Earth Fault Protection

How to design efficient earth fault protection with Residual Current Devices (RCD)

Guide 2020
The aim of this guide is to provide advice for the selection and implementation of Residual Current Devices according to international series of standards IEC 60364 and based on Schneider Electric best practices and products.

The information provided in this guide contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of the reader to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof.

Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

Any work performed on an electrical installation must comply with all applicable local, regional and national regulations.

Failure to observe this information can result in injury or equipment damage.
Contents

How to design efficient earth fault protection

Why to use residual current devices ...................... 2

What are the technologies used in RCD ................. 5

How to select and install residual current devices .......................................... 10

How to ensure maintenance of installation ............. 42

Example: ensure efficient earth fault protection ................................................. 45

Selectors ...................................................................... 54

Appendix ...................................................................... 55

Acronyms ..................................................................... 61
Residual Current Devices (RCD) are designed to provide protection against hazardous earth fault current.

The principles of the protection of persons against electric shock refer to the serious physiological risks (respiratory paralysis, ventricular fibrillation) that can occur in the event of contact with a live part, causing an excessively high current to flow through the human body for too long a time.

The IEC 60479-1 publications updated in 2016 define the limit (C1) below which these principles must be come into play.

Protection of persons in low-voltage installations must comply with standards, installation rules, best practices, official guides, circulars, etc. i.e. IEC 61140, IEC 60364, IEC 60479, IEC 61008, IEC 61009, IEC 60947-2, etc.

In accordance with IEC 61140, in low voltage installations, the triple level of protection is mandatory:

**Level 1**
Hazardous live-parts shall not be accessible
This level applies to any "normally" live part (for example electrical cable) to prevent any person to come into contact with it (direct contact). The type of protection to be implemented is called "basic protection". An insulation barrier such as cable insulation, a cover, housing, cable protection troughs, etc. is required to ensure protection.

**Level 2**
Accessible-conductive-parts shall not become hazardous
This level applies to any accessible conductive part that is not "normally" live but which may become hazardous due to a failure of the basic protection that is not visible to the user (indirect contact) (for example metallic casing of a machine). The type of protection to be implemented under these circumstances is called "fault protection". This protection can be ensured by bonding and connection to earth of the accessible conductive parts and the use of an earth fault protection device. In the TT method of earthing, this earth fault protection device shall be a residual current device with adequate sensitivity. A second insulation barrier also ensures protection.

**Level 3**
If the two previous means of protection fail or if in presence of "hazardous" situation (for example socket outlet that will be used by non skilled people), an ultimate protection device must be implemented.
This protection is called "additional" protection. All the preceding protective measures cannot be regarded as being infallible. Some cases where the protective measures can fail are: immersion in water, improper earthing, wear and tear of insulation, etc...
In order to protect users in such circumstances, highly sensitive RCD (IΔn ≤ 30 mA) are used to disconnect the power supply automatically to prevent injury to, or death by electrocution.

<table>
<thead>
<tr>
<th>Protection</th>
<th>Contact</th>
<th>Involvement of the residual current device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Basic</td>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>2- Fault</td>
<td>Indirect</td>
<td></td>
</tr>
</tbody>
</table>
| 3- Additional | Direct / Indirect | }
How to design efficient earth fault protection

Why to use residual current devices

Installation standard requirement for additional protection with high sensitive RCD (30 mA)

<table>
<thead>
<tr>
<th>Additional Protection against electric shock with RCD</th>
<th>International</th>
<th>France</th>
<th>Other countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuits supplying socket-outlet up to 32 A for any type of buildings</td>
<td>Mandatory(1)</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Circuit supplying mobile equipment up to 32 A for outdoor use</td>
<td>Mandatory(2)</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Dwelling: circuits supplying luminaires</td>
<td>Mandatory(3)</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Dwelling: circuits supplying fixed appliances for electrical heating</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Depends on the country local regulation</td>
</tr>
<tr>
<td>Dwelling: other circuits</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Depends on the country local regulation</td>
</tr>
<tr>
<td>Bathroom: all circuits supplying equipments and circuits passing in the bathroom</td>
<td>Mandatory(4)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Swimming pool: all circuits in swimming pools or locations with fountains except circuits protected by SELV or electrical separation</td>
<td>Mandatory(5)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Saunas: all circuits</td>
<td>Mandatory(6)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Construction sites: circuits supplying socket-outlets up to 32 A and hand held equipments</td>
<td>Mandatory(7)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Agricultural premises:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• circuits supplying socket outlets up to 32 A (protection by 30 mA RCD)</td>
<td>Mandatory(8)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>• other circuits: protection by 300 mA RCD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caravan park and camping parks: all circuits to be protected by 30 mA RCD</td>
<td>Mandatory(9)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Marina and pleasure crafts: all circuits supplying socket-outlets up to 63 A and circuits supplying the fixed connection of a supply to a boat</td>
<td>Mandatory(10)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>External lighting installations: circuits to be protected by 30 mA RCD</td>
<td>Mandatory(11)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Exhibitions, shows and stands: all circuits to be protected by 30 mA RCD</td>
<td>Mandatory(12)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Supply of electric vehicle: each connected point to be protected by 30 mA RCD</td>
<td>Mandatory(13)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
<tr>
<td>Circuit supplying heating cables and heating embedded systems (heating floor) to be protected by 30 mA RCD</td>
<td>Mandatory(14)</td>
<td>Mandatory</td>
<td>See local regulation</td>
</tr>
</tbody>
</table>

(1) See IEC 60364-4-41 § 411.3.3, 1st paragraph
(2) See IEC 60364-4-41 § 411.3.3, 2nd paragraph
(3) See IEC 60364-4-41 § 411.3.4
(4) See IEC 60364-7-701 § 701.415
(5) See IEC 60364-7-702 § 702.410.3
(6) See IEC 60364-7-703 § 703.412
(7) See IEC 60364-7-704 § 704.410.3
(8) See IEC 60364-7-705 clause 705.411
(9) See IEC 60364-7-706 § 708.531
(10) See IEC 60364-7-709 § 709.531.2
(11) See IEC 60364-7-710 § 711.411
(12) See IEC 60364-7-711 § 711.410.3
(13) See IEC 60364-7-722 § 722.411.3
(14) See IEC 60364-7-722 § 753.411.1.
Protection against fire hazards

Many fires of electrical origin are caused by the creation and propagation of electric arcs in building materials, in the presence of moisture, dust, pollution, etc. These arcs appear and develop due to the wear and tear or ageing of the insulating materials. The fire hazard occurs when the leakage currents reach a few hundred milliamps for a few seconds.

For fault currents of this magnitude, residual current devices with a sensitivity of 300 mA or 500 mA trip in less than a second, whether they be instantaneous, selective or time-delayed.

IEC 60364-4-42 (subclause 422.3.10) states that it is mandatory to install a residual current device with a sensitivity less than or equal to 300 mA:

- on premises with a risk of explosion (BE3)
- on premises with a risk of fire (BE2)
- in agricultural and horticultural buildings
- for circuits supplying fair, exhibitions and entertainment equipment
- on temporary outdoor leisure facilities.

In some countries, installation rules and/or local safety regulations require a sensitivity of 300 mA.
Residual Current Devices (RCDs)

The basic characteristics of the operation of a RCD are shown opposite:

- A magnetic toroid surrounds all the active conductors, including the neutral conductor, if present, supplying an electrical circuit. The magnetic flux generated in the magnetic toroid depends at all times on the vector sum of the currents in the active conductors.
- In the case of a single-phase circuit, the incoming current $I_1$ (from source to use) is considered to be positive, while the outgoing current $I_2$ is considered to be negative.
- For a healthy electrical circuit, $I_1 + I_2 = 0$, there is no magnetic flux.
- In case of earth leakage, a fault current $I_d$ flows through the magnetic toroid from source to use but returns through the protective conductors (TN method of earthing) or via the earth (TT method of earthing). Consequently, the sum of the incoming and outgoing currents is not zero, i.e. $I_1 + I_2 = I_d$, and this difference in current creates a magnetic flux. The difference in current is called “residual current.”
- The resulting alternating flux in the magnetic toroid consequently induces an electromotive force in the secondary winding so that a current $I_3$ flows through the tripping control winding of the device.
- If the residual current $I_d$ exceeds the value (the threshold) required to trip the device directly or via an electronic relay, this will cause the associated disconnection device (switch or circuit breaker) to open.

With the Voltage Dependent (VD) technology, the summation current transformer measures residual current. An electronic circuit detects the tripping level and then sends an order to tripping unit to open the protected circuit:

- In this case, the power supply of electronic circuit and energy for tripping unit come from the line voltage.
- With this technology, the RCD will be able to detect but not to trip if the line voltage is too low, because the electronic circuit and tripping units needs to be powered.
The different residual current device categories

IEC 60755 describes general requirements for residual current operated protective devices.

1. **Vigi modules (Vigi NG125, see example in the figure)**
   - The add-on Vigi module is the most flexible residual current device (it is installed in combination with a circuit breaker).
   - Vigi are covered by the IEC 61009 and IEC 62423 series of standards.

2. **Residual Current operated Circuit Breakers without integral overcurrent protection (RCCB) (Acti 9 iID, see example in the figure)**
   - The Acti 9 iID RCCB is the main residual current device in the facility and is used as the main incomer.
   - RCCB are covered by the IEC 61008 and IEC 62423 series of standards.

3. **Residual Current operated circuit Breakers with integral Overcurrent protection (RCBO) (Acti 9 iCV40N, see example in the figure)**
   - RCBO = combination of circuit breaker and residual current device function in the same product. This can be obtained by combining the circuit breaker with its Add-on Vigi Module.
   - RCBO are covered by the IEC 61009 and IEC 62423 series of standards.

4. **Socket RCD (SRCD) (see example in the figure)**
   - SRCD are covered by the IEC 62640 series of standards.

5. **Industrial type circuit breakers incorporating the RCD function must comply with Annex B of IEC 60947-2.**
   - Residual current devices with a separate toroid are standardized in Annex M of IEC 60947-2.
The residual current device consists of:
- high magnetic performance core (e.g., nanocristalline)
- a high-sensitivity relay
- an electronic interface analyzing the signal.

The toroid provides information on the leakage current and the power required to trip the device.

The electronic circuit and the relay are not connected to the electrical network. Power is provided only by the leakage current.

Even if there is an accidental break of the neutral conductor or a voltage drop, the entire electromechanical system will continue to operate, allowing the residual current device to trip.
Standards associated with the technology
"Voltage Independent Technology"

- **Voltage Independent RCCBs** must comply with two international standards:
  - IEC/EN 61008-1 - General rules for RCCBs,
  - IEC/EN 61008-2-1 - Particular rules for line voltage-independent RCCBs.

- **Voltage Independent RCBOs** must comply with these two international standards:
  - IEC/EN 61009-1 - General rules for RCBOs,
  - IEC/EN 61009-2-1 - Particular rules for line voltage-independent RCBOs.

Conformity with the particular rules implies conformity with the general rules. In practice, the products are certified IEC/EN 61008-2-1 or IEC/EN 61009-2-1.

Conformity with the standards is confirmed by a national conformity mark on the product. The mark is assigned by a third-party organization independent of Schneider Electric. This involves regular sampling at the production site to ensure continued conformity with the standards in question.

The international series of installation standards (IEC 60364) highly recommends the use of residual current devices independent of the network voltage in buildings occupied by persons not trained in the prevention of electrical hazards (residential buildings, tertiary buildings, etc.).

In some countries, it is required to use RCD with voltage independent technology (VIT) for final circuits.
How to design efficient earth fault protection

What are the technologies used in RCD Technology: Voltage Dependent Technology (with and without FE)

A voltage source is required to operate this technology. For Schneider Electric residual current devices, earth fault protection is provided in the event of a voltage drops down to 50 V.

In the case of VDT technology ("Voltage Dependent Technology"), the toroid only provides information about the leakage current. The power required for tripping is supplied by the electrical network.

Standards associated with "Voltage Dependent Technology"

- **Voltage Dependent Technology RCCBs** comply with two international standards:
  - IEC 61008-1 - General rules for RCCBs,
  - IEC 61008-2-2 - Particular rules for line voltage-dependent RCCBs.

- **Voltage Dependent Technology RCBOs** comply with two international standards:
  - IEC 61009-1 - General rules for RCBOs,
  - IEC 61009-2-2 - Particular rules for line voltage-dependent RCBOs.

"Voltage Dependent Technology" RCDs supplied via the FE (Functional Earth)

In the event of loss of supply (required to address the fault and trip), there are two categories of behavior:

- **Category 1**: the RCD does not open and continuity of service is optimum, because the load is powered on when the voltage is restored, but the RCD is unable to operate if the loss of power supply is the result of a neutral break. The presence of line voltage is a hazard because the RCD is no longer able to perform its protection function in the event of contact with the line potential.
- **Category 2**: the RCD opens if there is loss of power supply (including in the event of neutral break). After the voltage is restored, the RCD must be reclosed to power on the load again.

To improve the level of protection provided by category 1 RCD, in the event of neutral breaking, the product is supplied by redundancy via the FE (line to FE supply instead of line to neutral), allowing it to continue to perform its protection function. This configuration allows the behavior of VDT RCDs to be compared with that of VIT RCDs.

**Note**

Parts 2-1 and 2-2 of IEC/EN 61008 and IEC/EN 61009 must be applied for a product to be able to claim full conformity with the standards in question.

