 500 V-70 A in category DC-3: P broken = Ue x 2.5 le = 500 x 2.5 x 70 = 86 kW or 43 kW per pole.

For a 2-pole size **F** contactor, the curve gives an electrical durability of 6 x 10⁵ operating cycles.

Electrical durability depending on the time constant

- According to the time constant L/R.
- L/R \leq 15 ms, read the number of operating cycles directly from the curves.
- 15 < L/R ≤ 30 ms, the number of operating cycles is equal to the number read
- from the curves $x \frac{15}{L/R}$
- L/R > 30 ms, please consult your Regional Sales Office.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60 % or 300 operating cycles/hour at 30 % on-load factor, at the rated operational current le. TeSys TeSys CV1B, CV3B, LC1B Variable composition contactors for rotor-starting motors Selection guide

CV1B, CV3B, LC1B for rotor-starting motors

Selection guide for rotor circuits of slip-ring motors

In simple starting systems the contactors which short-circuit the rotor current are subjected to a static voltage, the value of which, decreasing with time, is lower the further away the contactors are located from the rotor terminals. As a result, the operational rotor voltage is deducted from the maximum operational voltage. In this way, it is possible to use contactors with a rated insulation voltage lower than the rotor voltage.

In this application, making and breaking are easy. The selection table below takes into account a ratio of 2 between the maximum rotor operational voltage (Uer) and the stator operational voltage (Ues). This ratio is proposed in starter standard IEC 60947-4.

With counter current braking, the rotor operational voltage will be equal to the insulation voltage.

In a system with slowdown or braking, the selection of the contactors concerned should, in addition, take into account the breaking conditions.

The use of magnetic blow-out contactors is recommended in the event of control by a manually operated master controller.

Multiplying factor for rotor voltage and current, depending on type of contactor connection

As far as the current flowing through a rotor circuit contactor is concerned, the short time rating should be taken into account (see pages 40 and 58) according to the starting time. Only the final rotor short-circuit contactor takes account of the continuous current.

Type of connection	Circuit diagram	l rotor l operational	Maximum 3-phase rotor voltage Ue	3-phase rotor voltage UE with counter- current braking	Contactor type
			V	V	
Star	Star	1	1320	660	CV1B
		1	2000	1000	CV3B LC1B
Delta	lta	1,4	1100	550	CV1B
		1,4	1700	850	CV3B LC1B
v		1	1100	550	CV1B
	47	1	1700	850	CV3B LC1B

Hoisting applications

For this type of application contactor selection is made according to the duty requirements, required durability, type of connection, etc. Please consult your Regional Sales Office.

Other versions:

For rotor voltage above 3000 V \sim , please consult your Regional Sales Office.

Contactors to use with excitation circuit control for synchronous machine (CRXB, CVXB, CWXB)

The proposed contactors are equiped with either latching solenoids (contactor CRXB) or consumption reduction device (contactor CVXB). Synchronous alternators must have their induction circuit DC powered to generate an output voltage. This power supply is delivered by a bridge rectifier fed itself by the alternator. Synchronous generators are used for the production of energy in power plants.

Magnetic latching contactors, CR1B

These contactors prevent unwanted opening of the poles in the event of a control circuit supply failure.

The holding-in of a contactor is often necessary so as to avoid on-load breaking (for example an excitation circuit).

Furthermore, the fact that no power is consumed by the coil when the contactor is latched leads to energy savings on a separate control circuit supply (particularly useful when using a battery supply). These contactors incorporate an electromagnet with a core made of non-aging magnetic steel and the coil supply can be d.c. or rectified a.c.

The contactor latches in the operated position following energisation of the electromagnetic coil and remains latched when the coil is de-energised, the contactor armature being held closed by remanent magnetism.

The contactor is unlatched by the application of a reversed polarity current, at a value less than the pull-in current, which neutralises the remanent magnetism. CR1 B contactors are available in all sizes from 80 to 2750 A.

The control supply can be d.c. or rectified a.c.

Please refer to our "Motor starter solutions - Control and protection components" catalogue.

Contactors for furnaces and induction heating applications (CE1 - CS1, CE5 - CE6, CS5 - CS6)

Induction heating covers all applications where metals (or a metal part) are heated in crucible or "channel" furnaces, or in dies, by the induction of a.c. currents at various frequencies.

There are several frequency ranges which, for industrial purposes, can be grouped as follows:

- 50 Hz to 400 Hz:
- □ industrial mains power frequencies from 50 to 250 Hz
- □ intermediate frequencies of 350 Hz and 400 Hz.
- Maximum operating limits for contactors (single-pole and 6-pole):
- □ frequency range up to 500 Hz
- □ supply voltage up to 3000 V
- □ currents up to 2340 A.

Please refer to our "Contactors for furnaces and induction heating applications" catalogue.

Contactor for the grounding of supply rail tram (CV1BKS)

Designed for networks up to 1000 V DC (high closing capacity up to 43 kA) to ensure the grounding of the rail when it loses power.

But also under fault condition in the event that the rail remains supplied after the passage of the tram.

View the application form CV1BKS on the site: www.se.com.

TeSys TeSys CV1B, CV3B, CV1BK ordering process Selection guide

From assembly definition to contactor ordering

Contactor assembly definition

The criteria required to define the composition of a contactor are:

- the number of N/O and N/C power poles
- the current and power supply voltage

(note: on a d.c. supply, the time constant $\frac{L}{R}$ of the load must be known in order to define the number of poles to be wired in series to break the arc)

the control circuit voltage

the number of auxiliary contacts.

Contactor ordering - product reference composition For all contactors:

configuration software "bar contactor soft-customer.xls"

Link for download: https://www.se.com/ww/en/product-range-download/667-tesys-b/#/software-firmware-tab

from order form page 136.

For contactors CV1BF/BH/BK, CV3BF/BH:

software or selection tables below.

Checking of contactor possible assemblies

CV1B and CV3B have some restrictions:

■ in rated operational current (le) per power pole

■ in number of N/O - N/C power poles

■ in number of auxiliary contacts.

Please refer to tables below.

Rated of	operational currer	nt per poles - codes	per contactor type	
Contactor	type	CV1BF CV3BF	CV1BH CV3BH	CV1BK
Rated	11 A	E	-	-
operational	13 A	М	-	-
current (1)	20 A	N	-	-
	40 A	Р	-	-
	50 A	Q	Q	-
	80 A	F	F	-
	125 A	-	R	1
	200 A	-	G	S
	250 A	-	-	н
	300 A	-	н	-
	320 A	-	-	-
	400 A	-	-	U
	470 A	-	-	-
	500 A	-	-	V
	630 A	-	-	к
	1000 A	-	-	-
	0 no magnetic blowing	Z	Z	Z

(1) Other rating: contact us.

Contactor type	CV1BF		CV1BH		CV1BK	CV1BK		
Pole type	N/O	N/C	N/O	N/C	N/O	N/C		
Number of poles	5	0	4	0	4	0		
	0	2	0	2	0	2		
	2	1	2	1	2	1		
CV3B contactors: maxi	mum number of p	ower poles			· ·			
Contactor type	CV3BF	· · · ·		CV3BH	CV3BH			
Pole type	N/O	N/O N/C		N/O	N/	N/C		
Number of poles	5	5 0		4	0			
	0	2		0	2			
	1	2	2	-	-			
	3	1		2	1			
CV1B/CV3B contactors:	maximum numb	er of auxiliar	y contacts					
Contactor type	CV1B			CV3B				
Pole type	N/O	N	с	N/O	N/	с		
	4 + 1 tin	ne delay if ne	cessarv					

Examples

Switching of single-phase capacitor: 400 V - 80 A - 1 N/O main pole. 220 V / 50 Hz.

Switching of single-phase capacitie. 400 v - 00 v - 00 v - 10/0 main pole. 220 v / 30 m2.
 control circuit voltage, 3 N/O and 2 N/C auxiliary contacts. Reference: CV1BF1F0ZM5A.
 Switching of d.c. heating circuits: 800 V - 250 A - 2 N/O main poles - 48 V ---.

control circuit, instantaneous auxiliary contact 1 N/O + 1 on-delay. Reference: CV3BH2H0ZEDA + LADT0, 2 or 4.

Other versions

To obtain a composition with more main poles or with more than 4 auxiliary contacts, please use order form CF 452, on page 136.

36

TeSys

Selection guide

Product	reference co	oding table										
				Serie	Size	Number of N/O poles	Op. current in N/O pole	Number of N/C poles	Op. current in N/C pole	Control voltage	Control frequency	Aux. contacts
Turne of com		nulication		S	S	ZZ	<u> </u>	zz	<u> </u>	ΟŠ	υĘ	۷
\sim 690 V, $= 22$	actor related to a	pplication		CV1B	1 1		1	1	1 1		1	
\sim 1000 V, 2				CV3B								
	ize AC-1/AC-3			0000	1 1	- 1	1	1	I I		1	
CV1: 80/80 A	126 A0-1/A0-3	CV3: 80/80 A			F*	1	1	1	1 1		1	
CV1: 300/250	A	CV3: 300/285	Α		H*							
Number of po		010.000/200/	,		1		1	1			1	
N/O poles		0 N/O				0	1	1			1	- I
ni o poloo		1 N/O				1						
		2 N/O				2						
		3 N/O				3						
		4 N/O				4						
N/C poles		0 N/C						0				
		1 N/C						1				
Operational	current (determine	es the blow-out coil size)					·	1	· · · ·	1	·	
CV1BF/CV3B		CV1BH/CV3B	H									
AC	DC	AC	DC									
0 A breaking		0 A breaking					Z		Z			
0.9 A	1 A	0.7 A	1.05 A				Α		Α			
1.75A	1.9 A	1.25 A	1.95 A				В		в			
3.6 A	4 A	2.5 A	3.85 A				С		С			
6.8 A	7.6 A	4.7 A	7.5 A				D		D			
11 A	12 A	8A	12 A				Е		E			
13 A	14.5 A	10 A	15 A				М		М			
20 A	22 A	17A	24 A				Ν		N			
40 A	45 A						Р		Р			
50 A	55 A	60 A	90 A				Q		Q			
80 A	80 A	80 A	120 A				F		F			
125 A		130 A	190 A				R		R			
200 A		200 A	200 A				G		G			
300 A		300 A	300 A				Н		Н			
Control circ	uit voltage											
24 V										В		
48 V										E		
110 V										F		
120 V										K		
127 V										G		
208 V										L		
220 V										Μ		
230 V										Ρ		
240 V										U		
380 V										Q		
400 V										V		
Operating fr	equency											
50 Hz											5	
60 Hz											6	
	n rectifier + econom	ny resistor)									7	
<u> </u>											D	
with econor											R	
	`	+ additives (fitted as star	ndard))									
Instantaneous		3 N/O + 2 N/C										Α
To check when	ther the symbol coi	mbinations are possible,	refer to the sele	ection information	and guide c	on page 30	5.					

e, refer to the selection information and guide on page 36. If in doubt, fill out order form CF 452, on page 136.

★ Can use any additives in the range of contactors TeSys D except LA6DK, and LAD6K LAD8N.

Important information for use by Schneider Electric

To place an order in SAP GRC switch-LOGOS

Example: Order the contactor CV1BH2HCZM5A

enter in the Reference product "CV1BH"
 in the field "Technical text", specify "CV1BH2H02M5A".

TeSys TeSys CV1BK ordering process Selection guide

Product reference coding table

Product reference c											S
		Serie	Size	Number of N/O poles	Op. current in N/O pole	Number of N/C poles	Op. current in N/C pole	Pole type	Control voltage	Control frequency	Aux. contacts
Type of contactor related to	application										
\sim 690 V, $=$ 220 V/pole		CV1B									
\sim 1000 V, $=$ 440 V/pole											
Contactor size AC-1/AC-3											
CV1: 630/460 A			K								
Number of poles											
N/O poles	0 N/O			0							
	<u>1 N/O</u>			1							
	<u>2 N/O</u>			2							
7777777777	<u>3 N/O</u>			3							
	4 N/O			4							
N/C poles	0 N/C					0					
	1 N/C					1					
	2 N/C					2					
Type of poles											
\sim 690 V, == 220 V/pole	Type 1 pole (PN1)							1			
\sim 1000 V, $=$ 440 V/pole	Type 3 pole (PN3)							3			
Operational current (determin	nes the blow-out coil size)										
0 A breaking					Z		Z				
150 A					I		1				
250 A					S		S				
300 A					Н		Н				
400 A					U		U				
500 A					V		V				
630 A					К		K				
Control circuit voltage											
24 V									в		
48 V									E		
110 V									F		
120 V									К		
127 V									G		
208 V									L		
220 V									М		
230 V									Р		
240 V									U		
380 V									Q		
400 V									V		
415 V									N		
440 V									R		
480 V									т		
500 V									S		
600 V									X		
Operating frequency										· · ·	
50 Hz										5	
60 Hz										6	\neg
50/60 Hz (with rectifier + econo	my resistor)									7	
	,,									D	
with economy resistor										R	
Auxiliary contacts (LA1BN32	2 auxiliary contact block)										
3 N/O - instantaneous	1 aux. contact block										Α
2 N/C - instantaneous	2 aux. contact block							_			B
	ombinations are possible, refer to the sel	ection information and	auido on na	200.26			_				

To check whether the symbol combinations are possible, refer to the selection information and guide on page 36. If in doubt, fill out order form CF 452, on page 136.

CV1B, CV3B, LC1B Characteristics

TeSys CV1B

Envir. & pole characteristics
-
TeSys CV1B, CV3B with a.c. control circuit
Control circuit characteristics42
TeSys CV1B, CV3B with d.c. control circuit44
TeSys CV1B size F to H for direct a.c
······································
Dimensions
TeSys CV1B size K for direct a.c
TeSys CV1B size F to H for direct d.c
TeSys CV1B size K for direct d.c
TeSys CV1B, size F, H, for rectified a.c.
with economy resistor, d.c. with economy resistor
TeSys CV1B, size J to L, for rectified a.c.
with economy resistor, d.c. with economy resistor
Schemes
TeSys CV1B for rectified a.c.
with economy resistor, d.c. with economy resistor
Setting
TeSys CV1B installation, maintenance, setting
tege evidential and the maintenance, setting

TeSys CV3B, LC1B

Envir. & pole characteristics
Control circuit characteristics60TeSysCV3B, LC1B size L to R with a.c. or d.ccontrol circuit with economy resistor60
Dimensions
TeSys CV3B size F, H, for direct d.c62
TeSys CV3B size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor
TeSys CV3B size L to R, LC1B
TeSys CV3B, LC1B Mechanical interlocking
Schemes66TeSys CV3B, LC1B Variable composition contactors66
Setting67TeSys CV3B, LC1B installation, maintenance, setting67

TeSys TeSys CV1B with a.c. or d.c control circuit Envir. & pole characteristics

CV1B with a.c. or d.c control circuit (envir. & pole characteristics)

Characteristics			,	
CV1B contactor size				F
Environment				F
	0 (janta 15(1	
Rated insulation voltage (Ui)	Conforming to IEC	;60947-4	v	690
Conforming to standards Product certifications				IEC 60947-4
	Q-aforming to IEC	200500		Bureau veritas, Register of shipping (CEI), CSA
Degree of protection	Conforming to IEC	;60529		IP00 TC
Protective treatment	01-22-22		• •	
Ambient air temperature around the device	Storage Operation		° C ° C	-60+80 -5+55 (0.851.10 Un)
		aration	°C °C	-5+55 (0.851.10 Un) -30+70 at Uc
Maximum operating altitude	Permissible for op	erauon	m m	-30+/0 at UC 2000
Operating positions			m	± 23° possible, in relation to normal vertical mounting plane
Shock and vibration resistance				4 gn for frequencies y 30 Hz, 2 gn for frequencies > 30 Hz
Pole characteristics in AC				4 gri 101 llequencies y 50 mz, z gri 101 llequencies > 50 mz
	In AC-3, Ue ≤ 440		Α	80
Rated operational current (le)				80
	In AC-1, Ue ≤ 440	V, □ ≤ 40 °C	A	690
Rated operational voltage (Ue)	Up to			
Frequency limits of the operational current	Without derating		Hz	
· · · · · · · · · · · · · · · · · · ·	Derating coefficier	1t	Hz	100 Hz: 0.9 - 150 Hz: 0.8 - 250 Hz: 0.7 - 400 Hz: 0.5
Rated making capacity	cos 🗆 = 0.35		A	1000
Rated breaking capacity	cos □ = 0.35	220/400 V	A	900
		415/440 V	A	800
		500 V	Α	800
		660/690 V	А	320
		1000 V	Α	-
Power dissipated per pole for	AC-3		w	7.6
the above operational currents	AC-1		w	9.6
Pole characteristics in DC				
Rated operational current (le)	DC-1, Ue ≤ 250 V	□ < 40 °C	A	80
	DC-1, Ue ≤ 500 V		A	•
	<u>DC-1, 0e ≤ 500 v</u> DC-3, DC-5, Ue ≤		A	80
	DC-3, DC-5, Ue ≤		A	
Rated operational voltage (Ue)	0C-3, DC-5, Ue ≤ (L/R ≤ 1 ms)	440 V, □ ≤ 40 C	A	- 250
Rated operational voltage (Oe)	(L/R ≤ 1 ms) (L/R ≤ 15 ms)		A	220
Rated making capacity	(L/R ≤ 15 ms) (L/R ≤ 15 ms)		A	1600
Rated breaking capacity	(L/R ≤ 15 ms) (L/R ≤ 1 ms)	Single-pole 250 V	A	320
Rated breaking capacity	(L/K ≤ 1 1115)			
		2-pole 250 V	A	320
	·····	2-pole 500 V	A	240
	(L/R ≤ 15 ms)	Single-pole 220 V	A	320
		2-pole 220 V	Α	320
		2-pole 440 V	Α	240
	(L/R ≤ 1 ms)	Single-pole 500 V	Α	-
		2-pole 500 V	А	-
		2-pole 1000 V	Α	•
	(L/R ≤ 15 ms)	Single-pole 440 V	Α	-
	•	2-pole 440 V	A	
		2-pole 850 V	Α	-
Power dissipated per pole for	DC-1		W	9.6
the above operational currents	DC-3, DC-5		W	9.6
General pole characteristics	000, 200			
Number of poles			1	14
Conventional thermal current	□ ≤ 40 °C		A	80
	For 5 s			640
Short time rating From cold state,			A	
with no current flowing	For 10 s For 30 s		A	640
for previous 60 minutes			A	380
at θ≤40 °C	For 1 min		Α	320
	For 3 min		A	200
	For 10 min		A	130
Short-circuit protection by fuses		Type aM / type g1	Α	80/125
Average impedance per pole	At Ith and 50 Hz		m□	1.5
Cabling Bar			mm x mm	-
Cable with lug			nb x mm ²	1 x 25
Cable with connector			nb x mm ²	2 x 16
Bolt diameter			mm	Ø 6
Tightening torque	Power circuit conn	iections	N.m	9

Ø 10 35

TeSys CV1B with a.c. or d.c control circuit Envir. & pole characteristics

н	K DN1 DD1	K PN3 PR3
n	K PN1 PR1	IN FIND FRO
1000	1000	1000
050	400	400
 250	460	460
 300	630	630
 690	609	1000
 0500	4000	4000
 2500	4600	4600
 2400	4200	4200
 2200	4100	4100
 2000	3800	4100
 1800	3200	3800
 -	-	3200
35	55	55
51	103	103
 300	630	630
 -	-	630
 300	630	630
 -	-	630
 250	250	500
 220	220	440
 4000	6500	6500
 1200	2500	2500
 1200	2520	2520
 900	1500	1500
 1200	2500	2500
1200	2520	2520
900	1500	1500
-	-	2500
 -	-	2520
-	-	2500
-	-	2500
-	-	2520
-	-	2500
51	103	103
51	103	103
300	630	
2400	5000	
2000	3600	
1200	2260	
1000	1900	
600	1280	
410	880	
315/400	630/800	
0.57	0.26	
 -	63 x 6	
 1 x 185	2 x 185	
 1 x 185	-	
 Ø 10	Ø 12	

Ø 12

58

TeSys TeSys CV1B, CV3B with a.c. control circuit Control circuit characteristics

CV1B, CV3B with a.c. control circuit

Characteristics									
Control circuit charact	teristics								
CV1B contactor size				F	G ⁽¹⁾	н	J ⁽¹⁾	к	L ⁽¹⁾
Rated control circuit voltage (Uc)	Direct a.c.		V	22500 (50 Hz) 28500 (60 Hz)		22500 (50 Hz) 28500 (60 Hz)		110500 (50-60 Hz)	
	a.c. with econo	omy resistor	v	24500		24500		36…500 (50/400 Hz)	
Control voltage imits (θ ≤ 55 °C)									
Operation			v	0.851.1 Uc		0.851.1 Uc		0.851.1 Uc	
Drop-out	Direct a.c.		V	0.50.7 Uc		0.50.7 Uc		0.50.7 Uc	
	a.c. with econo	my resistor	V	0.20.5 Uc		0.20.5 Uc		0.20.5 Uc	
Average consumption at 20 °C and at Uc									
Direct a.c. 50) Hz Inrush		VA	270		570		2300	
_	Sealed		VA	45		80		210	
60	Hz Inrush		VA	300		600		2650	
	Sealed		VA	45		85		260	
a.c. with	Inrush		VA	155		320		420	
economy resistor	Sealed		VA	9.5		14.5		9	
Heat dissipation	50 Hz		w	16		26		65	
	60 Hz		w	16		30		90	
Average operating time (2)									
Direct a.c.	Closing "N/O"		ms	40		35		75	
	Opening "N/C"		ms	15		14		15	
a.c. (with economy	Closing "N/O"		ms	40		35		75	
resistor) breaking on rectified side	Opening "N/C"		ms	12		14		15	
Durabilité mécanique	In operating	* New design		5 x 10 ⁶		5 x 10 ⁶		-	
Direct a.c.	cycles	Old design		10 x 10 ⁶		10 x 10 ⁶		3 x 10 ⁶	
a.c. with economy resisto	In operating cy or	cles		1.2 x 10 ⁶		1.2 x 10 ⁶		1.2 x 10 ⁶	
Cadence maximale ($\Box \leq 55$ °	°C)								
Direct a.c.	In operating cy	cles/hour		1200		1200		1200	
a.c. with economy resisto	In operating cy	cles/hour		120		120		120	

Note: coperating characteristics stated are for an inductive circuit, such as the coil of the

contactor electromagnet. Cos \Box inrush and sealed = 0.3.

Please consult us.
 The closing time "N/O" or opening time "N/C" are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

Characteristics							
Auxiliary contact charact	eristics						
Type of contacts				Auxiliary contact LA1BN32A (size F to H)			
Rated operational voltage (Ue)	Up to		v	690			
Conventional thermal current (Ith)	For ambient ten ≤ 60 °C	nperature	Α	10			
Short-circuit protection	Conforming to I	EC 60947-5-1		gG fuse: 10 A			
Rated making capacity	Conforming to IEC 60947-5-1	l rms	Α	∼: 140,: 250			
Tightening torque	Philips head n°	2 and Ø 6	N.m	1.2			
Screw clamp connections	Flexible	1 conductor	mm ²	14			
	conductor without cable end	2 conductors	mm ²	14			
	Flexible	1 conductor	mm ²	14			
	conductor with cable end	2 conductors	mm ²	12.5			
	Solid conductor	1 conductor	mm ²	14			
	without cable end	2 conductors	mm ²	14			
	Tightening torqu	le	N.m	1.7			
Mechanical durability				1			

In millions of operating cycles

Rated operational power of contacts in AC (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet:

making current ($\cos \Box 0.7$) = 10 times the power broken ($\cos \Box 0.4$).

	v	24	48	115	230	400	440	600
1 million operating cycles	VA	60	120	280	560	960	1050	1440
3 million operating cycles	VA	16	32	80	160	280	300	420
10 million operating cycles	VA	4	8	20	40	70	80	100

Rated operational power of contacts in DC (conforming to IEC 60947-5-1)

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the power.

	v	24	48	125	250	440
1 million operating cycles	VA	120	90	75	68	61
3 million operating cycles	VA	70	50	38	33	28
10 million operating cycles	VA	25	18	14	12	10

TeSys TeSys CV1B, CV3B with d.c. control circuit Control circuit characteristics

CV1B, CV3B with d.c control circuit

Control circuit characte	ristics					
CV1B contactor size				F	н	к
Rated control	Direct d.c.		v	12500		
circuit voltage (Uc)	d.c. with economy resistor		v	24500		
Control voltage limits $(\theta \leq 55 \text{ °C} \text{ and at Uc})$						
Operation			v	0.851.1 Uc		
Drop-out	Direct d.c.		v	0.10.65 Uc		
d.c. with economy resistor		omy resistor	v	0.20.5 Uc		
Coil consumption						
Direct d.c.	Inrush and sealed		w	2027	4252	80105
d.c. with	Inrush		w	95	200	300
economy resistor	Sealed		w	6	13	6
Average operating time (1)						
Direct d.c.	Closing "N/O"		ms	130	160	250
	Opening "N/C'		ms	30	32	130
d.c. with	Closing "N/O"		ms	40	35	75
economy resistor	Opening "N/C'		ms	12	14	15
Mechanical durability at Uc	In operating	* New design		5 x 10 ⁶	5 x 10 ⁶	-
Direct d.c. supply	cycles	Old design		10 x 10 ⁶	20 x 10 ⁶	10 x 10 ⁶
d.c. with economy resistor	In operating cy	cles		1.2 x 10 ⁶	1.2 x 10 ⁶	1.2 x 10 ⁶
Maximum operating rate ($\theta \le 5$	55 °C)					
Direct d.c.	In operating cy	rcles/hour		1200	1200	1200
d.c. with economy resistor	In operating cy	rcles/hour		120	120	120

(1) The closing time "N/O" or opening time "N/C" are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

Characteristics				
Auxiliary contact charact	eristics (cont.))		
Type of contacts				Auxiliary contact LA1BN32A (size F to H)
Rated operational voltage (Ue)	Up to		v	690
Conventional thermal current (Ith)	For ambient ten ≤60 °C	nperature	Α	10
Short-circuit protection	Conforming to I	EC 60947-5-1		gG fuse: 10 A
Rated making capacity	Conforming to IEC 60947-5-1	l rms	A	∼: 140,:: 250
Tightening torque	Philips head n°	2 and Ø 6	N.m	1.2
Screw clamp connections	Flexible conductor without cable end	1 conductor	mm ²	14
		2 conductors	mm ²	14
	Flexible	1 conductor	mm ²	14
	conductor with cable end	2 conductors	mm ²	12.5
	Solid conductor	1 conductor	mm ²	14
	without cable end	2 conductors	mm ²	14
	Tightening torqu	le	N.m	1.7
Mechanical durability In millions of operating cycles				1

Rated operational power of contacts in AC (conforming to IEC 60947-5-1)

a.c. supply, categories AC-14 and AC-15

Electrical durability (valid for up to 3600 operating cycles/hour) on an inductive load such as the coil of an electromagnet:

making current (cos \Box 0.7) = 10 times the power broken (cos \Box 0.4).

	v	24	48	115	230	400	440	600
1 million operating cycles	VA	60	120	280	560	960	1050	1440
3 million operating cycles	VA	16	32	80	160	280	300	420
10 million operating cycles	VA	4	8	20	40	70	80	100

Rated operational power of contacts in DC (conforming to IEC 60947-5-1)

d.c. supply, category DC-13

Electrical durability (valid for up to 1200 operating cycles/hour) on an inductive load such as the coil of an electromagnet, without economy resistor, the time constant increasing with the power.

	v	24	48	125	250	440
1 million operating cycles	VA	120	90	75	68	61
3 million operating cycles	VA	70	50	38	33	28
10 million operating cycles	VA	25	18	14	12	10

TeSys TeSys CV1B size F to H for direct a.c. Dimensions

CV1B size F to H for direct a.c.

Dimensions

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.

