Harmony Control Relays

Near Field Communication and conventional Control Relays
Harmony

Discover Harmony
Advanced operator interface and industrial relays

Harmony operator interface and industrial relays enhance operational efficiency and equipment availability across industrial and building applications. Harmony includes intelligent connected products and edge terminals that visualize, gather and process data, enabling informed operator decisions.

Explore our offer
- Harmony Push Buttons and Switches
- Harmony HMI Operator Terminals, IPC and EdgeBox
- Harmony Signaling Devices
- Harmony Electrical Relays
- Harmony Safety
Quick access to product information

Get technical information about your product

Each commercial reference presented in a catalog contains a hyperlink. Click on it to obtain the technical information of the product:

- Characteristics, Dimensions and drawings, Mounting and clearance, Connections and schemas, Performance curves
- Product image, Instruction sheet, User guide, Product certifications, End of life manual

Find your catalog

> With just 3 clicks, you can access the Industrial Automation and Control catalogs, in both English and French
> Consult digital automation catalogs at Digi-Cat Online

Select your training

> Find the right Training for your needs on our Global website
> Locate the training center with the selector tool, using this link
Harmony Control Relays

- General Presentation ... page 2
- Selection guide ... page 4

- 3-phase supply control relays
 - RM17
 - RM17TG, RM17TA, RM17TU, and RM17TE............................ page 12
 - RM17UB3 ... page 20
 - RM22
 - RMNF22 (NFC Multifunction) .. page 14
 - RM22TA, RM22TU, RM22TR, and RM22TG page 16
 - RM35
 - RM35TF ... page 24
 - RM35TM (Motor temperature control relays) page 24
 - RM35UB3 ... page 26

- 1-phase voltage control relays
 - RM17UAS and RM17UBE .. page 34
 - RM22UA and RM22UB .. page 40
 - RM35UA ... page 38

- 1-phase current control relays
 - RM17JC (with integrated current transformer) page 44
 - RM22JA .. page 46
 - RM35JA .. page 46

- Liquid level control relays
 - RM22LA and RM22LG .. page 52
 - RM35L .. page 56

- Pump control relays
 - RM35BA .. page 60

- Frequency control relays
 - RM35HZ ... page 62

- Speed control relays
 - RM35S ... page 64

- Temperature control relays for elevator machine rooms and 3-phase supplies
 - RM35AT ... page 68

- Accessories for Liquid level control relays
 - Electrode holders and probes ... page 70

- Product reference index .. page 72
Harmony Control Relays

Harmony Control relays monitor and detect abnormal operating conditions concerning phase, current, voltage, frequency, speed, or temperature. The relays inform users of abnormal conditions, and allow them to initiate the necessary corrective actions before serious and costly breakdowns can occur. By monitoring energy network statuses, they enable both electrical and mechanical load control.

They are suitable for a wide range of applications:
- Hoisting: construction cranes, harbor cranes
- Packaging: motor voltage, current overload
- Lifts: construction lifts, passenger lifts, escalators
- Textile: motor voltage, current overload
- Water: liquid level on water tank at water and waste water recycling plant

Depending on the product model, control relays are categorized into 8 product families:
- 3-phase control
- Current control
- Voltage control
- Frequency control
- Speed control
- Lift temperature control
- Level control
- Pump control

Harmony Control relay functions

Monitoring
Control relays monitor physical and electrical values. They measure variable signals such as phase (presence, sequence and symmetry), voltage, current, and frequency. They also control liquid levels and process operating rates.

Informing
Control device outputs provide users with electrical information. In addition, setting faults are signaled by simultaneous flashing of all LEDs.

Protecting
Integrated in the control circuits of automated systems, they enable automatic shutdown management and provide fault information, thus protecting the equipment.

Managing
When the power is switched on, the control relays are inhibited to enable correct measurement circuit setting. The outputs operate with positive logic, the contact or contacts being closed under normal conditions and opening as soon as a fault or power supply loss is detected.

Commissioning
When the diagnostic button is used, the downstream circuit can be closed immediately without sending a fault input signal to the relays. This shortens the testing time during commissioning and troubleshooting.
Harmony Control Relays
Near Field Communication and conventional Control Relays

Harmony Control relays with unique design and features

> Compact modular sizes: 17.5 mm/0.69 in., 22.5 mm/0.88 in., 35 mm/1.38 in.
> Adapted for industrial and building control panels
> True RMS measurement that minimizes the possibility of unexpected trips from highly polluted networks (except RM17TG and RM22TG)
> Diagnostic button to check the downstream circuit immediately and reduce commissioning and troubleshooting time (1)
> IP50 lead-sealable settings protection cover helps prevent dust and unintended human intervention
> Status indication by LEDs, additional dial pointer LED for easy setup in dark conditions (1), and power “On” status indication when relay is ready to perform

Optimization of power supplies

Worldwide certification:

Harmony Control relay with NFC (2) technology

Simplify product selection

> One product reference with 7 control functions: Phase loss, Phase sequence, Asymmetry, Overvoltage, Undervoltage, Overfrequency, and Underfrequency

Achieve unprecedented accuracy

> Digitized setting eliminate the need for screw driver
> Timed delay can be set by minute, second or millisecond

Fault diagnosis

> Fault status indication by LEDs
> Real time fault analysis and Historical fault data are viewable in APP

Superior security

> 4 digit password protection

(1) Available in RM35JA32MR, RM35JA32MT, and all RM22 references.
(2) Near Field Communication

Harmony Control Relays ➔ To control your machines and processes of the future
Harmony Control Relays
Near Field Communication and conventional
Control Relays

<table>
<thead>
<tr>
<th>Application</th>
<th>3-phase control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td></td>
</tr>
<tr>
<td>- Phase sequence - Phase loss</td>
<td></td>
</tr>
<tr>
<td>With/without memory selection in the app. - Phase sequence - Phase loss - Asymmetry - Undervoltage - Overvoltage - Under-frequency - Over-frequency</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>208...480 V~</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output contact rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 or 2 CO 5 A</td>
</tr>
<tr>
<td>2 CO 8 A</td>
</tr>
<tr>
<td>1 CO 5 A</td>
</tr>
<tr>
<td>2 CO 8 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-powered 208...480 V~ line to line, 120...277 V~ line to neutral</td>
</tr>
<tr>
<td>Self-powered 208...480 V~ line to line, 120...277 V~ line to neutral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (mm/in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5/0.69</td>
</tr>
<tr>
<td>22.5/0.885</td>
</tr>
<tr>
<td>22.5/0.885</td>
</tr>
<tr>
<td>22.5/0.885</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modular relay type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM17TG00 RM17TG20</td>
</tr>
<tr>
<td>RMNF22TB30 RM22TG20</td>
</tr>
<tr>
<td>RM17TT00 RM22TR31</td>
</tr>
<tr>
<td>RM22TR33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 14 16 20 16</td>
</tr>
</tbody>
</table>

More technical information on www.se.com
Harmony Control Relays
Near Field Communication and conventional Control Relays

<table>
<thead>
<tr>
<th>Application</th>
<th>1-phase voltage control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>- Undervoltage (without memory)</td>
</tr>
<tr>
<td></td>
<td>- Overvoltage or undervoltage (with/without memory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values controlled</th>
<th>220 V ~</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9…15 V</td>
</tr>
<tr>
<td></td>
<td>20…30 V</td>
</tr>
<tr>
<td></td>
<td>65…260 V</td>
</tr>
<tr>
<td></td>
<td>0.05…5 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output contact rating</th>
<th>1 CO 5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 CO 5 A</td>
</tr>
<tr>
<td></td>
<td>2 CO 5 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Self-powered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-powered</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time delay</th>
<th>3…15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1…10 s</td>
</tr>
<tr>
<td></td>
<td>0.3…30 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (mm/in.)</th>
<th>17.5/0.69</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.5/0.69</td>
</tr>
<tr>
<td></td>
<td>35/1.377</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modular relay type</th>
<th>RM17UAS15S15M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM17UAS14</td>
</tr>
<tr>
<td></td>
<td>RM17UAS16</td>
</tr>
<tr>
<td></td>
<td>RM17UAS15</td>
</tr>
<tr>
<td></td>
<td>RM35UA11MW</td>
</tr>
<tr>
<td></td>
<td>RM35UA12MW</td>
</tr>
<tr>
<td></td>
<td>RM35UA13MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pages</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>

1-phase voltage control

<table>
<thead>
<tr>
<th>- Overvoltage (without memory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Overvoltage or undervoltage (with/without memory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values controlled</th>
<th>0.05…5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1…100 V</td>
</tr>
<tr>
<td></td>
<td>15…500 V</td>
</tr>
<tr>
<td></td>
<td>0.05…5 V</td>
</tr>
<tr>
<td></td>
<td>1…100 V</td>
</tr>
<tr>
<td></td>
<td>15…500 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output contact rating</th>
<th>2 CO 8 A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 CO 8 A</td>
</tr>
<tr>
<td></td>
<td>1 CO 5 A</td>
</tr>
<tr>
<td></td>
<td>2 CO 8 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>24…240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24…240 V</td>
</tr>
<tr>
<td></td>
<td>38…415 V</td>
</tr>
<tr>
<td></td>
<td>Self-powered</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time delay</th>
<th>0.1…30 s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1…10 s</td>
</tr>
<tr>
<td></td>
<td>0.1…30 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (mm/in.)</th>
<th>22.5/0.885</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.5/0.885</td>
</tr>
<tr>
<td></td>
<td>17.5/0.69</td>
</tr>
<tr>
<td></td>
<td>22.5/0.885</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modular relay type</th>
<th>RM32UB34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM32UA21MR</td>
</tr>
<tr>
<td></td>
<td>RM32UA22MR</td>
</tr>
<tr>
<td></td>
<td>RM32UA23MR</td>
</tr>
<tr>
<td></td>
<td>RM32UA23MT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pages</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Application</td>
<td>1-phase current control</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Functions</td>
<td>Integrated current transformer</td>
</tr>
<tr>
<td></td>
<td>- Overcurrent (without memory)</td>
</tr>
<tr>
<td></td>
<td>- Undercurrent (with/without memory)</td>
</tr>
<tr>
<td></td>
<td>- Overcurrent and undercurrent in window mode (with/without memory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values controlled</th>
<th>2…20 A</th>
<th>4 mA…1 A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Output contact rating</th>
<th>1 CO 5 A</th>
<th>2 CO 8 A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>24…240 V (C)</th>
<th>24…240 V (C)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time delay</th>
<th>–</th>
<th>0.3…30 s</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Size (mm/in.)</th>
<th>17.5/0.69</th>
<th>22.5/0.885</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modular relay type</th>
<th>RM17JC10MW</th>
<th>RM22JA21MR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pages</th>
<th>44</th>
<th>46</th>
</tr>
</thead>
</table>
Harmony Control Relays
Near Field Communication and conventional Control Relays

<table>
<thead>
<tr>
<th>Application</th>
<th>Level control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>By resistive probes - Level 1/Level 2 - Fill operation - Empty operation - Standard sensitivity By resistive probes - Level 1/Level 2 - Fill operation - Empty operation - Low sensitivity - Standard sensitivity - High sensitivity By discrete sensors - Empty or fill - Input for discrete sensor AON: Contact PM/10PN</td>
</tr>
<tr>
<td>Values controlled</td>
<td>5…100 kΩ 0.25…5 kΩ 5…100 kΩ 0.05…1 MΩ</td>
</tr>
<tr>
<td>Output control rating</td>
<td>1 CO 8 A 2 CO 5 A 2 CO 8 A 1 CO 5 A</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24…240 V AC 24…240 V AC 24…240 V AC</td>
</tr>
<tr>
<td>Time delay</td>
<td>0.1…5 s 0.1…30 s 0.1…5 s</td>
</tr>
<tr>
<td>Size (mm/in.)</td>
<td>22.5/0.885 35/1.377 22.5/0.885 35/1.377</td>
</tr>
<tr>
<td>Modular relay type</td>
<td>RM22LG11MR RM35LM33MW RM22LA32MR RM35LV14MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pump control</th>
<th>Frequency control</th>
<th>Speed control</th>
<th>Temperature control for elevator machine rooms and 3-phase supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase and 1-phase - Over-frequency and under-frequency (with/without memory) - Over or under operating rate/speed (with/without memory) - Elevator Machine room temperature - Over temperature and under temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 CO 5 A 2 CO 5 A 1 CO 5 A 1 CO 5 A or 2 NO 5 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208…480 V AC - 3 phase 230 V AC - 3 phase 24…240 V AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1…10 s 0.1…10 s 1…10 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition time delay upon startup 1…10 s Inhibition time delay upon startup 0.1…10 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM35BA10 RM35H21FM RM35S0MW RM35ATLRMW RM35ATRS5MW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More technical Information on www.se.com
Harmony Control Relays
3-phase supply control relays
RM17TG

Presentation
RM17TG measurement and control relays for 3-phase supplies monitor the correct sequencing of phases L1, L2, and L3 and the total loss of two or more of these phases.

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM17TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of phases L1, L2, and L3</td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
</tr>
<tr>
<td>Function performed</td>
<td></td>
</tr>
<tr>
<td>Function not performed</td>
<td></td>
</tr>
</tbody>
</table>

Depending on the model, RM17TG control relays:
- Accept different nominal 3-phase voltage values
 - 208…480 V ~ for RM17TG00
 - 208…440 V ~ for RM17TG20
- Are designed for clip-on mounting on a rail

The control status is indicated by an LED.

Applications
- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description
RM17TG00, RM17TG20

1 Spring for clip-on mounting on 35 mm/1.38 in. rail

Yellow LED: indicates relay output status.
Operating principle

3-phase supply control relays monitor:
- Correct sequencing of phases L1, L2, and L3
- Fault signaling by LEDs
- Total loss of two or more of the phases

Function Diagram

- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

RM17TG00

- Sequence of phases L1, L2, and L3
- Phase loss

Phase control

The relays monitor:
- That the phase sequence and voltages are correct (> 183 V), the output relay(s) is/are closed and the yellow LED is on.
- If a sequencing fault or total loss of two or more phases is detected (detected as soon as two of the voltages drops below 100 V), the relay opens instantly and the LED goes off.
- On energization of the device with a detected measured fault, the relay stays open.

Note: Tr: response time on detection of a fault

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Rated 3-phase supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td>kg/lb</td>
</tr>
<tr>
<td>Phase sequence</td>
<td>208…480 ~</td>
<td>1 CO 5 A</td>
<td>RM17TG00</td>
<td>0.080/ 0.176</td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>208…440 ~</td>
<td>2 CO 5 A</td>
<td>RM17TG20</td>
<td>0.085/ 0.187</td>
</tr>
</tbody>
</table>
Harmony Control Relays
Multifunction 3-phase control relays
RMNF22

Presentation
The Near Field Communication (NFC) control relay is designed to monitor the following functions in 3-phase power networks and upon detection of faults, the relay contacts can be opened or closed with or without a set timing period.

- Sequence of phases (L1, L2, L3, N)
- Phase loss
- Asymmetry
- Undervoltage
- Overvoltage
- Under-frequency
- Over-frequency

NFC control relay provides simplified product selection and inventory management. It monitors 3-phase or 3-phase + neutral networks with 4 indication LEDs that display exact faults occurred during the process.