According to the standard requirements, all electrical equipment protected by VD with FE RCDs must be earthed to ensure maximum earthing resistance as follows:
- $U_e = 110$ V: 50 ohm,
- $U_e = 230/240$ V: 100 ohm.

**www.se.com**
How to design efficient earth fault protection

How to select and install residual current devices

How to choose fault protection (indirect contact) according to method of earthing

Selector no. 1: Involvement of RCD depends on method of earthing

Additionnal protection
If installation rules impose 30 mA RCD additional protection (see Selector no. 2), this requirement is applicable whatever the method of earthing.

Note for IT system:
Only circuits with socket-outlet without high level of availability can be protected with 30 mA RCD because risk of unwanted tripping is high.

Compared to a TT/TN single-phase leakage current, in IT system, leakage current increases significantly when a first failure occurs. This can lead to sympathetic tripping of RCD on parallel circuits.
- It is multiplied by 4 in 4-wire system.
- It is multiplied by 3 in 3-wire system.
- It is multiplied by √7 in single-phase system.

This first failure creates inrush currents due to non symmetric system and a low transient impedance.
A A-SI type RCD is highly recommended.

(*) This case considers the occurrence of 2 phase-to-chassis faults.
Protection against indirect contacts
The response times of residual current devices are in conformance with the requirements of the installation standards (IEC 60364 for protection against indirect contact).

Indirect contact
A person who comes into contact with an accidentally live frame caused by an insulation fault experiences an indirect contact: the contact voltage Uc creates a current that passes through the human body.

Maximum breaking time
The maximum breaking time required by the installation standards, in the event of an insulation fault, depends on:
- the network voltage
- the method of earthing.

Maximum breaking time for terminating circuits (ms)

<table>
<thead>
<tr>
<th>Method of earthing</th>
<th>Network line/neutral voltage (V)</th>
<th>≤ 120V</th>
<th>120 &lt; U ≤ 230V</th>
<th>≤ 400V</th>
<th>&gt; 400V</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN or IT</td>
<td>800</td>
<td>400</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>300</td>
<td>200</td>
<td>70</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Note
A breaking time of no more than 5 s is permitted for distribution circuits, to ensure selectivity with the devices installed on the terminal circuits. This time should be reduced to the essential minimum. These times are based on the maximum prospective values of the contact voltage Uc and on the contact times authorized by technical report IEC 60479.

Example
On a three-phase line/neutral voltage network Uo = 230 V in a TT system:
- the resistance of the neutral earth connection Rn is 10 Ω
- the resistance of the frame to earth connection Ra is 100 Ω.

In the event of an insulation fault, the leakage current Id is equal to: Uo/(Ra+Rn) i.e. 230 V/110 Ω = 2.1 A.

The contact voltage Uc is therefore Id x Ra, i.e. 2.1 A x 100 Ω = 210 V.

Protection sensitivity
The residual current device must trip as soon as the leakage current corresponds to a hazardous situation, i.e. a contact voltage of 50 V (in a dry atmosphere). Hence, IΔn = 50 V/Ra, i.e. 50 V/100 Ω = 500 mA.

Maximum breaking time
For a 230 V line/neutral voltage network in a TT system, the IEC 60364 series of standards requires a maximum breaking time of 200 ms.

For the 2.1 A leakage current:
- an instantaneous residual current device with a sensitivity of 300 mA will open the circuit in less than 40 ms.
- an instantaneous residual current device with a sensitivity of 500 mA will open the circuit in less than 150 ms.

Note
For well-designed and regularly maintained electrical installations, the resistance of the frame to earth connection can be less than 100 Ω.

Use of time-delayed residual current devices
In accordance with the breaking times required by the installation standards (above), the selective and time-delayed residual current devices can be used in the following cases:

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Network voltage (line/neutral)</th>
<th>Residual current device</th>
<th>Selective</th>
<th>Time-delayed R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminating circuit</td>
<td>≤ 230 V</td>
<td>■</td>
<td>■</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>&gt; 230 V</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Sub-distribution or general</td>
<td>≤ 230 V</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>&gt; 230 V</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

(1) Only in a TN system for a line/neutral voltage < 120 V.
### Choice of sensitivity

The sensitivity of a residual current device depends mainly on its function:
- protection from electric shock by direct contact
- protection from electric shock by indirect contact
- protection from fire due to leakage current.

The following table indicates:
- the circuits that must be protected against these various risks (obligation or recommendation)
- the type of residual current device to be used in each case, its sensitivity and its location in the distribution diagram.

<table>
<thead>
<tr>
<th>Type of protection</th>
<th>Standard requirements</th>
<th>Additional Schneider Electric recommendations</th>
<th>Sensitivity (IΔn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection from electric shock by direct contact</td>
<td>To be filled in according to the country standard</td>
<td>International series of standards IEC 60364</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Power supply:</td>
<td></td>
<td>30 mA (*)</td>
</tr>
<tr>
<td></td>
<td>- general purpose power sockets, up to 20 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- appliances in the vicinity of bathtub, shower,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- pond or swimming pool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- portable appliances for outdoor use, up to 32 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be modified according to national obligations (above)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection from electric shock by indirect contact</td>
<td>To be filled in according to the country standard</td>
<td>The entire power distribution, except for devices:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Power supply:</td>
<td>- with Class II insulation</td>
<td>100 mA to 3000 mA</td>
</tr>
<tr>
<td></td>
<td>- operating at Safety Extra Low Voltage (Class III)</td>
<td>- to be modified according to national obligations (above)</td>
<td>(depending on the method of earthing)</td>
</tr>
<tr>
<td>Protection from fire due to leakage current</td>
<td>To be filled in according to the country standard</td>
<td>High-risk premises:</td>
<td>300 mA (or 500 mA)</td>
</tr>
<tr>
<td></td>
<td>Power supply:</td>
<td>- explosion (BE3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- fire (BE2)</td>
<td>- Agricultural and horticultural buildings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Equipment for fairs, exhibitions and shows</td>
<td>- Temporary outdoor recreational installations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be modified according to national obligations (above)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) 10 mA sensitivity is useful for certain very specific applications where there is a risk that someone could sustain a 10 to 30 mA current without being able to get free. This type of residual current can be recommended in public buildings visited by children, the elderly and animals; it can also be used in the terminal sockets of hospital rooms. Generally, devices with this very high sensitivity are liable to cause frequent tripping, due to the natural leakage currents of the installation.
Selector no. 2: Choosing the sensitivity of earth fault protection according to the risks factors

Risk of breakage in the equipotentiality rules

YES

NO

 Explosive or humid environments (outdoor)

YES

NO

 Electrical board accessible to non skilled people

YES

NO

 Presence of "sensitive" population (children, elderly, sick people)

YES

NO

 "Hazardous" situation requiring additional protection

RCD ≥ 100 mA

RCD ≤ 30 mA

Note

- These requirements depend on local regulation.
- If electrical power availability is essential for safety (ex: medical operating theater, intensive care room...), RCD is not allowed according to IEC 60364-7-710.
1- High-sensitivity 30 mA

Response time

The response time of a residual current device is the time between the appearance of a dangerous leakage current and the interruption of the circuit.

AC, A, A-SI, F, B types: alternating leakage current (AC)

<table>
<thead>
<tr>
<th>Fault current (mA)</th>
<th>Maximum response time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{\Delta n}/2</td>
<td>15 mA</td>
</tr>
<tr>
<td>I_{\Delta n}</td>
<td>30 mA</td>
</tr>
<tr>
<td>2 x I_{\Delta n}</td>
<td>60 mA</td>
</tr>
<tr>
<td>5 x I_{\Delta n}</td>
<td>150 mA</td>
</tr>
</tbody>
</table>

B type: direct leakage current (DC)

<table>
<thead>
<tr>
<th>DC fault current (mA)</th>
<th>Maximum response time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{\Delta n}/2</td>
<td>15 mA</td>
</tr>
<tr>
<td>2 x I_{\Delta n}</td>
<td>60 mA</td>
</tr>
<tr>
<td>4 x I_{\Delta n}</td>
<td>120 mA</td>
</tr>
<tr>
<td>10 x I_{\Delta n}</td>
<td>300 mA</td>
</tr>
</tbody>
</table>

These response times comply with the specifications of the IEC/EN 61008, IEC/EN 61009 and IEC/EN 62423 series of standards (DC leakage current).

High sensitivity differential protection (< 30 mA) must not be delayed because it is used when there is a risk that the earth leakage fault passes directly through the human body.

Measuring the response time

If the user wishes to check the response time of his residual current devices, he should follow a specific procedure to:

- establish a leakage current of calibrated magnitude
- measure the exact response time.

Procedure

The measuring instruments must conform to IEC/EN 61557-6. Carry out the operations in the following order according to the safety instructions:

- disconnect the loads
- install the measuring instrument downstream of the residual current device to be tested (for example on a power outlet)
- perform the measurement.

The IEC 60479 international standard studies the sensitivity of the human body to the electric current. Curve C1 defines for each current value the maximum time before a person is at risk of ventricular fibrillation.

Superimposing the two curves shows that the above response times protects the users.
2- Medium-sensitivity 100 mA...1000 mA

Response time of Acti9 IC60 Vigi and Acti9 iID residual current devices

The residual current devices of medium-sensitivity (100...1000 mA) in the Acti9 range comply with the IEC/EN 61008, IEC/EN 61009 and IEC/EN 62423 series of standards (DC leakage current).

In the case of selective versions (III), a "non-tripping time" guarantees selectivity with the residual current devices installed downstream.

### Instantaneous residual current devices

<table>
<thead>
<tr>
<th>Residual current devices</th>
<th>Sensitivity ($I_{Δn}$)</th>
<th>100 mA</th>
<th>300 mA</th>
<th>500 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC, A, A-SI, F, B types: alternating leakage current (AC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Δn}/2$</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>No tripping</td>
</tr>
<tr>
<td>$I_{Δn}$</td>
<td>100</td>
<td>300</td>
<td>500</td>
<td>300 ms</td>
</tr>
<tr>
<td>2 x $I_{Δn}$</td>
<td>200</td>
<td>600</td>
<td>1000</td>
<td>150 ms</td>
</tr>
<tr>
<td>5 x $I_{Δn}$</td>
<td>500</td>
<td>1500</td>
<td>2500</td>
<td>40 ms</td>
</tr>
<tr>
<td>500 A</td>
<td>40 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Selective (III) and time-delayed (R) residual current devices

<table>
<thead>
<tr>
<th>Residual current devices</th>
<th>Sensitivity ($I_{Δn}$)</th>
<th>100 mA</th>
<th>300 mA</th>
<th>500 mA</th>
<th>1000 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC, A, A-SI, F, B types: alternating leakage current (AC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Δn}/2$</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>500</td>
<td>No tripping</td>
</tr>
<tr>
<td>$I_{Δn}$</td>
<td>100</td>
<td>300</td>
<td>500</td>
<td>1000</td>
<td>130 ms</td>
</tr>
<tr>
<td>2 x $I_{Δn}$</td>
<td>200</td>
<td>600</td>
<td>1000</td>
<td>2000</td>
<td>60 ms</td>
</tr>
<tr>
<td>5 x $I_{Δn}$</td>
<td>500</td>
<td>1500</td>
<td>2500</td>
<td>5000</td>
<td>50 ms</td>
</tr>
<tr>
<td>500 A</td>
<td>40 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Definitions

**Response time**

Time between the appearance of a hazardous leakage current and circuit power down.

**Non-tripping time**

For selective and time-delayed devices, the non-tripping time is the time between the appearance of a hazardous leakage current and the device tripping. If the leakage current disappears before this time, the device does not trip.

The fast disappearance of the leakage current can be due to:

- the transient nature of the fault (e.g. current generated by a switching surge)
- the interruption of the fault current by another faster residual current device situated downstream

Selective and time-delayed devices therefore provide:

- better immunity against nuisance tripping
- total selectivity between the residual current devices.

---

**Note:** In UL1053 standard, non tripping current of $I_{Δn}/2$ is replaced by 0.74 $I_{Δn}$.  

---

**Definitions**

**Response time**

Time between the appearance of a hazardous leakage current and circuit power down.

**Non-tripping time**

For selective and time-delayed devices, the non-tripping time is the time between the appearance of a hazardous leakage current and the device tripping. If the leakage current disappears before this time, the device does not trip.

The fast disappearance of the leakage current can be due to:

- the transient nature of the fault (e.g. current generated by a switching surge)
- the interruption of the fault current by another faster residual current device situated downstream

Selective and time-delayed devices therefore provide:

- better immunity against nuisance tripping
- total selectivity between the residual current devices.
Selectivity of residual current devices

The non-tripping times of type (S) and (R) residual current devices ensure selectivity with those located downstream, given the following rules are respected:
- the sensitivity of the upstream device must be at least three times the sensitivity of the downstream residual current device
- the upstream residual current device must be:
  - Selective (S) if the downstream residual current device is instantaneous,
  - Time-delayed (R) if the downstream residual current device is selective (S).

The figure below shows how compliance with these rules provides selectivity on three levels: whatever the fault current amplitude, and whatever the location of the fault, the maximum tripping time of downstream RCD is lower than the minimum non-actuating time of the just upstream RCD.

Example

In the above graph, for a fault current of 1000 mA:
- if the fault occurs downstream of the 30 mA residual current device, the latter will interrupt the current in less than 40 ms, whereas the type S and type R devices "wait" for about 100 ms and about 500 ms respectively. Therefore, neither of the two devices trips.

