

Test report No: 4352494.50-EMC

TEST REPORT

Electromagnetic Compatibility (EMC)

Identification of item tested	Plug-in adaptors with surge protective device				
Trademark	APC by Schneider Electric				
Model and /or type reference	PME1W-XX, PME1WB-XX, PME1WU2-XX, PME1WU2B-XX				
	Remarks: XX means for different markets like GR for Germany, RS for Russia, etc.				
Features	N/A				
Derived model(s)	N/A				
Applicant's name / address	American Power Conversion Holdings Inc.				
	3F, No. 205, Sec. 3, Beixin Rd., Xindian Dist., 231, New Taipei City, Taiwan				
Test method requested, standard	EN 61000-6-1:2007;				
	EN 61000-6-3:2007+A1:2011;				
	EN 61000-3-2:2014;				
	EN 61000-3-3:2013				
Verdict Summary	COMPLIANCE				
Tested by (name / position & signature)	Kenny Liang				
	Project Manager Keny L'any				
Approved by (name / position & signature)	Tim Yan Tim Yan				
	Project Manager				
Date of issue	2019-05-07				
Report template No	TRF_EMC 2017-01				

INDEX

			page
Com	petend	ces and Guarantees	4
Gen	eral co	nditions	4
Unce	ertainty	· · · · · · · · · · · · · · · · · · ·	4
Envi	ronme	ntal conditions	4
Poss	sible te	st case verdicts	5
Defi	nition o	f symbols used in this test report	5
Abbı	eviatio	ns	5
Doc	ument	History	6
Rem	arks a	nd Comments	6
1	Gene	ral Information	7
	1.1	General Description of the Item(s)	7
	1.2	The environment(s) in which the EUT is intended to be used	9
	1.3	Test data	9
2	Desc	ription of Test Setup	10
	2.1	Operating mode(s) used for tests	10
	2.2	Port(s) of the EUT	10
	2.3	Support / Auxiliary equipment / unit / software for the EUT	10
	2.4	Test Configuration / Block diagram used for tests	11
3	Verdi	ct summary section	12
	3.1	Standards	12
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	12
	3.3	Overview of results	13
4	Emis	sion Test Results	14
	4.1	Conducted disturbance voltage – AC power port(s)	14
	4.2	Conducted disturbance voltage – DC power port(s)	17
	4.3	Conducted disturbance voltage – Telecommunications network port	18
	4.4	Radiated electromagnetic disturbances (30 – 1000 MHz)	19
	4.5	Radiated electromagnetic disturbances (above 1 GHz)	22
	4.6	Discontinuous disturbance (clicks) on AC power leads	23
	4.7	Harmonic current emissions	24
	4.8	Voltage changes, voltage fluctuations and flicker	25

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

5	Immu	unity Test Results	26
	5.1	Performance (Compliance) criteria	26
		5.1.1 Performance criteria related to immunity tests	26
		5.1.2 Manufacturer defined performance criteria	26
	5.2	Monitored – Checked Functions / Parameters	27
	5.3	Electrostatic discharge immunity	28
	5.4	Radio-frequency electromagnetic fields immunity	31
	5.5	Electrical Fast Transients immunity	32
	5.6	Surge transient immunity	33
	5.7	Injected currents (RF common mode) immunity	34
	5.8	Power frequency magnetic field immunity	35
	5.9	Power supply interruptions and dips immunity	36
6	Ident	ification of the Equipment Under Test	37
7	Anne	x 1 - Measurement Uncertainties	40
8	Anne	x 2 – Used Equipment	41
9	Anne	x 3 - Test Photos	42

COMPETENCES AND GUARANTEES

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. This report will not be used for social proof function in China market.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. Refer to the Annex 1 for furter information.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

Report no.: 4352494.50-EMC Page 4 / 45

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone,
Guangzhou, P.R. China
Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

☐ Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.					
☐ Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.					
Decimal separator used in this report	\boxtimes	Comma (,)		Point (.)	

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT : Equipment Under Test

QP : Quasi-Peak
CAV : CISPR Average

AV : Average

CDN : Coupling Decoupling Network SAC : Semi-Anechoic Chamber

OATS : Open Area Test Site

BW: Bandwidth

AM : Amplitude Modulation PM : Pulse Modulation

HCP : Horizontal Coupling PlaneVCP : Vertical Coupling Plane

 $U_{\rm N}$: Nominal voltage

Tx : TransmitterRx : Receiver

N/A : Not Applicable N/M : Not Measured

TEM : Transverse Electromagnetic Mode

Report no.: 4352494.50-EMC Page 5 / 45

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone,
Guangzhou, P.R. China
Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

DOCUMENT HISTORY

Report no.	Date	Description
4352494.50	2019-05-07	First release.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).

Report no.: 4352494.50-EMC Page 6 / 45

1 GENERAL INFORMATION

1.1 General Description of the Item(s)

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

Description of the item:	Plug-in adaptors with surge protective device
Model / Type number:	PME1W-XX, PME1WB-XX, PME1WU2-XX, PME1WU2B-XX
	Remarks: XX means for different markets like GR for Germany, RS for Russia, etc.
Serial number:	N/A
Trademark:	APC by Schneider Electric
Manufacturer:	Dongguan Quan Sheng Electric Co., Ltd.
	2 nd Industrial Zone, Ju-tang, Housha Road, Houjie Town, 523963, Dongguan Guangdong, China
Factory:	Same as manufacturer

Rated power supply:	Voltage and Frequency		Reference poles					
	voltage and requency	L1	L2	L3	N	PE		
	AC: 220-250 V, 50/60 Hz for input	\boxtimes			\boxtimes	\boxtimes		
	AC:							
	DC: 5 V 2,4A for USB charger outp	ut						
	Battery:							
Rated Power:	12W for USB charger							
Clock frequencies:	Less than 108 MHz							
Other parameters:	N/A							
Software version:	Not provided							
Hardware version:	Not provided							
Dimensions in cm (W x H x D):	N/A							
Mounting position:								
	☐ Wall/Ceiling mounted equipment							
	Floor standing equipment							
	Hand-held equipment							
	Other:							

Report no.: 4352494.50-EMC Page 7 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

Intended use of the Equipment Under Test (EUT)

The apparatus as supplied for the test is Plug-in adaptors with surge protective device intended for residential use and the product contains electronic control circuitry and earth connection.

Base on client's declaration, the detail information of all models see below table.

Model no.	product type	housing/color outlet q'ty		surge protection	USB charger(5V/2. 4A)
PME1W-XX	adaptor	top: white, bottom: light grey		yes	no
PME1WB-XX	adaptor	top: black, bottom: dark grey	1	yes	no
PME1WU2-XX	adaptor	top: white, bottom: light grey	1	yes	yes
PME1WU2B-XX	adaptor	top: black, bottom: dark grey	1	yes	yes

Remarks: in the model name XX means for different markets like GR for Germany, RS for Russia,---- etc.

Hence, model PME1WU2-XX was chosen for full test, model PME1WB-XX was chosen for Electrostatic discharge immnunity and Radio-frequency electromagnetic fields immunity test as per client's requirement, and the corresponding data is representative of the other models as well.

the cor	responding data is representat	ive or tr	ie other models a	s well.		
No	Module/parts of test item				Туре	Manufacturer
No	Documents as provided by the	e applic	ant - Description		File name	Issue date
Modific during						

Report no.: 4352494.50-EMC Page 8 / 45

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone,
Guangzhou, P.R. China
Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

Conv	Ωf	marking	plate:
COPY	Oi	marking	plate.

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.

Not provided

1.2 The environment(s) in which the EUT is intended to be used

The equipment under test (EUT) is intended to be used in the following environment(s):

\boxtimes	Residential (domestic) environment.
\boxtimes	Commercial and light-industrial environment.
	Industrial environment.

