

An industry leading portfolio of offers delivering sustainable value

y
 Green Premium

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
CO_{2} and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_{2} emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services

Peace of mind through... Well-being Performance
Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

Canalis KB 25 and 40 A

Presentation

Description 16

Catalogue numbers 23

Dimensions

Design guide

Canalis, a comprehensive and consistent busbar trunking system for...

A new path for achieving your electrical installations

Canalis is part of a comprehensive offer of products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements.
All of these products have been designed to work together: electrical, mechanical and communication compatibility.
The electrical installation is thus both optimised and high-performance.

Optimum system performance is ensured by coordination between the protection circuit breakers and the busbar trunking used for decentralised distribution.

Decentralised electrical distribution with total coordination perfectly satisfies all your requirements in terms of safety, continuity of service, upgradeability and simplicity.

Decentralised electrical distribution with total coordination is the ideal solution for a wide range of applications including factories, warehouses, commercial premises, parkings, etc.

... lighting and power distribution in all types of buildings

Easier

- Coordination

Schneider Electric proposes coordinated busbar trunking and circuit breaker combinations for all your applications.

For typical applications with power ratings up to 630 kVA , a solution including the low-voltage electrical switchboard, circuit breakers and Canalis busbar trunking ensures an installation sized to handle all short-circuit levels encountered.

- Design

The electrical installation can be designed without knowing the exact location of the equipment to be supplied.

- Operation

Canalis opens the door to total upgradeability throughout the installation.

Connectors with standard performance circuit breakers can be installed at any point along the busbar trunking run.

Safer

- Decentralised distribution system

The combination of cascading and discrimination techniques guarantees optimum safety and continuity of service.

- Design

Total discrimination for enhanced protection as standard and at a lower cost.point de la canalisation.

- Operation

Any changes to your installation are carried out in complete safety.

Connectors can be plugged in and out with the trunking live. They are equipped with interlocking systems to prevent incorrect mounting.

Coordination guarantees their installation at any point on the busbar trunking system.

Panorama of Canalis range

Lighting and low power distribution from 25 to 40 A - IP55

Power distribution from 40 to 160 A - IP55

Inc	Ui		Length of components	Number of conductors
KN *				
$\begin{aligned} & 40 \mathrm{~A} \\ & 63 \mathrm{~A} \\ & 100 \mathrm{~A} \\ & 160 \mathrm{~A} \end{aligned}$	500 V	Pre-lacquered white (RAL9001)	2 m and 3 m	4 + PE

Horizontal and vertical distribution from 100 to 1000 A - IP55

Inc		Ui		Length of components	Number of conductors
KS *					
Aluminium: 100 A, 160 A, $250 \mathrm{~A}, 400 \mathrm{~A}$, $500 \mathrm{~A}, 630 \mathrm{~A}$, 800 A, 1000 A	$\begin{aligned} & \text { Copper: } \\ & 160 \mathrm{~A}, 250 \mathrm{~A} \text {, } \\ & 400 \mathrm{~A}, 630 \mathrm{~A}, \\ & 800 \mathrm{~A} \end{aligned}$	690 V	Pre-lacquered white (RAL9001)	$3 \mathrm{~m}, 5 \mathrm{~m}$ and additional or customized components	$4+\mathrm{PE}$

* Canalis KS range is available on se.com or catalogue: DEBU026EN

Power transmission and distribution from 800 to 6300 A - IP55

Inc		Ui		Length of components	Number of conductors
KT *					
Aluminium: $\begin{aligned} & 800 \mathrm{~A}, 1000 \mathrm{~A}, \\ & 1250 \mathrm{~A}, 1600 \mathrm{~A} \text {, } \\ & 2000 \mathrm{~A}, 2500 \mathrm{~A} \text {, } \\ & 3200 \mathrm{~A}, 4000 \mathrm{~A} \text {, } \\ & 5000 \mathrm{~A} \end{aligned}$	Copper: $\begin{aligned} & 1000 \mathrm{~A}, 1350 \mathrm{~A}, \\ & 1600 \mathrm{~A}, 2000 \mathrm{~A}, \\ & 2500 \mathrm{~A}, 3200 \mathrm{~A}, \\ & 4000 \mathrm{~A}, 5000 \mathrm{~A}, \\ & 6300 \mathrm{~A} \end{aligned}$	1000 V	Pre-lacquered white (RAL9001)	2 m and 4 m	$\begin{aligned} & 3 P+P E \\ & 3 P+N+P E \\ & 3 P+N+P E R \end{aligned}$

* Canalis KT range is available on se.com or catalogue:

KTA: ref. DEBU021EN / KTC: ref. DEBU024EN

Power transmission for outdoor and harsh environment from 800 to 6300 A - IP68

| Inc | Ui | | Length of
 components | Number of
 conductors |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KR * | | | | |

*Canalis KR range is available on se.com or catalogue ref. DEBU031EN

Panorama of Canalis range

Center to center distance		Protection type	
$0.5 \mathrm{~m}, 1 \mathrm{~m}$ $\text { on } 1 \text { side }$	16 A to 63 A (plug-in)	Units for modular circuit breakers, fuses and sockets	> Flexible components $>$ Fixing devices with quick adjustment > Remote control bus > Cable ducts > Installation accessories

Center to center distance		Protection type	
0.5 m or 1 m on each side for horizontal version, and on one side for vertical version	16 A to 400 A (plug-in)	Units for circuit breakers (modular, Compact NSX), fuses, sockets	$>$ Riser ducting offer > Fixing devices with quick adjustment > Cable ducts > Installation accessories > Fire barriers

Center to center distance		Protection type	
0.5 m or 1 m	25 A to 630 A (plug-in) 400 A to 1250 A (bolt-on)	Units for circuit breakers (modular, Compact NSX), fuses, sockets	> Power supply ends > Direction change angles and T-pieces > Fixing devices and fuses

Canalis KB is a simple and economical solution for lighting and Iow power distribution

 Lighting management is an essential means of providing users with greater comfort, whilst at the same time reducing their energy bill. An affordable, easily-implementable solution for medium-sized tertiary buildings and workshops is available:
Canalis in combination with DALI or KNX protocols

(bati KNX

Greater comfort for users
Lighting management makes it possible to compensate for light variations due to weather and sunlight by creating a uniform luminous flux. A well-lit workstation has a direct impact on the well-being of the employees and the quality of their work, as well as on their safety.

And better energy efficiency
Controlling lighting by zone, creating lighting scenarios on the basis of occupancy time, switching off lights in unoccupied zones, etc. Lighting management optimises the use of equipment to significantly reduce electricity consumption.

Lighting share of a building's electricity consumption

20\%
Achievable savings thanks to energy management

Power distribution is a major challenge in the construction and refurbishment of commercial, industrial buildings and data centers.

The choice of device is fundamental as it will have an effect on the building's lifecycle. Infrastructures must comply with existing requirements while being flexible, networked and smart. The Canalis concept is undoubtedly the best solution to meet the needs of today and the challenges of tomorrow.

Simple to estimate

Designing Canalis installations is straightforward as there is no need to know the exact location, nor the power rating of the loads to be supplied.
It is therefore very quick to cost the distribution functions. Moreover, Canalis's flexibility means you can invest in existing needs without adversely affecting future expansion.

Simple to maintain

- No maintenance is required on the Canalis electrical contacts.
- The clarity of the Canalis architecture simplifies building maintenance and upgrades:
> enlarging office space,
> adding check-outs in a supermarket... Decentralized distribution ensures continuity of service; when associated with a 100% maintained or non-maintained supply, the essential functions are guaranteed:
> maintaining the cold chain in a hypermarket,
$>$ lighting system in a car park...