If these cascading combination rules are complied with, the level of continuity of service provided to the user depends on the way in which the loads are distributed into final circuits, each protected by a residual current device.
Selectivity
Residual current devices with medium-sensitivity (100 mA and above) are available in the selective (\(\text{selective} \)) and time-delayed (\( \text{R} \)) versions. This option ensures that when an earth leakage fault occurs downstream of the device, only this circuit is taken out of service. The following table indicates (green areas) the upstream/downstream device combinations that provide such selectivity.

### Table: Sensitivity (mA) - Downstream

<table>
<thead>
<tr>
<th>Sensitivity (mA) - Downstream</th>
<th>Sensitivity (mA) - Upstream</th>
<th>Selective (s)</th>
<th>Time-delayed (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>Instantaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selective (60 ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Time-delayed (R (150 ms))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[ \text{or R} \]
How to design efficient earth fault protection

How to select and install residual current devices

Types of RCD (AC, A, A-SI, F, B) must be adapted to different loads

The increase in use of electronic loads can result in earth leakage current with different waveform characteristics. This situation must be carefully analyzed as it affects the performance of RCD. That is why the IEC series of standards has defined four types of RCD.

Example:
When an insulation fault occurs in the DC stage of a switch-mode power supply (e.g. variable speed drive) or on a DC network supplied by a converter, the leakage current is rectified and is no longer a sine wave. This current waveform may not be detected correctly by the residual current device.

In order to select the residual current devices that are appropriate to each situation, the IEC 60755, IEC 61008, IEC 61009 and IEC 62423 standards define four types of residual current device, according to the waveforms that cause them to trip.

### Standards

<table>
<thead>
<tr>
<th>Type of residual current device</th>
<th>Waveform characteristics</th>
<th>Supply circuit protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC type</td>
<td>Waveform shape</td>
<td>Current loads</td>
</tr>
<tr>
<td>F type</td>
<td>1.4 (\Delta n) at 50 Hz</td>
<td>Loads including rectifiers (low-power speed drivers, rectifiers / chargers...) powered by single-phase network</td>
</tr>
<tr>
<td>A type</td>
<td>(\alpha = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>A-SI type</td>
<td>(\alpha = 135^\circ)</td>
<td></td>
</tr>
<tr>
<td>B type</td>
<td>DC offset up to 6 mA</td>
<td>DC offset up to 10 mA</td>
</tr>
<tr>
<td></td>
<td>DC offset up to 10 mA</td>
<td>Loads including single-phase speed drives: washing machine, air-conditioning unit, heat pump, food processor...</td>
</tr>
<tr>
<td></td>
<td>(\Delta n) composed of signals at 10 Hz, 50 Hz, 1 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (\Delta n) direct current</td>
<td>Loads including rectifiers used in lifts, cranes, HVAC (three-phase AC/DC converters as high-power industrial speed drives, three-phase UPS...) powered by three-phase network</td>
</tr>
<tr>
<td></td>
<td>1.4 (\Delta n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of current 150 Hz 0.5 to 2.4 (\Delta n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of current 400 Hz 0.5 to 6 (\Delta n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency of current 1000 Hz 1 to 14 (\Delta n)</td>
<td>Single-phase DC boost power supply in some EV chargers</td>
</tr>
</tbody>
</table>

See appendix for circuit detail
How to design efficient earth fault protection

How to select and install residual current devices

Types of RCD (AC, A, A-SI, F, B) must be adapted to different loads (continued)

Choice of type

Schneider Electric provides various equipment technologies capable of overcoming the consequences of interference of all kinds.

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th>Examples</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With no special</td>
<td></td>
<td></td>
</tr>
<tr>
<td>characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generating high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interference (current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peaks, harmonics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicinity of equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>generating transient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>overvoltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuits powered by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>an uninterruptible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Isolated neutral&quot; (IT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method of earthing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of lightning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strokes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>which could be less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>than -5°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whose code varies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between AF2 and AF4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>according to IEC 60364-5-51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Atmosphere with high concentrations of chemicals or dust: see tables 1 and 2, page 30 of this document, for a description of corrosive atmosphere classes and appropriate additional protection.

(2) for type AC products, check catalog pages.
How to design efficient earth fault protection

How to select and install residual current devices

Types of RCD (AC, A, A-SI, F, B) must be adapted to different loads (continued)

Conclusion

- Tripping is ensured as for A type
- No nuisance tripping in the event of:
  - electromagnetic interference
  - voltage surge current (lightning).

Schneider Electric A-SI type or F-SI type = + SI or + SI

Schneider Electric B-SI type = + SI

AC type | A type | Schneider Electric A-SI type or F-SI type = + SI or + SI | Schneider Electric B type = + SI

Ability to detect earth leakage depending on the type of load in accordance with the IEC series of standards

See appendix for details depending on power converters architectures
In case of a load potentially generating DC earth leakage current, a B type RCD is necessary. The RCDs connected in series or in parallel must not be blinded by a DC current in order to ensure that they can always provide protection in the event of a fault on the part of the network for which they were specified.

In normal operation, a purely permanent or transient DC current up to 60 mA can pass through a RCD connected in series or in parallel if the B type RCD current is 30 mA.

- IEC 61008 / 61009 standard series consider a maximum current of 6 mA for A type RCDs and no DC current for AC type RCDs.
- IEC 62423 standard, which covers F type RCDs, considers a maximum current of 10 mA.

The DC leakage current generated by the DC voltage source and produced by the AC/DC converter (DC bus) flows continuously through the RCD connected in series. The RCD connected in series must provide protection, within the area, against contact between the RCD connected in series and B type RCDs.

The DC leakage current generated by the DC voltage source and produced by the AC/DC converter (DC bus) only flows through the RCDs connected in parallel in the event of an insulation fault in a parallel load or in the event of contact with the parallel outgoer.

The RCD connected in parallel must provide protection against a downstream contact. The level of direct current "seen" by the residual current device connected in parallel depends on the equipotentiality level of the exposed conductive parts and their earthing resistance.
Selector no. 3: Impacts of integration of a RCD B type in an installation with RCDs of other types

If an outgoer requiring a B type RCD is installed, RCDs connected in series or in parallel must not be blinded by a DC current in order to ensure that they can always provide protection in the event of a fault on the part of the network for which they were specified.

This can be achieved by using B type RCDs upstream.

An alternative solution to optimize installation is to use the coordination tables below. The following conditions are necessary:

- all RCDs are Schneider Electric offer
- TT or TN method of earthing is used
- only one B type RCD is necessary in the installation.

If more than one RCD B type is connected in series and in parallel in the installation, the RCD shall be in accordance with Selector no. 7.

---

**Coordination table for Schneider Electric RCDs connected in series**

<table>
<thead>
<tr>
<th>( \Delta n ) RCD upstream</th>
<th>( \Delta n ) B type downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 A</td>
<td>Any RCD type</td>
</tr>
<tr>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>500 mA</td>
<td></td>
</tr>
<tr>
<td>300 mA</td>
<td></td>
</tr>
<tr>
<td>100 mA</td>
<td></td>
</tr>
<tr>
<td>30 mA</td>
<td></td>
</tr>
</tbody>
</table>

(1) Except ID 125 A 300 mA AC type, see example page 23.

**Coordination table for Schneider Electric RCDs connected in parallel**

<table>
<thead>
<tr>
<th>( \Delta n ) RCD parallel</th>
<th>( \Delta n ) B type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 A</td>
<td>Any RCD type</td>
</tr>
<tr>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>500 mA</td>
<td></td>
</tr>
<tr>
<td>300 mA</td>
<td></td>
</tr>
<tr>
<td>100 mA</td>
<td></td>
</tr>
<tr>
<td>30 mA</td>
<td></td>
</tr>
</tbody>
</table>

(2) For TN method of earthing, any type of RCDs can be used.

---

**Diagram:**

1. RCD in series
2. RCD in parallel
3. B type RCD
4. A type
5. A-SI type
6. F type
7. B type

---

**Reminder:** in the following recommendations, compliance with the previous coordination rules (protection and selectivity) is always required.
Example: connecting a 30 mA B type downstream of my existing facility
I want to add a 30 mA B type RCD downstream of my existing facility. What other type of RCDs should I have installed?

- All the RCDs are Schneider Electric.
- I am using the coordination table for RCDs connected in series to determine 2 and 3.
- I can connect my 30 mA B type RCD in series with the existing ones.

If, in the case above, 2 is a 100 mA AC type and I don’t want to change it:
- I have to connect my 30 mA B type RCD in parallel with 2.
- I confirm, using the coordination table for RCDs connected in parallel, that the 100 mA AC type RCD will not be blinded.
- I confirm, using the same coordination table for all the RCDs connected in parallel, that they are not blinded.

According to the above table, the following options for upstream RCDs are possible to meet coordination and selectivity rules:

| Option 1 | 100 mA, A type selective | 300 mA, AC type delayed |
| Option 2 | 300 mA, AC type selective | 1 A, AC type delayed |
| Option 3 | 1 A, AC type selective | 3 A, AC type delayed |

If, in the case above, 2 is a 100 mA AC type and I don’t want to change it:
- I have to connect my 30 mA B type RCD in parallel with 2.
- I confirm, using the same RCD coordination table for all the RCDs connected in parallel, that they are not blinded.
As RCDs are designed to detect very low currents (e.g.: 30 mA), interference due to the network or its environment can, in certain cases, result in RCD tripping. **Nuisance tripping** is disconnection of the power supply when no hazardous situation exists. This type of tripping is often repetitive, which is highly detrimental to the quality of the electricity supply and causes operational interference for the user.

- The risk of interference must be taken into account when selecting residual current devices, according to the loads supplied and the environment.
- The explanations given below specify the main types of interference, their origin and how Schneider Electric residual current devices respond, according to their type.

**Nuisance tripping**

Nuisance trippings are due to non dangerous leakage currents existing in the installation.

They can come from:

- Transient or permanent high-frequency currents (high-frequency harmonics)
- Low-frequency leakage currents.

**High frequency harmonics**

- The current absorbed by non-linear loads such as IT equipment power supplies, frequency converters, variable speed drive motor controls, electronic ballast lights, etc. contains high-order harmonics.
- If the natural capacitances of the protected circuit are significant (between cables and earth, or between the live parts of the devices and their frames), residual current devices may be tripped, but the earth leakage current is not dangerous.
- Electronic loads generating high-frequency common mode currents are fitted with EMC filters to ensure that they do not disturb the sensitive environment. On power-up or during various voltage surges, these filters, which consist of capacitors, produce transient current inrushes that can cause nuisance tripping.

**Low-frequency leakage currents**

This risk of nuisance tripping is all the more likely to occur when a large number of identical loads are supplied in parallel and protected by the same residual current device.

- These leakage currents are mainly generated by the filtering capacitors in the power supply stage of electronic devices. Depending on the number of devices protected by the same residual current device, these leakage currents may:
  - increase the risk of tripping in the event of high-frequency interference
  - cause frequent tripping.

**Impact of cable length**

If long cables are installed downstream of the residual current devices, it may be necessary to take the natural capacitance formed by the cable/earth pair into account (order of magnitude: at 230 V, approximately 1.5 mA for 100 m).

---

**Rule 1:** use a Schneider Electric A-SI type residual current device

**Rule 2:** limit the number of loads on the same residual current device

To ensure satisfactory operation, it is important to ensure that these continuous leakage currents do not exceed 30% of the sensitivity (IΔn) of the residual current device by limiting the number of "interfering" loads protected by the same residual current device.

**Rule 3:** limit the total length of cables to 300 meters downstream a 30 mA RCD
The estimated continuous leakage current of a computer is approximately 2 mA. This leakage current is very weak and therefore not dangerous. The sum of all the continuous leakage currents can cause what may be considered as nuisance tripping (as it is not related to a hazardous situation). To avoid this risk, a continuous leakage current of less than 30% of the sensitivity of the residual current device is recommended, i.e. 10 mA for a 30 mA residual current device. This gives an order of magnitude of a maximum of six computers downstream of a 30 mA residual current device.

Low-frequency leakage currents

To ensure satisfactory operation, it is important to ensure that these continuous leakage currents do not exceed 30% of the sensitivity ($I_{\Delta n}$) of the residual current device.

General requirements

In accordance with IEC 60335-1, the leakage current will not exceed the following values:

- for class II appliances and for parts of class II construction: 0.25 mA
- for class 0, 0I and III appliances: 0.5 mA
- for class I portable appliances: 0.75 mA
- for class I fixed motor-operated appliances 3.5 mA
- for class I fixed heating appliances: 0.75 mA or 0.75 mA/kW of rated power, with a maximum of 5 mA, whichever is the higher.