CV1B	Number	Number	Dimens	ions		
contactor	of N/O poles	of N/C poles	L ⁽¹⁾		a	a1
size			min	max		
F	0	1	225	445	-	210
	1	0	225	445	-	210
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	345	445	-	330
Н	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1 B	380 V		500 V		600 V		
	X1	X2	X1	X2	X1	X2	
F	50	80	60	100	80	120	
н	70	100	80	120	100	150	

Rating of contactor CV1 B	Ø	b ^{(2) (3)}	b1 ⁽²⁾	C ⁽²⁾	c1	L1	N	P ⁽⁴⁾	Q
F	M6	76	71	112	17	15	97	40	20
Н	M6	55	128	140	47	20	164	50	57

(1) Bar pre-drilled at 225 - 285 - 345 - 385 - 445.

(2) Where 2 dimensions are given, the first is for a contactor fitted with an EB1 electromagnet and the second, for a contactor fitted with an EC1 electromagnet.
(3) With N/C main pole: size F and H, b = 95 mm - size L, b = 141 mm.
(4) + 20 mm if intermediate bearing fitted.

TeSys TeSys CV1B size K for direct a.c. Dimensions

CV1B size K, for direct a.c.

Dimension a: position of electromagnet according to the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4GM auxiliary contact blocks in addition to the maintaining contact.

OVID	Ø	b ⁽¹⁾⁽²⁾	b1 ⁽¹⁾	C ⁽¹⁾	c1	L1	Ν	P ⁽³⁾	Q	Q1 ⁽³⁾
contactor size										
К	M12	141	214	215	45	30	237	100	71	74

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity										
CV1B	380 V		500 V		600 V					
	X1	X2	X1	X2	X1	X2				
K PN1 pole	90	90	120	120	160	160				
K PN3 pole	40	40	60	60	80	80				

CV1B contactor	Number of poles ⁽⁴⁾	Number of LA1BN32 auxilliary module			
size		Dimensions	0	1	2
К	1 N/O	L	345	385	445
		а	335	375	435
	2 N/O	L	445	540	540
		а	435	531	531
	3 N/O	L	540	635	635
		а	531	625	625
	4 N/O	L	635	760	760
		а	625	750	750
	1 N/C	L	345	385	445
		а	335	375	435
	2 N/C	L	445	540	540
		а	435	531	531

Where 2 dimensions are given, the first is for a contactor fitted with an EB1 electromagnet and the second, for a contactor fitted with an EC1 electromagnet.
 With N/C main pole: size F and H, b = 95 mm - size G, b = 84 mm - size L, b = 141 mm.
 + 20 mm if intermediate bearing fitted.
 N/O poles (Normally Open), N/C poles (Normally Closed).

TeSys TeSys CV1B size F to H for direct d.c. Dimensions

CV1B size F to H, for direct d.c.

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.

CV1B	Number	Number	Dimens	ions		
contactor	of N/O poles	of N/C poles	L ⁽¹⁾		a	a1
size			min	max		
F	0	1	225	445	-	210
	1	0	225	445	-	210
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	345	445	-	330
Н	0	1	345	540	281	-
	1	0	345	540	281	-
	1	1	385	540	350	-
	2	0	385	540	350	-
	2	1	445	540	425	-
	3	0	445	540	425	-
	4	0	540	540	500	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1B	380 V		500 V		600 V		
	X1	X2	X1	X2	X1	X2	
F	50	80	60	100	80	120	
Н	70	100	80	120	100	150	

CV1B contactor size	Ø	b ⁽²⁾	b1	C	c1	L1	N	P ⁽³⁾	Q
F	M6	78	92	142	17	20	97	40	40
Н	M6	56	154	140	47	20	164	75	57

Bar pre-drilled at 225 - 285 - 345 - 385 - 445.
 With N/C main pole: size F and H, b = 95 mm .

(3) + 20 mm if intermediate bearing fitted.

TeSys TeSys CV1B size K for direct d.c. Dimensions

CV1B size K, for direct d.c.

CV1B	Ø	b ⁽¹⁾	b1	с	c1	L1	N	P ⁽²⁾	Q	Q1 ⁽²⁾
contactor size										
к	M12	141	214	215	45	30	237	100	71	74

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1B	380 V	- ·	500 V		600 V	
	X1	X2	X1	X2	X1	X2
K PN1 pole	90	90	120	120	160	160
K PN3 pole	40	40	60	60	80	80

CV1B contactor	Number of poles ⁽³⁾		Number o module	f LA1BN32 a	auxilliary contact
size		Dimensions	0	1	2
К	1 N/O	L	345	385	385
		а	321	361	361
	2 N/O	L	445	540	540
		а	421	517	517
	3 N/O	L	540	635	635
		а	517	611	611
	4 N/O	L	635	760	760
		а	611	736	736
	1 N/C	L	345	385	385
		а	321	361	361
	2 N/C	L	445	540	540
		а	421	517	517

(1) With N/C main pole: size F and H, b = 95 mm - size G, b = 84 mm - size L, b = 141 mm.
(2) + 20 mm if intermediate bearing fitted.
(3) N/O poles (Normally Open), N/C poles (Normally Closed).

TeSys TeSys CV1B, size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor

Dimensions

CV1B, size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor

Dimension a: position of electromagnet according to the number of N/O or N/C main poles.

No maintaining contact for this version.

The economy resistor and N/C contact (included in the dimensions) are mounted on the contactor and wired in parallel.

CV1B	Number	Number	Dimen	sions		
contactor	of N/O poles	of N/C poles	L ⁽¹⁾		a	a1
size			min	max		
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	285	445	-	270
	2	0	285	445	-	270
	2	1	345	445	-	330
	3	0	345	445	-	330
	4	0	385	445	-	370
Н	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

• •										
CV1 B	380 V			500 V				600 V		
	X1	X2		X1		X2		X1	X2	2
F	50	80		60		100		80	12	20
Н	70	100		80		120		100	15	60
CV1B contactor size	Ø	b (2)	b1	с	C	1	L1	N	P ⁽³⁾	Q
F	M6	76	72	112	17	7	15	97	40	20
н	M6	65	128	140	47	7	20	164	75	57

(1) Bar pre-drilled at 225 - 285 - 345 - 385 - 445.

(2) With N/C main pole: size F and H, b = 95 mm - size L, b = 141 mm.

(3) + 20 mm if intermediate bearing fitted.

TeSys

TeSys CV1B, size J to L, for rectified a.c. with economy resistor,

d.c. with economy resistor

Dimensions

X1, X2: minimum electrical clearance according to operational voltage and breaking capacity

CV1B	380 V		500 V		600 V		
	X1	X2	X1	X2	X1	X2	
K PN1 pole	90	90	120	120	160	160	
K PN3 pole	40	40	60	60	80	80	

CV1B contactor	Number of poles ⁽³⁾		Number of module	LA1BN32 au	xilliary contact
size		Dimensions	0	1	2
К	1 N/O	L	345	385	445
		а	335	375	435
	2 N/O	L	445	540	540
		а	435	531	531
	3 N/O	L	540	635	635
		а	531	625	625
	4 N/O	L	635	760	760
		а	625	750	750
	1 N/C	L	345	385	445
		а	335	375	435
	2 N/C	L	445	540	540
		а	435	531	531

(1) With N/C main pole: size **F** and **H**, b = 95 mm - size **G**, b = 84 mm - size **L**, b = 141 mm.

(2) + 20 mm if intermediate bearing fitted.
 (3) N/O poles (Normally Open), N/C poles (Normally Closed).

TeSys TeSys CV1B for rectified a.c. with economy resistor, d.c. with economy resistor

Schemes

Dotted lines show optional wiring and external items required.

a.c. control circuit supply via rectifier and economy resistor

Optional protection relay. Must be latching type for 2-wire control.
 Rr: economy resistor.

d.c. control circuit supply via rectifier and economy resistor

It is essential to check that the control circuit contacts have ratings compatible with the voltage and power consumption of the operating coil of the contactor. If not, an intermediate "KA" auxiliary relay must be fitted and wired as shown.

(1) Rr: economy resistor.

Installation and maintenance of CV1B contactors

Fixing

In general, bar mounted contactors are fixed on 2 vertical uprights.

The fixing dimensions of the support bars are standardised as is the diameter of the fixing holes.

At each end of each bar there is a cut-out with notches, one vertical, the other horizontal.

For contactors:

■ CV1BK. The use of LA9B103 bar mounting brackets is recommended, see page 74.

Tightening

In order to obtain good mechanical resistance to vibration, we recommend that the bar be fixed directly to the 2 uprights using screws of diameter recommended for the contactor size.

Maintenance

Bar mounted contactors require no special mechanical maintenance.

We recommend a periodic check of the main contacts.

Contacts which have performed numerous breaks may look as if they are worn. It is only by checking the compression gap that the degree of wear can be evaluated.

Never make adjustments to the compression gap before the contacts are replaced.

When the compression gap has reduced to 20-50 % of its initial value, replace all of the contactor's contacts.

After each change of contacts:

- Align the contacts to the initial compression dimension.
- Check the contact pressure of each contact (contactor closed electrically or wedged mechanically).
- Clean the inner side walls of the arc chambers by scraping.
- Check tightness of the adjustment screws and nuts.

Note: A the contacts must never be filed, cleaned or greased.

Replacement parts

Please see pages 76 to 101.

Setting characteristics

Please see page 54.

TeSys TeSys CV1B installation, maintenance, setting Setting

Setting characteristics of contactors CV1B, sizes F to L Electromagnet for a.c. supply

Electromagnet EB1 or EC1

Electromagnet for d.c. supply Electromagnet EK1

Setting closing travel (E) and compression gap (e)

Pole pressure

setting (F)

Poles N/C poles Fixed contact Fixed contact Moving contact Compression rap setting

Setting characteristics of N/C poles

These characteristics apply to all forms of electromagnet power supply.

CV1 contactor size		F	G	н	J	к	L
Opening stroke (b)	mm	4	6	6	7.5	7.5	7.5
Contact pressure force (F)	daN	0.6	0.7	1	1.6	4	8

The operating force for a N/C pole is approximately equal to the force of 2 N/O poles.

Direct a.c. 50/6	0 Hz supply wit	h standard power	electromagr	net EB1					
CV1B contactor	size			F	G	н	J	к	L
Electromagnet				EB1EA40	EB1GA40	EB1HA40	EB1JB40	EB1KB40	EB1KB40
	Armature closir	ng travel (E)	mm	15 ±1	16 ±1	21 ±1	21/24	28/33	28/33
	Compression tr	avel (e)	mm	5/5.5	5.5/6	6.5/7	6/7	8/9	8.5/9
Coil				WB1EA •••	WB1GA •••	WB1HA •••	WB1JB•••	WB1KB.	WB1KB
	Pull-in voltage		v	0.8 Uc			•	•	
	Drop-out voltag	je	V	0.50.7 Uc					
N/O poles		1 pole	daN	3	4.5	7	10.5	20	20 (1)
Contact pressure s		2 poles	daN	1.5	2.2	3.5	5.2	10	10 ⁽¹⁾
per pole according contactor composit		3 poles	daN	1	1.5	2.3	3.5	6.6	-
	1011	4 poles	daN	0.75	1.1	1.7	2.6	5	-
Direct a.c. 50/6	0 Hz supply wit	h increased power	electromag	net EC1	1	1	1	1	1
CV1B contactor	size		C	F	G	н	J	к	L
Electromagnet				EC1EA40	EC1GA40	EC1HA40	EC1JB40	-	-
0	Armature closir	ng travel (E)	mm	16 ±1	21 ±1	21/24	28/33	_	-
	Compression tr	0 ()	mm	5.5/6	6.5/7	6/7	8/9	_	-
Coil				WB1GA •••	WB1HA •••	WB1JB.	WB1KB	-	-
	Pull-in voltage		v	0.8 Uc				-	-
	Drop-out voltag	le	v	0.50.7 Uc				-	-
N/O poles		1 pole	daN	2.2	3	-	-	-	-
Contact pressure s		2 poles	daN	1.5	2	-	-	-	-
per pole according contactor composit		3 poles	daN	1	1.5	2.6	5	-	-
contactor composit	lon	4 poles	daN	0.8	1.2	2.1	4	-	-
		idual rectifier and	economy re						
CV1B contactor	size			F	G	н	J	к	L
Electromagnet				EB1EA40	EB1GA40	EB1HA40	EB5JB40	EB5KB40	EB5KB40
	Armature closir	• • • •	mm	15 ±1	16 ±1	21 ±1	21/24	28/33	28/33
	Compression tr	avel (e)	mm	5/5.5	5.5/6	6.5/7	6/7	8/9	8/9
Coil				WB1 EA	WB1GA●●●	WB1HA •••	WB1JB•••	WB1KB•••	WB1KB
	Pull-in voltage		v	0.73 ±0.02 U					
	Drop-out voltag		v	0.20.52 Uc					
N/O poles		1 pole	daN	3	4.5	7	10.5	20	20 (1)
Contact pressure s per pole according		2 poles	daN	1.5	2.2	3.5	5.2	10	10 ⁽¹⁾
contactor composit		3 poles	daN	1	1.5	2.3	3.5	6.6	13 ⁽¹⁾
		4 poles	daN	0.75	1.1	1.7	2.6	5	10 ⁽¹⁾
		5 poles	daN	0.75	1				-

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.

CV1B contactor	rsize			E		G		н	J	ĸ	L
Electromagnet	0.20			EB1E	A40	EB1G	A40	EB1HA40	EB5JB40	EB5KB40	EB5KB40
lioodionnaginot	Armature clos	ing travel (E)	mm	15 ±1		16 ±1	,,,,,	21 ±1	21/24	28/33	28/33
	Compression	0 ()	mm	5/5.5		5.5/6		6.5/7	6/7	8/9	8/9
Coil				WB1E	Aeee	WB10	GA	WB1HA	WB1JB	WB1KB	WB1KB
	Pull-in voltage		v	0.73 ±	0.73 ±0.02 Uc						
	Drop-out volta	ge	v	0.2().52 Uc				0.20.50 Uc	;	
V/O poles		1 pole	daN	3		4.5		7	10.5	20	20 (1)
Contact pressure		2 poles	daN	1.5		2.2		3.5	5.2	10	10 (1)
per pole according		3 poles	daN	1		1.5		2.3	3.5	6.6	13 ⁽¹⁾
contactor compos	SILION	4 poles	daN	0.75		1.1		1.7	2.6	5	10 (1)
		5 poles	daN	0.75		1		-	-	-	-
Direct d.c. su	oply							1		1	1
CV1B contactor	size			F		G		н	J	к	L
Electromagnet				EK1E	A40	EK1G	A40	EK1HA40	EK1JA40	EK1KA40	EK1KA40
-	Armature clos	ing travel (E)	mm	22 ±1		22 ±1		26.5 ±1	26.5 ±1	38 ±2	38 ±2
	Compression	travel (e)	mm	6,5/7		6,5/7		8/8,5	7±0,5	10 ±0,5	10 ±0,5
Coil				WB2E	Aeee	WB2E	Aeee	WB2HA •••	WB2HA •••	WB2KA •••	WB2KA
	Power consum	nption of the 2 coils	w	202 6	304 0	202 6	304 0	4252	4252	80105	80105
	Pull-in current	lf ⁽²⁾	Α	0.64	0.61	0.64	0.61	0.61	0.61	0.61	0.61
	Drop-out volta	ge	V	0.05	.0.65 U	0					
N/O poles		1 pole	daN	3	-	2.6	-	7	8.8	14	20 (1)
Contact pressure		2 poles	daN	1.5	-	1.3	-	3.5	4.4	10	10 (1)
er pole according		3 poles	daN	0.9	-	-	1.5	2.3	2.9	6.6	-
		4 poles	daN	-	1.1	-	1.1	1.7	2.2	5	-
		5 poles	daN	-	0.9	-	-	-	-	-	_

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.
(2) If = current flowing through the 2 coils, at ambient temperature, after switch-on at Uc.

TeSys CV1B installation, maintenance, setting Setting

CV3B, LC1B with a.c. or d.c control circuit

Туре			CV3B	
Size			F	Н
Conforming to	ى ~	v	1000	1000
IEC 60947-4	=	v	1000	1000
			IEC 60947-4	
		<u> </u>	Bureau veritas, CSA	
Conforming t	o IEC 60529		IP00	
		<u> </u>	TC	
Storage		°C	-60+80	
Operation		°C	-5+55 (0.851.1 Un)	
		°C	-30+70 at Uc	
operation at u	Jc			
		m	2000	
				± 23° possible, in relation to normal
			Dele DA2	vertical mounting plane
AC 3 11054	40.1/ □ < 55 °C	•		250
		_		300
	±0 v, ⊔ ≤ 40 0	_		1000
	ting	_		1000
				· Ο 7 ΙΟΟ ΠΟ 5
0		-		2500
				2200
003 - 0.02		_		2200
	660/ 690 V	A	800	2100
	1000 V	A	700	2000
AC-3	1000 +	Ŵ	9.6	35
AC-1		w	9.6	51
//o .			Pole PA3	
DC-1, Ue ≤ 5	500 V. □ ≤ 40 °C	Α	80	300
		A	80	300
DC-3 to DC-5 ≤ 40 °C), Ue ≤ 440 v, ı ∟	Î.		
L/R ≤ 1 ms			500	500
L/R ≤ 15 ms			440	440
L/R ≤ 15 ms		A	1400	3500
L/R ≤1 ms	Single-pole - 500 V	A	1000	3000
	2-pole - 500 V	Α	1000	3000
	2-pole - 1000 V	Α	1000	3000
L/R ≤ 15 ms		Α	1000	3000
	2-pole - 440 V	Α	1000	3000
	2-pole - 850 V	Α	1000	3000
In DC-1		W	9.6	35
From DC-3 to) DC-5	w	9.6	35
			Pole PA3	
		L	14	
		A		300
For 1 s		A	800	2400
For 5 s		Α	640	2300
For 10 s		Α	640	2280
For 30 s		Α	380	1300
For 1 min		Α	320	1100
For 3 min		Α	200	680
For 10 min		A	130	440
Ue ≤ 440 V	Type aM / type g1	Α	80/125	250/315
^+ #b and 50				
At Ith and 50 i				0.57
	Number of bars or conductor		1	1
	CONTRACTOR	mm		32 x 4
Por			1-	JZ X 4
Bar Cable with luc		_		400
Cable with lug	<u> </u>	mm ²	25	120
	onnector	_		120 - Ø 10
	Size Conforming to IEC 60947-4 Conforming to IEC 60947-4 Conforming to Storage Operation Permissible fo operation at U AC-3, Ue ≤ 44 AC-1, Ue ≤ 44 Up to Without derat Derating coef cos = 0.35 cos = 0.35 Cos = 0.35 Cos = 0.35 Cos = 0.35 Cos = 0.35 DC-1, Ue ≤ 5 DC-3 to DC-3 U/R ≤ 15 ms U/R ≤ 15 ms Cos = 0.35 Cos	SizeConforming to \sim IEC 60947-4IEC 60529StorageOperationPermissible for operation at UcAC-3, Ue \leq 440 V, $\square \leq$ 55 °CAC-1, Ue \leq 440 V, $\square \leq$ 40 °CUp toWithout deratingDerating coefficientcos \square 0.35up to 440 V $\frac{500 V}{660/690 V}$ 1000 VAC-3AC-1DC-1, Ue \leq 500 V, $\square \leq$ 40 °CDC-3 to DC-5, Ue \leq 440 V, T $\square <$ Ad0 °CL/R \leq 15 msL/R \leq 15 msI/R \leq 15 msI/R \leq 15 msI/R \leq 15 msI/R \leq 16 msI/R \leq 10 °CColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"	SizeConforming to $^{\sim}$ VVIEC 60947-4VConforming to IEC 60529Storage°C°COperation°C°CPermissible for operation at Uc°CAC-3, Ue ≤ 440 V, □ ≤ 55 °CAAC-1, Ue ≤ 440 V, □ ≤ 40 °CAUp toVWithout deratingHzDerating coefficientHzcos □ 0.35Acos □ 0.35Up to 440 VAC-3AC-3AC-1WDC-1, Ue ≤ 500 V, □ ≤ 40 °CAAC-3AC-1WDC-1, Ue ≤ 500 V, □ ≤ 40 °CAAC-3L/R ≤ 15 msL/R ≤ 15 msAL/R ≤ 15 msAIn DC-1WFrom DC-3 to DC-5WFor 1 sAFor 1 sAFor 1 sAFor 10 sAFor 10 sAFor 10 minAUe ≤ 440 VType aM/type g1AHt th and 50 Hzm□	Size F Conforming to ^ V 1000 LEC 60947.4 V Conforming to IEC 60529 IPO0 Conforming to IEC 60529 IPO0 Operation ° C -60+80 Operation at Uc °C -5+55 (0.851.1 Un) Permissible for operation at Uc °C -30+70 at Uc Pole PA3 AC-3. Ue ≤ 440 V, □ ≤ 40 °C A AC-3. Ue ≤ 440 V, □ ≤ 40 °C A 80 MC-1. Ue ≤ 440 V, □ ≤ 40 °C A 80 Up to V 1000 Without derating Hz 50/60 900 500/V Gos □ 0.35 up to 440 V A 900 500 V A 800 1000 V AC-1 W 9.6 9.6 C-1. Ue ≤ 500 V, □ ≤ 40 °C A 80 L/R ≤ 11 ms 500 1000 L/R ≤ 15 ms Independentee 40 L/R ≤ 15 ms A 1000 L/R ≤ 15 ms Single-pole - 4

TeSys CV3B, LC1B with a.c. or d.c control circuit Envir. & pole characteristics

CV3B and LC1B			
L	Μ	Р	R
1000			
1500			
Bureau veritas, Register of shipping (CE	I), German Lloyd		

Pole PA2			
800	1000	1500	1800
800	1250	2000	2750
1000	1000	1000	1000
		·	
10 000	10 000	15 000	18 000
8000	9000	12 000	16 000
7000	8000	12 000	14 000
6000	7000	9000	11 000
4000	4000	5000	6000
115	180	290	360
115	280	520	680
Pole PA2			
800	1250	2000	2750
800	1000	1800	2500
500	500	500	500
440	440	440	440
10 000	10 000	15 000	18 000
3200	4400	7200	10 000
3200	4400	7200	10 000
3200	4400	7200	10 000
3200	4400	7200	10 000
3200	4400	7200	10 000
3200	4400	7200	10 000
115	280	520	680
115	180	420	560
Pole PA2	· ·	·	·

800	1250	2000	2750
9600	9600	12 000	15 000
9600	9600	12 000	15 000
7000	8000	9600	12 000
4800	5200	6400	8000
3500	3800	5200	6300
2100	2400	3600	4400
1200	1800	2800	3600
800/1000	1200/1500	2 x 800/2 x 1000	2 x 1000/2 x 1250
 0.18	0.18	0.13	0.09
2	2	3	4
50 x 5	80 x 5	100 x 5	100 x 5
-	-	-	-
-	-	-	-
4 x Ø 8	4 x Ø 10	4 x Ø 10	4 x Ø 10
18	35	35	35

CV3B L to R, LC1B with a.c. or d.c control circuit (with economy resistor)

CV3B and LC1B contacto	rs sizes			L	M		P		R
Control circuit characteristic	s			1					
Rated control circuit voltage (Uc)	d.c. with economy	/ resistor	v		1 3-pole contac 1 4-pole contac				
	a.c. with economy	/ resistor	v	110500					
Control voltage limits	Operation		v	0.851.1 l	Jc				
(□ \leq 55 °C and at Uc)	Drop-out		v	0.30.5 U	>		0.35	.0.5 Uc	0.40.5 Uc
Maximum consumption (coil + economy resistor)									
d.c. with	Composition	1 pole	w	_	- Sealed: 10				
economy resistor (1)		2 poles	w		- Sealed: 20				
		3 poles	w	-	0 - Sealed: 31				
		4 poles	w		0 - Sealed: 47				
a.c. with	Composition	1 pole	VA		- Sealed: 10				
economy resistor		2 poles	VA		0 - Sealed: 20				
		3 poles	VA	_	0 - Sealed: 31				
		4 poles	VA	Inrush: 160 100…150	0 - Sealed: 47				
Average operating time at Uc (1)									
	Opening "N/C"		ms	2040					
Mechanical durability at Uc	In operating cycle			1,2 x 10 ⁶					
Maximum operating rate (□ ≤ 55 °C)	In operating cycle	s/hour		120					
Auxiliary contact characteris	tics								
Type of contacts					ous ZC4GM				
Rated thermal current (Ith)			A	20					
Operational power a.c.			v	48	110/127	2	20/240	380/415	440/500
	1 x 10 ⁶ operating of	cycles	w	900	2200	4	000	4000	4000
	3 x 10 ⁶ operating of	,	w	800	1300		500	1500	1500
	10 x 10 ⁶ operating	cycles	w	450	500	-	00	500	500
Occasional making and breaking	g capacity a.c.		w	5000	14000	2	3000	35000	45000
Operational power d.c.			v	24	48	110	220	440	600
	1 x 10 ⁶ operating	,	w	300	280	250	250	230	100
	3 x 10 ⁶ operating	,	w	115	105	95	90	85	50
	10 x 10 ⁶ operating	cycles	w	45	40	35	33	30	20
Occasional making and breaking			w	5000	6000	1600	800	400	240
Cabling	With cable end		mm ²	_	m ² conductors				
	Without cable end		mm²		m ² conductors	3			
Tightening torque			N.m	1.2					

(1) The closing time "N/O" or opening time "N/C" are measured from the moment the coil supply is switched on or off, to initial contact or separation of the main poles.

TeSys CV3B size F, H, for direct a.c.

Dimensions

CV3B size F, H, for direct a.c.

Dimensions

Dimension L: fixing centres depending on the number of N/O or N/C main poles.

CV3B	Number	Number	Dimen	sions		
contactor	of N/O poles	of N/C poles	L		а	a1
size			min	max		
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
Н	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

CV3B contactor siz	ze								Minimum electrical clearance	
	Ø b b1 c c1 L1 P Q								X1	X2
F	M6	76	120	15	157	15	50	46	25	15
Н	M6	62	188	52	176	20	60	57	60	55

TeSys TeSys CV3B size F, H, for direct d.c. Dimensions

CV3B size F, H, for direct d.c.

Dimension L: fixing centres depending on the number of N/O or N/C main poles.

CV3B	Number	Number	Dimens	sions		
contactor	of N/O poles	of N/C poles	L		а	a1
size			min	max		
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
Н	0	1	345	540	284	-
	1	0	345	540	284	-
	1	1	385	540	353	-
	2	0	385	540	353	-
	2	1	445	540	428	-
	3	0	445	540	428	-
	4	0	540	540	503	-

CV3B	contacto	r size							elect	Minimum electrical clearance	
	ø	b	b1	с	c1	L1	P	Q	X1	X2	
F	M6	78	120	15	157	20	50	48	25	15	
н	M6	62	188	52	176	20	60	57	60	55	

TeSys

TeSys CV3B size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor Dimensions

CV3B size F, H, for rectified a.c. with economy resistor, d.c. with economy resistor Dimensions

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of **ZC4 GM** auxiliary contact blocks in addition to the maintaining contact.

CV3B	Number	Number	Dimens	ions		
contactor	of N/O poles	of N/C poles	L		а	a1
size			min	max		
F	0	1	285	445	-	270
	1	0	285	445	-	270
	1	1	345	445	-	330
	2	0	345	445	-	330
	2	1	385	445	-	370
	3	0	385	445	-	370
	4	0	445	445	-	430
Н	0	1	345	540	286	-
	1	0	345	540	286	-
	1	1	385	540	355	-
	2	0	385	540	355	-
	2	1	445	540	430	-
	3	0	445	540	430	-
	4	0	540	540	505	-

CV3B contactor siz	ze								Minimum electrical clearance	
	Ø	b	b1	с	c1	L1	Р	Q	X1	X2
F	M6	75	120	17	149	15	50	48	25	153
н	M10	62	188	52	176	20	60	57	60	55

TeSys TeSys CV3B size L to R, LC1B Dimensions

CV3B size L to R, LC1B

Dimensions

CV3B and LC1B

CV3D allu LCTD																
contactor size	L				M				P				R			
Number of poles (1)	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
а	50	50	50	50	63	63	63	63	100	100	100	100	125	125	125	125
b	59	59	59	59	55	55	55	55	55	55	55	55	50	50	50	50
C	16	16	16	16	20	20	20	20	20	20	20	20	25	25	25	25
L	345	445	540	760	345	445	540	760	385	540	760	1065	445	635	885	1065
М	285	385	480	-	285	385	480	-	325	480	700	-	385	575	825	-
M1	-	-	-	308	-	-	-	308	-	-	-	455	-	-	-	455
M2	-	-	-	392	-	-	-	392	-	-	-	550	-	-	-	550
N	121	121	121	121	125	125	125	125	125	125	125	125	130	130	130	130
Р	100	100	100	100	100	100	100	100	150	150	150	150	195	195	195	195
Q1	100	100	100	100	100	100	100	100	110	110	110	110	130	130	130	123
R	122	122	122	122	157	157	157	157	173	173	173	173	173	173	173	173
S	10	10	10	10	17	17	17	17	20	20	20	20	20	20	20	20
т	30	30	30	30	30	30	30	30	60	60	60	60	60	60	60	60
Ø	9	9	9	9	11	11	11	11	11	11	11	11	11	11	11	11
				-						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· ·		· · · · · · · · · · · · · · · · · · ·	

(1) N/O poles (Normally Open).