1.3 Test data

	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Test Location 1	Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone, Guangzhou, P.R. China
	Guangzhou Vkan Certification & Testing Co.,Ltd.
Test Location 2	No. 3, Tiantaiyi Road, Kaitai Avenue, Science City, Guangzhou, 510663, P. R. China
Date (start)	2019-02-28
Date (finish)	2019-03-15

Test Location 2: for Radio-frequency electromagnetic fields immunity test.

Test Location 1: for other rest tests.

Report no.: 4352494.50-EMC Page 9 / 45

2 **DESCRIPTION OF TEST SETUP**

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

2.1 Operating mode(s) used for tests

During the tests the following operating mode(s) has(have) been used.

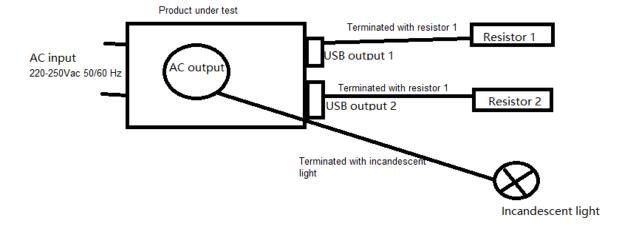
Operating mode	Operating mode description	Used for testing				
mode	Operating mode description	Emission	Immunity			
1	Full load	\boxtimes	\boxtimes			
2	Half load	\boxtimes				
3	Empty load	\boxtimes				
4						
5						
6						
Supplemental information:						

2.2 Port(s) of the EUT

	Connected to /		Cable					
Port name and description	Termination	Length used	Attached	Shielded				
	Terrimation	during test [m]	during test	Silielaea				
AC mains power input	AC mains	0,8m	\boxtimes					
Supplemental information:								

2.3 Support / Auxiliary equipment / unit / software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:


Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by
Resistor	-	-	DEKRA
USB cable	0,8 m length	-	DEKRA
Supplemental information:			

Report no.: 4352494.50-EMC Page 10 / 45

2.4 Test Configuration / Block diagram used for tests

The following test setup / configuration / block diagram has been used during the tests:

Report no.: 4352494.50-EMC Page 11 / 45

3 **VERDICT SUMMARY SECTION**

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description				
EN 61000-6-3	2007	Generic standards - Emission standard for industrial environments				
+A1	2011					
EN 55016-2-1	2014	Methods of measurement of disturbances and immunity - Conducted disturbance measurements.				
EN 55016-2-3	2010	Methods of measurement of disturbances and immunity - Radiated				
+A1	2010	disturbance measurements.				
+A2	2014					
EN 55022	2010	Emission – Information technology equipment (ITE)				
+AC	2010					
EN 55014-1	2006	Requirements for household appliances, electric tools and similar				
+A1	2009	apparatus – Part 1: Emission.				
+A2	2011					
EN 61000-3-2	2014	phase).				
EN 61000-3-3	2013	Limitation of voltage changes, voltage fluctuations and flicker in public low- voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection.				
EN 61000-3-12	2011	Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and ≤ 75 A per phase.				
EN 61000-3-11	2000	Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems - Equipment with rated current ≤ 75 A and subject to conditional connection.				
EN 61000-6-1	2007	Generic standards - Immunity for residential, commercial and light-industrial environments.				
EN 61000-4-2	2009	Electrostatic discharge immunity test.				
EN 61000-4-3	2006	Radiated, radio-frequency, electromagnetic field immunity test.				
+A1	2008					
+A2	2010					
EN 61000-4-4	2012	Electrical fast transient/burst immunity test.				
EN 61000-4-5	2006	Surge immunity test.				
EN 61000-4-6	2009	Immunity to conducted disturbances, induced by radio-frequency fields.				
EN 61000-4-8		Power frequency magnetic field immunity test.				
EN 61000-4-11	2004	Voltage dips, short interruptions and voltage variations immunity tests.				
EN 61000-4-20	2010	Emission and immunity testing in transverse electromagnetic (TEM) waveguides.				

3.2 Deviation(s) from the Standard(s) / Test Specification(s)

The following deviation(s) was / were made from the published requirements of the listed standards: N/A.

Report no.: 4352494.50-EMC Page 12 / 45

3.3 Overview of results

EMISSION TESTS – EN 61000-6-3							
Requirement – Test case	Basic standard(s)	Verdict	Remark				
Conducted disturbance voltage at AC power port(s)	EN 55016-2-1	PASS					
Conducted disturbance voltage at DC power port(s)	EN 55016-2-1	N/A	See 1)				
Conducted disturbance voltage at Telecommunications / network port(s)	EN 55022, EN 55016-2-1	N/A	See 2)				
Radiated electromagnetic disturbances (30 MHz to 1000 MHz)	EN 55016-2-3	PASS					
Radiated electromagnetic disturbances (above 1 GHz)	EN 55016-2-3	N/A	See 4)				
Discontinuous disturbance (clicks) on AC power leads	EN 55014-1	N/A	See 5)				
Control principle shall be allowed for the application according to the clause 6.1	EN 61000-3-2	PASS					
Harmonic current emissions	EN 61000-3-2	N/A	See 3)				
Voltage changes, voltage fluctuations and flicker	EN 61000-3-3	PASS					

Supplementary information:

- 1) The EUT does not have a DC power port.
- 2) The EUT does not have a telecommunications network port.
- 3) Since the rated power of the EUT is less then 75 Watts harmonics test is not applicable.
- 4) The highest internal frequency of the EUT is less than 108 MHz.
- 5) Exemptions from click measurements applicable (clause 4.2.3).

IMMUNITY TESTS – EN 61000-6-1								
Requirement – Test case Basic standard(s) Verdict Remark								
Electrostatic discharge	EN 61000-4-2	PASS						
Radio-frequency electromagnetic fields	EN 61000-4-3	PASS						
Fast transients	EN 61000-4-4	PASS						
Surge transient	EN 61000-4-5	PASS						
Injected currents (radio-frequency common mode)	EN 61000-4-6	PASS						
Power frequency magnetic fields	EN 61000-4-8	N/A	See 1)					
Voltage dips and short interruptions	EN 61000-4-11	PASS						

Supplementary information:

1) The test is not applicable as the apparatus does not contain any components susceptible to this low-frequency magnetic fields.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result, unless the specification, standard or customer have special requirements

Report no.: 4352494.50-EMC Page 13 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4 EMISSION TEST RESULTS

4.1	Conducted disturbance voltage – AC power port(s)	VERDICT:	PASS	
-----	--	----------	------	--

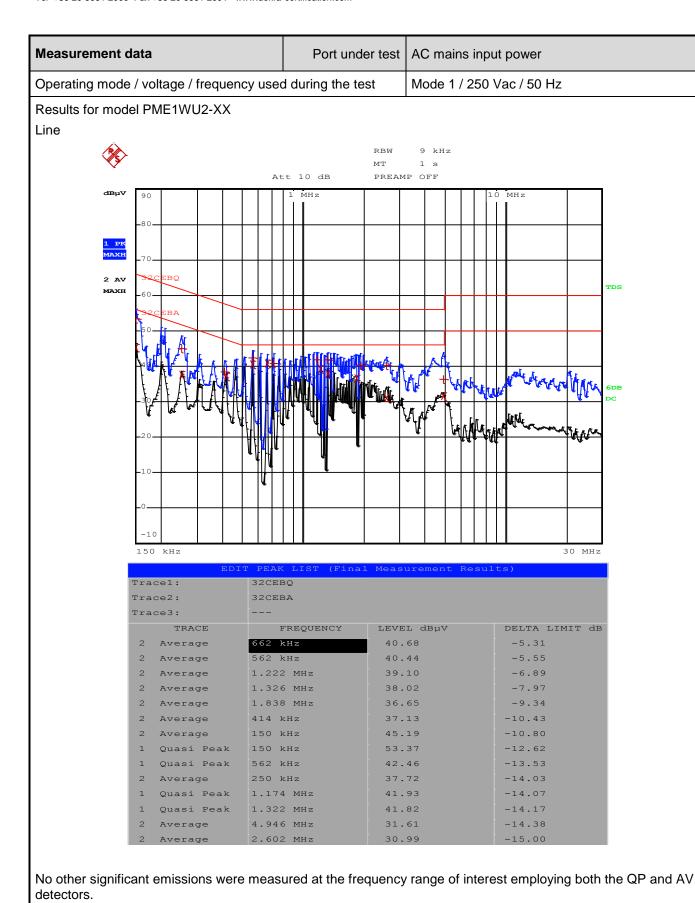
Standard	EN 61000-6-3
Basic standard(s)	EN 55016-2-1