Easy to install

The compact nature of Canalis makes it easy to integrate in all parts of the building.
Since it is based on a decentralized architecture, Canalis can be installed at the same time as the building is being built, which optimizes site construction schedules.
Because of the delayed differentiation linked to the Canalis architecture, new constraints can be taken into account without adding to the installation time.
The Canalis ranges are factorytested, which ensures a very high level of quality on site and considerably improves the success of site acceptance tests.

Canalis tools and services

CanBrass

> is a design and costing tool for Canalis busbar trunking runs.

CanCad

> is a Plug-in for Autocad. It allows to easily design and get bill of materials.

BIMBusway

> is a Plug-in for Revit. It allows to easily design and get bill of materials in BIM format.

閪 Solution for Data Center

iBusway for Data Center catalogue
> DEBU028EN
iBusway for Data Center brochure
> DEBU027EN
iBusway for lighting management brochure
> DESWED112002EN
Lighting technical guide
> A9GT15E
LED Lighting technical guide
> CA909008E

Application sheets/Technical guides

In cruise ships
> DESWED105014EN
In livestock production buildings
> DESWED105010EN
In logistic centres
> DESWED105011EN
Automotive industry guide
> KD0C98CTAAUEN

[^0]

Presentation

Canalis KB is a fast and easy mounting solution

Canalis KB is a safe and robust solution

 KNX

A high degree of protection IP55 guarantees trunking protection against splashes and dust.

Canalis KB complies with sprinkler tests, guaranteering operation under vertically and horizontally sprayed water for 50 minutes.

The high degree of protection for Canalis KB means it can be installed in all types of buildings.

No toxic emission
 in case of fire

All components in the KBA range are halogen free.

In case of fire, Canalis KBA does not release smoke or toxic gases.

Very rigid

Canalis KB trunking forms a rigid beam, even at the junction between two lengths.

Its facilitates the alignment of the luminaires.

Main characteristics

Rated current 25 A or 40 A .
Rated Operational voltal 230 or 400 V .
IP 55.
IK 06.
Color White RAL9003.
Compliant with protocols DALI and KNX.

Presentation

Canalis KB is a comprehensive solution

1. Run components

- Rating: 25 or 40 A .

2 or 4 live conductors.
Basic lengths: 2 and 3 metres.

Canalis KBB
1 or 2 circuits

2. Feed units and end covers - The feed units delivred with the end covery receive the cables supplying one end of Canalis KB trunkings.

Canalis KBA

Canalis KBB

3. Fixing system and cable trays

- The fixing system ensures that Canalis KB is well secured, whatever the type of building structure.
There are also fixings to secure the luminaires to Canalis KB.
- A metal duct is available for running other circuits such as emergency lighting, low-current circuits, etc.

4. Connectors

- The 10 and 16 A connector pre-wired or not, offer phase selection or fixed polarities, and can be used on KBA and KBB ranges.

Straight lenghts

Straight lengths constitute the basic structure of the line and are made up of:
1 an all-in-one carrier casing, crimp closed, forming a rigid beam made of sheet steel, in RAL 9003 white lacquered sheet steel, hot galvanised on both sides.
This casing also acts as the protective earth conductor (PE),
2 a ribbon cable with two or four copper conductors,
3 one, two, three or five connector outlets,
4 an electrical jointing unit ensuring automatic and simultaneous connection of all live conductors,
5 a mechanical joining device made of galvanised sheet steel that makes the connection of two lengths rigid and resistant to bending.
The degree of protection is IP55 (without accessories).
The busbar trunking is non-flame-propagating as per the recommendations of standard IEC 60332-3. All the insulating and plastic materials are halogen-free and have enhanced fire-withstand capabilities (incandescent wire test as per standard IEC 60695-2).

- $960^{\circ} \mathrm{C}$ for components in contact with live parts.
- $650^{\circ} \mathrm{C}$ for other components.

Multi-circuit possibilities
The many possibilities offered by KBB trunking means specialised circuits can be created, e.g. for emergency lighting, presence detection, dimming.

For attachment of the busbar trunking to the structure of the building, either directly or via a threaded rod, chain or steel cable (the latter two with a pigtail hook or a closed ring). - Designed to relieve the installer of the weight of the busbar trunking once placed in a bracket.

- Automatic locking of moving part on closing (unlocking requires a tool).
- The maximum recommended fixing distance is:

3 metres.
1 Universal fixing bracket KBA40ZFU or KBB40ZFU For suspension on a threaded rod, diameter 6 mm .
For horizontal mounting on a beam, pendant, wall, etc.
2 Cable suspension system KBA40ZFSU or KBB40ZFSU
Cuts mounting time of the fixing system to one-third of that required for threaded rods.
Enables height adjustment of the trunking.
3 Adjustable, threaded-rod suspension system KBB40ZFPU
For suspension on a threaded rod, diameter 6 mm . A spring system locks the threaded rod in position for fast adjustment of the trunking.
4 Pigtail hook KBB40ZFC
For suspension by a chain.
5 Closed ring KBB40ZFC6
Mounted on the luminaire for suspension.
6 Raiser KBB40ZFMP
For mounting on wall or false floor.
7 Open hook KBB40ZFC5
To suspend the luminaire.
Luminaires
Attached to the luminaires before mounting, these fixings ensure fast and direct fixing to Canalis KB.

- Same catalogue numbers as the busbar fixings.
- Automatic locking of moving part on closing.

■ Use with an open hook and/or closed ring enables suspension.
8 Double universal fixing bracket KBA40ZFU2W or KBB40ZFU2W for heavy luminaires.

Cable support

For running adjacent circuits such as emergency lighting, low-current circuits, etc.
1 Cable brackets KBB40ZFGU
Clips to trunking for fast mounting. It is possible to run three cables (diameter 5 to 16 mm) and two IRL tubes.

2 Cable duct KFB25CD253
The cable duct fits on support KBB40ZFG1, which in turn fits onto a threaded rod suspension system KBA40ZFPU. An intermediate support is placed between the duct and the trunking if the distance between the suspension points exceeds 2 metres. Each duct is equipped with a connection device.

Options

Empty length (no electric circuit)
Used to adjust line length to building dimensions (e.g. to reach a fixing point).
Two metres long, can be cut on site.
KBA40EDA20W or KBB40EDA20W.

Connectors

Connectors 10 A direct pre-wired - 0.8 m
Pre-wired with SO5Z1Z1-F $3 \times 1.5 \mathrm{~mm}^{2}$ cable, 0.80 m long, pre-stripped on luminaire end:

- 10A rating
- fixed L + N + PE polarity
- the various models make it possible to balance 3-phase distribution systems.

The colour of the lock and the casing enable remote identification of the polarity.
1 Live-conductor contacts.
2 Protective-conductor contact.
3 Lock.

> Connectors (general)
> For instantaneous connection of luminaires to busbar trunking:
> - they can be handled while energised and under live conditions
> - the contacts for live conductors are of the clamp type
> - PE connection occurs before that of the phases and neutral
> - phase-selection system (clip-in contact studs) for balancing of 3-phase distribution systems
> - selection is visible via a transparent window
> - a coloured lock holds them in the connector outlet
> - all the insulating and plastic materials have a high fire-retardant capacity:
> \square incandescent-wire test in compliance with IEC 60695-2:
> - $960^{\circ} \mathrm{C}$ for components in contact with live parts,
> - $650^{\circ} \mathrm{C}$ for other components.

> All the insulators and plastic components are halogen free.

Connectors 10 A direct with phase selection

- The two contact studs are movable and can be used to set up both L + N + PE and 2L + PE distribution.
- Supplied complete with a cable gland.

Pre-wired

Type DCC

- Pre-wired with SO5Z1Z1-F $3 \times 1.5 \mathrm{~mm} 2$ cable, 1 m long, pre-stripped on luminaire end - If prefabricated leads are used, the line must have 16 A protection (see possibilities of dispensing with protection in the simplified design guide for lighting distribution, in the section on protection against overloads).

