Medium Voltage Distribution

Rollarc R400-R400D
contactor
1 to 12 kV
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description - Field of application and utilisation range</td>
<td>P.4</td>
</tr>
<tr>
<td>Installation type</td>
<td>P.5</td>
</tr>
<tr>
<td>Description of basic version</td>
<td>P.6</td>
</tr>
<tr>
<td>Electrical characteristics</td>
<td>P.7</td>
</tr>
<tr>
<td>Maximum switching capacities</td>
<td>P.8</td>
</tr>
<tr>
<td>Contactor operating conditions</td>
<td>P.9</td>
</tr>
<tr>
<td>Operating mechanism and equipment</td>
<td>P.10</td>
</tr>
<tr>
<td>Diagrams for basic versions</td>
<td>P.11</td>
</tr>
<tr>
<td>Diagrams for fixed versions</td>
<td>P.12</td>
</tr>
<tr>
<td>Diagrams for withdrawable versions</td>
<td>P.13</td>
</tr>
<tr>
<td>Dimensions</td>
<td>P.14</td>
</tr>
<tr>
<td>Installation examples</td>
<td>P.15</td>
</tr>
<tr>
<td>SF6 gas properties and Rollarc technique</td>
<td>P.16</td>
</tr>
<tr>
<td>Rotating arc technique</td>
<td>P.17</td>
</tr>
<tr>
<td>Soft breaking (breaking of inductive or capacitive currents)</td>
<td>P.18</td>
</tr>
<tr>
<td>Rollarc pole units</td>
<td>P.19</td>
</tr>
<tr>
<td>Fuse-contactor assembly (transformer control and protection)</td>
<td>P.20</td>
</tr>
<tr>
<td>Fuse-contactor assembly (MV motor protection)</td>
<td>P.21</td>
</tr>
<tr>
<td>Notes</td>
<td>P.22</td>
</tr>
</tbody>
</table>
Description
Field of application and utilisation range

Description
The Rollarc three-pole indoor contactor uses sulphur hexafluoride (SF6) gas for insulation and circuit-breaking. Circuit-breaking is based on the rotating arc principle. The basic version is made up of three pole units installed in the same insulating enclosure. The part of the enclosure containing the active parts of the poles is filled with SF6 gas at a gauge pressure of 2.5 bars.
There are two types of Rollarc contactors:
- the R400 with magnetic holding
- the R400D with mechanical latching.

Field of application
Protection and control of:
- MV motors,
- capacitor banks and power transformers.

Utilisation range

Main advantages
- a modern and tested circuit-breaking technique featuring SF6 safety,
- no maintenance for active parts,
- high mechanical and electrical endurance,
- low switching surges without additional devices (surge arrester),
- insensitivity to the environment,
- gas pressure may be continuously monitored.

Standards
Rollarc complies with the following standards and specifications:
- CEI publication 60470
- CEI 60420
- BS 775 part 2
- NEMA ICS 2-324
- VDE 0660 partie 103-8-84

Installation references
SOLMER, MICHELIN, SHELL, ESSO, CFR, PECHINEY,
NAPHTACHIMIE, USINOR, SACILOR, SOLLAC.
NUCLEAR AND CONVENTIONAL THERMAL POWER STATIONS,
MINES DE SAAR (GERMANY)
NOKIA (FINLAND) KAFAK (SWEDEN).
Installation type

The Rollarc R400 and R400D contactors are available in three versions:

Basic version:
Contactor alone, without the cradle.

Fixed version:
The contactor with the control auxiliaries is mounted on a fixed cradle.

Withdrawable version:
The contactor with the control auxiliaries is mounted on a withdrawable cradle.

Fixed and withdrawable versions may be equipped with fuses when the short-circuit current is greater than the contactor rating. The fuses used are of the indoor Fusarc CF type with strikers that actuate the contactor opening mechanism.
Description of the basic version

Enclosure
The epoxy resin enclosure ensures:
- high mechanical strength enabling use as a support for the active parts and resistance to electromechanical stress.
- excellent dielectric strength due to the nature of the material and the design.
 The filling pressure remains constant throughout the life of the contactor.