Limits

Frequency range [MHz]	Limit: QP [dB(μV) ¹⁾]	Limit: AV [dB(μV) 1)]	IF BW	Detector(s)		
0,15 - 0,50	66 – 56 ²⁾	56 - 46 ²⁾	9 KHz	QP, AV		
0,50 - 5,0	56	46	9 KHz	QP, AV		
5,0 - 30	60	50	9 KHz	QP, AV		

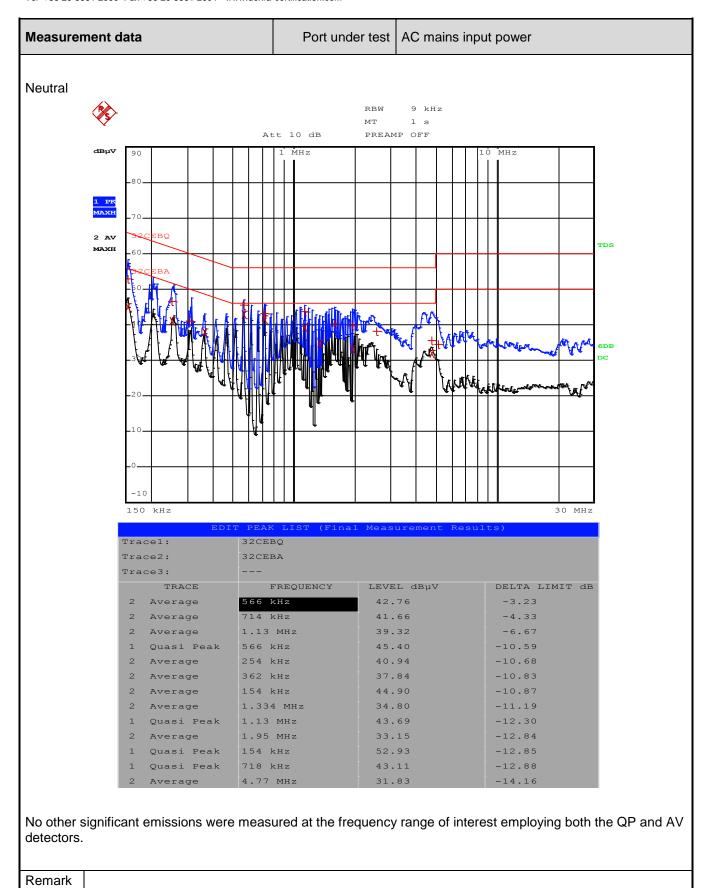
¹⁾ At the transition frequency, the lower limit applies.

Performed measurements


Port under test		Terminal								
				N	\boxtimes	L1		L2		L3
Other:	Other:			N		L1		L2		L3
Voltage – Mains [V]	250 \	/								
Frequency – Mains [Hz]	50 H	Z								
Test method applied		Artificial mains network								
		Voltage probe								
Test setup		Table top	Artificial hand applied							
		Floor standing	Other:							
Rei		Refer to the Annex 3 for test setup photo(s).								
Operating mode(s) used Mode 1 (worst case)										
Remark										

See next page.

Report no.: 4352494.50-EMC Page 14 / 45


 $^{^{\}rm 2)}$ The limit decreases linearly with the logarithm of the frequency.

Report no.: 4352494.50-EMC Page 15 / 45

Report no.: 4352494.50-EMC Page 16 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4.2	Conducted disturbance voltage – DC power port(s)	VERDICT:	N/A
-----	--	----------	-----

Standard	EN 61000-6-3
Basic standard(s)	EN 55016-2-1

Limits

Frequency range [MHz]	Limit: QP [dB(μV) ¹⁾]	Limit: AV [dB(μV) 1)]	IF BW	Detector(s)
0,15 - 0,50	79	66	9 KHz	QP, AV
0,50 - 30	73	60	9 KHz	QP, AV

¹⁾ At the transition frequency, the lower limit applies.

Performed measurements

Port under test			Terminal				
	DC input power				Positive (+)		Negative (-)
	Other:				Positive (+)		Negative (-)
	ge – Input [V _{DC}]						
Volta	ge – Output [V _{DC}]						
Test method applied			Artificial mains network as specified EN 55016-1-2				
			Artificial Network (AN) as specified in CISPR 25 Annex D				
Test	setup		Table top		Artificial hand applied		
			Floor standing		Other:		
		Refer to the Annex 3 for test setup photo(s).					
On a ration of the add (a) was d		1					
Operating mode(s) used							
Rem	ark						

Report no.: 4352494.50-EMC Page 17 / 45

²⁾ Applicable only to ports intended for connection to a local DC power network, or a local battery by a connecting cable exceeding a length of 30 m.

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4.3	Conducted disturbance voltage – Telecommunications network port	VERDICT:	N/A	
				-

Standard	EN 61000-6-3
Basic standard(s)	EN 55022, EN 55016-2-1

Limits - Class B

Frequency range [MHz]	Limit: QP [dB(μV) ¹⁾]	Limit: AV [dB(μV) ¹⁾]	IF BW	Detector(s)
0,15 - 0,50	84 – 74 2)	74 – 64 ²⁾	9 KHz	QP, AV
0,50 - 30	74	64	9 KHz	QP, AV
1) At the transition frequency, the lower limit applies.				

 $^{^{\}rm 2)}$ The limit decreases linearly with the logarithm of the frequency.

Performed measurements

	mod modear omone						
Port	under test						
	LAN / Ethernet				Other:		
	Other:				Other:		
Volta	nge – Mains [V]						
Freq	uency – Mains [Hz]						
Test	method applied		☐ ISN – Impedance Stabilisation Network				
		☐ CDN according to EN / IEC 61000-4-6					
			☐ Voltage probe				
			☐ Current probe				
			Artificial mains network				
			Other:				
			Table top		Artificial hand applied		
Test setup			Floor standing		Other:		
R			to the Annex 3 for te	st setu	up photo(s).		
Oper	Operating mode(s) used						
Remark							

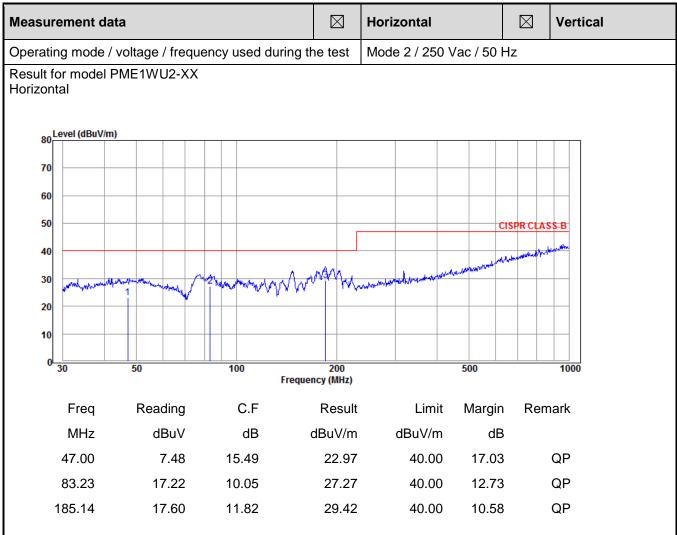
Report no.: 4352494.50-EMC Page 18 / 45

4.4 R	adiated electromagnetic disturbances (30 – 1000 MHz)	VERDICT:	PASS
-------	--	----------	------

Standard	EN 61000-6-3			
Basic standard(s)	EN 55016-2-3			
Test method	Antenna method according to EN 55016-2-3 standard.			
Supplementary information:				

Limits

Frequency Limit: QP [dB(μV/m) ¹⁾]			IF BW	Detector	
[MHz]	@3 m.	@5 m.	@10 m.	IL DAA	Detector
30 - 230	40	36	30	120 KHz	QP
230 - 1000	47	43	37	120 KHz	QP
1) At the transition frequency, the	he lower limit applies.				


