Contents

Introduction 1

- Content and Purpose of This Guide 1
- User Management ... 2
 - Types of user accounts 2

Security 3

- Security Features ... 3
 - Protection of passwords and passphrases 3
 - Summary of access methods 3
 - Access priorities 5
 - Change default user names and passwords immediately 6
 - Port assignments 6
 - User names, passwords, and community names with SNMPv1 6

- Authentication ... 7
 - SNMP GETS, SETS, and Traps 7
 - Web interface and command line interface 8

- Encryption ... 8
 - SNMP GETS, SETS, and Traps 8
 - Secure SHell (SSH) and Secure CoPy (SCP) for the command line interface 9
 - Secure Sockets Layer (SSL) for the Web interface 10

- Creating and Installing Digital Certificates 11
 - Purpose 11
 - Choosing a method for your system 12

Firewalls .. 16

Using the Security Wizard 17

- Overview ... 17
 - Authentication by certificates and host keys 17
 - Files you create for SSL and SSH security 18
Create a Root Certificate and Server Certificates 20
 Summary 20
 The procedure 21

Create a Server Certificate and Signing Request 25
 Summary 25
 The procedure 25

Create an SSH Host Key ... 28
 Summary 28
 The procedure 29

Command Line Interface Access and Security 31
 Introduction ... 31
 Telnet and Secure SHEll (SSH) ... 31

Web Interface Access and Security 33
 HTTP and HTTPS (with SSL) ... 33

RADIUS 36
 Supported RADIUS Functions and Servers 36
 Supported functions 36
 Supported RADIUS servers 36
 Configure the Management Card or Device 37
 Authentication 37
 RADIUS 38
 Configure the RADIUS Server .. 38
 Example using Service-Type Attributes 39
 Examples using Vendor Specific Attributes 40

Index 43
Content and Purpose of This Guide

This guide documents security features for firmware versions 5.x.x for Network Management Cards and for devices with embedded components of Network Management Cards, which enable the devices to function remotely over the network. For any 3.x.x firmware release, see the Security Handbook provided on the Utility CD for that device.

This guide documents the following protocols and features, how to select which ones are appropriate for your situation, and how to set up and use them within an overall security system:
- Telnet and Secure SHell (SSH)
- Secure Sockets Layer (SSL)
- RADIUS
- SNMPv1 and SNMPv3

In addition, this guide documents how to use the Security Wizard to create the components required for the high security available through SSL and SSH.
User Management

Types of user accounts

The Network Management Card has three basic levels of access:

- An Administrator can use all of the management menus available in the Web interface and all of the commands in the command line interface. The default user name and password are both **apc**.

- A Device User can access the event log and data log (but cannot delete the contents of either log), and can use the device-related menus and commands. The default user name is **device**, and the default password is **apc**.

- A Read-Only User can access the event log, data log, and device-related menus, but cannot change configurations, control devices, delete data, delete the content of logs, or use file transfer options. The default user name is **readonly**, and the default password is **apc**. A Read-Only User cannot log on through the command line interface.

Some devices have additional user accounts, e.g., outlet users for Switched Rack PDUs and an A/C Manager for some NetworkAIR devices. For information on the additional account type, see the *User’s Guide* provided with the device.
Security

Security Features

Protection of passwords and passphrases

No password or passphrase is stored on the Network Management Card in plain text.
- Passwords are hashed using a one-way hash algorithm.
- Passphrases, which are used for authentication and encryption, are encrypted before they are stored on the Network Management Card.

Summary of access methods

Serial access to the command line interface.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access is by user name and password.</td>
<td>Always enabled.</td>
</tr>
</tbody>
</table>

Remote access to the command line interface.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>For high security, use SSH.</td>
</tr>
<tr>
<td>• User name and password</td>
<td>• With Telnet, the user name and password are transmitted as plain text.</td>
</tr>
<tr>
<td>• Selectable server port</td>
<td>• Enabling SSH disables Telnet and provides encrypted access to the command</td>
</tr>
<tr>
<td>• Access protocols that can be enabled or</td>
<td>line interface to provide additional protection from attempts to intercept,</td>
</tr>
<tr>
<td>disabled</td>
<td>forge, or alter data during transmission.</td>
</tr>
<tr>
<td>• Secure SHell (SSH)</td>
<td></td>
</tr>
</tbody>
</table>