Active parts and operating mechanism
The essential parts include the:
- arc interruption device,
- insulating rod which actuates the mobile contacts and the corresponding fixed terminal.
 These parts are housed in an enclosure which is sealed for life and are thus totally insensitive to the environment. The resulting elimination of corrosion increases the reliability of the device.

Electromagnetic coils
ROLLARC is actuated by electromagnetic coils that ensure closing and hold the device in the closed position.

Auxiliary contacts
The auxiliary switch subassemblies are always mounted on the enclosure.

Mechanical latching
The R400D is actuated by electromagnetic coils that ensure closing of the device and has a mechanical latching device which holds the contactor in the closed position without a continuous power supply.
A release is used to free the latching mechanism.

Description of operation: see page 19
Electrical characteristics

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Rated Insulation Level</th>
<th>Breaking Capacity</th>
<th>Rated Current</th>
<th>Making Capacity</th>
<th>3 sec. Short Time Current</th>
<th>Mechanical Endurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 to 4.76 kV (50-60 Hz)</td>
<td>60 kV peak, 1.2/50 µs kV rms</td>
<td>10 kA</td>
<td>400 A</td>
<td>25 kA</td>
<td>125 kA</td>
<td>10 300 000 operations (magnetic holding)</td>
</tr>
<tr>
<td>7.2 kV (50-60 Hz)</td>
<td>60 kV peak, 1.2/50 µs kV rms</td>
<td>10 kA</td>
<td>400 A</td>
<td>25 kA</td>
<td>125 kA</td>
<td>10 100 000 operations (mechanical latching)</td>
</tr>
<tr>
<td>12 kV (50-60 Hz)</td>
<td>60 kV peak, 1.2/50 µs kV rms</td>
<td>8 kA</td>
<td>40 A</td>
<td>20 A</td>
<td>100 A</td>
<td>8</td>
</tr>
</tbody>
</table>

Opening time at U

- Without relays: 20 to 40 ms
- With relays: 30 to 50 ms

Closing time

- Without relays: 40 to 60 ms
- With relays: 50 to 70 ms
- Without relays: 75 to 145 ms
- With relays: 85 to 155 ms

Control circuit

<table>
<thead>
<tr>
<th>DC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage (Un): 48, 60, 110, 125, 220 V</td>
<td>110, 127, 220 V</td>
</tr>
<tr>
<td>Power consumption:</td>
<td></td>
</tr>
<tr>
<td>Pick-up: 1050 W</td>
<td>900 VA</td>
</tr>
<tr>
<td>Seal-in: 30 W</td>
<td>40 VA</td>
</tr>
<tr>
<td>Opening: 80 W</td>
<td>100 VA</td>
</tr>
</tbody>
</table>

Auxiliary switches

- Rated current: 10 A
- Breaking capacity: CC: (L/R = 0.015 s) 0.5 A / 220 V
 - CA: (p.f. = 0.3) 10 A / 220 V

Electrical endurance

This curve indicates the number of operations N according to the breaking current I, in class AC3 or AC4.

- **R400**
 - 30 000 operating cycles at 250A
 - 50 operating cycles at 10 000A

- **R400D**
 - 100 000 operating cycles at 200A
 - 50 operating cycles at 10 000A
When the contactor is used in conjunction with fuses, the maximum switching capacities may be determined using the fuse curves and by taking into account:
- the characteristics of the load (motor starting currents, starting times, transformer inrush currents),
- the amplitude of the limited interrupted current which is a function of the prospective fault current and the fuses employed. The limited interrupted current should not exceed the electrodynamic withstand capacity of the contactor.

For values less than those presented in the table below, see:
Page 21, for motor control, technical sheet AC 0479E for transformers.

