Medium Voltage Distribution

Rollarc R400-R400D contactor
1 to 12 kV
Description

Field of application and utilisation range

Description

The Rollarc three-pole indoor contactor uses sulphur hexafluoride (SF6) gas for insulation and circuit-breaking.
Circuit-breaking is based on the rotating arc principle.
The basic version is made up of three pole units installed in the same insulating enclosure. The part of the enclosure containing the active parts of the poles is filled with SF6 gas at a gauge pressure of 2.5 bars.
There are two types of Rollarc contactors:
- the R400 with magnetic holding
- the R400D with mechanical latching,

Field of application

Protection and control of:
- MV motors,
- capacitor banks and power transformers.

Utilisation range

Main advantages

- a modern and tested circuit-breaking technique featuring SF6 safety,
- no maintenance for active parts,
- high mechanical and electrical endurance,
- low switching surges without additional devices (surge arrester),
- insensitivity to the environment,
- gas pressure may be continuously monitored.

Standards

Rollarc complies with the following standards and specifications:
CEI publication 60470
CEI 60420
BS 775 part 2
NEMA ICS 2-324
VDE 0660 partie 103-8-84

Installation references

SOLMER, MICHELIN, SHELL, ESSO, CFR, PECHINEY, NAPHTACHIMIE, USINOR, SACLOR, SOLLAC.
NUCLEAR AND CONVENSIONAL THERMAL POWER STATIONS.
MINES DE SAAR (GERMANY)
NOKIA (FINLAND) KAFAK (SWEDEN).
The Rollarc R400 and R400D contactors are available in three versions:

Basic version:
Contactor alone, without the cradle.

Fixed version:
The contactor with the control auxiliaries is mounted on a fixed cradle.

Withdrawable version:
The contactor with the control auxiliaries is mounted on a withdrawable cradle.

Fixed and withdrawable versions may be equipped with fuses when the short-circuit current is greater than the contactor rating. The fuses used are of the indoor Fusarc CF type with strikers that actuate the contactor opening mechanism.
Description of the basic version

Enclosure
The epoxy resin enclosure ensures:
- high mechanical strength enabling use as a support for the active parts and resistance to electromechanical stress.
- excellent dielectric strength due to the nature of the material and the design.
 The filling pressure remains constant throughout the life of the contactor.

Active parts and operating mechanism
The essential parts include the:
- arc interruption device,
- insulating rod which actuates the mobile contacts and the corresponding fixed terminal.
 These parts are housed in an enclosure which is sealed for life and are thus totally insensitive to the environment. The resulting elimination of corrosion increases the reliability of the device.

Electromagnetic coils
ROLLARC is actuated by electromagnetic coils that ensure closing and hold the device in the closed position.

Auxiliary contacts
The auxiliary switch subassemblies are always mounted on the enclosure.

Mechanical latching
The R400D is actuated by electromagnetic coils that ensure closing of the device and has a mechanical latching device which holds the contactor in the closed position without a continuous power supply.
A release is used to free the latching mechanism.

Description of operation: see page 19
Electrical characteristics

Electrical endurance

This curve indicates the number of operations N according to the breaking current I, in class AC3 or AC4.

- **R400**
 - 300,000 operating cycles at 250A
 - 50 operating cycles at 10,000A

- **R400D**
 - 100,000 operating cycles at 200A
 - 50 operating cycles at 10,000A

Control circuit

<table>
<thead>
<tr>
<th>Control circuit</th>
<th>DC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rated supply voltage (Un)</td>
<td>48, 60, 110, 125, 220 V</td>
<td>110, 127, 220 V (4)</td>
</tr>
<tr>
<td>power consumption:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pick-up</td>
<td>1050 W</td>
<td>900 VA</td>
</tr>
<tr>
<td>seal-in</td>
<td>30 W</td>
<td>40 VA</td>
</tr>
<tr>
<td>opening</td>
<td>80 W</td>
<td>100 VA</td>
</tr>
</tbody>
</table>

(4) for other values, consult us.