Minimum electrical clearance

Values X1 and X2 are given for a breaking capacity of 10 In (3-phase \sim current).

CV3B and contactor		L	м	Р	R	
3-phase \sim v	voltage					
380/440 V	X1	100	100	150	200	
	X2	150	150	200	250	
500 V	X1	100	100	150	200	
	X2	150	150	220	250	
660/690 V	X1	150	150	200	200	
	X2	200	200	250	250	
1000 V	X1	200	200	200	250	
	X2	250	250	250	300	

TeSys CV3B, LC1B Mechanical interlocking Dimensions

Mechanical interlocking

Mounting Reversing contactor pairs LC1B and CV3B, Sizes L, M, P, R (for assembly by the user)

L : see dimensions.

Contactor rating	Electromagnet	Supply voltage (in V)	Interaxis (in mm) CV1B (≤ 690 V)		
F	EB1 \sim	-	180		
	EC1 \sim	-	200		
	EK1	-	180		
Н	-	≤ 440	220		
		≥ 440	260		
К	-	≤ 440	400		
		≥ 440	500		
M	-	-	-		
Р	-	-	-		
R	-	-	-		
Contactor rating	Electromagnet	Interaxis (in mm)			
	Electromagnet		LC1B (≤ 1000 V)		
	Electromagnet	(in mm)	LC1B (≤ 1000 V) -		
rating		(in mm) CV3B (≤ 1000 V)			
rating	EB1~	(in mm) CV3B (≤ 1000 V) 240	-		
rating	EB1∼ EC1∼	(in mm) CV3B (≤ 1000 V) 240 240	- -		
rating	EB1∼ EC1∼	(in mm) CV3B (≤ 1000 V) 240 240 240	- -		
rating F H	EB1~ EC1~ EK1	(in mm) CV3B (≤ 1000 V) 240 240 240 320	- - -		
rating F H	EB1~ EC1~ EK1 -	(in mm) CV3B (≤ 1000 V) 240 240 240 320 600	- - - -		

TeSys TeSys CV3B, LC1B Variable composition contactors Schemes

Dotted lines show optional wiring and external items required.

a.c. control circuit supply via rectifier and economy resistor

Optional protection relay. Must be latching type for 2-wire control.
 Rr: economy resistor.

d.c. control circuit supply via rectifier and economy resistor

It is essential to check that the control circuit contacts have ratings compatible with the voltage and power consumption of the operating coil of the contactor. If not, an intermediate "KA" auxiliary relay must be fitted and wired as shown.

(1) Rr: economy resistor.

Installation and maintenance of CV3B and LC1B contactors

Fixing

In general, bar mounted contactors are fixed on 2 vertical uprights.

The fixing dimensions of the support bars are standardised as is the diameter of the fixing holes.

At each end of each bar there is a cut-out with notches, one vertical, the other horizontal.

For contactors:

CV3B, sizes L to R

LC1B

The use of LA9B103 bar mounting brackets is recommended, see page 74.

Tightening

In order to obtain good mechanical resistance to vibration, we recommend that the bar be fixed directly to the 2 uprights using screws of diameter recommended for the contactor size.

Maintenance

Bar mounted contactors require no special mechanical maintenance.

We recommend a periodic check of the main contacts.

Contacts which have performed numerous breaks may look as if they are worn. It is only by checking the compression gap that the degree of wear can be evaluated.

Never make adjustments to the compression gap before the contacts are replaced.

When the compression gap has reduced to 20-50 % of its initial value, replace all of the contactor's contacts.

After each change of contacts:

- Align the contacts to the initial compression dimension.
- Check the contact pressure of each contact (contactor closed electrically or wedged mechanically).
- Clean the inner side walls of the arc chambers by scraping.
- Check tightness of the adjustment screws and nuts.

Note: <u>M</u> the contacts must never be filed, cleaned or greased.

Replacement parts

■ Please see pages 76 to 101.

Setting characteristics

■ Please see page 68.

TeSys TeSys CV3B, LC1B installation, maintenance, setting Setting

Setting characteristics of contactors CV3B, sizes F to K

Electromagnet for a.c. supply Electromagnet EB1

Electromagnet for d.c. supply Electromagnet EK1

Setting closing travel (E) and compression gap (e)

De

Setting characteristics of N/C poles

These characteristics apply to all forms of electromagnet power supply.

V3 B contactor size		F	G	н	J-K	
Opening stroke (b)	mm	4	6	6	No pole	
Contact pressure force (F)	daN	0.6	0.7	1	Switch as standard (consult us)	

The operating force for a N/C pole is approximately equal to the force of 2 N/O poles.

Direct a.c. 50/	60 Hz supply wi	th standard power e	electromagi	net EB1						
CV3B contactor	size			F	G	н	J	ĸ		
Electromagnet			EB1EA40	EB1GA40	EB1HA40	EB1GA40	EB1KA40			
	Armature clos	ing travel (E)	mm	15 ±1	16 ±1	21 ±1	16 ±1	21 ±2		
	Compression	travel (e)	mm	5/5.5	5.5/6	6.5/7	5.5/6	6.5/7		
Coil		Pull-in voltage		WB1EA •••	WB1GA •••	WB1HA •••	WB1GA •••	WB1HA		
	Pull-in voltage			0.8 Uc						
	Drop-out volta	ge	V	0.40.7 Uc						
N/O poles		1 pole	daN	3	4.5	7	4.4 (1)	7 (1)		
Contact pressure		2 poles	daN	1.5	2.2	3.5	2.2 (1)	3.4 ⁽¹⁾		
per pole according contactor compos		3 poles	daN	1	1.5	2.3	-	-		
	luon	4 poles	daN	-	1.1	1.7	-	-		
Direct a.c. 50/	60 Hz supply wi	th increased power	electromag	net EC1		1		1		
CV3B contactor		•		F	G	н	J	K		
Electromagnet				EC1EA40	EC1GA40	EC1HA40	EC1GA40	EC1HB40		
g	Armature closing travel (E)		mm	16 ±1	21 ±1	23 ±1	21 ±1	23 ±1		
	Compression travel (e)		mm	5.5/6	6.5/7	7 ±0.3	6.5/7	7 ±0.3		
Coil Pull-in voltage				WB1GA •••	WB1HA •••	WB1JB.	WB1HA •••	WB1JBee		
			v	0.8 Uc	0.8 Uc		1			
Drop-out voltage			v	0.250.7 Uc						
N/O poles		1 pole	daN	-	-	-	3 (1)	5.2 ⁽¹⁾		
Contact pressure		2 poles	daN	1.4	2	-	2.2 (1)	3.5 ⁽¹⁾		
per pole according		3 poles	daN	1.1	1.5	2.6	-	-		
contactor compos	luon	4 poles	daN	0.85	1.2	2.1	-	-		
a.c. 50/400 Hz	supply via indi	vidual rectifier and e	economy re	sistor		1		1		
CV3 B contactor				F	G	н	J	к		
Electromagnet				EB1EA40	EB1GA40	EB1HA40	EB1GA40	EB1HA40		
	Armature closi	Armature closing travel (E)		15 ±1	16 ±1	21 ±1	16 ±1	21 ±1		
	Compression travel (e)		mm mm	5/5.5	5.5/6	6.5/7	5.5/6	6.5/7		
Coil	Pull-in voltage			WB1EA	WB1GAeee	WB1HA	WB1GA•••	WB1HA		
			v	0.73 ±0.02 Uc						
	Drop-out voltage		v	0.200.52 Uc						
V/O poles	1 pole		daN	3	4.5	7	4.4 (1)	7 (1)		
Contact pressure		2 poles	daN	1.5	2.2	3.5	2.2 (1)	3.4 ⁽¹⁾		
er pole according		3 poles	daN	1	1.5	2.3	_	_		
contactor compos	ition	4 poles	daN	0.75	1.1	1.7	_	-		
		5 poles	daN	0.75	1	-	_	_		

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.

TeSys TeSys CV3B, LC1B installation, maintenance, setting Setting

d.c. supply wit	h economy res	sistor									
CV3 B contactor				F		G		н	J ⁽¹⁾	K ⁽¹⁾	
Electromagnet			EB1EA	40	EB1GA	40	EB1HA40	EB1GA40	EB1HA40		
	Armature clos	sing travel (E)	mm	15 ±1		16 ±1		21 ±1	16 ±1	21 ±1	
Compression travel (e)		mm	5/5.5		5.5/6		6.5/7	5.5/6	6.5/7		
Coil				WB1EA		WB1GA		WB1HA •••	WB1GA •••	WB1HA ••	
	Pull-in voltage	III-in voltage V		0.73 ±0.02 Uc							
Drop-out voltage		age	V	0.200	0.200.52 Uc						
V/O poles		1 pole daN		3	3 4.5			7	4.4 (2)	7 (2)	
Contact pressure setting (F)		2 poles	daN	1.5 2.2		3.5	2.2 (2)	3.4 ⁽²⁾			
per pole according to the contactor composition		3 poles	daN	1 0.75		1.5 1.1		2.3 1.7		-	
		4 poles	daN								
		5 poles	daN	laN 0.75		1		-	-	-	
Direct d.c. sup	ply					I				1	
CV3 B contactor	size			F	F			н	J	ĸ	
Electromagnet				EK1EA	EK1EA40		40	EK1HA40	EK1GA40	EK1HA40	
Armature clos		sing travel (E)	mm	22 ±1	22 ±1			26.5 ±1	22 ±1	26.5 ±1	
	Compression travel (e)		mm	6.5/7	6.5/7			8.5/9	6.5/7	8/8.5	
Coil				WB2EA	WB2EA •• WB2E			WB2HA •••	WB2EA •••	WB2HA	
	Power consur	Power consumption of the 2 coils		2026	3040	2026	3040	4252	2637	4252	
	Pull-in current If (3)		Α	0.64	0.61	0.64	0.61	0.61	0.61	0.61	
	Drop-out volta	age	v	0.050	0.050.65 Uc						
V/O poles		1 pole	daN	3	-	2.6	-	7	3.7 ⁽²⁾	7 (2)	
Contact pressure s		2 poles	daN	1.5	-	-	1.3	3.5	2.2 (2)	3.4 ⁽²⁾	
per pole according to the contactor composition		3 poles	daN	0.9	1.5	-	1.5	2.3	-	-	
		4 poles	daN	-	1.1	-	1.1	1.7	-	-	
		5 poles	daN	-	0.9	-	-	-	-	-	

(1) 2 x GB poles in parallel for size J and 2 x HB poles in parallel for size K.
(2) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.
(3) If = current flowing through the 2 coils. at ambient temperature. after switch-on at Uc.

contactor composition

(1) Each pole has 2 contacts; the force must be applied evenly to each of these contacts.
 (2) Each pole has 3 contacts; the force must be applied evenly to each of these contacts.

CV1B, CV3B, LC1B Accessories - Spare parts

Accessories - Spare parts
Mechanical interlock for assembly of vertically mounted reversing CV1B, CV3B, LC1B contactor pairs
CV3B, LC1B - Spare parts76
CV1B - Complete pre-assembled poles78
CV1B, CV3B, LC1B - Complete pre-assembled electromagnets (without coil)
CV1B, CV3B - Electromagnets and direct a.c. coils
CV1B - Electromagnets and direct a.c. coils
CV1B, CV3B - Electromagnets and direct d.c. coils
CV1B - Electromagnets and direct d.c. coils
CV1B, CV3B - Electromagnets and d.c. coils with economy resistor - rectified a.c. coils with economy resistor
CV1B - Electromagnets and d.c. coils with economy resistor - rectified a.c. coils with economy resistor
LC1B - Single pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor
LC1B - 2-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor
LC1B - 3-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor
LC1B - 4-pole - d.c. coils with economy resistor - rectified a.c. coils with economy resistor

TeSys TeSys CV1B, CV3B, LC1B Variable composition contactors Accessories - Spare parts

References

Mounting and cabling accessories

PN1GB81 - PN1GB82

mounting and oc	ability accessor	100			
Description	•		Size	Reference	Weight kg
Mounting plates with bar support block, L		Type LC1B and CV3B	L to R	LA9B103	1.650
Pole connecting links for cabling	Top connection	CV1B and CV3 B	G	PN1GB81	0.130
from the front		CV1B and CV3B	Н	PN1HB81	0.160
		CV1B	J	PN1JB81	0.250
		CV1B	К	PN1KB81	0.500
	Bottom connection	CV1B and CV3B	G	PN1GB82	0.100
		CV1B and CV3B	Н	PN1HB82	0.110
Description	Specification	Length	Sold in lots of	Unit reference	Weight
		mm			kg
Pre-drilled, "Z" profile		1020	-	DZ6MZ121	2.590
uprights suitable for building		1320	-	DZ6MZ151	3.350
chassis for variable composition contactors		1420		DZ6MZ161	3.600
contactors		1620		DZ6MZ181	4.110
		1820		DZ6MZ200	4.620
		1920	-	DZ6MZ211	4.870
Notched clamp nuts	M6	-	100	DZ5MF6	
for fixing on pre-drilled "Z" profile uprights	M8	-	100	DZ5MF8	_
Square nuts for fixing on pre-drilled Z" profile uprights	M10	-	10	DZ6MZ904	-

Mounting accessories for CV1B, CV3B, LC1B

DZ6MZ•

EZ2LB0601

Mechanical interlock for assembly of vertically mounted reversing CV1B, CV3B, LC1B contactor pairs

Referen	ces				
For contac	tors CV1B ⁽¹⁾ (Building reversing c	ontactor pairs us	sing contactors of idention	cal size) ^(*)
CV1B contactor size	Electro- magnet	Supply voltage	Fixing centres	Reference	Weight
			mm		kg
F ⁽⁴⁾	$EB1\sim$	_	180	EZ2EA0301 ⁽²⁾	0.030
	EC1∼	_	200	EZ2EA0302 ⁽²⁾	0.050
	EK1	-	180	EZ2EA032 ⁽²⁾	0.110
G ⁽⁵⁾	-	< 440 V	200	EZ2GA0602200 ⁽³⁾	0.285
		≥440 V	240	EZ2GA0602240	0.310
H ⁽⁵⁾	-	< 440 V	220	EZ2HA0602220 ⁽³⁾	0.315
		≥440 V	260	EZ2HA0602260	0.370
J ⁽⁵⁾	-	< 440 V	320	EZ2JA0602320 ⁽³⁾	0.750
		≥440 V	400	EZ2JA0602400	0.780
K and L ⁽⁵⁾	-	< 440 V	400	EZ2KA0602400 ⁽³⁾	1.260
		≥440 V	500	EZ2KA0602500	1.700

For contact	tors CV3 B ⁽¹⁾ (Building	reversing contactor pairs u	ising contactors of identi	cal size) ^(*)
CV3 B contactor size	Electro- magnet	Fixing centres	Reference	Weight
		mm		kg
F ⁽⁴⁾	EB1 \sim	240	EZ2EA033 ⁽²⁾	0.030
	EC1 \sim	240	EZ2EA031 ⁽²⁾	0.220
	EK1	240	EZ2EA0602240	0.310
G ⁽⁵⁾	_	260	EZ2GA0602260 ⁽³⁾	0.310
H ⁽⁵⁾	-	320	EZ2HA0602320 ⁽³⁾	0.370
J ⁽⁵⁾	_	280	EZ2JA0602280 ⁽³⁾	0.750
K ⁽⁵⁾	-	340	EZ2HA0602360 ⁽³⁾	1.260
L to R ^{(5) (6)}	-	600	EZ2LB0602	1.560

For contactors LC1B

Specifications

Positive mechanical interlock between two vertically mounted contactors of the same or different size.

■ Connecting rod with cranks mounted on the right-hand, pole side ⁽²⁾.

Description	Fixing centres	Reference	Weight
	mm		kg
Mechanical interlock and locking device components	600	EZ2LB0601	1.280

(*) For the interlocking of two contactors of different ratings or the triple interlocking: contact us. (1) The mechanical interlock must be adjusted so that when one of the contactors is closed,

the other contactor has approximately 1 to 2 mm of free play at its stop.

(2) This assembly is mounted on the electromagnets, which must be aligned.
 (3) Kit comprising: 1 rod, 1 upper crank with threaded clevis, 1 lower crank with plain clevis, 2 right-hand side mounting bearings.

- (4) Left mounting.
- (5) Right mounting.

(6) Dimensions see page 64.

75

ZC4GM1

ZC2GG1

PN1HB80

DE511201408

PN1HB50

CV3B, LC1B - Spare parts

References								
Spare parts								
Description		Composition	Conta Type	actors	Size	Re	ference	Weight kg
Instantaneous auxi contacts	liary	3 "N/O" + 2 "N/C"	CV1E	}	F to H	LA	1BN32A	0.060
Time delay auxiliary	y con	tacts (*)						
On-del 1 C/O	ay	1 "N/O" + 1 "N/C"				LA	DT∙	0.060
Off-dela 1 C/O	ay	1 "N/O" + 1 "N/C"				LA	DR●	0.060
Spare parts								
Description				Compo	sition	Referen	псе	Weight kg
Instantaneous auxi	liary	contacts		1 "N/O"		ZC4GM	1	0.030
				1 "N/C"		ZC4GM	2	0.030
Time delay auxiliary	/ con	tacts		1 "N/C" on-dela	+ 1 "N/O" y	ZC2GG	1	0.455
				1 "N/C" off-dela	+ 1 "N/O" y	ZC2GG	5	0.455
Owners worth								

Spare parts

Sets of contacts				
Description	Number of sets required per contactor pole	CV1B contactors size	Reference	Weight kg
1 fixed contact +	1	F	PN1FB80	0.035
1 moving contact	1	G	PN1GB80	0.060
	1	Н	PN1HB80	0.115
	1	J	PN1JB80	0.195
	1	К	PN1KB80	0.345
	2	L	PN1KB80	0.790

Arc chamber only	-	CV1B	Reference	Mainht
Description	Type of poles	contactors	Reference	Weight
		size		kg
Standard type arc chamber	PN1 or PR1	F	PN1FB50	0.220
		G	PN1GB50	0.360
		Н	PN1HB50	0.580
		J	PN1JB50	1.380
		K	PN1KB50	1.880
		L	PN1LB50	4.380
Arc chamber with splitters	PN3 or PR3	J	PN3JB50	1.860
with splitters		К	PN3KB50	2.390
		L	PN3LB50	4.780
Coils	See pages 84 to 1	_		

(*) Choose additives LADT • and LADR • from the TeSys D range.

76

ZC4GM1

ZC2GG1

PA2GB80

PA1LB80 (PA1LB76 + PA1LB75)

CV3B, LC1B - Spare parts

	B - Spare pa	113			
Reference	S				
Spare parts					
Description	Composi			Reference	Weight kg
Instantaneous	3 "N/O" +	Type CV3B	Size F to H	LA1BN32A	0.060
auxiliary contact					
Time delay auxili	-				
on-d	lelay 1 "N/O" + 1 "N/C"			LADT	0.060
off-d	elay 1 "N/O" + 1 "N/C"			LADRe	0.060
Spare parts					
Description	Composition	Contactors		Reference	Weight
		Туре	Size		kg
Instantaneous auxiliary	1 "N/O"	CV3B and LC1B	All	ZC4GM1	0.030
contact	1 "N/C"	CV3B and LC1B	All	ZC4GM2	0.030
Time delay auxiliary	1 "N/C" + 1 "N/O" on-delay	CV3B	F to K	ZC2GG1	0.455
contacts	1 "N/C" + 1 "N/O" off-delay	CV3B	F to K	ZC2GG5	0.455
Spare parts Sets of contact	t a				
Description	Number of sets	Contactors		Reference	Weight
Description	required per contactor pole	Туре	Size		
1 fixed	1	CV3B	F	PA2FB80	kg 0.070
contact		0100	1	I ALI DOV	0.070
+ 1 moving	1	CV3B	G	PA2GB80	0.160
contact	1	CV3B	Н	PA2HB80	0.220
	2	CV3B	J	PA2GB80	0.320
	2	CV3B	К	PA2HB80	0.440
	1	CV3B and LC1B	L	PA1LB80	0.420
	1	CV3B and LC1B	Μ	PA1LB80	0.420
	2	CV3B and LC1B	Р	PA1LB80	0.840
	3	CV3B and LC1B	R	PA1LB80	1.260
Moving contact only (1 finger)	1	CV3B and LC1B	L to R	PA1LB75	0.220
Fixed contact only (1 finger)	1	CV3B and LC1B	L to R	PA1LB76	0.200
Blow-out horn (1 finger)	1	CV3B and LC1B	L to R	PA1LB89	0.120

Coils See pages 84 to 101.

(*) Choose additives LADT • and LADR • from the TeSys D range.

DEFITION des

PN1FB00•

PR5GB00•

PR1GB00•

CV1B - Complete pre-assembled poles Complete pre-assembled poles

Size		n current nuous duty	Complete poles		Blow-out coils	Blow-out coils	
	$\overline{\sim}$		N/O	N/C	PN1 and PR1	Economy resistor	
	A	Α					
For co	ontactors	CV1BF					
	0.35	0.4	PN1FB0003	PR1FB0003	PN1FA5103	19	
	0.6	0.7	PN1FB0004	PR1FB0004	PN1FA5104	6.1	
A	0.9	1	PN1FB0005	PR1FB0005	PN1FA5105	2.5	
	1.3	1.45	PN1FB0006	PR1FB0006	PN1FA5106	1.335	
В	1.75	1.9	PN1FB0007	PR1FB0007	PN1FA5107	0.747	
	2.2	2.45	PN1FB0008	PR1FB0008	PN1FA5108	0.425	
	2.6	3	PN1FB0009	PR1FB0009	PN1FA5109	0.272	
C	3.6	4	PN1FB0010	PR1FB0010	PN1FA5110	0.1655	
	4.3	4.8	PN1 FB0011	PR1 FB0011	PN1 FA5111	0.1135	
	4.85	5.4	PN1 FB0012	PR1 FB0012	PN1 FA5112	0.0854	
D	6.8	7.6	PN1FB0014	PR1FB0014	PN1FA5114	0.052	
	7.4	8.2	PN1FB0015	PR1FB0015	PN1FA5115	0.045	
	9.7	11	PN1FB0016	PR1FB0016	PN1FA5116	0.019	
E	11	12	PN1FB0018	PR1FB0018	PN1FA5118	0.017	
М	13	14.5	PN1FB0020	PR1FB0020	PN1FA5120	0.0125	
N	20	22	PN1FB0025	PR1FB0025	PN1FA5125	0.0043	
Р	40	45	PN1FB009	PR1FB009	PN1FA519	Bar	
Q	50	55	PN1FB007	PR1FB007	PN1FA517	Bar	
F	80	80	PN1FB004	PR1FB004	PN1FB514	Bar	
Y	Without a or blow-o	arc chamber out	PN5FB00	PR5FB00	_	-	

For contactors CV1BG

Q R G

Y

For co	ntactors C	V1BG				
	0.25	0.38	PN1GB0003	PR1GB0003	PN1GA5103	28
	0.45	0.67	PN1GB0004	PR1GB0004	PN1GA5104	9
	0.7	1.05	PN1GB0005	PR1GB0005	PN1GA5105	3.77
	1	1.45	PN1GB0006	PR1GB0006	PN1GA5106	1.8
	1.25	1.95	PN1GB0007	PR1GB0007	PN1GA5107	1.02
	1.6	2.55	PN1GB0008	PR1GB0008	PN1GA5108	0.6
	2.1	3.3	PN1GB0009	PR1GB0009	PN1GA5109	0.38
	2.5	3.85	PN1GB0010	PR1GB0010	PN1GA5110	0.27
	3	4.8	PN1GB0011	PR1GB0011	PN1GA5111	0.175
	3.5	5.5	PN1GB0012	PR1GB0012	PN1GA5112	0.123
	4.7	7.5	PN1GB0014	PR1GB0014	PN1GA5114	0.07
	5.5	8.85	PN1GB0015	PR1GB0015	PN1GA5115	0.051
	6.2	10	PN1GB0016	PR1GB0016	PN1GA5116	0.041
	8	12	PN1GB0018	PR1GB0018	PN1GA5118	0.026
	10	15	PN1GB0020	PR1GB0020	PN1GA5120	0.017
	12	19	PN1GB0022	PR1GB0022	PN1GA5122	0.011
	17	24	PN1GB0025	PR1GB0025	PN1GA5125	0.0068
	40	55	PN1GB009	PR1GB009	PN1GA519	Bar
!	55	80	PN1GB007	PR1GB007	PN1GA517	Bar
	125	125	PN1GB003	PR1GB003	PN1GA513	Bar
	200	200	PN1GB002	PR1GB002	PN1GB512	Bar
	Without ard or blow-out		PN5GB00	PR5GB00	-	-

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

			nbled pole				
		-		ing and cor			
Size	Maximum current for continuous duty		Complete pol	es	Blow-out coils	Blow-out coils	
	\sim	=	N/O	N/C	PN1 and PR1	Economy resistor	
	А	Α					
For c		's CV1BH					
	0.25	0.38	PN1HB0003	PR1HB0003	PN1HA5103	36.5	
	0.45	0.67	PN1HB0004	PR1HB0004	PN1HA5104	12.25	
	0.7	1.05	PN1HB0005	PR1HB0005	PN1HA5105	5.1	
	1	1.45	PN1HB0006	PR1HB0006	PN1HA5106	2.66	
	1.25	1.95	PN1HB0007	PR1HB0007	PN1HA5107	1.39	
	1.6	2.55	PN1HB0008	PR1HB0008	PN1HA5108	0.828	
	2.1	3.3	PN1HB0009	PR1HB0009	PN1HA5109	0.512	
	2.5	3.85	PN1HB0010	PR1HB0010	PN1HA5110	0.345	
	3	4.8	PN1HB0011	PR1HB0011	PN1HA5111	0.237	
	3.5	5.5	PN1HB0012	PR1HB0012	PN1HA5112	0.1755	
	4.7	7.5	PN1HB0014	PR1HB0014	PN1HA5114	0.094	
	5.5	8.85	PN1HB0015	PR1HB0015	PN1HA5115	0.0716	
	6.2	10	PN1HB0016	PR1HB0016	PN1HA5116	0.0525	
	8	12	PN1HB0018	PR1HB0018	PN1HA5118	0.0355	
	10	15	PN1HB0020	PR1HB0020	PN1HA5120	0.022	
	13	19	PN1HB0022	PR1HB0022	PN1HA5122	0.0152	
	17	24	PN1HB0025	PR1HB0025	PN1HA5125	0.0096	
	60	90	PN1HB007	PR1HB007	PN1HA517	Bar	
	80	120	PN1HB005	PR1HB005	PN1HA515	Bar	
	130	190	PN1HB003	PR1HB003	PN1HA513	Bar	
	200	200	PN1HB002	PR1HB002	PN1HA512	Bar	
	300	300	PN1HB001	PR1HB001	PN1HB511	Bar	
	Without or blow-	arc chamber out	PN5HB00	PR5HB00	_	-	