<table>
<thead>
<tr>
<th>Service voltage kV</th>
<th>Without fuse motors kW(1)</th>
<th>Transfo. kVA</th>
<th>Capacitor banks kVAR</th>
<th>Max. fuse rating (see document AC 0479E)</th>
<th>With fuse motors kW(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 sec. start ls/ln = 6 starts/h: 6</td>
<td>10 s. start ls/ln = 6 starts/h: 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>1560</td>
<td>1800</td>
<td>1255</td>
<td>250</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>1690</td>
<td>1965</td>
<td>1370</td>
<td>250</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>1960</td>
<td>2270</td>
<td>1585</td>
<td>200</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>3100</td>
<td>3600</td>
<td>2510</td>
<td>200</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>3380</td>
<td>3925</td>
<td>2740</td>
<td>200</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4690</td>
<td>5455</td>
<td>3810</td>
<td>100</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5630</td>
<td>6545</td>
<td>4570</td>
<td>100</td>
<td>625</td>
</tr>
</tbody>
</table>

(1) with p.f. = 0.92 η = 0.94
(2) for higher fuse ratings, consult us.

*Note: Fuse ratings depend on the maximum power.
For lower powers, the correct fuse rating must be determined (see page 21).
Contactor operating conditions (without fuses)

IEC standard 60470 (chapter 2) defines three types of contactor operation:

- **Continuous operation**: In position 1, the contactor equilibrium temperature is reached.
- **Periodical intermittent operation** (or intermittent): In position 1, the contactor equilibrium temperature is not reached.
- **Short-time operation**: In position 1, the contactor equilibrium temperature is not reached.

Intermittent and short-time operation

Allowable overcurrents

The two sets of curves presented here can be used to determine allowable overcurrents in the Rollarc contactor:

- the maximum value of an overcurrent and the cooling time.

Using the permanent current value Ip, figure 1 can be used to determine the maximum duration of Toc along line 1.

The time required for cooling Tc to ensure that the equilibrium temperature is not exceeded may be determined using figure 2.

Example:

- A Rollarc contactor with a permanent operating current I_p = 240A can withstand a temporary overload of 2400A for 32 seconds.

The cooling time Tc is:

- 28 minutes if the circuit is open
- 20 minutes if a 120A current flows through the contactor
- 48 minutes if a 200A current again flows through the contactor.

Cyclical overcurrent

The fourth parameter (see line 2 between figures 1 and 2) can be determined when three of the four below are known:

- Ioc overcurrent
- Toc duration of overcurrent
- Ic cooling current
- Tc duration of cooling

Example:

- Ioc 1200A for 10 seconds
- Tc 200A for 2 minutes

Fig. 1

Fig. 2
Operating mechanism and equipment

Rollarc operating mechanism

The contactor is closed by an electromagnet (pick-up coil YF).
- for the magnetically held contactor R400, two seal-in coils (YM) are inserted in the circuit at the end of closing.
The contactor is tripped by the opening of the holding circuit.
- for the mechanically latched contactor R400D, the contactor is held in closed position by the mechanical latching system.
The contactor is tripped by a shunt trip which releases the latching device.

Auxiliary switches
Rollarc contactors are equipped with ten changeover common point auxiliary switches.
Consult the equipment selection table for information on the number of available switches.

Optional pressure switch.
The optional pressure switch for alarm indications closes a changeover switch if the gas pressure drop below 1.5 bars.
Contact breaking capacity:
- A.C. (p.f. = 0.6) 2.2 A at 127V
- D.C. 0.5A at 120V - 0.4A at 220V

<table>
<thead>
<tr>
<th>selection of accessories</th>
<th>code</th>
<th>R400 magnetically held contactor</th>
<th>R400D mechanically latched contactor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>basic version AC/DC</td>
<td>fixed version AC/DC</td>
</tr>
<tr>
<td>closing electromagnet</td>
<td>YF</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>holding electromagnet (seal-in)</td>
<td>YM</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>shunt trip</td>
<td>YD</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>number of auxiliary switch switches available</td>
<td>CA</td>
<td>9 □</td>
<td>9 □</td>
</tr>
<tr>
<td>pressure switch</td>
<td>P</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>anti-pumping relay</td>
<td>KN</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>closing relay</td>
<td>KMF</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>opening relay</td>
<td>KMO</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>operation counter(1)</td>
<td>PC</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>interlocking auxiliary switch(2)</td>
<td>SE</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>interlock</td>
<td></td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>« service position » indication</td>
<td>SQ2</td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>equipment for M.V fuses (fixing and « fuse blown » contacts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>withdrawlable fixed frame(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75kV kit</td>
<td></td>
<td>□ □</td>
<td>□ □</td>
</tr>
<tr>
<td>mechanical interlock</td>
<td></td>
<td>□ □</td>
<td>□ □</td>
</tr>
</tbody>
</table>