Performed measurements

Port under test	Enclosure		
Voltage – Mains [V]	250 V		
Frequency – Mains [Hz]	50 Hz		
Test method applied	SAC with measurement distance [m]: 3 m.		
	OATS or SAC with measurement distance [m]: 5 m.		
	OATS or SAC with measurement distance [m]: 10 m.		
Test setup	Equipment on a table of 80 cm height		
	Equipment on the floor (insulated from ground plane)		
	Other:		
	Refer to the Annex 3 for test setup photo(s).		
Operating mode(s) used	used Mode 2 (worst case)		
Remark			

See next page.

Report no.: 4352494.50-EMC Page 19 / 45

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

No other significant emissions were measured at the frequency range of interest employing the QP detector.

Report no.: 4352494.50-EMC Page 20 / 45

Remark

	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dB dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	surement da	ta			Horizontal		⊠ Ve	rtica
Remark MHz dBuV dB dBuV/m dBuV/m dB dBuV/m	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	rating mode /	voltage / freque	ency used during	the test	Mode 2 / 250 \	/ac / 50 Hz		
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	cal							
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	80 Level (dBuV/m))						7
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	70							
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dB dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
30 20 10 30 50 100 Frequency (MHz) Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Treq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB	Treq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain						CISI	R CLASS-B	
200	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	TYN,					want when he had been dead	A Strange of the Contract of t	
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	30 "	Partition of the second	Marine B Marine Marine All 1	halman Harmand In magazine word	and the person of the state of			
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	20							
Frequency (MHz) Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Frequency (MHz) C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Frequency (MHz) Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	10							
Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	Freq Reading C.F Result Limit Margin Remark MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	0 30	50				500	100	00
MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	MHz dBuV dB dBuV/m dBuV/m dB 31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	31.18 20.30 12.50 32.80 40.00 7.20 QP 51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain	·	_				_	Remar	k
51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP	51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	51.66 8.46 15.74 24.20 40.00 15.80 QP 101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
101.29 9.80 13.06 22.86 40.00 17.14 QP	101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP	101.29 9.80 13.06 22.86 40.00 17.14 QP 148.44 15.02 10.02 25.04 40.00 14.96 QP marks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
	148.44 15.02 10.02 25.04 40.00 14.96 QP	148.44 15.02 10.02 25.04 40.00 14.96 QP narks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
148.44 15.02 10.02 25.04 40.00 14.96 QP		narks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain								
	narks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain		148.44	15.02	10.02	25.04	40.00	14.96	Q	Р
ther significant emissions were measured at the frequency range of interest employing the QP										
ther significant emissions were measured at the frequency range of interest employing the QP										
ther significant emissions were measured at the frequency range of interest employing the QP										
ther significant emissions were measured at the frequency range of interest employing the QP										
ther significant emissions were measured at the frequency range of interest employing the QP										
ther significant emissions were measured at the frequency range of interest employing the QP										

Report no.: 4352494.50-EMC Page 21 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4.5 Radiated e	VERDICT:	N/A	
Standard	EN 61000-6-3		
Basic standard(s)	EN 55016-2-3		

Basic standard(s) EN 55016-2-3					
Test m	nethod	Antenna method according to	EN 55016-2-3 standard.		
		Required highest frequency for	radiated measurement		
	Highest interna	al frequency [f _x]	Highest measured frequency		
\boxtimes	f _x :	≤ 108 MHz	1 GHz		
	108 MH:	z < f _x ≤ 500 MHz	2 GHz		
	500 Mi	Hz < f _x ≤ 1 GHz	5 GHz		
	f,	₂≥1 GHz	5x f _x or up to 6 GHz		

Limits

Frequency [GHz]	Limit: PK@3m.[dB(μV/m) ¹⁾]	Limit: AV@3m.[dB(μV/m) ¹⁾]	IF BW	Detector
1 - 3	70	50	1 MHz	PK, AV
3 - 6	74	54	1 MHz	PK, AV
1) At the transition frequency, the low	ver limit applies.			

Performed measurements

Port under test	Enclosure
Voltage – Mains [V]	
Frequency – Mains [Hz]	
Test method applied	Absorber-lined OATS or SAC with measurement distance [m]: 3 m.
	Absorber-lined OATS or SAC with measurement distance [m]: 1 m.
Test setup	Equipment on a table of 80 cm height
	Equipment on the floor (insulated from ground plane)
	Other:
	Refer to the Annex 3 for test setup photo(s).
Operating mode(s) used	
Remark	

Report no.: 4352494.50-EMC Page 22 / 45

Discontinuous disturbance (clicks) on AC power leads

N/A

VERDICT:

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4.6

					(,	P					
Standard			EN 550)14-1								
Frequency [N	 ⁄IHz]		Limit: 0	QP [dB	(μV)]			IF BW			Dete	ctor
0,15	-				· /-			9 KHz		Qua	asi-Pe	ak (QP)
0,50				56				9 KHz		Qua	asi-Pe	ak (QP)
1,40				56				9 KHz		Qua	asi-Pe	ak (QP)
30,0				60				9 KHz		Qua	asi-Pe	ak (QP)
Performed me	easuremen	its										
Scan range (0,9 - 1,1 <i>U</i> _N	1)		198 –	264 \	/ _{AC}		207 – 25	3 V _{AC}		V_{AC}	
Voltage – Ma	ins [V]											
Frequency –	Mains [Hz]											
Test method	applied		Ιп	Artific	ial ma	ins network						
					ge pro							
Test setup				☐ Table top ☐ Floor standing								
			Other									
			Refer t	o the A	nnex	3 for test set	tup pl	hoto(s).				
Operating mo	ode(s) used											
Remark												
Reason for n	ot		The a	mplitud	les of	the observ	ved (disturbance	s were	all belo	w th	e limit for
performing th	continu	continuous disturbance, these are not considered to be clicks.										
Measurement results			Neutra	I		Line 1		Line	2		Line :	3
_			First M	leasure	ement:	Determinat	ion of	f the limit <i>L</i>	_ – Quasi	i-peak		
Frequency (MHz)	Limit <i>L</i> (dBµV)		nber of t clicks	Numb long (per of	Number of clicks – N ₁		Time of eas. (min.)	Click rate N	Increa		Increased Limit L _q
0,15	66							, ,		,	,	7
0,5	56											
1,4	56											
30	60											
	The calcul	lated o	click rate	N is n	ot mo	re than 5 tim	nes p	er minute a	nd all the	clicks	are cl	assified as
	,		•			is deemed	to o	comply with	n the lim	its with	out a	any further
	measurem	nent at	an incre	eased I	imit.							
Frequency					surem	ent with Limi	$it = L_0$	(Upper qu	uartile me	thod):		
(MHz)	Limit Lq (dBµV)	Nun	nber of c - N ₂	licks		Number of a	uthor	ized clicks	N2 ≤N1/4	1	١	/erdict
0,15												
0,5												
1,4												
30												
Supplementa	ry informati	<u>ion:</u>	•									

Report no.: 4352494.50-EMC Page 23 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