SNMPv1 and SNMPv3.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods (SNMPv1):</td>
<td>For both SNMPv1 and SNMPv3, the host name restricts access to the Network Management System (NMS) at that location only, and the NMS IP filters allow access only to the NMSs specified by one of the IP address formats in the following examples:</td>
</tr>
<tr>
<td>• Community Name</td>
<td>• 159.215.12.1: Only the NMS at the IP address 159.215.12.1.</td>
</tr>
<tr>
<td>• Host Name</td>
<td>• 159.215.12.255: Any NMS on the 159.215.12 segment.</td>
</tr>
<tr>
<td>• NMS IP filters</td>
<td>• 159.215.255.255: Any NMS on the 159.215 segment.</td>
</tr>
<tr>
<td>• Agents that can be enabled or disabled</td>
<td>• 159.255.255.255: Any NMS on the 159 segment.</td>
</tr>
<tr>
<td>• Four access communities with read/write/disable capability</td>
<td>• 0.0.0.0 or 255.255.255.255: Any NMS.</td>
</tr>
<tr>
<td>Available methods (SNMPv3):</td>
<td>SNMPv3 has additional security features that include the following:</td>
</tr>
<tr>
<td>• Four User Profiles</td>
<td>• An authentication passphrase to ensure that an NMS trying to access the Management Card or device is the NMS it claims to be.</td>
</tr>
<tr>
<td>• Authentication through an authentication passphrase</td>
<td>• Encryption of data during transmission, with a privacy passphrase required for encrypting and decrypting.</td>
</tr>
<tr>
<td>• Encryption through a privacy passphrase</td>
<td></td>
</tr>
<tr>
<td>• MD5 authentication</td>
<td></td>
</tr>
<tr>
<td>• DES encryption algorithm</td>
<td></td>
</tr>
<tr>
<td>• NMS IP filters</td>
<td></td>
</tr>
</tbody>
</table>

File transfer protocols.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>With FTP, the user name and password are transmitted as plain text, and files are transferred without encryption.</td>
</tr>
<tr>
<td>• User name and password</td>
<td>Use SCP to encrypt the user name and password and the files being transferred, such as firmware updates, configuration files, log files, Secure Sockets Layer (SSL) certificates, and Secure SHell (SSH) host keys. If you choose SCP as your file transfer protocol, enable SSH and disable FTP.</td>
</tr>
<tr>
<td>• Selectable server port</td>
<td></td>
</tr>
<tr>
<td>• FTP Server and access protocols that can be enabled or disabled</td>
<td></td>
</tr>
<tr>
<td>• Secure CoPy (SCP)</td>
<td></td>
</tr>
</tbody>
</table>
Web server.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>In basic HTTP authentication mode, the user name and password are transmitted base-64 encoded (with no encryption).</td>
</tr>
<tr>
<td>• User name and password</td>
<td>SSL is available on Web browsers supported for use with the Management Card or network-enabled device and on most Web servers. The Web protocol HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) encrypts and decrypts page requests to the Web server and pages returned by the Web server to the user.</td>
</tr>
<tr>
<td>• Selectable server port</td>
<td></td>
</tr>
<tr>
<td>• Web interface access that can be enabled or disabled</td>
<td>RADIUS (Remote Authentication Dial-In User Service) is an authentication, authorization, and accounting service used to centrally administer remote access for each Management Card or device. (American Power Conversion supports the authentication and authorization functions.)</td>
</tr>
<tr>
<td>• Secure Sockets Layer (SSL)</td>
<td></td>
</tr>
</tbody>
</table>