(1) the operations counter uses one auxiliary switch
(2) device may be padlocked on the fixed frame (1 or 2 padlocks)
(*) the interlock switch is actuated by the operating handle

standard equipment
relay not supplied, wired by user (see diagrams)
optional accessories
Schneider Electric Gamme

Rollarc 400 basic version

- **PC**: 6-digit operations counter
- **KN**: end of closing relay
- **KMF**: closing relay (see table below)
- **KMO**: opening relay

Un (V): 48, 60-72, 100-127, 220-250

Ia (A): 10, 3.15, 2.5, 1.25

Rollarc 400D basic version

- **PC**: 6-digit operations counter
- **KN**: end of closing relay
- **KMF**: closing relay
- **KMO**: opening relay

Un (V): 48

Ia (A): 10

Principle diagram

- **YP**: closing coil
- **YM**: seal-in coil
- **YD**: shunt trip
- **SQ1**: limit switch
- **C**: capacitor
- **Ra**: Resistance
- **F**: Varistor
- **FUBT**: low voltage fuse
- **QF**: auxiliary switch
- **P**: pressure switch
- **SO**: opening push button
- **SF**: closing push button
- **QF**: auxiliary switch
- **P**: pressure switch
- **SO**: opening push button
- **SF**: closing push button

- **PC**: 6-digit operations counter
- **KN**: end of closing relay
- **KMF**: closing relay
- **KMO**: opening relay

Un (V): 48, 110, 220

Ia (A): 10, 3, 2.5

Notes:

1: standard Schneider supply
2: control relay recommended by Schneider
3: options proposed by Schneider
4: Q/C control unit (not supplied by Schneider)
5: mechanical links
- Rollarc printed circuit alone
- Connections supplied
- Connections not supplied

Symbols:

- YF: closing coil
- YM: seal-in coil
- YD: shunt trip
- SQ1: limit switch
- C: capacitor
- Ra: Resistance
- F: Varistor
- FUBT: low voltage fuse
- QF: auxiliary switch
- P: pressure switch
- SO: opening push button
- SF: closing push button

Requirements:

- Breaking current: 10A/220V (p.f. = 0.3)
- Breaking current: 0.5A/220V (L/R = 0.15)
- 2.2A/220V (P: pressure switch)
- 0.4A/220V (SF: closing push button)

Specifications:

- coil consumption: 3W
- p.f. = 0.4
- L/R = 40 ms

Additional Notes:

- Schneider Electric
- Merlin Gerin
- Gamme

Diagram Details:

- For DC power supply
- For AC power supply
Principle diagram

Rollarc 400 fixed version with electrical auxiliaries

Rollarc 400D fixed version with electrical auxiliaries
Rollarc 400 withdrawable version with electrical auxiliaries

SQ2: service position indication
FUMT: HV fuse. See document AC0479
(SEscar CF type fuse)
SE1: contactor position lock 2 A/220 V
KN: end of closing relay
KMF: closing relay see table below
KMO: opening relay

Un (V) 48 60-72 100-127 220-250
Ia (A) 10 3.15 2.5 1.25

QF: auxiliary switch
La = 10A
Breaking 1 ~ p.f. = 0.3 10A/220V
= (LR = 0.15) 0.5A/220V
P: pressure switch closing (S12-S13)
~ 2.2A/220V
~ 0.4A/220V

SQE1: open/contactor locked open mechanically
SQE2: closed/contactor locked open mechanically opening command maintained
SO: opening push button
SF: closing push button
PC: 6-digit operations counter

SQ2: service position indication
FUMT: HV fuse. See document AC0479
(SEscar CF type fuse)
SE1: contactor position lock 2 A/220 V

Kn: end of closing relay
KMF: closing relay
KMO: opening relay

Un (V) 48 110 220
Ia (A) = 10 10 10
p.f. = 0.4 ~ (A) 1.1 0.4 0.24
LR = 40 ms ~ (A) 0.8 0.3 0.18
Coil consumption = 3 W ~ 4VA

