Coordination of Surge Protective Devices

> Design guide

Surge arresters for commercial and industrial buildings

Coordination between the surge protective device and its disconnect circuit breaker

- MCB
- SPD
- = Modular circuit breaker. Surge protective device

=

- continuity of service:
- □ do not trip due to surge current,
- □ do not increase (Up) voltage protection level.
- effective protection against all types of overcurrents:
- □ overload due to SPD aging,
- □ short circuit of low intensity (impedant) due to temporary overvoltages,
- □ short circuit of high intensity due to SPD degradation.

The disconnecting device must be coordinated with the surge protective device. It is designed to meet the following two constraints:

Resistance to lightning current

The resistance to lightning current is an essential characteristic of the surge protective device's external disconnecting device.

The device must be capable of passing the following standardized tests: not trip upon 15 successive impulse currents at In.

Resistance to short-circuit current

The breaking capacity is determined by the installation rules (IEC 60364 standard):

the external disconnecting device must have a breaking capacity equal to or greater than the presumed short-circuit current lsc at the point of installation. when this device is integrated into the surge protective device, conformity with product standard IEC 61643-11 naturally ensures protection.

Main reasons why the disconnecting device recommended by the manufacturer should be used:

- if the disconnecting device's rating is lower than the recommended rating:
- risk of the disconnecting device opening in normal operation.
- if the disconnecting device's rating is higher than the recommended rating: risk of non-disconnection during a temporary voltage surge.

Coordination between the surge protective device and its disconnect circuit breaker in the event of a short circuit

This table shows: the rating, curve and short circuit current level of the disconnector coordinated with the surge protective device.

(1): Equivalence table Compact NSXm - Compact NSX100 / NSX160

(2): For all applications where the Type 1 current wave (10/350 µs) ≤ 10 kA [limp ≤ 10 kA], the Acti9 NG125N C80 A can be used

(3): For all applications where the Type 1 current wave $(10/350 \ \mu s) \le 10 \ kA$ [limp $\le 10 \ kA$], the Acti9 C120H C80 A can be used

(4): For all applications where the Type 1 current wave (10/350 μ s) \leq 10 kA [limp \leq 10 kA], the Acti9 C120N C80 A can be used

NSXm	NSX	NSXm	NSX	NSXm	NSX
NSXm F TM80D	NSX100 F TM100D	NSXm B TM100D	NSX100 B TM100D	NSXm B TM160D	NSX160
NSXm N TM80D	NSX100 N TM100D	NSXm E TM100D	NSX100 B TM100D	NSXm E TM160D	NSX160
		NSXm F TM100D	NSX100 F TM100D	NSXm F TM160D	NSX160
		NSXm N TM100D	NSX100 N TM100D	NSXm N TM160D	NSX160
		NSXm H TM100D	-		'

Coordination between the surge protective device and its disconnect fuse in the event of a short circuit

Note:

(3): Total Selectivity if the upstream fuse ≥ 63 A; tested and validated up to Isc = 100 kA

^{(1):} GSC and GSD are fuse switch disconnectors for DIN and NFC fuse. You can use BS fuse inside GSB fuse switch disconnector (cf catalog LVPED216031EN)

^{(2):} Total Selectivity if the upstream fuse > 315 A; declared for Isc = 75 kA, tested and validated up to Isc = 100 kA (declaration of conformity on request)

Coordination between two surge protective devices, upstream/downstream

When two surge protective devices are installed in an electrical installation, coordination is needed according to IEC 61643-12 to obtain an acceptable stress distribution between the two surge protective devices according to their permissible energy "E".

For coordination between two surge protective devices, a minimum cable length between these 2 surge protective devices is needed to ensure that:

- 12 < Imax SPD2.
- Up2 < Uw.
- **E2** < E max SPD2.

Minimum distance between two surge protective devices, upstream/ downstream

For a cable section of 16 mm² and an impulse current equal to the maximum discharge current (Imax) of the upstream surge protective device.

Example

If iPRD65r is installed in the incoming panelboard, the second SPD iPRD8r must be installed at a cable length of 8 meters from the first one.

(*) Forbidden configuration

Cascading in the event of a short circuit between the surge protective device disconnector and the upstream circuit breaker

What is cascading?

Cascading means using the circuit breakers' limiting power, which allows circuit breakers of lower performance to be installed downstream.

The upstream circuit breakers then act as a barrier for major short-circuit currents. They thus enable circuit breakers of breaking capacity lower than the presumed short-circuit current (at their point of installation) to be loaded in their normal breaking conditions.

Since current limiting takes place all along the circuit controlled by the upstream current-limiting circuit breaker, cascading concerns all the devices located downstream of that circuit breaker.

It is not restricted to two consecutive devices.

Case 1

Disconnect circuit breaker not integrated into the surge protective device.

For this type of study, refer to the existing coordination tables. > see 548E4205 catalogue module.

(2) rating up to 80 A is validated

Schneider Electric Industries SAS

35, rue Joseph Monier - CS 30323 F-92506 Rueil-Malmaison - FRANCE www.se.com

02-2024 Document Number CA903014E ©2024 Schneider Electric. All Rights Reserved. All trademarks are owned by Schneider Electric Industries SAS or its affiliated companies.