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

PN1HB00•

PR5JB00•

PN1LB00

	plete pre- v-out coils			and core	·	
Size	Maximum current for continuous duty	Complete p				Blow-out coils
	~/==	Standard		Arc chambe	r with splitters	
		N/O	N/C	N/O	N/C	PN1 and PR1
_	Α					
For c	ontactors CV					
	110	PN1JB009	PR1JB009	PN3JB009	PR3JB009	PN1JB5139
	150	PN1JB007	PR1JB007	PN3JB007	PR3JB007	PN1JB5137
	185	PN1JB004	PR1JB004	PN3JB004	PR3JB004	PN1JB5134
S	250	PN1JB003	PR1JB003	PN3JB003	PR3JB003	PN1JB5133
т	320	PN1JB002	PR1JB002	PN3JB002	PR3JB002	PN1JB5132
J	470	PN1JB001	PR1JB001	PN3JB001	PR3JB001	PN1JB5131
Y	Without arc chamber or blow-out	PN5JB00	PR5JB00	-	-	-
For c	ontactors CV	'1BK				
	150	PN1KB009	PR1KB009	PN3KB009	PR3KB009	PN1KB5159
	235	PN1KB006	PR1KB006	PN3KB006	PR3KB006	PN1KB5156
	290	PN1KB004	PR1KB004	PN3KB004	PR3KB004	PN1KB5154
U	400	PN1KB003	PR1KB003	PN3KB003	PR3KB003	PN1KB5153
V	500	PN1KB002	PR1KB002	PN3KB002	PR3KB002	PN1KB5152
К	630	PN1KB001	PR1KB001	PN3KB001	PR3KB001	PN1KB5151
Y	Without arc chamber or blow-out	PN5KB00	PR5KB00	-	-	-
For c	ontactors CV	'1BL				
	240	PN1LB009	PR1LB009	PN3LB009	PR3LB009	PN1LB5189
	375	PN1LB006	PR1LB006	PN3LB006	PR3LB006	PN1LB5186
	460	PN1LB004	PR1LB004	PN3LB004	PR3LB004	PN1LB5184
к	640	PN1LB003	PR1LB003	PN3LB003	PR3LB003	PN1LB5183
	800	PN1LB002	PR1LB002	PN3LB002	PR3LB002	PN1LB5182
L	1000	PN1LB001	PR1LB001	PN3LB001	PR3LB001	PN1LB5181
Y	Without arc chamber or blow-out	PN5LB00	PR5LB00	_	-	-

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

Size (1)		m current inuous duty	Complete pol	es	Blow-out coils		
	\sim		N/O	N/C	PA3 and PR3	Economy resistor	
	A	A					
For co	ntactors	CV3BF					
	0.35	0.4	PA3FB0003	PR3FB0003	PA1FA5103	19	
	0.6	0.7	PA3FB0004	PR3FB0004	PA1FA5104	6.1	
A	0.9	1	PA3FB0005	PR3FB0005	PA1FA5105	2.5	
	1.3	1.45	PA3FB0006	PR3FB0006	PA1FA5106	1.335	
В	1.75	1.9	PA3FB0007	PR3FB0007	PA1FA5107	0.747	
	2.2	2.45	PA3FB0008	PR3FB0008	PA1FA5108	0.425	
	2.6	3	PA3FB0009	PR3FB0009	PA1FA5109	0.272	
C	3.6	4	PA3FB0010	PR3FB0010	PA1FA5110	0.1655	
	4.3	4.8	PA3FB0011	PR3FB0011	PA1FA5111	0.1135	
	4.85	5.4	PA3FB0012	PR3FB0012	PA1FA5112	0.0854	
D	6.8	7.6	PA3FB0014	PR3 FB0014	PA1FA5114	0.052	
	7.4	8.2	PA3FB0015	PR3FB0015	PA1FA5115	0.045	
	9.7	11	PA3FB0016	PR3FB0016	PA1FA5116	0.019	
E	11	12	PA3FB0018	PR3FB0018	PA1FA5118	0.017	
М	13	14.5	PA3FB0020	PR3FB0020	PA1FA5120	0.0125	
N	20	22	PA3FB0025	PR3FB0025	PA1FA5125	0.0043	
P	40	45	PA3FB009	PR3 FB009	PA1FA519	Bar	
Q	50	55	PA3FB007	PR3FB007	PA1FA517	Bar	
F	80	80	PA3FB004	PR3FB004	PA1FB514	Bar	
For co	ntactors	CV3BG					
	0.25	0.38	PA3GB0003	PR3GB0003	PA1GA5103	28	
	0.45	0.67	PA3GB0004	PR3GB0004	PA1GA5104	9	
	0.7	1.05	PA3GB0005	PR3GB0005	PA1GA5105	3.77	
	1	1.45	PA3GB0006	PR3GB0006	PA1GA5106	1.8	
	1.25	1.95	PA3GB0007	PR3GB0007	PA1GA5107	1.02	
	1.6	2.55	PA3GB0008	PR3GB0008	PA1GA5108	0.6	
	2.1	3.3	PA3GB0009	PR3GB0009	PA1GA5109	0.38	
	2.5	3.85	PA3GB0010	PR3GB0010	PA1GA5110	0.27	
	3	4.8	PA3GB0011	PR3GB0011	PA1GA5111	0.175	
	3.5	5.5	PA3GB0012	PR3GB0012	PA1GA5112	0.173	
	4.7	7.5	PA3GB0014	PR3GB0014	PA1GA5114	0.07	
	5.5	8.85	PA3GB0015	PR3GB0015	PA1GA5115	0.051	
	6.2	10	PA3GB0016	PR3GB0016	PA1GA5116	0.031	
	8	12	PA3GB0010 PA3GB0018	PR3GB0018	PA1GA5118	0.041	
	0 10	15	PA3GB0018 PA3GB0020	PR3GB0010 PR3GB0020	PA1GA5120	0.020	
	10	19	PA3GB0020 PA3GB0022	PR3GB0020 PR3GB0022	PA1GA5120 PA1GA5122	0.017	
	12	24	PA3GB0022 PA3GB0025	PR3GB0022 PR3GB0025	PA1GA5122 PA1GA5125	0.0068	
	40	55	PA3GB0025 PA3GB009	PR3GB0025 PR3GB009	PA1GA5125 PA1GA519	Bar	
Q	<u>40</u> 55	80	PA3GB009 PA3GB007	PR3GB009 PR3GB007	PA1GA519 PA1GA517	Bar	
R	125	125	PA3GB003	PR3GB003	PA1GA513	Bar	

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

PR3FB00•

ize (1)		ım current tinuous duty	Blow-out coils			
	\sim		N/O	N/C	PA3 and PR3	Economy resistor
	Α	Α				
or co	ntactors	s CV3BH				
	0.25	0.38	PA3HB0003	PR3HB0003	PA1HA5103	36.5
	0.45	0.67	PA3HB0004	PR3HB0004	PA1HA5104	12.25
	0.7	1.05	PA3HB0005	PR3HB0005	PA1HA5105	5.1
	1	1.45	PA3HB0006	PR3HB0006	PA1HA5106	2.66
	1.25	1.95	PA3HB0007	PR3HB0007	PA1HA5107	1.39
	1.6	2.55	PA3HB0008	PR3HB0008	PA1HA5108	0.828
	2.1	3.3	PA3HB0009	PR3HB0009	PA1HA5109	0.512
	2.5	3.85	PA3HB0010	PR3HB0010	PA1HA5110	0.345
	3	4.8	PA3HB0011	PR3HB0011	PA1HA5111	0.237
	3.5	5.5	PA3HB0012	PR3HB0012	PA1HA5112	0.1755
	4.7	7.5	PA3HB0014	PR3HB0014	PA1HA5114	0.094
	5.5	8.85	PA3HB0015	PR3HB0015	PA1HA5115	0.0716
	6.2	10	PA3HB0016	PR3HB0016	PA1HA5116	0.0525
	8	12	PA3HB0018	PR3HB0018	PA1HA5118	0.0355
	10	15	PA3HB0020	PR3HB0020	PA1HA5120	0.022
	12	19	PA3HB0022	PR3HB0022	PA1HA5122	0.0152
	17	24	PA3HB0025	PR3HB0025	PA1HA5125	0.0096
	60	90	PA3HB007	PR3HB007	PA1HA517	Bar
	80	120	PA3HB005	PR3HB005	PA1HA515	Bar
ł	130	190	PA3HB003	PR3HB003	PA1HA513	Bar
;	200	200	PA3HB002	PR3HB002	PA1HA512	Bar
ł	300	300	PA3HB001	PR3HB001	PA1HB511	Bar
Size (1)		ım current tinuous duty	Complete poles		Blow-out coils	
	$\overline{\sim}$,	N/O		PA3	
	A	A				
Forco		s CV3BJ				
0.00	80	110	PA3JB009		2 x PA1GA519	
	110	160	PA3JB009 PA3JB007		2 x PA1GA515	
	250	250	PA3JB007 PA3JB003		2 x PA1GA517 2 x PA1GA513	
,	200	200	1 4030000		2 X FAIGA010	
	320	320	PA3JB002		2 x PA1GB512	

For co	ntactors (CV3BK					
	120	180	PA3KB007		2 x PA1HA517		
	160	240	PA3KB005		2 x PA1HA515		
U	260	380	PA3KB003		2 x PA1HA513		
v	400	400	PA3KB002		2 x PA1HA512		
к	500	500	PA3KB001		2 x PA1HB511		
Size Maximum current for continuous du							
Size			Complete po	les	Blow-out coils	Arc chamber	
Size				With magnetic compensator	Blow-out coils		
Size	for contin			With magnetic	Blow-out coils		
	$\frac{\text{for contin}}{\sim / =}$	iuous duty	Standard	With magnetic	Blow-out coils		
	$\frac{\text{for contin}}{\sim / =}$	iuous duty	Standard	With magnetic	PA1LB51		
	for contin ~/ A intactors (iuous duty	Standard	With magnetic compensator		chamber	
	for contin ~/ A potactors (800	iuous duty	Standard , P, R PA1LB00	With magnetic compensator	PA1LB51	chamber PA1LB50	

(1) For devices with symbol combinations, the figures corresponding to the current are in bold.

PA3KB00•

Electromagnets			
	Turno	Reference	Weight
Supply	Туре	Reference	Weight kg
For contactors CV1BF and CV3BF			ng
direct \sim	1	EB1EA40	1.020
	1	EC1EA40	1.650
\sim or $=$ with $=$	1	EB1EA40	1.020
	I	LDILATO	1.020
direct	2	EK1EA40	1.760
For contactors CV1BG, CV3BG and	d CV3BJ		
direct \sim	1	EB1GA40	1.720
	1	EC1GA40	2.880
\sim or $=$ with $=$	1	EB1GA40	1.720
	I	EDIGA40	1.720
direct	2	EK1GA40	1.950
For contactors CV1BH, CV3BH and			
direct \sim	1	EB1HA40	2.810
			2.010
	3	EC1HB40	4.590
\sim or $=$ with $=$	1	EB1HA40	2.810
	I	ED INA40	2.010
direct	2	EK1HA40	3.740
For contactors CV1BJ			
direct \sim	3	EB1JB40	4.030
	3	EC1JB40	11.430
a ar — with	3	EB5JB40	4.190
$\sim \text{ or } = \text{ with } = 1$	3	ED5JD40	4.190
direct	2	EK1JA40	3.740
For contactors CV1BK and CV1BL			
direct \sim	3	EB1KB40	9.830
	0	LBINDAV	0.000
\sim or with $$	3	EB5KB40	10.490
		EKAKA 40	40.000
direct	2	EK1KA40	13.200
For contactors CV3B and LC1BL, M	M, P and R		
\sim or $=$ with $=$	3	EB5KB50	10.600
direct	2	EK1KA50	13.900

EB1GA40

EK1GA40

EB5KB40

WB1EA•

CV1B, CV3B - Electromagnets and direct a.c. coils

References			
For contactors ⁽¹⁾			
Contactor	Туре	CV1B	CV3B
	Size	F	F
Associated electromagnet		EB1EA40	EB1EA40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coils						
Voltage	50 Hz			60 Hz		
	Reference	Coil		Reference	Coil	
		R	L		R	L
V			н			Н
24	WB1EA024	0.50	0.038	WB1EA022	0.45	0.032
48	WB1EA048	2.22	0.15	WB1EA043	1.80	0.12
110	WB1EA110	12.54	0.80	WB1EA100	10.1	0.66
127	WB1EA127	14.83	1.07	WB1EA127	14.83	1.07
220	WB1EA220	50.4	3.2	WB1EA200	41.5	2.6
240	WB1EA240	62.7	3.8	WB1EA220	50.4	3.2
380	WB1EA380	156.2	9.6	WB1EA365	148.6	8.8
400	WB1EA400	182	10	WB1EA380	156.2	9.6
440	WB1EA455	233	14	WB1EA400	182	10
450	WB1EA455	233	14	WB1EA432	199.1	12
500	WB1EA500	284	16	WB1EA455	233	14
550	WB1EA550	347	20	WB1EA500	284	16
600	-	-	-	-	-	-

L: inductance closed circuit at Un max. R: resistance at 20 $^{\circ}$ C ±10 %.

Specifications

■ Operating range: 0.85 to 1.1 Uc.

Coil supply transformer power: 100 VA.

Coil weight, all voltages : 180 grams.

Average cons

Average co	nsumptio	n						
	50 Hz				60 Hz			
	Un min.		Un max.		Un min. Un max.			
	VA	W	VA	W	VA	W	VA	W
Inrush	220	90	270	110	225	75	275	95
Sealed	35	13	55	19	35	13	55	10

Power factor cos						
60 Hz						
0.34						
0.37						
	0.34					

DE 2901/2 ebe
WB1GA•

Referen	ices					
For conta	ctors (1)					
Contactor	Туре	CV1B		CV3B		
	Size	F	G	F	G	J (2 poles)

Associated electromagnet EC1EA40 EB1GA40 EC1EA40 EB1GA40 EB1GA40 (1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil	Larres			- Les est				
Voltage	50 Hz			60 Hz	60 Hz			
	Reference	Coil		Reference	Coil			
		R	L		R	L		
٧			н			н		
24	WB1GA024	0.40	0.026	WB1GA021	0.28	0.020		
48	WB1GA048	1.32	0.10	WB1GA044	1.19	0.088		
110	WB1GA110	7.66	0.55	WB1GA095	5.29	0.41		
127	WB1GA130	11.09	0.66	WB1GA110	7.66	0.55		
220	WB1GA220	33.74	2.2	WB1GA200	27.38	1.8		
240	WB1GA250	47.33	2.8	WB1GA220	33.74	2.2		
380	WB1GA380	85.48	6	WB1GA345	77.56	5.4		
400	WB1GA400	110.71	7.3	WB1GA345	77.56	5.4		
440	WB1GA440	123.32	8.9	WB1GA400	110.71	7.3		
450	WB1GA480	136.22	10.6	WB1GA400	110.71	7.3		
500	WB1GA500	143.98	11.5	WB1GA440	123.32	8.9		
550	WB1GA550	212.39	14	WB1GA500	143.98	11.5		
600	WB1GA600	259.73	16	-	-	_		

L: inductance closed circuit at Un max. **R:** resistance at 20 $^{\circ}$ C ±10 %.

Specifications

• Operating range: 0.85 to 1.1 Uc.

Coil supply transformer power: 160 VA.

Coil weight, all voltages : 220 grams.

Average con	nsumptio	n						
	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	345	130	415	160	370	130	475	165
Sealed	45	16	65	25	50	19	75	30

Power factor cos		
50 Hz	60 Hz	
0.38	0.35	
0.35	0.37	

References						
For contactors	; (1)					
Contactor	Туре	CV1B		CV3B		
	Size	G	Н	G, J	н	K (2 poles)
Associated electron	magnet	EC1GA4	0 EB1 HA40	EC1GA	40 EB1 HA40	EB1HA40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil							
Voltage	50 Hz			60 Hz			
	Reference	Coil		Reference	Coil		
		R	L		R	L	
٧			Н			н	
24	WB1HA024	0.26	0.021	WB1HA022	0.21	0.018	
48	WB1HA048	0.94	0.085	WB1HA044	0.77	0.071	
110	WB1HA110	4.84	0.44	WB1HA097	3.46	0.34	
127	WB1HA130	7.27	0.62	WB1HA120	5.35	0.53	
220	WB1HA220	17.55	1.8	WB1HA200	15.77	1.5	
240	WB1HA250	24.93	2.3	WB1HA220	17.55	1.8	
380	WB1HA380	54.52	5.3	WB1HA345	48.94	4.4	
400	WB1HA400	64.52	5.9	WB1HA365	51.68	4.9	
440	WB1HA440	78.1	7.1	WB1HA400	64.52	5.9	
450	WB1HA480	86.03	8.5	WB1HA400	64.52	5.9	
500	WB1HA500	101.9	9.2	WB1HA440	78.1	7.1	
550	WB1HA550	113.3	11.1	WB1HA500	101.9	9.2	
600	WB1HA600	153.8	13.2	WB1HA550	113.3	11.1	

L: inductance closed circuit at Un max. **R**: resistance at 20 $^{\circ}$ C ±10 %.

Specifications

Operating range: 0.85 to 1.1 Uc.

Coil supply transformer power: 250 VA.

Coil weight, all voltages : 280 grams.

Average concumption

Average co	nsumptio	n						
	50 Hz				60 Hz			
	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W
Inrush	500	155	615	190	560	170	675	200
Sealed	60	22	85	35	65	25	95	40

Power factor cos					
50 Hz	60 Hz				
0.31	0.30				
0.38	0.39				

References					
For contactors ⁽¹⁾					
Contactor	Туре	CV1B		CV3B	
	Size	Н	J	н	К
Associated electromagn	et	EC1HB40	EB1JB40	EC1HB40	EC1HB40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Call

Coil									
Voltage	50 Hz			60 Hz	60 Hz				
	Reference	Coil	Coil		Coil				
		R	L		R	L			
V			Н			Н			
48	WB1JB317	0.30	0.065	WB1JB315	0.21	0.043			
110	WB1JB326	1.56	0.34	WB1JB323	1.19	0.25			
127	WB1JB328	2.26	0.408	WB1JB326	1.56	0.34			
220	WB1JB335	6.29	1.37	WB1JB332	4.84	1.02			
240	WB1JB337	7.99	1.77	WB1JB334	5.15	1.14			
380	WB1JB342	19.37	4.10	WB1JB340	15	3.09			
400	WB1JB343	22.76	4.54	WB1JB340	15	3.09			
440	WB1JB344	27.65	5.50	WB1JB342	19.37	4.10			
450	WB1JB345	30.60	6.54	WB1JB342	19.37	4.10			
500	WB1JB346	35.13	7.10	WB1JB344	27.65	5.50			
550	WB1JB347	43.18	8.59	WB1JB345	30.60	6.54			
600	WB1JB348	53.04	10.2	WB1JB346	35.13	7.10			

L: inductance closed circuit at Un max. R: resistance at 20 °C ±10 %.

Specifications

Operating range: 0.85 to 1.1 Uc.

Coil supply transformer power: 400 VA.
 Coil weight, all voltages : 560 grams.

Average consumption

Average	Jonsumpt								
	50 Hz	50 Hz				60 Hz			
	Un min.		Un ma	х.	Un mi	n.	Un max.		
	VA	W	VA	W	VA	W	VA	W	
Inrush	700	120	840	145	915	140	1100	165	
Sealed	80	28	110	45	115	41	170	65	

Power factor cos					
50 Hz	60 Hz				
0.17	0.15				
0.38	0.38				

DF536178.eps

WB1KB•

CV1B - Electromagnets and direct a.c. coils

References			
For contactors ⁽¹⁾			
Contactor	Туре	CV1B	
	Size	J	L (2 poles)
Associated electromagnet		EC1JB40	EB1KB40

(1) The contactor electromagnet will be defined at the manufacturing stage, according to its utilisation category and composition.

Coil								
Voltage	50 Hz			60 Hz				
	Reference	Coil		Reference	Coil	Coil		
		R	L		R	L		
V			Н			н		
110	WB1KB151	0.46	0.175	-	-	-		
127	WB1KB166	0.59	0.228	WB1KB151	0.46	0.175		
220	WB1KB154	1.87	0.700	WB1KB163	1.14	0.487		
240	WB1KB154	1.87	0.700	WB1KB162	1.37	0.580		
380	WB1KB155	5.06	2.10	WB1KB141	3.30	1.35		
400	WB1KB132	5.95	2.32	WB1KB142	4.11	1.70		
440	WB1KB123	7.35	2.80	WB1KB155	5.06	2.10		
450	WB1KB123	7.35	2.80	WB1KB155	5.06	2.10		
500	WB1KB133	9.54	3.63	WB1KB132	5.95	2.32		
550	WB1KB121	11.66	4.40	WB1KB123	7.35	2.80		
500	WB1KB121	11.66	4.40	WB1KB133	9.54	3.63		

L: inductance closed circuit at Un max. R: resistance at 20 °C ±10 %.

Specifications

Operating range: 0.85 to 1.1 Uc.

Coil supply transformer power: 800 VA.
 Coil weight, all voltages : 1.120 kilograms.

Average consumption

Average of	onsumpti	on							
	50 Hz	50 Hz			60 Hz	60 Hz			
	Un min	Un min.		Un max.		Un min.		Un max.	
	VA	W	VA	W	VA	W	VA	W	
Inrush	2300	320	3060	430	2350	280	2750	330	
Sealed	205	65	385	140	205	70	330	120	

Power factor cos						
60 Hz						
0.12						
0.36						
	0.12					

CV1B, CV3B - Electromagnets and direct d.c. coils References

References						
For contactors						
Contactor	Туре	CV1B		CV3B		
	Size	F	G	F	G	J (2 poles)
Associated electromagnet		EK1EA40	EK1GA40	EK1EA40	EK1GA40	EK1GA40

Coils								
Voltage		Coil (unit characte	Coil (unit characteristics) (1)					
Coils 20 to 26 W ⁽²⁾	Coils 26 to 37 W ⁽²⁾	Resistance at 20 °C ±10 %	Reference	Weight				
V	V		50 Hz - 60 Hz	kg				
-	24	8.4	WB2EA600	0.400				
24	-	13.5	WB2EA530	0.400				
-	48	40	WB2EA400	0.400				
48	-	52	WB2EA375	0.400				
-	110	202	WB2EA265	0.400				
110	127	247	WB2EA250	0.400				
127	-	394	WB2EA224	0.400				
-	220	740	WB2EA190	0.400				
-	240	900	WB2EA180	0.400				
220 - 240	-	1140	WB2EA170	0.400				
-	380	1865	WB2EA150	0.400				
-	400	2415	WB2EA140	0.400				
380	440 - 450	3075	WB2EA132	0.400				
400 - 440	500	3800	WB2EA125	0.400				
450	550 - 600	4850	WB2EA118	0.400				
500 - 550	-	5850	WB2EA112	0.400				
600	-	7200	WB2EA106	0.400				

Specifications

Α

Operating range: 0,85 to 1,1 Uc (IEC 60947-4).

Average consumption of the 2 coils	CV1 and CV3	F	Standard power Increased power	20 to 26 W 26 to 37 W
(inrush and sealed)	CV1 and CV3	G J	26-37 W	
Time constant when sealed	CV1 and CV3	F	75 ms	
	CV1 and CV3	G J	100 ms	
Duty			100 %	

(1) The EK1 electromagnet always has two identical coils connected in series.
 (2) For contactors CV1F and CV3F the selection of 20-26 W or 26-37 W coils depends on the composition of the contactor: i.e. number of poles and auxiliary contacts.

WB2EA•

CV1B, CV3B - Electromagnets and direct d.c. coils Referenc

Nelelenc	63					
For contact	ors					
Contactor Type		CV1B		CV3B		
	Size	Н	J	н	К	
Associated electromagnet		EK1HA40	EK1JA40	EK1HA40	EK1HA40	

Coils							
Voltage		Coil (unit characte	Coil (unit characteristics) (1)				
100 % duty (2)	50 % duty (2)	Resistance at 20 °C ±10 %	Unit reference	Weight			
V	V			kg			
-	24	2.63	WB2HA900	0.675			
24	-	6.78	WB2HA710	0.675			
-	48	10.6	WB2HA630	0.675			
48	-	27.1	WB2HA500	0.675			
-	110	54.3	WB2HA425	0.675			
-	127	70.5	WB2HA400	0.675			
-	-	86.8	WB2HA375	0.675			
-	-	112	WB2HA355	0.675			
110	-	141	WB2HA335	0.675			
127	-	172	WB2HA315	0.675			
-	220	228	WB2HA300	0.675			
-	240	283	WB2HA280	0.675			
220 - 240	-	552	WB2HA236	0.675			
-	380 - 400	692	WB2HA224	0.675			
-	440 - 450	875	WB2HA212	0.675			
-	500	1066	WB2HA200	0.675			
-	550	1336	WB2HA190	0.675			
380 - 400	600	1683	WB2HA180	0.675			
440 - 450	-	2161	WB2HA170	0.675			
500	-	2786	WB2HA160	0.675			
550 - 600	-	3697	WB2HA150	0.675			

Specifications

Operating range: 0,85 to 1,1 Uc.

Power consumption	CV1 and	CV3 H	100 % duty	42 to 52 W
of both coils	CV1	J		
(inrush and sealed)	CV3	K		
	CV3	K	50 % duty	93 to 116 W
Time a superstant sub-superstant		K	450	
Time constant when sealed	-	ĸ	150 ms	

(1) The EK1 electromagnet always has two identical coils connected in series.

(2) Coil selection depends on the composition of the contactor.
 50 % duty implies an energised time less than or equal to 2 minutes and a de-energised time longer than or equal to the energised time.

WB2KA•

CV1B - Electromagnets and direct d.c. coils

Reference	ces			
For contac	tors			
Contactor	Туре	CV1B		
	Size	K	L	
Associated electromagnet		EK1KA40	EK1KA40	

0

Coils								
Operating	Coil (unit characteristics) (1)							
range	Resistance at 20 °C ±10 %	Unit reference	Weight					
V			kg					
24	3	WB2KA1120	1.710					
48	11.9	WB2KA800	1.710					
110	60	WB2KA530	1.710					
127	92	WB2KA475	1.710					
220	238	WB2KA375	1.710					
240	302	WB2KA355	1.710					
380	766	WB2KA280	1.710					
400	964	WB2KA265	1.710					
440	1218	WB2KA250	1.710					
450	1218	WB2KA250	1.710					
500 - 550	1490	WB2KA236	1.710					
600	1877	WB2KA224	1.710					

Specifications

Operating range: 0.85 to 1.1 Uc.
Average consumption of the 2 coils (inrush and sealed): 80 to 105 W.
Time constant when sealed: 180 ms.
Duty: 100 %.

(1) The EK1 electromagnet always has two identical coils connected in series.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References	3			
For contactor	s			
Contactor	Туре	CV1B	CV3B	
	Size	F	F	
Associated electromagnet		EB1EA40	EB1EA40	

Coils									
Voltage		Coil		With economy	resistor		Rectifier	Coil	
d.c.	a.c. (1)	Resist.	l inrush	Resistor		Number	Reference	Reference	Weight
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resistance	of contacts ZC4 GM2	DR5 TE1 • (2)		
٧	V		Α						kg
-	24	3.3	5.66	DR2SC0047	47	1	U	WB1EA058	0.180
24	-	7	3.72	DR2SC0100	100	1	U	WB1EA085	0.180
48	48	24.6	1.98	DR2SC0330	330	1	U	WB1EA163	0.180
-	110	104	0.980	DR2SC1500	1500	1	U	WB1EA315	0.180
110	-	127.9	0.906	DR2SC1800	1800	1	U	WB1EA345	0.180
-	127	156.3	0.793	DR2SC2200	2200	1	U	WB1EA380	0.180
127	-	199.2	0.697	DR2SC2700	2700	1	U	WB1EA432	0.180
220	220 - 240	418.2	0.526	DR2SC6800	6800	1	U	WB1EA595	0.180
240	-	581.7	0.433	DR2SC8200	8200	1	S	WB1EA720	0.180
380	380 - 400	1425.5	0.322	DR2SC2201	22 000	1	S	WB1EA1175	0.180
400	500	1374.5	0.267	DR2SC1001	10 000 + 10 000	2	S	WB1EA970	0.180
450 - 500	-	2355.1	0.219	DR2SC1801	18 000 + 18 000	2	S	WB1EA1430	0.180

Specifications

0 "

Operating range: 0.85 to 1.1 Uc.
 Time constant when sealed: 9 ms.

■ Maximum operating rate: 120 operating cycles/hour (□ ≤ 55 °C).