Example of causes of residual current device tripping

Electronic loads

- The estimated continuous leakage current of a computer is approximately 2 mA. This leakage current is very weak and therefore not dangerous.
- The sum of all the continuous leakage currents can cause what may be considered as nuisance tripping (as it is not related to a hazardous situation).
- To avoid this risk, a continuous leakage current of less than 30% of the sensitivity of the residual current device is recommended, i.e. 10 mA for a 30 mA residual current device.
- This gives an order of magnitude of a maximum of six computers downstream of a 30 mA residual current device.
How to design efficient earth fault protection

How to select and install residual current devices

For continuity of service, RCD must withstand the leakage currents in the installation (continued)

<table>
<thead>
<tr>
<th>Type of load</th>
<th>Standard</th>
<th>Allowed leakage current</th>
<th>Maximum leakage current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed PC, workstation</td>
<td>Estimated (230 V/50 Hz)</td>
<td>2 mA</td>
<td></td>
</tr>
<tr>
<td>Portable computer</td>
<td>IEC 60335-1</td>
<td>0.5 mA (with EMC filter)</td>
<td></td>
</tr>
<tr>
<td>Printer</td>
<td>Estimated (230 V/50 Hz)</td>
<td>1 mA</td>
<td></td>
</tr>
<tr>
<td>Photocopy</td>
<td>Estimated (230 V/50 Hz)</td>
<td>1.5 mA</td>
<td></td>
</tr>
<tr>
<td>Heating floor</td>
<td>IEC 60335-1</td>
<td>0.75 mA or 0.75 mA/kW of rated power, whichever is the higher</td>
<td>5 mA</td>
</tr>
<tr>
<td>Dishwasher (fixed class 1)</td>
<td>IEC 60335-2-5</td>
<td>3.5 mA or 1 mA/kW of rated power, whichever is the higher</td>
<td>5 mA</td>
</tr>
<tr>
<td>Cooking ranges hobs, ovens and equivalent fixed appliances</td>
<td>IEC 60335-2-6</td>
<td>1 mA or 1 mA/kW of rated power, whichever is the higher</td>
<td>10 mA</td>
</tr>
<tr>
<td>Washing machines (fixed class 1)</td>
<td>IEC 60335-2-7</td>
<td>3.5 mA or 1 mA/kW of rated power, whichever is the higher</td>
<td>5 mA</td>
</tr>
<tr>
<td>Drum tumble-dryer (fixed class 1)</td>
<td>IEC 60335-2-11</td>
<td>3.5 mA or 1 mA/kW of rated power, whichever is the higher</td>
<td>5 mA</td>
</tr>
<tr>
<td>Grills toasters and similar portable cooking appliances</td>
<td>IEC 60335-2-9</td>
<td>0.75 mA (earthed metal)</td>
<td>0.25 mA (no earthed metal)</td>
</tr>
<tr>
<td>Pads</td>
<td>IEC 60335-2-17</td>
<td>0.5 mA</td>
<td></td>
</tr>
<tr>
<td>Blankets and mattresses</td>
<td>IEC 60335-2-24</td>
<td>0.75 mA (class 0I appliances)</td>
<td>1.5 mA (class I appliances)</td>
</tr>
<tr>
<td>Refrigerating appliances, ice cream appliances and ice makers</td>
<td>IEC 60335-2-32</td>
<td>0.5 mA</td>
<td></td>
</tr>
<tr>
<td>Massage fixed class 1 appliances</td>
<td>IEC 60335-2-35</td>
<td>0.25 mA</td>
<td></td>
</tr>
<tr>
<td>Instantaneous class I water heaters</td>
<td>IEC 60335-2-36</td>
<td>0.25 mA</td>
<td></td>
</tr>
<tr>
<td>Class 1 electric cookers, ovens, hobs and hot plates for collective use</td>
<td>IEC 60335-2-36</td>
<td>1 mA/kW of rated power</td>
<td>No maximum (for other)</td>
</tr>
<tr>
<td>Class 1 electric griddles for collective use</td>
<td>IEC 60335-2-38</td>
<td>3.5 mA</td>
<td></td>
</tr>
<tr>
<td>Class 1 electric fryer for collective use</td>
<td>IEC 60335-2-39</td>
<td>3.5 mA</td>
<td></td>
</tr>
<tr>
<td>Electric heat pumps, air conditioners and dehumidifiers (fixed class 1)</td>
<td>IEC 60335-2-40</td>
<td>2 mA/kW of rated power</td>
<td>No maximum (for other)</td>
</tr>
<tr>
<td>Electric kitchen machines for collective use</td>
<td>IEC 60335-2-64</td>
<td>3.5 mA (without a heating element)</td>
<td>10 mA (with heating elements power supply cord and power socket-outlet)</td>
</tr>
<tr>
<td>Commercial vending machines with or without means of payment (fixed class 1)</td>
<td>IEC 60335-2-75</td>
<td>1 mA/kW of rated power (professional type appliances)</td>
<td>10 mA (other professional type appliances)</td>
</tr>
<tr>
<td>Humidifiers</td>
<td>IEC 60335-2-98</td>
<td>0.25 mA</td>
<td></td>
</tr>
<tr>
<td>Class 2 hand held kitchen machines</td>
<td>IEC 60335-2-14</td>
<td>0.25 mA</td>
<td></td>
</tr>
<tr>
<td>Stationary class 1 vacuum cleaners and water-suction cleaning appliances</td>
<td>IEC 60335-2-2</td>
<td>3.5 mA</td>
<td></td>
</tr>
<tr>
<td>Stationary class 1 fans</td>
<td>IEC 60335-2-80</td>
<td>3.5 mA</td>
<td></td>
</tr>
</tbody>
</table>

Consult IEC 60335-2-X for other types of loads generally in accordance with general requirements depending on classification.
How to design efficient earth fault protection
How to select and install residual current devices
For continuity of service, RCD must withstand the leakage currents in the installation (continued)

Leakage current for luminaries
IEC 60598-1 specifies that the leakage current that may occur during the normal operation of a luminaire, between each pole of the supply source and the body of the luminaire, must not exceed the values given in the table below.

<table>
<thead>
<tr>
<th>Type of luminaire</th>
<th>Max. rms values of the leakage current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perturbations permanentes</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous interference</td>
<td>0.5</td>
</tr>
<tr>
<td>Class 0 and Class II,</td>
<td>1</td>
</tr>
<tr>
<td>Portable, Class I</td>
<td>1</td>
</tr>
<tr>
<td>Fixed, Class I up to 1 kVA of rated power</td>
<td>Increasing in steps of 1 mA/kVA up to a maximum of 5 mA</td>
</tr>
</tbody>
</table>

To limit unwanted tripping, it’s recommended to agree with the 3 following rules:

**Rule 4:** limit the number of circuit under the same RCCB (Ex: 10 lights or 10 sockets)
**Rule 5:** use RCBO for critical/important loads (Note : MCB + Vigi = RCBO)
**Rule 6:** for Outdoor lighting & circuits, install dedicated RCCB (higher risk of tripping due to humidity).

Unwanted tripping limitation for a 30 mA RCD
How to design efficient earth fault protection
How to select and install residual current devices
Which types of RCD are adapted to "harsh electromagnetic" environment

High-frequency transient currents

Network voltage surges
A lightning current discharge to earth (Fig. 1) generates a voltage surge in the loop made up of Phase+Neutral conductors on the one hand and the earth on the other. This common-mode voltage surge at the input to the facility causes a common mode current due to the common mode capacitance of the cables and of the EMC filters on the loads.

This current is "seen" by the RCD and can lead to nuisance tripping if the latter is not super immunised (SI).

The other types of surge use the same principle to create the common mode currents seen by the RCD.

Common mode voltage surges and associated transient currents
Electrical networks can be exposed to transient voltage surges caused by:
- lightning strikes: these voltage surges are represented normatively by a 1.2/50 μs voltage waveform (Fig. 2). The currents induced in the lines by these voltage surges are represented by a normalized 8/20 μs waveform (Fig. 4).
- sudden changes in network operating conditions (faults, blown fuses, inductive load switching, MV switchgear operations, etc.)
- switching on capacitors creates a transient inrush current similar to that shown in waveform (Fig. 3)
- switching off inductive components, such as power supply transformers used for lighting (halogen or fluorescent) creates brief voltage surges, the frequency of which can reach 10 MHz.

Note
When a fault occurs in an IT method of earthing (isolated neutral), a transient leakage current is created due to the sudden change in potential with respect to earth.

A similar phenomenon can occur when a UPS switches between the main supply and the battery supply, whilst the output neutral is briefly disconnected from the earth (then reconnected with a slight phase lag).

Rule 7: use A-SI, F-SI or B-SI type in harsh electromagnetic environment (high frequency transient current).

Rule 8: drive away polluted cables from others

The cables that feed motors with speed drives for example causes high frequency magnetic fields.

These magnetic fields are caught by the loop between L/N and earth/mass of an other circuit protected by RCD. This coupling increases with surface of loop and proximity between polluted cables and clean cables.
How to design efficient earth fault protection

How to select and install residual current devices
Which types of RCD are adapted to "harsh electromagnetic" environment (continued)

**Immunity of Schneider Electric residual current devices**

The A-SI residual current devices exclusive to Schneider Electric demonstrated their immunity to nuisance tripping in all cases of interference indicated below:

<table>
<thead>
<tr>
<th>Interference</th>
<th>Non-tripping test conditions</th>
<th>Performance required by the IEC 61008/61009 series of standards</th>
<th>Performance of Schneider Electric A-SI type residual current devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous interference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow of harmonic currents to earth</td>
<td>1 kHz sine wave</td>
<td>None</td>
<td>8 x IΔn</td>
</tr>
<tr>
<td>Transient interference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage surge induced by a lightning strike</td>
<td>Voltage surge (1.2/50 μs) (IEC/EN 61000-4-5)</td>
<td>4 kV between conductors (differential mode) 5 kV between all conductors together and ground (common mode)</td>
<td>4.5 kV between conductors (differential mode) 5.5 kV between all conductors together and ground (common mode)</td>
</tr>
<tr>
<td>Current induced by a lightning strike</td>
<td>Current surge 8/20 μs pulse</td>
<td>250 A peak</td>
<td>3 kA</td>
</tr>
<tr>
<td>Operating transient current, indirect lightning strike current</td>
<td>Current waveform: 0.5 μs/100 kHz (IEC/EN 61008)</td>
<td>200 A peak</td>
<td>400 A peak</td>
</tr>
<tr>
<td>Surge protective device operation downstream of the RCD, switching on capacitors</td>
<td>10 ms current pulse (half sinusoidal wave)</td>
<td>None</td>
<td>500 A peak</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>Repeated bursts (IEC 61000-4-4)</td>
<td>4 kV/2.5 kHz</td>
<td>5 kV/2.5 kHz 4 kV/400 kHz</td>
</tr>
<tr>
<td>Switching of inductive loads, fluorescent lighting, motors, etc.</td>
<td>Superimposed current 1 kHz to 150 kHz conducted RF waves to 0.3 IΔn 50Hz (IEC 61000-4-16) Non Tripping (Tripping test at 1.25 IΔn 50Hz)</td>
<td>Level 3</td>
<td>Level 3</td>
</tr>
<tr>
<td>Fluorescent lighting, circuits controlled by thyristors</td>
<td>Conducted current 150 kHz to 80 MHz RF waves (IEC 61000-4-6)</td>
<td>3 V (IEC) 3 V (EN)</td>
<td>30 V</td>
</tr>
<tr>
<td>Radio waves (TV and radios, transmitters, telecommunication, etc...)</td>
<td>Radiated fields 80 MHz to 1 - 6 GHz RF waves (IEC 61000-4-3)</td>
<td>3 V/m (IEC) 10 V/m (EN)</td>
<td>30 V/m</td>
</tr>
</tbody>
</table>

**Note:** Reference Standard IEC/EN 61543 Residual current-operated protective devices (RCDs) for household and similar use - Electromagnetic.

**Note**

Schneider Electric A-SI residual current devices have been designed to answer to environments with special conditions, as lightning strikes.
Harsh environments
Schneider Electric’s A-SI type residual current devices have been designed to answer to environments with special conditions:

- Low air temperature: A-SI type devices can operate under temperatures down to -25°C, according to IEC 61008-1 and IEC 61009-1 standards.
- Atmospheres with high concentrations of chemicals or dust: A-SI type devices can operate in this kind of environment if the appropriate protective measures are taken (see table 1).

Table 1: classification for external influences in the presence of corrosive or polluting substances and required protective measures (IEC 60364-5-51)

<table>
<thead>
<tr>
<th>Class as per IEC 60364-5-51</th>
<th>External influence</th>
<th>Characteristics</th>
<th>Applications and examples</th>
<th>Recommendations for equipment characteristics and protective measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF1</td>
<td>Negligible</td>
<td>Negligible quantity or nature of corrosive or polluting agents</td>
<td>Installations situated by the sea or near industrial zones producing serious atmospheric pollution, such as chemical works, cement works; this type of pollution arises especially in the production of abrasive, insulating or conductive dusts.</td>
<td>According to the nature of the substances (compliance to salt mist test according to NF C 20-702: test Ka)</td>
</tr>
<tr>
<td>AF2</td>
<td>Atmospheric</td>
<td>Presence of corrosive or polluting atmospheric agents</td>
<td>Locations where some chemical products are handled in small quantities and where these products may come only accidentally into contact with electrical equipment; such conditions are found in factory laboratories, other laboratories or in locations where hydrosolvents are used.</td>
<td>Protection against corrosion according to equipment specification.</td>
</tr>
<tr>
<td>AF3</td>
<td>Intermittent or accidental</td>
<td>Intermittent or accidental action of certain common chemicals</td>
<td>Chemical works, Farms (piggery or dairies), Technical room of swimming pool.</td>
<td>Equipment specifically designed according to the nature of substances. It is necessary to specify the nature of the chemical agent to allow the manufacturer to define the type of protection of the equipment. Protection is provided by special paints, appropriate coatings or surface treatments or by choice of material.</td>
</tr>
</tbody>
</table>

Example: a technical local of swimming pool must be considered as AF4, because it is subject to the permanent presence of corrosive chlorinated derivatives. The materials must be specially studied according to the nature of the agents: reinforced A-SI type of Acti9 and cabinet in overpressure.