The mobile app, Zelio NFC, is Android enabled and can be downloaded onto your phone from Google Play. With this mobile app, accurate parameter settings can be achieved and the 2 relay outputs can be individually configured.

Applications
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions
- HVAC and pumping control panels

Description
RMNF22

1. Pairing Indication LED
2. Phase Loss (PL) fault indication LED (Red continuous) or Phase Sequence (PS) fault indication LED (Red blinking)
3. Undervoltage (UV) fault indication LED (Red continuous) or Overvoltage (OV) fault indication LED (Red blinking)
4. Asymmetry (Asym) fault indication LED (Red continuous)
5. Under-frequency (UF) fault indication LED (Red continuous) or Over-frequency (OF) fault indication LED (Red blinking)
6. Output 2 indication LED (Amber)
7. Output 1 indication LED (Amber)
8. Power Supply indication LED (Green)
9. NFC antenna location

NFC control relay mobile application
To use NFC control relay, an Android phone with NFC feature and Android OS (version 4.4 and above) are required. The Zelio NFC app can be downloaded in the mobile with one of the following methods:

- Align the mobile phone NFC antenna to the product NFC antenna. This will take you to the Google Play page for downloading the app.
- Go to Google Play and search for "Zelio NFC".
- Scan the below QR code to download the Zelio NFC app.

With Zelio NFC app installed in your mobile device, you can retrieve/configure and lock/unlock the product settings, and diagnose product status. The related function diagrams, wiring diagram and Quick Start Guide can be obtained from the app.

They feature:
- Read, write, clone settings
- Easy auto-configure settings
- Configuration of up to 10 alarms with different monitoring functions
- Alarm combination with logic (AND, OR, NOT) for relay output
- User defined positive & negative logic (relay output)
- Simulator to check logic validity in alarm combination
- Diagnose feature for displaying historical faults through event logging
- Share settings via multiple channels depending on the phone (email, WhatsApp, etc.)
- Secured with password protection
Harmony Control Relays
Multifunction 3-phase control relays
RMNF22

Operating principle
RMNF22
Phase loss + Phase sequence

The relay monitors its own supply voltage Un:
- Correct sequence of three phases
- Phase loss of at least one of the three phases
- Phase loss or phase sequence values can be set individually using the app.
- If a sequencing or phase loss fault is detected, the relay output opens or closes based on user Alarm settings in app.

Note: Tr: response after crossing of threshold (< 300 ms)

Undervoltage + Overvoltage

The relay monitors its own supply voltage Un:
- Under Voltage or Over Voltage
- An adjustable time delay on threshold crossing provides immunity to transients, and helps prevent spurious triggering of the output relay.
- If a voltage fault is detected, the relay opens or closes at the end of time delay set as On-delay or Off-delay by the user through the app.

Note: Tt: time delay after crossing of threshold (adjustable in Zelio NFC app)

Asymmetry

The relay monitors its own supply voltage Un:
- Asymmetry
- If an asymmetry fault is detected, the relay opens or closes at the end of time delay set by the user through the app.

Note: Tt: time delay after crossing of threshold (adjustable in Zelio NFC app)

Under-frequency + Over-frequency

The relay monitors its own supply voltage Un:
- Under-frequency or Over-frequency
- If a frequency value exceeding the threshold is detected, the relay opens or closes at the end of the time delay set as On-delay or Off-delay by the user through the app.

Note: Tt: time delay after crossing of threshold (adjustable in Zelio NFC app)

Alarm combination using Boolean logic

With Zelio NFC App, it is possible to combine different alarms using AND, OR and NOT logic to form unique monitoring combinations for each of the relay outputs. A Simulator is also available to verify the validity of the overall logic.

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Measurement range</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td>Adjustable 0.1 s...60 min</td>
<td>2 CO, 8 A (individually configurable)</td>
<td>RMNF22TB30 (1)</td>
<td>0.125/0.276</td>
</tr>
</tbody>
</table>

(1) With or Without memory mode is selectable for all functions in the app.
Harmony Control Relays
Multifunction 3-phase control relays
RM22TA, RM22TU, RM22TR, and RM22TG

Presentation
RM22 multifunction Harmony control relays monitor the following functions on 3-phase supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM22TA</th>
<th>RM22TU</th>
<th>RM22TR</th>
<th>RM22TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of phases L1, L2, and L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

Depending on the model, RM22T●●● control relays:
- Accept different nominal 3-phase voltages: up to 480 V ~
- Monitor their own power supply measured as a true rms value (except RM22TG)
- Are designed for clip-on mounting on a 5 rail

They feature a:
- Sealable cover to help protect the settings
- Diagnostic button for load circuit testing
- Relay output status LED
- Fault detection indication LED
- Dial pointer LED indicator for relay power ON status
- Relay output On-delay or Off-delay

Applications
- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description
RM22TA, RM22TU, RM22TR, RM22TG
1a Voltage range selector switch
1b Voltage range/On-Off delay selector
2 Time delay adjustment potentiometer Tt
3a Asymmetry threshold setting potentiometer Asym
3b Undervoltage setting potentiometer <U
3c Overvoltage setting potentiometer >U
4 Diagnostic button

Operating principle
Multifunction 3-phase supply control relays monitor:
- Product being powered by L1 and L3
- Correct sequencing of phases L1, L2, and L3
- LED indication for relay output status and fault detection (except phase disconnection)
- Phase loss, including in the case of voltage regeneration
- Undervoltage from -2...-20% of the supply voltage Un
- Overvoltage from 2...20% of the supply voltage Un
- Asymmetry from 5...15% of the supply voltage Un

Voltage switch operation:
- Set the switch to 3-phase supply voltage Un.
- The position of this switch is taken into account on energization of the device.
- If the switch position is changed while the device is operating, all the LEDs flash but the product continues to operate normally with the voltage selected at the time of energization preceding the change of position.
- If the switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.
Operating principle (continued)

RM22TA
Phase + Asymmetry

- Sequence of phases L1, L2, and L3
- Phase loss
- Asymmetry

The relay monitors its own supply voltage Un:
- correct sequence of three phases
- phase loss of at least one of the three phases (U measured < 150 V (RM22TA31) and < 250 V (RM22TA33))
- asymmetry adjustable from 5…15% of Un

- If a sequencing or phase loss fault is detected, the relay opens instantly.
- If an asymmetry fault is detected, the relay opens at the end of the time delay set by the user.
- On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold (adjustable on the front panel)

RM22TU
Phase + Undervoltage

- Sequence of phases L1, L2, and L3
- Phase loss

The relay monitors its own supply voltage Un:
- correct sequence of the three phases
- phase loss of at least one of the three phases (U measured < 150 V (RM22TU21) and < 250 V (RM22TU23))
- undervoltage adjustable from -2...-20% of Un

- If a sequencing or phase loss fault is detected, the relay opens instantly.
- If a voltage fault is detected, the relay opens instantly.
- On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold
Operation (continued)

Multifunction 3-phase control relays
RM22TA, RM22TU, RM22TR, and RM22TG

Operating principle (continued)

RM22TR

Phase + Undervoltage/overvoltage

- Sequence of phases L1, L2, and L3
- Phase loss

The relay monitors its own supply voltage Un:
- phase loss (U measured <150 V (RM22TR31) and < 250 V(RM22TR33))
- undervoltage and overvoltage
 - An adjustable time delay on threshold crossing provides immunity to transients, and helps prevent spurious triggering of the output relay.
 - If a voltage fault is detected, the relay opens at the end of the time delay set as On-delay or Off-delay by the user.
 - On energization of the device with a detected measured fault, the relay stays open.
 - In the event of phase loss, the relay opens instantly.

Overvoltage and undervoltage (Off-delay)

- Overvoltage and undervoltage

RM22TG

Phase control

- Sequence of phases L1, L2, and L3
- Phase loss

The RM22TG relay monitors:
- correct sequencing of the three phases
- total loss of two or more of the three phases
 - When the phase sequence and voltages are correct (> 183 V~), the output relays are closed and the R LED is on.
 - When there is a sequencing fault or total loss of two or more phases (detected as soon as one of the voltages drops below 100 V) the relay opens instantly and the R LED goes off.
 - On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold (adjustable on the front panel)
Harmony Control Relays
Multifunction 3-phase control relays
RM22TA, RM22TU, RM22TR, and RM22TG

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Measurement range</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
<th>kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200...240 ~</td>
<td>Off delay (0.1...30 s)</td>
<td>2 CO 8 A</td>
<td>RM22TA31</td>
<td>0.090/0.198</td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380...480 ~</td>
<td>Off delay (0.1...30 s)</td>
<td>2 CO 8 A</td>
<td>RM22TA33</td>
<td>0.090/0.198</td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage and overvoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200...240 ~</td>
<td>On/Off delay (0.1...30 s)</td>
<td>2 CO 8 A</td>
<td>RM22TR31</td>
<td>0.090/0.198</td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage and overvoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380...480 ~</td>
<td>On/Off delay (0.1...30 s)</td>
<td>2 CO 8 A</td>
<td>RM22TR33</td>
<td>0.090/0.198</td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage and overvoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>208...480 ~</td>
<td>No</td>
<td>2 CO 8 A</td>
<td>RM22TG20</td>
<td>0.090/0.198</td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harmony Control Relays
Multifunction 3-phase supply control relays
RM17TT, RM17TA, RM17TU, and RM17TE

Presentation
RM17TT, RM17TA, RM17TU and RM17TE multifunction control relays monitor the following on 3-phase supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM17TT</th>
<th>RM17TA</th>
<th>RM17TU</th>
<th>RM17TE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of phases L1, L2, and L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Function performed**
- **Function not performed**

Depending on the model, RM17T●00 control relays:
- Accept different nominal 3-phase voltages: 208...480 V ~
- Monitor their own power supply measured as a true rms value
- Are designed for clip-on mounting on a 35 mm/1.38 in. rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description
RM17TT00, RM17TA00, RM17TU00, RM17TE00
1. Voltage range selector switch (208, 220, 380, 400, 415, 440, and 480 V ~)
2. Time delay adjustment potentiometer T
3a. Asymmetry threshold setting potentiometer Asy
3b. Undervoltage setting potentiometer <U
3c. Undervoltage/overvoltage setting potentiometer ΔU
4. Asymmetry threshold setting potentiometer Asy
5. Spring for clip-on mounting on 35 mm/1.38 in. rail

(1) Phase loss with regeneration.

Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status
Operation

Harmony Control Relays
Multifunction 3-phase supply control relays
RM17TT, RM17TA, RM17TU, and RM17TE

Operating principle

3-phase supply control relays monitor:
- Correct sequence of phases L1, L2, and L3
- Phase loss, including voltage regeneration
- Undervoltage from -2…-20% of the supply voltage Un
- Overvoltage from 2…20% of the supply voltage Un
- Asymmetry from 5…15% of the supply voltage Un

Fault signaling is by LED

Voltage switch operation:
- Set the switch to the 3-phase supply voltage Un.
- The position of this switch is taken into account on energization of the device.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the voltage selected at the time of energization preceding the change of position.
- If the selector switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

Function Diagram

- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

RM17TT00

- **Phase + Voltage regeneration**
 - Sequence of phases L1, L2, and L3
 - Phase loss

 ![Function Diagram](image)

 The relay monitors:
 - correct sequence of the three phases
 - phase loss of at least one of the three phases (U measured < 0.7 x Un)

 - If a sequencing or phase loss fault is detected, the relay opens instantly.
 - On energization of the device with a detected measured fault, the relay stays open.

RM17TA00

- **Phase + Asymmetry**
 - Sequence of phases L1, L2, and L3
 - Phase loss
 - Asymmetry

 ![Function Diagram](image)

 The relay monitors:
 - correct sequence of the three phases
 - phase loss of at least one of the three phases (U measured < 150 V)
 - asymmetry adjustable from 5…15% of Un

 - If a sequencing or phase loss fault is detected, the relay opens instantly.
 - If an asymmetry fault is detected, the relay opens at the end of the time delay set by the user.

 - On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold (adjustable on front panel).
Operation (continued)

Harmony Control Relays
Multifunction 3-phase supply control relays
RM17TT, RM17TA, RM17TU, and RM17TE

Operating principle (continued)

RM17TU00
Phase + Undervoltage
- Sequence of phases L1, L2, and L3
- Phase loss

Phase L1
L1
150 V
Phase L2
L2
200 V
Phase L3
L3
150 V
Relays
R
Tr
Tr
Tr
Tr
Tr
Tr

- Undervoltage control <U

Hysteresis
Threshold
0%
Phases L1/L2/L3
Relays
R
Tr
Tr

Tt: time delay after crossing of the threshold (adjustable on front panel)

RM17TE00
Phase + Asymmetry + Undervoltage/overvoltage
- Sequence of phases L1, L2, and L3
- Phase loss
- Asymmetry Asy

Phase L1
L1
150 V
Phase L2
L2
150 V
Phase L3
L3
150 V
Asymmetry
Hysteresis
0%
Threshold
Relays
R
Tt
Tt

Tt: time delay after crossing of the threshold (adjustable on front panel)

The relay monitors:
- correct sequence of the three phases
- phase loss of at least one of the three phases
 (U measured < 150 V)
- undervoltage adjustable from -2...-20% of Un (-2...-12% in the range 3 x 208 V ~ and -2%...-17% in the range 3 x 220 V ~ due to the minimum voltage 183 V ~)
 - If a sequencing or phase loss fault is detected, the relay opens instantly.
 - If a voltage fault is detected, the relay opens at the end of the time delay set by the user.
 - On energization of the device with a detected measured fault, the relay stays open.