RADIUS.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>RADIUS (Remote Authentication Dial-In User Service) is an authentication, authorization, and accounting service used to centrally administer remote access for each Management Card or device. (American Power Conversion supports the authentication and authorization functions.)</td>
</tr>
<tr>
<td>• Centralized authentication of access rights</td>
<td></td>
</tr>
<tr>
<td>• A server secret shared between the RADIUS server and the Management Card or device</td>
<td>RADIUS (Remote Authentication Dial-In User Service) is an authentication, authorization, and accounting service used to centrally administer remote access for each Management Card or device. (American Power Conversion supports the authentication and authorization functions.)</td>
</tr>
</tbody>
</table>

Access priorities

The priority for access, beginning with the highest priority, is as follows:
• Local access to the command line interface from a computer with a direct serial connection to the Management Card or device
• Telnet or Secure SHell (SSH) access to the command line interface from a remote computer
• Web access, either directly or through InfraStruXure Central or InfraStruXure Manager
Change default user names and passwords immediately

After installation and initial configuration of the Management Card or network-enabled device, immediately change the user names and passwords from their defaults to unique user names and passwords to establish basic security.

Port assignments

If Telnet, the FTP server, SSH/SCP, or the Web server uses a non-standard port, a user must specify the port in the command line or Web address used to access the Management Card or device. A non-standard port number provides an additional level of security. The ports are initially set at the standard “well known ports” for the protocols. To increase security, reset the ports to any unused port numbers from 5001 to 32768 for the FTP server and from 5000 to 32768 for the other protocols and servers. (The FTP server uses both the specified port and the port one number lower than the specified port.)

User names, passwords, and community names with SNMPv1

All user names, passwords, and community names for SNMPv1 are transferred over the network as plain text. A user who is capable of monitoring the network traffic can determine the user names and passwords required to log on to the accounts of the command line interface or Web interface of the Management Card or network-enabled device. If your network requires the higher security of the encryption-based options available for the command line interface and Web interface, disable SNMPv1 access or set its access to Read. (Read access allows you to receive status information and use SNMPv1 traps.)

To disable SNMPv1 access, on the Administration tab, select Network on the top menu bar and access under the SNMPv1 heading on the left navigation menu. Clear the Enable SNMPv1 access checkbox and click Apply.
To set SNMPv1 access to **Read**, on the **Administration** tab, select **Network** on the top menu bar and **access control** under the **SNMPv1** heading on the left navigation menu. Then, for each configured Network Management System (NMS), click the community names and set the access type to **Read**.

Authentication

You can choose security features for the Management Card or network-enabled device that control access by providing basic authentication through user names, passwords, and IP addresses, without using encryption. These basic security features are sufficient for most environments in which sensitive data are not being transferred.

SNMP GETS, SETS, and Traps

For enhanced authentication when you use SNMP to monitor or configure the Management Card or network-enabled device, choose SNMPv3. The authentication passphrase used with SNMPv3 user profiles ensures that a Network Management System (NMS) attempting to communicate with the Management Card or device is the NMS it claims to be, that the message has not been changed during transmission, and that the message was not delayed, copied, and sent again later at an inappropriate time. SNMPv3 is disabled by default.

This implementation of SNMPv3 allows the use of the SHA-1 or MD5 protocol for authentication.
Web interface and command line interface

To ensure that data and communication between the Management Card or network-enabled device and the client interfaces (the command line interface and the Web interface) cannot be intercepted, you can provide a greater level of security by using one or more of the following encryption-based methods:

- For the Web interface, use the Secure Sockets Layer (SSL) protocol
- To encrypt user names and passwords for command line interface access, use the Secure SHell (SSH) protocol
- To encrypt user names, passwords, and data for the secure transfer of files, use the Secure CoPy (SCP) protocol

For more information on encryption-based security, see Encryption.

Encryption

SNMP GETS, SETS, and Traps

For encrypted communication when you use SNMP to monitor or configure the Management Card or network-enabled device, choose SNMPv3. The privacy passphrase used with SNMPv3 user profiles ensures the privacy of the data (by means of encryption, using the AES or DES encryption algorithm) that an NMS sends to or receives from the Management Card or device.
Secure SHell (SSH) and Secure CoPy (SCP) for the command line interface

The Secure SHell protocol. SSH provides a secure mechanism to access computer consoles, or shells, remotely. The protocol authenticates the server (in this case, the Management Card or network-enabled device) and encrypts all transmissions between the SSH client and the server.