Table 2: choice of residual current device

<table>
<thead>
<tr>
<th>Product function</th>
<th>Product range</th>
<th>Class as per IEC 60364-5-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCCB</td>
<td>Acti9 iID, Acti9 iID K, Acti9 iID bico, RCCB-ID A-SI 125 A</td>
<td>AF1, A-SI</td>
</tr>
<tr>
<td></td>
<td>RCCB-ID 125 A, REDs, REDtest</td>
<td>AF2, A-SI and sealed cabinet, class IP65 or higher</td>
</tr>
<tr>
<td>RCCB Vig add-on</td>
<td>Vig IC60, Vig IC120, Vig IC125</td>
<td>AF3, A-SI and sealed cabinet, class IP65 or higher</td>
</tr>
<tr>
<td>RCBO</td>
<td>iSPN Vig, Acti9 IC60 RCBO</td>
<td>AF4, A-SI and IP65 electrical cabinet + ventilated room with clean outdoor air</td>
</tr>
</tbody>
</table>

Examples of exposed sites

- Iron and steel plants
- Pleasure-craft harbors, trading ports, ships, seaside, shipyards
- Swimming pools, hospitals, food and drink sector
- Petrochemicals
- Livestock facilities, discharges
RCD coordinated with overvoltage protections

If there is a RCD at the head of the installation, the surge arrester will preferably be placed upstream of the RCD.

If this is not allowed by the energy distributor, the RCD must be delayed (type II).

If there is no RCD at the head of the installation, but a circuit breaker, a RCBO associated with the surge arrester, is connected in series with the surge arrester.

Another RCD can be used for the rest of the installation. This arrangement will avoid triggering the RCD of the installation if a fault current remains in the arrester.

The RCBO in series with the surge arrester provides protection against indirect contacts on the surge arrester itself.
Introduction
The following coordination data is valid only for Schneider Electric products.

Protection of residual current circuit breakers
Residual current circuit breakers must be protected in the same way as all the components of the electrical installation:

- against overloads
- against short-circuits.

Coordination between the residual current circuit breaker and its protection device must be guaranteed and proven by the manufacturer.
Moreover, in a TN method of earthing, it must be ensured that the protection devices are capable of interrupting earth fault currents of high amperage.

Overload protection
- The current rating of the residual current circuit breaker is the maximum permanent current for which the product is designed.
- It is protected against overloads by the circuit breaker located upstream on its power supply line (1).

As a consequence:
The rating of the residual current circuit breaker must be equal or greater than the rating of the circuit breaker located upstream.

Example
On a circuit protected by an Acti9 iC60 32 A, a residual current circuit breaker of rating 40 A or 63 A must be installed.

(1) In some countries, the installation standards consider that overload protection can be provided by all the downstream circuit breakers if the sum of their ratings is less than or equal to the rating of the residual current circuit breaker.

Short-circuit protection
- The switch is protected against short-circuits by the circuit breaker (or fuse) located upstream on its power supply line.
- To prevent any damage, the circuit breaker must sufficiently limit any short-circuit current that may pass through the switches (up to the maximum short-circuit current Isc at its installation point).

The short-circuit withstand of the switch or residual current circuit breaker is given in the tables below, as a function of the upstream circuit-breaker:
It must be greater than or equal to the prospective short-circuit current Isc at its installation point.

Example
Choice of Q1 and Q2 protection devices in the diagram opposite:

**Circuit breaker Q1**

<table>
<thead>
<tr>
<th>Circuit breaker Q1</th>
<th>Rated current</th>
<th>Breaking capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than or equal to the cable withstand Iz</td>
<td>Greater than or equal to short-circuit current Isc (17 kA)</td>
</tr>
<tr>
<td></td>
<td>50 A</td>
<td>Acti9 iC60N 2P or C120N 2P (20 kA at 230 V)</td>
</tr>
</tbody>
</table>

**Residual current circuit breaker Q2**

<table>
<thead>
<tr>
<th>Residual current circuit breaker Q2</th>
<th>Rated current</th>
<th>Short-circuit withstand (Inc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greater than or equal to that of circuit breaker Q1</td>
<td>Greater than or equal to short-circuit current Isc (12 kA)</td>
</tr>
<tr>
<td></td>
<td>63 A</td>
<td>Acti9 iID 63 A:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with Acti9 iC60N: 20 kA is appropriate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with C120N: 20 kA is appropriate</td>
</tr>
</tbody>
</table>
Protection against earth fault currents
In the event of an insulation fault in the TN system, the line-to-earth fault current is equal to the line-to-neutral fault current.
- The residual current circuit breaker interrupts this current if it does not exceed its specific breaking capacity $I_{\Delta m}$.
- If the fault current exceeds this value, it must be interrupted by the circuit breaker located upstream.
Therefore, the magnetic threshold (instantaneous tripping threshold) of the circuit breaker must always be less than or equal to the breaking capacity of the residual current circuit breaker ($I_{\Delta m}$).

Breaking and making capacity ($I_{\Delta m}$) of Acti9 iID residual current circuit breakers

<table>
<thead>
<tr>
<th>Rating (A)</th>
<th>AC, A, A-SI, F type</th>
<th>B type</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 80</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>100</td>
<td>1500</td>
<td>-</td>
</tr>
<tr>
<td>125</td>
<td>1250</td>
<td>1250</td>
</tr>
</tbody>
</table>

The combination of an Acti9 iID residual current circuit breaker and a suitably rated Acti9 iC60 circuit breaker naturally fulfils this condition.

Example
- Acti9 iID40 residual current circuit breaker, rating 63 A: $I_{\Delta m} = 1500$ A.
- Acti9 iC60N circuit breakers, rating 63 A:
  - B curve: magnetic threshold 189 to 315 A,
  - C curve: magnetic threshold 315 to 630 A,
  - D curve: magnetic threshold 630 to 882 A.
The condition is met, whichever Acti9 iC60 circuit breaker is used (maximum rating 63 A).

If a fuse is used, the user must check that the fuse melting time is less than the response time of the residual current circuit breaker for a fault current greater than $I_{\Delta m}$, i.e. for a type III residual current circuit breaker: 40 ms.

Note
See coordination table, module CA908023.

The residual current devices (RCBO and circuit breakers + Vigi) are coordinated by virtue of their design, due to the thermomagnetic protection of the circuit breaker function.
As seen above, the various IEC/EN 61008, IEC/EN 61009 and IEC 62423 series of standards define the specifications of residual current devices. Our products are designed to protect people against indirect and direct contacts, with the accessible metal parts of the facility connected to an appropriate method of earthing. They are designed for AC networks, with rated frequencies of 50 Hz, 60 Hz or 50/60 Hz. Most of Schneider Electric’s residual current devices have been designed for networks with a rated frequency of 50 Hz.

60 Hz networks

We also have UL/CSA certified products for North American markets, which are compatible with 60 Hz networks. However, as our earth leakage systems were designed for a frequency of 50 Hz, a sensitivity derating of approximately 86% must be applied to VI products.

<table>
<thead>
<tr>
<th>Sensitivity of residual current devices (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To IEC 61008, 61009, 62423 (50 Hz)</td>
</tr>
<tr>
<td>30 mA</td>
</tr>
<tr>
<td>100 mA</td>
</tr>
<tr>
<td>300 mA</td>
</tr>
</tbody>
</table>

These VI RCDs including B type can be used for 60 Hz networks. They have a sensitivity that is derated by the same order of magnitude as the table above. They therefore do not correspond to the non-tripping at ΔI/n/2 specification.

VD RCDs don’t have sensitivity derating between 50 Hz and 60 Hz and can be used at both 50 Hz and 60 Hz.

Products compatible with 60 Hz networks:
- Acti9 iDPN Vigi (230 V):
  - 30 mA type AC, A
  - 300 mA type AC
- Acti9 iC60N/H/H2 RCBO
- Acti9 DB60
- Acti9 ID
- Acti9 Vigi iC60
- Acti9 Vigi iC40
- Acti9 iID40
- Acti9 iCV40 N/H
- Acti9 iC60H RCBO PoN
- QOvs RCBO
- QOvs RCCB
- Acti9 xID biconnect RCCB
- Acti9 Vigi xC60.
The 400 Hz frequency is mainly used in the aerospace and aeronautics sectors, as well as in some specific applications such as the computer power supplies or portable machine tools.

**400 Hz networks**

**Fields of application**

The main advantage that led to the use of the highest frequency is that transformers and motors designed for a frequency of 400 Hz are far more compact and lightweight than those built for the common frequencies of 50 or 60 Hz. On the other hand, power cannot be carried economically over long distances at such frequencies, which is why the use of 400 Hz is limited to particular sectors and has been specifically adopted as standard for supplying power to commercial and military aircraft.

The increase in frequency allows the weight of embedded generators to be reduced.

**Focus on the use of the 400 Hz network in the aeronautics sector**

Four types of applications use a 400 Hz network:

- aircraft power distribution
- infrastructures for supplying aircraft on the ground or embedded on ships
- maintenance workshop for embedded devices
- aircraft assembly workshop (planes, helicopters).
Special features and impacts on the performance of final distribution switchgear

Phenomena due to the increased frequency influence the behavior of the copper components of transformers, cables and switchgear in devices designed to ensure the production of the distribution of a 400 Hz network.

For circuit breakers and Residual Current Devices (RCDs), the impacts concern:
- the performance of: magnetic, heat and breaking stage functions
- the level of sensitivity of residual current devices.

Protection against indirect contacts

Protection against indirect contacts is ensured according to the rules specified in the installation regulations in force:
- section 411.3 of NF C 15-100
- part 4-41 of the IEC 60364 series of standards.

The breaking times defined in these regulations are considered valid for frequencies up to 1000 Hz.

Although the electrical impedance of the human body decreases, the perception, retention and ventricular fibrillation thresholds increase with the frequency.

The various studies on the protection of persons against electrical hazards have defined the ventricular fibrillation threshold which, for a signal of 50 Hz to 1000 Hz, is shown on a "current/contact time" curve specified by international standard IEC 60479-2.

These studies also show that at 50 Hz and above, the human body becomes less and less sensitive to current flow as the frequency increases.

The relationship between current frequency and level of risk to the human body is also covered in information given in IEC 60479-2, which can be used for risk assessment.

The ventricular fibrillation threshold determined at 30 mA at a frequency of 50 Hz increases depending on the signal frequency according to a curve defined by changes in frequency factor (Fig. 1).

(On the curve below, at 400 Hz, the frequency factor is 6. Consequently, the physiological effect of a 180 mA - 400 Hz current will be the same as that of a 30 mA - 50 Hz current).

![Graph showing variations in the ventricular fibrillation threshold for shocks duration exceeding the period of cardiac cycle (as per IEC 60479-2).]

Quality of service

Leakage currents are higher when the frequency increases, which increases the risk of nuisance tripping.

This should be taken into account when choosing a protection device.
Compatibility of final distribution switchgear

Protection of persons

Care should be taken in choosing the characteristics of a residual current device and ensuring that its performance levels are validated by the manufacturer. The level and quality of protection may be affected by the type of residual current device used and the technology chosen.

The final distribution product range offers four types of earth fault protection for use on 50 or 60 Hz networks.

The following table lists the compatibility of the products with 400 Hz networks.

<table>
<thead>
<tr>
<th>Type of protection</th>
<th>Possible use on 400 Hz networks (*)</th>
<th>Use</th>
<th>Continuity of service</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-SI type</td>
<td>Yes</td>
<td>Pulsating DC component + electrical interference (lightning strikes, industrial voltage surges, etc.)</td>
<td>Multi9 ID/GFP</td>
<td>Acti9 iID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acti9 IDPN Vigi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multi9 Vigi C60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acti9 Vigi iC60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acti9 Vigi iC40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acti9 Vigi iCG40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acti9 iCV40</td>
</tr>
<tr>
<td>A type</td>
<td>No</td>
<td>AC currents that are sinusoidal or have a pulsating DC component</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AC type</td>
<td>No</td>
<td>Sinusoidal AC currents</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B-SI type</td>
<td>Yes</td>
<td>Applications with a three-phase supply, when Class 1 devices installed downstream are liable to generate DC component fault currents</td>
<td>Acti9 iID</td>
<td></td>
</tr>
</tbody>
</table>

(*) Protection of persons is ensured in compliance with the requirements of IEC 60479-2.

At a frequency of 400 Hz, only A-SI and B-SI types are compatible, according to the characteristics defined by IEC 60479-2. The A type, for its part, has an incompatible response curve that exceeds the maximum limit required by the standard.

At a frequency of 400 Hz, the earth leakage TEST function of a product designed for 50/60 Hz networks does not work, as the threshold for this function is calibrated for a frequency of 50/60 Hz. Use the RCD tester instead of test button to test the RCD.
How to design efficient earth fault protection

How to select and install residual current devices
Which categories of RCD are adapted to specifics distribution network (50 Hz, 60 Hz, 400 Hz, DC) (continued)

**AC Type**
Provides the degree of protection required for the safety of persons, but has a higher level of sensitivity and a risk of premature tripping.
This type of protection is not recommended on the 400 Hz network, in particular for applications requiring a very high quality of service.

