Your reference guide to safe and reliable LV switchboards

IEC 61439-1 & -2 standard

schneider-electric.com
IEC 61439-1 & -2

The power of the IEC standard adapted to your needs.

The International Electrotechnical Commission (IEC) standards are legal requirements and market references for all electrical, electronic, and related technologies.

The IEC 61439-1 & -2 is the reference for low-voltage switchgear and control-gear assemblies for electrical LV switchboard construction.

The IEC 61439 standard highlights all the requirements for designers and users of new generation LV switchboards, namely: people and equipment safety, electrical availability, long-term reliability, and conformity.

The IEC61439 includes designing a “system” that is compliant in all aspects, and one that tests interactions and consistencies between switchgear and equipment, provides protection against electrical, mechanical, and structural hazards, and simplifies system maintenance and upgrade cycles.

We hope this quick reference guide to the IEC 61439 standard will be a valuable resource and assist you in your next low voltage switchboard design, build, or upgrade. As always, Schneider Electric is here to help. Don’t hesitate to visit our website or reach out to your Schneider Electric representative for more details about this or any other product or service.

Schneider Electric and IEC Standards: a long success story

Ever since the construction of its very first electrical switchboard, Schneider Electric has demonstrated its full commitment to assembly manufacturers, in terms of guaranteeing “fully compliant” systems, and much more!

Schneider Electric’s position has always been that conformity of its solutions to IEC standards is a minimum requirement — a springboard that enables it to offer its users increased reliability, continuity of service, and compliance. In fact, as an Original Manufacturer, Schneider Electric demonstrates this value-add on a daily basis.

30 years
experience in the construction of tested switchboards (with associated standards).

100%
of switchboard architectures are tested and conform to IEC standards.

Full support
for designers, assemblers, panel builders, and contractors.

4 million
Schneider Electric tested LV electrical distribution switchboards are in operation worldwide.
Roles & Responsibilities

The IEC 61439 standard clearly defines the verifications that must be conducted by all parties involved.

Certification Body
Conducts the verification tests and grants all the certificates to the original manufacturing assembly.

Electrical Consultant Engineer
Specifies the needs and constraints in terms of design, installation, operation, and system upgrades. Verifies that requirements have been fully integrated by the Assembly Manufacturer.

Original Manufacturer
Carries out the original design and associated verification of an assembly system. Responsible for the “design verifications” listed by IEC 61439-2.

In case of deviations

Assembly Manufacturer (Panel Builder)
Responsible for routine verifications on each panel produced, according to the standard. If deviations from the instructions of the original manufacturer occur, they are obliged to repeat the design verifications.

End User
Should always request a certified LV switchboard be built. By systematically requesting routine verifications, the End User ensures that the assembly system is compliant. End User will specify, purchase, use, and/or operate the assembly.

* Schneider Electric has developed a specification guide.
The 10 main functions of IEC 61439 standard

All the verifications proposed by the IEC 61439 standard contribute to the achievement of three basic goals: electrical safety, electrical availability, and compliance with end-user requirements.

The charts below identify the requirements and verifications associated with each goal.

### Electrical safety

#### Voltage stress withstand capability

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Insulation to withstand long-term voltages, transient and temporary over voltages guaranteed through clearances, creepage distances, and solid insulation. | • Measurement of clearances and creepage distances  
• Power frequency dielectric test  
• Impulse withstand voltage test, when clearances are greater than specified values | • Visual inspection of clearances (subject to design conditions and creepage distances)  
• Power frequency dielectric test |

#### Current-carrying capability

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Protect against burns by limiting excessive temperatures:  
• when any single circuit is continuously loaded to its rated current  
• when any circuit is continuously loaded to its rated current multiplied by its rated diversity factor | • Temperature rise tests  
• Or comparison with a tested reference design, under restrictive conditions  
• Or, under very restrictive conditions, calculations with safety margins (including 20% derating of devices) | • Visual inspection  
• Random verification of tightness |

#### Short-circuit withstand capability

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Withstand short-circuit through protection devices, short-circuit coordination, and capability to withstand the stresses resulting from short-circuit currents in all conductors. | • Short-circuit tests (Icc and Icw) of the main circuit, including the neutral conductor and of the protection circuit  
• Or comparison with a tested reference design under restrictive conditions | • Visual inspection |
**Protection against electric shock**

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Hazardous live parts are not accessible (basic insulation protection) and accessible conductive parts are not hazardous for life (fault protection and continuity of protective equipotential bonding). | • IP XXB test and verification of insulating materials  
• Mechanical operation tests  
• Verification of dielectric properties  
• Measurement of the resistance between each exposed conductive part and the PE terminal  
• Short-circuit strength of the protection circuit | • Visual inspection of basic and fault protection  
• Random verification of tightness of the protective  
• Circuit connections |

**Protection against fire or explosion hazard**

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Protect persons against the fire hazard: resistance to internal glowing faulty elements through selection of materials and design provisions. | • Glow wire test  
• Special test according to IEC TR 61641, where specified | None |

**Electrical Availability**

**Maintenance and modification capability**

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
</table>
| Capability to preserve continuity of supply without impairing safety during assembly maintenance or modification through basic and fault protection and optional removable parts. | • IP tests  
• Mechanical operation tests (especially for removable parts) | • Effectiveness of mechanical actuating elements  
• Check protection of persons against electric shocks |

**Electro-Magnetic compatibility**

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property function and avoid generation of EMC disturbances through incorporation of electronic devices complying with the relevant EMC standard, and their correct installation.</td>
<td>• EMC tests according to product standards or generic EMC standards</td>
<td>None</td>
</tr>
</tbody>
</table>
### Compliance with end-user requirements