To be wired

Type DCB

- To be wired for connection of luminaires using a cable of specific type, size or length. - Fast connection for 3×0.75 to 1.5 mm 2 cable. If prefabricated leads are used, the line must have 16 A protection (see possibilities of dispensing with protection in the simplified design guide for lighting distribution, in the section on protection against overloads).

KBC16DCB••

KBC16DCF••

KBC16DCP••

KBC16ZC1

KBC16ZB1

Connectors 16 A with phase selection not wired

- Phase selection: $\mathrm{L}+\mathrm{N}$ or 2 L (mobile studs)
- Terminal connections for 0.75 to 1.5 mm 2 cable.
- Supplied with a cable bushing.
- Installation is facilitated by the side guides.
- Exist with $3 L+N$ or with fixed polarity as well.

Without protection
Type DCB
For direct connection of luminaires using a specific cable.
Can be equipped with the accessory to connect the remote-control circuit to the luminaires.

For protection with fuses (not provided)
Type DCF
For cylindrical fuse NF 8.5×31.5 (not supplied), 16 A gG maximum, breaking capacity 20 kA .

Type DCP
With cylindrical fuse NF 8.5×31.5 (supplied), 16 A gG maximum, breaking capacity 20 kA .
Supplied with power socket NF or VDE standard - 2P+T 10/16 A, 250 V.

Interlocking device

For all 10 A and 16 A connectors.
A set of three interlocking devices in different colours can be used to mechanically lock out connector when two or three different distribution networks are present (load, voltage, frequency, etc.). KBC16ZL10, KBC16ZL20 or KBC16ZL30.

- An interlocking device is made up of a handle and an interlocking device on each end. It can be used for an outlet and the corresponding connector.
- Interlocking devices are supplied with labels that can be placed on the connector and the trunking for identification.

Accessories

Rear support bracket KBC16ZC1

Additional fixing of KBC16 connector using the rear support bracket may be necessary, notably if there is a risk of accidental pulling on the cable or if the cable is very heavy (great length).

Outlet blanking plate KBC16ZB1

Spare part intended to restore IP55 on an outlet following removal of the connector (if original blanking plate is lost).

Description

Control system

3 possible solutions

For DALI protocol only

For combined DALI and KNX protocols

KBC10DCS101

Straight lengths
Two of the conductors are dedicated to the communication bus.

Connectors
The connector is common for both power and communication.
Connectors can be equipped with two cables. One to feed the power and one green for the control of the device.
A lock system avoid connection to the non proper line.
Bus characteristics

DALI	Unit	Values
Cross-section and type of conductor	mm^{2}	2×2.5 copper
Rated insulation voltage (Ui) (between power circuit and bus)	V	690
Rated operational voltage (Ue) (max. U between bus + and - poles)	V	230 to 400
Maximum operational current (le)	A	25
Linear resistance	$\mathrm{m} \Omega / \mathrm{m}$	52
Linear capacitance	pF / m	30
Maximum recommended length	m	300

Straight lengths
A internal sheilded decated bus is use to connect KNX devices. This bus is a KNX certified bus.
2 conductors are dedictated to the communication DALI. Only proper connectors can be installed.

Connectors
Connectors are common for both power and communication. Alow with the same connector to feed power to luminaires and A lock system avoid to connect it on a non proper line.

Bus characteristics
See DALI and KNX bus characteristics.

For KNX protocol alone or other protocols needing a shielded bus

Straight lengths
A internal shielded decated bus is use to connect KNX devices. This bus is a KNX certified bus.

Connectors
Connectors are common for both power and communication. Alow with the same connector to feed power to luminaires and a lock system avoid to connect it on a non proper line.
The colour of the lock and the casing enable remote identification of the polarity.
1 Live-conductor contacts.
2 Bus conductor contacts.
3 Bus cable.
4 Lock.
Bus characteristics

KNX	Unit	Values
Cross-section and type of conductor	mm^{2}	2×0.5 copper
Rated insulation voltage (Ui) (between power circuit and bus)	V	500
Rated operational voltage (Ue) (max. U between bus + and - poles)	V	32
Maximum operational current (le)	A	3.8
Linear resistance	$\mathrm{m} \Omega / \mathrm{m}$	75
Linear capacitance	pF / m	100
Maximum KNX recommended length	m	300

16 A for circuit breaker and fuses
Connection of the remote-control receiver using a KBC16DCB, KBC16DCF or KBC16DCP connector equipped with a KBC16ZT1 contact-block accessory delivered with cable gland.
Feed units equipped with an additional bus terminal block. Connectors are equipped with two cables. One for the devices power and for the control the device.

KBC16DC•22

KBC16DCP•

The offer is organised in 3 chapters

The essentials $\begin{aligned} & \text { Only } 4 \text { references to simplify and } \\ & \text { faster your choice }\end{aligned}$ faster your choice

Classic offer

For usual lighting or power distribution without communication bus

Control system
For lighting or any other devices controlled with DALI or KNX protocols

Catalogue numbers

Classic offer
 Line components

					40 A		40 A
ED - Straight lengths							
- $=$	Length (m)	Distance between outlets (m)	Number of outlets	Catalogue numbers Order in multiples of 6			
KBA••ED•••••W	3	0.5	5	KBA25ED2305W	KBA40ED2305W	KBA25ED4305W	KBA40ED4305W
		1	3	KBA25ED2303W	KBA40ED2303W	KBA25ED4303W	KBA40ED4303W
		1.5	2	KBA25ED2302W	-	KBA25ED4302W	-
$=$		-	0	KBA25ED2300W	KBA40ED2300W	KBA25ED4300W	KBA40ED4300W
	2	0.5	3	KBA40ED2203W	KBA40ED2203W	KBA40ED4203W	KBA40ED4203W
		1	2	-	-	KBA25ED4202W	