4.7	4.7 Harmonic current emissions VERDICT: N								
Standa	ırd	EN 610	000-6-3						
Basic s	standard	EN 610	000-3-2						
Exlusio	ons		Arc welding equi	ipment	intended fo	or profess	sional ı	use.	
	ese categories of		System(s) with n	omina	voltage(s)	less than	n 220 \	√ _{AC} (line-to-ne	utral).
	nent, limits are not ed in the EN 61000-	\boxtimes	Equipment with I	rated p	ower of ≤ 7	5 W (oth	er thar	n lighting equip	ment).
3-2 star			Professional equ	uipmen	t with total r	rated pow	wer > 1	kW.	
			Symmetrically co	ontrolle	d heating e	lements	with a	rated power ≥	200 W.
			Independent dim	nmers f	or incandes	scent lam	nps wit	h rated power	≤ 1 kW.
Classifi	ication								
\boxtimes	Class A	All app	aratus not classifi	ed as (Class B, C	or D			
	Class B	Portab	le tools						
			Lighting equipme	ent with	active inp	ut power	> 25 V	V	
	Class C		Lighting equipme	ent with	active inp	ut power	≤ 25 V	V	
	Class C		(First requirement	nt, Tab	le 3 column	2)	_	_	
l			Lighting equipme	ent with	active inp	ut power	≤ 25 V	V (Second req	uirement)
	Class D	Persor	nal computers, tele	evision	receivers				
	ned measurements								
	nder test	AC ma	nins power input						
Voltage	e – Mains [V]								
Freque	ency – Mains [Hz]								
Observ	vation peroid		6.5 min.		2.5 min.			Other:	
	n of measurement		EN 61000-4-7:20	002 + A	AM1:2009 (IEC 6100	00-4-7:	2002+AM1:20	08)
	nent standard used EC61000-4-7 (Cl. 7)		EN 61000-4-7:19	991					
Contro!	ol principle used in		Comply with the	require	ements of th	ne Clause	e 6.1 (EN / IEC 6100	0-3-2).
the EU			Not comply with	the rec	quirements	of the Cla	ause 6	5.1 (EN / IEC 6	1000-3-2).
Operat	ting mode(s) used								
Remark	• ,	<u> </u>							

Report no.: 4352494.50-EMC Page 24 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

10 min.

Observation peroid

Remark

Operating mode(s) used

4.8 Voltage changes	s, volta	age fluctuations and f	licker		VERDICT:	PASS	
Standard	EN 61	000-6-3					
Basic standard	EN 61	000-3-3					
Limits							
P _{ST} (Short term flicker)	\boxtimes	≤ 1		Not Appli	cable		
P _{LT} (Long term flicker)		≤ 0,65	\boxtimes	Not Appli	cable		
d _C (Relative Voltage change)	\boxtimes	≤ 3,3%		Not Appli	cable		
d _{MAX} (Max. voltage change)	\boxtimes	≤ 4%		6%			
	☐ 7% ☐ Not Applicable						
Supplemental information:							
Performed measurements for	model	PME1WU2-XX					
Reason for not performing the measurement(s)	Tests are not necessary because the EUT is unlikely to pro significant voltage fluctuations or flicker (clause 6.1).						
Port under test	AC Ma	nins power input					
Voltage – Mains [V]							
Frequency – Mains [Hz]							
Test method		Flickermeter according EN	1 / IEC 6	31000-4-15	:2011		
		Simulation (Clause 4.2.3 c					
	-						

Analytical method (Clause 4.2.4 of EN / IEC 61000-3-3) Use of $P_{\rm st}$ = 1 curve (Clause 4.2.5 of EN / IEC 61000-3-3)

Other:

120 min.

24 times switching according to Annex B

Report no.: 4352494.50-EMC Page 25 / 45

5 IMMUNITY TEST RESULTS

5.1 Performance (Compliance) criteria

[Source: EN/IEC 61000-6-1]

<u>Performance criterion A:</u> The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criterion B:</u> The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criterion C:</u> Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

5.1.1 Performance criteria related to immunity tests

Immunity test	Performance criteria
Electrostatic discharge	В
Radio-frequency electromagnetic fields	A
Fast transients	В
Surge transient	В
Injected currents (radio-frequency common mode)	A
Power frequency magnetic field immunity	A
Voltage dips and short interruptions	B, C

5.1.2 Manufacturer defined performance criteria

Not provided.

Report no.: 4352494.50-EMC Page 26 / 45

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone,
Guangzhou, P.R. China
Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

5.2 Monitored – Checked Functions / Parameters

	Motor speed		Display data
	Switching		Data storage
	Standby mode		Sensor functions
	Temperature		Audible signals
	Power consumption	\boxtimes	Others : current output/LEDs
\boxtimes	AC mains input current		Others:
	Timing		Others:
П	Illumination		Others:

Immunity test	Monitored - Checked function(s)/parameter(s) during / after the test	Method
Electrostatic discharge	Mode 1	Visual / Output current
Radio-frequency electromagnetic fields	Mode 1	Visual / Output current
Fast transients	Mode 1	Visual / Output current
Surge transient	Mode 1	Visual / Output current
Injected currents (radio-frequency common mode)	Mode 1	Visual / Output current
Power frequency magnetic field immunity	N/A	N/A
Voltage dips and short interruptions	Mode 1	Visual / Output current
Supplementary information :		,

Report no.: 4352494.50-EMC Page 27 / 45

5.3 Electrostatic discharge immunity

VERDICT: PASS

Electrostatic discharges (ESD) are the result of persons or objects that accumulate static electricity due to for instance walking on synthetic carpets. The ESD can influence the operation of equipment or damage its electronics, either by a direct discharge or indirectly by coupling or radiation. Both effects are simulated during the tests.

Requirements

Standard	EN 6	1000-6-1									
Basic standard	EN 6	1000-4-2									
Port under test	Enclo	sure									
Air discharges	\boxtimes	±2 kV	\boxtimes	±4 kV	\boxtimes	±8 kV		kV			
Contact discharges		□ ±2 kV □ ±4 kV □ kV									
Number of discharges	≥ 10 per polarity with ≥ 1 sec interval.										
Performance criterion		uring the test degra is allowed. Refer to			_	e of operat	ing sta	ate or stored			

Performed tests for models PME1WU2-XX, PME1WB-XX

Set-up	\boxtimes	Table-top		☐ Floor standing		
Ambient temperature [°C]	23,5		Relative Humidity air [%] 53,1			
Atmospheric pressure	101 k	:Pa				
Voltage – Mains [V]	230 \	/ac				
Frequency – Mains [Hz]	50 H	Z				
	•					
Operating mode(s) used	Mode	÷ 1				

(LUC	Test Point (Location of discharge, see also photo)		Test Voltage [kV] & Polarity	Coupling type	# of applied discharges / polarity	Discharge interval [s]		
\boxtimes	Points on cond indicated in the p	luctive surface as picture below.	±4 / ±8	Contact	10	1		
\boxtimes		conductive surface ne picture below.	±2 / ±4 / ±8 / ±15	Air	10	1		
	HCP top side.		±4 / ±8	Contact	10	1		
\boxtimes	HCP bottom side.		±4 / ±8	Contact	10	1		
\boxtimes	VCP right side.		±4 / ±8	Contact	10	1		
\boxtimes	VCP left side.		±4 / ±8	Contact	10	1		
\boxtimes	VCP front side.		±4 / ±8	Contact	10	1		
\boxtimes	VCP rear side.		±4 / ±8	Contact	10	1		
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.								

Report no.: 4352494.50-EMC Page 28 / 45

Photo of selected test points for model PME1WU2-XX

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

Supplementary information: Black points show the discharge points.