Auxiliary switches

<table>
<thead>
<tr>
<th>Auxiliary switches</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rated current</td>
<td>10 A</td>
<td></td>
</tr>
<tr>
<td>breaking capacity</td>
<td>CC : (L/R = 0.015 s) 0.5 A / 220 V</td>
<td>CA : (p.f. = 0.3) 10 A / 220 V</td>
</tr>
</tbody>
</table>

Opening time at U

<table>
<thead>
<tr>
<th>Opening time</th>
<th>Breaking time</th>
<th>Closing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>without relays: 20 to 40 ms</td>
<td>without relays: 40 to 60 ms</td>
<td>without relays: 75 to 145 ms</td>
</tr>
<tr>
<td>with relays: 30 to 50 ms</td>
<td>with relays: 50 to 70 ms</td>
<td>with relays: 85 to 155 ms</td>
</tr>
</tbody>
</table>

(1) optional: 75 kV impulse/28 kV rms on basic version only.

(2) Fusarc CF fuses see sheet AC 0479E (fuses 3-36 kV).

(3) 400A continuous (no overload possible).

Table

<table>
<thead>
<tr>
<th>Voltage level</th>
<th>Breaking capacity at U (kV)</th>
<th>Rated insulation level</th>
<th>Breaking capacity with fuses (kA)</th>
<th>Rated current (A)</th>
<th>Making capacity with fuses (kA) peak</th>
<th>3 sec. short time current (kA) rms</th>
<th>Mechanical endurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 to 4.76</td>
<td>60</td>
<td>10</td>
<td>50</td>
<td>400</td>
<td>25</td>
<td>125</td>
<td>10</td>
</tr>
<tr>
<td>7.2</td>
<td>60</td>
<td>20</td>
<td>10</td>
<td>400</td>
<td>25</td>
<td>125</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>28</td>
<td>8</td>
<td>400</td>
<td>20</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

(1) 3 sec. magnetic holding

(2) Fusarc CF fuses see sheet AC 0479E (fuses 3-36 kV).

(3) 400A continuous (no overload possible).
Maximum switching capacities

When the contactor is used in conjunction with fuses, the maximum switching capacities may be determined using the fuse curves and by taking into account:

- the characteristics of the load (motor starting currents, starting times, transformer inrush currents),
- the amplitude of the limited interrupted current which is a function of the prospective fault current and the fuses employed. The limited interrupted current should not exceed the electrodynamic withstand capacity of the contactor.

For values less than those presented in the table below, see:
Page 21, for motor control, technical sheet AC 0479E for transformers.

<table>
<thead>
<tr>
<th>service voltage (kV)</th>
<th>motors kW (1)</th>
<th>transfo. kVA</th>
<th>capacitor banks kVAR</th>
<th>max. fuse rating see document AC0479E (l=292 mm) (2)</th>
<th>motors kW (1)</th>
<th>transfo. (standard max. rating) kVA</th>
<th>capa-citors (single bank) Kvar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without fuse</td>
<td>with fuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>motors kW (1)</td>
<td>transfo. kVA</td>
<td>capacitor banks kVAR</td>
<td>max. fuse rating</td>
<td>motors kW (1)</td>
<td>5 sec. start Is/In = 6</td>
<td>10 s. start Is/In = 8</td>
</tr>
<tr>
<td>3.3</td>
<td>1560</td>
<td>1800</td>
<td>1255</td>
<td>250</td>
<td>1160</td>
<td>1060</td>
<td>1060</td>
</tr>
<tr>
<td>3.6</td>
<td>1690</td>
<td>1965</td>
<td>1370</td>
<td>250</td>
<td>1260</td>
<td>1150</td>
<td>1150</td>
</tr>
<tr>
<td>4.16</td>
<td>1960</td>
<td>2270</td>
<td>1585</td>
<td>200</td>
<td>820</td>
<td>735</td>
<td>735</td>
</tr>
<tr>
<td>6.6</td>
<td>3100</td>
<td>3600</td>
<td>2510</td>
<td>200</td>
<td>1295</td>
<td>1165</td>
<td>1165</td>
</tr>
<tr>
<td>7.2</td>
<td>3380</td>
<td>3925</td>
<td>2740</td>
<td>200</td>
<td>1410</td>
<td>1270</td>
<td>1270</td>
</tr>
<tr>
<td>10</td>
<td>4690</td>
<td>5455</td>
<td>3810</td>
<td>100</td>
<td>520</td>
<td>445</td>
<td>445</td>
</tr>
<tr>
<td>12</td>
<td>5630</td>
<td>6545</td>
<td>4570</td>
<td>100</td>
<td>625</td>
<td>535</td>
<td>535</td>
</tr>
</tbody>
</table>