Average consumption	d.c. opera	a.c. (with rectifier)				
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.
	W	W	VA	W	VA	W
Inrush	70	150	85	-	180	-
Sealed (coil)	0.25	0.7	-	0.3	-	0.75
Economy resistor	10	11	-	4.5	_	11

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52. (2) Complete the silicon rectifier reference **DR5TE1U** or **DR5TE1S**.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References				
For contactors				
Contactor	Туре	CV1B	CV3B	
	Size	G	G	J (2 poles)
Associated electromagr	net	EB1GA40	EB1GA40	EB1GA40

WB1GA•

Coils									
Voltage		Coil		With econom	y resistor		Rectifier	Coil	
d.c.	a.c. ⁽¹⁾	Resist.	l inrush	Resistor		Number	Reference	Reference	Weight
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resistance	of contacts ZC4GM2	DR5TE1 • (2)		
٧	V		Α						kg
-	24	1.87	11.1	DR2SC0039	39	1	U	WB1GA054	0.220
24	-	4.17	6	DR2SC0082	82	1	U	WB1GA085	0.220
-	48	7.26	5.36	DR2SC0150	150	1	U	WB1GA105	0.220
48	-	11.09	4.43	DR2SC0220	220	1	U	WB1GA130	0.220
-	110	47.33	2.23	DR2SC1000	1000	1	U	WB1GA250	0.220
110 - 127	127	85.48	1.53	DR2SC1500	1500	1	U	WB1GA380	0.220
-	220	212.39	0.95	DR2SC3900	3900	1	U	WB1GA550	0.220
220 - 240	240	259.73	0.96	DR2SC4700	4700	1	S	WB1GA600	0.220
-	380 - 400	609.71	0.60	DR2SC1201	12 000	1	S	WB1GA905	0.220
380 - 400	440 - 450	604.08	0.46	DR2SC1001 DR2SC8200	10000 + 8200	1	S	WB1GA1160	0.220
440 - 450	500	1029.53	0.47	DR2SC1001	10 000 + 10 000	2	S	WB1GA1170	0.220
500 - 550	-	1495.16	0.39	DR2SC1501	15 000 + 15 000	2	-	WB1GA1480	0.220

Specifications

■ Operating range: 0,85 to 1,1 Uc.

Time constant when sealed: 11 ms.

■ Maximum operating rate: 120 operating cycles/hour (□ ≤ 55 °C).

Average consumption	d.c. operation			a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.	
	W	W	VA	W	VA	W	
Inrush	130	250	160	-	300	-	
Sealed (coil)	0.35	0.5	-	0.4	-	0.65	
Economy resistor	6.5	11	-	7	-	12	

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
 (2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor - rectified a.c. coils with economy resistor

Reference	s			
For contacto	rs			
Contactor	Туре	CV1B	CV3B	
	Size	Н	Н	K (2 poles)
Associated electr	romagnet	EB1HA40	EB1HA40	EB1HA40

WB1HA•

Voltage		Coil		With economy	resistor		Rectifier Coil		
d.c.	a.c. ⁽¹⁾	Resist.	l inrush	Resistor		Number	Reference	Reference	Weight
		at 20 °C ± 10 %	± 10 % at Un max.	Unit reference	Total resis- tance	of contacts ZC4GM2	DR5TE1 • (2)		
V	V		Α						kg
-	24	1.34	12	DR2SC0027	27	1	U	WB1HA060	0.280
24	-	2.61	9	DR2SC0047	47	1	U	WB1HA082	0.280
48	48	10.24	4.8	DR2SC0180	180	1	U	WB1HA160	0.280
-	110	54.52	1.9	DR2SC0820	820	1	U	WB1HA380	0.280
110	-	64.52	1.85	DR2SC1200	1200	1	U	WB1HA400	0.280
127	127	78.10	1.66	DR2SC1500	1500	1	U	WB1HA440	0.280
-	220 - 240	221.80	0.97	DR2SC3900	3900	1	U	WB1HA765	0.280
220 - 240	-	228.20	1.07	DR2SC3900	3900	1	S	WB1HA660	0.280
380	380 - 400	729.20	0.52	DR2SC1201	12 000	1	S	WB1HA1500	0.280
400 - 450	450 - 500	704.40	0.64	DR2SC1201	12 000	2	S	WB1HA1150	0.280

Specifications

Operating range: 0.85 to 1.1 Uc.

■ Time constant when sealed: 12 ms.

■ Maximum operating rate: 120 operating cycles/hour ($\Box \leq 55$ °C).

Average consumption	d.c. operation			a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.	
	W	W	VA	W	VA	W	
Inrush	150	280	180	-	340	-	
Sealed (coil)	0.4	0.75	-	0.4	-	0.8	
Economy resistor	7.5	14	-	8	-	15	

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.

(2) Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

Reference	s			
For contacto	ors			
Contactor	Туре	CV1B	CV3B	
	Size	J	K (3 and 4 poles)	
Associated elect	tromagnet	EB1JB40 (d.c.)	EC1HA40	
		EB5JB40 (rectified)	EC1HA40	
Coils				

Coils Voltage		Coil		With economy	resistor		Rectifier	Coil	
d.c.	a.c. ⁽¹⁾	Resist.	l inrush	Resistor	Resistor Number of		Reference	Reference	Weight
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resist.	contacts ZC4GM2	DR5TE1 • (2)		
V	V		Α						kg
-	24	2.26	8.52	DR2SC0047	47	1	U	WB1JB328	0.560
24	-	3.90	6.33	DR2SC0082	82	1	U	WB1JB331	0.560
-	48	11.95	3.70	DR2SC0220	220	1	U	WB1JB339	0.560
48	-	15.79	3.13	DR2SC0330	330	1	U	WB1JB341	0.560
-	110	53.04	1.90	DR2SC1000	1000	1	U	WB1JB348	0.560
110	127	76.59	1.47	DR2SC1500	1500	1	U	WB1JB428	0.560
127	-	95.85	1.32	DR2SC1800	1800	1	U	WB1JB429	0.560
220	220 - 240	242	0.93	DR2SC4700	4700	1	U	WB1JB432	0.560
240	-	371.30	0.76	DR2SC6800	6800	1	S	WB1JB433	0.560
-	380	565.60	0.63	DR2SC1001	10 000	1	S	WB1JB434	0.560
380 - 400	400 - 450	881.90	0.50	DR2SC1001 + DR2SC8200	10 000 + 8200	1	S	WB1JB435	0.560
440 - 500	500	1328.10	0.38	DR2SC1501 + DR2SC1201	15 000 + 12 000	2	S	WB1JB436	0.560

Specifications

• Operating range: 0,85 to 1,1 Uc.

■ Time constant when sealed: 25 ms.

■ Maximum operating rate: 120 operating cycles/hour (□ ≤ 55 °C).

Average consumption	d.c. operation			a.c. (with rectifier)			
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.	
	W	w	VA	w	VA	W	
Inrush	130	220	160	-	270	-	
Sealed (coil)	0.35	0.7	-	0.4	-	0.765	
Economy resistor	6.5	13	-	7	-	13	

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52. (2) Complete the silicon rectifier reference **DR5TE1U** or **DR5TE1S**.

CV1B, CV3B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References For contactors

Contactor	Туре	CV1B	CV3B
	Size	К	L (2 poles)
Associated electromagnet		EB5KB40	EB5KB40

Coils									
Voltage		Coil		With economy	With economy resistor			Coil	
d.c.	a.c. ⁽¹⁾	Resist.	Resist. Linrush Resistor			Number	Reference	Reference	Weight
min.	min.	at 20 °C ± 10 %	± 10 % at Un max.	Unit reference	Total resist.	of contacts ZC4GM2	DR5TE1 • (2)		
٧	V		Α						kg
24	-	1.9	13	DR2SC0100	100	1	-	WB1KB154	1.120
-	48	5.9	6.8	DR2SC0270	270	1	U	WB1KB132	1.120
48	-	9.5	5.3	DR2SC0470	470	1	U	WB1KB133	1.120
-	110	33.1	3.2	DR2SC1500	1500	1	U	WB1KB124	1.120
110	127	50.9	2.3	DR2SC2200	2200	1	U	WB1KB122	1.120
127	-	61.3	2.1	DR2SC2700	2700	1	U	WB1KB135	1.120
-	220	159.9	1.3	DR2SC8200	8200	1	U	WB1KB137	1.120
220 - 240	240	199.6	1.2	DR2SC1001	10 000	1	S	WB1KB126	1.120
-	380	382	0.82	DR2SC1801	18 000	1	S	WB1KB127	1.120
380 - 400	400 - 450	507	0.84	DR2SC1201	12 000 + 12 000	1	S	WB1KB128	1.120
440 - 500	500	770	0.64	DR2SC1801	18 000 + 18 000	2	S	WB1KB129	1.120

Specifications

■ Operating range: 0.85 to 1.1 Uc.

■ Time constant when sealed: 45 ms.

■ Maximum operating rate: 120 operating cycles/hour (□ ≤ 55 °C).

Average consumption	d.c. operat	tion	a.c. (with rectifier)				
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.	
	W	W	VA	W	VA	W	
Inrush	215	380	260	-	460	-	
Sealed (coil)	0.1	0.2	-	0.1	-	0.2	
Economy resistor	4.5	8	-	5	-	9	

a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52.
 Complete the silicon rectifier reference DR5TE1U or DR5TE1S.

CV1B - Electromagnets and d.c. coils with economy resistor rectified a.c. coils with economy resistor

References		
For contactors		
Contactor	Туре	CV1B
	Size	L (3 and 4 poles)
Associated electromagn	et	EB5KB40

Coils									
Voltage		Coil		With economy	/ resistor		Rectifier	Coil	
d.c.	a.c. ⁽¹⁾	Resist.	l inrush	Resistor		Number of	Reference	Reference	Weight
		at 20 °C ± 10 %	± 10 % at Un max.	Unit reference	Total resist.	contacts ZC4GM2	DR5TE1 • (2)		
V	V		Α						kg
24	-	1.85	14	DR2SC0068	68	1	-	WB1KB154	1.120
-	48	5.86	7.2	DR2SC0220	220	1	U	WB1KB132	1.120
48	-	7.2	6.8	DR2SC0270	270	1	U	WB1KB123	1.120
-	110	32.5	3.3	DR2SC1200	1200	1	U	WB1KB124	1.120
110	127	49.7	2.4	DR2SC1800	1800	1	U	WB1KB122	1.120
127	-	61	2.2	DR2SC2200	2200	1	U	WB1KB135	1.120
-	220	128	1.5	DR2SC4700	4700	1	U	WB1KB125	1.120
-	240	160	1.4	DR2SC5600	5600	1	U	WB1KB137	1.120
220 - 240	-	197	1.3	DR2SC6800	6800	1	S	WB1KB126	1.120
-	380	408	0.86	DR2SC1501	15 000	1	S	WB1KB127	1.120
380 - 450	450 - 500	507	0.89	DR2SC1001	10 000 + 8200	2	S	WB1KB128	1.120
500	-	785	0.63	DR2SC1501	15 000 + 15 000	2	-	WB1KB129	1.120

Specifications

• Operating range: 0.85 to 1.1 Uc.

Time constant when sealed: 45 ms.

■ Maximum operating rate: 120 operating cycles/hour (□ ≤ 55 °C).

Average consumption	d.c. opera	ition	a.c. (with	a.c. (with rectifier)				
	Un min.	Un max.	Un min.	Un max.	Un min.	Un max.		
	W	W	VA	w	VA	w		
Inrush	240	420	290	-	515	-		
Sealed (coil)	0.2	0.3	-	0.2	-	0.3		
Economy resistor	7	11	-	7.5	_	12		

(1) a.c. (50-400 Hz) with individual rectifier and economy resistor, see scheme on page 52. (2) Complete the silicon rectifier reference **DR5TE1U** or **DR5TE1S**.

LC1B - Single pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for $\overline{\ldots}$ or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
- 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).
- For 50 to 400 Hz a.c. operation, the following must be associated with the coil:
- 1 individual rectifier (to be wired)

- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operatin min-max		Coil		Economy res	sistor			$\begin{array}{l} \text{Rectifier} \\ \text{(for} \boldsymbol{\sim} \text{only)} \end{array}$	Coil	Weight
d.c. a.c.		Resist.	linrush	Resistor		Con	tact	Reference	Reference	
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resist.	Qty	Reference	_		
v	V		A							kg
48	-	5.1	10.3	DR2SC0270	270	1	ZC4GM2	-	WB1KB155	1.120
-	110	25.5	4.3	DR2SC1200	1200	1	ZC4GM2	DR5TE1U	WB1KB134	1.120
110-127	127	33.1	4.2	DR2SC1800	1800	1	ZC4GM2	DR5TE1U	WB1KB124	1.120
220	220-240	94.8	2.3	DR2SC4700	4700	2	ZC4GM2	DR5TE1U	WB1KB139	1.120
240	-	123.9	1.9	DR2SC6800	6800	1	LC1DT20LDS135	DR5TE1U	WB1KB125	1.120
380- 400	380-450	247.4	1.6	DR2SC1201	6800 + 5600	1	LC1DT20TDS135	DR5TE1S	WB1KB138	1.120
440	500	382	1.1 (2)	DR2SC1001	20 000	1	LC1DT20VDS135	DR5TE1S	WB1KB127	1.120
450-500	-	506.7	1 (3)	DR2SC1201	24 000	1	LC1DT20RDS135	_	WB1KB128	1.120

DF522634.eps

Specifications

Average coil consumption (low sealed consumption):

- d.c.: inrush 380...520 W, sealed 0.15...0.20 W - a.c. (with rectifier): inrush 450...620 VA, sealed 0.15...0.20 VA.

- Time constant when sealed 25 ms.
- Economy resistor consumption: 7...10 W.
- Operating cycles/hour at □ ≤ 55 °C: ≤ 120.
- Mechanical durability at Uc: 1.2 million operating cycles.

■ With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level ≤ 7.

- (2) 2 resistors in series: 2 x 10000
- (3) 2 resistors in series: 2 x 12000 .

LC1B - 2-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for $\overline{\ldots}$ or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
 - 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).
- For 50 to 400 Hz a.c. operation, the following must be associated with the coil:
 - 1 individual rectifier (to be wired)

- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operatir min-max		Coil		Economy resis	stor			$\begin{array}{l} \text{Rectifier} \\ \text{(for} \boldsymbol{\sim} \text{only)} \end{array}$	Coil	Weight	
d.c.	a.c.	Resist.	linrush	Resistors (2 in	series)	Con	tact	Reference	Reference		
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resist.	Qty	Reference	-			
V	V		Α							kg	
48	-	3.22	15.8	DR2SC0068	2x68	1	ZC4GM2	-	WB1KB141	1.120	
-	110	11.4	8.6	DR2SC0220 DR2SC0270	220 + 270	1	ZC4GM2	_	WB1KB121	1.120	
110	127	19.7	6	DR2SC0390	2x390	1	ZC4GM2	DR5TE1U	WB1KB140	1.120	
127	-	25.2	5.4	DR2SC0470	2x470	2	ZC4GM2	DR5TE1U	WB1KB134	1.120	
-	220	61	3.4	DR2SC1200	2x1200	2	ZC4GM2	DR5TE1U	WB1KB135	1.120	
220	240	77.2	3	DR2SC1500 DR2SC1800	1500 + 1800	2	ZC4GM2	DR5TE1U	WB1KB136	1.120	
240	-	94	3	DR2SC1800 DR2SC2200	1800 + 2200	1	LP1DT20LDS135	DR5TE1S	WB1KB139	1.120	
-	380	160	2.1	DR2SC3300	2x3300	1	LP1DT20TDS135	DR5TE1S	WB1KB137	1.120	
380	400-450	197	2	DR2SC3900	2x3900	1	LP1DT20TDS135	DR5TE1S	WB1KB126	1.120	
400-500	500	257	1.9	DR2SC4700 DR2SC5600	4700 + 5600	1	LP1DT20VDS135	DR5TE1S	WB1KB138	1.120	

Specifications

- Average coil consumption (low sealed consumption):
- d.c.: inrush 600...800 W, sealed 0.35...0.5 W
- a.c. (with rectifier): inrush 720...1000 VA, sealed 0.35...0.5 VA.
- Time constant when sealed 25 ms.
- Economy resistor consumption: 15...20 W.
 Operating cycles/hour at □ ≤ 55 °C: ≤ 120.
- Mechanical durability at Uc: 1.2 million operating cycles.
- With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level ≤ 7.

LC1B - 3-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for $\overline{\ldots}$ or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
- 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).
- For 50 to 400 Hz a.c. operation, the following must be associated with the coil:
 - 1 individual rectifier (to be wired),

- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operatir min-max	ng range K ⁽¹⁾	Coil		Economy resis	stor			$\begin{array}{l} \text{Rectifier} \\ \text{(for $\mathbf{\sim}$ only)} \end{array}$	Coil	Weight
d.c.	a.c.	Resist. at		Resistors (2 in parallel or in ser	ies)	Con	tact	Reference	Reference	
		20 °C ± 10 %	at Un max	Unit reference	Total resist.	Qty	Reference	-		
V	V		Α							kg
47-50	-	1.85	27	DR2SC0150	2x150//		ZC4GM2		WB1KB154	1.120
51-55	_	2.35	23.5	DR2SC0180	2x180//	1	ZC4GM2	_	WB1KB153	1.120
56-60	_	3.22	18.5	DR2SC0220	2x220//	1	ZC4GM2	_	WB1KB141	1.120
61-66	_	4.04	16	DR2SC0270	2X270//	1	ZC4GM2	_	WB1KB142	1.120
67-72	_	4.96	14.5	DR2SC0330	2x330//	1	ZC4GM2	_	WB1KB155	1.120
73-79	_	5.86	13.5	DR2SC0100	2x100	1	ZC4GM2	_	WB1KB132	1.120
80-92	_	7.2	12.8	DR2SC0120	2x120	1	ZC4GM2	_	WB1KB123	1.120
93-98	108-113	9.6	10.2	DR2SC0150 DR2SC0180	150 + 180	1	ZC4GM2	DR5TE1U	WB1KB133	1.120
99-114	114-132	11.4	10	DR2SC0180 DR2SC0220	180 + 220	1	ZC4GM2	DR5TE1U	WB1KB121	1.120
115-126	133-145	16.3	7.7	DR2SC0270	2x270	2	ZC4GM2	DR5TE1U	WB1KB130	1.120
127-139	146-160	11.7	7	DR2SC0330	2x330	2	ZC4GM2	DR5TE1U	WB1KB140	1.120
140-159	161-181	25.2	6.3	DR2SC0390 DR2SC0470	390 + 470	2	ZC4GM2	DR5TE1U	WB1KB134	1.120
160-201	182-228	32.2	6.2	DR2SC0560	2x560	2	ZC4GM2	DR5TE1U	WB1KB124	1.120
202-222	229-255	49.7	4.5	DR2SC0820	2x820	2	ZC4GM2	DR5TE1U	WB1KB122	1.120
223-246	256-282	61	4	DR2SC1000	2x1000	1	LC1DT20LDS135	DR5TE1S	WB1KB135	1.120
247-277	283-316	77.2	3.6	DR2SC1200	2x1200	1	LC1DT20LDS135	DR5TE1S	WB1KB136	1.120
278-327	317-372	94	3.5	DR2SC1500	2x1500	1	LC1DT20UDS135	DR5TE1S	WB1KB139	1.120
328-360	373-408	128	2.8	DR2SC1500	3x1500	1	LC1DT20TDS135	DR5TE1S	WB1KB125	1.120
361-399	409-452	160	2.5	DR2SC1800	3x1800	1	LC1DT20VDS135	DR5TE1S	WB1KB137	1.120
400-469	453-500	197	2.4	DR2SC2200	3x2200	1	LC1DT20VDS135	DR5TE1S	WB1KB126	1.120
470-500	-	257	1.9	DR2SC2700	3x2700	1	LC1DT20RDS135	_	WB1KB138	1.120

Specifications

Average coil consumption (low sealed consumption):
 d.c.: inrush 900...1100 W, sealed 0.7...1 W
 a.c. (with rectifier): inrush 1100...1300 VA, sealed 0.7...1 VA

Time constant when sealed 25 ms

Economy resistor consumption: 24...30 W

- Operating cycles/hour at □ ≤ 55 °C: ≤ 120
- Mechanical durability at Uc: 1.2 million operating cycles

■ With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level ≤ 7.

WB1KB•••

LC1B - 4-pole - d.c. coils with economy resistor rectified a.c. coils with economy resistor

References

The same coils are used for $\overline{\ldots}$ or \sim contactor control supply.

- For d.c. operation, the following must be associated with the coil:
 - 1 economy resistor arrangement (resistors + 1 or 2 auxiliary contact(s) or 1 contactor).
- For 50 to 400 Hz a.c. operation, the following must be associated with the coil:
 - 1 individual rectifier (to be wired),

- 1 economy resistor arrangement (resistors + auxiliary contact(s) or 1 contactor) wired into the rectified current side.

Operatir min-max		Coil		Economy resis	stor			$\begin{array}{l} \text{Rectifier} \\ \text{(for $\mathbf{\sim}$ only)} \end{array}$	Coil	Weight
d.c.	a.c.	Resist.		Resistors (3 in	series)	Con	tact	Reference	Reference	
		at 20 °C ± 10 %	± 10 % at Un max	Unit reference	Total resist.	Qty	Reference	-		
٧	V		Α							kg
57-61	-	2.35	26	DR2SC0027	3x27	1	ZC4GM2	-	WB1KB153	1.120
62-67	-	3.22	21	DR2SC0033	3x33	1	ZC4GM2	-	WB1KB141	1.120
68-73	-	4.04	18	DR2SC0039	3x39	1	ZC4GM2	-	WB1KB142	1.120
74-81	_	4.96	16.3	DR2SC0047	3x47	1	ZC4GM2	_	WB1KB155	1.120
82-89	-	5.86	15	DR2SC0056	3x56	1	ZC4GM2	-	WB1KB132	1.120
90-102	105-119	7.2	14	DR2SC0068	3x68	1	ZC4GM2	DR5TE1U	WB1KB123	1.120
103-111	120-128	9.6	11.5	DR2SC0100	3x100	2	ZC4GM2	DR5TE1U	WB1KB133	1.120
112-129	129-148	11.4	11.3	DR2SC0100	3x100	2	ZC4GM2	DR5TE1U	WB1KB121	1.120
130-143	149-163	16.3	8.7	DR2SC0150	3x150	2	ZC4GM2	DR5TE1U	WB1KB130	1.120
144-157	164-179	19.7	8	DR2SC0180	3x180	2	ZC4GM2	DR5TE1U	WB1KB140	1.120
158-180	180-204	25.2	7.1	DR2SC0220	3x220	2	ZC4GM2	DR5TE1U	WB1KB134	1.120
181-226	205-259	32.5	6.9	DR2SC0330	3x330	2	ZC4GM2	DR5TE1U	WB1KB124	1.120
227-251	260-288	49.7	5	DR2SC0470	3x470	1	LC1DT20LDS135	DR5TE1S	WB1KB122	1.120
252-278	289-317	61	4.5	DR2SC0560	3x560	1	LC1DT20UDS135	DR5TE1S	WB1KB135	1.120
279-313	318-356	77.2	4	DR2SC0680	3x680	1	LC1DT20UDS135	DR5TE1S	WB1KB136	1.120
314-368	357-418	94	3.9	DR2SC0820	3x820	1	LC1DT20TDS135	DR5TE1S	WB1KB139	1.120
369-408	419-462	128	3.2	DR2SC1200	3x1200	1	LC1DT20VDS135	DR5TE1S	WB1KB125	1.120
409-448	463-500	160	2.8	DR2SC1500	3x1500	1	LC1DT20VDS135	DR5TE1S	WB1KB137	1.120
449-500	-	197	2.5	DR2SC1800	3x1800	1	LC1DT20RDS135	-	WB1KB126	1.120

Specifications

- Average coil consumption (low sealed consumption):
 d.c.: inrush 1100...1400 W, sealed 1.2...1.6 W
- a.c. (with rectifier): inrush 1300...1600 VA, sealed 1.2...1.6 VA
- Time constant when sealed 25 ms

- Economy resistor consumption: 35...45 W
 Operating cycles/hour at □ ≤ 55 °C: ≤ 120
 Mechanical durability at Uc: 1.2 million operating cycles
- With a.c. operation: good resistance to voltage drop on inrush, non susceptibility to micro-breaks, mains harmonics: level ≤ 7.

www.se.com

CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactor

Introduction 104	
Description/characteristics	
Description/characteristics	
Dimensions	
Product references - coding principle	
Spare parts	

TeSys TeSys Predefined composition contactors

Introduction

CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors for synchronous motor excitation circuit

Introduction

Variable composition contactors CVE, CWE, CRXB, CVXB, CWXB are designed for switching the excitation circuits of synchronous machines, in particular electrical power station generators, for operational currents from 80 to 2750 A. Example: Static excitation generator.

Basic scheme

DB418040

- 4 Excitation winding

Operating principle

The voltage delivered by the generator is related to the current flowing through the excitation winding 4.

Start-up phase

- The contactor 1 closes, off load.
- An adjustable auxiliary power supply generates current in the excitation winding 4 to allow power-up of the generator.
- When the voltage delivered by the generator is sufficient to supply the excitation winding 4 via a thyristor bridge 2, the auxiliary supply is switched off.

Stop phase

When a stop instruction is received, the thyristor bridge 2 operates for a few seconds as an inverter, then the excitation contactor 1 opens.

The function of the N/C pole is to discharge residual electromagnetic energy from the excitation winding 4 via the discharge resistor Rd 3.

Under normal operating conditions, breaking is therefore easy, especially as the N/O poles and the N/C pole are make before break.

However, in the event of a problem, the contactor must be able to break.

Contactor selection

Selection is done according to the nominal operating voltage of the machine and the necessity or not to fully isolate the thyristor bridge coil of the power supply (1, 2, or 3 N/O poles).

Note: The N/C pole, which is used for machine de-excitation, has no arc chambers. Its breaking capacity is nil. Re-energisation of the contactor must therefore be avoided during the de-excitation phase.

If there is any risk of this happening, it is advisable to add an off-delay function that prevents pick-up of the contactor for the 10 seconds following drop-out.

CVEB and CWEB contactors composition:

■ 2 or N/O poles with magnetic blow-out (80...300 A)

■ 1 N/C pole without blow-out, overlapping contacts (possible mounting of a blow-out device)

- 1 electromagnet with d.c. supply
- □ either mechanical latching (CWEB)
- □ or with economy resistor (CVEB).
- 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contact heads (3 to
- 6 N/O contacts + 2 to 4 N/C contacts).
- 1 mounting bar, 1 rotary drive shaft.

The following can be added:

■ 1 or 2 blocks of 4 instantaneous auxiliary contacts LADN●●, without increasing the overall size of the contactor

■ or 1 time delay block LADT • or LADR •.

Note: it is not possible to fit a mechanical latch block type LA6DK... on these contactors.

Characteristics						
CVEB, CWEB contactor size	s		F		н	
N/O pole			1 pole	2 poles	1 pole	2 poles
Rated current	θ ≤ 40°C	Α	80	80	300	300
Maximum operating voltage	d.c	V	220	440	220	440
Rated insulation voltage According to IEC 60664-1	d.c	v	690	690	690	690
Making capacity	d.c	Α	1600	1600	4000	4000
Breaking capacity	d.c L/R = 15 ms	Α	240	240	900	900
Overlap time with the N/C pole		ms	2	2	2	2
N/C pole						
Rated current	θ ≤ 40°C	Α	80	80	300	300
Making capacity	d.c	Α	1600	1600	4000	4000
Breaking capacity	d.c L/R = 15 ms	Α	0	0	0	0
Permissible current	For 10 s	Α	480	480	1400	1400

TeSys CRXB, CVXB, CWXB Predifined composition contactors

Description/characteristics

CRXB, CVXB and CWXB contactors composition:

■ 1 to 3 N/O poles with magnetic blow-out (80...2750 Å)

■ 1 N/C pole without blow-out, overlapping contacts (possible mounting of a blowout device)

- 1 electromagnet with d.c supply
- □ or with economy resistor (CVXB)

□ either with magnetic latching (CRXB)

- □ either with mechanical latching (CWXB)
- 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contacts (3 to 6 N/O contacts + 2 to 4 N/C contacts)
- 1 mounting bar, 1 rotary drive shaft.