- SSH is an alternative to Telnet, which does not provide encryption.
- SSH protects the user name and password, which are the credentials for authentication, from being used by anyone intercepting network traffic.
- To authenticate the SSH server (the Management Card or network-enabled device) to the SSH client, SSH uses a host key unique to the SSH server. The host key is an identification that cannot be falsified, and it prevents an invalid server on the network from obtaining a user name and password by presenting itself as a valid server.

For information on supported SSH client applications, see Telnet and Secure SHell (SSH). To create a host key, see Create an SSH Host Key.

- The Management Card or device supports SSH version 2, which provides protection from attempts to intercept, forge, or change data during transmission.
- When you enable SSH, Telnet is automatically disabled.
- The interface, user accounts, and user access rights are the same whether you access the command line interface through SSH or Telnet.

Secure CoPy. SCP is a secure file transfer application that you can use instead of FTP. SCP uses the SSH protocol as the underlying transport protocol for encryption of user names, passwords, and files.

- When you enable and configure SSH, you automatically enable and configure SCP. No further configuration of SCP is needed.
- You must explicitly disable FTP. It is not disabled by enabling SSH. To disable FTP, on the Administration tab, select Network on the top menu bar and FTP Server on the left navigation menu. Clear the Enable checkbox and click Apply.
Secure Sockets Layer (SSL) for the Web interface

For secure Web communication, enable Secure Sockets Layer (SSL) by selecting HTTPS as the protocol mode to use for access to the Web interface of the Management Card or network-enabled device. HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) is a Web protocol that encrypts and decrypts page requests from the user and pages that are returned by the Web server to the user.

The Management Card or network-enabled device supports SSL version 3.0 and the associated Transport Layer Security (TLS) version 1.0. Most browsers let you select the version of SSL to enable.

When SSL is enabled, your browser displays a small lock icon.

SSL uses a digital certificate to enable the browser to authenticate the server (in this case, the Management Card or device). The browser verifies the following:

- The format of the server certificate is correct
- The expiration date and time of the server certificate have not passed
- The DNS name or IP address specified when a user logs on matches the common name in the server certificate
- The server certificate is signed by a trusted certifying authority

Each major browser manufacturer distributes CA root certificates of the commercial Certificate Authorities in the certificate store (cache) of its browser so that it can compare the signature on the server certificate to the signature on a CA root certificate.

You can use the Security Wizard, provided on the Utility CD, to create a certificate signing request to an external Certificate Authority, or if you do not want to use an existing Certificate Authority, you can create an APC root certificate to upload to the certificate store (cache) of the browser. You can also use the Wizard to create a server certificate to upload to the Management Card or device.

See Creating and Installing Digital Certificates for a summary of how these certificates are used.

To create certificates and certificate requests, see Create a Root Certificate and Server Certificates and Create a Server Certificate and Signing Request.
SSL also uses various algorithms and encryption ciphers to authenticate the server, encrypt data, and ensure the integrity of the data, i.e., that it has not been intercepted and sent by another server.

Web pages that you have recently accessed are saved in the cache of your Web browser and allow you to return to those pages without re-entering your user name and password. Always close your browser session before you leave your computer unattended.

Creating and Installing Digital Certificates

Purpose

For network communication that requires a higher level of security than password encryption, the Web interface of the Management Card or network-enabled device supports the use of digital certificates with the Secure Sockets Layer (SSL) protocol. Digital certificates can authenticate the Management Card or device (the server) to the Web browser (the SSL client).

If your Management Card or device is running AOS firmware version 5.x.x, you can generate a 1024-bit key, or you can generate a 2048-bit key, which provides complex encryption and a higher level of security.

If your Management Card or device is running AOS firmware version 3.x.x, generate a 1024-bit key. Your device will not accept a 2048-bit key.

The sections that follow summarize the three methods of creating, implementing, and using digital certificates to help you determine the most appropriate method for your system.

- Method 1: Use the default certificate auto-generated by the Network Management Card or network-enabled device.
- Method 2: Use the Security Wizard to create a CA certificate and a server certificate.
method 3: Use the Security Wizard to create a certificate-signing request to be signed by the root certificate of an external Certificate Authority and to create a server certificate.