The relay monitors:
- correct sequence of the three phases
- phase loss of at least one of the three phases
 (U measured < 150 V)
- asymmetry adjustable from 5...15% of Un
- the overvoltage and undervoltage difference in window mode, adjustable from 2...20% of Un

<table>
<thead>
<tr>
<th>Un</th>
<th>208 V</th>
<th>220 V</th>
<th>380, 400, 415, 440 V</th>
<th>480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage threshold (%)</td>
<td>> 2...+20</td>
<td>+ 2...+20</td>
<td>+ 2...+20</td>
<td>+ 2...+10</td>
</tr>
</tbody>
</table>

- If a sequencing or phase loss fault is detected, the relay opens instantly.
- If an asymmetry or voltage fault is detected, the relay opens at the end of the time delay set by the user.
- On energization of the device with a detected measured fault, the relay stays open.
Harmony Control Relays
Multifunction 3-phase supply control relays
RM17TT, RM17TA, RM17TU, and RM17TE

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Phase sequence</td>
</tr>
<tr>
<td>Phase loss with voltage regeneration</td>
</tr>
<tr>
<td>Phase sequence</td>
</tr>
<tr>
<td>Phase loss</td>
</tr>
<tr>
<td>Asymmetry</td>
</tr>
<tr>
<td>Phase sequence</td>
</tr>
<tr>
<td>Phase loss</td>
</tr>
<tr>
<td>Undervoltage</td>
</tr>
<tr>
<td>Phase sequence</td>
</tr>
<tr>
<td>Phase loss</td>
</tr>
<tr>
<td>Asymmetry</td>
</tr>
<tr>
<td>Undervoltage and overvoltage in window mode</td>
</tr>
</tbody>
</table>
Presentation, description, operation

Harmony Control Relays
Multifunction 3-phase supply control relays
RM35TF

Presentation
The RM35TF30 control relay monitors the following on 3-phase supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35TF30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of phases L1, L2, and L3</td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage in window mode</td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
</tr>
</tbody>
</table>

These control relays:
- Accept different nominal 3-phase voltages: 220...480 V ~
- Monitor their own power supply measured as a true rms value
- Are designed for clip-on mounting on a 5 rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description
RM35TF
1 Voltage range selector switch (220, 380, 400, 415, 440, and 480 V ~)
2 Overvoltage setting potentiometer >U
3 Undervoltage setting potentiometer <U
4 Asymmetry threshold setting potentiometer Asy
5 Time delay adjustment potentiometer Tt
6 Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Operating principle
3-phase supply control relay RM35TF30 monitors:
- Correct sequence of phases L1, L2, and L3
- Phase loss
- Undervoltage and overvoltage in window mode

<table>
<thead>
<tr>
<th>Un Voltage threshold (%)</th>
<th>220 V</th>
<th>380, 400, 415, 440 V</th>
<th>480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>-12…-2</td>
<td>-20…-2</td>
<td>-20…-2</td>
</tr>
<tr>
<td>></td>
<td>+2…+10</td>
<td>+2…+10</td>
<td>+2…+10</td>
</tr>
</tbody>
</table>

- Asymmetry from 5…15% of the supply voltage Un
- LED indication for relay output status and fault detection (except phase disconnection)

- Voltage switch operation:
 - Set the switch to the 3-phase supply voltage Un.
 - The position of this switch is only taken into account on energization of the device.
 - If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the voltage selected at the time of energization preceding the change of position.
 - If the switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

Def. Yellow LED: indicates fault present status (on for asymmetry, flashing for overvoltage, and undervoltage)
Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status

Presentation, description, operation
Harmony Control Relays
Multifunction 3-phase supply control relays
RM35TF

Operating principle (continued)

RM35TF
Phase + Overvoltage + Undervoltage in window mode

- Sequence of phases L1, L2, and L3
- Phase loss
- Asymmetry

The relay monitors:
- correct sequence of the three phases
- phase loss of at least one of the three phases (U measured < 150 V)
- asymmetry, adjustable from 5 to 15% of Un
- the undervoltage, adjustable from -2...-20% of Un (-2...-12% in the range 3 x 220 V ~)
- the overvoltage, adjustable from +2...+20% of Un (+2...+10% in the range 3 x 480 V ~ due to the maximum voltage 528 V ~)

- If a sequencing or phase loss fault is detected, the relay opens instantly.
- If an asymmetry or voltage fault is detected, the relay opens at the end of the time delay set by the user.
- On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold (adjustable on front panel)

Reference

<table>
<thead>
<tr>
<th>Function</th>
<th>Rated 3-phase supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td>kg/lb</td>
</tr>
<tr>
<td>Phase sequence</td>
<td>220...480 V ~</td>
<td>2 CO 5 A</td>
<td>RM35TF30</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage and overvoltage in window mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harmony Control Relays
3-phase voltage control relays
RM17UB3 and RM35UB3

Presentation

Voltage measurement and control relays RM35UB330, RM17UB310 and RM35UB3N30 monitor the following, on 3-phase supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35UB330</th>
<th>RM17UB310</th>
<th>RM35UB3N30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence of neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage between phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage between phases and neutral</td>
<td>220…480 V~</td>
<td>208…480 V~</td>
<td>120…277 V~</td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

Depending on the model, control relays:
- Monitor their own power supply measured as a true rms value
- Are designed for clip-on mounting on a 5rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications

- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description

RM35UB330, RM35UB3N30

1a Voltage range selector switch (220, 380, 400, 415, 440, and 480 V~)
1b Voltage range selector switch (120, 127, 220, 230, 240, 260, and 277 V~)
2 Overvoltage setting potentiometer $>U$
3 Undervoltage setting potentiometer $<U$
4 Undervoltage threshold delay setting potentiometer T_{t2}
5 Overvoltage threshold delay setting potentiometer T_{t1}
6 Spring for clip-on mounting on 35 mm/1.38 in. 5rail

RM17UB310

1 Voltage range selector switch (208, 220, 380, 400, 415, 440, and 480 V~)
2 Time delay adjustment potentiometer T_t
3 Overvoltage setting potentiometer $>U$
4 Undervoltage setting potentiometer $<U$
5 Spring for clip-on mounting on 35 mm/1.38 in. 5rail

Un Green LED: indicates that supply to the product is on
R1 Yellow LED: indicates relay output status. Overvoltage threshold
R2 Yellow LED: indicates relay output status. Undervoltage threshold

Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status
Harmony Control Relays
3-phase voltage control relays
RM17UB3 and RM35UB3

Operation

Operating principle
3-phase voltage control relays monitor:
- Undervoltage and overvoltage:

<table>
<thead>
<tr>
<th>Un Phase/phase</th>
<th>Function Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output 11-14, 21-24 open</td>
</tr>
<tr>
<td></td>
<td>Output 11-14, 21-24 closed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Un Phase/phase</th>
<th>208 V</th>
<th>220 V</th>
<th>380, 400, 415, 440 V</th>
<th>480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM17UB310</td>
<td>> U (%)</td>
<td>+ 2...+ 20</td>
<td>+ 2...+ 20</td>
<td>+ 2...+ 20</td>
</tr>
<tr>
<td></td>
<td>< U (%)</td>
<td>- 12...- 2</td>
<td>- 12...- 2</td>
<td>- 12...- 2</td>
</tr>
<tr>
<td>RM35UB30</td>
<td>> U (%)</td>
<td>-</td>
<td>+ 2...+ 20</td>
<td>+ 2...+ 20</td>
</tr>
<tr>
<td></td>
<td>< U (%)</td>
<td>-</td>
<td>- 20...- 2</td>
<td>- 20...- 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Un Phase/neutral</th>
<th>120 V</th>
<th>127 V</th>
<th>220, 230, 240, 260 V</th>
<th>277 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM35UB3N30</td>
<td>> U (%)</td>
<td>+ 2...+ 20</td>
<td>+ 2...+ 20</td>
<td>+ 2...+ 20</td>
</tr>
<tr>
<td></td>
<td>< U (%)</td>
<td>- 20...- 2</td>
<td>- 20...- 2</td>
<td>- 20...- 2</td>
</tr>
</tbody>
</table>

- Phase loss
- Presence of neutral (RM35UB3N30 only)
- Measurements are made between Phases for RM35UB330 and RM17UB310 and between Phase/Neutral for RM35UB3N30
- Fault signaling is by LED
- RM35UB relays can differentiate between the source of the fault (one LED for overvoltage threshold, one LED for undervoltage threshold)

Voltage switch operation:
- Set the switch to the 3-phase supply voltage Un.
- The position of this switch is only taken into account on energization of the device.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the voltage selected at the time of energization preceding the change of position.
- If the switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

RM35UB330
Overvoltage/undervoltage control

- The relay monitors:
 - phase loss (U measured < 150 V)
 - the undervoltage
 - the overvoltage
- Each threshold has its own independently adjustable time delay from 0.3 to 30 s.
- If a voltage fault is detected, the corresponding relay (one undervoltage output/one overvoltage output) opens at the end of the time delay set by the user.
- If a phase loss is detected, both relays open instantly without waiting for the end of the time delay set by the user.
- On energization of the device with a detected measured fault, the relays stay open.

Note: Tt 1: overvoltage threshold delay (adjustable on front panel)
Tt 2: undervoltage threshold delay (adjustable on front panel)
Operation (continued)

Harmony Control Relays

3-phase voltage control relays

RM17UB3 and RM35UB3

Operating principle (continued)

RM35UB3N30

Overvoltage/undervoltage + absence of neutral control

- The relay monitors:
 - presence of the neutral
 - the undervoltage
 - the overvoltage
 - phase loss (U measured < 80 V)

- Each threshold has its own independently adjustable time delay from 0.3 to 30 s.

- If a voltage fault is detected, the corresponding relay (one undervoltage output/one overvoltage output) opens at the end of the time delay set by the user.

- In the absence of either neutral or phase, both relays open instantly without waiting for the end of the time delay set by the user.

- On energization of the device with a detected measured fault, the relays stay open.

Note: Tt 1: overvoltage threshold delay (adjustable on front panel)
Tt 2: undervoltage threshold delay (adjustable on front panel)

RM17UB310

Overvoltage/undervoltage control

- The relay monitors:
 - the undervoltage
 - the overvoltage
 - phase loss (U measured < 150 V)

- An adjustable time delay from 0.3 to 30 s allows inhibition of the output relay if a transient fault occurs.

- If a voltage fault is detected, the relay opens at the end of the time delay set by the user.

- On energization of the device with a detected measured fault, the relay stays open.

- If phase loss is detected, the relay opens instantly.

Note: Tt: overvoltage and undervoltage threshold delay (adjustable on front panel)
Harmony Control Relays

3-phase voltage control relays
RM17UB3 and RM35UB3

<table>
<thead>
<tr>
<th>Function</th>
<th>Measurement range</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage and undervoltage between phases</td>
<td>220…480 V (Phase-phase)</td>
<td>1 CO</td>
<td>RM35UB330</td>
<td>0.130/ 0.287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1 CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 per threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage between phases</td>
<td>208…480 V (Phase-phase)</td>
<td>1 CO</td>
<td>RM17UB310</td>
<td>0.080/ 0.176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence of neutral</td>
<td>120…277 V (Phase-neutral)</td>
<td>1 CO</td>
<td>RM35UB3N30</td>
<td>0.130/ 0.287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1 CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 per threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References
RM35 Harmony multifunction control relays monitor the following functions on 3-phase supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35TM50MW</th>
<th>RM35TM250MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of phases L1, L2, and L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor temperature via PTC probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection (with or without memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test/Reset button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

Depending on the model, control relays:
- Accept different nominal 3-phase voltages: 208...480 V ~
- Have phase and temperature control functions that are independent of one another
- Detect line breaks or short-circuit of the temperature probes
- Selection (with or without memory) and Test/Reset function is available
- Are designed for clip-on mounting on a 5 rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Control for connection of moving equipment (site equipment, agricultural equipment, refrigerated trucks)
- Control against reverse motor operation (lifting, handling, elevators, escalators, etc.)
- Control of sensitive 3-phase supplies
- Emergency power supply switching in abnormal conditions

Description

RM35TM50MW, RM35TM250MW

1. Spring for clip-on mounting on 35 mm/1.38 in. 5 rail
2. Temperature contact (11-14)
3. Phase contact (21-24)
4. Configuration: selection of temperature control operating mode (with or without memory) **Memory - No Memory**
5. Pushbutton (activation of temperature control) **Test/Reset**

- Yellow LED: relay output status indicator
- Green LED: power ON indicator
- Yellow LED: relay output status indicator
Operation

Operating principle

Relays RM35TM50MW and RM35TM250MW monitor:
- Status of the 3-phase supply
- Temperature of motors with embedded PTC probes

The 3-phase supply control function monitors:
- Correct sequence of phases L1, L2, and L3
- Phase loss

Function Diagram

- Power supply off
- Power supply on
- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

RM35TM50MW/RM35TM250MW

3-phase supply control

- Sequence of phases L1, L2, and L3
- Phase loss

As soon as phase sequence (L1, L2, and L3) and phase presence are considered to be correct, the output relay contact closes and LED R2 is lit.

- If total failure or drop in amplitude of a phase (U measured < 100 V) or inversion of phase sequence is detected, the output relay contact opens and LED R2 goes out.

- The result of the control is indicated by the status of output relay R2, NO contact 21-24 is open in the event of a fault.

Temperature control

- Motor temperature control via PTC probe

The temperature control relay can take up to 6 PTC (positive temperature coefficient) probes wired in series between terminals T1 and T2.

- A fault is declared when the resistance of the temperature sensing circuit exceeds 3100 Ω.

- Return to normal status is detected when the resistance is once again below 1650 Ω.

- The result of the control is indicated by the status of the “temperature” output relay, NO contact 11-14 is open in the event of a fault.

- Opening of the thermal sensing circuit, which has the same effect as a high temperature (resistance exceeds 3100 Ω), is therefore interpreted as a fault.

- Total short-circuiting of the temperature probe(s), detected when resistance is less than 15 Ω ± 5 Ω, is treated as a fault.

- LED R1 is on when the temperature is correct.
Operation (continued)

Harmony Control Relays

3-phase supply and motor temperature control relays

RM35TM250MW

Configuration

This configuration is considered when relay RM35TM250MW is energized.

- Set the switch to the required operating mode:
 - Temperature control without memory
 - Temperature control with memory
- On energization, placing the switch in one of the five intermediate positions holds the relay in the open contact state and the detected error is signaled by simultaneous flashing of the LEDs.
- The position of the mode selector switch is taken into account on energization.
- Any modification of its position during operation has no effect - the active configuration may therefore be different from that indicated by the switch - the RM35TM250MW operates normally but the change in configuration is signaled by simultaneous flashing of the three LEDs.

Motor temperature control via PTC probe with memory

- Relay RM35TM250MW has a selector switch which allows the temperature control operating mode to be configured with or without memory.
- In “memory” mode, when a fault is detected, the “temperature” relay locks in the open position.
- As soon as the temperature returns to the correct value, the relay can be unlocked (reset), either by pressing the “Test/Reset” button (for at least 200 ms), or by closing a volt-free contact (for at least 200 ms) between terminal Y1 and T1 (without a parallel load).
- Relay RM35TM250MW can also be reset by switching off the power (see reset time).