**A-SI Type**
Provides the response curve closest to the fibrillation level without exceeding it.
Combines both the required degree of protection and a service continuity requirement.

Each category of products providing protection against indirect contacts has its own tripping curve profile, depending on the technology used and the frequency of the current, within a housing defined by a low and a high threshold.
Tripping will be effective and guaranteed between:
- a maximum tripping threshold that must be as close as possible to, but remain below the curve specified by IEC 60479-2
- and a minimum tripping threshold that must be as close as possible to the high threshold curve to ensure the best quality of service.

While ensuring the safety of persons, the reduction in tripping thresholds has a direct impact on the level of quality of service. The lower the curves, the greater the risk of nuisance tripping.
Frequency performance of our RCDs for the different types

Increasingly frequently used power converter applications generate contact voltages (U) “rich” in high harmonic frequencies (a few kHz) created by "electronic switching". These switching frequencies can reach 20 kHz, for example on a variable speed drive.

Schneider Electric has developed SI RCDs that have been integrated into the A-SI, F and B-SI products. They guarantee the protection of persons, while optimizing continuity of service with respect to non-hazardous capacitive leakage currents. These currents are proportional to the frequency (EMC filters, long cable lengths, etc.).

The tripping characteristics of these RCDs are below the safety curve and above the curve leading to nuisance openings (non-tripping limit of Schneider Electric RCDs).

Performance of Schneider Electric RCDs
24-48 V direct current networks

Protection against electric shocks

In 24 or 48 V DC applications, the "extra-low-voltage" (SELV or PELV) is usually the protective measure for protection of persons against electrical shocks in case of fault. The table below shows the voltage limits according to the IEC 60479-2 standard. In that case, the circuit breakers are required only for circuit protection against over-currents (overload, short-circuit and earth fault).

The voltage level is not enough to ensure compliance with SELV or PELV requirements: the source and circuits must also comply with IEC 60364-4-41-414 (isolation/separation from higher voltage system).

Under normal operating conditions, this voltage range (24 V-48 V DC) is therefore not dangerous to human beings.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Maximum non dangerous voltage for human</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC</td>
</tr>
<tr>
<td>Dry environment</td>
<td>50 V</td>
</tr>
<tr>
<td>Zman = 1200 Ohm</td>
<td></td>
</tr>
<tr>
<td>Wet environment</td>
<td>25 V</td>
</tr>
<tr>
<td>Zman = 600 Ohm</td>
<td></td>
</tr>
<tr>
<td>Underwater</td>
<td>12 V</td>
</tr>
<tr>
<td>environment</td>
<td></td>
</tr>
<tr>
<td>Zman = 300 Ohm</td>
<td></td>
</tr>
</tbody>
</table>

With $Z$ corresponding to the impedance of the human body in different types of environment,

$I_f$ being the current passing through the body and $U_c$ the minimum contact voltage required to reach the hazard current.
Higher than 120 V direct current distribution

Protection against electric shocks
The protective measure is usually “automatic disconnection of the supply” for this voltage. The circuit-breaker tripping time for a minimum earth fault shall be checked according to table 41.1 of IEC 60364-4-41.

DC networks isolated from AC networks
Residual current devices intended for AC networks will not work with a direct current distribution powered directly by a battery, a generating set, photovoltaic cells or a rectifier with galvanic isolation.

New IEC TS 63053 standard defines the operating and safety characteristics of residual current devices for DC systems (also called DC-RCDs).

DC networks connected to an AC network
In the case of direct current distribution powered by an AC/DC converter (without galvanic isolation), earth fault protection can be provided by circuit breakers or residual current circuit breakers installed on the AC network upstream of the converter.

Protection against direct contacts
High-sensitivity earth fault protection (I∆n = 30 mA) is mandatory if there is a risk of some DC circuits exposing live parts (see installation standards + protection level 3 defined in the introduction). This protection must be:

- A-SI type (bipolar), if the converter is powered by a single-phase supply with double insulation
- B-SI type, if the converter is powered by a three-phase supply or a single-phase supply without double insulation.

Note
A description of how to select the right type of earth fault protection for applications can be found in the Annex.

The choice of earth fault protection does not depend on the method of earthing.

Protection against indirect contacts

<table>
<thead>
<tr>
<th>Protection against indirect contacts</th>
<th>Medium sensitivity earth fault protection I∆n ≥ 300 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream power supply</td>
<td>Three-phase</td>
</tr>
<tr>
<td></td>
<td>Single-phase</td>
</tr>
<tr>
<td>Characteristics of direct current circuits to be protected</td>
<td>Without double insulation</td>
</tr>
<tr>
<td></td>
<td>Without double insulation</td>
</tr>
<tr>
<td>Upstream method of earthing</td>
<td>TT or IT with non-interconnected exposed conductive parts</td>
</tr>
<tr>
<td></td>
<td>TN-S IT</td>
</tr>
</tbody>
</table>

(1) There is a possibility that conventional short-circuit protection may not trip, due to the current limitations caused by electronic power converters.

Fire protection

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Medium sensitivity earth fault protection I∆n = 300 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream supply</td>
<td>Single-phase or three-phase</td>
</tr>
<tr>
<td>Characteristics of of direct current circuits to be protected</td>
<td>Humid, dusty environments, facilities and buildings in poor condition</td>
</tr>
<tr>
<td>Upstream method of earthing</td>
<td>No effect</td>
</tr>
</tbody>
</table>

(1) There is a possibility that conventional short-circuit protection may not trip, due to the current limitations caused by electronic power converters.
Residual current devices are designed to protect against hazardous earth fault current. That is why:
- the electrical installation operation and maintenance standards require these protection devices to be tested at regular intervals
- the IEC 61008 and IEC 61009 series of product standards require such devices to be fitted with a test button (marked "T") on the front panel.
The user can therefore check and be certain that the device is working correctly.

1- Test frequency
Residual current devices must be tested as required by local regulations or guidelines on electrical installation inspection and maintenance. In the absence of any local regulations or guidelines, Schneider Electric recommends that the test is carried out:

For Voltage independent RCDs:
- after initial connection and any subsequent reconnection
- every six months, for devices installed in AF1* environmental conditions (no dust, corrosion, high humidity, etc.)
- every month, for devices installed in AF2* to AF4* environmental conditions or highly exposed to voltage surges.

(*) Refer to table 2 in page 30 for definition of classes of environmental conditions.

For Voltage dependent RCDs:
- after initial connection and any subsequent reconnection
- every month, whatever the environmental conditions or exposition to voltage surges.

2- Procedure
The residual current device is powered on and the loads are connected.

Briefly press the test button marked "T" on the front panel.

The residual current device should trip instantly.

When the test is finished, put the residual current device back into service.

Note: It is recommended to disconnect the loads before testing.

The test button allows the user to check if the RCD is able to trip in presence of an earth leakage current. If the device doesn’t trip, it must be examined to determine if the device is out of service.
How to design efficient earth fault protection
How to ensure maintenance of installation
Routine operating checks of residual current devices: local test and loop test (continued)

3- If the RCD doesn’t trip during the test
This event is mainly due to a cause that is external to the residual current device. The table below shows the possible causes, the additional checks and tests to be carried out and the corrective actions to be taken, depending on the results. After a corrective action has been performed, repeat the test.

<table>
<thead>
<tr>
<th>Cause of non tripping</th>
<th>Additional action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network frequency</td>
<td>Check that the network frequency is the same as the frequency read on the device or in the catalog</td>
</tr>
<tr>
<td>Network voltage</td>
<td>Check that the main voltage is the same as that indicated on the front face of the device</td>
</tr>
</tbody>
</table>
| Connection (three-pole or four-pole device) | Measure the voltage between terminals:  
3 and 6 for Acti9 iID 4P  
2 and 4 for Acti9 Vigi C60 3P  
at the middle for Acti9 Vigi iC40 or DPN Vigi 3P+N or 4P  
This voltage must be between 85% and 110% of the voltage indicated on the device |
| Load leakage currents | Disconnect the loads and press the test button again                                                                                                                                                    |

Result after additional action

If the network frequency is different, the test button test is not significant

- If the voltage measured is less than 85% of that indicated on the device, the test button may not work, although the protection device will continue to function.
- If the voltage measured is more than 110% of the voltage indicated on the device, there is a risk to damage the device.
- The incorrect voltage may be due to a connection error (e.g. line/neutral inversion, missing phase, etc.)
- Acti9 three-pole and four-pole residual current devices cannot be used on single-phase circuits
- Acti9 four-pole residual current devices can be used normally on three-phase circuits without neutral

If the device trips, the earth fault protection is not working correctly in the presence of the loads

- Measure the permanent leakage current of each load
  - In the event of abnormal load leakage, correct the insulation fault
  - Separate the circuits to reduce the permanent leakage currents seen by each residual current device
  - Consider the replacement of the device by a different type of RCD adapted to the permanent leakage current

Corrective actions

The device must be checked by a RCD tester (IEC/EN 61557-6)

- If the voltage measured is different from the rated network voltage, look for the problem on the power supply or on the downstream circuits (lines, loads).
  - Otherwise:
    - If the rated network voltage is lower than that indicated on the device, the device must be replaced by one with a suitable rated voltage, the next time it is shut down.
    - If the rated network voltage is higher than that indicated on the device, the device must immediately be replaced by one with a suitable rated voltage.

- Modify the connection to obtain the rated voltage (line-line) between terminals

Measure the permanent leakage current of each load

Disconnect the loads in the event of a resistance leak.

If the RCD doesn’t trip after all the additional actions, it must be tested with an external RCD tester.
Some tertiary and industrial installation maintenance regulations require residual current devices to be checked with a specific device.

4- Checking with a RCD tester
If the RCD doesn’t trip after all the additional actions, it must be tested with an external RCD tester. If it is confirmed that it is out of service, it must be replaced immediately.

For the tests performed to be valid, these devices must comply with IEC/EN 61557-6.

These devices are used to check:
- the operating voltage
- the tripping threshold (according to the sensitivity $I_{Dn}$) of the residual current device
- the tripping times ($I_{Dn}, 2 \times I_{Dn}, 5 \times I_{Dn}$, etc.).

Procedure
- Disconnect the fixed and portable loads (if the residual current device protects the power outlets).
- Connect the test device to the downstream terminals of the residual current device or to a downstream power outlet.
- the residual current device (RCD) should trip.

In case of TN method of earthing with RCD short-circuit current, $I_k$ calculated by some testers can be wrong if the measurement is done downstream of the RCD, especially if RCD is 30 mA. Measurement shall be done upstream RCD to obtain correct values of $I_k$. The protection provided by the RCD is independent from the value of $I_k$.

For more information, see appendix.
Selector no. 4:
In a low voltage installation incorporating power converters (ex: AC/DC converters), the need for protection by RCD depends on the level of separation (no, single, reinforced) between AC and DC parts as well as the insulation of the DC network (class 1, class 2).
These requirements are based on the principles of 3 levels of protection.

- AC network > 50 V or FELV
- DC network > 120 V or FELV

**Separator AC/DC by reinforced insulation**

- **No RCD**
- **AC/DC separation by single isolation**
  - NO
  - **DC network**
    - Class 1
    - YES
    - DC network
    - Class 2
    - NO

**Hazardous situation requiring additional protection by a 30 mA RCD**

- YES
- **Type of RCD:** A-SI, F, B
- Selector no. 6
How to design efficient earth fault protection

Example: ensure efficient earth fault protection

Key points for specific applications and RCD implementation (continued)

All applications described below concerns power converter without separation.

List of application sheets

<table>
<thead>
<tr>
<th>Type</th>
<th>Application sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection for industrial speed drives</td>
<td>CA9SS079E</td>
</tr>
<tr>
<td>Protection for systems with HVAC and pumps</td>
<td>CA9SS080E</td>
</tr>
<tr>
<td>Home protection for my Electric Vehicle charging station</td>
<td>CA9SS074E</td>
</tr>
<tr>
<td>Protection for construction sites with cranes</td>
<td>CA9SS077E</td>
</tr>
<tr>
<td>Protection for installations with elevators</td>
<td>CA9SS078E</td>
</tr>
<tr>
<td>Protection for photovoltaic installation</td>
<td>CA9SS076E</td>
</tr>
<tr>
<td>Protection for EV charger station installation</td>
<td>CA9SS075E</td>
</tr>
<tr>
<td>Electrical protection for home outdoor appliances</td>
<td>CR9SS008E (International)</td>
</tr>
<tr>
<td></td>
<td>CR9SS008F (France)</td>
</tr>
<tr>
<td>Home protection for air conditioner and heat pump</td>
<td>CR9SS007E (International)</td>
</tr>
<tr>
<td></td>
<td>CR9SS007F (France)</td>
</tr>
<tr>
<td>Protection for installations in swimming pools and similar environments</td>
<td>-</td>
</tr>
</tbody>
</table>

The following preconizations are common to all applications:
- In "normal situation" if TN method of earthing, power converters limit fault current and MCB will not trip, an RCD 500 mA is needed to protect people according to installation and protection rules
- RCD types for upstream and parallel circuits must be compliant with coordination Selector no. 3.

Protection for industrial speed drives

(See Application sheet CA9SS079E)
- IEC 61800-5-1: Adjustable speed electrical power drive systems - Safety requirements.
- IEC 61800-3: Adjustable speed electrical power drive systems - EMC requirements and specific test methods.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

If situation is classified as hazardous (Selector no. 2) 30 mA RCD is needed.