The following can be added:

■ 1 or 2 blocks of 4 instantaneous auxiliary contacts type LADN●●, without increasing the overall size of the contactor.

■ or 1 time delay block type LADT • or LADR •.

Note: it is not possible to fit a mechanical latch block type LA6DK... on these contactors.

Characteristics												
Size of contactors CoX	B ⁽¹⁾		F				Н					
N/O pole			1 pole	2	poles	3 poles		ole	2 poles	3 p	oles	
Rated current	θ ≤ 40°C	А	80	80		80	300		300	300		
Maximum operating voltage	qe	V DC	440	85	50	1000	440		850	100	0	
Rated insulation voltage	<u> </u>	V DC	1000	10	000	1000	100	0	1000	100	0	
Making capacity		Α	1400	14	100	1400	350	0	3500	350	0	
Breaking capacity	For U max	Α	500	50	00	500	120	0	1200	120	0	
Overlap time with the N/C	pole	ms	2	2		2	2		2	2		
N/C pole												
Rated current	θ ≤ 40°C	Α	80	80)	80	300		300	300		
Making capacity		Α	1600	16	600	1600	400	0	4000	400	0	
Breaking capacity		Α	0	0		0	0		0	0		
Permissible current	For 10s	Α	480	48	30	480	140	0	1400	140	0	
Characteristics												
Size of contactors C•X	В		к				L					
N/O pole			1 pole	2	pole	3 poles	1 p	ole	2 pole	3 p	oles	
Rated current	θ ≤ 40°C	Α	630	63	30	630	800		800	800		
Maximum operating voltag	ge	V DC	440	85	50	1000	440		850	120	0	
Rated insulation voltage		V DC	1000	10	000	1000	150	0	1500	150	0	
Making capacity		Α	6500	65	500	6500	140	00	14000	140	00	
Breaking capacity	For U max	Α	2500	25	500	2500	320	0	3200	320	0	
Overlap time with the N/C	pole	ms	2	2		2	2		2	2		
N/C pole												
Rated current	θ ≤ 40°C	А	630	63	30	630	630		630	630		
Making capacity		Α	6500	65	500	6500	650	6500		650	6500	
Breaking capacity		Α	0	0		0	0	0		0	0	
Permissible current	For 10s	Α	3600	36	600	3600	360	3600		360	3600	
Characteristics												
Size of contactors CoX	В		М			Р			R			
N/O pole			1 pole	2 poles	3 poles	1 pole	2 poles	3 poles	1 pole	2 poles	3 pole	
Rated current	θ ≤ 40°C	А	1250	1250	1250	2000	2000	2000	2750	2750	2750	
Maximum operating voltage	ge	V DC	440	850	1200	440	850	1200	440	850	1200	
Rated insulation voltage		V DC	1500	1500	1500	1500	1500	1500	1500	1500	1500	
Making capacity		Α	14000	14000	14000	21000	21000	21000	25000	25000	25000	
Breaking capacity	For U max	Α	4400	4400	4400	7200	7200	7200	10000	10000	10000	
Overlap time with the N/C	pole	le ms 2 2 2 2 2 2 2 2 2 2		2								
N/C pole								1				
Rated current	θ ≤ 40°C	А	630	630	630	630	630	630	630	630	630	
Making capacity		Α	6500	6500	6500	6500	6500	6500	6500	6500	6500	
Breaking capacity		Α	0	0	0	0	0	0	0	0	0	
	For 10s	А	3600	3600	3600	3600	3600	3600	3600	3600	3600	

TeSys

TeSys CRXB, CVXB Predifined composition contactors

Dimensions

Contactors CRXB and CVXB, sizes F to K

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of ZC4GM auxiliary contact blocks in addition to the maintaining contact.

C•XB contactor siz	e.										Minimu	Minimum electrical clearance			
	ø	b	b1	с	c1	L	L1	Р	Q	Q1	X1	X2			
F	M6	75	120	17	149	445	15	50	20	52	25	15			
Н	M10	62	188	52	176	540	20	60	57	57	60	55			
К	M12	141	214	45	215	760	37	100	64	75	80	80			

Contactors CRXB and CVXB, sizes L to R

Dimension L: fixing centres depending on the number of N/O or N/C main poles, with or without magnetic blow-out, and the number of **ZC4GM** auxiliary contact blocks in addition to the maintaining contact.

C•XB contactor size	ze									Minimu	Minimum electrical clearance		
	ø	b	с	C1	L	Ν	Р	Q	R	X1	X2		
L	M8	59	16	392	760	121	100	100	122	200	250		
М	M10	55	20	392	760	125	100	100	157	200	250		
Р	M10	55	20	487	885	125	150	110	173	200	250		
R	M10	50	25	582	950	130	195	130	173	250	300		

TeSys

TeSys CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors

Product references - coding principle

Decoding	a pro	duct re	ference	e (exam	ple)													
С	١	V	Ε	E	8	G	2		G		1		Υ	(3	D		1
Ť		ſ	Ť	ſ		Ť	Ť		Ť		Ť		Ť	1				Ť
1		2	3	4	•	5	6		7		8		7(1)		9			10
(1) Standard	constri	uction witl	hout blow-	-out: code	e Y.													
1 - Contac	tor								■ V = E ■ R = E	Electr Electr	omag omag	net with net with	econo magr	he cont omy resi netic lato nanical l	stor hing			
3 - Type of ■ E = PN1 ■ X= PA3 (F		-	3 (KB) an	nd PA1 (I	_B to RB	5)			4 - Ev	oluti	on							
5 - Size of F H 80 300	the c			M 1250	P 2000	R 2750			6 - Nu 1, 2 or 3	mbe 3 acc	r of N ording	/ O pole g to the	s schen	ne used	by the o	custom	er	
7 - Operat	ting c	urrent (l	e)															
Code	Cor BF Ie	ntactor		Rep* blow-ou	ıt	B	H			ep* ow-oi	ut		BK le			Rep*	out	
A B	1 1.9			05 07														
С	4			10														
D E	7,6 12			14 18														
М	12			20														
N P	22 45			25 9														
P Q	45 55			9 7														
F	80			4														
R G	-					2	00		2									
Н							00		1									
T U													400			53		
<u>1</u>													400			00		
V	_												500 630			52 51		
K Y	Only	/ for CV1 \	with pole t	J Vpe PN5	ou PR5 w	rithout blo	ow-out						030			51		
<mark>8</mark> - 1 N/C p	oole								9 - Co	ntro	l volta	ae						
									Code		BD	ED	FD	GD	MD			UD
		uxiliary	contact	ts					Uc (V DC	C)	24	48	110	125	220			250
■ 1 = 1 ZC4 ■ A = 1 bloc		e I A1BN	132						Code	2	B7	E7	F7	G7	M7	P7	U7	
■ B = 2 bloc				andard c	onfigura	tion)			Uc (V AC	<i>.</i>)	24	48	110	127	220	230	240	
Performance	ce lab	el for th	e excita	tion cor	ntactors													
			CREB, C	CWEB					(B, CVX	B, C	WXB			I				
		BF 1P	2P		BH 1P	2P		BF 1P		2P		3P		BH 1P	2P		3P	
Ue (V DC)		200	440		200	44		440		850		1000		440	85		100	00
In (A) Ie		80 See table	- 7		300			80						300				
Uc		See table																
		CRXB,	CVXB, C	CWXB														
		BK	20	20	BL	0.0	20	BM	100	I.		BP	00		BF			20
Ue (V DC)		1P 440	2P 850	3P 1000	1P 440	2P 850	3P 1000	1P 440	2P 850	_	3P 1000	1P 440	2P 850	3P 100	1P 0 44		Р 50	3P 1000
In (A)		630			800	1	1.000	1250				2000	1000	100	27			
le		See tabl																
Uc		See table	89															
108	Li	fe Is On	Schne Gel	eider														

TeSys

TeSys CVEB, CWEB, CRXB, CVXB, CWXB Predefined composition contactors

Product references - coding principle

			le equipp		ey por l'(l'I	N1) N/O poles	With mochaniss!	tohing	
Control ci	rcuit					With economy resistor	With mechanical la	tching	
Operational voltage	Number of poles N/O	Number of poles N/C	Instantanec auxiliary co		Rated operational current	completed by adding	Basic reference to be completed by adding the code of the blow- out coils ⁽¹⁾ , of the		Schem
	ď	L				control voltage (2)	control voltage (2)		
	∕°	4		Ļ		and of the aux.	and of the aux.		
		((contacts (3)	contacts (3)		
v					A			<u></u>	
20V DC	1	1	1, 3 or 6	1, 2 or 4	80	CVEBF1e1eee	CWEBF1e1eee		1
					300	CVEBH1e1eee	CWEBH1e1eee		1
40V DC	2	1	1, 3 or 6	1, 2 or 4	80	CVEBF2e1eee	CWEBF2e1eee		2
					300	CVEBH2e1eee	CWEBH2e1eee		2
CRXB, C	VXB ar	nd CWXE	3 contacto	ors equip	ped with N	I/O poles type PA	A3 (F to H), PN3 (J and K) or PA1 ((L to F
Control ci	rcuit					Economy resistor	Mechanical latching	Magnetic latching	
Operational voltage	Number of poles N/O	Number of poles N/C	Instantaneo auxiliary co		Rated operational current	completed by adding			
	1	7		Ļ		control voltage ⁽²⁾ and of the aux. contacts ⁽³⁾	control voltage ⁽²⁾ and of the aux. contacts ⁽³⁾	control voltage ⁽²⁾ and of the aux. contacts ⁽³⁾	
v	•	•		I	A				
40V DC	1	1	1, 3 or 6	1, 2 or 4	80	CVXBF1e1eee	CWXBF1e1eee	CRXBF1e1eee	1
					300	CVXBH1e1eeee	CWXBH1e1eeee	CRXBH1e1eee	1
					630	CVXBK1e1eee	CWXBK1e1eeee	CRXBK1e1eee	1
					800	CVXBL1e1eeee	CWXBL1e1eee	CRXBL1e1eeee	1
					1250	CVXBM1e1eeee	CWXBM1e1eee	CRXBM1e1eeee	1
					2000	CVXBP1e1eeee	CWXBP1e1eeee	CRXBP1e1eeee	1
					2750	CVXBR1e1eee	CWXBR1e1eeee	CRXBR1e1eee	1
50V DC	2	1	1, 3 or 6	1, 2 or 4	80	CVXBF2e1eee	CWXBF2e1eee	CRXBF2e1eeee	2
					300	CVXBH2e1eee	CWXBH2e1eee	CRXBH2e1eee	2
					630	CVXBK2e1eee	CWXBK2e1eee		2
					800	CVXBL2e1eee	CWXBL2e1eee	CRXBL2e1eee	2
					1250	CVXBM2e1eee	CWXBM2e1eee	CRXBM2e1eee	2
					2000 2750	CVXBP2e1eee CVXBR2e1eee	CWXBP2e1eeee CWXBR2e1eeee	CRXBP2e1eee CRXBR2e1eee	2
000V DC	3	1	1. 3 or 6	1, 2 or 4	80	CVXBF3e1eeee	CWXBR2010000	CRXBF3e1eeee	3
	5		1, 3 01 0	1, 2 01 4	300	CVXBH3e1eee	CWXBH3e1eee	CRXBH3e1eee	3
					630	CVXBK3e1eee	CWXBH3010000	CRXBK3e1eee	3
200V DC	3	1	1, 3 or 6	1, 2 or 4	800	CVXBL3e1eeee	CWXBL3010000	CRXBL3e1eee	3
2000 00	5		1,0010	1, 2 01 4	1250	CVXBM3e1eee	CWXBM3e1eeee	CRXBM3e1eee	3
					2000	CVXBP3e1eee	CWXBP3e1eee	CRXBP3e1eee	3
									-

Volts	24	48	110	125	220	230	240	250
DC	BD *	ED *	FD	GD	MD	PD	-	UD
AC	B7 *	E7 *	F7	G7	M7	P7	U7	-

 \star K to R rating: please consult us.

(3) 1 auxiliary contact type ZC4GM1 (code 1) or 1 auxiliary contact type ZC4GM2 (code 2) or 1 auxiliary contacts block type LA1BN32 (3 N/O contacts + 2 N/C contacts) (code A) or 2 auxiliary contacts blocks type LA1BN32 (6 N/O contacts + 4 N/C contacts) (code B).

TeSys TeSys CRXB, CVXB Predefined composition contactors

Coils

WB1GA•

Contactors	Usual voltage	Coil		Addi	tional resistors	5			omatic coil out contact
		Reference	R at 20 °C	R1	Reference	R2	Reference	No.	Reference
	V		W	W		W			
CRXBF21FD	110	WB1EA200	44	100	DR2SC0100	82	DR2SC0082	2	ZC4GM2
CRXBF21GD	125	WB1EA220	53	120	DR2SC0120	100	DR2SC0100	2	ZC4GM2
CRXBF21UD	250	WB1EA432	208	470	DR2SC0470	470	DR2SC0470	2	ZC4GM2
CRXBG21FD	110	WB1GA230	33	68	DR2SC0068	47	DR2SC0047	2	ZC4GM2
CRXBG21GD	125	WB1GA300	59	120	DR2SC0120	56	DR2SC0056	2	ZC4GM2
CRXBG21UD	250	WB1GA550	203	390	DR2SC0390	270	DR2SC0270	2	ZC4GM2
CRXBH21FD	110	WB1HA340	45	68	DR2SC0068	68	DR2SC0068	2	ZC4GM2
CRXBH21GD	125	WB1HA380	51	120	DR2SC0120	82	DR2SC0082	2	ZC4GM2
CRXBH21UD	250	WB1HA600	158	270	DR2SC0270	220	DR2SC0220	2	ZC4GM2
CRXBJ21FD	110	WB1JB348	55	120	DR2SC0120	100	DR2SC0100	2	ZC4GM2
CRXBJ21GD	125	WB1JB428	76.3	180	DR2SC0180	100	DR2SC0100	2	ZC4GM2
CRXBJ21UD	250	WB1JB432	244	680	DR2SC0680	330	DR2SC0330	2	ZC4GM2
CRXBK21FD	110	WB1KB124	32.5	100	DR2SC0100	68	DR2SC0068	2	ZC4GM2
CRXBK21GD	125	WB1KB124	32.5	100	DR2SC0100	68	DR2SC0068	2	ZC4GM2
CRXBK21UD	250	WB1KB137	160	390	DR2SC0390	390	DR2SC0390	2	ZC4GM2
CRXBL/M/P/21FD	110	WB1KB121	11.4	47	DR2SC0047	39	DR2SC0039	1	PR4FB0010
CRXBL/M/P/21GD	125	WB1KB140	19.7	100	DR2SC0100	47	DR2SC0047	1	PR4FB0009
CRXBL/M/P/21UD	250	WB1KB136	77.2	330	DR2SC0330	220	DR2SC0220	1	PR4FB0006
CRXBR21FD	110	WB1KB133	9.6	47	DR2SC0047	39	DR2SC0039	1	PR4FB0011
CRXBR21GD	125	WB1KB121	11.4	56	DR2SC0056	47	DR2SC0047	1	PR4FB0010
CRXBR21UD	250	WB1KB135	61	270	DR2SC0270	270	DR2SC0270	1	PR4FB0006
Contactors	Usual voltage	Coil			Economy res	istor		Ecor cont	nomy resistor act
		Reference	R at 20 °C		Reference		Total resistance	No.	Reference
	V		W				W		
CVXBF21FD	110	WB1EA290	88		DR2SC1500		1500	1	ZC4GM2
CVXBF21GD	125	WB1EA315	110		DR2SC1800		1800	1	ZC4GM2
CVXBF21UD	250	WB1EA550	367		DR2SC6800		6800	1	ZC4GM2
CVXBG21FD	110	WB1GA380	88		DR2SC1500		1500	1	ZC4GM2
CVXBG21GD	125	WB1GA380	88		DR2SC1500		1500	1	ZC4GM2
CVXBG21UD	250	WB1GA600	257		DR2SC5600		5600	1	ZC4GM2
CVXBH21FD	110	WB1HA400	62		DR2SC1200		1200	1	ZC4GM2
CVXBH21GD	125	WB1HA440	79		DR2SC1500		1500	1	ZC4GM2
CVXBH21UD	250	WB1HA750	303		DR2SC5600		5600	1	ZC4GM2
CVXBJ21FD	110	WB1JB428	76.3		DR2SC1200		1200	1	ZC4GM2
CVXBJ21GD	125	WB1JB429	97.5		DR2SC1500		1500	1	ZC4GM2
CVXBJ21UD	250	WB1JB433	388		DR2SC6800		6800	1	ZC4GM2
CVXBK21FD	110	WB1KB122	49.7		DR2SC2200		2200	1	ZC4GM2
CVXBK21GD	125	WB1KB135			DR2SC2700		2700	1	ZC4GM2
CVXBK21UD	250	WB1KB138	257		DR2SC1201		12 000	1	ZC4GM2
CVXBL/M/P/21FD	110	WB1KB140	19.7		2 x DR2SC03	30	660	1	ZC4GM2
CVXBL/M/P/21GD	125	WB1KB134	25.2		2 x DR2SC04		940	2	ZC4GM2
CVXBL/M/P/21UD	250	WB1KB139	94		DR2SC1800	-	4000	1	LP1D12004
	110	WB1KB121	11.4	+ DR2SC2200 DR2SC0180			400	1	ZC4GM2
CVXBR21FD	110								
CVXBR21FD CVXBR21GD	125	WB1KB130	16.3		+ DR2SC0220 2 x DR2SC02		540	2	ZC4GM2

TeSys CRXB, CVXB Predefined composition contactors

Spare parts

PN1LB80

PN3KB50

Sets of contacts	s for CRXB, CVXB o	contactors		
Description	Number of sets required per contactor pole	CRXB and CVXB contactor sizes	Reference	Weight
1 fixed contact +	1	F	PA2FB80	0.070
1 moving contact	1	G	PA2GB80	0.160
	1	Н	PA2HB80	0.220
	1	J	PN1JB80	0.320
	1	К	PN1KB80	0.440
	1	L	PA1LB80	0.420
	1	Μ	PA1LB80	0.420
	2	Р	PA1LB80	0.420
	3	R	PA1LB80	0.420

Arc chamber only				
Description	Number of sets required per contactor pole	CRXB and CVXB contactor sizes	Reference	Weight kg
Arc chamber	1	F	PA2FB50	0.070
		G	PA2GB50	0.160
		Н	PA2HB50	0.220
		J	PN3JB50	0.320
		К	PN3KB50	0.440
		L	PA1LB50	0.420
		Μ	PA1LB50	0.420
		P	PA1PB52	0.840
		R	PA1RB52	1.260

CR1B Magnetic latching contactors

Introduction	114
Selection guide	115
Product references	117
Characteristics	118
Dimensions	120
Schemes	121
Accessories and spare parts	122
Coils	123

TeSys TeSys CR1B Magnetic latching contactors Introduction

Magnetic latching contactors

The magnetic latching contactors are equipped with a specific electromagnet allowing them to maintain position "ON" although the coil is fed by any current.

Use

The specific properties of magnetic latching contactors make them suitable for many uses:

Properties	Use
Memory retention of the sequence in automatic equipment, in the event of loss of the control voltage.	Refineries, power plants, excitation circuits.
Energy saving, as no current is drained when the contactor is activated.	Contactor staying activated for long periods. Examples: refineries, alimentation energy, ST distribution.
Change of state "Work" / "Rest" by current pulse sent to the coil.	Selective opening control.
Insensitivity to main perturbations.	No unexpected opening or closing of power poles
Use of contactors beyond breaking capacity as they are activated off-load.	Passer diverter, for use with 1000 V
Silent contactor when locked in ON position	

Electro-magnet operation of the CR1B contactors

The CR1B magnetic latching contactors are equipped with a single coil, supplied with direct current or alternating current through a rectifier.

The latching is obtained by direct feeding of the coil with a current in a given direction. The unlatching is produced by a current of opposite direction, adjusted by resistors.

Range

■ The magnetic latching contactors are available from 80 to 630 A (Size F to K).

■ The characteristics of N/O and N/C poles are identical to those of CV1 and CV3B (Size F to K).

- For other characteristics and mounting dimensions, please contact us.
- For ratings of 800 to 2750 A, see next page.

CR1B contactors for direct starting of squirrel cage motors

In continuous or intermittent service up to 30 operating cycles per hour.

Motor	(1)							3-poles	Differential	thermal	3 type fuses						
220 / 2	30 V	380 / 4	00 V	415 V		440 V		440 V		440 V		440 V		contactor relay 3-poles CR1B		aM	BS-88
Ρ	In	Р	In	Р	In	Р	In	Ref. (2)	Ref.	Adjustment range	Rating						
kW	Α	kW	Α	kW	Α	kW	Α			Α	Α	Α					
220	700	355	635	400	650	425	650	CR1BL33	LR1F800	500 - 800	800	1000					
-	-	375	670	425	690	445	680	CR1BL33	LR1F800	500 - 800	800	1000					
-	-	400	710	445	730	450	690	CR1BL33	LR1F800	500 - 800	800	1000					
-	-	-	-	450	740	475	730	CR1BL33	LR1F800	500 - 800	800	1000					
250	800	425	760	475	780	500	780	CR1BM33	LR1F800	500 - 800	800	1000					
257	826	445	790	500	820	530	825	CR1BM33	LR1F1000	630 - 1000	1000	1250					
280	900	450	800	530	870	560	870	CR1BM33	LR1F1000	630 - 1000	1000	1250					
295	948	475	850	560	920	600	920	CR1BM33	LR1F1000	630 - 1000	1000	1250					
300	980	500	900	600	978	630	965	CR1BM33	LR1F1000	630 - 1000	1000	1250					
315	990	530	950	-	-	-	-	CR1BM33	LR1F1000	630 - 1000	1000	1250					

(1) The ratings are for standard 220/230 V, 380/400 V, 415 or 440 V motors. The overload relays should preferably be set to the motor full-load current shown on the motor rating plate. For other power ratings, select the overload relay with the appropriate range; the associated contactor and fuses must have ratings equal to or immediately greater than In.

(2) Reference to be completed on page 117.

CR1B rating - selection according to operational current - category AC-3										
CR1B contactor rating		L	M	Р	R					
Rated operational current (□ ≤ 55 °C)										
440 V	A	750	1000	1500	1800					
500 V	A	750	900	1200	1500					
660 V	A	700	800	900	1100					
1000 V	Α	400	400	500	600					
Operational power ($\Box \leq 55$ °C) (normalized motor power)										
220 / 230 V	kW	220	280	425	500					
380 / 400 V	kW	400	500	750	900					
415 V	kW	425	530	800	900					
440 V	kW	450	560	800	900					
500 V	kW	500	600	750	900					
660 V	kW	560	670	750	900					
1000 V	kW	530	530	670	750					

Maximum operating rate of 120 operating cycles/hour, at rated operational power with an on-load factor ≤ 85 %.

CR1B rating selection according to electrical durability in category AC-3 (Ue ≤ 440 V)

For 660 V, multiply the number of operating cycles by 0.8.

CR1B contactors for control of resistive circuits - power factor ≥ 0.95.

CR1B contactor rating			L	M	P	R
Maximum operational cur	rent (□ ≤ 55 °C)					
Number of bars			2	2	3	4
Cabling c.s.a.		mm ²	50 x 5	80 x 5	100 x 5	100 x 5
Rated operationnal current in category AC-1 at ambient air temperature	≤ 40 °C	Α	800	1250	3000	2750
	≤ 55 °C	Α	700	1100	1750	2400
	≤ 70 °C	Α	600	900	1500	2000

Increase in rated operational current by paralleling of poles

Apply the following coefficients to the above currents:

■ 2 poles in parallel: K = 1.60

■ 3 poles in parallel: K = 2.25

• 4 poles in parallel: K = 2.8.

these coefficients take into account an often unbalanced distribution of current between the poles

Maximum operating rate in operating cycles 120/hour.

CR1B rating - selection according to electrical durability in category AC-1 (Ue ≤ 440 V)

For 660 V, multiply the number of operating cycles by 0.8.

CR1B contactors for switching the primaries of 3-phase transformers

Conditions of use

- Maximum operational voltage: 1000 V 50/60 Hz.
- Maximum ambient temperature: 55 °C.

At power up, there is usually a suden inrush current. It reaches almost instantly its peak value and then decreases so approximately exponentially to its rapid steady state value.

The value depends on:

- characteristics of the magnetic circuit and the windings (section of kernel design field, number of turns, dimensions of the coils...)
- characteristics of magnetic metal sheets used (residual induction and saturation induction)
- of the magnetic state of the circuit and the instantaneous value of the alternating voltage of the network at the time of activation.

When a transformer is switched on, there is generally an initial current surge which can reach 20 to 40 times the rated current for the power ratings shown below.

This current reaches its peak value almost instantaneously and then decreases in a largely exponential manner, quickly dropping back down to its steady state value.

CR1B contactor ratin	ngs		L	M	P	R
Prospective peak current at switch-on A		A	18000	18000	24000	30000
Maximum operational power ⁽¹⁾	220 / 230 V	kVA	230	230	300	380
	380 400 V	kVA	400	400	530	660
	415 / 440 V	kVA	450	450	560	700
	500 V	kVA	480	480	600	750
	660 V	kVA	600	600	800	950
	1000 V	kVA	700	700	1000	1200

(1) Maximum operational power corresponding to a current peak at switch-on of 30 In.

LI12366 eps	
-------------	--

CR1BL33

S

CR1B Magnetic latching contactors - Product references										
Maximum thermal current in category AC-1	Rated operational current in category AC-3	Composition	on Number of Basic refere Instantaneous to be compl auxiliary by adding th contacts voltage cod			Weight				
Α	Α		N/C	N/O		kg				
800	750	1 pole	2	1	CR1BL31e21 (2)	32.000				
		2 poles	2	1	CR1BL32e21 (2)	45.000				
		3 poles	2	1	CR1BL33e21 (2)	58.000				
		4 poles	2	1	CR1BL34e21 (2)	72.000				
1250	1000	1 pole	2	1	CR1BM31e21 (2)	31.000				
		2 poles	2	1	CR1BM32e21 (2)	44.000				
		3 poles	2	1	CR1BM33e21 (2)	57.000				
		4 poles	2	1	CR1BM34e21 (2)	71.000				
2000	1500	1 pole	2	1	CR1BP31e21 (2)	41.000				
		2 poles	2	1	CR1BP32e21 (2)	65.000				
		3 poles	2	1	CR1BP33e21 (2)	94.000				
		4 poles	2	1	CR1BP34e21 (2)	120.000				
2750	1800	1 pole	2	1	CR1BR31e21 (2)	52.000				
		2 poles	2	1	CR1BR32e21 (2)	85.000				
		3 poles	2	1	CR1BR33e21 (2)	129.000				
		4 poles	2	1	CR1BR34e21 (2)	160.000				

(1) Standard control circuit voltages:

Volts	110	125	127	200	220	240	250	380	412	440	500
\sim 50-400 Hz	F	-	G	L	Μ	U	-	Q	Ν	R	S
	FD	GD	-	-	MD	UD	UCD	-	-	RD	SD

For other voltages, see tables of references coils page 123 or consult us.

(2) Other configurations, see below.

Other configurations for CR1B

For other configurations of auxiliary contacts, replace the number 21 (2 "N/O" + 1 "N/C") by the reference of the chosen configuration. Example: LC1BP33•30.

1 "N/O" + 2 "N/C"	>	12
3 "N/O"	\longrightarrow	30

Spare parts see page 122.

Note: the protection coil control circuit against short circuits must be performed by a fuse coordinated with the cable section used: 1.5 mm² for copper: 12 A fuse maximum (BS88 or g1).

