Current transformer selection for Easergy P3 relays

Iron core current transformers (CT) are accurate in amplitude and phase when used near their nominal values. At very low and very high currents, they are far from ideal. For overcurrent and differential protection, the actual performance of CTs at high currents must be checked to ensure correct operation of the protection relay.

1. CT classification according IEC 60044-1, 1996

CT model

![Diagram](CT_model.png)

- **Lm** = the saturable magnetisation inductance
- **L** = secondary of an ideal current transformer
- **RCT** = resistance of the CT secondary winding
- **RW** = resistance of wiring
- **RL** = the burden (the protection relay)

Composite error \(\epsilon_C \)

Composite error \(\epsilon_C \) is the difference between the ideal secondary current and the actual secondary current under steady-state conditions. It includes amplitude and phase errors and also the effects of any possible harmonics on the exciting current.

\[
\epsilon_C = \frac{1}{T} \int_0^T (K_N i_s - i_P)^2 \, dt \cdot 100\%
\]

(eq. 1)

- \(T \) = Cycle time
- \(K_N \) = Rated transformation ratio \(I_{N_{\text{primary}}} / I_{N_{\text{secondary}}} \)
- \(i_s \) = Instantaneous secondary current
- \(i_P \) = Instantaneous primary current
- \(I_P \) = RMS value of primary current
All current-based protection functions of Easergy P3 relays, except for arc protection, thermal protection and second harmonic blocking functions use the base frequency component of the measured current. The IEC formulas include an RMS value of the current. That is why the composite error defined by IEC 60044-1 is not ideal for Easergy P3 relays. However, the difference is not big enough to prevent rough estimation.

Standard accuracy classes

At the rated frequency and with a rated burden connected, the amplitude error and phase error and composite error of a CT shall not exceed the values given in Table 1.

<table>
<thead>
<tr>
<th>Accuracy class</th>
<th>Amplitude error at rated primary current (%</th>
<th>Phase displacement at rated primary current (°)</th>
<th>Composite error ε_C at rated accuracy limit primary current (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5P</td>
<td>±1</td>
<td>±1</td>
<td>5</td>
</tr>
<tr>
<td>10P</td>
<td>±3</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Marking: The accuracy class of a CT is written after the rated power. For example 10 VA 5P10, 15 VA 10P10, 30 VA 5P20

Accuracy limit current I_{AL}

Current transformers for protection must retain a reasonable accuracy up to the largest relevant fault current. The rated accuracy limit current is the value of the primary current up to which the CT complies with the requirements for the composite error ε_C.

Accuracy limit factor k_{ALF}

The ratio of the accuracy limit current to the rated primary current.

$$k_{ALF} = \frac{I_{AL}}{I_N} \quad \text{(eq. 2)}$$

The standard accuracy limit factors are 5, 10, 15, 20 and 30.

Marking: The accuracy limit factor is written after the accuracy class. For example 10 VA 5P10, 15 VA 10P10, 30 VA 5P20.
Current transformer selection for Easergy P3 relays

Figure 2 Effect of CT winding resistance

Figure 2 of equation 3 shows that it is essential to know the winding resistance R_{CT} of the CT if the load is much less than the nominal. A 10 VA 5P10 CT with 25% load gives actual ALF values 15...30 when the winding resistance varies from 0.5 Ω to 0.05 Ω.

The actual accuracy limit factor k_A depends on the actual burden. (Figure 2)

$$k_A = k_{ALF} \frac{|S_i + S_N|}{|S_i + S_A|}$$ \hfill (eq. 3)

- k_{ALF} = Accuracy limit factor at rated current and rated burden
- S_i = Internal secondary burden (winding resistance R_{CT} in Figure 1)
- S_N = Rated burden of the CT
- S_A = Actual burden including wiring and the load

If the current is an asymmetric short-circuit current like in Figure 3, the needed accuracy limit factor should be multiplied by the coefficient k_{DC}. This guarantees accurate protection, that is, total avoidance of saturation, but may result in the selection of a big CT.

$$k_{DC} = 1 + \omega \tau$$ \hfill (eq. 4)

- ω = Angle frequency $2\pi f$
- τ = Time constant of the short-circuit current

Figure 3 Asymmetric short-circuit current with time constant $\tau = 50$ms
2. CT requirements for differential protection

When the through current equals and exceeds $k_A I_N$, there may be enough secondary differential current to trip a relay although there is no in-zone fault. This is because the CTs are unique and they do not behave equally when saturating.

