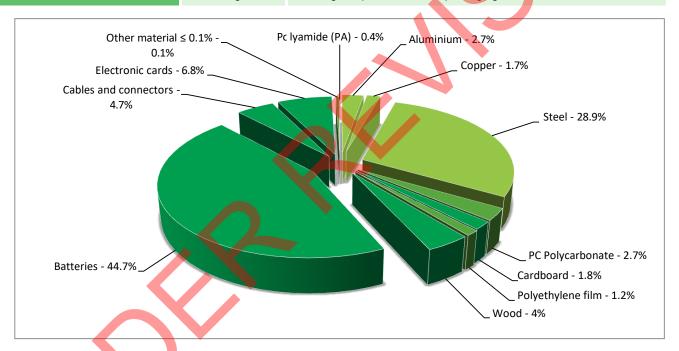
Product Environmental Profile

Galaxy VM

The UPS provides emergency power to a load when the input power source or main power fails

General information


Representative product	Uninterruptible Power Supply: Galaxy VM - GVMSB200KHS
Description of the product	The Galaxy VM is a highly efficient 160 -1125kVA -480V and 160 -1000kVA 400V 3 phase Uninterruptible Power Supply (UPS) system composed of modular UPS units of various size, battery cabinets, and unit connection accessories that provide seamless power protection for medium sized data centers, industrial and facilities applications.
Description of the range	The UPS provides emergency power to a load when the input power source or main power fails The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	To protect the load of 180000 Watts against input power failure for 15 years and provide a backup time of 7.1 minutes.

Constituent materials

Reference product mass

3077000 g

including the product and its packaging.

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive"," (European Directive 2011/65/EU of 8 June 2011) and do not contain, or only contain in the authorized proportions",", lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls"," - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

The battery pack(s) within this product range are designed to conform with the requirements of the Battery and Accumulator Directive (European Directive 2006/66/EC of 26 September 2006) and do not contain, or only contain in authorized proportions, the regulated substances lead (Pb), mercury (Hg) and cadmium (Cd) as mentioned in the Directive. Additionally, the non-spillable, valve regulated lead acid batteries used in the battery pack(s) within this product range are certified by their manufacturers as capable of withstanding the IATA/ICAO Vibration and Pressure Differential Test and that at a temperature of 55 degrees Centigrade, there is no free electrolyte to flow from a ruptured or cracked case.

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page

(I) Additional environmental information

The	e Uninterruptible Power Supply: Galaxy VM presents the following relevent environmental aspects
Design	Galaxy VM UPS systems deploy state of the art technology to lower life-time energy use through very high efficiency designs including the innovative ECOnversion mode. Galaxy VM UPSs seamlessly link into the electrical network via state-of-the-art features and provide excellent power quality and protection. Designed at a Schneider Electric Design Center that utilizes a design process that conforms to the requirements of the IEC 62430 "Environmentally Conscious Design for Electrical and Electronic Products" standard.
Manufacturing	Manufactured at a Schneider Electric production site ISO14001 certified
Distribution	Weight and volume of the packaging optimized, based on the European Union's packaging directive Packaging weight is 214510.5 g, consisting of cardboard (25%), PE film (18%) wood (56%) and paper (1%) Product distribution optimized by setting up local distribution centers
Installation	Galaxy VM does not require any special installation materials or operations.
Use	Battery - 2 changes Fan - 3 changes Filter - 14 changes Display - 2 changes
End of life	End of life optimized to decrease the amount of waste and allow recovery of the product components and materials This product contains external electrical cables (119200 g), printed circuit boards >10cm2 (31054 g), plastics with brominated flame retardants (2980 g), Lead acid batteries (1348880 g), LCD display >10mm2 (204 g) and NiMH (coin) batteries (11 g). that should be separated from the stream of waste so as to optimize end-of-life treatment. The location of these components and other recommendations are given in the End of Life Instruction document which is available on the Schneider-Electric Green Premium website http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page Based on "ECO'DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

Environmental impacts

Reference lifetime	15 years							
Product category	Active products							
Installation elements	Transport and disposal of pack components needed.	Transport and disposal of packaging are accounted for during installation. No special installation components needed.						
Use scenario	Consumed power is 3490.3125 0 % of the time in Sleep mode			e in Standby mode, W				
Geographical representativeness	Europe							
Technological representativeness	The Galaxy VM is a highly efficient 160 -1125kVA -480V and 160 -1000kVA 400V 3 phase Uninterruptible Power Supply (UPS) system composed of modular UPS units of various size, battery cabinets, and unit connection accessories that provide seamless power protection for medium sized data centers, industrial and facilities applications.							
	Manufacturing	Installation	Use	End of life				
Energy model used	Energy model used: India	ELCD_Electricity_mix_<1k V_EU-27_ELCD-0089	ELCD_Electricity_mix_< 1kV_EU-27_ELCD- 0089	ELCD_Electricity_mix_ <1kV_EU-27_ELCD- 0089				