$A B$ - Feed units

$\begin{array}{ll}\text { KBA40ABD4W } & \text { Central }\end{array}$

KBA40ABT4W

DF - Flexibles

www.se.com

Catalogue numbers

Classic offer

Line components - Reinforced single circuit

Catalogue numbers

Classic offer Connectors

Connectors for 2 mono circuits

Control system

Line components for DALI protocol

Control system

Line components for combined DALI and KNX protocols

\triangle Connector mounting side				25 or 40 A	25 or 40 A
DCS - 16 A - Connectors direct pre-wired - 1 m					
	Polarity	Scheme	Color	Catalogue numbers Order in multiples of 10	
KBC16DCS101T	$\begin{aligned} & \mathrm{L} 1+\mathrm{N} \\ & \mathrm{DALI}+/- \\ & \mathrm{KNX}+/- \end{aligned}$	$\begin{aligned} & \overline{\mathrm{PE}}=--0 \\ & \overline{\mathrm{LD}}=- \\ & \bar{N}=\quad \end{aligned}$	Green	-	KBC16DCS101T
KBC16DCS201T	L2 + N DALI +/KNX +/-		Yellow	-	KBC16DCS201T
KBC16DCS301T	L3 + N DALI +/KNX +/-		Brown	-	KBC16DCS301T
DCB - 16 A - Connectors direct not wired - With phase selection					
KBC16DCB21	$\begin{aligned} & \mathrm{L} 1+\mathrm{N} \text { or } \\ & \mathrm{L} 2+\mathrm{N} \text { or } \\ & \mathrm{L} 3+\mathrm{N} \\ & \mathrm{DALI}+/- \\ & \mathrm{KNX}+/- \end{aligned}$				$\begin{aligned} & \text { KBC16DCB21 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$
	$3 \mathrm{~L}+\mathrm{N}$ DALI +/KNX +/-			$\begin{aligned} & \text { KBC16DCB40 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$	$\begin{aligned} & \text { KBC16DCB40 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$
KBC16DCB40 KBC16DCB22	$\begin{aligned} & \mathrm{L} 1+\mathrm{L} 2 \text { or } \\ & \mathrm{L} 1+\mathrm{L} 3 \text { or } \\ & \mathrm{L} 2+\mathrm{L} 3 \\ & \mathrm{DLI}+/- \\ & \mathrm{KNX}+/- \end{aligned}$			-	KBC16DCB22 KBC16ZT1
DCF - 16 A - Connectors for fuses not wired - With phase selection					
	Polarity	Scheme	Protection	Catalogue numbers Order in multiples of 10	
KBC16DCF21	$\begin{aligned} & \mathrm{L} 1+\mathrm{N} \text { or } \\ & \mathrm{L} 2+\mathrm{N} \text { or } \\ & \mathrm{L} 3+\mathrm{N} \\ & \text { DALI +/- } \\ & \text { KNX +/- } \end{aligned}$		Cylindrical fuse NF $8.5 \times 31.5 \mathrm{~mm}$	-	KBC16DCF21 KBC16ZT1
KBC16ZT1 KBC16DCF40	$\begin{aligned} & \text { 3L+N } \\ & \text { DALI +/- } \\ & \text { KNX +/- } \end{aligned}$		Cylindrical fuse NF $8.5 \times 31.5 \mathrm{~mm}$	$\begin{aligned} & \text { KBC16DCF40 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$	$\begin{aligned} & \text { KBC16DCF40 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$
KBC16DCF22	$\begin{aligned} & \mathrm{L} 1+\mathrm{L} 2 \text { or } \\ & \mathrm{L} 1+\mathrm{L} 3 \text { or } \\ & \mathrm{L} 2+\mathrm{L} 3 \\ & \mathrm{DALI}+/- \\ & \mathrm{KNX}+/- \end{aligned}$		Cylindrical fuse NF $8.5 \times 31.5 \mathrm{~mm}$	-	$\begin{aligned} & \text { KBC16DCF22 } \\ & + \\ & \text { KBC16ZT1 } \end{aligned}$
DCP - 16 A - Connectors for fuses with power sockets not wired - With phase selection					
		Scheme 	Protection	Catalogue numbers Order in multiples of 1	
			$\begin{aligned} & \text { NF 2P+T 10/16 A, } \\ & 250 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & \text { KBC16DCP1 } \\ & + \\ & \mathbf{K B C 1 6 Z T 1 ~} \end{aligned}$
			$\begin{aligned} & \text { VDE 2P+T 10/16 A, } \\ & 250 \mathrm{~V} \end{aligned}$	-	KBC16DCP2 KBC16ZT1

Catalogue numbers

Control system

Line components for KNX alone or others protocols

www.se.com

Control system
 Connectors for KNX alone or others protocols

Catalogue numbers

All versions

Fixing brackets

All versions
Accessories

Dimensions

Components and fixations
 Canalis KBA

DF - Flexibles

ZF - Fixing brackets

Components and fixations Canalis KBB

ED－Straight lengths

KBB40EDA20W

0		里	里	
100	500		1000	500
			2000	

KBB••ED••202W，KBB••ED••202TW
$\xrightarrow[41]{46}$

KBB••ED•300W

KBB••ED•303W，KBB••ED•303TW

KBB••ED••305W，KBB・ャEDゃゃ305TW
AB－Feed units

KBB40DF405W，KBB40DF420W，KBB40DF4405W，KBB40DF4420W，KBB40DF405TW，KBB40DF420TW，KBB40DF4405TW，KBB40DF4420TW
ZF－Fixing brackets

Dimensions

Components and fixations

Canalis KBC

DC - Connectors

KBC10DCS101, KBC10DCS201, KBC10DCS301
KBC10DCC211, KBC10DCB20, KBC10DCB40
KBC10DCS101T, KBC10DCS201T, KBC10DCS301T

KBC16DCB21, KBC16DCB22, KBC16DCB216, KBC16DCB226, KBC16DCF21, KBC16DCF22, KBC16DCF216, KBC16DCF226

Design guide

Characteristics

Canalis KBA

Run component characteristics

Rating of trunking (A)						25	40	
General characteristics								
Compliance with standards						IEC/EN 61439-6	IEC/EN 61439-6	
Degree of protection				IP		55	55	
Mechanical impacts				IK		06	06	
Color						RAL 9003 white	RAL 9003 white	
Polarity							${ }^{\text {PE }}{ }^{\text {Le }}$	
Number of live conductors						2 or 4	2 or 4	
Rated current at an ambient temperature of $35^{\circ} \mathrm{C}$				Inc	A	25	40	
Rated insulation voltage				Ui	V	690	690	
Rated operational voltage				Ue	V	230... 400	230... 400	
Rated impulse voltage				Uimp	kV	4	4	
Rated frequency				f	Hz	50/60	50/60	
Conductor characteristics								
Phase conductors								
Mean resistance at an ambient temperature of $20^{\circ} \mathrm{C}$				R20	$\mathrm{m} \Omega / \mathrm{m}$	6.80	2.83	
Mean resistance at lnc and $35^{\circ} \mathrm{C}$				R1	$\mathrm{m} \Omega / \mathrm{m}$	8.30	3.46	
Mean reactance at Inc, $35^{\circ} \mathrm{C}$ and 50 Hz				X1	$\mathrm{m} \Omega / \mathrm{m}$	0.02	0.02	
Mean impedance at Inc, $35^{\circ} \mathrm{C}$ and 50 Hz				Z_{1}	$\mathrm{m} \Omega / \mathrm{m}$	8.33	3.46	
Protective conductor (PE)								
Mean resistance at an ambient temperature of $20^{\circ} \mathrm{C}$					$\mathrm{m} \Omega / \mathrm{m}$	1.57	1.57	
Fault loop characteristics								
Symmetrical components method	Ph / N at $20^{\circ} \mathrm{C}$	Mean resistance Mean reactance		Roph/N	$\mathrm{m} \Omega / \mathrm{m}$	27.21	19.40	
				$\mathrm{X}_{0 \text { phiN }}$	$\mathrm{m} \Omega / \mathrm{m}$	0.85	0.38	
		Mean impedance		Zoph/N	$\mathrm{m} \Omega / \mathrm{m}$	27.22	19.41	
	Ph/PE at $20^{\circ} \mathrm{C}$	Mean resistance		Roph/PE	$\mathrm{m} \Omega / \mathrm{m}$	19.40	13.83	
		Mean reactance Mean impedance		X $\mathrm{O}_{\text {ph/PE }}$	$\mathrm{m} \Omega / \mathrm{m}$	0.38	0.73	
				Z0 ph/PE	$\mathrm{m} \Omega / \mathrm{m}$	19.41	13.85	
Impedance method	$\text { At } 20^{\circ} \mathrm{C}$	Mean resistance	Ph/Ph	Rbo ph/ph	$\mathrm{m} \Omega / \mathrm{m}$	13.61	5.68	
			Ph/N	Rbo ph/N	$\mathrm{m} \Omega / \mathrm{m}$	13.61	5.68	
			Ph/PE	Rbo ph/PE	$\mathrm{m} \Omega / \mathrm{m}$	11.01	7.66	
	For Inc at $35^{\circ} \mathrm{C}$	Mean resistance	Ph/Ph	Rb1 ph/ph	$\mathrm{m} \Omega / \mathrm{m}$	16.60	6.91	
			Ph / N	Rb1 ph/N	$\mathrm{m} \Omega / \mathrm{m}$	16.60	6.91	
			Ph/PE	Rb1 ph/PE	$\mathrm{m} \Omega / \mathrm{m}$	12.50	8.70	
	$\begin{aligned} & \text { For } \operatorname{lnc} \\ & \text { at } 35^{\circ} \mathrm{C} \text { and } \\ & 50 \mathrm{~Hz} \end{aligned}$	Mean reactance	Ph/Ph	Xb ph/ph	$\mathrm{m} \Omega / \mathrm{m}$	0.04	0.90	
			Ph / N	$\mathrm{Xb}_{\mathrm{b} \text { ph/ }}$	$\mathrm{m} \Omega / \mathrm{m}$	$\begin{array}{\|l\|} \hline 0.04 \\ \hline 0.035 \\ \hline \end{array}$	0.90	
			Ph/PE	Xb ph/PE	$\mathrm{m} \Omega / \mathrm{m}$		0.035	