Rollarc 400D withdrawable version with electrical auxiliaries

FUMT: low voltage fuse
Un (V) 48 60-72 100-127 220-250
Ia (A) 10 3.15 2.5 1.25

QF: auxiliary switch
La = 10A
Breaking 1 ~ p.f. = 0.3 10A/220V
= (LR = 0.15) 0.5A/220V
P: pressure switch closing (S12-S13)
~ 2.2A/220V
~ 0.4A/220V

SQE1: open/contactor locked open mechanically
SQE2: closed/contactor locked open mechanically opening command maintained
SO: opening push button
SF: closing push button
PC: 6-digit operations counter

SQ2: service position indication
FUMT: HV fuse. See document AC0479
(SEscar CF type fuse)
SE1: contactor position lock 2 A/220 V

Kn: end of closing relay
KMF: closing relay
KMO: opening relay

Un (V) 48 110 220
Ia (A) = 10 10 10
p.f. = 0.4 ~ (A) 1.1 0.4 0.24
LR = 40 ms ~ (A) 0.8 0.3 0.18
Coil consumption = 3 W ~ 4VA
Dimensions

Basic version
(1) mounting dimensions
approximative weight: 35 kg

Fixed version
a: LV connector
(1) mounting dimensions
approximative weight: 65 kg

Withdrawable version
a: LV connector
(1) mounting dimensions
approximative weight: 85 kg
Installation examples

Withdrawable MCset factory-built cubicle
See technical sheet AC 0467E

SM6 factory-built cubicle
See technical sheet AC 0356E
Advantages of Rollarc

The Rollarc rotating arc contactor is a modern device with enhanced cooling of the arc by forced convection leading to the following advantages:

Long life
This results from:
- high product reliability,
- very low wear of the active parts which require no maintenance,
- the excellent sealing of the enclosure, eliminating the need for subsequent filling.

Mechanical endurance
The operating energy is reduced because arc rotation is directly created by the current to be interrupted. The Rollarc contactor can do 300,000 operations in R400 version and 100,000 operations in R400D version.

Electrical endurance
The long life of the Rollarc is due to the negligible degeneration of the gas and to low wear of the contacts. The energy dissipated in the arc is low due to:
- the intrinsic properties of the gas,
- the short length of the arc,
- the very short arcing time.
Wear of the arcing contacts can be checked without opening the poles. The unit is capable of breaking all load and short-circuit currents, even in the case of frequent operation. With very high breaking capacity for a contactor, the Rollarc can be used in a fuse-contacts assembly capable of protecting any circuit against all types of faults including overloads.

Low switching surges
The intrinsic properties of the gas and the soft break resulting from this technique means that switching surges are very low. Concerning motor start-up, the unit is free from multiple pre-strike and restrike phenomena which could damage the winding insulation.

Operating safety
The Rollarc contactor operates at a low relative pressure of 2.5 bars.

Continuous monitoring of the contactor pressure (optional)
A pressure switch actuates a contact in the event of an accidental drop in the pressure of the SF6 gas in the Rollarc unit.

Insensitivity to external conditions
The Rollarc pole unit provides a totally gas-insulated system. It is a hermetically sealed enclosure filled with SF6 gas and housing the essential parts. Rollarc is particularly suited to polluted environments such as mines, cement works, etc.

SF6 gas properties and Rollarc technique

Sulphur hexafluoride (SF6) gas properties

SF6 is a non-inflammable very stable, non-toxic gas, five times heavier than air. Its dielectric strength is much higher than that of air at atmospheric pressure.

Gas for interruption

SF6 is "the" arc-interruption gas, combining the best properties:
- **high capacity for carrying away the heat** produced by the arc. The latter is rapidly cooled by convection during the arcing period.
- **high radial thermal conduction and high electron capturing capacity**.

When the current passes through zero, the arc is extinguished by the combination of two phenomena:
- SF6 permits rapid heat exchange from the center of the arc toward the exterior.
- fluorine atoms, which are highly electronegative, act as veritable "traps" for electrons.