You can also use Method 3 if your company or agency operates its own Certificate Authority. Use the Security Wizard in the same way, but use your own Certificate Authority in place of a commercial Certificate Authority.

Choosing a method for your system

Using the Secure Sockets Layer (SSL) protocol, you can choose any of the following methods for using digital certificates.

Method 1: Use the default certificate auto-generated by the Network Management Card or network-enabled device. When you enable SSL, you must reboot the Management Card or device. During rebooting, if no server certificate exists, the Management Card or device generates a default server certificate that is self-signed but that you cannot configure.

Method 1 has the following advantages and disadvantages.

- **Advantages:**
 - Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.
 - You can use this default server certificate to provide encryption-based security while you are setting up either of the other two digital certificate options, or you can continue to use it for the benefits of encryption that SSL provides.

- **Disadvantages:**
 - The Management Card or device takes up to 1 minute to create this certificate, and the Web interface is not available during that time. (This delay occurs the first time you log on after you enable SSL.)
 - This method does not include the authentication provided by a CA certificate (a certificate signed by a Certificate Authority) that Methods 2 and 3 provide. There is no CA Certificate cached in the browser. Therefore, when you log on to the
Management Card or device, the browser generates a security alert, indicating that a certificate signed by a trusted authority is not available, and asks if you want to proceed. To avoid this message, you must install the default server certificate into the certificate store (cache) of the browser of each user who needs access to the Management Card or device, and each user must always use the fully qualified domain name of the server when logging on to the Management Card or device.

- The default server certificate has the serial number of the Management Card or device in place of a valid common name (the DNS name or the IP address of the Management Card or device). Therefore, although the Management Card or device can control access to its Web interface by user name, password, and account type (e.g., Administrator, Device-Only User, or Read-Only User), the browser cannot authenticate which Management Card or device is sending or receiving data.

- The length of the public key (RSA key) that is used for encryption when setting up an SSL session is 2048 bits, by default.

Method 2: Use the Security Wizard to create a CA certificate and a server certificate. Use the Security Wizard to create two digital certificates:

- A CA root certificate (Certificate Authority root certificate) that the Security Wizard uses to sign all server certificates and which you then install into the certificate store (cache) of the browser of each user who needs access to the Management Card or device.

- A server certificate that you upload to the Management Card or device. When the Security Wizard creates a server certificate, it uses the CA root certificate to sign the server certificate.

The Web browser authenticates the Management Card or device sending or requesting data:

- To identify the Management Card or device, the browser uses the common name (IP address or DNS name of the Management Card or device) that was specified in the server certificate’s distinguished name when the certificate was created.
To confirm that the server certificate is signed by a “trusted” signing authority, the browser compares the signature of the server certificate with the signature in the root certificate cached in the browser. An expiration date confirms whether the server certificate is current.

Method 2 has the following advantages and disadvantages.

Advantages:

- Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.
- You choose the length of the *public key* (RSA key) that is used for encryption when setting up an SSL session (use 2048 bits, the default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).
- The server certificate that you upload to the Management Card or device enables SSL to authenticate that data are being received from and sent to the correct Management Card or device. This provides an extra level of security beyond the encryption of the user name, password, and transmitted data.
- The root certificate that you install to the browser enables the browser to authenticate the server certificate of the Management Card or device to provide additional protection from unauthorized access.

Disadvantage:

Because the certificates do not have the digital signature of a commercial Certificate Authority, you must load a root certificate individually into the certificate store (cache) of each user’s browser. (Browser manufacturers already provide root certificates for commercial Certificate Authorities in the certificate store within the browser, as described in Method 3.)
Method 3: Use the Security Wizard to create a certificate-signing request to be signed by the root certificate of an external Certificate Authority and to create a server certificate. Use the Security Wizard to create a request (a `.csr` file) to send to a Certificate Authority. The Certificate Authority returns a signed certificate (a `.crt` file) based on information you submitted in your request. You then use the Security Wizard to create a server certificate (a `.p15` file) that includes the signature from the root certificate returned by the Certificate Authority. Upload the server certificate to the Management Card or device.