Other characteristics

Short-circuit withstand capacity				
Rated peak withstand current	Ipk	kA	4.40	9.60
Maximum thermal limit ${ }^{12}$ t		$A^{2} \mathrm{~s}$	195×10^{3}	900×10^{3}
Rated short-time withstand current ($\mathrm{t}=1 \mathrm{~s}$)	Iow	kA	0.44	0.94
Voltage drop				
	Composite voltage drop (hot state) expressed in $\mathrm{V} / 100 \mathrm{~m} / \mathrm{A}(50 \mathrm{~Hz}$) with the load uniformly distributed over the run. If the load is concentrated at one end of the run, the voltage drop is twice the value indicated in the table.			
For a power factor of	1	V/100 m/A	0.72	0.30
	0.9	V/100 m/A	0.67	0.28
	0.8	V/100 m/A	0.61	0.25
	0.7	V/100 m/A	0.54	0.22

This table is given for three-phases network. The single phase voltage drop is obtained by dividing the three-phase voltage drop indicated above by 0.866 . For lower neutral / neutral voltage phase, we divide the voltage drop above by 1.732.
Radiated magnetic field

Design guide

Characteristics

Connector characteristics

General characteristics
Compliance with standards

Degree of protection	IP	
Rated current at an ambient temperature of $35^{\circ} \mathrm{C}$	Inc	A
Rated insulation voltage	Ui_{i}	V
Rated operational voltage	Ue_{e}	V

IEC/EN 61439-6

Rated current at an ambient temperature of $35^{\circ} \mathrm{C}$
Rated insulation voltage
Rated operational voltage

Bus characteristics			
		DALI	KNX
Cross-section and type of conductor	mm^{2}	2×2.5 copper	2×0.5 copper
Rated insulation voltage (Ui) (between power circuit and bus)	V	690	500
Rated operational voltage (Ue) (max. U between bus + and - poles)	V	230 to 400	32
Maximum operational current (le)	A	25	3.8
Linear resistance	$\mathrm{m} \Omega / \mathrm{m}$	52	75
Linear capacitance	pF / m	30	100
Maximum recommended length	m	300	300

Voltage drop in the Canalis busbar trunking
The table below indicates the three-phase voltage drop, in volts, in the Canalis busbar trunking (electrical power uniformly distributed). The single-phase voltage drop is obtained by dividing the three-phase voltage drop indicated below by 0.866
If the exact operational current (Ib) and length are not available, select the next highest.

Type of Canalis	Operational																
	current (A)	6	8	10	12	15	20	25	30	35	40	45	50	60	70	80	100
25AKBA	10	0.4	0.5	0.6	0.7	0.9	1.2	1.5	1.8	2.1	2.4	2.8	3.1	3.7	4.3	4.9	6.1
25 AKBB	16	0.6	0.8	1	1.2	1.5	2	2.4	2.9	3.4	3.9	4.4	4.9	5.9	6.8	7.8	9.8
cos 0.8	20	0.7	1	1.3	1.5	1.8	2.4	3.1	3.7	4.3	4.9	5.5	6.1	7.3	8.6	9.8	12.2
	25	0.9	1.2	1.5	1.8	2.3	3.1	3.8	4.6	5.3	6.1	6.9	7.6	9.2	10.7	12.2	15.3
25AKBA	10	0.4	0.5	0.7	0.8	1	1.3	1.7	2	2.3	2.7	3	3.4	4	4.7	5.4	6.7
25 AKBB	16	0.6	0.9	1.1	1.3	1.6	2.1	2.7	3.2	3.8	4.3	4.8	5.4	6.4	7.5	8.6	10.7
$\cos 0.9$	20	0.8	1.1	1.3	1.6	2	2.7	3.4	4	4.7	5.4	6	6.7	8	9.4	10.7	13.4
	25	1	1.3	1.7	2	2.5	3.4	4.2	5	5.9	6.7	7.5	8.4	10.1	11.7	13.4	16.8
25AKBA	10	0.4	0.6	0.7	0.9	1.1	1.4	1.8	2.2	2.5	2.9	3.2	3.6	4.3	5	5.8	7.2
25AKBB	16	0.7	0.9	1.2	1.4	1.7	2.3	2.9	3.5	4	4.6	5.2	5.8	6.9	8.1	9.2	11.5
cos 1	20	0.9	1.2	1.4	1.7	2.2	2.9	3.6	4.3	5	5.8	6.5	7.2	8.6	10.1	11.5	14.4
	25	1.1	1.4	1.8	2.2	2.7	3.6	5.4	5.4	6.3	7.2	8.1	9	41.8	12.6	14.4	18
40 AKBA	16	0.2	0.3	0.4	0.5	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.4	2.8	3.2	4
40 AKBB	20	0.3	0.4	0.5	0.6	0.7	1	1.2	1.5	1.7	2	2.2	2.5	3	3.5	4	5
$\cos 0.8$	25	0.4	0.5	0.6	0.7	0.9	1.2	1.6	1.9	2.2	2.5	2.8	3.1	3.7	4.4	5	6.2
	32	0.5	0.6	0.8	1	1.2	1.6	2	2.4	2.8	3.2	3.6	4	4.8	5.6	6.4	8
	40	0.6	0.8	1	1.2	1.5	2	2.5	3	3.5	4	4.5	5	6	7	8	10
40 AKBA	16	0.3	0.4	0.4	0.5	0.7	0.9	1.1	1.3	1.6	1.8	2	2.2	2.7	3.1	3.6	4.5
40 AKBB	20	0.3	0.4	0.6	0.7	0.8	1.1	1.4	1.7	2	2.2	2.5	2.8	3.4	3.9	4.5	5.6
cos 0.9	25	0.4	0.6	0.7	0.8	1.1	1.4	1.8	2.1	2.5	2.8	3.2	3.5	4.2	4.9	5.6	7
	32	0.5	0.7	0.9	1.1	1.3	1.8	2.2	2.7	3.1	3.6	4	4.5	5.4	6.3	7.2	9
	40	0.7	0.9	1.1	1.3	1.7	2.2	2.8	3.4	3.9	4.5	5	5.6	6.7	7.8	9	11.2
40 AKBA	16	0.3	0.4	0.5	0.6	0.7	1	1.2	1.4	1.7	1.9	2.2	2.4	2.9	3.4	3.8	4.8
40 AKBB	20	0.4	0.5	0.6	0.7	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.6	4.2	4.8	6
$\cos 1$	25	0.5	0.6	0.8	0.9	1.1	1.5	1.9	2.3	2.6	3	3.4	3.8	4.5	5.3	6	7.5
	32	0.6	0.8	1	1.2	1.4	1.9	2.4	2.9	3.4	3.8	4.3	3.8	5.8	6.7	7.7	9.6
	40	0.7	1	1.2	1.4	1.8	2.4	3	3.6	4.2	4.8	5.4	6	7.2	. 4	9.6	12

Operational voltage (V)	Voltage drop in volts for a given \%															
	0.3	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6	7	8	9	10
230	0.7	1.2	2.3	3.5	4.6	5.8	6.9	8.1	9.2	10	12	14	16	18	21	23
400	1.2	2	4	6	8	10	12	14	16	18	20	24	28	32	36	40