If not, sensitivity can be ≥ 100 mA according to selectivity plan.

Type of RCD (A-SI, F or B-SI) must be done in accord with Selector no. 6.
## Architectures of the AC/DC converter input stage (network side)

<table>
<thead>
<tr>
<th>Architectures of the AC/DC converter input stage (network side)</th>
<th>Form of contact current on DC bus</th>
<th>Connection to AC network</th>
<th>Variable speed drive references</th>
<th>Type of RCD required</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="DB430308.eps" alt="Diagram" /> Between phases 6</td>
<td><img src="DB431057.eps" alt="Diagram" /></td>
<td>L/N</td>
<td>ATV 12H***M2</td>
<td>B type RCD</td>
<td></td>
</tr>
<tr>
<td><img src="DB430309.eps" alt="Diagram" /> Non-isolated transformer 7</td>
<td><img src="DB431063.eps" alt="Diagram" /></td>
<td>L/N/L</td>
<td>ATV 12H***M2</td>
<td>B type RCD</td>
<td></td>
</tr>
</tbody>
</table>

### Connections to AC network
- **L/L**
- **L/N**

### Variable speed drive references
- ATV 12H***M2
- ATV 320U**M2B
- ATV 31C**M2

### Form of contact current on DC bus
- Between phases 6
- Non-isolated transformer 7

### Type of RCD required
- B type RCD

### Comments
- All countries
- The network is 220 V L/N
- The "single-phase" 220 V variable speed drive is connected between phases
- The single-phase B type RCD is connected between phases
- The network is 220 V L/N
- The 220 V "single-phase" variable speed drive is connected to the network via a transformer
- Polarity of the DC bus (accessible on the variable speed drive) is connected intentionally to the installation neutral
- The network is 220 V L/N
- The 220 V "single-phase" variable speed drive is connected to the network via a transformer
- Polarity of the DC bus (accessible on the variable speed drive) is connected intentionally to the installation neutral
- No variable speed drive uses this architecture, but a user can potentially do this wiring himself using any "200-300 V range" single-phase variable speed drive
How to design efficient earth fault protection

Example: ensure efficient earth fault protection
Key points for specific applications and RCD implementation (continued)

Converter and RCD are generally in the same panel, so the shielded cable length between converter and motor is high. If possible, increase L1 and reduce L2 is better for continuity of service (Selector no. 5).

Maximum length of cables depends on sensitivity of RCD (Selector no. 5). However, the introduction of output EMC filters can limit these lengths of shielded cable. Consult the drive catalog for maximum lengths according to the EMC severity.

Selector no. 5: Installation rules for B type RCDs ensuring protection and continuity of service in speed drive applications

Application requires B type RCD

Risk levels
require RCD 30 mA

Yes

No

For good continuity of service, it is better to use a 30 mA RCD for each load

It is, however, possible to connect several loads to the same RCD if the combined cable lengths are less than the values below and if an external EMC filter is shared

Table A (L2):

<table>
<thead>
<tr>
<th>ΔIn</th>
<th>L2 (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mA</td>
<td>100 m</td>
</tr>
<tr>
<td>300 mA</td>
<td>300 m</td>
</tr>
<tr>
<td>500 mA</td>
<td>500 m</td>
</tr>
</tbody>
</table>

Total length of shielded cable < L2 max (table A)

Possible RCD sharing

Circuit separation

Whatever the method of earthing, a RCD is required. Including on internal converter fault (low short-circuit current) in the TN-S method of earthing e.g. ΔIn ≥ 300 mA

Safety distance between RCD and motor depends on the position of the EPCS.

Three-phase power supply:

- L1 max (m) = 500 - 10xL2
- L2 max (m) = 50 - L1/10
- (L1+L2) max (m) = 500 - 9xL2

Possible RCD sharing

Circuit separation

Note

The maximum permissible distance between the RCD and the motor depends on the position of the EPCS.

Type of RCD connected in series and in parallel according to the coordination table (1)

Type of RCD connected in series and in parallel shall be in accordance with "Selector no. 7"

Check selectivity and coordination on short-circuit.

In a TT method of earthing, check that the sensitivity of the RCD corresponds to the earthing resistance of exposed conductive parts

(1) EPCS: Electronic Power Conversion System.

(1) See Selector no. 3.
How to design efficient earth fault protection

Example: ensure efficient earth fault protection

Key points for specific applications and RCD implementation (continued)

If many converters, EMC filter must be mutualized and each internal filter must be disconnected to limit leakage current.

If many L/N Power converters are connected downstream a 3P+N RCD, they must be balanced on each phase and ideally delayed compared to other to avoid spike current when closing.

Protection for systems with HVAC and pumps

(See Application sheet CA9SS080E)

- IEC 61800-5-1: Adjustable speed electrical power drive systems - Safety requirements.
- IEC 61800-3: Adjustable speed electrical power drive systems - EMC requirements and specific test methods.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

Generally, fixed installation is not classified as hazardous situation and the required RCD sensitivity is 300 mA or more (Selector no. 2). Converter and RCD are generally in the same panel, so the shielded cable length between converter and motor is high. If possible, increase L1 and reduce L2 is better for continuity of service (Selector no. 5).

Maximum length of cables depends on sensitivity of RCD (Selector no. 5). However, the introduction of output EMC filters can limit these lengths of shielded cable. Consult the drive catalog for maximum lengths according to the EMC severity.

RCD can be mutualized for many pumps if the total length of cable doesn’t exceed maximum length given in Selector no. 5.

Type of RCD is F if converter is supplied between Line and Neutral. Type of RCD is B if converter is supplied between 3 phases.

In case of home application, sensitivity is 30mA to be in accordance to installation rules (see application sheets CR9SS007E and CR9SS007F).

Protection for Electric Vehicle charging station (home and tertiary)

(See Application sheets CA9SS074E and CA9SS075E)

- IEC 60364-7-722: Low-voltage electrical installations - requirements for special installations or locations - Supplies for electric vehicles.
- IEC 61851-1 Ed3 8.5: Electric vehicle conductive charging system: General requirements.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

This installation is classified as hazardous situation (Selector no. 2), RCD sensitivity is 30 mA (mandatory in standards). Mutualization of RCD is forbidden: 1 RCD for 1 Electrical Vehicle (EV).

In residential application

Length of cables are short and are not shielded: Filters, Charger and batterie are in the same area. Leakage currents are essentially generated by filters. If upstream RCD is a 500 mA and mass earthing resistance is compliant with 500 mA sensitivity (Ra < 100 ohm), this upstream RCD can be AC up to 4 EV, each protected by 30 mA B type RCDs. For the same hypothesis, parallel RCD can be AC up to 4 EV, each protected by 30 mA B type RCDs if TT method of earthing and up to 10 EV, each protected by 30 mA B type RCDs if TN-S method of earthing.

In tertiary applications

Length of cables is higher but cable is not shielded, so the maximum length can be 250 m with a 30 mA RCD. RCD B type EV type is needed whatever the number of poles: AC/DC architecture and batterie voltage are not known (Selector no. 6).
Protection for construction sites with cranes

(See Application sheet CA0SS077E)

- IEC 61800-5-1: Adjustable speed electrical power drive systems - Safety requirements.
- IEC 61800-3: Adjustable speed electrical power drive systems - EMC requirements and specific test methods.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

This installation is classified as hazardous situation (Selector no. 2), RCD sensitivity is 30 mA (Wet environment, insulation of cables between ground and top of crane can be destroyed).

Distance between ground panel (RCD) and motor (on top of the crane) is high. So, length of cables is high but this cable is not shielded because converter and motor are near.

RCD can be mutualized because max total length is generally less than 500 m (supply is 3 phases) (Selector no. 5).

Supply is 3 phases and RCD type must be B. (Selector no. 6).

Protection for installation with photovoltaic

- IEC 60364-7-712: Requirements for special installations or locations - Solar photovoltaic (PV) power supply systems.
- NFC15712-1: Photovoltaic installations without storage and connected to the public distribution network.
- XPC15712-3 (new NFC15712-3): Photovoltaic installations with storage device and connected to a public distribution network.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

For conversion without galvanic insulation, even if the DC network (PV panels) is conform to double insulation, due to humid environment and large surface with earth, the insulation resistance must decrease and large DC leakage current may flow and blind AC type or A type RCD.

B type RCD is mandatory for tertiary and residential without galvanic insulation. Sensitivity is 30 mA for residential installations.

Sensitivity is 300 mA for tertiary fixed installations without socket-outlet.

For L/N supply without galvanic insulation, RCD can be A type by default (*) but RCD F type is recommended.

(*) Some inverters may generate fault currents with continuous components that require the use of a B type RCD (see manufacturer’s documentation).
How to design efficient earth fault protection

Example: ensure efficient earth fault protection

Key points for specific applications and RCD implementation (continued)

Protection for installations with elevators

(See Application sheet CA9SS078E)

- IEC 62477-1: Safety requirements for power electronic converter systems and equipment.
- EN 50178: Electronic equipment for use in power installations.
- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

Generally, fixed installation is not classified as hazardous situation and the required RCD sensitivity is 300 mA or more (Selector no. 2). Type of RCD (A-SI, F or B-SI) must be done in accord with Selector no. 6.

L/N converters and situations below needs B type RCD:

<table>
<thead>
<tr>
<th>Architectures of the AC/DC converter input stage (network side)</th>
<th>Form of contact current on DC bus</th>
<th>Connection to AC network</th>
<th>Variable speed drive references</th>
<th>Type of RCD required</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="DB430308.eps" alt="Architecture" /></td>
<td><img src="DB431063.eps" alt="Contact current" /></td>
<td><img src="DB430309.eps" alt="Connection to AC network" /></td>
<td>ATV 12H***M2</td>
<td>B type RCD</td>
<td>All countries</td>
</tr>
<tr>
<td><img src="DB430308.eps" alt="Architecture" /></td>
<td><img src="DB431063.eps" alt="Contact current" /></td>
<td><img src="DB430309.eps" alt="Connection to AC network" /></td>
<td>ATV 320U***M2</td>
<td>B type RCD</td>
<td>All countries</td>
</tr>
<tr>
<td><img src="DB430308.eps" alt="Architecture" /></td>
<td><img src="DB431063.eps" alt="Contact current" /></td>
<td><img src="DB430309.eps" alt="Connection to AC network" /></td>
<td>ATV 320U***M2</td>
<td>B type RCD</td>
<td>All countries</td>
</tr>
<tr>
<td><img src="DB430308.eps" alt="Architecture" /></td>
<td><img src="DB431063.eps" alt="Contact current" /></td>
<td><img src="DB430309.eps" alt="Connection to AC network" /></td>
<td>ATV 31C**M2</td>
<td>B type RCD</td>
<td>All countries</td>
</tr>
</tbody>
</table>

In general, converter and motor are in the same area and, in consequence, the shielded cable length is short. Continuity of service is comparatively easy to obtain.

Protection for home Outdoor appliances

(See Application sheets CR9SS008E and CR9SS008F)

- IEC 61008: RCCBs General rules.
- IEC 61009: RCBOs General rules.
- IEC 62423: F type and B type RCCBs - RCBOs.

- Protection must be adapted to outdoor electrical circuits feeding. Barbecue, lights, gardening tools are exposed to outside conditions such as rain, dust, humidity and that may have damaged isolation protection.
- Protection must insure a high continuity of service for critical loads supplying (freezer).

RCBO protection is recommended as a dedicated feeder for freezer. Thus, it will be segregated from the other equipment and will not be impacted by tripping of other loads.

A-SI or F (SI integrated) are recommended depending on the country local regulation.

30 mA is the sensitivity adapted to outdoor and plugged loads in accordance with installation rules. (IEC 60364; NFC15100...
Protection for installations in swimming pools and similar environments.

RCDs are mostly designed for household and similar environments. Ingress protection (IP) for these devices is IP20 (touch by finger).

In environments with high humidity and aggressive chemical environment such as swimming pools, spa, etc., **high IP or forced ventilation of the switchboard with clean air must be provided.**

Condensation should be avoided because it acts as a catalyst with aggressive chemical component.

To ensure correct operation the following guidelines must be applied:

1- keep the electrical cabinet away from the aggressive environment
(Ideally beyond 50 m) from polluted areas (bathing area, chemicals storage room...).

_Implantation study is recommended to separate and keep just needed functions in severe environment._

For example, keep if necessary, switches and sockets devices in the polluted area and place away control and protection devices (RCDs, MCBs, Contactors, ...).

- If the electrical cabinet is in a different building it is recommended:
  - not to have connection with fluids (to avoid any corrosion),
  - not to have ventilation with polluted air coming from polluted area.

- If the electrical cabinet is in the same building of the swimming pool:
  - Install the electrical cabinet far away from the polluted area (ideally 50 m away) in a dedicated room.
  - Follow the recommendations bellow.

2- Concerning protection devices

- Including Residual protection at first (but MCB also are concerned), you must use RCBO or RCCB from **“SI” range.**
- You must also check the correct operation of the RCDs using the test button _every month._

3- Concerning the electrical room

_The following rules must be continuously respected all the year:_

- The room must be maintained at a temperature higher than 18°C.
- The room should be ventilated using clean outdoor air, filtered, and heated to reduce its humidity.
- The room must not be used for storage of chemical products, plants, or other components that can store moisture (ex: wood...).

4- Concerning the electrical cabinet

- The electrical cabinet must have an IP higher or equal to IP65; this IP must be respected using appropriate cable glands and protection in all openings.