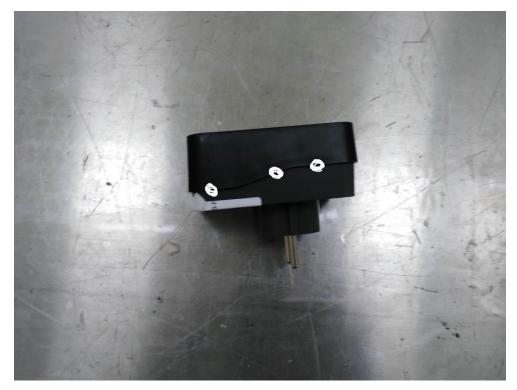

Report no.: 4352494.50-EMC Page 29 / 45

Photo of selected test points for model PME1WB-XX

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

<u>Supplementary information:</u> white points show the discharge points.

Report no.: 4352494.50-EMC Page 30 / 45

5.4 Radio-frequency electromagnetic fields immunity VERDICT: PASS

During the test it is verified if the equipment under test (EUT) has sufficient immunity against radiated electromagnetic fields. Industrial electromagnetic sources, walkie-talkies, radio transmitters, television transmitters and telecommunication equipment including cellular telephones and other emitting devices can generate these fields.

Requirements

Standard	EN 61000-6-1	EN 61000-6-1						
Basic standard	EN 61000-4-3							
Port under test	Enclosure							
Frequency range	Test level	Modulation	Dwell time	Step size				
80 – 1000 MHz	3 V/m	80% AM (1kHz)	≥ 0,5 s	≤ 1%				
1400 – 2000 MHz	3 V/m	80% AM (1kHz)	≥ 0,5 s	≤ 1%				
2000 – 2700 MHz	1 V/m	80% AM (1kHz)	≥ 0,5 s	≤ 1%				
Supplementary information	<u>:</u>							

Performed tests for models PME1WU2-XX, PME1WB-XX

offermed toda for medicin method AA,1 method AA									
Test method	\boxtimes	EN 6100	0-4-3			EN 61000-4-20			
Test set-up	\boxtimes	Equipme	ent on the	table (0,8 m height)				
(see annex 3 for photo)		Equipme	nt standir	ng on f	loor (0	,05 – 0,15 m h	eight)		
Voltage – Mains [V]	230 \	/ac				Frequency -	- Main	s [Hz]	50 Hz
Operating mode(s) used	Mode	÷ 1			1	. ,			L
Frequency range (applied)		itenna irization	Test le			lodulation (applied)	_	I time lied)	Remark
80 – 1000 MHz		Н	3 V/r	n	80%	AM (1kHz)	2	S	
(step size 1%)		V	3 V/r	n	80%	AM (1kHz)	2 s		
1400 – 2000 MHz		Н	3 V/m		80%	AM (1kHz)	2 s		
(step size 1%)		V	3 V/m		80%	AM (1kHz)	2 s		
2000 – 2700 MHz		Н	1 V/m		80%	AM (1kHz)	2 s		
(step size 1%)		V	1 V/r	n	80%	AM (1kHz)	2	s	
Exposed side of the EUT		Front (0°	')		Right	(90°)		Тор	
	\boxtimes	Rear (18	0°)	\boxtimes	Left (2	270°)	\boxtimes	Botto	m
During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed. Supplementary information:									
	<u>Gappiomentally information.</u>								

Report no.: 4352494.50-EMC Page 31 / 45

5.5	Elaatrias	I East T	chalanta	immunity
ວ.ວ	Electrica	II Fast II	ansients	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

VERDICT: PASS

The EFT immunity test simulates disturbances by bursts of very short transients caused for example by switching off loads such as an AC motor or bouncing relay contacts. The transients are likely to disturb electronics but less likely to cause damage.

Requirements

Standa	ard	EN 61000-6-1			
Basic s	standard	EN 61000-4-4			
Pulse o	characteristics	5/50 ns			
Port ur	Port under test		Test level	Repetition frequency	Duration
\boxtimes	AC input-output power		± 1000 V	5 KHz	≥1 min. / polarity
	DC input power ²⁾		± 500 V	5 KHz	≥1 min. / polarity
	Signal ports 1)	± 500 V	5 KHz	≥1 min. / polarity	

¹⁾ Only applicable to ports interfacing with cables whose total length may exceed 3 m.

Performed tests for model PME1WU2-XX

Voltage – Mains [V]	230 \	230 Vac						
Frequency – Mains [Hz]	50 Hz	7						
Operating mode(s) used	Mode	÷ 1						
Test Set-up	\boxtimes	Equipment standing on floor at (0	$0,1 \pm 0$,01) m above ground plane				
(see annex 3 for photo)		Equipment on the table $(0,1 \pm 0,0)$	01) m	above ground plane				
		Artificial hand applied. Location refer to chapter 9.						
Coupling	\boxtimes	Common mode						

Port under test	Test Voltage &Polarity	Repetition Frequency	Test duration / polarity	Injection method			od	
AC / DC mains power input	± 1000 V	5 KHz	2 min. / polarity	\boxtimes	CDN		Clamp	
					CDN		Clamp	
					CDN		Clamp	
					CDN		Clamp	
	During the test	no loss of pe	rformance was	observ	ed. After t	he tes	t the EUT	
Observation(s)	functioned as intended. No unacceptable loss of performance or data was observed.							
Supplementary information:								

Report no.: 4352494.50-EMC Page 32 / 45

Not applicable to input ports intended for connection to a battery or a rechargeable battery which must be removed or disconnected from the apparatus for recharging. Apparatus with a DC power input port intended for use with an AC-DC power adaptor shall be tested on the AC power input of the AC- DC power adaptor specified by the manufacturer or, where none is so specified, using a typical AC-DC power adaptor. The test is applicable to DC power input ports intended to be connected permanently to cables longer than 3 m.

5.6 Surge transient immunity

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

VERDICT: PASS

The surge transient immunity test simulates the surges that are caused by over-voltages due to indirect (induced) lightning transients. The pulse is a slow transient with high-energy contents and due to its long duration may cause damage to an unprotected EUT.

Requirements

Standard	EN 61000-6-1						
Basic standard	EN 61000-4-5	EN 61000-4-5					
Pulse characteristics	1,2/50µs Voltage; 8/20	Oµs Current					
Repetition rate	≥ 60 secs. (for each to	est level and phase	angle)				
Number of pulses	5 pulses (at each pola	arity and phase ang	le)				
Dowt		Test level & Pol	arity & Coupling	Phase angle			
Port		Line to Line 1)	Line to Earth 1)	[°]			
		± 1 kV	± 2 kV	0, 90, 180, 270			
DC input power ²⁾		± 0,5 kV	± 0,5 kV				

¹⁾ In addition to the specified test level, all lower test levels as detailed in EN 61000-4-5 should also be satisfied.

Performed tests for model PME1WU2-XX

Voltage – Mains [V]	230 Vac
Frequency – Mains [Hz]	50 Hz
Operating mode(s) used	Mode 1
Repetition rate	60 secs. (for each test level and phase angle)
Number of pulses	5 pulses (at each polarity and phase angle)

Port under test		Coupling	Test level & Polarity	Phase angle [°]	Remark			
\boxtimes	AC mains input power	Line to Neutral	±1 kV	0, 90, 180, 270				
\boxtimes	AC mains input power	Line to Earth	±2 kV	0, 90, 180, 270				
\boxtimes	AC mains input power	Neutral to Earth	±2 kV	0, 90, 180, 270				
Observation(s) During the test no loss of performance was observed. After the test the functioned as intended. No unacceptable loss of performance or data observed.								
Supp	Supplementary information:							

Report no.: 4352494.50-EMC Page 33 / 45

²⁾ Not applicable to input ports intended for connection to a battery or a rechargeable battery which must be removed or disconnected from the apparatus for recharging. Apparatus with a DC power input port intended for use with an AC–DC power adaptor shall be tested on the AC power input of the AC–DC power adaptor specified by the manufacturer or, where none is so specified, using a typical AC–DC power adaptor. DC ports, which are not intended to be connected to a DC distribution network are treated as signal ports.