Procedure to select Canalis KB

$\mathrm{Ph}+\mathrm{N}$ distribution

$3 P h+N$ balanced distribution

1. Identify the external influences

The ambient temperature, presence of dust, condensation of water, etc. contribute to the definition of the degree of protection required in the area where the lines will be installed.
Canalis KB has a degree of protection IP55 and is sprinkler resistant. It has a mechanical resistance IK06. As per the requirement of the IEC 61439-6 the operating ratings are given for an ambient temperature of $35^{\circ} \mathrm{C}$.
2. Identify the determinant data
$\mathrm{L}=$ Length of the line (m)
$D=$ Distance between each lightings (m)
$P=$ Power of lightings (W)
$\mathrm{F}=$ Power factor of lightings $(\operatorname{Cos} \varphi)$
$\mathrm{W}=$ Weight of lighting (kg)
$\mathrm{N}=$ Number of lightings per line
$\mathrm{V}=\mathrm{Voltage}$ (Volt)
3. Determine the maximun current carrier by the busbartrunking in operation
$N=$ Number of lightings per line $=(L / D)-1$
Max current $=\mathrm{NxP} / \mathrm{F} / \mathrm{V}$
Example:
$\mathrm{L}=95 \mathrm{~m}$
D $=3 \mathrm{~m}$
$\mathrm{P}=80 \mathrm{~W}$
$\mathrm{F}=0.8$
$\mathrm{V}=230 \mathrm{Volt}(\mathrm{L}+\mathrm{N})$
$N=(95 / 3)-1=31-1=30$
Max current $=30 \times 80 / 0.8 / 230=13.04 \mathrm{~A}$
The just above available rating is 25 A .
4. Check if the voltage drop is below 3 \%

Use data pages 44 and 45 to determine the charactaristics of Canalis KBA 25
A and Canalis KBB 25 A.
Canalis KBA 25 A:
Voltage drop per $100 \mathrm{~m} / \mathrm{A}$ for a power factor $0.8=0.61$
Voltage for $95 \mathrm{~m}: 0.61 \times 13.04 \times 0.95=7.55 \mathrm{~V}$
Voltage drop in \%: 7.55 / $230=3.2 \%$
The voltage drop is too high, the line length need to be reduced or a superior rating need to be selected.

Examples of calculation are available page 46.
5. Select the adapted overload and short-circuit protection See page 48 to page 51 .
6. Selected the most adapted product to support the lighting weight
See page 52.

Select the overload protection

Precalculating XLPE or PVC cables + Canalis
Drawn from the Ecodial low-voltage installation-calculation software, the information provided here assists in defining busbar trunking (cables and Canalis) and their protection in compliance with installation standards and calculation guide.

Protection of the main busbar trunking (cable + Canalis)

- The tables below may be used to determine:
\square the rated current (In) or the setting current (Ir) of the overload-protection devices,
\square the rated current (Inc) of Canalis,
\square the thermal minimum cross-section of cables.
- These three characteristics are defined for the following installation conditions:
\square maximum ambient temperature $30^{\circ} \mathrm{C}$,
\square cables placed in cable trays. Layout as a single horizontal layer or in groups of 2 or 3 cores.

Connector protection

Canalis connectors must have overload protection. The connector is created using a fused connector unit to protect the cable (C_{3}) and the device against shortcircuits.
This protection offers good discrimination during operation (continuity of service, trouble-shooting, etc.).
For lighting, it may be useful to take advantage of the possibilities for dispensing with or remotely locating the protection, offered by standard IEC 60364-4-43 (§ 433 and 434) and summarised in the texts below, drawn from UTE C 15-107.
The connector is created using a pre-wired connector unit.

Supply to devices not subject to overloads

Exemption possibilities:

- the C_{3} cable (connection to the device) does not need to be protected against overloads (NF C 15-100, 473.1.2b) or short-circuits (NF C 15-100, 473.2.2.1) because the cable:
\square is not subject to overload currents,
\square does not have connectors or power sockets,
\square is less than or equal to three metres,
\square is designed to reduce to a minimum the risk of short-circuits,
\square is not located near any flammable material.

Example: luminaires, convectors, etc.

Supply to devices with built-in overload protection

Exemption possibilities:

- the device P_{2} protecting C_{3} cable against overloads is not positioned at the head (NF C 15-100, 473.1.1.2 b) of C_{3} because the latter:
\square does not have connectors or power sockets,
\square is less than or equal to three metres,
\square is designed to reduce to a minimum the risk of short-circuits,
\square is not located near any flammable material.

NB: $P_{1}-P_{2}$ are short-circuit protection devices.

Select the overload protection

Cables spaced in cable trays.

Cables touching in cable trays.
Precalculating XLPE or PVC cables + Canalis
The tables below determine, as a function of the type of overload protection (circuit breaker or fuse):

- the type of busbar trunking required
- the size of supply cables (in mm^{2}) as a function of the installation method, for all conductor configurations.

Protection by iC60 (curve C) modular circuit breaker								
Type of busbar trunking	Operat. current Circuitbreaker rating (A)	XLPE cable			PVC cable			
		Spaced	Touching (number of cables)		Spaced	Touching (number of cables)		
			2 to 5	6 or more		2	3	4 or more
$\begin{aligned} & 25 \text { A KBA } \\ & 25 \text { A KBB } \end{aligned}$	10	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	16	1.5	1.5	1.5	1.5	2.5	2.5	2.5
	20	1.5	2.5	2.5	2.5	2.5	4	4
$\begin{aligned} & 25 \mathrm{AKBA} \\ & 25 \mathrm{AKBB} \end{aligned}$	25	2.5	4	4	2.5	4	4	6
			$2.5{ }^{(1)}$	$2.5{ }^{(1)}$				
40 AKBA 40 AKBB	32	4	6	6	4	6	6	10
		$2.5{ }^{(1)}$	$4^{(1)}$	$4{ }^{(1)}$				
	40	4	6	10	6	10	10	10
		$6{ }^{(1)}$						

$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline \text { Protection by gG fuses } \\ \begin{array}{l}\text { Type of busbar } \\ \text { trunking }\end{array} & \begin{array}{l}\text { Rated } \\ \text { current } \\ \text { (A) }\end{array} & & \text { XLPE cable }\end{array}\right)$
(1) Permissible cable cross-sections for single-phase distribution.

Select the short-circuit protection

Determining the prospective short-circuit current at the origin of the Canalis
There are two possible situations:

- the busbar trunking for lighting is supplied by a secondary switchboard.

Isc(a): rms short-circuit current across the transformer terminals.
Rms Isc (a) values across the transformer terminals ($\mathrm{U}=400 \mathrm{~V}$)

| Power (kVA) | 50 | 100 | 150 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{I s c}(\mathbf{a})(k A)$ | 1.8 | 3.6 | 5.7 | 7.2 | 8.9 | 11.2 | 14.2 | 17.6 | 22.1 | 24.8 | 27.8 | 31.5 | 36.7 |

Isc(b): downstream short-circuit current, less than Isc(a), limited by cable impedance.
Isc(c): short-circuit current across circuit-breaker terminals, less than Isc(b), limited by circuit breaker.
Isc(d): prospective short-circuit current, limited by cable impedance (case 1) or by impedance of cable + Canalis (case 2).
Isc(e): prospective short-circuit current, at head of Canalis by the circuit breaker (d) and the impedance of the Canalis supply cable.

Drawn from the Ecodial low-voltage installation-calculation software, produced by Schneider Electric for fast and precise evaluation of prospective short-circuit currents at different points in the circuit.
Please consult your regional sales office.

Canalis and protection coordination
Drawn from tests specified in standards (used in our guides and software), the table below determines the type of circuit breaker or fuse required for a particular type of busbar trunking depending on the prospective short-circuit current at the head of the Canalis trunking.