To avoid false tripping caused by heavy through faults, the actual accuracy limit factor k_A of the CTs should obey the equation:

$$ k_A > c \cdot I_k \cdot \frac{I_{NTra}}{I_{NCT}} $$

(eq. 5)

c = Safety factor from Table 2 or k_{DC} from equation 4 for accurate protection and complete saturation avoidance

I_k = Maximum through-fault short-circuit current

I_{NTra} = Rated current of the transformer

I_{NCT} = Rated primary current of the CT

<table>
<thead>
<tr>
<th>Protection application</th>
<th>Safety factor c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent</td>
<td>1.4</td>
</tr>
<tr>
<td>Transformer differential, Δ-winding or ungrounded Y-winding</td>
<td>3</td>
</tr>
<tr>
<td>Transformer differential, earthed Y-winding</td>
<td>4</td>
</tr>
<tr>
<td>Generator differential</td>
<td>3</td>
</tr>
</tbody>
</table>

Formula to solve needed CT power rating S_N

By replacing the complex power terms with corresponding resistances in equation 3, we get:

$$ k_A = k_{ALF} \frac{R_{CT} + R_N}{R_{CT} + R_W + R_L} $$

(eq. 6)

where the nominal burden resistance is:

$$ R_N = \frac{S_N}{I_{NCT \text{sec}}^2} $$

(eq. 7)

R_{CT} = Winding resistance (See Figure 1)

R_W = Wiring resistance (from CT to the relay and back)

R_L = Resistance of the protection relay input

S_N = Nominal burden of the CT

$I_{NCT \text{sec}}$ = Nominal secondary current of the CT
By solving S_N and substituting k_A according to equation 5, we get:

$$S_N > \left[\frac{c I_{NTrak}^2}{k_{ALF} I_{NCT}^2} (R_{CT} + R_w + R_L) - R_{CT} \right] I_{NCT \sec}^2 \quad \text{(eq. 8)}$$

Example 1

Transformer: 16 MVA YNd11 $Z_k = 10\%$
110 kV / 21 kV (84 A / 440 A)

CTs on HV side:
- 100/1 5P20 10 VA
- Winding resistance $R_{CT} = 0.2 \, \Omega$
 (R_{CT} depends on the CT type, I_{NCT} and power rating. Let us say that the selected CT type, 100 A, and an initial guess of 10 VA, results in 0.2 Ω.)

CTs on LV side:
- 500/1 5P20 10 VA
- Winding resistance $R_{CT} = 1.0 \, \Omega$
 (R_{CT} depends on the CT type, I_{NCT} and power rating. Let us say that the selected CT type, 500 A, and an initial guess of 10 VA, results in 1.0 Ω.)

Maximum through-fault short-circuit current $I_k = 10 \times I_N$

$$R_L = 0.05 \, \Omega$$ Typical burden of an Easergy P3 relay 1 A current input.

$$R_{WHV} = 0.688 \, \Omega$$ Wiring impedance of high voltage side. (2x80 m Cu, 4 mm²)

$$R_{WLV} = 0.275 \, \Omega$$ Wiring impedance of low voltage side. (2x20 m Cu, 2.5 mm²)

$f = 50 \, \text{Hz}$ Frequency

$\tau = 50 \, \text{ms}$ DC time constant

For ideal unsaturated behaviour, Equation 4 gives:

$$k_{DC} = 1 + 2\pi f \cdot 0.05 = 16.7$$

The needed CT power on HV side is: (eq. 8)

$$S_N > \left[\frac{16.7 \times 10 \times 0.84}{20 \times 100} \cdot (0.2 + 0.688 + 0.05) - 0.2 \right] \cdot 1^2 = 6.38 \, \text{VA}$$

\Rightarrow 10 VA is a good choice for HV side.

And on the LV side:

$$S_N > \left[\frac{16.7 \times 10 \times 4.40}{20 \times 500} \cdot (1.0 + 0.275 + 0.05) - 1.0 \right] \cdot 1^2 = 8.74 \, \text{VA}$$

\Rightarrow 10 VA is a good choice for LV side.
NOTICE

CTs with one ampere secondaries are recommended for differential protection. They are - from the saturation point of view - much more than five times better than CTs with five ampere secondaries. Note that a 500/5 5P10 CT can be used as a 100/1 5P50.

3. CT requirements for overcurrent protection

Undirectional overcurrent protection does not set as high requirements for a CT as the differential protection.