(1) with p.f. = 0.92, η = 0.94
(2) for higher fuse ratings, consult us.
*Note: Fuse ratings depend on the maximum power.
For lower powers, the correct fuse rating must be determined (see page 21).
Contactor operating conditions (without fuses)

IEC standard 60470 (chapter 2) defines three types of contactor operation:

- **Continuous operation**
 - In position 1, the contactor equilibrium temperature is reached.

- **Periodical intermittent operation** (or intermittent)
 - In position 1, the contactor equilibrium temperature is not reached.

- **Short-time operation**
 - In position 1, the contactor equilibrium temperature is not reached.
 - t1: standardized values 10 min - 30 min - 60 min - 90 min
 - t2: time required for the contactor to cool to the temperature of the cooling medium

Intermittent and short-time operation

Allowable overcurrents

The two sets of curves presented here can be used to determine allowable overcurrents in the Rollarc contactor:

- the maximum value of an overcurrent and the cooling time.

Using the permanent current value I_p, figure 1 can be used to determine the maximum duration of T_{oc} along line 1.

The time required for cooling T_c to ensure that the equilibrium temperature is not exceeded may be determined using figure 2.

Example:

- A Rollarc contactor with a permanent operating current $I_p = 240A$ can withstand a temporary overload of 2400A for 32 seconds.

 - The cooling time T_c is:
 - 25 minutes if the circuit is open
 - 28 minutes if a 120A current flows through the contactor
 - 48 minutes if a 200A current again flows through the contactor.

- **Cyclical overcurrent**
 - The fourth parameter (see line 2 between figures 1 and 2) can be determined when three of the four below are known:
 - I_{oc} overcurrent
 - T_{oc} duration of overcurrent
 - I_c cooling current
 - T_c duration of cooling

Example:

- I_{oc} 1200A for 10 seconds
 - T_c 200A for 2 minutes
Rollarc operating mechanism

The contactor is closed by an electromagnet (pick-up coil YF).
- For the magnetically held contactor R400, two seal-in coils (YM) are inserted in the circuit at the end of closing.
- The contactor is tripped by the opening of the holding circuit.
- For the mechanically latched contactor R400D, the contactor is held in closed position by the mechanical latching system. The contactor is tripped by a shunt trip which releases the latching device.

Auxiliary switches

Rollarc contactors are equipped with ten changeover common point auxiliary switches. Consult the equipment selection table for information on the number of available switches.

Optional pressure switch

The optional pressure switch for alarm indications closes a changeover switch if the gas pressure drop below 1.5 bars.

Contact breaking capacity:
- A.C. (p.f. = 0.6) 2.2 A at 127V
- D.C. 0.5A at 120V - 0.4A at 220V

Equipment selection table

<table>
<thead>
<tr>
<th>selection of accessories</th>
<th>code</th>
<th>R400 magnetically held contactor</th>
<th>R400D mechanically latched contactor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>basic version</td>
<td>fixed version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC/DC</td>
<td>AC/DC</td>
</tr>
<tr>
<td>closing electromagnet</td>
<td>YF</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>holding electromagnet (seal-in)</td>
<td>YM</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>shunt trip</td>
<td>YD</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>number of auxiliary switches available(1)</td>
<td>CA</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>pressure switch</td>
<td>P</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>anti-pumping relay</td>
<td>KN</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>closing relay</td>
<td>KMF</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>opening relay</td>
<td>KMO</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>operation counter(1)</td>
<td>PC</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>interlocking auxiliary switch(*)</td>
<td>SE</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>interlock</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>« service position » indication</td>
<td>SQ2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>equipment for M.V fuses (fixing and « fuse blown » contacts)</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>withdrawlable fixed frame(2)</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>75kV kit</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>mechanical interlock</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