Use of “Test/Reset” button

- Relay version RM35TM250MW has a “Test/Reset” button which can be used to check that the temperature control function is working correctly and to reset this function after locking in “memory” mode.
- The press and release times are 50 ms for both functions.
- When the temperature is normal, pressing the “Test/Reset” button simulates overheating, the “temperature” output relay contact is open and the \(<\V<\) LED is off.
- If “memory” mode is not active, “fault” indication is maintained for as long as the button is pressed.
- If “memory” mode is active, “fault” indication is locked and the button needs to be released and pressed again to reset the function.
- In “memory” mode, when a fault has been detected and the temperature has returned to normal, the “temperature” control relay can be unlocked (reset) by pressing the “Test/Reset” button.
Harmony Control Relays
3-phase supply and motor temperature control relays
RM35TM

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply voltage</th>
<th>Measurement range</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase sequence</td>
<td>24…240 ~</td>
<td>208…480 ~</td>
<td>2 NO 5 A</td>
<td>RM35TM50MW</td>
<td>0.120/</td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.264</td>
</tr>
<tr>
<td>Motor temperature via PTC probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply voltage</th>
<th>Measurement range</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase sequence</td>
<td>24…240 ~</td>
<td>208…480 ~</td>
<td>2 NO 5 A</td>
<td>RM35TM250MW</td>
<td>0.120/</td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.264</td>
</tr>
<tr>
<td>Motor temperature via PTC probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection (with or without memory)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Test/Reset” button</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Harmony Control Relays
3-phase supply and motor temperature control relays
RM35TM
Harmony Control Relays
1-phase voltage control relays
RM17UAS and RM17UBE

Presentation
1-phase voltage measurement and control relays RM17UAS and RM17UBE monitor:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM17 UAS14</th>
<th>RM17 UAS15</th>
<th>RM17 UAS15315M</th>
<th>RM17 UAS16</th>
<th>RM17 UBE15</th>
<th>RM17 UBE16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage or undervoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage and undervoltage in window mode (with/ without memory)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranges controlled</td>
<td>9...15</td>
<td>65...260</td>
<td>9...15</td>
<td>20...80</td>
<td>65...260</td>
<td>20...80</td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

Depending on the model, control relays:
- Allow selection of operating mode
- Monitor their own power supply measured as a true rms value
- Are designed for clip-on mounting on a 35 mm rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Protection of electronic or electromechanical devices against overvoltage and undervoltage
- Emergency power supply switching at abnormal conditions
- Anti short-cycle for compressor used in HVAC machinery

Description
RM17UAS (except RM17UAS15315M)
1 Configuration: selection of operating mode <U / U, Memory - No Memory
2 Setting potentiometer
3 Hysteresis adjustment potentiometer H
4 Time delay setting potentiometer Tt
5 Spring for clip-on mounting on 35 mm/1.38 in. rail

RM17UAS15315M
1 Time delay setting potentiometer Tt
2 Spring for clip-on mounting on 35 mm/1.38 in. rail

RM17UBE1
1 Maximum voltage range selection and setting potentiometer
2 Minimum voltage range selection and setting potentiometer
3 Time delay setting potentiometer Tt
4 Spring for clip-on mounting on 35 mm/1.38 in. rail
Harmony Control Relays
1-phase voltage control relays
RM17UAS and RM17UBE

Operating principle
Voltage control relays RM17UAS (except RM17UAS15315M) and RM17UBE monitor:
- Voltage of 1-phase and DC supplies
- RM17UAS supports two operating modes:
 - Overvoltage or undervoltage
 - Fault memory selected or not
- An adjustable time delay, on crossing the thresholds, provides immunity to transients, and helps prevent spurious triggering of the output relay
- Fault signaling is by LED

RM17 UAS14/UAS15/UAS16 (except RM17UAS15315M)
The operating mode is determined by a switch:
- Undervoltage with or without memory
- Overvoltage with or without memory

The position of the configuration switch and the operating mode is read by the product on energization:
- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open and the LEDs flash to indicate the position error.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

The undervoltage or overvoltage threshold value is set by a graduated potentiometer clearly indicating the voltage \(U_n \) to be monitored. The hysteresis is adjusted by a potentiometer graduated from 5…20% of the threshold setting. The hysteresis value must not exceed the limit values of the measuring range.

Undervoltage/Overvoltage without memory

- **Undervoltage control \(<U\), No Memory**
 - Supply \(U_n \)
 - Threshold \(U \)
 - Hysteresis \(H \)
 - Relays \(11-12, 11-14 \)

 If the controlled voltage falls below the threshold setting for a time greater than that set on the front panel (0.1…10 s), the output relay opens and the R LED goes off. As soon as the voltage returns to a value above (or below) the threshold setting minus (or respectively plus) the hysteresis, the relay instantly closes.

- **Overvoltage control \(>U\), No Memory**
 - Supply \(U_n \)
 - Threshold \(U \)
 - Hysteresis \(H \)
 - Relays \(11-12, 11-14 \)

 If the controlled voltage exceeds the threshold setting for a time greater than that set on the front panel (0.1…10 s), the output relay opens and the R LED goes off. As soon as the voltage returns to a value below the threshold setting plus the hysteresis, the relay instantly closes.
Harmony Control Relays
1-phase voltage control relays
RM17UAS and RM17UBE

Operation (continued)

Operating principle (continued)

RM17 UAS14/UAS15/UAS16 (except RM17UAS15315M) (continued)

- **Undervoltage/Overvoltage with memory**

 - **Undervoltage control** \(< U, \text{ Memory} >

 - **Supply Un**
 - **Hysteresis**
 - **Threshold** \(< U
 - **Relays R**

 If “Memory” mode is selected, the relay opens when crossing of the threshold is detected and then stays in that position. The power needs to be switched off to reset the product.

- **Overvoltage control** \(> U, \text{ Memory} >

 - **Supply Un**
 - **Hysteresis**
 - **Threshold** \(> U
 - **Relays R**

 Note: \(T_t: \text{time delay after crossing of the threshold}\)

RM17 UBE15/UBE16

Overvoltage + undervoltage control in window mode

- **Supply Un**
- **Threshold** \(> U
- **Hysteresis**
- **Threshold** \(< U
- **Relays R**

 These relays operate in window mode where they check that the controlled voltage stays between a minimum threshold and a maximum threshold.

 - The undervoltage or overvoltage threshold values are set by two graduated potentiometers clearly indicating the voltage \(U_n\) to be monitored. The hysteresis is fixed at 3% of the threshold setting.
 - If the controlled voltage exceeds the high threshold setting, or falls below the low threshold setting for a time greater than that set on the front panel (0.1…10 s), the output relay opens and the R LED goes out. During the time delay, this LED flashes.
 - As soon as the voltage falls below the high threshold setting value minus the hysteresis, or rises above the low threshold setting value plus the hysteresis, the relay instantly closes.
 - On energization of the device with a detected measured fault, the relay stays open.

 Note: \(T_t: \text{time delay after crossing of the threshold}\)

RM17UAS15315M

Undervoltage

- **Supply Un**
- **220 V ~**
- **Hysteresis**
- **Threshold** \(< U
- **Relays R**

 If the controlled voltage falls below the threshold (165 V ~), the output relay instantly opens and the R LED goes out. As soon as the voltage returns to a value above the threshold plus the hysteresis, the relay closes after the time set on the front panel (3…15 min).

 Note: \(T_t: \text{time delay after crossing of the threshold}\)
Harmony Control Relays
1-phase voltage control relays
RM17UAS and RM17UBE

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Ranges controlled</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
<th>kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage or undervoltage (with/without memory)</td>
<td>9...15 V</td>
<td>Off delay</td>
<td>0.1...10</td>
<td>1 CO 5 A</td>
<td>RM17UAS14</td>
<td>0.080/0.176</td>
</tr>
<tr>
<td></td>
<td>20...80 V</td>
<td>Off delay</td>
<td>0.1...10</td>
<td>1 CO 5 A</td>
<td>RM17UAS16</td>
<td>0.080/0.176</td>
</tr>
<tr>
<td></td>
<td>65...260 V</td>
<td>Off delay</td>
<td>0.1...10</td>
<td>1 CO 5 A</td>
<td>RM17UAS15</td>
<td>0.080/0.176</td>
</tr>
<tr>
<td>Overvoltage and undervoltage in window mode (without memory)</td>
<td>20...80 V</td>
<td>Off delay</td>
<td>0.1...10</td>
<td>1 CO 5 A</td>
<td>RM17UBE16</td>
<td>0.080/0.176</td>
</tr>
<tr>
<td></td>
<td>65...260 V</td>
<td>Off delay</td>
<td>0.1...10</td>
<td>1 CO 5 A</td>
<td>RM17UBE15</td>
<td>0.080/0.176</td>
</tr>
</tbody>
</table>

1-phase voltage control relays, 220 V ~ rated supply voltage

<table>
<thead>
<tr>
<th>Function</th>
<th>Ranges controlled</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
<th>kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage (without memory)</td>
<td>Fixed at 165 V</td>
<td>On delay</td>
<td>3...15</td>
<td>1 CO 5 A</td>
<td>RM17UAS15315M</td>
<td>0.080/0.176</td>
</tr>
</tbody>
</table>
Harmony Control Relays
Multifunction 1-phase voltage control relays RM35UA

Presentation
Multifunction voltage control relays RM35UA1•MW monitor both AC and DC voltages.

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35UA11MW</th>
<th>RM35UA12MW</th>
<th>RM35UA13MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage or undervoltage (with or without memory)</td>
<td>0.05…5 V</td>
<td>1…100 V</td>
<td>15…600 V</td>
</tr>
</tbody>
</table>

Depending on the model, the control relays allow:
- Automatic recognition
- Measurement ranges from 0.05 V to 600 V
- Selection between overvoltage and undervoltage
- Measurement as a true rms value
- Selectable memory function
- Clip-on mounting on a 5 rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- DC motor overspeed control
- Battery monitoring
- Monitoring of AC or DC supplies
- Speed monitoring (with tacho-generator)

Description
RM35 UA11MW/UA12MW/UA13MW
1 Configuration: selection of operating mode <U / >U, (with or without memory) Memory - No Memory
2 Voltage threshold setting potentiometer U Value
3 Hysteresis adjustment potentiometer H
4 Time delay setting potentiometer Tt
5 Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Operating principle
Multifunction voltage relays RM35UA1•MW:
- Automatically recognize the form of 50 or 60 Hz signal
- Fault signaling is by LED

Function Diagram
- Power supply off
- Power supply on
- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

RM35 UA11MW/UA12MW/UA13MW
The operating mode is selected by using a switch:
- Undervoltage with or without memory
- Overvoltage with or without memory

The position of the switch and the operating mode is read by the product on energization:
- If the switch is set to an unacceptable position, the product detects a fault, the output relay stays open and the LEDs flash to indicate the position error.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

The undervoltage or overvoltage threshold value is set by a potentiometer graduated as a percentage of the scale value of Un to be monitored. The hysteresis is adjusted by a potentiometer graduated from 5…50% of the threshold setting. The hysteresis value must not exceed the limit values of the measuring range.
Harmony Control Relays
Multifunction 1-phase voltage control relays
RM35UA

Operating principle (continued)
RM35 UA11MW/UA12MW/UA13MW
Overvoltage/undervoltage without memory
- Overvoltage control \(U \), without memory
 - Supply: \(U \)
 - Threshold: \(>U \)
 - Hysteresis: \(H \)
 - Relays R

If the voltage controlled exceeds the threshold setting for a time greater than that set on the front panel (0.3…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes. As soon as the voltage drops below the value of the threshold setting, minus the hysteresis, the relay instantly closes.

Note: \(T_t \): time delay after crossing of the threshold (adjustable on front panel)

- Undervoltage control \(U \), without memory
 - Supply: \(U \)
 - Hysteresis: \(H \)
 - Threshold: \(<U \)
 - Relays R

If the voltage controlled falls below the threshold setting for a time greater than that set on the front panel (0.3…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes. As soon as the voltage rises above the value of the threshold setting plus the hysteresis, the relay instantly closes.

Note: \(T_t \): time delay after crossing of the threshold (adjustable on front panel)

Overvoltage/undervoltage with memory
- Overvoltage control \(U \), with memory
 - Supply: \(U \)
 - Threshold: \(>U \)
 - Hysteresis: \(H \)
 - Relays R

If “Memory” mode is selected, the relay opens when crossing of the threshold is detected and then stays in that position. The power needs to be switched off to reset the product.

Note: \(T_t \): time delay after crossing of the threshold (adjustable on front panel)

- Undervoltage control \(U \), with memory
 - Supply: \(U \)
 - Hysteresis: \(H \)
 - Threshold: \(<U \)
 - Relays R

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Range controlled</th>
<th>Supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage or undervoltage (with/without memory)</td>
<td>0.05…5 (^\circ)C</td>
<td>24…240 (^\circ)C</td>
<td>2 CO 5 A</td>
<td>RM35UA11MW</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td></td>
<td>1…100 (^\circ)C</td>
<td>24…240 (^\circ)C</td>
<td>2 CO 5 A</td>
<td>RM35UA12MW</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td></td>
<td>15…600 (^\circ)C</td>
<td>24…240 (^\circ)C</td>
<td>2 CO 5 A</td>
<td>RM35UA13MW</td>
<td>0.130/0.287</td>
</tr>
</tbody>
</table>
Harmony Control Relays
1-phase voltage control relays
RM22UA and RM22UB

Presentation
RM22UA and RM22UB 1-phase or DC voltage control relays monitor the following functions:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM22UA2</th>
<th>RM22UA3</th>
<th>RM22UA33MT</th>
<th>RM22UB34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltage (without memory)</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage or undervoltage</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Overvoltage and undervoltage (window mode)</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

RM22 control relays allow:
- Automatic AC or DC recognition
- Selection between overvoltage and undervoltage
- Monitoring of their own supply voltage measured as a true rms value
- Selectable memory function
- Clip-on mounting on a 5 rail

They feature:
- Dial pointer LED indicator for relay power ON status
- Relay output status LED
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Protection of electronic or electromechanical devices against overvoltage and undervoltage
- Emergency power supply switching in abnormal conditions
- DC motor overspeed control
- Monitoring of AC or DC supplies
- Battery and speed monitoring (with tacho-generator)

Description
RM22UA2●MR, RM22UA3●MR, RM22UA33MT, RM22UB34

1. Configuration: selection of operating mode <U (undervoltage), >U (overvoltage), >U> (overvoltage and undervoltage), MEMORY - NO MEMORY (with or without memory)

2a. Voltage threshold setting potentiometer U value

2b. Undervoltage setting potentiometer <U

2c. Overvoltage setting potentiometer >U

3. Time delay adjustment potentiometer Tt

4a. Hysteresis adjustment potentiometer Hys

4b. Hysteresis/overvoltage and undervoltage window mode adjustment potentiometer Hys/＞U

5. Diagnostic button

6. Configuration: selection of On-delay or Off-delay

Yellow LED: indicates relay output status
Operation

Harmony Control Relays
1-phase voltage control relays
RM22UA and RM22UB

Operating principle
1-phase voltage control relays monitor:
- the voltage of 1-phase and DC supplies
- their own supply voltage for the RM22UB model

An adjustable time delay on threshold crossing, provides immunity to transients, and helps prevent spurious triggering of the output relay.

RM22 UA2●MR/UA3●MR/UA33MT
The operating mode is determined by the user:
- Undervoltage with or without memory
- Overvoltage with or without memory

The position of the configuration switch and the operating mode is read by the product on energization:
- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open, and the LEDs flash to indicate the position error.
- If the configuration switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the position change.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

The undervoltage or overvoltage threshold value is set by means of a potentiometer graduated as a percentage of the scale value of U to be monitored. The hysteresis is adjusted by means of a potentiometer graduated from 5…50% of the threshold setting. The hysteresis value must not exceed the limit values of the measuring range.

Overvoltage without memory
- Overvoltage control > U, without memory

If the controlled voltage exceeds the threshold setting for a time greater than that set on the front panel (0.1…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes. As soon as the voltage drops below the value of the threshold setting minus the hysteresis, the relay instantly closes.