Compulsory indicators	Uninterrupti	ble Power Supply	: Galaxy VM -	GVMSB200KH	IS		
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to mineral resources depletion	kg Sb eq	2.08E+01	7.80E+00	0*	0*	1.30E+01	0*

Contribution to the soil and water acidification								
Contribution to global warming kg CO ₂ eq 3.16E+05 1.45E+04 1.04E+03 1.86E+02 2.99E+05 6.51E+02 Contribution to ozone layer depletion kg CFC11 eq 7.19E-02 2.06E-03 0* 0* 0* 6.99E-02 0* Contribution to photochemical oxidation kg C ₂ H ₄ eq 1.08E+02 2.83E+00 1.36E+00 4.24E-02 1.04E+02 7.72E-02 Resources use Unit Total Manufacturing Distribution Installation Use End of Life Net use of freshwater m3 1.01E+03 1.44E+02 0* 3.21E-01 8.68E+02 8.06E-01 Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100% 90% 80% 70% 60% 40% 30% 30% 20%	Contribution to the soil and water acidification	kg SO ₂ eq	2.14E+03	2.74E+01	2.73E+01	5.69E-01	2.08E+03	1.03E+00
Contribution to ozone layer depletion kg CFC11 eq 7.19E-02 2.06E-03 0* 0* 6.99E-02 0* Contribution to photochemical oxidation kg C ₂ H ₄ eq 1.08E+02 2.83E+00 1.36E+00 4.24E-02 1.04E+02 7.72E-02 Resources use Unit Total Manufacturing Distribution Installation Use End of Life Net use of freshwater m3 1.01E+03 1.44E+02 0* 3.21E-01 8.68E+02 8.06E-01 Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100%	Contribution to water eutrophication	kg PO₄³- eq	9.61E+01	6.11E+00	2.75E+00	1.36E-01	8.69E+01	2.69E-01
Contribution to photochemical oxidation kg C ₂ H ₄ eq 1.08E+02 2.83E+00 1.36E+00 4.24E-02 1.04E+02 7.72E-02 Resources use Unit Total Manufacturing Distribution Installation Use End of Life Net use of freshwater m3 1.01E+03 1.44E+02 0* 3.21E-01 8.68E+02 8.06E-01 Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100% 60%	Contribution to global warming	kg CO ₂ eq	3.16E+05	1.45E+04	1.04E+03	1.86E+02	2.99E+05	6.51E+02
Resources use Unit Total Manufacturing Distribution Installation Use End of Life Net use of freshwater m3 1.01E+03 1.44E+02 0* 3.21E-01 8.68E+02 8.06E-01 Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100% 90% 80% 70% 60	Contribution to ozone layer depletion	kg CFC11 eq	7.19E-02	2.06E-03	0*	0*	6.99E-02	0*
Net use of freshwater m3 1.01E+03 1.44E+02 0* 3.21E-01 8.68E+02 8.06E-01 Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100% 90% 80% 70% 60% 50% 40% 30% 20%	Contribution to photochemical oxidation	kg C ₂ H ₄ eq	1.08E+02	2.83E+00	1.36E+00	4.24E-02	1.04E+02	7.72E-02
Total Primary Energy MJ 5.49E+06 3.39E+05 1.27E+04 4.26E+03 5.13E+06 3.26E+03 100%	Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
100% 90% 80% 70% 60% 40% 30% 20%	Net use of freshwater	m3	1.01E+03	1.44E+02	0*	3.21E-01	8.68E+02	8.06E-01
90% — 80% — 70% — 60% — 40% — 20% — 20% — 60% —	Total Primary Energy	MJ	5.49E+06	3.39E+05	1.27E+04	4.26E+03	5.13E+06	3.26E+03
90% — 80% — 70% — 60% — 40% — 20% — 20% — 60% —	4000							
80% — 70% — 60% — 40% — 20% — 20% — 60% — 70% —								
70% — 60% — 50% — 40% — 20% — 60% —	90% —							
60% — 50% — 40% — 20% — — — — — — — — — — — — — — — — — — —	80% —							
50% — 40% — 30% — 20% — — — — — — — — — — — — — — — — — — —	70% —							
40% — 30% — 20% —	60% —							_
30%	50% —							_
20%	40% —							_
	30% —							_
10%	20% —							_
0%								