(1) The operations counter uses one auxiliary switch
(2) Device may be padlocked on the fixed frame (1 or 2 padlocks)
(*) The interlock switch is actuated by the operating handle

- Standard equipment
- ▲ relay not supplied, wired by user (see diagrams)
- □ optional accessories
Principle diagram

Rollarc 400 basic version

1: standard Schneider supply
2: control relay recommended by Schneider
3: options proposed by Schneider
4: O/C control unit (not supplied by Schneider)

1: mechanical links
2: Rollarc printed circuit alone
3: connections supplied
4: connections not supplied

YF: closing coils
- 1050 W ~ 900VA
- 30 W ~ 40VA
YM: seal-in coil
- 30 W ~ 40VA
YD: shunt trip
- 80 W ~ 100VA
SQ1: limit switch. Seal-in coil contact
C: capacitor
- G = 1/f x 2
- \(U_{max} = 250V \)
Ra: Resistance
- R = 1.2KΩ

Rollarc 400D basic version

1: standard Schneider supply
2: control relay recommended by Schneider
3: options proposed by Schneider
4: O/C control unit (not supplied by Schneider)

1: mechanical links
2: Rollarc printed circuit alone
3: connections supplied
4: connections not supplied

YF: closing coils
- 1050 W ~ 900VA
- 30 W ~ 40VA
YM: seal-in coil
- 30 W ~ 40VA
YD: shunt trip
- 80 W ~ 100VA
SQ1: limit switch. Seal-in coil contact
C: capacitor
- G = 1/f x 2
- \(U_{max} = 250V \)
Ra: Resistance
- R = 1.2KΩ

F: Varistor
- \(U_{max} = 250V \) type: GE M60
FUBT: low voltage fuse

F– : +

P: pressure switch
- 2.2A/220V
- 0.4A/220V

SO: opening push button
SF: closing push button

PC: 6 digit operations counter
KN: end of closing relay
KMF: closing relay see table below
KMO: opening relay

Un (V) 48 60-72 100-127 220-250
Ia (A) 10 3.15 2.5 1.25

QF: auxiliary switch
- la = 10A

Un (V) 48 110 220
Ia (A) 10 10 10

P: pressure switch
- 2.2A/220V
- 0.4A/220V

Coil consumption
- 3 W ~ 4VA
Rollarc 400 fixed version with electrical auxiliaries

Rollarc 400D fixed version with electrical auxiliaries

Principle diagram

Rollarc 400 fixed version with electrical auxiliaries

- **FUMT**: HV fuse. See document AC0479
- **FUBT**: low voltage fuse
- **QF**: auxiliary switch
- **SQE2**: closing (S12-S13)
- **SF**: closing push button
- **KMF**: closing relay
- **KMO**: opening relay

<table>
<thead>
<tr>
<th>Un (V)</th>
<th>48</th>
<th>60-72</th>
<th>100-127</th>
<th>220-250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia (A)</td>
<td>10</td>
<td>3.15</td>
<td>2.5</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Rollarc 400D fixed version with electrical auxiliaries

Legend

- 1: Mechanical locking. Contactor open.
- 2: Mechanical locking. Contactor closed.
- 3: Rollarc printed circuit alone
- 4: Overload control unit (not supplied by Schneider)
- 5: Schneider supply
- 6: Options proposed by Schneider
- 7: Schneider supply
- 8: Connections not supplied
- 9: CA: Cap (L/R = 0.15) 0.8 A/220 V
- 10: CA: Cap (L/R = 0.15) 0.3 A/220 V
- 11: CA: Cap (L/R = 0.15) 0.18 A/220 V
- 12: SA: Valve pressure switch 1.5 bar
- 13: SA: Valve pressure switch 1.5 bar
- 14: SA: Valve pressure switch 1.5 bar
- 15: SA: Valve pressure switch 1.5 bar
- 16: Coil consumption 3 W
- 17: Coil consumption 4 VA

Notes

- Schneider 4: O/C control unit (not supplied by Schneider)
- Schneider 1: Schneider supply
- Schneider 3: Options proposed by Schneider
- Schneider 2: Schneider supply
- Schneider 5: Connections not supplied

Rollarc 400 withdrawable version with electrical auxiliaries

- Electrical auxiliaries for DC power supply
- Electrical auxiliaries for AC power supply