5.7 Injected currents (RF common mode) immunity VERDICT: PASS

During this test the immunity of the equipment for induced or conducted electromagnetic fields is checked. Fields generated by radio and other transmitters cause RF voltages in long cables like the mains network. This test reproduces these induced disturbing voltages by injecting them to the EUT via the cabling.

Requirements

Stand	dard	EN 61000-6-1				
Basic	standard	EN 61000-4-6				
Frequ	uency range	0,15 – 80 MHz				
Port under test			Test level, Uo	Modulation	Step size	Dwell time
\boxtimes	AC input-output power		3 V	80% AM (1kHz)	≤ 1%	≥ 0,5 s
	DC input-output power 1)		3 V	80% AM (1kHz)	≤ 1%	≥ 0,5 s
☐ Signal port 1)			3 V	80% AM (1kHz)	≤ 1%	≥ 0,5 s
1) Only	y applicable to ports interfa	cing with cables wh	ose total length, ma	y exceed 3 m.		

Performed tests for model PME1WU2-XX

renormed tests for model PME1W02-AA							
	Frequency range (applied)				Step size (applied)		
	0,15 – 80 MHz			M (1kHz)	1%		
230 √	230 Vac			/ – Mains [Hz]	50 Hz		
Mode	: 1						
	Equipment standing on floor at (0,1 ± 0,01) m above ground plane.				ound plane.		
	Equipment on the table (0,1 ± 0,01) m above ground pla				ane.		
	Artificial hand applied. Location refer to Annex 3.						
	Test Level (applied)	Injection method		Dwell time (applied)	Remark		
	3V	CDN-M3		3s			
				L	. d . t. d . EUT		
_	ng the test no loss of performance was observed. After the test the EUT						
Observation(s) functioned as intended. No unacceptable loss of performance or data was observed.					data was observed.		
Supplementary information:							
<u>Sapplementally mornialism</u>							
	230 \ Mode	Frequency ra (applied) 0,15 – 80 M 230 Vac Mode 1 Equipment sta Equipment on Artificial hand a Test Level (applied) 3V During the test no los functioned as intended.	Frequency range (applied) 0,15 – 80 MHz 230 Vac Mode 1 Equipment standing on floor Equipment on the table (0,1) Artificial hand applied. Local (applied) Test Level (applied) Injection me (applied) Ouring the test no loss of perform functioned as intended. No unaccepta	Frequency range (applied) (ap 0,15 – 80 MHz 80% Al 230 Vac Frequency Mode 1 Equipment standing on floor at (0,1 ± 0,0) Equipment on the table (0,1 ± 0,01) m at Artificial hand applied. Location refer to Al Test Level (applied) Injection method 3V CDN-M3 During the test no loss of performance was of functioned as intended. No unacceptable loss of performance	Frequency range (applied) 0,15 – 80 MHz 80% AM (1kHz) 230 Vac Frequency – Mains [Hz] Mode 1 Equipment standing on floor at (0,1 ± 0,01) m above ground plane and plane applied. Location refer to Annex 3. Test Level (applied) 3V CDN-M3 3s During the test no loss of performance was observed. After functioned as intended. No unacceptable loss of performance or		

Report no.: 4352494.50-EMC Page 34 / 45

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

5.8 Power frequency magnetic field immunity VERDICT: N/A

Magnetic fields caused by for example nearby mains frequency transformers may disturb equipment with sensitivity for these type of disturbances such as CRT monitors.

Requirements

Standard	EN 61000-6-1			
Basic standard	EN 61000-4-8			
Port under test	Enclosure			
Field strength	3 A/m			
Test Frequency	50 / 60 Hz			
Notes: Applicable only to apparatus containing devices susceptible to magnetic fields.				

Performed tests for model PME1WU2-XX

Reason for not performing the test	\boxtimes	The test is not applicable as the apparatus does not contain components susceptible to this low-frequency magnetic fields.				
Voltage – Mains [V]	(Please write the voltage/voltages used for testing)					
Frequency – Mains [Hz]	(Please	(Please write the frequency/frequencies used for testing)				
Operating mode(s) used	(Please write operating mode(s) used for testing)					
Test set-up		Single Coil. Dimensions: 1 m x 1 m				
(see annex 3 for photo)		Single Coil. Dimensions: 2 m x 2 m				
		Homogeneous field (Helmholtz coil). Dimensions: 1 m x 1 m				
		0,1 m above metal surface				

	Axis under test Tested Field strength		Test Frequency	Test Duration	Remark	
	X-axis	3 A/m	50 / 60 Hz			
	Y-axis	3 A/m	50 / 60 Hz			
	Z-axis	3 A/m	50 / 60 Hz			
Obse	Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.					
Supplementary information:						

Report no.: 4352494.50-EMC Page 35 / 45

5.9 **Power supply interruptions and dips immunity**

VERDICT: PASS

The purpose of the test is to verify the immunity of the equipment against voltage dips and voltage interruptions. It helps to ensure that the equipment functions properly (as expected and safely) with power supply fluctuations. Voltage dips and interruptions are caused by faults in the LV, MV, HV networks (short-circuit or ground faults).

Requirements

Standard	EN 61000-6-1						
Basic standard	EN 61000-4-11	EN 61000-4-11					
# of dips & interruptions	3 dips / interrupti	3 dips / interruptions for each test level and phase angle					
Interval between events	≥ 10 seconds						
Dest. a least set	Test level 1)	Period (Cycles)		Performance Criterion			
Port under test		50 Hz	60 Hz	Performance Chterion			
AC input power port	U _{NOM} – ≥95%	0,5	0,5	B; Refer to the chapter 5.1 for details.			
AC input power port	U _{NOM} – ≥95%	1	1 C; Refer to the chapter 5.1 for details.				
AC input power port	U _{NOM} – 30%	25 30 C; Refer to the chapter 5.1 for details.					
AC input power port	U _{NOM} – ≥95%	250	300	C; Refer to the chapter 5.1 for details.			

¹⁾ Changes to the voltage level shall occur at a zero crossing point in the a.c. voltage waveform.

NOTE: Where the equipment has a rated voltage range the following shall apply:

Toet lovel

- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range. A single voltage within that range may be selected for testing.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

Duration (cycles) Popotion rate Name and Phase and

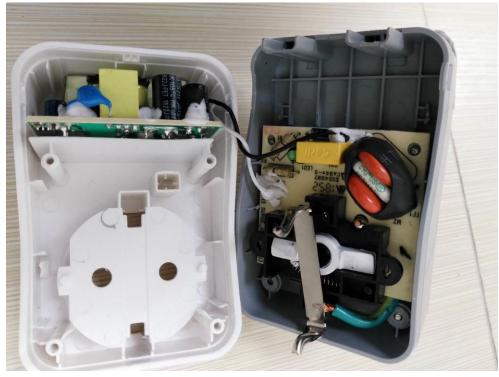
Performed tests for model PME1WU2-XX

11 [\/ 1	Terminal	i est ievei	Duration	[cycles]	Repetion rate	Number of	Phase angle
U _{NOM} [V _{AC}]	Tenninai	[% U _{NOM}]	50 Hz	60 Hz	[s]	dips per test	[°]
230	L-N	0	0,5	0,5	10	3	0, 180
230	L-N	0	1	1	10	3	0, 180
230	L-N	70	25	30	10	3	0, 180
230	L-N	0	250	300	10	3	0, 180
Operating mo	Operating mode(s) used Mode 1						
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.							
Supplementary information:							

Report no.: 4352494.50-EMC Page 36 / 45

6 IDENTIFICATION OF THE EQUIPMENT UNDER TEST

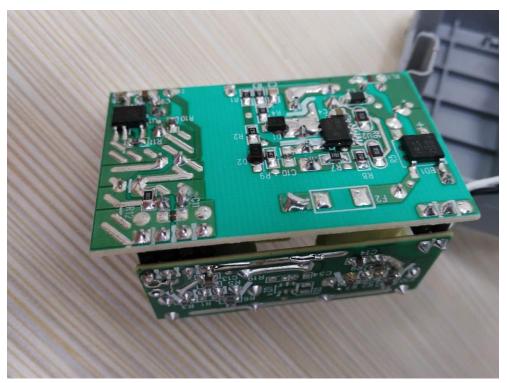
The photographs show the tested device.