You can also use Method 3 if your company or agency operates its own Certificate Authority. Use the Security Wizard in the same way, but use your own Certificate Authority in place of a commercial Certificate Authority.

Method 3 has the following advantages and disadvantages.

Advantages:

- Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.
- You have the benefit of authentication by a Certificate Authority that already has a signed root certificate in the certificate cache of the browser. (The CA certificates of commercial Certificate Authorities are distributed as part of the browser software, and a Certificate Authority of your own company or agency has probably already loaded its CA certificate to the browser store of each user’s browser.) Therefore, you do not have to upload a root certificate to the browser of each user who needs access to the Management Card or device.
- You choose the length of the `public key` (RSA key) that is used for setting up an SSL session (use 2048 bits, the default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).
- The server certificate that you upload to the Management Card or device enables SSL to authenticate that data are being received from and sent to the correct Management Card or device. This provides an extra level of security beyond the encryption of the user name, password, and transmitted data.
– The browser matches the digital signature on the server certificate that you uploaded to the Management Card or device with the signature on the CA root certificate that is already in the browser’s certificate cache to provide additional protection from unauthorized access.

• Disadvantages:
 – Setup requires the extra step of requesting a signed root certificate from a Certificate Authority.
 – An external Certificate Authority may charge a fee for providing signed certificates.

Firewalls

Although some methods of authentication provide a higher level of security than others, complete protection from security breaches is almost impossible to achieve. Well-configured firewalls are an essential element in an overall security scheme.
Using the Security Wizard

Overview

The Security Wizard creates components needed for high security for a Management Card or network-enabled device on the network when you are using Secure Sockets Layer (SSL) and related protocols and encryption routines.

Authentication by certificates and host keys

Authentication verifies the identity of a user or a network device (such as an Network Management Card or network-enabled device). Passwords typically identify computer users. However, for transactions or communications requiring more stringent security methods on the Internet, the Management Card or device supports more secure methods of authentication.

- Secure Sockets Layer (SSL), used for secure Web access, uses digital certificates for authentication. A digital CA root certificate is issued by a Certificate Authority (CA) as part of a public key infrastructure, and its digital signature must match the digital signature on a server certificate on the Management Card or device.
- Secure SHell (SSH), used for remote terminal access to the command line interface of the Management Card or device, uses a public host key for authentication.

How certificates are used. Most Web browsers, including all browsers supported by Network Management Cards or network-enabled devices, contain a set of CA root certificates from all of the commercial Certificate Authorities.

Authentication of the server (in this case, the Management Card or device) occurs each time a connection is made from the browser to the server. The browser checks to be sure that the server’s certificate is signed by a Certificate Authority known to the browser.
For authentication to occur:
• Each server (Management Card or device) with SSL enabled must have a server certificate on the server itself.
• Any browser that is used to access the Web interface of the Management Card or device must contain the CA root certificate that signed the server certificate.

If authentication fails, a browser message asks you whether to continue even though it cannot authenticate the server.

If your network does not require the authentication provided by digital certificates, you can use the default certificate that the Management Card or device generates automatically. The default certificate’s digital signature will not be recognized by browsers, but a default certificate enables you to use SSL for the encryption of transmitted user names, passwords, and data. (If you use the default certificate, the browser prompts you to agree to unauthenticated access before it logs you on to the Web interface of the Management Card or device.)

How SSH host keys are used. An SSH *host key* authenticates the identity of the server (the Management Card or device) each time an SSH client contacts that server. Each server with SSH enabled must have an SSH host key on the server itself.

Files you create for SSL and SSH security

Use the Security Wizard to create these components of an SSL and SSH security system:
• The server certificate for the Management Card or network-enabled device, if you want the benefits of authentication that such a certificate provides. You can create either of the following types of server certificate:
 – A server certificate signed by a custom CA root certificate also created with the Security Wizard. Use this method if your company or agency does not have its own Certificate Authority and you do not want to use an external Certificate Authority to sign the server certificate.
– A server certificate signed by an external Certificate Authority. This Certificate Authority can be one that is managed by your own company or agency or can be one of the commercial Certificate Authorities whose CA root certificates are distributed as part of a browser’s software.