TeSys TeSys CR1B Magnetic latching contactors Characteristics

CR1B contactor rat	according to			L	M	P	R
Number of poles	ing			1, 2, 3 or 4			
Rated operational voltag	e		v	1000			
Environment							
Terminal protection cove	r against accidental c	ontact		Without			
Protective treatment				TC			
Ambient air temperature		storage	°C	-60 +80			
		operation	°C	-15 +60			
Maximum operating altitu	ude		m	3000			
Maximum inclination				± 30° occasiona	al, in relation to no	rmal vertical mounting	plane
Pole characteristics			v	4000			
Rated operational voltag	e conforming to	BS 775 and IEC 158-1 VDE 0110 grC	V V	1000 1500			
Frequency limits by oper	ational current	VDE UTTU GIC	Hz	50-60			
Operational current	Distribution ($\Box \le 40$	°C) AC-1	A	800	1250	2000	2750
operational ourient	Motor	AC-3	A	750	1000	1500	1800
	(□ ≤ 40 °C, U ≤ 440	$(V) \frac{AC-4}{AC-4}$	A	750	1000	1500	1800
Rated making capacity I			Α	10000	10000	15000	18000
Rated breaking capacity		220 - 380 - 415 - 440 V	Α	10000	10000	15000	18000
conforming to IEC 158-1		500 V	Α	9000	9000	12000	15000
-		660 V	Α	8000	8000	9000	11000
		1000 V	Α	4000	4000	5000	6000
Permissible short time ra		for 1 s	Α	9600	9600	12000	15000
From cold state, with no		for 5 s	Α	9600	9600	12000	15000
flowing for previous 60 m	ninutes	for 10 s	Α	7000	8000	9600	12000
at		for 30 s	Α	4800	5200	6400	8000
		for 1 min	Α	3500	3800	5200	6300
		for 3 min	Α	2100	2400	3600	4400
		for 10 min	A	1200	1800	2800	3600
Short-circuit protection	Distribution	type g1 - BS 88	Α	800	1200	1000 x 2 ⁽¹⁾	1200 x 2 ⁽¹⁾
by fuses (max. rating)	Motor circuit	type aM	Α	800	1200	800 x 2 ⁽¹⁾	1000 x 2 ⁽¹⁾
	With thermal	type g1 - BS 88	Α	1000	1500	1000 x 2 ⁽¹⁾	1200 x 2 ⁽¹⁾
	overload relay						
Average impedance per			mΩ	0.18	0.18	0.13	0.09
Power dissipated per po	e	AC-1	W	115	280	520	680
		AC-3	W	88 2	180 2	290 3	360 4
Number of bars						1.5	
Der							
	toriotico		mm	50 x 5	80 x 5	100 x 5	100 x 10
Bar Control circuit charac	teristics	50/60 Hz		50 x 5			
Control circuit charac	teristics	50/60 Hz	v	50 x 5 110 to 500			
Control circuit character Rated control voltage	teristics	400 Hz and	V V	50 x 5 110 to 500 110 to 500			
Control circuit character Rated control voltage	teristics	400 Hz and latching	V V Un	50 x 5 110 to 500 110 to 500 0.85 to 1.1			
Control circuit character Rated control voltage Voltage limits \sim and $=$		400 Hz and latching unlatching	V V Un Un	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1			
Control circuit character Rated control voltage		400 Hz and latching unlatching	V V Un Un man./h	50 x 5 110 to 500 110 to 500 0.85 to 1.1			
Control circuit charac Rated control voltage Voltage limits \sim and $\overline{\dots}$ Maximum operating rate		400 Hz and latching unlatching	V V Un Un	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120			
Control circuit charac Rated control voltage Voltage limits \sim and Maximum operating rate Mechanical durability Average	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole	V V Un Un man./h man.	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million	80 x 5	100 x 5	100 x 10
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles	V Un Un man./h man.	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650	80 x 5	100 x 5	100 x 10
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole	V Un Un man./h man. VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100	80 x 5 650 1100	100 x 5	650 1100 x 10
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole	V Un Un man./h Man. VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650	80 x 5 650 1100 1650	650 1100 x 5	650 1100 x 10
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles	V Un Un man./h Man. VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850	80 x 5 650 1100 1650 1850	650 1100 x 5 650 1100 1650 1850	650 1100 x 10 650 1100 1650 1850
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole	V Un Un man./h Man. VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1850 1110	650 1100 1850 110	650 1100 x 5 650 1100 1650 1850 110 125 165	650 1100 x 10 650 1100 1650 1850 110
Control circuit charac Rated control voltage Voltage limits \sim and $$ Maximum operating rate Mechanical durability Average consumption	in mechanical operat Latching Unlatching	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 2 poles 3 poles 4 poles 1 pole 2 poles	V Un Un VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175	80 x 5 650 1100 1650 1850 110 125 165 175	650 1100 x 5 650 1100 1650 1850 110 125 165 175	650 1100 x 10 650 1100 1650 110 125 165 165 175
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 1 pole	V Un Un Man./h Man./h VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600	80 x 5 650 1100 1650 1850 110 125 165 175 600	650 1100 x 5 650 1100 1650 1850 110 125 165 175 600	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat Latching Unlatching	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 2 poles	V Un Un WA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000	650 1100 x 5 650 1100 1650 1850 110 125 165 175 600 1000	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat Latching Unlatching	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 1 pole 2 poles 3 poles 1 pole 2 poles 3 poles	V Un Un WA VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 125 165 175 600 1000 1500	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles	V Un Un WA VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat Latching Unlatching	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 4 poles 1 pole	V Un Un WA VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 1110 125 165 175 600 1000 1500 1700 100	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 10000 1500 1700 100	100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 2 poles 3 poles 4 poles 1 pole 2 poles 1 pole 2 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115	100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 1000 1500 175
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles 3 poles 4 poles 3 poles 3 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150	650 1100 x 10 1650 1850 110 125 165 175 600 1000 1500 115 150
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 2 poles 3 poles 4 poles 1 pole 2 poles 1 pole 2 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 6600 1000 1500 115 150 160	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115 150 160	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150 160	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115 150 160
Control circuit charac Rated control voltage Voltage limits ∼ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles 3 poles 4 poles 3 poles 3 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 125 165 175 600 1000 1500 1700 1000 1550 115 150 160 The closing tim	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1500 150 160 160 rc" is measured	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 160 160	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1500 115 150 160 e coil supply is switch
Control circuit charac Rated control voltage Voltage limits ∼ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles 3 poles 4 poles 3 poles 3 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 1500 1700 150 166 The closing tim on to initial con	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 160 e "C" is measured tact of the main p	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 150 160 160 160	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1500 1700 100 1500 160 2 coil supply is switch e "O" is measured
Control circuit charac Rated control voltage Voltage limits ∼ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles 3 poles 4 poles 3 poles 3 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 1100 125 165 175 600 1000 1500 1500 1500 1500 1500 The closing tim on to initial conform the mome	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 160 e "C" is measured tact of the main p	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 160 160	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1500 1700 100 1500 160 2 coil supply is switch e "O" is measured
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 4 poles	V Un Un WA VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000 115 150 160 The closing tim on to initial con from the mome separate.	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 100 1500 100 150 100 10	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the information of the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. The opening tim is switched off to the oles. T	100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150 160 e coil supply is switch e "O" is measured moment the main pole
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000 1500 1700 1000 1500 175 165 175 600 1000 175 150 165 175 600 1000 175 1000 10	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 150 100 150 160 e "C" is measured tact of the main p ent the coil supply 100 - 150	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening tim is switched off to the state of	100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150 160 e coil supply is switch e "O" is measured moment the main pole 100 - 150
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 4 poles	V Un Un WA VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000 150 115 150 166 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 100 150 165 175 600 1000 1000 100 100 100 100 1	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening tim is switched off to the is 100 - 150 20 - 40	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 100 150 160 e coil supply is switch e "O" is measured moment the main pole
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 660 1000 1500 1700 100 1500 1700 100 150 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 115 150 160 160 100 100 100 100 100 10	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 150 160 d from the moment the oles. The opening tim is switched off to the istiched off to the isti	100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 115 150 160 e coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles.
Control circuit charac Rated control voltage Voltage limits \sim and $=$ Maximum operating rate Mechanical durability	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 1650 1100 125 165 175 600 1000 1500 1700 100 1500 1700 100 150 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase app	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 1700 160 e "C" is measured tact of the main p ent the coil supply 100 - 150 20 - 40 g time depends o pplications the arc;	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 160 160 160 160 160 160 1700 100 150 160 1700 100 150 160 1700 100	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 a coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 11000 1650 1850 110 125 165 175 600 1000 1500 1700 1000 1500 1500 1500 175 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase ag The load is isol	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 e coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Un VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 0.85 to 1.1 120 1 million 650 11000 1650 1850 110 125 165 175 600 1000 1500 1700 1000 1500 1500 1500 175 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase ag The load is isol	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 1700 160 e "C" is measured tact of the main p ent the coil supply 100 - 150 20 - 40 g time depends o pplications the arc;	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	650 1100 x 10 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1500 1700 160 coil supply is switch e "O" is measured moment the main poles 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ∼ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 2 3 4 2 3 4 2 3 4 2 3 4 2 4 2 3 4 2 2 2 2 2 2 2 4 2 4 2 <td>V V Un man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA</td> <td>50 x 5 110 to 500 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000 1500 115 150 166 The closing time on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin <i>For 3-phase ap</i> <i>The load is isol</i> <i>opening time a</i></td> <td>80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100</td> <td>100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal</td> <td>100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 e coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.</td>	V V Un man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 1000 1500 115 150 166 The closing time on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin <i>For 3-phase ap</i> <i>The load is isol</i> <i>opening time a</i>	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 e coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and Average operating time a Operating in a.c. or d.c.	in mechanical operat	400 Hz and latching unlatching ting cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 3 poles 4 poles	V Un Man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1850 110 125 165 175 660 1000 1500 1700 100 150 150 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase ap The load is isol opening time a	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 a coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and Average operating time a Operating in a.c. or d.c.	in mechanical operat Latching Unlatching Latching Unlatching at nominal voltage	400 Hz and latching unlatching ing cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 4 poles 4 poles 1 pole 2 poles 3 poles 4 poles	V V Un man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 125 165 175 660 1000 1500 1700 1000 1550 1700 1000 1550 160 The closing tim on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase ap The load is isol opening time a	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 a coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ~ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and Average operating time a Operating in a.c. or d.c.	in mechanical operat Latching Unlatching Latching Unlatching at nominal voltage	400 Hz and latching unlatching ing cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 4 poles 1 pole 2 poles 3 poles 4 poles 4 poles 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 4 poles 4 poles 1 pole 2 poles 4 poles 4 poles 1 pole 2 poles 4	V Un Man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 1650 1100 125 165 175 600 1000 1500 1700 100 1500 1700 100 1500 1750 160 The closing time on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin <i>For 3-phase ap</i> <i>The load is isol</i> <i>opening time a</i> contactors) 20 660	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 a coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.
Control circuit charac Rated control voltage Voltage limits ∼ and Maximum operating rate Mechanical durability Average consumption at 50/60 Hz Average consumption at 400 Hz and Average operating time a	in mechanical operat Latching Unlatching Latching Unlatching at nominal voltage	400 Hz and latching unlatching ing cycles (at □ ≤ 40 °C) 1 pole 2 poles 3 poles 4 poles 1 pole 2 poles 3 poles 4 poles 4 poles 1 pole 2 poles 3 poles 4 poles	V Un Man./h Man. VA VA VA VA VA VA VA VA VA VA VA VA VA	50 x 5 110 to 500 110 to 500 0.85 to 1.1 120 1 million 650 1100 1650 1100 1650 110 125 165 175 660 1000 1500 1700 1000 1500 1700 100 1550 160 The closing time on to initial con from the mome separate. 100 - 150 20 - 40 Note: the arcin For 3-phase ap The load is isol opening time a	80 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 1700 100 1500 165 175 600 1000 1500 100 100 115 160 100 100 100 100 100 100 100	100 x 5 650 1100 1650 1850 110 125 165 175 600 1000 1500 175 600 1000 1500 1700 100 115 150 160 d from the moment the oles. The opening time is switched off to the isswitched off to the isswitched off to the isswitched off to the isswitched ing time is usually less. 100 - 150 20 - 40 n the circuit switched ing time is usually less. ply after a time equal	100 x 10 650 1100 1650 1850 110 125 165 175 600 10000 1500 175 600 1000 1500 175 600 1000 150 160 a coil supply is switch e "O" is measured moment the main pole 100 - 150 20 - 40 by the main poles. s than 10 ms.

(1) Parallel cabling must be done only according the instructions of the fuses manufacturer.

118

TeSys CR1B Magnetic latching contactors Characteristics

Characteristics of ins	stantaneous auxiliary contacts (type ZC4GM fo	or CR1B	contactors)				
Operational power	in a.c.	V	110/127	220	380	415/440	500
	1 million operating cycles	VA	2000	4000	4000	4000	3500
	occasional making capacity	VA	14000	23000	35000	45000	35000
			inductive load 0.7) = 10 time	d such as the c	r up to 2400 ope oil of an electro roken (cos □ 0.4	magnet: makin	
Operational power	in d.c.	V	110	220	440	500	
	1 million operating cycles	VA	250	250	230	200	
	occasional making capacity	VA	1600	800	400	360	
Sotting charac	teristics for control circuit		inductive load				nour) on an ut economy resis
CR1B contactor ra			L	M	Р		R
Electromagnet	ung	Ref.	ET1-KB50	IVI	P		ĸ
Air gap of the magnetic	circuit	mm	5/100				
Pick-up travel (E)		mm	30				
Pull-in travel (e)		mm	10				
N° of the return spring	of the moving part		1 x 292 (1 pc 2 x 292 (2 pc	ble contactors) bles, 3 poles, 4	poles contactor	s)	
Type of coil			WB1-KB				
Pull-in cold voltage (\Box =	= 20 °C)	Un	0.75				
Drop-out voltage		Un	0.30 to 0.50				
Adjustment of application force (F) on the contact per pole	according to contactor composition						
Number of springs	1 pole		201	201	201		155
	2 poles		201	201	201		155
	3 poles		201	201	201		155
	4 poles		201	201	201		155
Application force (F)	1 pole	daN	30	30	30 (1)	30 (2)
o contact per pole	2 poles	daN	30	30	30 (30 (2)
	3 poles	daN	30	30	30 (1)	30 (2)
	4 poles	daN	30	30	30 (1)	30 (2)
Switch pole setting	Opening gap (b.), electro-magnet closed	mm	2 ±0.5				
	Beginning of opening, during closing	mm	12 to 14				

daN

0.900

(1) Each pole has 2 contacts: the force must be applied evenly to each of these contacts.

action (F) Application force (F)

(2) Each pole has 3 contacts: the force must be applied evenly to each of these contacts.

TeSys TeSys CR1B Magnetic latching contactors Dimensions

Common side view

Diameter of screw: 12 mm.

Туре	Rating (A)	Number of poles	L	М	M1	M2	b	с	ø	а	т	S	R	N	Ρ	Q1
CR1BL 800	1	345	285	-	-	59	16	9	50	30	10	122	121	100	100	
		2	445	385	-	-	59	16	9	50	30	10	122	121	100	100
	3	540	480	-	-	59	16	9	50	30	10	122	121	100	100	
		4	760	-	308	392	59	16	9	50	30	10	122	121	100	100
CR1BM	1250	1	345	285	-	-	55	20	11	63	30	17	157	125	100	100
		2	445	385	-	-	55	20	11	63	30	17	157	125	100	100
		3	540	480	-	-	55	20	11	63	30	17	157	125	100	100
		4	760	-	308	392	55	20	11	63	30	17	157	125	100	100
CR1BP	2000	1	385	325	-	-	55	20	11	100	60	20	173	125	150	110
		2	540	480	-	-	55	20	11	100	60	20	173	125	150	110
		3	760	700	-	-	55	20	11	100	60	20	173	125	150	110
		4	1065	-	455	550	55	20	11	100	60	20	173	125	150	110
CR1BR	2750	1	445	385	-	-	55	20	11	125	60	20	173	130	195	123
		2	635	575	-	-	55	20	11	125	60	20	173	130	195	123
		3	885	825	-	-	55	20	11	125	60	20	173	130	195	123
		4	1065	-	455	550	55	20	11	125	60	20	173	130	195	123

Values X1 and X2 are given for a breaking capacity of 10 In (a 3-phase supply).

Rating of contactor CR1B		L	м	Р	R	
\sim 3-phase	voltage					
380/440 V	X1	100	100	150	200	
	X2	150	150	200	250	
500 V	X1	100	100	150	200	
	X2	150	150	220	250	
660 V	X1	150	150	200	200	
	X2	200	200	250	250	
1000 V	X1	200	200	200	250	
	X2	250	250	250	300	

TeSys CR1B Magnetic latching contactors Schemes

Contactor CR1B with overload relay

Contactor CR1B

Life Is On Schneider 121

TeSys TeSys CR1B Magnetic latching contactors Accessories and spare parts

Description	Application	Reference	Weight
			kg
Mechanical interlock ⁽³⁾ with mounting accessories	For vertical assembly of reversing contactors and CR1 B changeover contactor pairs	EZ2LB0601	1.560
Kit containing 2 bar mounting brackets		LA9B103	1.620

different ratings. Connecting rods and cranks assembled on right-hand sides, crank pins on the pole side. Vertical fixing centre distance between the two contactors: 600 mm.

PA1LB80 (PA1LB76 + PA1LB75)

ZC4GM1

Spare parts for CR	1B contact	ors		
Description	For contactors	Number of sets required	Reference	Weight
		per pole		kg
Sets of contacts	CR1BL	1	PA1LB80	0.420
(1 moving contact, 1 fixed contact)	CR1BM	1	PA1LB80	0.420
T lixed contact)	CR1BP	2	PA1LB80	0.420
	CR1BR	3	PA1LB80	0.420
Description	For contactors	Composition	Reference	Weight
				kg
Moving contact only (for one finger)	CR1B		PA1LB75	0.220
Fixed contact only (for one finger)	CR1B		PA1LB76	0.200
Blow-out horn only (for 1 finger)	CR1B		PA1LB89	0.120
Arc chambers	CR1BL		PA1LB50	3.700
(for a single pole)	CR1BM		PA1LB50	3.700
	CR1BP		PA1PB50	6.200
	CR1BR		PA1RB50	8.500
Auxiliary	CR1B	1 contact N/C	ZC4GM1	0.030
contact blocks	CR1B	1 contact N/O	ZC4GM2	0.030
	CR1B	1 contact N/C	ZC4GM9	0.030
	CR1B	1 contact N/O	ZC4GM8	0.030
Switch pole for automatic cut-out coil	CR1B		PR4FB00ee (1)	0.600
Set of moving and fixed contacts for switch pole	CR1B		PV1FA80	0.035
Arc chamber for switch pole	CR1B		PN1FB50	0.220

(1) Reference to be completed, see page 117.

WB1KB•

Usual vol	tage	Coils		Spare p	oarts			
	~ 50 - 400 Hz	Resistance (□ = 20 °C)	Reference	Additio		Cut-out	contact	Rectifie for ^
		. ,		R1	R2	Number	Туре	
V	V	Ω		Ω	Ω			
For CR1	Be31	1 pole						
	110/120	19.7	WB1KB140	68	47	2	ZC4GM2 or ZC4GM8	DR5TE1
10 / 125	-	25.2	WB1KB134	68	68	2	ZC4GM2 or ZC4GM8	
	220/240	77.2	WB1KB136	220	180	2	ZC4GM2 or ZC4GM8	DR5TE1
220	-	94	WB1KB139	270	220	2	ZC4GM2 or ZC4GM8	
250	-	128	WB1KB125	330	270	3	ZC4GM2 or ZC4GM8	
	380/400	197	WB1KB126	470	470	3	ZC4GM2 or ZC4GM8	DR5TE1
	415/440	257	WB1KB138	1000	470	3	ZC4GM2 or ZC4GM8	DR5TE1
For CR1	Be32	2 poles						
	110	9.6	WB1KB133	10	33	1	PR4FB0011	DR5TE1
110	120/127	11.4	WB1KB133	47	39	1	PR4FB0010	DR5TE1
125	120/121	19.7	WB1KB140	100	47	1	PR4FB0009	DRUTEI
25	220	32.5	WB1KB124	120	120	1	PR4FB0007	DR5TE1
220	240	49.7	WB1KB122	220	120	1	PR4FB0007	DR5TE1
250	-	77.2	WB1KB136	330	220	1	PR4FB0006	DRJILI
.50	380/400	128	WB1KB125	470	470	1	PR4FB0005	DR5TE1
	415/440	120	WB1KB125 WB1KB137	680	560	1	PR4FB0005	DR5TE1
For CR1			WDIKDI37	000	500	I	FR4FD0004	DRJIEI
FOLCE		3 poles						
	110	7.2	WB1KB123	39	27	1	PR4FB0012	DR5TE1
10	120/127	9.6	WB1KB133	47	39	1	PR4FB0011	DR5TE1
25	-	11.4	WB1KB121	56	47	1	PR4FB0010	
220	240	32.5	WB1KB124	180	120	1	PR4FB0008	DR5TE1
250	-	61	WB1KB135	270	270	1	PR4FB0006	
	380/400	94	WB1KB139	470	390	1	PR4FB0005	DR5TE1
	415/440	128	WB1KB125	680	470	1	PR4FB0004	DR5TE1
For CR1	B●34	4 poles						
	110	5.8	WB1KB132	33	27	1	PR4FB0014	DR5TE1
10	120/127	7.2	WB1KB123	47	33	1	PR4FB0012	DR5TE1
25	-	11.4	WB1KB121	56	45	1	PR4FB0010	
	220	25.2	WB1KB134	150	120	1	PR4FB0008	DR5TE1
	240	32.5	WB1KB124	180	150	1	PR4FB0007	DR5TE1
250	-	49.7	WB1KB122	270	220	1	PR4FB0007	
	380	77.2	WB1KB136	390	390	1	PR4FB0006	DR5TE1
	400/440	94	WB1KB139	560	470	1	PR4 FB0005	DR5TE1

(1) For hot and humid conditions "TH treatment", the references of the coils are supplemented by the letters "TH". Example: **WB1KB135TH**.

Reference of resistance :

DR2SC0010 for 10 ohms and DR2SC0470 for 470 ohms.

Weight of the various elements: a coil WB1KB••• 1.120 kg contact ZC4GM• 0.030 kg

- Switch PR4FB00
 0.600 kg

 rectifier DRSTEI
 0.100 kg

 resistance DR2SC0
 0.030 kg

Standards and tests description

Standardization	128
Current of asynchronous squirrel cage motors at nominal load - Common values	131
Degrees of protection provided by enclosures: IP Code	132
Degrees of protection provided by enclosures: IK code	133
Protective treatment of equiment according to climatic environment	134
CF 452 - Customer requirements specification form ?	136

Characteristics with their description					
Altitude	The rarefied atmosphere at h rated operational voltage of th the rated operational current	ne contactor. It a	lso reduces the	cooling effect of	the air and hence
	No derating is necessary up t	o 3000 m.			
	Derating factors to be applied (a.c. supply) are as follows.	l above this altitu	ude for main pol	e operational vo	
	Altitude	3500 m	4000 m	4500 m	5000 m
	Rated operetional voltage Rated operational current	0.90	0.80	0.70	0.60
	• • •				
Ambient air temperature	The temperature of the air su The operating characteristics - with no restriction for tempe - with restrictions, if necessar	are given : eratures betweer	n -5 and +55 °C	,	ce.
Rated operational current (le)	This is defined taking into acc utilisation category and ambie				te and duty,
Rated conventional thermal current $(Ith)^{(1)}$	The current which a closed co temperature rise exceeding th			um of 8 hours w	thout its
Permissible short time rating	The current which a closed co dangerous overheating.	ntactor can sust	ain for a short tir	ne after a period	of no load, without
Rated operational voltage (Ue)	This is the voltage value whic use of the contactor or starter are based. For 3-phase circui Apart from exceptional cases less than or equal to the rated	, and on which t its it is expresse such as rotor sh	he correspondir d as the voltage nort-circuiting, th	ng tests and the between phase	utilisation category s.
Rated control circuit voltage (Uc)	The rated value of the control For a.c. applications, the valu harmonic distortion).				
Rated insulation voltage (Ui)	This is the voltage value used in dielectric tests determining not identical for all standards,	leakage paths a	and creepage di	stances. As the	specifications are
Rated impulse withstand voltage (Uimp)	The peak value of a voltage s	urge which the o	device is able to	withstand witho	ut breaking down.
Rated operational power (expressed in kW)	The rated power of the standa operational voltage.	ard motor which	can be switche	d by the contacto	or, at the stated
Rated breaking capacity ⁽²⁾	This is the current value whic conditions specified in the IEC		can break in acc	ordance with the	ebreaking
Rated making capacity ⁽²⁾	This is the current value whic specified in the IEC standard.		can make in acc	ordance with the	e making conditions
On-load factor (m)	the c	ycle (T)		e current flows (t)	and the duration of current
Pole impedance	The impedance of one pole is the input terminal and the out The impedance comprises a The total impedance therefor This average value is given fo	put terminal. resistive compo e depends on th	nent (R) and an e frequency and	inductive compo d is normally give	onent (X = L⊡).
Electrical durability	This is the average number o perform without maintenance rated operational current and	. The electrical o	durability depen	n the main pole o ds on the utilisat	contacts can ion category, the
Mechanical durability	This is the average number o main poles) which the contac				flow through the

 (1) Conventional thermal current, in free air, conforming to IEC standards.
 (2) For a.c. applications, the breaking and making capacities are expressed by the rms value of the symmetrical component of the short-circuit current. Taking into account the maximum asymmetry which may exist in the circuit, the contacts therefore have to withstand a peak asymmetrical current which may be twice the rms symmetrical component.

Note: these definitions are extracted from standard IEC 60947-1.

TeSys TeSys B Variable composition contactors Standards and tests description

	The standard utilisation categories define the current values which the contactor must be able
	to make or break.
	These values depend on: ■ the type of load being switched : squirrel cage or slip ring motor, resistors, ■ the conditions under which making or breaking takes place: motor stalled, starting or running reversing, plugging.
a.c. applications	
Category AC-1	This category applies to all types of a.c. load with a power factor equal to or greater than 0.95 (cos $\Box \ge 0.95$).
	Application examples: heating, distribution.
Category AC-2	 This category applies to starting, plugging and inching of slip ring motors. In closing, the contactor makes the starting current, which is about 2.5 times the rated current of the motor. In opening, it must break the starting current, at a voltage less than or equal to the mains supply voltage.
Category AC-3	 This category applies to squirrel cage motors with breaking during normal running of the motor. On closing, the contactor makes the starting current, which is about 5 to 7 times the rated current of the motor. On opening, it breaks the rated current drawn by the motor; at this point, the voltage at the contactor terminals is about 20 % of the mains supply voltage. Breaking is light. Application examples: all standard squirrel cage motors: lifts, escalators, conveyor belts, bucke elevators, compressors, pumps, mixers, air conditioning units, etc.
Category AC-4	This category covers applications with plugging and inching of squirrel cage and slip ring motors The contactor closes at a current peak which may be as high as 5 or 7 times the rated motor current. On opening it breaks this same current at a voltage which is higher, the lower the motor speed. This voltage can be the same as the mains voltage. Breaking is severe Application examples: printing machines, wire drawing machines, cranes and hoists, metallurgy industry.
d.c. applications	
Category DC-1	This category applies to all types of d.c. load with a time constant (L/R) of less than or equal to 1 ms.
Category DC-3	 This category applies to starting, counter-current braking and inching of shunt motors. Time constant ≤ 2 ms. On closing, the contactor makes the starting current, which is about 2.5 times the rated moto current. On opening, the contactor must be able to break 2.5 times the starting current at a voltage which is less than or equal to the mains voltage. The slower the motor speed, and therefore the lower its back e.m.f., the higher this voltage.
Category DC-5	This category applies to starting, counter-current braking and inching of series wound motors. Time constant ≤ 7.5 ms. On closing, the contactor makes a starting current peak which may be as high as 2.5 times the rated motor current. On opening, the contactor breaks this same current at a voltage which is higher, the lower the motor speed. This voltage can be the same as the mains voltage. Breaking is severe.
Utilization categories for au	xiliary contacts & control relays conforming to IEC 60947-5
a.c. applications	
Category AC-14 ⁽¹⁾	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is less than 72 VA.
	Application example: switching the operating coil of contactors and relays.
Category AC-15 ⁽¹⁾	This category applies to the switching of electromagnetic loads whose power drawn with the electromagnet closed is more than 72 VA.
	Application example: switching the operating coil of contactors.
d.c. applications	
Category DC-13 ⁽²⁾	This category applies to the switching of electromagnetic loads for which the time taken to reach 95 % of the steady state current (T = 0.95) is equal to 6 times the power P drawn by the load (with $P \le 50$ W).
	Application example: switching the operating coil of contactors without economy resistor.