Overview of model PME1WU2-XX

Overview of model PME1WB-XX

Report no.: 4352494.50-EMC Page 37 / 45

Internal view of PME1WU2-XX


Surge protection of PME1WU2-XX

Report no.: 4352494.50-EMC Page 38 / 45

USB PCB of PME1WU2-XX

USB PCB of PME1WU2-XX

Report no.: 4352494.50-EMC Page 39 / 45 DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Building A3, No.3 Qiyun Road, Science City, Guangzhou Hi-Tech Industrial Development Zone,
Guangzhou, P.R. China
Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

7 ANNEX 1 - MEASUREMENT UNCERTAINTIES

The table(s) below show(s) measurment uncertainties of the EMC test set-ups. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement	Uncertainty	
Mains disturbance voltage	(9 kHz –150 kHz)	2,18 dB
Mains disturbance voltage	(150 kHz –30MHz)	2,82 dB
Radiated disturbance	(30MHz- 300MHz)	4,72 dB
Tradiated disturbance	(300 MHz- 1000 MHz)	4,88 dB

Report no.: 4352494.50-EMC Page 40 / 45

8 ANNEX 2 – USED EQUIPMENT

Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra-certification.com

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch						
Instrumentation	Manufacturer	Model No.	Serial No.	Dekra No.	Cal. due date	
EMI Receiver	R&S	ESCI	101206	G/L858	2019-11-28	
LISN	R&S	ENV216	101336	G/L859	2019-11-28	
Shielding Room	Changzhou Feite	/	/	G/L861	2019-07-06	
EMI receiver	R&S	ESCI	101205	G/L857	2019-11-28	
Antenna	SCHWARZBE	VULB9163	506	G/L864	2019-11-28	
(30MHz-3GHz)	CK			5,250		
Chamber	ETS	/	/	G/L856	2019-07-06	
ESD Generator	TESEQ	NSG435	6513	G/L867	2019-11-30	
Signal Generator	TESEQ	NSG3040	1821	G/L868	2020-04-27	
STEPTRANSFO RMER	TESEQ	INA6501	/	G/L868	2020-04-27	
Signal Generator	TESEQ	NSG4070	31446	G/L870	2020-01-25	
CDN	TESEQ	M016	31564	G/L870	2020-01-25	
EM-Koppelzange	TESEQ	KEMZ801	31493	G/L870	2020-01-25	
6dB	TESEQ	ATN6075	30789	G/L870	2020-01-25	

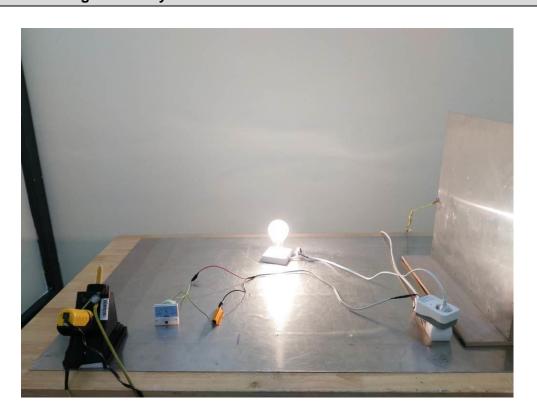
Guangzhou Vkan Certification & Testing Co.,Ltd.							
Instrumentation	Manufacturer	Model No.	Serial No.	.NO.	Cal. due date		
Immunity Test	TESEQ	NSG3060/CDN3063	EM-000337	EM-000337	2019-05-12		
System							
Conducted	TESEQ	CDN8014	EM-000337-	EM-000337-	2020-01-18		
Immunity Test			4	4			
System							

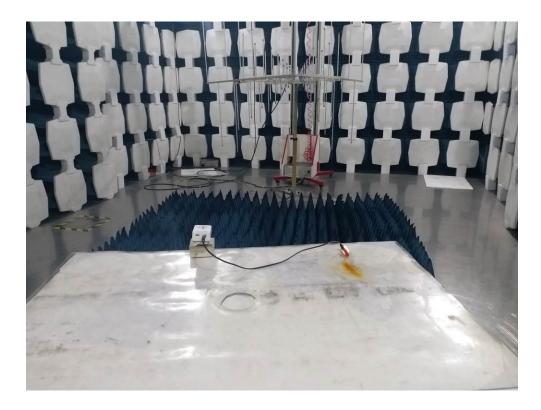
Report no.: 4352494.50-EMC Page 41 / 45

ANNEX 3 - TEST PHOTOS

9

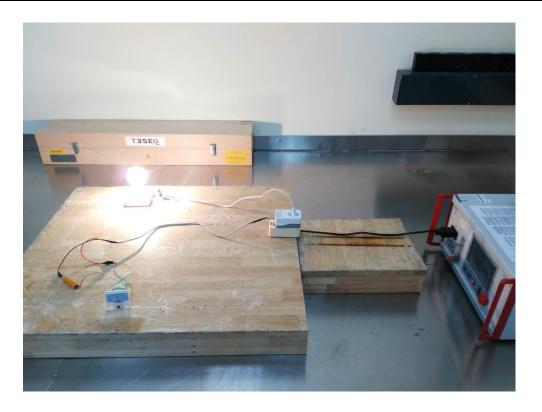
Conducted disturbance voltage at mains terminals


Radiated electromagnetic disturbances (30 MHz to 1000 MHz)

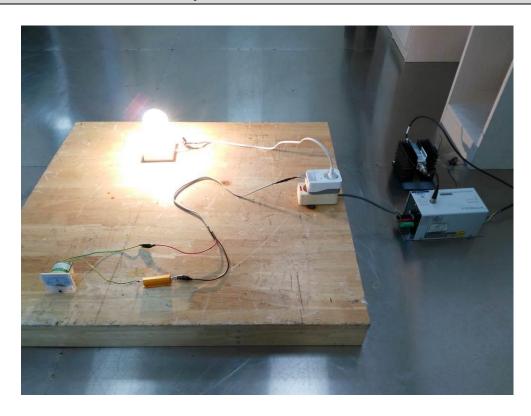

Report no.: 4352494.50-EMC Page 42 / 45

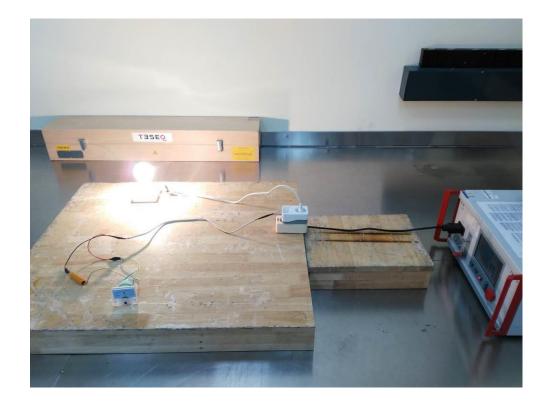
Electrostatic discharge immunity

Radiated EM Field Immunity


Report no.: 4352494.50-EMC Page 43 / 45

Electrical fast transient (EFT) / Burst transients immunity


Surge transients immunity


Report no.: 4352494.50-EMC Page 44 / 45

Conducted RF disturbances immunity

Power supply voltage interruptions & dips immunity

---end---

Report no.: 4352494.50-EMC Page 45 / 45