Undervoltage without memory
- Undervoltage control < U, without memory

If the controlled voltage falls below the threshold setting for a time greater than that set on the front panel (0.1…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes. As soon as the voltage rises above the value of the threshold setting plus the hysteresis, the relay instantly closes.
Harmony Control Relays
1-phase voltage control relays
RM22UA and RM22UB

Operating principle (continued)

RM22 UA2●MR/UA3●MR/UA33MT (continued)
Overvoltage/undervoltage with memory

- **Overvoltage control** > U, with memory
 - Supply Un
 - Threshold > U
 - Hysteresis
 - Relay outputs
 - If “Memory” mode is selected, the relay opens when crossing of the threshold is detected and then stays in that position. The power has to be switched off to reset the product.
 - Note: Tt: time delay after crossing of the threshold

- **Undervoltage control** < U, with memory
 - Supply Un
 - Hysteresis
 - Threshold < U
 - Relay outputs

RM22 UA3●MR/UA33MT/UB34
Overvoltage + undervoltage control relay in window mode

- **Overvoltage and undervoltage control in window mode** < U <
 - Supply Un
 - Threshold > U
 - Hysteresis
 - Threshold < U
 - Relay outputs
 - These relays operate in window mode where they check that the controlled voltage stays between a minimum and a maximum threshold.
 - The undervoltage or overvoltage threshold values are set by means of two graduated potentiometers clearly indicating the Un to be monitored. The hysteresis is fixed at 5% of the threshold setting.
 - If the controlled voltage exceeds the high threshold setting or falls below the low threshold setting for a time greater than that set on the front panel (0.1…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes.
 - As soon as the voltage falls below the high threshold setting value minus the hysteresis, or rises above the low threshold setting value plus the hysteresis, the relay instantly closes.
 - On energization of the device with a detected measured fault, the relay stays open.
 - If “Memory” mode is selected, the relay opens when crossing of the threshold is detected and then stays in that position. The power has to be switched off to reset the product.
 - Note: Tt: time delay after crossing of the threshold

Note: Tt: time delay after crossing of the threshold
<table>
<thead>
<tr>
<th>Reference</th>
<th>Function</th>
<th>Rated supply voltage</th>
<th>Measurement range</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
<th>kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM22UA21MR</td>
<td>Overvoltage (without memory)</td>
<td>24…240 °C</td>
<td>0.05…5 °C</td>
<td>No</td>
<td>2 CO 8 A</td>
<td>RM22UA21MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UA22MR</td>
<td>Overvoltage or undervoltage</td>
<td>24…240 °C</td>
<td>1…100 °C</td>
<td>No</td>
<td>2 CO 8 A</td>
<td>RM22UA22MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UA23MR</td>
<td>Overvoltage and undervoltage in</td>
<td>24…240 °C</td>
<td>15…500 °C</td>
<td>No</td>
<td>2 CO 8 A</td>
<td>RM22UA23MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UA31MR</td>
<td>Overvoltage or undervoltage</td>
<td>24…240 °C</td>
<td>0.05…5 °C</td>
<td>Off delay</td>
<td>2 CO 8 A</td>
<td>RM22UA31MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UA32MR</td>
<td>Overvoltage and undervoltage in</td>
<td>24…240 °C</td>
<td>1…100 °C</td>
<td>Off delay</td>
<td>2 CO 8 A</td>
<td>RM22UA32MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UA33MR</td>
<td>Overvoltage and undervoltage in</td>
<td>24…240 °C</td>
<td>15…500 °C</td>
<td>Off delay</td>
<td>2 CO 8 A</td>
<td>RM22UA33MR</td>
<td>0.110</td>
<td>0.242</td>
</tr>
<tr>
<td>RM22UB34</td>
<td>Overvoltage and undervoltage in</td>
<td>380…415 °C</td>
<td>15…500 °C</td>
<td>Off delay</td>
<td>2 CO 8 A</td>
<td>RM22UB34</td>
<td>0.090</td>
<td>0.198</td>
</tr>
<tr>
<td>RM22UA33MT</td>
<td>Overvoltage and undervoltage in</td>
<td>110…240 °C</td>
<td>80…300 °C</td>
<td>On/Off delay</td>
<td>2 CO 8 A</td>
<td>RM22UB34</td>
<td>0.090</td>
<td>0.198</td>
</tr>
</tbody>
</table>
Harmony Control Relays
1-phase current control relays with integrated current transformer
RM17JC

Presentation
The control relay RM17JC00MW is designed to monitor ～ currents.

Functions
<table>
<thead>
<tr>
<th>Overcurrent (without memory)</th>
<th>RM17JC00MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function performed</td>
<td></td>
</tr>
<tr>
<td>Function not performed</td>
<td></td>
</tr>
</tbody>
</table>

These control relays allow:
- Integrated current transformer
- Measurement range 2…20 A
- Choice of action on the output relay
- Clip-on mounting on a 5 rail

They feature a control status indicator LED.

Applications
- Load state control of motors and generators
- Control of current drawn by a 3-phase motor
- Monitoring of heating or lighting circuits
- Control of pump draining (undercurrent)
- Control of overtorque (crushers)
- Monitoring of electromagnetic brakes or clutches

Description
RM17JC00MW

1 Overcurrent setting potentiometer
2 Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status
Harmony Control Relays
1-phase current control relays with integrated current transformer
RM17JC

Operating principle
Control relay RM17JC00MW is:
- equipped with an integrated current transformer
- fault signaling is by LED

Function Diagram
- Power supply off
- Power supply on

RM17JC00MW
Overcurrent detection
Overcurrent detection > I
- Relay RM17JC00MW controls overcurrent.
- The relay closes when the current exceeds the threshold setting on the front panel and opens when it drops below the threshold minus the hysteresis.
- When terminal Y1 is linked to A1 (+), the output is reversed. The relay opens when the current exceeds the threshold setting on the front panel and closes again when it drops below the hysteresis value.

Reference

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply (without memory)</th>
<th>Measurement range</th>
<th>Output</th>
<th>Reference</th>
<th>Weight (kg/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent</td>
<td>24...240°C</td>
<td>2...20</td>
<td>1 CO</td>
<td>RM17JC00MW</td>
<td>0.110/0.243</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RM22JA and RM35JA multifunction current control relays monitor the following functions:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM22JA21MR</th>
<th>RM22JA31MR</th>
<th>RM35JA 32MR/32MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent (without memory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent (with/without memory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undercurrent (with/without memory)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent and undercurrent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(window mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These control relays enable:
- Automatic \(\sim\) or \(\approx\) recognition
- Selection between overcurrent and undercurrent
- Measurement as a true rms value
- Selectable memory function
- Clip-on mounting on a \(\sim\) rail

They feature:
- Dial pointer LED indicator for relay power ON status
- Relay output status LED
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Excitation control of DC machines
- Load state control of motors and generators
- Control of current drawn by a 3-phase motor
- Monitoring of heating or lighting circuits
- Control of pump draining (undercurrent)
- Control of overtorque (crushers)
- Monitoring of electromagnetic brakes or clutches

Description

RM22JA21MR, RM22JA31MR, RM35JA32MR, RM35JA32MT

1. Configuration: selection of operating mode \(<I\> (undercurrent), \(>I\> (overcurrent), \(>I>\) (overcurrent and undercurrent), MEMORY - NO MEMORY (with or without memory)
2. Current threshold setting potentiometer \(I\%\)
3a. Hysteresis adjustment potentiometer \(Hys\)
3b. Hysteresis/overcurrent and undercurrent window mode adjustment potentiometer \(Hys/>I>\)
4. Time delay adjustment potentiometer \(Tt\)
5. Diagnostic button
6. Overcurrent setting potentiometer \(>I\)

R Yellow LED: indicates relay output status
Operation

Harmony Control Relays
1-phase current control relays
RM22JA and RM35JA

Operating principle
Current control relays monitor the current of 1-phase and DC supplies.

An adjustable time delay on threshold crossing provides immunity to transients, helping prevent spurious triggering of the output relay.

Function Diagram

- **Power supply off**
- **Power supply on**
- **Output 11-14, 21-24 open**
- **Output 11-14, 21-24 closed**

RM22JA●1MR/RM35JA32M●

The operating mode is determined by the user:
- Undercurrent with or without memory
- Overcurrent with or without memory

The position of the configuration switch and the operating mode is read by the product on energization:
- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open and the LEDs flash to indicate the position error.
- If the configuration switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

The undercurrent or overcurrent threshold value is set by means of a potentiometer graduated as a percentage of the scale value of I to be monitored. The hysteresis is adjusted by means of a potentiometer graduated from 5...50% of the threshold setting. The hysteresis value must not exceed the limit values of the measuring range.

Overcurrent/Undercurrent without memory

Overcurrent detection I, without memory

If the controlled current exceeds the threshold setting for a time greater than that set on the front panel (0.1...30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes.

As soon as the current drops below the value of the threshold setting minus the hysteresis, the relay instantly closes.

Undercurrent detection $<I$, without memory

If the controlled current falls below the threshold setting for a time greater than that set on the front panel (0.1...30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes.

As soon as the current rises above the value of the threshold setting plus the hysteresis, the relay instantly closes.

Note: T_t: time delay after crossing of the threshold
Operation (continued)

Harmony Control Relays
1-phase current control relays
RM22JA and RM35JA

Operating principle (continued)

RM22JA●1MR/RM35JA32M● (continued)

Overcurrent/Undercurrent with memory

- Overcurrent I_{over}, with memory
 - Supply U_{in}
 - Threshold I_{th}
 - Relay Outputs
 - Hysteresis
 - Time delay T_t

- Undercurrent I_{under}, with memory
 - Supply U_{in}
 - Threshold I_{th}
 - Relay Outputs
 - Hysteresis
 - Time delay T_t

If “Memory” mode is selected, the relay opens when threshold crossing is detected and then stays in that position. The power has to be switched off to reset the product.

Note: T_t: time delay after crossing of the threshold

RM22JA●1MR/RM35JA32M●

Overcurrent and undercurrent control in window mode

- Overcurrent and undercurrent control in window mode I_{low}, without memory
 - Supply U_{in}
 - Threshold I_{th}
 - Relay Outputs
 - Hysteresis
 - Time delay T_t

These relays operate in window mode where they check that the controlled current stays between a minimum and a maximum threshold.

- The undercurrent or overcurrent threshold values are set by means of two graduated potentiometers clearly indicating the I to be monitored. The hysteresis is fixed at 5% of the threshold setting.
- If the controlled current exceeds the high threshold setting or falls below the low threshold setting for a time greater than that set on the front panel (0.1…30 s), the output relay opens and the R LED goes off. During the time delay, this LED flashes.
- As soon as the current falls below the high threshold setting value minus the hysteresis, or rises above the low threshold setting value plus the hysteresis, the relay instantly closes.
- On energization of the device with a detected measured fault, the relay stays open.

Note: T_t: time delay after crossing of the threshold
Harmony Control Relays

1-phase current control relays RM22JA and RM35JA

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Rated supply voltage</th>
<th>Measurement range</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent (without memory)</td>
<td>24…240 V</td>
<td>4 mA…1 A</td>
<td>No</td>
<td>2 CO 8 A</td>
<td>RM22JA21MR</td>
<td>0.110/0.242</td>
</tr>
<tr>
<td>Overcurrent (with/without memory)</td>
<td>24…240 V</td>
<td>4 mA…1 A</td>
<td>Off delay (0.1…30 s)</td>
<td>2 CO 8 A</td>
<td>RM22JA31MR</td>
<td>0.110/0.242</td>
</tr>
<tr>
<td>Undercurrent (with/without memory)</td>
<td>24…240 V</td>
<td>150 mA…15 A</td>
<td>Off delay (0.1…30 s)</td>
<td>2 CO 8 A</td>
<td>RM35JA32MR</td>
<td>0.120/0.264</td>
</tr>
<tr>
<td>Overcurrent and undercurrent in window mode (with/without memory)</td>
<td>24…240 V</td>
<td>150 mA…15 A</td>
<td>Off delay (0.1…30 s)</td>
<td>2 CO 8 A</td>
<td>RM35JA32MT</td>
<td>0.120/0.264</td>
</tr>
<tr>
<td>380…415 V</td>
<td>150 mA…15 A</td>
<td>Off delay (0.1…30 s)</td>
<td>2 CO 8 A</td>
<td>RM35JA32MT</td>
<td>0.120/0.264</td>
<td></td>
</tr>
</tbody>
</table>

Schneider Electric
Harmony Control Relays
1-phase current control relays
RM35JA

Presentation
Multifunction current control relays RM35JA3•MW monitor both AC and DC currents.

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35JA31MW</th>
<th>RM35JA32MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent (with/without memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undercurrent (with/without memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range controlled</td>
<td>2...500 mA</td>
<td>0.15...15 A</td>
</tr>
</tbody>
</table>

These control relays allow:
- Automatic AC or DC recognition
- Measurement ranges from 2 mA to 15 A
- Selection between overcurrent and undercurrent
- Measurement as a true rms value
- Selectable memory function
- Clip-on mounting on a 5 rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Excitation control of DC machines
- Control of the load state of motors and generators
- Control of current drawn by a 3-phase motor
- Monitoring of heating or lighting circuits
- Control of pump draining (undercurrent)
- Control of overtorque (crushers)
- Monitoring of electromagnetic brakes or clutches

Description
RM35JA31MW, RM35JA32MW

1 Configuration: selection of operating mode <I> / >I, (with or without memory)
 Memory - No Memory
2 Current threshold setting potentiometer I%
3 Hysteresis adjustment potentiometer Hysteresis
4 Time delay adjustment potentiometer Tt
5 Starting inhibition time delay adjustment potentiometer Ti
6 Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Operating principle
Control relays RM35JA3•MW are designed to:
- monitor • or •• currents
- automatically recognize the form of •• or (50 or 60 Hz) signal
- directly monitor up to 15 A (above this value a current transformer can be connected)
- signal detected faults by means of LEDs

Function Diagram
- Power supply off
- Power supply on
- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status
Operation (continued),
Harmony Control Relays
1-phase current control relays
RM35JA

Operating principle (continued)
RM35 JA31MW/JA32MW
The operating mode is selected by a switch:
- Undercurrent, with or without memory
- Overcurrent, with or without memory

The position of the switch and the operating mode is read by the product on energization:
- If the switch is set to an unacceptable position, the product detects a fault, the output relay stays open and the LEDs flash to indicate the position error.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

The undercurrent or overcurrent threshold value is set by a potentiometer graduated as a percentage of the scale value of current I to be monitored. The hysteresis is adjusted by a potentiometer graduated from 5…50% of the threshold setting and the value must not exceed the limit values of the measuring range.

<table>
<thead>
<tr>
<th>Function</th>
<th>Range controlled</th>
<th>Supply</th>
<th>Output</th>
<th>Reference</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent or undercurrent</td>
<td>2…500 mA</td>
<td>24…240°C</td>
<td>2 CO</td>
<td>RM35JA31MW</td>
<td>0.130/0.286</td>
</tr>
<tr>
<td>(with/without memory)</td>
<td>0.15…15 A</td>
<td>24…240°C</td>
<td>2 CO</td>
<td>RM35JA32MW</td>
<td>0.130/0.286</td>
</tr>
</tbody>
</table>

Note: Ti: starting inhibition time (adjustable on front panel)
Tt: time delay after crossing of the threshold (adjustable on front panel)
Harmony Control Relays
Liquid level control relays
RM22LA and RM22LG

Presentation
RM22LA and RM22LG liquid level control relays control one or two liquid levels, with a fill or empty function:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM22LA 32MR</th>
<th>RM22LG 11MR/11MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1/Level 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High sensitivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

RM22 liquid level control relays feature:
- A dial pointer LED indicator for relay power ON status
- A relay output status LED
- A sealable cover to help protect the settings
- A control status indicator LED

The relays are designed for clip-on mounting on a 5 rail.