Rollarc 400D withdrawable version with electrical auxiliaries

- Electrical auxiliaries for DC power supply
- Electrical auxiliaries for AC power supply

Diagram notes:
- 1: standard Schneider supply
- 3: options proposed by Schneider
- 4: O/C control unit (not supplied by Schneider)
- H: mechanical links
- FUBT: low voltage fuse
- Un (V): 48, 60-72, 100-127, 220-250
- la (A): 10, 3.15, 2.5, 1.25
- QF: auxiliary switch
- Breaking 1 ~ (p.f. = 0.3) 10A/220V
- P: pressure switch
- SQ1: limit switch, seal-in, coil contact
- C: capacitor
- F: Varistor
- Ra: Resistance
- FUBT: low voltage fuse
- Un (V): 48, 110, 220
- ia (A): 10, 10, 10
- p.f. = 0.4 ~ (A): 1.1, 4, 0.4
- L/R = 40 ms ~ (A): 0.8, 0.3, 0.18
- Coil consumption: 3 W ~ 4VA
Dimensions

Basic version

(1) mounting dimensions
approximative weight: 35 kg

Fixed version

a: LV connector
(1) mounting dimensions
approximative weight: 65 kg

Withdrawable version

a: LV connector
(1) mounting dimensions
approximative weight: 85 kg
Installation examples

Withdrawable MCset factory-built cubicle
See technical sheet AC 0467E

SM6 factory-built cubicle
See technical sheet AC 0356E
SF6 gas properties and Rollarc technique

Sulphur hexafluoride (SF6) gas properties

SF6 is a non-inflammable very stable, non-toxic gas, five times heavier than air. Its dielectric strength is much higher than that of air at atmospheric pressure.

Gas for interruption

SF6 is "the" arc-interruption gas, combining the best properties:

- **high capacity for carrying away the heat** produced by the arc. The latter is rapidly cooled by convection during the arcing period.
- **high radial thermal conduction** and **high electron capturing capacity**.

When the current passes through zero, the arc is extinguished by the combination of two phenomena:

- SF6 permits rapid heat exchange from the center of the arc toward the exterior.
- Fluorine atoms, which are highly electronegative, act as veritable "traps" for electrons. Since it is electrons which are mainly responsible for electric conduction in the gas, the gap between the contacts recovers its initial dielectric strength through this electron capture phenomenon at zero current.
- **the decomposition of the SF6 molecule is reversible**.

The same mass of gas is therefore always available, making the device self-sustained throughout its operating life.

Advantages of Rollarc

The Rollarc rotating arc contactor is a modern device with enhanced cooling of the arc by forced convection leading to the following advantages:

Long life

This results from:

- high product reliability.
- very low wear of the active parts which require no maintenance.
- the excellent sealing of the enclosure, eliminating the need for subsequent filling.

Mechanical endurance

The operating energy is reduced because arc rotation is directly created by the current to be interrupted.

The Rollarc contactor can do 300,000 operations in R400 version and 100,000 operations in R400D version.

Electrical endurance

The long life of the Rollarc is due to the negligible degeneration of the gas and to low wear of the contacts.

The energy dissipated in the arc is low due to:

- the intrinsic properties of the gas,
- the short length of the arc,
- the very short arcing time.

Wear of the arcing contacts can be checked without opening the poles. The unit is capable of breaking all load and short-circuit currents, even in the case of frequent operation. With very high breaking capacity for a contactor, the Rollarc can be used in a fuse-contactor assembly capable of protecting any circuit against all types of faults including overloads.

Low switching surges

The intrinsic properties of the gas and the soft break resulting from this technique means that switching surges are very low.

Concerning motor start-up, the unit is free from multiple prestrike and restrike phenomena which could damage the winding insulation.

Operating safety

The Rollarc contactor operates at a low relative pressure of 2.5 bars.

Continuous monitoring of the contactor pressure (optional)

A pressure switch actuates a contact in the event of an accidental drop in the pressure of the SF6 gas in the Rollarc unit.