Since it is electrons which are mainly responsible for electric conduction in the gas, the gap between the contacts recovers its initial dielectric strength through this electron capture phenomenon at zero current.

- **the decomposition of the SF6 molecule is reversible**.

The same mass of gas is therefore always available, making the device self-sustained throughout its operating life.
The rotating arc technique

The rotating arc principle

The exceptional characteristics of SF6 gas are used to extinguish the electrical arc. Cooling is enhanced by the relative movement between the arc and the gas.

In the rotating arc technique, the arc is set in motion between two circular arcing contacts (see figure opposite). When the main contacts separate, the current to be interrupted flows through a solenoid, thus creating an electromagnetic field B.

When the arcing contacts separate, the arc appears between them. The arc is made to rotate between the two circular arcing contacts by force F, the combined result of the electromagnetic field and the current.

Force F is directly proportional to the square of the current to be interrupted. This breaking technique therefore automatically adapts to the current to be interrupted. When the current is high, the speed of rotation is high (speed of sound) and cooling is intense. Just before reaching zero current, the speed is still sufficient to make the arc rotate and thus contribute to the recovery of dielectric strength at zero current. Wear of the arcing contacts is very low.

When the current is low, the speed of rotation is also low. This leads to very soft breaking of the arc without surges, comparable to the widely appreciated performances of the air breaking technique.
Soft breaking

Breaking of inductive or capacitive currents

The Rollarc contactor does not generate voltage surges. On some switchgear such surges occur during the breaking of low inductive or capacitive currents and can damage the insulation of connected devices. With the rotating arc technique, the rotation speed of the arc is low for low currents and breaking is soft under all conditions.

- **Current chopping:** (arc interruption before zero current) the chopping current is always less than 1A, i.e. the voltage surge is very low for the load.
- **Multiple prestrikes and restrikes**

Other phenomena exist that are much more dangerous to the load than the voltage surges resulting from current chopping. Such phenomena occur if the device tries to break high frequency currents. High frequency currents appear when there is a dielectric breakdown (opening of contacts is too close to zero current) and produce high frequency waves that are very dangerous for motor insulation. Given the relatively slow dielectric regeneration between its arcing contacts, the Rollarc contactor avoids breaking high frequency currents and multiple prestrike and restrike phenomena are prevented. The Rollarc is thus the perfect motor control contactor. It provides the user and the network with total security without requiring additional accessories such as surge arresters or RC systems.

Results of tests on Rollarc

<table>
<thead>
<tr>
<th>Motor starting current</th>
<th>Busbar capacitance (Cb)</th>
<th>Busbar capacitance and compensation (Cb+Cc)</th>
<th>Overvoltage average</th>
<th>Pu(1) standard deviation</th>
<th>Maxi</th>
<th>Multiple restrikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100A</td>
<td>0.05 mF</td>
<td>1.76</td>
<td>0.18</td>
<td>2.35</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td>1.8 mF</td>
<td>1.88</td>
<td>0.13</td>
<td>2.23</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>300A</td>
<td>0.05 mF</td>
<td>1.69</td>
<td>0.10</td>
<td>1.90</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>300A</td>
<td>1.8 mF</td>
<td>1.79</td>
<td>0.09</td>
<td>1.91</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

\[Pu = \frac{\text{measured peak voltage}}{U_2^{\sqrt{\frac{2}{3}}}} \]

Example: peak voltage \[7.2 \times 1.76 \times U_2^{\sqrt{\frac{2}{3}}} = 10.35 \text{kV} \]

Test circuit diagram

100A 7.2 kV and 300A 7.2 kV

Source: Ls
Busbar representation: Cb or Cb + Cc
Tested device: Lb inductance of the bars
Connection: R load resistance
Motor substitute circuit: L load inductance

Ze earth impedance
Ls power supply inductance
U power supply voltage
Cc compensation capacitance
Cb capacitance of the bars
Lb inductance of the bars
R load resistance
Cp load parallel capacitance
Rp load parallel resistance

Tests according to IEC draft standard (17A secretariat 291)
Overvoltage levels depend on the breaking device, and also on the circuit. The IEC standard proposes a standard motor breaking circuit.
Rollard pole units

Description

Each pole unit consists of:
- a main circuit composed of a fixed main contact (4) and a moving main contact (6)
- a breaking circuit composed of a fixed arcing contact (5) and a moving arcing contact (7) that form two circular runners.