Applications
These devices monitor the levels of conductive liquids. They control the actuation of pumps or valves to regulate levels and can also help prevent submersible pumps “dry running”, or tanks “overflowing”. They can also be used to control dosing of liquids in mixing processes and to help protect heating elements in the event of non-immersion.

They have a transparent, hinged cover on their front panel to avoid any accidental alteration of the settings. This cover can be directly sealed.

- Application examples for compatible liquids:
 - spring, town, industrial, and sea water
 - metallic salt, acid, or base solutions
 - liquid fertilizers
 - non-concentrated alcohol (< 40%)
 - liquids in the food processing industry: beer, coffee, etc.

Description

RM22LG11MR, RM22LG11MT, RM22LA32MR

1. Configuration: selection of the operating mode (Fill or Empty) and the sensitivity range (LS/St/HS)
2. Sensitivity control potentiometer (kΩ or %)
3. Configuration: selection of the number of levels and the On/Off time delay
4. Time delay control potentiometer Tt
5. Diagnostic button

Yellow LED: indicates relay output status
Operating principle

Liquid level control relays are designed to measure and control the levels of conductive liquids by means of resistive probes. The operating principle is based on measurement of the apparent resistance of the liquid between two submerged probes. When this value is less than the threshold setting on the front panel of the device, the relay changes state. To avoid electrolytic phenomena, an AC current runs across the probes.

A selector switch on the front panel allows selection of the required function and the sensitivity range. Control of a single level can be achieved by using the second selector switch. In this case, the Max. level probe stays up in the air and an adjustable time delay avoids any wave effect. Both products activate their output relay when a tank is either emptying or filling.

RM22LA and RM22LG

A selector switch on the front panel of these relays allows selection of the required sensitivity range and the empty or fill function. A second switch allows selection of the number of levels (1 or 2) and the type of time delay in the case of level 1 mode. The position of these configuration switches is taken into account on energization.

- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open, and the LEDs flash to signal the position error.
- If the configuration switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

Control of two levels, empty and fill function

<table>
<thead>
<tr>
<th>Level</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>Empty function (2 levels)</td>
</tr>
<tr>
<td>Min.</td>
<td>Fill function</td>
</tr>
</tbody>
</table>

Empty function

- **LS** (Low Sensitivity: 250 Ω…5 kΩ)
- **St** (Standard Sensitivity: 5 kΩ…100 kΩ)
- **HS** (High Sensitivity: 50 kΩ…1 MΩ)

The output relay stays open until the liquid reaches the Max. level probe. As soon as the Max. level is reached, the contact closes and then allows emptying of the tank (valve opens, pump starts, etc.). When the level drops below the Min. level, the contact opens to stop the emptying process.

Fill function

- **LS** (Low Sensitivity: 250 Ω…5 kΩ)
- **St** (Standard Sensitivity: 5 kΩ…100 kΩ)
- **HS** (High Sensitivity: 50 kΩ…1 MΩ)

The output relay stays energized until the liquid reaches the Max. level probe. As soon as the Max. level is reached, the contact opens and the pump stops. When the level drops below the Min. level, the contact closes again and pumping restarts to raise the level.
Harmony Control Relays
Liquid level control relays
RM22LA and RM22LG

Operation (continued)

Operating principle (continued)

RM22LA and RM22LG (continued)

Control of one level, empty function

- Level: 1 - **on delay** functions:
 - LS (Low Sensitivity: 250 Ω…5 kΩ)
 - St (Standard Sensitivity: 5 kΩ…100 kΩ)
 - HS (High Sensitivity: 50 kΩ…1 MΩ)

When the liquid level rises above the probe for a time greater than the time delay value Tt set on the front panel, the relay is energized and stays energized until the liquid level drops back to the probe. If the liquid drops back below the set level before the end of the time delay, the relay is not energized.

- Level: 1 - **off delay** functions:
 - LS (Low Sensitivity: 250 Ω…5 kΩ)
 - St (Standard Sensitivity: 5 kΩ…100 kΩ)
 - HS (High Sensitivity: 50 kΩ…1 MΩ)

When the liquid level rises above the probe, the relay is energized instantly and stays energized until the liquid again reaches the probe level for a time Tt set on the front panel. If the liquid drops back below the set level before the end of the time delay period, the relay stays energized.

Control of one level, fill function

- Level: 1 - **on delay** functions:
 - LS (Low Sensitivity: 250 Ω…5 kΩ)
 - St (Standard Sensitivity: 5 kΩ…100 kΩ)
 - HS (High Sensitivity: 50 kΩ…1 MΩ)

When the liquid level drops below the probe for a time greater than the time delay value Tt set on the front panel, the relay is energized and stays energized until the liquid level rises back up to the probe. If the liquid rises back above the set level before the end of the time delay period, the relay is not energized.

- Level: 1 - **off delay** functions:
 - LS (Low Sensitivity: 250 Ω…5 kΩ)
 - St (Standard Sensitivity: 5 kΩ…100 kΩ)
 - HS (High Sensitivity: 50 kΩ…1 MΩ)

When the liquid level drops below the probe, the relay is energized instantly and stays energized until the liquid level again reaches the probe level and stays above it for a time greater than the time delay period Tt set on the front panel. If the liquid drops back below the set level before the end of the time delay period, the relay stays energized.

Note: Tt: time delay after crossing of the threshold
Harmony Control Relays
Liquid level control relays
RM22LA and RM22LG

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Rated supply voltage</th>
<th>Measurement range</th>
<th>Time delay</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
<th>kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1/2</td>
<td>24…240 Vc</td>
<td>5 K…100 K</td>
<td>No</td>
<td>1 CO 8 A</td>
<td>RM22LG11MR</td>
<td>0.100/0.220</td>
<td></td>
</tr>
<tr>
<td>Fill operation</td>
<td>380…415 V</td>
<td>5 K…100 K</td>
<td>No</td>
<td>1 CO 8 A</td>
<td>RM22LG11MT</td>
<td>0.100/0.220</td>
<td></td>
</tr>
<tr>
<td>Empty operation</td>
<td>24…240 Vc</td>
<td>250…1 M</td>
<td>On/Off delay</td>
<td>2 CO 8 A</td>
<td>RM22LA32MR</td>
<td>0.110/0.242</td>
<td></td>
</tr>
</tbody>
</table>

RM22LG11MR
RM22LG11MT
RM22LA32MR
Harmony Control Relays
Level control relays
RM35L

Presentation
Level control relays RM35LM33MW and RM35LV14MW control 1 or 2 levels, with a fill or empty function:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35LM33MW</th>
<th>RM35LV14MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1, Level 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill/Empty operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection by resistive probes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection by discrete sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/Standard/High sensitivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

The relays are designed for clip-on mounting on a 35mm/1.38 in. rail.

Applications
These devices monitor the levels of conductive liquid or non-conductive material. They control the actuation of pumps or valves to regulate levels, help protect submersible pumps against dry running, or help protect tanks from “overflow”. They can also be used to control dosing of liquids in mixing processes and help protect heating elements in the event of non-immersion. They have a transparent, hinged cover on their front panel to avoid any accidental alteration of the settings. This cover can be directly sealed.

- Application examples for RM35LM33MW:
 - spring water, town water, industrial water, and sea water
 - metallic salt, acid, or base solutions
 - liquid fertilizers and non-concentrated alcohol (< 40%)
 - liquids in the food processing industry: beer, coffee, etc.

- Application examples for RM35LV14MW:
 - chemically pure water
 - fuels, liquid gases (flammable)
 - oil, concentrated alcohol (> 40%)
 - ethylene, glycol, paraffin, varnish, and paints

Description
RM35LM33MW

1. Configuration: selection of operating mode LS, St, HS
2. Sensitivity adjustment potentiometer %
3. Switch for selecting the number of levels
4. Time delay adjustment potentiometer T
5. Spring for clip-on mounting on 35 mm/1.38 in. rail

RM35LV14MW

1. Configuration: selection of operating mode LS, St, HS and of sensor type PNP, NPN
2. Time delay adjustment potentiometer T
3. Switch for selecting the number of levels
4. Spring for clip-on mounting on 35 mm/1.38 in. rail

Operating principle
Control relays RM35LM and RM35LV are designed to control the levels of:
- Conductive liquid for RM35LM (measures the levels by resistive probes)
- Any other material for RM35LV (controls the levels of conductive liquids)

The operating principle is based on measurement of the apparent resistance of the liquid between two submerged probes. When this value is less than the threshold setting on the front panel of the device, the relay changes state. To avoid electrolytic phenomena, an AC current runs across the probes.

A selector switch on the front panel allows selection of the required function and the sensitivity range. Control of a single level can be achieved by using the second selector switch. In this case, the Max. level probe stays up in the air and an adjustable time delay avoids any wave effect.
Operation (continued)

Harmony Control Relays
Level control relays
RM35L

Operating principle

RM35LM33MW

Relay RM35LV measures the levels by means of discrete sensors. These two products activate their output relay when a tank is either emptying or filling.

- A green Un LED indicates that the supply is on.
- A yellow R LED indicates the state of the output relay.
- A yellow Tt LED indicates that timing is in progress.
- The green and yellow LEDs flash to indicate an unacceptable setting position.

A selector switch on the front panel of these relays allows selection of the required sensitivity range and the empty or fill function. A second switch allows selection of the number of levels (1 or 2) and the type of time delay in the case of level 1 mode.

The position of these configuration switches is taken into account on energization.

- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open, and the LEDs flash to signal the position error.
- If the configuration switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

Control of two levels, empty and fill function

- Empty function
 level: 2, function:
 - £ LS (Low Sensitivity: 250 Ω...5 kΩ)
 - £ St (Standard Sensitivity: 5 kΩ...100 kΩ)
 - £ HS (High Sensitivity: 50 kΩ...1 MΩ)

 The output relay stays open until the liquid reaches the Max. level probe. As soon as the Max. level is reached, the contact closes and allows emptying of the tank (valve opens, pump starts, etc.). When the level drops below the Min. level, the contact opens to stop the emptying process.

- Fill function
 level: 2, function:
 - £ LS (Low Sensitivity: 250 Ω...5 kΩ)
 - £ St (Standard Sensitivity: 5 kΩ...100 kΩ)
 - £ HS (High Sensitivity: 50 kΩ...1 MΩ)

 The output relay stays energized until the liquid reaches the Max. level probe. As soon as the Max. level is reached, the contact opens and the pump stops. When the level drops below the Min. level, the contact closes again and pumping re-starts to raise the level.

Note: When two levels are being controlled, the anti-wave time delay function is not active.

Control of one level, empty function

- Empty function
 T on
 level: 1 - on delay functions:
 - £ LS (Low Sensitivity: 250 Ω...5 kΩ)
 - £ St (Standard Sensitivity: 5 kΩ...100 kΩ)
 - £ HS (High Sensitivity: 50 kΩ...1 MΩ)

 When the liquid level rises above the probe for a time greater than the time delay value Tt set on the front panel, the relay is energized and stays energized until the liquid level drops back to the probe.
 If the liquid drops back below the set level before the end of the time delay, the relay is not energized.

- Empty function
 T off
 level: 1 - off delay functions:
 - £ LS (Low Sensitivity: 250 Ω...5 kΩ)
 - £ St (Standard Sensitivity: 5 kΩ...100 kΩ)
 - £ HS (High Sensitivity: 50 kΩ...1 MΩ)

 When the liquid level rises above the probe, the relay is energized instantly and stays energized until the liquid again reaches the probe level for a time Tt set on the front panel.
 If the liquid drops back below the set level before the end of the time delay period, the relay stays energized.
Operation (continued)

Harmony Control Relays

Level control relays

RM35L

Operating principle (continued)

RM35LM33MW (continued)

Control of one level, fill function

- **Fill function T on**
 - Supply Un
 - Level (1)
 - Relays R

- **Fill function T off**
 - Supply Un
 - Level (1)
 - Relays R

Level: 1 - on delay functions:
- LS (Low Sensitivity: 250 Ω...5 kΩ)
- St (Standard Sensitivity: 5 kΩ...100 kΩ)
- HS (High Sensitivity: 50 kΩ...1 MΩ)

When the liquid level drops below the probe for a time greater than the time delay value \(T_t \) set on the front panel, the relay is energized and stays energized until the liquid level rises back up to the probe.

If the liquid rises back above the set level before the end of the time delay period, the relay is not energized.

Level: 1 - off delay functions:
- LS (Low Sensitivity: 250 Ω...5 kΩ)
- St (Standard Sensitivity: 5 kΩ...100 kΩ)
- HS (High Sensitivity: 50 kΩ...1 MΩ)

When the liquid level drops below the probe, the relay is energized instantly and stays energized until the liquid level again reaches the probe level and stays above it for a time greater than the time delay period \(T_t \) set on the front panel.

If the liquid drops back down to below the set level before the end of the time delay period, the relay stays energized.

RM35LV14MW

A selector switch on the front panel allows selection of the function (empty or fill) and the type of sensor. A second switch allows selection of the number of levels (1 or 2) and the type of time delay in the case of 1 level mode.

The position of these configuration switches is taken into account on energization.

- If the configuration switch is set to an unacceptable position, the product detects a fault, the output relay stays open, and the LEDs flash to signal the position error.
- If the configuration switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.

Control of two levels

- **Fill/Empty function**
 - Supply Un
 - Max. level
 - Min. level
 - Relays

Empty function

- Level: 2
 - The output relay stays open until the material reaches the Max. probe level. As soon as the Max. level is reached, the contact closes and allows emptying of the tank (valve opens, pump starts, etc.). When the level drops below the Min. probe level, the contact opens to stop the emptying process.

Fill function

- Level: 2
 - The output relay stays energized until the material reaches the Max. probe. As soon as the Max. level is reached, the contact opens and the pump stops. When the level drops below the Min. probe level, the contact closes again and pumping re-starts to raise the level.

Note: When two levels are being controlled, the anti-wave time delay function is not active.

Control of one level, empty function

- **Empty function T on**
 - Supply Un
 - Level (1)
 - Relays R

Level: 1 - on delay

When the material level rises above the probe for a time greater than the time delay value \(T_t \) set on the front panel, the relay is energized and stays energized until the material level drops back to the probe.

If the level rises above the probe before the end of time delay period, the relay is not energized.

- **Empty function T off**
 - Supply Un
 - Level (1)
 - Relays R

Level: 1 - off delay

When the material level rises above the probe, the relay is energized instantly and stays energized until the material level again reaches the probe and stays below it for a time greater than the time delay value \(T_t \) set on the front panel.

If the level drops back below the probe before the end of time delay period, the relay stays energized.
Operating principle (continued)

RM35LV14MW (continued)

Control of one level, fill function

- **Fill function T on**

 When the material level drops below the probe for a time greater than the time delay value T_t set on the front panel, the relay is energized and stays energized until the material level again reaches the probe.

 If the level rises above the probe before the end of time delay period, the relay is not energized.

- **Fill function T off**

 When the material level drops below the probe, the relay is energized instantly and stays energized until the material level again reaches the probe and stays above it for a time greater than the time delay period T_t set on the front panel.