Type of busbar trunking	Circuit-breaker protection Isc (d) (Prospective Isc)			25 kA	50 kA	Fuse protectio Prospective Isc 50 kA
	10 kA	15 kA	20 kA			
$25 \mathrm{AKBA}, 25 \mathrm{AKBB}$	iC60N25	iC60H25	iC60L25	iC60L25	NC100LH25	20 AgG
$40 \mathrm{AKBA}, 40 \mathrm{AKBB}$	iC60N40	iC60H40	iC60L40	iC60L40	NC100LH40	32 AgG
Characteristics of Canalis busbar trunking						
Type of busbar trunking	Short-circuit withstand Rated peak short-circuit current (kA)			Permissible thermal stress for 0.1$s \leqslant t \leqslant 3 s$		
25 AKBA	4.4			19.5×10^{4}		
40 AKBA	9.6			90×10^{4}		
25AKBB	4.4					
40 AKBB	9.6			90×10^{4}		

Select the short-circuit protection

The selection guides below can be used to determine the circuit breaker required to fully protect the trunking depending on the prospective short-circuit current of the installation.

Example: in an installation with a prospective Isc of 15 kA , the circuit breaker required to protect 25 A KBB trunking is a iC60H (the rating depends on the rated current of the circuit).

In bold, the most appropriate device to the rating of the busbar trunking
Selection guide for 230 / 240 V

Isc max (kA rms) KBA25	10 kA	15 kA	20 kA	25 kA	
Circuit breaker	iC60N10/.../25 iC60N10/.../25 NG125N10/.../25	$\begin{array}{\|l} \text { iC60H10/.../25 } \\ \text { iC60H10/.../25 } \end{array}$		$\left\lvert\, \begin{aligned} & \text { iC60L10/.../25 } \\ & \text { iC60L10/.../25 } \end{aligned}\right.$	
Isc max (kA rms) KBB25	10 kA	15 kA	20 kA	25 kA	
Circuit breaker	iC60N10/.../25 iC60N10/.../25 NG125N10/.../25	$\begin{aligned} & \text { iC60H10/.../25 } \\ & \text { iC60H10/.../25 } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { iC60L10/.../25 } \\ & \text { iC60L10/.../25 } \end{aligned}\right.$	
Isc max (kA rms) KBA40	10 kA	15 kA	20 kA	25 kA	50 kA
Circuit breaker	$\begin{aligned} & \text { iC60N10/.../40 } \\ & \text { iC60N10/.../40 } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{iC6OH} 10 / \ldots / 40 \\ \text { iC60H10/.../40 } \end{array}$	iC60L40 iC60L40 NG125N10/.../40	$\begin{array}{\|l} \text { iC60L10/.../25 } \\ \text { iC60L10/.../25 } \end{array}$	NG125L10/../40
Isc max (kA rms) KBB40	10 kA	15 kA	20 kA	25 kA	50 kA
Circuit breaker	$\begin{aligned} & \text { iC60N10/.../40 } \\ & \text { iC60N10/.../40 } \end{aligned}$	$\begin{array}{\|l} \text { iC60H10/.../40 } \\ \text { iC60H10/.../40 } \end{array}$	iC60L40 iC60L40 NG125N10/.../40		NG125L10/../40

Selection guide for 380 / 415 V

Isc max (kA rms) KBA25	10 kA	15 kA	20 kA			
Circuit breaker	iC60N10/.../25 iC60N10/...25 NG125N10/.../25	$\begin{aligned} & \text { iC60H10/.../25 } \\ & \text { iC60H10/.../25 } \end{aligned}$	$\begin{aligned} & \text { iC60L10/.../25 } \\ & \text { iC60L10/.../25 } \end{aligned}$			
Isc max (kA rms) KBB25	10 kA	15 kA	20 kA	25 kA		
Circuit breaker	iC60N10/.../25 iC60N10/...25 NG125N10/.../25	$\begin{array}{\|l} \text { iC60H10/.../25 } \\ \text { iC60H10/.../25 } \end{array}$	$\begin{array}{\|l} \hline \text { iC60L10/.../25 } \\ \text { iC60L10/.../25 } \end{array}$	$\begin{array}{\|l} \text { iC60L10/.../25 } \\ \text { iC60L10/.../25 } \end{array}$		
Isc max (kA rms) KBA40	10 kA	15 kA	20 kA	25 kA	36 kA	
Circuit breaker	iC60N10/.../40 iC60N10/.../40		iC60L40 iC60L40 NG125N10/.../40		NG125H10/.../40	NG125L10/.../40
Isc max (kA rms) KBB40	10 kA	15 kA	20 kA	25 kA	36 kA	50 kA
Circuit breaker	$\begin{array}{\|l} \text { iC60N10/.../40 } \\ \text { iC60N10/.../40 } \end{array}$		iC60L40 iC60L40 NG125N10/.../40	$\begin{array}{\|l} \text { iC60L10/.../25 } \\ \text { iC60L10/.../25 } \end{array}$	NG125H10/.../40	NG125L10/../40

Select the right product to support lightings

The tables below indicate the possible fixing distances in metres. Based on a maximum acceptable deflection of $1 / 350$.

Lights are installed continuously

Lights weight per	Distar	ce betw	en sup	port D					
meter (kg)	2	2.5	3	3.5	4	4.5	5	5.5	6
$0<W<3.4$	KBA	KBA	KBA	KBB	KBB	KBB	KBB		
$3.4<\mathrm{W}<4.6$	KBA	KBA	KBA	KBB	KBB	KBB			
$4.6<W<6.7$	KBA	KBA	KBB	KBB	KBB				
$6.7<W<9$	KBA	KBA	KBB	KBB					
$9<W<16$	KBA	KBB	KBB						
16< W < 24	KBB	KBB							
$24<W<30$	KBB								

Lights are installed between two fixing points

Lights weight (kg)	Distance between support D (m)								
	2	2.5	3	3.5	4	4.5	5	5.5	6
$0<W<11$	KBA	KBA	KBA	KBB	KBB	KBB	KBB		

Lights weight (kg)	Distance between support D (m)								
	2	2.5	3	3.5	4	4.5	5	5.5	6
$0<W<11$	KBA	KBA	KBA	KBB	KBB	KBB	KBB	KBB	KBB

Applications

Examples of lighting management

Warehouses

In warehouses, dynamic lighting is essential: light is not necessary all the time everywhere and at the maximum level. Depending on the time slots and zones, ignition strategies, adaptation of lighting levels, lighting scenarios are possible, up to the creation of atmospheres lights that promote the vigilance of workers, especially at night. Canalis DALI or KNX control system connects all luminaries to the controller.

Factory workshops

Depending on the time slots and zones, ignition strategies, adaptation of lighting levels, lighting scenarios are possible, Canalis DALI or KNX control system connects all luminaries to the controller.

Car park

Low-level lighting in the parking bays, brighter lighting in traffic areas and full brightness in pedestrian areas.

Examples of lighting management

Open-plan office

As and when space is reorganized, it is easy to allocate a new control point for an office or put luminaires together to form a group.
The Canalis DALI or KNX control system is connected to the BMS. It is possible to create scenarios, control, and supervise lighting points and monitor electricity consumption (see diagram page 61)

Convenience store

One light in three on during delivery periods, fully lit when the shop is open to the public then lighting lowered again after closing, while the shop is being cleaned. By powering one, two, or three phases

Gymnasium
In large open spaces with a good level of external light, the lighting level can be adjusted by a dimmer control. It is also possible to divide the surface area into halves or thirds depending on how the space is used.

Examples of electrical diagrams

Examples of electrical diagrams

Centralized management function

(1)	Feed unit
2	Clamp
3	Electronic ballast
4	Connector: $K B C 16 D C S \cdots$ T type
5	Canalis: $K B B$ option T

Customer case

The manager of a convenience store wants to automate its lighting system. His store comprises two separate lighting areas: storage and sales.

In addition, the lighting must be optimized: one luminaire out of three during delivery, after closing and at cleaning time, while full lighting must be ensured during opening hours.