_Example of enclosures: Kaedra._

- Make sure that the door of the enclosure is kept closed: the door should only be opened for manual action on devices and reclosed and locked just after.
How to design efficient earth fault protection

Example: ensure efficient earth fault protection

Key points for specific applications and RCD implementation

(continued)

Annex

Concerning Installation rules, it is important to remember basics for safety in wet situations

- IEC 60364-7-702 - NF-C15-100 required that.
- Protection devices are forbidden in volumes 0 and 1.
- Protection devices are allowed in volume 2 but:
  - cabinets must be IPX5 minimum if the room can be cleaned with waterjet system,
  - do not use high pressure cleaners (ex: Kärcher).

Zone dimensions for basin above ground level (side view).

Zone Outdoor, with waterjets during cleaning operation | Zone Outdoor, without waterjets | Zone Indoor, with waterjets during cleaning operation | Zone Indoor, without waterjets
--- | --- | --- | ---
0 | IPX5 / IPX8 | IPX6 | IPX5 / IPX8 | IPX8
1 | IPX5 | IPX4 | IPX5 | IPX4
2 | IPX5 | IPX4 | IPX5 | IPX2

Minimum IP number per zone

Note
The measured zone dimensions are limited by walls and fixed partitions.

Complementary information’s

- Devices which do not trip or not reclosing after the test button procedure must be returned to Schneider Electric for analysis (MCB and vigi must not be separated!).
- In case of RCBO replacement, if the device is composed of 2 separate parts (MCB + Vigi) it’s mandatory to replace the 2 parts (MCB AND Vigi).
- When returning the products, make sure that the packaging provides adequate protection to avoid damage during transportation.
## How to design efficient earth fault protection

### Selectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selector no. 1</td>
<td>Involvement of RCD depends on method of earthing</td>
<td>10</td>
</tr>
<tr>
<td>Selector no. 2</td>
<td>Choosing the sensitivity of earth fault protection according to the risks factors</td>
<td>13</td>
</tr>
<tr>
<td>Selector no. 3</td>
<td>Impacts of integration of a RCD B type in an installation with RCDs of other types</td>
<td>22</td>
</tr>
<tr>
<td>Selector no. 4</td>
<td>Involvement of RCD depends on power conversion insulation</td>
<td>45</td>
</tr>
<tr>
<td>Selector no. 5</td>
<td>Installation rules for B type RCDs ensuring protection and continuity of service in speed drive applications</td>
<td>48</td>
</tr>
<tr>
<td>Selector no. 6</td>
<td>Choosing the type of RCD according to power conversion architectures and their connection to the AC network</td>
<td>57</td>
</tr>
<tr>
<td>Selector no. 7</td>
<td>Coordination in types of RCD</td>
<td></td>
</tr>
</tbody>
</table>
### Electrical load profiles

<table>
<thead>
<tr>
<th>Choice of residual current device</th>
<th>Circuit</th>
<th>Line current</th>
<th>Differential current</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AC type</strong></td>
<td><img src="DB428279.eps" alt="AC type Circuit" /></td>
<td><img src="DB428280.eps" alt="AC type Line current" /></td>
<td><img src="DB428281.eps" alt="AC type Differential current" /></td>
</tr>
<tr>
<td><strong>A type</strong></td>
<td><img src="DB428279.eps" alt="A type Circuit" /></td>
<td><img src="DB428280.eps" alt="A type Line current" /></td>
<td><img src="DB428281.eps" alt="A type Differential current" /></td>
</tr>
<tr>
<td><strong>F type</strong></td>
<td><img src="DB428279.eps" alt="F type Circuit" /></td>
<td><img src="DB428280.eps" alt="F type Line current" /></td>
<td><img src="DB428281.eps" alt="F type Differential current" /></td>
</tr>
<tr>
<td><strong>B type</strong></td>
<td><img src="DB428279.eps" alt="B type Circuit" /></td>
<td><img src="DB428280.eps" alt="B type Line current" /></td>
<td><img src="DB428281.eps" alt="B type Differential current" /></td>
</tr>
<tr>
<td><strong>A-SI type</strong></td>
<td><img src="DB428279.eps" alt="A-SI type Circuit" /></td>
<td><img src="DB428280.eps" alt="A-SI type Line current" /></td>
<td><img src="DB428281.eps" alt="A-SI type Differential current" /></td>
</tr>
</tbody>
</table>

(*) To protect people whatever the dimmer adjustment an A-SI or F or B type is needed.
Appendix: How to select and install residual current devices

Types of RCD (AC, A, A-SI, F, B) must be adapted to different loads (continued)

Electrical load profiles (continued)

<table>
<thead>
<tr>
<th>Choice of residual current device</th>
<th>Circuit</th>
<th>Line current</th>
<th>Differential current</th>
</tr>
</thead>
<tbody>
<tr>
<td>C type</td>
<td><img src="DB431061.png" alt="Circuit" /></td>
<td><img src="DB431062.png" alt="Line current" /></td>
<td><img src="DB431063.png" alt="Differential current" /></td>
</tr>
<tr>
<td>B type</td>
<td><img src="DB431062.png" alt="Circuit" /></td>
<td><img src="DB431063.png" alt="Line current" /></td>
<td><img src="DB431064.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431063.png" alt="Circuit" /></td>
<td><img src="DB431064.png" alt="Line current" /></td>
<td><img src="DB431065.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431064.png" alt="Circuit" /></td>
<td><img src="DB431065.png" alt="Line current" /></td>
<td><img src="DB431066.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431065.png" alt="Circuit" /></td>
<td><img src="DB431066.png" alt="Line current" /></td>
<td><img src="DB431067.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431066.png" alt="Circuit" /></td>
<td><img src="DB431067.png" alt="Line current" /></td>
<td><img src="DB431068.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431067.png" alt="Circuit" /></td>
<td><img src="DB431068.png" alt="Line current" /></td>
<td><img src="DB431069.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431068.png" alt="Circuit" /></td>
<td><img src="DB431069.png" alt="Line current" /></td>
<td><img src="DB431070.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431069.png" alt="Circuit" /></td>
<td><img src="DB431070.png" alt="Line current" /></td>
<td><img src="DB431071.png" alt="Differential current" /></td>
</tr>
<tr>
<td></td>
<td><img src="DB431070.png" alt="Circuit" /></td>
<td><img src="DB431071.png" alt="Line current" /></td>
<td><img src="DB431072.png" alt="Differential current" /></td>
</tr>
</tbody>
</table>
Selector no. 6: Choosing the type of RCD according to power conversion architectures and their connection to the AC network

- **EPCS* connected to the 3-pole or 4-pole AC network**
  - YES
  - NO

- **EPCS* connected to the AC network by 2 phases**
  - YES
  - NO
  - AC network is L/N

- **EPCS* connected to the AC network < 127 Vrms with voltage multiplier stage**
  - YES
  - NO
  - e.g.: L/L variable speed drive

- **DC bus boost U > 1.51 x main Vrms**
  - YES or "I don't know"
  - NO
  - e.g.: electric vehicle with high-voltage batteries

- **Half-bridge rectifier with neutral solid**
  - YES or "I don't know"
  - NO
  - e.g.: half-bridge rectifier with neutral solid

**A-SI or F type RCD**

**B type RCD**

(*) EPCS: Electronic Power Conversion System
How to design efficient earth fault protection

Appendix: How to ensure maintenance of installation

Short-circuit current (Ik: L/PE) evaluation by Fluke 1653B Multifunction Installation Tester

- Explain false low value calculated when measurement is realized downstream a RCD (method of earthing is TN-S).
- Propose solution to prove that protection plan provide people safety when RCD is used.

1- Short-circuit current Ik L/PE calculated by Fluke is false because measurement and calculation method use worst value of Impedance between Line and PE

Fluke inject between Line and PE a very low current of 15 mA to avoid tripping of RCD during test.

Z LPEvirtual = Zp + Zpe + Zt       (Zt=Ltw).

- In this method, measurement current pass through only one RCD winding and furthermore the current amplitude is very low.
- For this current the Lt value for one winding is high (~2 mH) because the magnetic circuit (RCD core) is not saturated (µ is high: 200000). Zt is accordingly high and very higher than Zp + Zpe.
- This Lt depend on RCD architecture (core permeability, size, sensitivity, primary winding...).
- Ex forLt = 2 mH: Z LPEvirtual ~Zt ~0.628 ohm at 50 Hz.
- Fluke use this Lt at 15 mA for extrapolate the real short-circuit situation.
- Ik calculated by Fluke = 230 V/ Z LPEvirtual ~370 A.
- In reality, in case of fault L/PE, the current is very higher than 15 mA and the value of Lt is very low because magnetic circuit of RCD is saturated (Ex: Lt ~0.3 µH at 300 A).

Zt real = 90 µohm !

- Ik real is limited by Zp and Zpe, Zt is negligible.
- ZLPE real ~Zp + Zpe ~0.23 ohm at 50 Hz.
- Ik real = 230 V/ ZLPE real ~1000 A (real short-circuit current is higher than that calculated by Fluke).
How to design efficient earth fault protection

Appendix: How to ensure maintenance of installation
Short-circuit current (Ik: L/PE) evaluation by Fluke 1653B Multifunction Installation Tester (continued)

Measurements
- This example takes into account 3 architectures of Schneider Electric RCD’s.

Zt impedance of RCD used for Isc L/PE calculation

- Short-circuit current upstream is 1100 A; Z upstream = 218 mohm at 240 V.
- Short-circuit current calculated by Fluke based on value of Z measured downstream of RCD at a low current (Ex: 15 mA).

With different technologies of RCD’s graph below show a dispersion of short-circuit current based on a Z value measured at low current (600 A to 1000 A).

The real short-circuit current is higher and not dispersed (1100 A).

Isc L/PE calculated

- Estimated by calculation based on Z measured at 15 mA
- Real
2- **Ik L/N** result given by Fluke is **good** because measurement and calculation method used by Fluke use real value of impedance between Line and N

Fluke inject between phase and neutral a current of ~300 mA. This current can’t trip either RCD or the overcurrent protection.

In this case measurement current pass through the 2 RCD windings in opposite polarity and the total Self L = Lt - Lt ~0. (magnetic leakage is negligible).

The impedance measured is the real Z phase + Z neutral impedance. This value is independent from current intensity (no magnetic saturation).

**3- Propose solution to prove that protection plan provide people safety when RCD is used**

In TN-S scheme, in case of insulation fault (indirect contact).

People protection is realized by the MCB if the tripping time is in accordance with IEC 60364. (<0.2 s at 240 V in TN).

- The Fluke measurement principle (at low current) give false values of RCD impedance (see above).
- On L/PE short-circuit, the 240 V network source impose a very higher current (>100 A) due to low impedances of cables and real low impedance of RCD (saturation).
- Furthermore, if calculated impedance is used, this RCD upstream impedance contribute to reduce touch voltage (between masse and earth).

- Only an upstream measurement gives a correct value of presumed short-circuit current (downstream RCD impedance is negligible). This current must be higher than magnetic actuation zone (I max of MCB curve; for example, 10 x In for C curve).

Furthermore, if an RCD 30 mA is installed, the people protection is assured from a short-circuit current of 60 mA (t <0.2 s).

The corresponding maximum short-circuit impedance is 4000 ohm !

In this limit case, the touch voltage mass/earth is < 50 V and the direct contact protection is also assured.

**Evaluation of short-circuit current is not necessary.**

Control with RCD tester the tripping current and tripping time of the RCD to confirm protection.
## How to design efficient earth fault protection

### Acronyms

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC network</td>
<td>Alternating Current network</td>
</tr>
<tr>
<td>Add On Vigi</td>
<td>Residual current device installed in combination with a circuit breaker</td>
</tr>
<tr>
<td>AFi</td>
<td>Environment Classes</td>
</tr>
<tr>
<td>DC network</td>
<td>Direct Current network</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EPCS</td>
<td>Electronic Power Conversion System</td>
</tr>
<tr>
<td>FE</td>
<td>Functional Earth</td>
</tr>
<tr>
<td>FELV</td>
<td>Functional Extra Low Voltage</td>
</tr>
<tr>
<td>Ik</td>
<td>Short-circuit current</td>
</tr>
<tr>
<td>PE</td>
<td>Protective Earth</td>
</tr>
<tr>
<td>PELV</td>
<td>Protective Extra Low Voltage</td>
</tr>
<tr>
<td>Ra</td>
<td>Earthing resistance of exposed conductive parts of equipements</td>
</tr>
<tr>
<td>RCBO</td>
<td>Residual Current operated circuit Breakers with integral Overcurrent protection</td>
</tr>
<tr>
<td>RCCB</td>
<td>Residual Current operated Circuit Breakers without integral overcurrent protection</td>
</tr>
<tr>
<td>RCD</td>
<td>Residual Current Device</td>
</tr>
<tr>
<td>SELV</td>
<td>Safety Extra Low Voltage</td>
</tr>
<tr>
<td>SI</td>
<td>Super Immunized</td>
</tr>
<tr>
<td>SRCD</td>
<td>Socket RCD</td>
</tr>
<tr>
<td>TT, TN, IT</td>
<td>Method of earthing</td>
</tr>
<tr>
<td>VDT</td>
<td>Voltage Dependent Technology</td>
</tr>
<tr>
<td>VIT</td>
<td>Voltage Independent Technology</td>
</tr>
</tbody>
</table>