 If the level drops back down to below the probe before the end of the time delay period, the relay stays energized.

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection by resistive probes (see page 70)</td>
<td>24...240 V</td>
<td>2 CO</td>
<td>RM35LM33MW</td>
<td>0.130/ 0.287</td>
</tr>
<tr>
<td>Detection by discrete sensors</td>
<td>24...240 V</td>
<td>1 CO</td>
<td>RM35LV14MW</td>
<td>0.130/ 0.287</td>
</tr>
</tbody>
</table>
Harmony Control Relays
3-phase and 1-phase pump control relays
RM35BA

Presentation
Measurement and control relay RM35BA10 is used for control and monitoring of 3-phase and single-phase pumps.

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35BA10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase phase sequence</td>
<td></td>
</tr>
<tr>
<td>3-phase phase loss</td>
<td></td>
</tr>
<tr>
<td>3-phase overcurrent and undercurrent control</td>
<td></td>
</tr>
<tr>
<td>1-phase overcurrent and undercurrent control</td>
<td></td>
</tr>
</tbody>
</table>

These control relays allow:
- Absence of one or more phases
- Undercurrent for protection against dry running
- Overcurrent for protection against overload
- Acceptance of different nominal voltage values:
 - 208...480 V ~ in 3-phase mode
 - 230 V ~ in 1-phase mode
- Clip-on mounting on a 5 rail
- Monitoring of their own supply voltage measured as a true rms value

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications
- Management of pumps

Description
RM35BA
1 Configuration: selection of active function and operating mode 3-ph/1-ph (Double - Single)
2 Overcurrent setting potentiometer > I
3 Undercurrent setting potentiometer < I
4 Time delay adjustment potentiometer Tt
5 Starting inhibition time delay adjustment potentiometer Ti
6 Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Operating principle
Pump control relay RM35BA10 can operate on a 1-phase or 3-phase supply and incorporates 3 functions in a single unit:
- Current control
- Phase presence control (in 3-phase mode)
- Phase sequence control (in 5-phase mode)

These relays have two operating modes which are designed to control a pump via two external signal inputs (Y1 and Y2). These two signal inputs are controlled by volt-free contacts.

Control signal inputs Y1 and Y2 can be connected to:
- A level sensor
- A level relay
- A pressure sensor
- A pushbutton, etc.
Fault signaling is by LEDs with differentiation of the reason for the fault.

RM35BA10
The following operating mode is selected by using a switch:
- Single control
- Double control
- 1-phase or 3-phase supply

The position of the switch and the operating mode is read by the product on energization.
- If the switch position is changed while the device is operating, all the LEDs flash, but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
- If the configuration switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.
Operating principle (continued)

RM35BA10 (continued)

Single control mode

- **Supply Un**
- **Y1**
- **Y2**
- **I.Def.**
- **Relays R**

This mode is designed to control a pump via an external signal. The relay output is closed when the signal is present at Y1 (contact closed). Y2 can be used to reset the relay after a current fault.

Note:
- **Ti:** time delay to inhibit fault monitoring on pump starting (overcurrent and undercurrent, setting on front panel)
- **Tt:** time delay on occurrence of a fault (overcurrent or undercurrent, setting on front panel)
- **I. Def.:** presence of a current fault (overcurrent or undercurrent)

Double control mode

- **Supply**
- **Y1**
- **Y2**
- **I.Def.**
- **Relays R**

This mode is designed to control a pump via two external control signals (Y1 and Y2). The output relay closes when both input signals are present (Y1 and Y2 closed). It will open as soon as one of these signals disappears.

Note:
- **Ti:** time delay to inhibit fault monitoring on pump starting (overcurrent and undercurrent, setting on front panel)
- **Tt:** time delay on occurrence of a fault (overcurrent or undercurrent, setting on front panel)
- **I. Def.:** presence of a current fault (overcurrent or undercurrent)

1-phase or 3-phase supply control mode

- **Overcurrent detection > I**
- **Supply Un**
- **Relays R**

- If the control relay is configured for a 1-phase supply, it monitors the current consumed by the pump.
- If the control relay is configured for a 3-phase supply, it monitors the current, phase sequence and phase loss.
- If a phase fault is detected, the output relay opens immediately.
- On energization, if there is a phase sequence or phase loss fault, the output is unable to energize.

The overcurrent and undercurrent values are set by two separate potentiometers, graduated from 1 to 10 A.

- If a setting error occurs (low threshold greater than high threshold), the output relays open and all the LEDs flash to signal the error.
- If a current fault occurs (overcurrent or undercurrent), the relay opens when the fault persists for longer than the threshold time delay setting.
- When the current returns to the correct value, the output relay continues to remain open. It can only be re-energized by a RESET: either by switching off the power, or by closing external contact Y2 (in single control mode).
- An inhibition time delay on energization (Ti) allows detection of current peaks on motor starting.

Note:
- **Ti:** time delay to inhibit fault monitoring on pump starting (overcurrent and undercurrent, setting on front panel)
- **Tt:** time delay on occurrence of a fault (overcurrent or undercurrent, setting on front panel)

Undercurrent detection < I

- **Supply Un**
- **Relays R**

- If a setting error occurs (low threshold greater than high threshold), the output relays open and all the LEDs flash to signal the error.
- If a current fault occurs (overcurrent or undercurrent), the relay opens when the fault persists for longer than the threshold time delay setting.
- When the current returns to the correct value, the output relay continues to remain open. It can only be re-energized by a RESET: either by switching off the power, or by closing external contact Y2 (in single control mode).
- An inhibition time delay on energization (Ti) allows detection of current peaks on motor starting.

Note:
- **Ti:** time delay to inhibit fault monitoring on pump starting (overcurrent and undercurrent, setting on front panel)
- **Tt:** time delay on occurrence of a fault (overcurrent or undercurrent, setting on front panel)

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Current range controlled</th>
<th>Supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight (kg/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase:</td>
<td>1…10</td>
<td>208…480 V, 5 A</td>
<td>1 CO</td>
<td>RM35BA10</td>
<td>0.110/0.243</td>
</tr>
<tr>
<td>Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent and undercurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-phase:</td>
<td>Overcurrent and undercurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Harmony Control Relays

3-phase and 1-phase pump control relays

RM35BA
Presentation

Frequency control relay RM35HZ monitors frequency variations on 50 or 60 Hz AC supplies:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35HZ21FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-frequency and under-frequency 50 or 60 Hz (with/without memory)</td>
<td>Function performed</td>
</tr>
</tbody>
</table>

These control relays allow:
- Over-frequency and under-frequency with two independent relay outputs
- Selectable memory function
- Monitoring of their own supply voltage measured as a true rms value
- Clip-on mounting on a 5 rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications

Monitoring of electrical power sources:
- Generating sets, wind turbines, micro-power stations, etc.

Description

RM35HZ21FM

1. Configuration: selection of 50/60 Hz frequency range and operating mode (with or without memory) **Memory - No Memory**
2. Frequency tolerance multiplication setting potentiometer x1-x2
3. Low frequency threshold setting switch **F <**
4. High frequency threshold setting switch **F >**
5. Time delay adjustment potentiometer
6. Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

Operating principle

Frequency control relay RM35HZ monitors:
- Frequency variations on 50 or 60 Hz supplies
- Over-frequency and under-frequency via adjustment of two independent thresholds. (It has two relay outputs: one per threshold)
- Fault signaling is by LED

- **Function selector switch:**
 - Set the switch to a frequency of 50 or 60 Hz of the supply monitored, then select Memory or No memory mode.
 - The position of the switch and the operating mode is read by the product on energization.
 - If the switch is set to an unacceptable position, the product detects a fault, the output relays stay open and the LEDs flash to indicate the position error.
 - If the switch position is changed while the device is operating, all the LEDs flash but the product continues to operate normally with the function selected at the time of energization preceding the change of position.
 - If the switch is returned to the original position selected prior to the last energization, the LEDs return to their normal state.
Operating principle (continued)

The under-frequency or over-frequency threshold values are set using two graduated potentiometers indicating the variation value of the frequency to be monitored. A switch x1/x2 allows the control scale to be doubled. Hysteresis is fixed at 0.3 Hz.

Over-frequency and under-frequency without memory

- If the frequency of the voltage controlled exceeds the over-frequency threshold setting for a time greater than that set on the front panel (0.1…10 s), the corresponding output relay opens and its LED goes off. During the time delay, this LED flashes.
- As soon as the frequency drops below the value of the threshold setting, minus the hysteresis, the relay instantly closes.
- If the frequency of the voltage controlled falls below the under-frequency threshold setting for a time greater than that set on the front panel (0.1…10 s), the corresponding output relay opens and its LED goes out. During the time delay, this LED flashes.
- As soon as the frequency rises above the value of the threshold setting, plus the hysteresis, the relay instantly closes.
- On energization of the device with a detected measured fault, the relay stays open.

Note: Tt: time delay after crossing of the threshold (adjustable on front panel)

Over-frequency and under-frequency with memory

- If “Memory” mode is selected, the relay opens after the time delay and stays in that position when crossing of the threshold is detected.
- The power needs to be switched off to reset the product.

Note: Tt: time delay after crossing of the threshold (adjustable on front panel)

Reference

<table>
<thead>
<tr>
<th>Function</th>
<th>Range controlled</th>
<th>Supply voltage</th>
<th>Output</th>
<th>Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-frequency and under-frequency</td>
<td>40…60 Hz (50 Hz)</td>
<td>120…277 V</td>
<td>1 CO + 1 CO</td>
<td>RM35HZ21FM</td>
<td>0.130/ 0.287</td>
</tr>
<tr>
<td></td>
<td>50…70 Hz (60 Hz)</td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-frequency and under-frequency</td>
<td>50 or 60 Hz (with/without memory)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RM35HZ21FM
Presentation

Speed control relay RM35S0MW monitors:

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35S0MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underspeed (with/without memory, with inhibition by external contact S2)</td>
<td></td>
</tr>
<tr>
<td>Overspeed (with/without memory, with inhibition by external contact S2)</td>
<td></td>
</tr>
</tbody>
</table>

- Function performed
- Function not performed

Speed control relay RM35S0MW measures via:

- A 3-wire PNP or NPN proximity sensor input
- A Namur proximity sensor input
- A 0-30 V voltage input
- A volt-free contact input

These control relays allow:

- Operation with either NO or NC sensors
- Adjustable time between impulses from 0.05 s…10 min
- Adjustable power-on inhibition time from 0.6 to 60 s
- Inhibition controlled by an external contact
- Clip-on mounting on a 5 rail

They feature:

- A sealable cover to help protect the settings
- A control status indicator LED

Applications

- Monitoring the speed or rate of rotary or linear movements in the following applications:
 - conveyors/conveyor belts
 - packaging
 - material handling

Description

RM35S00MW

1. Configuration: selection of operating mode: Underspeed or overspeed
 - Underspeed/Overspeed
 - with or without memory Memory - No Memory
2. Speed threshold setting potentiometer Value
3. Speed range selector switch
4. Starting inhibition time delay adjustment potentiometer Ti
5. Spring for clip-on mounting on 35 mm/1.38 in. 5 rail

In Yellow LED: indicates inhibition status (time delay or S2 input)
Un Green LED: indicates that supply to the product is on
R Yellow LED: indicates relay output status
Operation

Operating principle

Relay RM35S0MW monitors the speed (rate, frequency) of a process (conveyor, conveyor belt, etc.) using discrete sensors:
- 3-wire PNP or NPN proximity sensor
- 0-30 V voltage input
- NAMUR proximity sensor
- volt-free contact

It can be used for monitoring underspeed or overspeed.

Function Diagram

- Power supply off
- Power supply on
- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed

RM35S0MW

The control relay measures the speed as follows:

- The cycle of the process being monitored is a series of impulses characterized by a two-state signal: high and low.
- The speed is obtained by measuring the period of this signal, from the detection of first change of state (either rising or falling edge).
- Digital processing of the signal allows the disparity between the signals to be calculated.
- On energization or after appearance (or reappearance) of the sensor signal, detection (characterization) of the signal requires processing of one or two periods. During this time, control is inoperative.

The operating modes are selected by using the switch:

- Underspeed without memory
- Underspeed with memory
- Overspeed without memory
- Overspeed with memory

Underspeed control without memory

At the end of the starting inhibition time delay "Ti", as soon as the speed measured drops below the threshold setting, the output relay changes state from "closed" to "open". It returns to its initial state when the speed is again higher than the threshold plus hysteresis (fixed at 5% of the threshold setting).

When power is restored, after a break having lasted at least 1 s, the relay is in the "closed" state during the time delay and stays in that state for as long as the speed remains higher than the threshold.

Underspeed control with memory

When relay RM35S has been configured in "memory" mode, if underspeed is detected, the output relay stays in the "open" state, irrespective of any further changes in the process speed. It will not be able to return to the "closed" state until contact S2 closes (for at least 50 ms).

If, when S2 re-opens, the speed is not high enough, the relay returns to "open" state. Relay RM35S can also be reset by a power break (at least 1 s); the relay then returns to the "closed" state for at least the duration of the time delay, irrespective of the process speed.
Operation (continued)

Harmony Control Relays

Speed control relay

RM35S

Operating principle (continued)

RM35S0MW

Underspeed control with inhibition by S2

<table>
<thead>
<tr>
<th>Supply Un</th>
<th>Inhibit.</th>
<th>S2</th>
<th>Threshold</th>
<th>Vs</th>
<th>Ti</th>
<th>Inhib./S2</th>
</tr>
</thead>
</table>

On energization, to allow the process being monitored to reach its nominal operating speed, relay RM35S is inhibited for a time delay adjustable from 0.6…60 s. This time delay can be adjusted (shortened or lengthened) during inhibition.

Relay RM35S can also be inhibited by closing of contact S2: on starting, for example, if the process run-up to speed time is greater than 60 s, or at any time during operation.

Whether it results from a starting inhibition time delay or closing of S2, inhibition keeps the output relay in the “closed” position and is signaled by illumination of the inhibition LED.

If, after lifting of inhibition (end of starting inhibition time delay or opening of contact S2), the signal detection phase has not been completed, the relay drops out after the set wait time between two impulses (measured from the end of inhibition).

Inhibition should last as long as is necessary for the product to detect at least 2 periods.

When the signal has not been ‘characterized’ by the end of the inhibition period, the “inhibition” LED flashes for as long as speed measurement is impossible.

It is also possible to inhibit relay RM35S at any time, during operation, by closing S2.

Overspeed control without memory

<table>
<thead>
<tr>
<th>Supply Un</th>
<th>Threshold</th>
<th>Hysteresis</th>
<th>V</th>
<th>Vs</th>
<th>Ti</th>
</tr>
</thead>
</table>

At the end of the starting inhibition time delay, “Ti”, as soon as the speed measured is higher than the threshold setting, the output relay changes state from “closed” to “open”.

It returns to its initial state when the speed is again lower than the threshold minus hysteresis (fixed at 5% of the threshold setting).

When power is restored to relay RM35S, after a break having lasted at least 1 s, the relay is in the “closed” state during the time delay and stays in that state for as long as the speed remains lower than the threshold.