The layout of the shelves in the sales area could be reorganized, and the reallocation of luminaires should be performed with minimum works.

Our recommendation

The system chosen is 25 A KBA Canalis busbar trunking, and the luminaires shall be installed directly under Canalis KBA by means of KBA40ZFU fasteners.
An Acti9 IHP+ 2c clock combined with contactors ensures lighting scripting, and a manual override control of the lighting will be performed from the electrical switchboard.
The alteration of the installation during reorganization of the shelves will be simplified by the modularity and extreme ease of assembly and disassembly of the Canalis components.

Benefits

- Simplicity and speed of execution:
from design to installation, no constraints, "Canalis" adapts to all store configurations
- Attractiveness: the white-colored Canalis components ensure consistency with the colors of the luminaires.
- Cost optimization: automation of the installation reduces electricity consumption.
- Flexibility: no works required when reorganizing the store or changing the sales area.

Schneider

Solution

Diagram

- The decentralized lighting electrical distribution architecture shall be prefabricated.
- The lighting layout should possibly be reorganized without altering the electrical installation.
- A busbar trunking system should ensure simplification of office rearrangement.

Products used		Function	Quantity
Product	Reference		
Canalis KBA	25 A straight element	-	KBA25ED4303W
Canalis KBA	Fasteners	1	KBA25ABG4W
Canalis KBA	Tap-off connectors	-	KBA40ZFU
Canalis busbar trunking	MCB 2P	1	KBC10DCS101, 201, 301
Acti9 iC60N	Programmable time switch with 2 output contacts	1	Depend on rating
Acti9 IHP+ 2C	MCB 2P	3	CCT15553
Acti9 iC60N	25 A 2P contactor	3	Depend on rating
Acti9 iCT			

More about Canalis KBA

Scan or click on QR code

Life Is Un

Schneider
 \mathscr{S} Electric

Schneider Electric Industries SAS
35, rue Joseph Monier - CS 30323
F92506 Rueil-Malmaison Cedex
Document Number DEBU036EN ©2023 Schneider Electric. All Rights Reserved.
Life Is On Schneider Electric is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies

Lighting in the right place at the right time

Customer case

The manager of an office space needs to organize the lighting layout. He also wants to achieve energy savings by implementing automatic switching on/off of the lighting according to the presence of people and the level of luminosity.

In addition, each office lighting must be switched off automatically after a certain period of time in the absence of people.

As the offices are regularly rearranged, the installation must be easy to modify.

Our recommendation

The system chosen is Canalis busbar trunking incorporating a DALI architecture without programming.
Automatic lighting is provided by master and slave DALI presence detectors, and adjustment of the constant luminosity level office by office is an integral function of the master Argus detectors.
These detectors are fastened directly to the busbar trunking or are simply connected to it according to the layout of the offices. Information is transferred uniformly to all the ballasts connected to the master detector network, and an override control of the lighting is performed by push buttons connected to the (master) DALI detector.

[^1]
Schneider Electric

Benefits

- Fewer cables: a single duct incorporates the power and the DALI communication buses for the master and slave Argus detectors and DALI ballast (option T of the KBA product ranges).
- Communication between the master and slave Argus devices and override control push buttons uses the power supply conductor (power line carrier).
- The prefabricated lighting electricity distribution system allows flexibility of installation for arrangement or rearrangement of space, without altering the electrical structure.
- Modification of the installation will be easy thanks to the modularity and extreme ease of assembly and disassembly of the Canalis components.

Solution

Diagram

Specifications

- Decentralized DALI lighting system without programming must be used to control the lighting.
- The use of a busbar trunking system should insure simplification of office rearrangement.

Products used				More about Canalis KBA
Product	Function	Quantity	Reference	
Canalis busbar trunking	Tap-off connectors	1	KBC16DCB21+KBC16ZT1	
Canalis busbar trunking	Connectors for Argus master detector	1	KBC16DCB40+KBC16ZT1	
Canalis busbar trunking	Connectors for Argus slave detector	1	KBC10DCB40	+2ptron-
Canalis KBA	40 A straight element (with communication bus)	-	KBA40ED4303TW	
Canalis KBA	40 A power supply box	1	KBA40ABG4TW	Scan or click on
Canalis KBA	Fasteners	-	KBA40ZFU	QR code
Acti9 iC60N	MCB 1P+N	1	Depend on rating	
se.com			Life Is Uln	schnelder EElectric

Schneider Electric Industries SAS
35, rue Joseph Monier - CS 30323
F92506 Rueil-Malmaison Cedex
Document Number DEBU036EN ©2023 Schneider Electric. All Rights Reserved.
Life Is On Schneider Electric is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies

Control of energy consumption and easy reallocation

Customer case

The facility manager wants to automate the lighting of a large office building, while keeping the possibility of local control, energy consumption management and luminaire maintenance.

He also needs to adapt the lighting according to a timer program, the presence of people and the level of natural light based on several areas.

In addition, he wants to perform override control of lighting by area, and rapidly reallocate a work area.

Our recommendation

The choice to make is a KNX type Building
Management System, connected to a "Canalis KBB" busbar trunking architecture with 1 or 2 electrical network, DALI-compatible, performing lighting management, measuring and monitoring
KNX presence detectors located in each area maintain a constant luminosity level in the presence of employees, for optimal working conditions.
Override setting of the lighting for each area is performed by KNX switches, and fault information is sent by the ballasts via the DALI communication network.
In case of rearrangement, it is easy to allocate new monitoring points for an office or group of luminaires.

[^2]
Benefits

- Fast installation: Canalis busbar trunking, formed of prefabricated elements, can be installed rapidly and with protection. Connections require no tools and are designed to prevent any risk of incorrect connection.
- Flexibility: reallocation of the various offices is made easy.
Simplified maintenance: no preventive maintenance campaign (renewal of the lamps according to their service life).
Efficiency: simple lighting management and cost optimization scenarios.

Solution

Diagram

- The lighting management system has to be a decentralized distribution system incorporating a DALI communication bus connected to the Building Management System. It should perform control of the luminaires by area, and allow the creation of lighting scenarios according to the occupants' hours of presence and the extinguishing of unoccupied areas.
- The solution should be based on prefabricated elements with tap-offs, being completely scalable.
- The connections should be done without tools.

Products used			
Product	Function	Quantity	Reference
Canalis KBB	(with communication bus)	-	KBB40ED4303TW, KBB40ED44305TW
Canalis KBB	40 A power supply box	1	KBB40ABG4TW, KBB40ABG44TW
Canalis busbar trunking	Fasteners	-	KBA40ZFU
Canalis busbar trunking	Tap-off connectors	-	KBC16DCB21 + KBC16ZT1
KNX Push Button	Push button	1	NU553018
KNX power supply	Power supply	1	MTN684064, MTN684032
KNX DALI Gateway	Communication gateway	1	MTN6725-0001
KNX Argus	Presence detector	3	MTN630919
Acti9 iC60N	MCB 1P+N	1	Depend on rating
Acti9 iC60N	MCB 3P+N	1	Depend on rating

More about Canalis KBB

Scan or click on QR code

Life Is On

Schneider 3 Electric

Schneider Electric Industries SAS
35, rue Joseph Monier - CS 30323
F92506 Rueil-Malmaison Cedex
Document Number DEBU036EN ©2023 Schneider Electric. All Rights Reserved.
Life Is On Schneider Electric is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies

Catalogue numbers

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Catalogue numbers | Weight | | | | | |
| | (kg) | Page | | | Catalogue numbers | Weight |
| | | | Page | | | |
| | | | | | | |

Catalogue numbers

[^0]: - Download a wide selection of Cahiers Techniques from www.se.com

 | Life Is On | Schneider |
 | :--- | :--- |
 | enelectric | |

[^1]: * DALI: Digital Addressable Lighting Interface.

[^2]: * DALI: Digital Addressable Lighting Interface.