Contribution to

global warming

■ Manufacturing ■ Distribution ■ Installation ■ Use

Contribution to

ozone layer

depletion

Contribution to

photochemical

oxidation

End of life

Net use of

freshwater

Total Primary

Energy

Contribution to

water

eutrophication

Contribution to

mineral

resources

depletion

Contribution to

the soil and water

acidification

Optional indicators	Uninterrupti	Uninterruptible Power Supply: Galaxy VM - GVMSB200KHS					
Impact indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Contribution to fossil resources depletion	MJ	3.46E+06	2.03E+05	1.33E+04	4.23E+03	3.24E+06	3.26E+03
Contribution to air pollution	m³	2.82E+07	5.56E+06	1.34E+05	9.47E+03	2.24E+07	1.32E+04
Contribution to water pollution	m³	2.27E+07	3.32E+06	1.56E+05	1.66E+04	1.90E+07	1.87E+05
Resources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Use of secondary material	kg	4.12E+02	4.06E+02	0*	4.60E-01	5.32E+00	0*
Total use of renewable primary energy resources	MJ	3.99E+05	5.56E+03	0*	2.17E+02	3.93E+05	0*
Total use of non-renewable primary energy resources	MJ	5.09E+06	3.34E+05	1.27E+04	4.05E+03	4.74E+06	3.25E+03
Use of renewable primary energy excluding renewable primary energy used as raw material	MJ	3.96E+05	2.29E+03	0*	0*	3.93E+05	0*
Use of renewable primary energy resources used as	MJ	3.46E+03	3.27E+03	0*	1.96E+02	0*	0*
Use of non-renewable primary energy excluding non renewable primary energy used as raw material	MJ	5.06E+06	3.22E+05	1.27E+04	2.28E+03	4.72E+06	3.25E+03
Use of non-renewable primary energy resources used as raw material	MJ	2.91E+04	1.20E+04	0*	1.77E+03	1.53E+04	0*
Use of non-renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*
Waste categories	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
Hazardous waste disposed	kg	1.35E+04	8.72E+03	0*	0*	4.41E+03	3.43E+02
Non hazardous waste disposed	kg	1.02E+06	4.22E+03	0*	0*	1.01E+06	1.59E+02
Radioactive waste disposed	kg	8.31E+02	2.68E+00	0*	0*	8.28E+02	0*
Other environmental information	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life

Materials for recycling	kg	3.43E+01	3.43E+01	0*	0*	0*	0*
Components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*
Materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*
Exported Energy	MJ	0.00E+00	0*	0*	0*	0*	0*

^{*} Represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version EIME v5.5, database version 2016-11.

The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators (based on compulsory indicators).

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range.

The environmental indicators of other products in this family may be proportional extrapolated based on relationships between an amount of a key parameter of the product as compared to the amount of that key parameter within the reference product. Proportionality rules are based on the following key parameters: Manufacturing phase impacts - total mass of product. Distribution phase impacts - total mass of product (including packaging). Installation phase impacts - mass of packaging. Use phase impacts - life time energy use. End of Life impacts - the product mass (excluding packaging).

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration N°	ENVPEP1701005_V2	Drafting rules	PCR-ed3-EN-2015 04 02				
Verifier accreditation N°	VH-08	Supplemented by	PSR-0010-ed1.1-EN-2015 10 16				
		Information and reference documents	www.pep-ecopassport.org				
Date of issue	01/2017	Validity period	5 years				
Independent verification	of the declaration and data, in con	npliance with ISO 14025: 2010					
Internal X	External						
The PCR review was conducted by a panel of experts chaired by Philippe Osset (SOLINNEN)							
The elements of the present PEP cannot be compared with eleme <mark>nts fro</mark> m an <mark>oth</mark> er program.							
Document in compliance with ISO 14025: 2010 « Environmental labels and declarations. Type III environmental declarations »							

Schneider Electric Industries SAS

Customer Care Center
www.schneider-electric.com/contact
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex

RCS Nanterre 954 503 439
Capital social 896 313 776 I

www.schneider-electric.com

Published by Schneider Electric

ENVPEP1701005_V2 © 2016 - Schneider Electric – All rights reserved

01/2017