 ⁽¹⁾ Replaces category AC-11.
 (2) Replaces category DC-13.

TeSys TeSys B Variable composition contactors Standards and tests description

Standardization

Conformity to standards

Schneider Electric products satisfy, in the majority of cases, national (for example: BS in Great Britain, NF in France, DIN in Germany), European (for example: CENELEC) or international (IEC) standards. These product standards precisely define the performance of the designated products (such as IEC 60947 for low voltage equipment).

When used correctly, as designated by the manufacturer and in accordance with regulations and correct practices, these products will allow users to build equipment, machine systems or installations that conform to their appropriate standards (for example: IEC 60204-1, relating to electrical equipment used on industrial machines).

Schneider Electric is able to provide proof of conformity of its production to the standards it has chosen to comply with, through its quality assurance system.

On request, and depending on the situation, Schneider Electric can provide the following: a declaration of conformity,

a certificate of conformity (ASEFA/LOVAG),

a homologation certificate or approval, in the countries where this procedure is required or for particular specifications, such as those existing in the merchant navy.

Code	Certification authority		Country
	Name	Abbreviation	Ī
ANSI	American National Standards Institute	ANSI	USA
BS	British Standards Institution	BSI	Great Britain
CEI	Comitato Elettrotecnico Italiano	CEI	Italy
DIN/VDE	Verband Deutscher Electrotechniker	VDE	Germany
EN	Comité Européen de Normalisation Electrotechnique	CENELEC	Europe
GOST	Gosudarstvenne Komitet Standartov	GOST	Russia
IEC	International Electrotechnical Commission	IEC	Worldwide
JIS	Japanese Industrial Standards Committee	JISC	Japan
NBN	Institut Belge de Normalisation	IBN	Belgium
NEN	Nederlands Normalisatie Institut	NNI	Netherlands
NF	Union Technique de l'Electricité	UTE	France
SAA	Standards Association of Australia	SAA	Australia
UNE	Asociacion Española de Normalizacion y Certificacion	AENOR	Spain

European EN standards

These are technical specifications established in conjunction with, and with approval of, the relative bodies within the various CENELEC member countries (European Union, European Free Trade Association and many central and eastern European countries having "member" or "affiliated" status). Prepared in accordance with the principle of consensus, the European standards are the result of a weighted majority vote. Such adopted standards are withdrawn. European standards incorporated within the French collection of standards carry the prefix NF EN. At the 'Union Technique de l'Electricité' (*Technical Union of Electricity*) (UTE), the French version of a corresponding European standard carries a dual number: European reference (NF EN ...) and classification index (C ...).

Therefore, the standard NF EN 60947-4-1 relating to motor contactors and starters, effectively constitutes the French version of the European standard EN 60947-4-1 and carries the UTE classification C 63-110.

This standard is identical to the British standard BS EN 60947-4-1 or the German standard DIN EN 60947-4-1.

Whenever reasonably practical, European standards reflect the international standards (IEC). With regard to automation system components and distribution equipment, in addition to complying with the requirements of French NF standards, Schneider Electric brand components conform to the standards of all other major industrial countries.

Regulations

European Directives

Opening up of European markets assumes harmonisation of the regulations pertaining to each of the member countries of the European Union.

The purpose of the European Directive is to eliminate obstacles hindering the free circulation of goods within the European Union, and it must be applied in all member countries. Member countries are obliged to transcribe each Directive into their national legislation and to

countries are obliged to transcribe each Directive into their national legislation and to simultaneously withdraw any contradictory regulations. The Directives, in particular those of a technical nature which concern us, only establish the objectives to be achieved, referred to as "essential requirements".

The manufacturer must take all the necessary measures to ensure that his products conform to the requirements of each Directive applicable to his production.

As a general rule, the manufacturer certifies conformity to the essential requirements of the Directive(s) for his product by affixing the CE mark.

The CC mark is affixed to Schneider Electric brand products concerned, in order to comply with French and European regulations.

Significance of the CE mark

- The CE mark affixed to a product signifies that the manufacturer certifies that the product conforms to the relevant European Directive(s) which concern it; this condition must be met to allow free distribution and circulation within the countries of the European Union of any product subject to one or more of the E.U. Directives.
 - The CE mark is intended solely for national market control authorities.
- The CE mark must not be confused with a conformity marking.

leSys TeSys B Variable composition contactors Standards and tests description

Standardization

European Directives (continued)

For electrical equipment, only conformity to standards signifies that the product is suitable for its designated function, and only the guarantee of an established manufacturer can provide a high level of quality assurance.

For Schneider Electric brand products, one or several Directives are likely to be applicable, depending on the product, and in particular: ■ the Low Voltage Directive 2006/95/EC: the C€ mark relating to this Directive has been

- compulsory since 16th January 2007. the Electromagnetic Compatibility Directive 89/336/EEC, amended by Directives 92/31/EEC
- and 93/68/EEC: the C€ mark on products covered by this Directive has been compulsory since 1st January 1996.

ASEFA-LOVAG certification

The function of ASEFA (Association of French Testing Stations for Low Voltage Industrial Electrical Equipment) is to carry out tests of conformity to standards and to issue certificates of conformity and test reports. ASEFA laboratories are authorised by the French authorisation committee (COFRAC).

ASEFA is now a member of the European agreement group LOVAG (Low Voltage Agreement Group). This means that any certificates issued by LOVAG/ASEFA are recognised by all the authorities which are members of the group and carry the same validity as those issued by any of the member authorities.

Quality labels

When components can be used in domestic and similar applications, it is sometimes recommended that a "Quality label" be obtained, which is a form of certification of conformity.

Code	Quality label	Country
CEBEC	Comité Electrotechnique Belge	Belgium
KEMA-KEUR	Keuring van Electrotechnische Materialen	Netherlands
NF	Union Technique de l'Electricité	France
ÖVE	Österreichischer Verband für Electrotechnik	Austria
SEMKO	Svenska Electriska Materiel Kontrollanatalten	Sweden

Product certifications

In some countries, the certification of certain electrical components is a legal requirement. In this case, a certificate of conformity to the standard is issued by the official test authority. Each certified device must bear the relevant certification symbols when these are mandatory:

		······································
Code	Certification authority	Country
CSA	Canadian Standards Association	Canada
UL	Underwriters Laboratories	USA
CCC	China Compulsory Certification	China
Note on certifi	cations issued by the Underwriters Laboratories (U	L). There are two levels of

appiovai.	
"Recognized" (🔊)	The component is fully approved for inclusion in equipment built in a workshop, where the operating limits are known by the equipment manufacturer and where its use within such limits is acceptable by the Underwriters Laboratories. The component is not approved as a "Product for general use" because its manufacturing characteristics are incomplete or its application possibilities are limited. A "Recognized" component does not necessarily carry the certification symbol.
"Listed" (UL)	The component conforms to all the requirements of the classification applicable to it and may therefore be used both as a "Product for general use" and as a component in assembled equipment. A "Listed" component

Marine classification societies

Prior approval (= certification) by certain marine classification societies is generally required for electrical equipment which is intended for use on board merchant vessels.

must carry the certification symbol.

Code	Classification authority	Country
BV	Bureau Veritas	France
DNV	Det Norske Veritas	Norway
GL	Germanischer Lloyd	Germany
LR	Lloyd's Register	Great Britain
NKK	Nippon Kaiji Kyokaï	Japan
RINA	Registro Italiano Navale	Italy
RRS	Register of Shipping	Russia

Note

For further details on a specific product, please refer to the "Characteristics" pages in this catalogue or consult your Regional Sales Office.

Tests of contacto	ors (confo	rming	to IE	C 60947	-4-1)									
Electrical durability: making and breaking conditions					tions	Occasional duty:								
a.c. supply														
Typical applications	Utilisation category	Makir	•		Break	•		Makin	•		Break	•		
Resistors.	AC-1	le	U Ue	cos 🗆 0.95	le	U Ue	cos 🗆 0.95	1.5 le	U 1.05 Ue	cos □ 0.8	1.5 le	U 1.05 Ue	cos 🗆 0.8	
non inductive or slightly inductive loads	AC-1		Ue	0.95		Ue	0.95		1.05 0e	0.0		1.05 Ue	0.0	
Motors														
Slip ring motors: starting, breaking.	AC-2	2.5 le	Ue	0.65	2.5 le	Ue	0.65	4 le	1.05 Ue	0.65	4 le	1.05 Ue	0.65	
Squirrel cage motors:	AC-3													
starting, breaking whilst	le ≤ ⁽¹⁾	6 le	Ue	0.65	1 le	0.17 Ue	0.65	10 le	1.05 Ue	0.45	8 le	1.05 Ue	0.45	
notor running.	le > ⁽²⁾	6 le	Ue	0.35	1 le	0.17 Ue	0.35	10 le	1.05 Ue	0.35	8 le	1.05 Ue	0.35	
Squirrel cage motors: starting, reversing, inching	AC-4													
	le ≤ ⁽¹⁾	6 le	Ue	0.65	6 le	Ue	0.65	12 le	1.05 Ue	0.45	10 le	1.05 Ue	0.45	
	le > (2)	6 le	Ue	0.35	6 le	Ue	0.35	12 le	1.05 Ue	0.35	10 le	1.05 Ue	0.35	

d.c. supply													
Typical	Utilisation	Makir	ng		Breaking			Making			Breaking		
applications	category	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)
Resistors, non inductive or slightly inductive loads	DC-1	le	Ue	1	le	Ue	1	1.5 le	1.05 Ue	1	1.5 le	1.05 Ue	1
Shunt wound motors: starting, reversing, inching	DC-3	2.5 le	Ue	2	2.5 le	Ue	2	4 le	1.05 Ue	2.5	4 le	1.05 Ue	2.5
Series wound motors: starting, reversing, inching	DC-5	2.5 le	Ue	7.5	2.5 le	Ue	7.5	4 le	1.05 Ue	15	4 le	1.05 Ue	15

Tests of control relays and auxiliary contacts (conforming to IEC 60947-4-1)

						•						
									ions			
Utilisation	Makir	ng		Brea	aking		Makir	ng		Break	king	
category	1	U	cos 🗆	1	U	cos 🗆	1	Ū	cos 🗆	1	Ū	cos
AC-14	_	-	-	-	-	-	6 le	1.1 Ue	0.7	6 le	1.1 Ue	0.7
AC-15	10 le	Ue	0.7	le	Ue	0.4	10 le	1.1 Ue	0.3	10 le	1.1 Ue	0.3
	category AC-14	Utilisation Makin Category I AC-14 -	Making and broken Utilisation Category AC-14	Utilisation Making category I U cos AC-14 – – –	Making and breaking conditions Utilisation category Making I AC-14 - -	Electrical durability: making and breaking conditions Utilisation category Making I Breaking I AC-14 – –	Electrical durability: making and breaking conditions Utilisation category Making I Breaking I Breaking I Cos AC-14 -	Electrical durability: making and breaking conditions Occas making making Utilisation category Making I Breaking I Making I AC-14 – – –	Electrical durability: making and breaking conditions Occasional duty making and breaking category Utilisation category Making I Breaking I Making I Making I Making I Making I Making I I D AC-14 - - - - - 6 1.1 <t< td=""><td>Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I Making I Making I Cos I AC-14 - - - - - 6 1.1 Ue 0.7</td><td>Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I I D Cos I D Cos I D Cos I D<</td><td>Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I Breaking I Making I Breaking I Breaking I Breaking I I D Cos I D Cos I I D D I D D D I D D D</td></t<>	Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I Making I Making I Cos I AC-14 - - - - - 6 1.1 Ue 0.7	Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I I D Cos I D Cos I D Cos I D<	Electrical durability: making and breaking conditions Occasional duty: making and breaking conditions Utilisation category Making I Breaking I Breaking I Making I Breaking I Breaking I Breaking I I D Cos I D Cos I I D D I D D D I D D D

d.c. supply													
Typical	Utilisation	Maki	ng		Brea	king		Makin	g		Break	ing	
applications	category	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)	1	U	L/R (ms)
Electromagnets	DC-13	le	Ue	6 P ⁽³⁾	le	Ue	6 P ⁽³⁾	1.1 le	1.1 Ue	6 P ⁽³⁾	1.1 le	1.1 Ue	6 P ⁽³⁾

(1) $le \le 17 A$ for electrical durability, $le \le 100 A$ for occasional duty. (2) le > 17 A for electrical durability, le > 100 A for occasional duty.

(3) The value 6 P (in watts) is based on practical observations and is considered to represent the majority of d.c. magnetic loads up to the maximum limit of P = 50 W i.e. 6 P = 300 ms = L/R.
 Above this, the loads are made up of smaller loads in parallel. The value 300 ms is therefore a maximum limit whatever the value of current drawn.

TeSys TeSys B Variable composition contactors Standards and tests description

Current of asynchronous squirrel cage motors at nominal load - Common values

Current valu	les for po	wer in kW			Current valu	es for pov	ver in hp					
Rated Indicative rated operational current values at:		Rated operational	Indicative rated operational current values at:									
power ⁽¹⁾	230 V	400 V	500 V	690 V	power ⁽²⁾	110 - 120 V	200 V	208 V	220 - 240 V	380 - 415 V	440 - 480 V	550 - 600 V
kW	A	A	A	A	hp	Α	A	A	Α	Α	Α	Α
).06	0.35	0.2	0.16	0.12	1/2	4.4	2.5	2.4	2.2	1.3	1.1	0.9
0.09	0.52	0.3	0.24	0.17	3/4	6.4	3.7	3.5	3.2	1.8	1.6	1.3
).12	0.7	0.44	0.32	0.23	1	8.4	4.8	4.6	4.2	2.3	2.1	1.7
).18	1	0.6	0.48	0.35	1 ^{1/2}	12	6.9	6.6	6	3.3	3	2.4
).25	1.5	0.85	0.68	0.49	2	13.6	7.8	7.5	6.8	4.3	3.4	2.7
).37	1.9	1.1	0.88	0.64	3	19.2	11	10.6	9.6	6.1	4.8	3.9
).55	2.6	1.5	1.2	0.87	5	30.4	17.5	16.7	15.2	9.7	7.6	6.1
).75	3.3	1.9	1.5	1.1	7 ^{1/2}	44	25.3	24.2	22	14	11	9
.1	4.7	2.7	2.2	1.6	10	56	32.2	30.8	28	18	14	11
1.5	6.3	3.6	2.9	2.1	15	84	48.3	46.2	42	27	21	17
2.2	8.5	4.9	3.9	2.8	20	108	62.1	59.4	54	34	27	22
3	11.3	6.5	5.2	3.8	25	136	78.2	74.8	68	44	34	27
Ļ	15	8.5	6.8	4.9	30	160	92	88	80	51	40	32
5.5	20	11.5	9.2	6.7	40	208	120	114	104	66	52	41
7.5	27	15.5	12.4	8.9	50	260	150	143	130	83	65	52
1	38	22	17.6	12.8	60	-	177	169	154	103	77	62
5	51	29	23	17	75	-	221	211	192	128	96	77
8.5	61	35	28	21	100	-	285	273	248	165	124	99
22	72	41	33	24	125	-	359	343	312	208	156	125
80	96	55	44	32	150	-	414	396	360	240	180	144
37	115	66	53	39	200	-	552	528	480	320	240	192
5	140	80	64	47	250	-	-	-	604	403	302	242
55	169	97	78	57	300	-	-	-	722	482	361	289
'5	230	132	106	77	350	-	-	-	828	560	414	336
0	278	160	128	93	400	-	-	-	954	636	477	382
10	340	195	156	113	450	-	-	-	1030	-	515	412
32	400	230	184	134	500	-	-	-	1180	786	590	472
60	487	280	224	162								
200	609	350	280	203	-							
250	748	430	344	250	-							
815	940	540	432	313	-							
355	1061	610	488	354	-							
100	1200	690	552	400	-							
500	1478	850	680	493	_							
560	1652	950	760	551	-							
530	1844	1060	848	615	-							
/10	2070	1190	952	690	_							
300	2340	1346	1076	780	=							
900	2640	1518	1214	880	-							
1000	2910	1673	1339	970	-							

(1) Values conforming to standard IEC 60072-1 (at 50 Hz). (2) Values conforming to standard UL 508 (at 60 Hz).

Note: These values are given as a guide. They may vary depending on the type of motor, its polarity and the manufacturer.

Degrees of protection against the penetration of solid	The European standard EN 60520 dated October 1001 JEC publication 520
Degrees of protection against the penetration of solid bodies, water and personnel access to live parts	The European standard EN 60529 dated October 1991, IEC publication 529 (2 nd edition - November 1989), defines a coding system (IP code) for indicating the degree of protection provided by electrical equipment enclosures against accidenta direct contact with live parts and against the ingress of solid foreign objects or water This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gasses, fungi or vermin. Certain equipment is designed to be mounted on an enclosure which will contribute towards achieving the required degree of protection (example : control devices mounted on an enclosure).
	Different parts of an equipment can have different degrees of protection (example : enclosure with an opening in the base).
	Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to externa factors.
	Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection),

according to the locations in which they are installed.

IP ••• code

The IP code comprises **2 characteristic numerals** (e.g. **IP 55**) and may include **an additional letter** when the actual protection of personnel against direct contact with live parts is better than that indicated by the first numeral (e.g. IP 20C). Any characteristic numeral which is unspecified is replaced by an X (e.g. IP XXB).

Any characteri	stic num	eral which is unsp	ecified is replaced	d by ar	n X (e.g. IP XXB).					
1 st character	istic nun	neral:		2 nd characteristic numeral:				itional letter:		
	solid obj	on of the equipme ects and protectio /ith live parts.	0	corresponds to protection of the equipment against penetration of water with harmful effects.				corresponds to protection of personnel against direct contact with live parts.		
			Protection of		ction of the equipment	t against		ction of personnel against		
•	penetration of solid objects		personnel		tration of water		direct contact with live parts			
0 Non-pro			Non-protected	0	Non-protected		A	With the back of the hand.		
1 05		Protected against the penetration of solid objects having a diameter greater than or equal to 50 mm		1 ()		Protected against vertical dripping water, (condensation).	В	With the finger.		
	2,5 mm	Protected against the penetration of solid objects having a diameter greater than or equal to 12.5 mm.	Protected against direct finger contact.	2	15-1	Protected against dripping water at an angle of up to 15°.	С	With a Ø 2.5 mm tool.		
3 Ø2	5 mm	Protected against the penetration of solid objects having a diameter greater than or equal to 2.5 mm.		3 ()	1	Protected against rain at an angle of up to 60°.	D	With a Ø 1 mm wire.		
4 01	mm	Protected against the penetration of solid objects having a diameter greater than or equal to 1 mm.		4		Protected against splashing water in all directions.				
5		Dust protected (no harmful deposits).	Protected against direct contact with a Ø 1 mm wire.	5 (A) (A)		Protected against water jets in all directions.				
6		Dust tight.	Protected against direct contact with a Ø 1 mm wire.	6		Protected against powerful jets of water and waves.				
				7 ひ ひ	15 cm	Protected against the effects of temporary immersion.				
				8 0 0	m	Protected against the effects of prolonged immersion under specified conditions.				

TeSys B Variable composition contactors Standards and tests description

Degrees of protection provided by enclosures: IK code

Degrees of protection against mechanical impact

The European standard EN 50102 dated March 1995 defines a coding system (IK code) for indicating the degree of protection provided by electrical equipment enclosures against external mechanical impact.

Standard NF C 15-100 (May 1991 edition), section 512, table 51 A, provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.

Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

IKee code

The IK code comprises 2 characteristic numerals (e.g. IK 05).

2 characteristic numerals:

corresponding to a value of impact energy.

Degree mechar	s of protection a nical impact	gainst	h (cm)	Energy (J)
00	Non-protected			
01	0.2 kg		7.5	0.15
02		‡ h	10	0.2
03			17.5	0.35
04	-		25	0.5
05	-		35	0.7
06	0.5 kg		20	1
07		‡ h	40	2
08	1.7 kg	† h	30	5
09	5 kg		20	10
10		‡ h	40	20

TeSys TeSys B Variable composition contactors Standards and tests description

Protective treatment of equiment according to climatic environment

Depending on the climatic and environmental conditions in which the equipment is placed, Schneider Electric can offer specially adapted products to meet your requirements.

In order to make the correct choice of protective finish, two points should be remembered:

the prevailing climate of the country is never the only criterion

• only the atmosphere in the immediate vicinity of the equipment need be considered.

All climates treatment "TC"

This is the standard treatment for Schneider-electric brand equipment and is suitable for the vast majority of applications. It is the equivalent of treatments described as "Klimafest", "Climateproof".

In particular, it meets the requirements specified in the following publications:

- Publication UTE C 63-100 (method I), successive cycles of humid heat at: + 40 °C and 95 % relative humidity.
- DIN 50016 Variations of ambient conditions within a climatic chamber:
- + 23 °C and 83 % relative humidity
- + 40 °C and 92 % relative humidity.

It also meets the requirements of the following marine classification societies: BV-LR-GL-DNV-RINA.

Characteristics

■ Steel components are usually treated with zinc. When they have a mechanical function, they may also be painted.

■ Insulating materials are selected for their high electrical, dielectric and mechanical characteristics.

Metal enclosures have a stoved paint finish, applied over a primary phosphate protective coat, or are galvanised (e.g. some prefabricated busbar trunking components).

Limits for use of "TC" (All climates) treatment

■ "TC" treatment is suitable for the following temperatures and humidity:

Temperature (°C)	Relative humidity (%)
20	95
40	80
50	50

"TC" treatment is therefore suitable for all latitudes and in particular tropical and equatorial regions where the equipment is mounted in normally ventilated industrial premises. Being sheltered from external climatic conditions, temperature variations are small, the risk of condensation is minimised and the risk of dripping water is virtually non-existent.

Extension of use of "TC" (All climates) treatment

In cases where the humidity around the equipment exceeds the conditions described above, or in equatorial regions if the equipment is mounted outdoors, or if it is placed in a very humid location (laundries, sugar refineries, steam rooms, etc.), "TC" treatment can still be used if the following precautions are taken:

■ The enclosure in which the equipment is mounted must be protected with a "TH" finish (see next page) and must be well ventilated to avoid condensation and dripping water (e.g. enclosure base plate mounted on spacers).

Components mounted inside the enclosure must have a "TC" finish.

■ If the equipment is to be switched off for long periods, a heater must be provided (0.2 to 0.5 kW per square decimetre of enclosure), that switches on automatically when the equipment is turned off. This heater keeps the inside of the enclosure at a temperature slightly higher than the outside surrounding temperature, thereby avoiding any risk of condensation and dripping water (the heat produced by the equipment itself during normal running is sufficient to provide this temperature difference).

■ Special considerations for "Operator dialog" and "Detection" products: for certain pilot devices, the use of "TC" treatment can be extended to outdoor use provided their enclosure is made of light alloys, zinc alloys or plastic material. In this case, it is also essential to ensure that the degree of protection against penetration of liquids and solid objects is suitable for the applications involved.

"TH" treatment for hot and humid environments

This treatment is suitable for hot and humid atmospheres where installations are regularly subject to condensation, dripping water and the risk of fungi.

In addition, plastic insulating components are resistant to attacks from insects such as termites and cockroaches. These properties have often led to this treatment being described as "Tropical Finish", but this does not mean that all equipment installed in tropical and equatorial regions must systematically have undergone "TH" treatment. On the other hand, certain operating conditions in temperate climates may well require the use of "TH" treated equipment (see limitations for use of "TC" treatment).

Special characteristics of "TH" treatment

■ All insulating components are made of materials which are either resistant to fungi or treated with a fungicide, and which have increased resistance to creepage (Standards IEC 60112, NF C 26-220, DIN 5348).

■ Metal enclosures receive a top-coat of stoved, fungicidal paint, applied over a rust inhibiting undercoat. Components with "TH" treatment may be subject to a surcharge ⁽¹⁾. Please consult your Regional Sales Office.

Protective	treatment	t select	tion a	uide

Surrounding environment	Duty cycle	Internal heating of	Type of climate	Protective treatment	
		enclosure when not in use		of equip- ment	of enclo- sure
Indoors					
No dripping water or condensation	Unimportant	Not necessary	Unimportant	"TC"	"TC"
Presence of dripping	Frequent	No	Temperate	"TC"	"TH"
water or condensation	switching off for		Equatorial	"TH"	"TH"
	periods of more than 1 day	Yes	Unimportant	"TC"	"TH"
	Continuous	Not necessary	Unimportant	"TC"	"TH"
Outdoors (sheltere	d)				
No dripping water	Unimportant	Not necessary	Temperate	"TC"	"TC"
or dew			Equatorial	"TH"	"TH"
Exposed outdoors	or near the sea				
Frequent and regular	Frequent	No	Temperate	"TC"	"TH"
presence of dripping	switching off for		Equatorial	"TH"	"TH"
water or dew	periods of more than 1 day	Yes	Unimportant	"TC"	"TH"

These treatments cover, in particular, the applications defined by methods I and II of guide UTE C 63-100.

Not necessary

Unimportant "TC"

"TH"

Special precautions for electronic equipment

Continuous

Electronic products always meet the requirements of "TC" treatment. A number of them are "TH" treated as standard.

Some electronic products (for example: programmable controllers, flush mountable controllers CCX and flush mountable operator terminals XBT) require the use of an enclosure providing a degree of protection to at least IP 54, as defined by standards IEC 60664 and NF C 20 040, for use in industrial applications or in environmental conditions requiring "TH" treatment.

These electronic products, including flush mountable products, must have a degree of protection to at least IP 20 (provided either by their own enclosure or by their installation method) for restricted access locations where the degree of pollution does not exceed 2 (a test booth not containing machinery or other dust producing activities, for example).

Special treatments

For particularly harsh industrial environments, Schneider Electric is able to offer special protective treatments. Please consult your Regional Sales Office.

(1) A large number of the Schneider Electric brand products are "TH" treated as standard and are, therefore, not subject to a surcharge.

TeSys TeSys B Variable composition contactors CF 452 - Customer requirements specification form

Date of order	Editor Geog. area	Order n°	Require	d delivery ⁽¹⁾ Job n°
				1
Company:		Cus	stomer Order N°:	
Activity sector:			Application:	
Number of contactors: For devices with symbol combination: Do no	Type - size or sym	bol combination:		For use by Schneider Elec
POWER CIRCUIT	Voltage:	.V DC	Hz	Poles
Number of N/O main poles: Number of N/C main poles: ny special details:	Rated current: .			Ref: Ref:
CONTROL CIRCUIT	Voltage	e: V	AC Hz DC	Electromag: Coil: Coil maint. cont:
(For alternative control, in d	Economy resistor: unless specified, an economy re irect latching contact: Customer marking:		Yes No d if necessary) Yes No	Rectifier: Econ. resist. contact: Econ. Resist.:
				No. ZC4GM1 : (N/O
If a specific type or bloc Number GM1: Note : For mechanical inter Time delay contacts N/C + N/O Note: If LA1 is used, a build spec MOUNTING Fixing centres L: Star	Number of N/O k of contacts is required, pl GM2: GP4: locking, a N/C contact must be s : On delay ification is required. hdard cified With L = g centres "E" = mm Low : Ref:	GP5: GP6 specified for the interlock or Off de 	LA1: ng function. elay Dimensions in catalogue tor: Yes No	No. ZC4GM1: (N/C No. ZC1GP4: (N/C No. ZC1GP5: (N/C No. ZC1GP6: (N/O No. ZC1GP6: (N/O No. ZC2GG1: (ON- No. ZC2GG5: (OFF No. LA1BN•31:
ANY SPECIAL DETAILS	(Comments / S	pecific requirements / S	pecial "MI" / Accessories / Etc	.) Launch date Delivery date Contactor reference* * <u>3 possibilities</u> 1) Device with symbol combination (see drwg 14 2) Device n° defined on the basis of this form Type/size/order n°/year. E.g.: CV1GB000599

Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 92506 Rueil Malmaison Cedex France

RCS Nanterre 954 503 439 Capital social 928 298 512 € www.se.com

2020

© 2020- Schneider Electric. All Rights Reserved. All trademarks are owned by Schneider Electric Industries SAS or its affiliated companies. Document reference: DIA1ED2070702EN