A blowout coil (3) is mounted in series in the circuit. The main circuit that ensures the flow of the current is distinct from the breaking circuit in which the arc is produced.
- a transmission mechanism for the transfer of energy from the operating mechanism to the mobile contacts.

Operation

Rollarc 400 is a magnetic device that uses the rotating arc technique to interrupt the current.
- at the beginning of an opening cycle, the main contacts and the arcing contacts are closed (fig.1).
- isolation of the main circuit is achieved by the separation of the main contacts (fig. 2). The arcing contacts are still closed.
- the arcing contacts open shortly after the main contacts. The resulting arc is made to rotate between the two circular runners of the arcing contacts by the electromagnetic field produced by the coil, the force of which depends on the current to be interrupted (fig. 3). By design and due to phase shift between the current and the electromagnetic field, this force is still significant at zero current.
- at zero current, the gap between the contacts recovers its initial dielectric strength thanks to the inherent qualities of SF6 gas (fig. 4).
Fuse-contactor combinations

Principle
The contactor switches the load on and off during normal operation or an overload. The fuse ensures correct interruption of short-circuit currents according to the network short-circuit level. A "fuse-blown" device causes contactor opening.

Economic advantages
For a short-circuit level of 500 MVA, or of 50 kA at 6 kV, the saving in switchgear costs is more than 50% compared to a circuit breaker solution.

Technical advantages
- Contactor: high switching rates and greater mechanical endurance than a circuit breaker.
- Fuse: current limitation that considerably reduces the thermal and electrodynamic effects of a fault (fig. 1).

Fuse-contactor assembly
Transformer control and protection

Select the fuse using the table below:

<table>
<thead>
<tr>
<th>service voltage (kV)</th>
<th>type of fuse</th>
<th>transformer rating (kVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusarc CF</td>
<td>16 25 50 50 63 80 80 125 125 125 160 200 250</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>16 25 40 50 50 80 80 100 100 125 125 160 200 250</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td>10 16 31.5 31.5 40 50 50 63 80 100 125 125 160 200</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>10 16 25 31.5 40 50 50 63 80 80 125 125 160 200</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10 16 25 31.5 40 50 50 63 80 80 125 125 160 200</td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td>6.3 10 16 20 25 31.5 40 50 50 63 80 80 100 100</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Installation without transformer overload
Fuse-contactor assembly motor control

The three sets of curves below enable the user to determine fuse ratings according to the motor power rating (P in kW) and its rated voltage (U in kV).

- set 1: provides the rated current in (A) using P and U
- set 2: provides the starting current Is (A) using In
- set 3: provides the correct fuse rating according to Is and the starting time ts (s).

Motor protection

The Fusarc CF fuse in association with a Rollarc contactor constitutes a particularly effective protection device for MV motors.

Fuse rating

Fuse ratings are determined according to three parameters depending on the motor characteristics:

- starting current
- duration of start
- switching rate

Remarks

- curve set 1 is plotted for a power factor (p.f.) of 0.92 and an output efficiency of 0.94. For different values, use the formula:
 \[\text{In} = \frac{P}{n \sqrt{3} U \text{p.f.}} \]
 - the curves in set 3 are plotted for six starts spaced over one hour or two consecutive starts. For n starts spaced over one hour (n>6), multiply ts by \(\frac{P}{2} \).

For \(p \) consecutive starts (\(p > 2 \)), multiply ts by \(\frac{P}{2} \) (see selection table).

If the start duration information is not known, use ts = 10 s.

- if motor start-up is not direct, the fuse rating obtained using the curves above may be insufficient for the full load current of the motor. A rating 20% higher than the full load current should be selected to take into account installation in a cubicle.

Example

A 1650 kW motor supplied at 6.6 kV (point A) has a rated current In of 167 A (point B);

- the starting current is six times greater than the rated current, i.e. 1000 A (point C);
- for a ten second starting time ts, the third set of curves indicates a rating of 250 A (point D).