The nominal primary current should be enough for the maximum short-circuit current according to the equation:

\[I_{CT_{pri}} \geq \frac{I_k}{100} \] \hspace{1cm} (eq. 9)

\[I_{CT_{pri}} \] = Nominal primary current of the CT
\[I_k \] = Maximum short-circuit current

The needed minimum value for the actual accuracy limit factor \(k_A \) (equation 3) depends on the highest setting value, the applied delay type definite/dependent and the needed fault current grading for selectivity. A reasonable actual accuracy limit factor for most cases should be according to equation 9.

\[k_A > c \cdot I_{SET} \] \hspace{1cm} (eq. 10)

\[c \] = Safety factor from Table 2 or \(k_{DC} \) from equation 4 if accurate trip limit is needed for total saturation avoidance
\[I_{SET} \] = Relative setting of the most coarse overcurrent stage
\[k_{DC} \] = Extra coefficient for decaying dc component according to equation 4

The needed power rating for the CT is:

\[S_N > \left[\frac{c I_{SET}}{k_{ALF}} (R_{CT} + R_W + R_L) - R_{CT} \right] I_{NCT_sec}^2 \] \hspace{1cm} (eq. 11)
Example 2

Network:
- $I_k = 30 \text{kA}$ Maximum short-circuit current
- $R_L = 0.008 \Omega$ Typical burden of an Easergy P3 relay 5 A current input
- $R_W = 0.09 \Omega$ Secondary wiring impedance

CT:
- $1000/5$ 10P10 15 VA ($10P10 \Rightarrow 10\% \text{ error } @ 10 \times 1000 \text{ A}$)
- $R_{CT} = 0.3 \Omega$ Secondary winding resistance

Settings of the most coarse overcurrent stage:
- $I_{set} = 10 \times I_N = 10000 \text{ A}$
- Delay type = definite time
- $f = 50 \text{ Hz}$ Frequency
- $\tau = 50 \text{ ms}$ DC time constant

According to equation 9, the CT primary value is OK ($30k/1000 = 30$ and 30 is well under 100).

Let us use the safety factor 1.4 from table 2 instead of the k_{DC} coefficient and allow some inaccuracy for high-set overcurrent protection.

Next, we check if the power rating is adequate (equation 11).

$$S_N > \left[\frac{1.4 \cdot 10}{10} \cdot (0.3 + 0.09 + 0.008) - 0.3 \right] \cdot 5^2 = 6.43 \text{ VA}$$

$\Rightarrow 10 \text{ VA is enough, but any decaying DC component might saturate the CT causing some inaccuracy for the high-set overcurrent stage.}$

4. Maximum allowed wiring distance between CT and a relay

From equation 11, we can solve the maximum possible wiring resistance:

$$R_{W\max} = \left(\frac{S_N}{I_{NCT}^2} + R_{CT} \right) \cdot \frac{k_{ALF}}{I_{SET}} - R_{CT} - R_L \quad \text{(eq. 12)}$$

This resistance corresponds to a wire length of:

$$L_{\max} = \frac{RA}{\delta} \quad \text{(eq. 13)}$$

Where
- L_{\max} = Maximum wire length
- R = Wiring resistance
- A = Cross-sectional area of the wire
- δ = Unit resistance of the wire
The corresponding distance is half of the wire length because there are two wires from the CT to the relay.

Max. distance = \(L_{\text{max}}/2 \) \hspace{1cm} (eq. 14)

Example 3

Let us calculate the maximum possible distance between the CT and the protection relay with the following case.

- \(\text{CT} = 500/5 \ 10P_{10} \)
- \(K_{\text{AFL}} = 10 \) Accuracy limit factor at rated current and rated burden according CT specification.
- \(I_{\text{NCT sec}} = 5 \text{ A} \) Nominal secondary current of the CT
- \(S_N = 15 \text{ VA} \) Rated burden of the CT
- \(R_L = 0.008 \Omega \) Burden of an Easergy P3 relay 5 A current input.
- \(R_{CT} = 0.15 \Omega \) Secondary winding resistance
- \(\delta = 1.4 \) Safety factor. See Table 2.
- \(I_{\text{SET}} = 8 \times I_N \) Overcurrent setting
- \(\text{Wire} = 2.5 \text{ mm}^2 \) Cross-sectional area and material Cu
- \(\delta_{\text{Cu}} = 17.2 \text{ n}\Omega \text{m} \) Unit resistance of copper
- \(k_{\text{DC}} = 1 \) This ignores any decaying DC component.

From equation 11, we get the maximum allowed wiring resistance:

\[
R_{W_{\text{max}}} = \left(\frac{15}{5^2} + 0.15 \right) \frac{10}{1.4 \cdot 8} \cdot 0.15 - 0.008 = 0.512 \Omega
\]

and from equation 13, we get the corresponding wire length:

\[
L_{\text{max}} = \frac{0.512 \cdot 2.5 \times 10^{-6}}{17.2 \times 10^{-9}} = 74.4m
\]

Thus, the maximum possible distance is according to equation 14:

Distance\(_{\text{max}}\) = 74.4/2 = 37 m