Overspeed control with memory

<table>
<thead>
<tr>
<th>Supply Un</th>
<th>Threshold</th>
<th>Hysteresis</th>
<th>V</th>
<th>Vs</th>
<th>Ti</th>
</tr>
</thead>
</table>

When relay RM35S has been configured in “memory” mode, if overspeed is detected, the output relay stays in the “open” state, irrespective of any further changes in the process speed.

It will not be able to return to the “closed” state until contact S2 closes (for at least 50 ms).

If, when S2 re-opens, the speed is too high, the relay returns to the “open” state.

Relay RM35S can also be reset by a power break (at least 1 s); the relay then returns to the “closed” state for at least the duration of the time delay, irrespective of the process speed.
On energization, in order to allow the process being monitored to reach its nominal operating speed, relay RM35S is inhibited for a time delay adjustable from 0.6…60 s. This time delay can be modified (shortened or lengthened) during inhibition. Relay RM35S can also be inhibited by closing of contact S2: on starting, for example, if the process run-up to speed time is greater than 60 s, or at any time during operation.

Whether it results from a starting inhibition time delay or closing of S2, inhibition keeps the output relay in the “closed” position and is signaled by illumination of the inhibition LED.

If, after lifting of inhibition (end of starting inhibition time delay or opening of contact S2), the signal detection phase has not been completed, the relay drops out after the set wait time between two impulses (measured from the end of inhibition).

Inhibition should last as long as is necessary for the product to detect at least 2 periods. When the signal has not been “characterized” by the end of the inhibition period, the “inhibition” LED flashes for as long as speed measurement is impossible.

It is also possible to inhibit relay RM35S at any time, during operation, by closing S2.

Reference

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply voltage (V)</th>
<th>Measurement Input</th>
<th>Output</th>
<th>Reference</th>
<th>Weight (kg/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underspeed (with/without memory)</td>
<td>24…240</td>
<td>3-wire</td>
<td>1 CO</td>
<td>RM35S0MW</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td>Overspeed (with/without memory)</td>
<td></td>
<td>PNP, NPN proximity sensor</td>
<td>5 A</td>
<td>RM35S0MW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Namur proximity sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-30 V voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volt-free contact</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harmony Control Relays

Temperature control relays for elevator machine rooms and 3-phase supplies
RM35ATL, RM35ATR, and RM35ATW

Presentation

Measurement and control relays RM35ATL0MW, RM35ATR5MW and RM35ATW5MW are designed for monitoring the temperature in elevator machine rooms, in compliance with directive EN81.

<table>
<thead>
<tr>
<th>Functions</th>
<th>RM35ATL0MW</th>
<th>RM35ATR5MW</th>
<th>RM35ATW5MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overtemperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undertemperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase loss</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Function performed**
- **Function not performed**

These control relays allow:
- PT100 input
- Adjustable control around 5 °C and 40 °C
- Independent adjustment of high and low thresholds
- Possibility of integrated phase control
- Clip-on mounting on a 35 mm rail

They feature:
- A sealable cover to help protect the settings
- A control status indicator LED

Applications

- Temperature control for elevator machine rooms

Description

RM35ATL0MW, RM35ATR5MW

1. High temperature threshold setting potentiometer (>)
2. Potentiometer for adjustment of time delay on crossing of temperature threshold (Tt)
3. Low temperature threshold setting potentiometer (<)
4. Spring for clip-on mounting on 35 mm/1.38 in. rail
5. High temperature threshold contact (11-14)
6. Low temperature threshold contact (21-24)
7. High and low temperature threshold contacts

RM35ATW5MW

1. High temperature threshold setting potentiometer (>)
2. Potentiometer for adjustment of time delay on crossing of temperature threshold (Tt)
3. Low temperature threshold setting potentiometer (<)
4. Spring for clip-on mounting on 35 mm/1.38 in. rail
5. Temperature relay contact (11-14)
6. Phase relay contact (21-44)

Operating principle

Temperature control relays for elevator machine rooms are designed to monitor the stated temperature between 5 °C and 40 °C in compliance with directive EN81.

Function Diagram

- Power supply off
- Power supply on
- Output 11-14, 21-24 open
- Output 11-14, 21-24 closed
Operating principle (continued)

RM35ATL0MW

Temperature control by PT100 probe

- Temperature control by PT100 probe

Supply \(U_n \)

<table>
<thead>
<tr>
<th>Hysteresis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(>\theta)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(<\theta)</td>
<td>(\theta)</td>
</tr>
</tbody>
</table>

Relays R

After a delay on pick-up after energization, and for as long as the temperature monitored by the PT100 probe remains between the two threshold settings on the front panel, the output relay is closed and the yellow LED is on.

When the temperature crosses one of the threshold settings on the front panel (high or low threshold), the time delay set on the front panel (\(T_t \)) is activated. The yellow LED corresponding to the threshold crossed (low or high) flashes.

At the end of the time delay, if the temperature is still outside the threshold setting, the output relay opens and the yellow LED corresponding to the threshold crossed goes out.

The output relay closes instantly (within the response time on disappearance of a fault) when the temperature returns within the window of the two threshold settings on the front panel, plus the fixed hysteresis.

If the PT100 probe is incorrectly wired (missing or short-circuited) the relay is open and the 3 LEDs flash.

Note: \(T_t \): time delay after crossing of the temperature threshold (adjustable on front panel)

RM35ATR5MW

Temperature control by PT100 probe

- Temperature control by PT100 probe

Supply \(U_n \)

<table>
<thead>
<tr>
<th>Hysteresis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(>\theta)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(<\theta)</td>
<td>(\theta)</td>
</tr>
</tbody>
</table>

Relay R1

Relay R2

After a delay on pick-up after energization, and for as long as the temperature monitored by the PT100 probe remains between the two threshold settings on the front panel, the output relays are closed and their yellow LEDs are on.

When the temperature crosses one of the threshold settings on the front panel (high or low threshold), the time delay set on the front panel (\(T_t \)) is activated. The yellow LED corresponding to the threshold crossed (low or high), flashes.

At the end of the time delay, if the temperature is still outside one of the threshold settings, the corresponding output relay opens and the yellow LED corresponding to the threshold crossed goes out.

The output relay closes instantly (response time on disappearance of a fault) when the temperature returns within the window of the two threshold settings on the front panel, plus (or minus) the fixed hysteresis.

If the PT100 probe is incorrectly wired (missing or short-circuited) the relays are open and the 3 LEDs flash.

Note: \(T_t \): time delay after crossing of the temperature threshold (adjustable on front panel)

RM35ATW5MW

Temperature and phase control

- Temperature control by PT100 probe
- Sequence of phases L1, L2, and L3
- Phase loss

Supply \(U_n \)

<table>
<thead>
<tr>
<th>Hysteresis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(>\theta)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(<\theta)</td>
<td>(\theta)</td>
</tr>
</tbody>
</table>

Relay R1

After a delay on pick-up after energization, and for as long as the temperature monitored by the PT100 probe remains between the two threshold settings on the front panel, the temperature relay R1 is closed.

When the temperature crosses one of the threshold settings on the front panel (high or low threshold), the time delay set on the front panel (\(T_t \)) is activated. The yellow temperature LED flashes. At the end of the time delay, if the temperature is still outside the threshold setting, the output relay R1 opens and the yellow LED goes out.

The output relay R1 closes instantly when the temperature returns within the window of the two threshold settings on the front panel, plus or minus the fixed hysteresis.

The device also monitors the correct sequence of phases L1, L2, and L3 of the 3-phase supply and total phase loss, even in the case of phase regeneration (< 70%).

After a delay on pick-up after energization, and for as long as phase presence and phase sequence are correct, relay R2 and the “phase” LED are On. When a fault appears, the “phase” relay opens and the “phase” LED instantly goes out (response time on appearance of a fault).

When the fault disappears, the phase control relay and LED are activated (response time on disappearance of a fault).

If the PT100 probe is incorrectly wired (missing or short-circuited) relay R1 is open and LED R1 flashes.

Note: \(T_t \): time delay after crossing of the temperature threshold (adjustable on front panel)

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Supply voltage</th>
<th>3-phase control</th>
<th>Output Reference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overtemperature: 34...46 °C</td>
<td>24...240 V</td>
<td>5 A</td>
<td>RM35ATL0MW</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td>Undertemperature -1...+11 °C</td>
<td>24...240 V</td>
<td>5 A</td>
<td>RM35ATR5MW</td>
<td>0.130/0.287</td>
</tr>
<tr>
<td>Overtemperature: 34...46 °C</td>
<td>208...480 V</td>
<td>5 A</td>
<td>RM35ATW5MW</td>
<td>0.130/0.287</td>
</tr>
</tbody>
</table>

Note: Tt: time delay after crossing of the temperature threshold (adjustable on front panel)
Probes

<table>
<thead>
<tr>
<th>Application</th>
<th>No. of probes</th>
<th>Length (mm/in.)</th>
<th>Operating temperature °C/°F</th>
<th>Maximum pressure kg/cm²</th>
<th>Reference</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended for drinks vending machines and where installation space is limited (Stainless steel)</td>
<td>3</td>
<td>1000/39.37</td>
<td>80/176</td>
<td>2</td>
<td>RM79696044</td>
<td>0.800/1.764</td>
</tr>
<tr>
<td>Suitable for boilers, pressure vessels and high temperature conditions (1) (304 stainless steel)</td>
<td>1</td>
<td>1000/39.37</td>
<td>200/392</td>
<td>25</td>
<td>RM79696014</td>
<td>0.360/0.794</td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM79696043</td>
<td>Protective shell PUC (S7) Electrode: stainless steel</td>
<td>0.150/0.331</td>
</tr>
</tbody>
</table>

Type of installation

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of installation</th>
<th>Maximum operating temperature °C/°F</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA9RM201</td>
<td>Suspended by cable</td>
<td>100/212</td>
<td>0.100/0.220</td>
</tr>
</tbody>
</table>

(1) 3/8” BSP mounting thread with hexagonal head. Use a 24 mm (0.95 in.) spanner for tightening.
Electrode holders

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Reference</th>
<th>Weight kg/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode for use up to 350 °C and 15 kg/cm²</td>
<td>Ceramic-insulated stainless steel</td>
<td>RM79696006</td>
<td>0.150/0.331</td>
</tr>
</tbody>
</table>

(1) 3/8” BSP mounting thread.
Harmony Control Relays
Near Field Communication and conventional Control Relays

<table>
<thead>
<tr>
<th>L</th>
<th>LA9RM201 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RM17JC00MW 45</td>
</tr>
<tr>
<td></td>
<td>RM17TA00 23</td>
</tr>
<tr>
<td></td>
<td>RM17TE00 23</td>
</tr>
<tr>
<td></td>
<td>RM17TG00 13</td>
</tr>
<tr>
<td></td>
<td>RM17TG20 13</td>
</tr>
<tr>
<td></td>
<td>RM17TT00 23</td>
</tr>
<tr>
<td></td>
<td>RM17TU00 23</td>
</tr>
<tr>
<td></td>
<td>RM17UAS14 37</td>
</tr>
<tr>
<td></td>
<td>RM17UAS15 37</td>
</tr>
<tr>
<td></td>
<td>RM17UAS16 37</td>
</tr>
<tr>
<td></td>
<td>RM17UAS15S15M 37</td>
</tr>
<tr>
<td></td>
<td>RM17UB310 29</td>
</tr>
<tr>
<td></td>
<td>RM17UBE15 37</td>
</tr>
<tr>
<td></td>
<td>RM17UBE16 37</td>
</tr>
<tr>
<td></td>
<td>RM22JA21MR 49</td>
</tr>
<tr>
<td></td>
<td>RM22JA31MR 49</td>
</tr>
<tr>
<td></td>
<td>RM22LA32MR 55</td>
</tr>
<tr>
<td></td>
<td>RM22LA32MR 55</td>
</tr>
<tr>
<td></td>
<td>RM22LB11MR 55</td>
</tr>
<tr>
<td></td>
<td>RM22LG11MT 55</td>
</tr>
<tr>
<td></td>
<td>RM22TA31 19</td>
</tr>
<tr>
<td></td>
<td>RM22TA33 19</td>
</tr>
<tr>
<td></td>
<td>RM22TG20 19</td>
</tr>
<tr>
<td></td>
<td>RM22TR31 19</td>
</tr>
<tr>
<td></td>
<td>RM22TR33 19</td>
</tr>
<tr>
<td></td>
<td>RM22TU21 19</td>
</tr>
<tr>
<td></td>
<td>RM22TU23 19</td>
</tr>
<tr>
<td></td>
<td>RM22UA21MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA22MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA23MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA31MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA32MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA33MR 43</td>
</tr>
<tr>
<td></td>
<td>RM22UA33MT 43</td>
</tr>
<tr>
<td></td>
<td>RM22UB34 43</td>
</tr>
<tr>
<td></td>
<td>RM35ATL0MW 69</td>
</tr>
<tr>
<td></td>
<td>RM35ATL0MW 69</td>
</tr>
<tr>
<td></td>
<td>RM35ATR5MW 69</td>
</tr>
<tr>
<td></td>
<td>RM35ATW5MW 69</td>
</tr>
<tr>
<td></td>
<td>RM35BA10 61</td>
</tr>
<tr>
<td></td>
<td>RM35HA21F7 63</td>
</tr>
<tr>
<td></td>
<td>RM35JA31MW 51</td>
</tr>
<tr>
<td></td>
<td>RM35JA32MR 49</td>
</tr>
<tr>
<td></td>
<td>RM35JA32MT 49</td>
</tr>
<tr>
<td></td>
<td>RM35JA32MW 51</td>
</tr>
<tr>
<td></td>
<td>RM35LM33MW 59</td>
</tr>
<tr>
<td></td>
<td>RM35VL14MW 59</td>
</tr>
<tr>
<td></td>
<td>RM35SM0MW 67</td>
</tr>
<tr>
<td></td>
<td>RM35TF30 25</td>
</tr>
<tr>
<td></td>
<td>RM35TM50MW 33</td>
</tr>
<tr>
<td></td>
<td>RM35TM250MW 33</td>
</tr>
<tr>
<td></td>
<td>RM35UA11MW 39</td>
</tr>
<tr>
<td></td>
<td>RM35UA12MW 39</td>
</tr>
<tr>
<td></td>
<td>RM35UA13MW 39</td>
</tr>
<tr>
<td></td>
<td>RM35UB3N30 29</td>
</tr>
<tr>
<td></td>
<td>RM35UB330 29</td>
</tr>
<tr>
<td></td>
<td>RM79696006 71</td>
</tr>
<tr>
<td></td>
<td>RM79696014 70</td>
</tr>
<tr>
<td></td>
<td>RM79696043 70</td>
</tr>
<tr>
<td></td>
<td>RM79696044 70</td>
</tr>
<tr>
<td></td>
<td>RNFP22TB30 15</td>
</tr>
</tbody>
</table>
Learn more about our products at www.se.com/Harmony Control Relays

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein.

Design: Schneider Electric
Photos: Schneider Electric

Schneider Electric Industries SAS
Head Office
35, rue Joseph Monier - CS 30323
F-92500 Rueil-Malmaison Cedex
France
DIA5ED2160501EN
October 2021 - V6.0