Insensitivity to external conditions

The Rollarc pole unit provides a totally gas-insulated system. It is a hermetically sealed enclosure filled with SF6 gas and housing the essential parts. Rollarc is particularly suited to polluted environments such as mines, cement works, etc.
The rotating arc technique

The rotating arc principle

The exceptional characteristics of SF6 gas are used to extinguish the electrical arc. Cooling is enhanced by the relative movement between the arc and the gas.

In the rotating arc technique, the arc is set in motion between two circular arcing contacts (see figure opposite). When the main contacts separate, the current to be interrupted flows through a solenoid, thus creating an electromagnetic field B.

When the arcing contacts separate, the arc appears between them. The arc is made to rotate between the two circular arcing contacts by force F, the combined result of the electromagnetic field and the current.

Force F is directly proportional to the square of the current to be interrupted. This breaking technique therefore automatically adapts to the current to be interrupted. When the current is high, the speed of rotation is high (speed of sound) and cooling is intense. Just before reaching zero current, the speed is still sufficient to make the arc rotate and thus contribute to the recovery of dielectric strength at zero current. Wear of the arcing contacts is very low.

When the current is low, the speed of rotation is also low. This leads to very soft breaking of the arc without surges, comparable to the widely appreciated performances of the air breaking technique.
Soft breaking

Breaking of inductive or capacitive currents

The Rollarc contactor does not generate voltage surges. On some switchgear such surges occur during the breaking of low inductive or capacitive currents and can damage the insulation of connected devices. With the rotating arc technique, the rotation speed of the arc is low for low currents and breaking is soft under all conditions.

- **current chopping**: (arc interruption before zero current) the chopping current is always less than 1A, i.e. the voltage surge is very low for the load.
- **multiple prestrikes and restrikes**

Other phenomena exist that are much more dangerous to the load than the voltage surges resulting from current chopping. Such phenomena occur if the device tries to break high frequency currents. High frequency currents appear when there is a dielectric breakdown (opening of contacts is too close to zero current) and produce high frequency waves that are very dangerous for motor insulation. Given the relatively slow dielectric regeneration between its arcing contacts, the Rollarc contactor avoids breaking high frequency currents and multiple prestrike and restrike phenomena are prevented. The Rollarc is thus the perfect motor control contactor. It provides the user and the network with total security without requiring additional accessories such as surge arresters or RC systems.

Results of tests on Rollarc

<table>
<thead>
<tr>
<th>motor starting current</th>
<th>busbar capacitance (Cb)</th>
<th>busbar capacitance and compensation (Cb+Cc)</th>
<th>overvoltage Pu(1)</th>
<th>multiple restsrike</th>
</tr>
</thead>
<tbody>
<tr>
<td>100A</td>
<td>0.05 mF</td>
<td></td>
<td>1.76</td>
<td>0.18</td>
</tr>
<tr>
<td>100A</td>
<td>1.8 mF</td>
<td></td>
<td>1.88</td>
<td>0.13</td>
</tr>
<tr>
<td>300A</td>
<td>0.05 mF</td>
<td></td>
<td>1.69</td>
<td>0.10</td>
</tr>
<tr>
<td>300A</td>
<td>1.8 mF</td>
<td></td>
<td>1.79</td>
<td>0.09</td>
</tr>
</tbody>
</table>

(1) \[Pu = \frac{\text{measured peak voltage}}{\sqrt[3]{3}} \]

Example: peak voltage 7.2 \(\sqrt[3]{3} \times 1.76 \times U \) = 10.35 kV

Test circuit diagram 100A 7.2 kV and 300A 7.2 kV

Source: Busbar representation: Tested device: Connection: Motor substitute circuit:

- **tests according to IEC draft standard (17A secretariat 291)**
- Overvoltage levels depend on the breaking device, and also on the circuit. The IEC standard proposes a standard motor breaking circuit.

Ze earth impedance
Ls power supply inductance
U power supply voltage
Cc compensation capacitance
Cb capacitance of the bars

Lb inductance of the bars
L load inductance
R load resistance
Cp load parallel capacitance
Rp load parallel resistance
Rollard pole units

Description

Each pole unit consists of:
- **a main circuit** composed of a fixed main contact (4) and a moving main contact (6)
- **a breaking circuit** composed of a fixed arcing contact (5) and a moving arcing contact (7) that form two circular runners.