#### Capability to operate the electrical installation

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properly function, according to:</td>
<td>• By inspection • Impulse withstand voltage test of isolating distance for optional withdrawble units</td>
<td>• Visual inspection • Effectiveness of mechanical actuating elements and function test (where relevant)</td>
</tr>
<tr>
<td>• the electrical diagram and the specifications (voltages, co-ordination, etc.) by selecting, installing, and wiring the appropriate switching devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• the specified operating facilities (access to Human-Machine Interfaces, etc.) through accessibility and identification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Capability to be installed on site

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withstand handling, transport, storage, and installation constraints, and be capable to construct and connect through selection or design of the enclosure and the external terminals, and by provisions and documentation.</td>
<td>• By inspection • Lifting test, taken from IEC 62208</td>
<td>• Number, type, and identification of terminals for external conductors</td>
</tr>
</tbody>
</table>

#### Protection of the Assembly against environmental conditions

<table>
<thead>
<tr>
<th>Needs and design requirements</th>
<th>Design verification</th>
<th>Routine verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect the assembly against mechanical and atmospheric conditions through selection of materials and design provisions.</td>
<td>• IP test • IK test • Corrosion test • UV test (outdoor only)</td>
<td>None</td>
</tr>
</tbody>
</table>
Schneider Electric solutions: 100% IEC 61439 certified

Schneider Electric provides many solutions in accordance with IEC61439-1 and -2 for greater safety, reliability, and maintainability.

Panels

Prisma

Enhance your commercial and industrial low-voltage switchboard design (up to 4,000 A) with Schneider Electric’s Prisma range.

• **Highly robust** thanks to new pillar and reinforced door
• **Simplified connectivity** thanks to FDM121 and Linergy TA connection technology
• **Performance** with its metallic trunking support and extension enclosures
• **Seismic 2G tested and certified** in accordance with the IEC 60068-3-3 standard

Okken

Reliable and durable low-voltage switchboards that deliver intelligent power distribution and motor control — up to 7300 A.

• **Industry-leading performance and smart grid-ready.** Seamless integration with energy management and control systems
• **Designed to offer safe operation and maintenance,** and feature comprehensive internal arc and short-circuit protection
• **All components and devices** are designed by Schneider Electric, and offer full switchboard compatibility as well as permanent thermal monitoring
• **Designed to operate in the harshest of environments,** including areas that are prone to seismic activity
Masterpact MTZ
Future Ready Masterpact MTZ is a comprehensive range of air circuit breakers (ACB) designed to protect electrical systems from damage caused by overloads, short circuits, and equipment ground faults. It embeds advanced digital technologies and Micrologic X control units helping to contribute to safety and energy efficiency.

Compact NSX and NSXm
Full range of high performance molded case circuit breakers (MCCB) in three frame sizes designed to meet your needs from thermal-magnetic to advanced Micrologic trip units. This range also features integrated earth leakage protection.

TeSys U
The most compact motor starter. It covers main motor applications (direct on line, reversers, drive protection) from 0 to 15 kW (0 to 32 A) ensuring a breaking capacity of 50 kA with total coordination (according to IEC 60947-6-2).

Linergy
Complete range of power busbars for all switchboard architectures: centralized distribution, insulated system, staged distribution in duct. It is available for both copper or aluminum busbar systems and all IEC 61439 compliant.
Upgrades for enhanced safety and durability

Old

IEC 60439 for "Type Tested" and "Partially Type Tested"

<table>
<thead>
<tr>
<th>General Rules</th>
<th>Distribution Boards</th>
<th>Construction Sites</th>
<th>Cable Distribution Cables</th>
<th>Busbar Trunking</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60439-1</td>
<td>IEC 60439-3</td>
<td>IEC 60439-4</td>
<td>IEC 60439-5</td>
<td>IEC 60439-2</td>
</tr>
</tbody>
</table>

VS.

New

IEC 61439 for only "Tested Assemblies" with Design Verification

<table>
<thead>
<tr>
<th>General Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61439-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power SC Assemblies**</th>
<th>Distribution Boards</th>
<th>Construction Sites</th>
<th>Cable Distribution Cables</th>
<th>Busbar Trunking</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61439-2</td>
<td>IEC 60439-3</td>
<td>IEC 60439-4</td>
<td>IEC 60439-5</td>
<td>IEC 60439-6</td>
</tr>
</tbody>
</table>

** Switchgear and control gear assemblies.

With the IEC 61439 standard, low voltage switchboard can no longer be Partially Type Tested and must comply with the full assembly tests.
Verification enhancements of the new IEC 61439 standard vs. the old IEC 60439 include the following:

**Design verification**
- Increased requirements for insulating materials and transient overvoltages withstand tests
- Temperature rise verification:
  - Verification by test of each functional unit loaded alone with its rated current
  - Clear methods for the selection of representative samples of an assembly system to be tested
  - Test done in four steps: individual functional units, main and distribution busbars, and complete assembly
  - Heating resistors only allowed to simulate circuits adjacent to a circuit under test
  - Possible verification by comparison with a tested design under strict conditions, including derating
  - Only allowed up to 1600 A instead of 3150 A under strict conditions, including a 20% derating
- Possible short-circuit withstand verification by comparison with a tested design under strict conditions
- 200 operating cycles instead of 50 for locking, interlocking, and withdrawable parts
- Lifting test (from IEC 62208)
- Corrosion resistance test for metallic parts (from IEC 62208)

**Routine verification**
- More detailed list of the verifications
- More severe requirements for clearances
For more information about Schneider Electric’s complete LV Switchboard solutions, visit our website or contact your Schneider Electric representative.