A blowout coil (3) is mounted in series in the circuit.

The main circuit that ensures the flow of the current is distinct from the breaking circuit in which the arc is produced.

- **a transmission mechanism** for the transfer of energy from the operating mechanism to the mobile contacts.

Operation

Rollarc 400 is a magnetic device that uses the rotating arc technique to interrupt the current.

- At the beginning of an opening cycle, the main contacts and the arcing contacts are closed (fig. 1).
- Isolation of the main circuit is achieved by the separation of the main contacts (fig. 2). The arcing contacts are still closed.

The current flows through the coil, the arcing contacts and the flexible connector.

- The arcing contacts open shortly after the main contacts. The resulting arc is made to rotate between the two circular runners of the arcing contacts by the electromagnetic field produced by the coil, the force of which depends on the current to be interrupted (fig. 3).

By design and due to phase shift between the current and the electromagnetic field, this force is still significant at zero current.

- At zero current, the gap between the contacts recovers its initial dielectric strength thanks to the inherent qualities of SF6 gas (fig. 4).
Fuse-contactor assembly
Utilisation guide

Fuse-contactor combinations

Principle
The contactor switches the load on and off during normal operation or an overload. The fuse ensures correct interruption of short-circuit currents according to the network short-circuit level. A "fuse-blown" device causes contactor opening.

Economic advantages
For a short-circuit level of 500 MVA, or of 50 kA at 6 kV, the saving in switchgear costs is more than 50 % compared to a circuit breaker solution.

Technical advantages
Contactor: high switching rates and greater mechanical endurance than a circuit breaker.
Fuse: current limitation that considerably reduces the thermal and electrodynamic effects of a fault (fig. 1).

Fuse-contactor assembly
Transformer control and protection

Select the fuse using the table below
Selection table (ratings in A)(1)

<table>
<thead>
<tr>
<th>service voltage (kV)</th>
<th>type of fuse</th>
<th>transformer rating (kVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 50 100 125 160 200 250 315 400 500 630 800 1000 1250 1600</td>
</tr>
<tr>
<td>3</td>
<td>Fusarc CF</td>
<td>16 25 50 50 63 80 80 125 125 125 160 200</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td>16 25 40 50 50 80 80 100 100 125 160 200 250</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>10 16 31.5 31.5 40 50 50 63 80 100 125 125 160 200</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10 16 25 31.5 40 50 50 63 80 80 125 125 160 200</td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td>10 16 25 31.5 40 50 50 63 80 80 100 125 125 160 200</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6.3 10 16 20 25 31.5 40 50 50 63 80 80 100 100</td>
</tr>
</tbody>
</table>

(1) Installation without transformer overload
Fuse-contactor assembly
motor control

The three sets of curves below enable the user to determine fuse ratings according to the motor power rating (P in kW) and its rated voltage (U in kV).
- set 1: provides the rated current in (A) using P and U
- set 2: provides the starting current Is (A) using In
- set 3: provides the correct fuse rating according to Is and the starting time ts (s).

Motor protection

The Fusarc CF fuse in association with a Rollarc contactor constitutes a particularly effective protection device for MV motors.

Example
A 1650 kW motor supplied at 6.6 kV (point A) has a rated current In of 167 A (point B);
- the starting current is six times greater than the rated current, i.e. 1000 A (point C);
- for a ten second starting time ts, the third set of curves indicates a rating of 250 A (point D).

Remarks
- curve set 1 is plotted for a power factor (p.f.) of 0.92 and an output efficiency of 0.94. For different values, use the formula:
 \[\text{In} = \frac{P}{n\sqrt{3} \times U \times \text{p.f.}} \]
- the curves in set 3 are plotted for six starts spaced over one hour or two consecutive starts. For n starts spaced over one hour (n>6),
multiply ts by \(\frac{p}{2} \)

For p consecutive starts (p>2), multiply ts by \(\frac{p}{2} \) (see selection table)
If the start duration information is not known, use ts = 10 s.
- if motor start-up is not direct, the fuse rating obtained using the curves above may be insufficient for the full load current of the motor. A rating 20% higher than the full load current should be selected to take into account installation in a cubicle.