• A certificate signing request containing all the information required for a server certificate except the digital signature. You need this request if you are using an external Certificate Authority.

• A CA root certificate.

• An SSH host key that your SSH client program uses to authenticate the Management Card or device when you log on to the command line interface.

You define whether the public keys for SSL certificates and the host keys for SSH that are created with the Security Wizard are 2048-bit RSA keys (the default setting) or 1024-bit RSA keys.

If you do not create and use SSL server certificates and SSH host keys with the Security Wizard, the Management Card or device generates 2048-bit RSA keys.

Only American Power Conversion server management and key management products can use server certificates, host keys, and CA root certificates created by the Security Wizard. These files will not work with products such as OpenSSL® and Microsoft® Internet Information Services (IIS).
Create a Root Certificate and Server Certificates

Summary

Use this procedure if your company or agency does not have its own Certificate Authority and you do not want to use a commercial Certificate Authority to sign your server certificates.

Define the size of the public RSA key that is part of the certificate generated by the Security Wizard:

- If your Management Card or device is running AOS firmware version 5.x.x, you can generate a 1024-bit key, or you can generate a 2048-bit key, which provides complex encryption and a higher level of security. (The default key generated by the Management Card or network-enabled device, if you do not use the Wizard, is 2048 bits.)
- If your Management Card or device is running AOS firmware version 3.x.x, generate a 1024-bit key. Your device cannot generate a 2048-bit key. (The default key generated by the Management Card or network-enabled device, if you do not use the Wizard, is 768 bits.)

- Create a CA root certificate that will sign all server certificates to be used with Management Cards or devices. During this task, two files are created:
 - The file with the .p15 suffix is an encrypted file that contains the Certificate Authority’s private key and public root certificate. This file signs server certificates.
 - The file with the .crt suffix contains only the Certificate Authority’s public root certificate. Load this file into each Web browser that will be used to access the Management Card or device so that the browser can validate the server certificate of that Management Card or device.

- Create a server certificate, which is stored in a file with a .p15 suffix. During this task, you are prompted for the CA root certificate that signs the server certificate.

- Load the server certificate onto the Management Card or device.

- For each Management Card or device that requires a server certificate, repeat the tasks that create and load the server certificate.
The procedure

Create the CA root certificate.

1. If the Security Wizard is not already installed on your computer, run the installation program (Security Wizard.exe) by clicking the link Security Wizard, then Install the Wizard, in the interface of the Utility CD for the Management Card or device.

2. On the Windows Start menu, select Programs, then Security Wizard.

3. On the screen labeled Step 1, select CA Root Certificate as the type of file to create, and then select the length of the key to generate (use 2048 bits, the default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).

4. Enter a name for this file, which will contain the Certificate Authority’s public root certificate and private key. The file must have a .p15 suffix and, by default, will be created in the installation folder C:\Program Files\American Power Conversion\Security Wizard.

5. On the screen labeled Step 2, provide the information to configure the CA root certificate. The Country and Common Name fields are the only required fields. For the Common Name field, enter an identifying name of your company or agency. Use only alphanumeric characters, with no spaces.

By default, a CA root certificate is valid for 10 years from the current date and time, but you can edit the Validity Period Start and Validity Period End fields.

6. On the next screen, review the summary of the certificate. Scroll downward to view the certificate’s unique serial number and fingerprints. To make any changes to the information you provided, click Back. Revise the information.

The certificate’s subject information and the certificate’s issuer information should be identical.
The last screen verifies that the certificate was created and displays information you need for the next tasks:

- The location and name of the .p15 file that you will use to sign the server certificates.
- The location and name of the .crt file, which is the CA root certificate to load into the browser of each user who needs to access the Management Card or device.

Load the CA root certificate to your browser. Load the .crt file to the browser of each user who needs to access the management card or device.

See the help system of the browser for information on how to load the .crt file into the browser's certificate store (cache). Following is a summary of the procedure for Microsoft Internet Explorer.

1. Select **Tools**, then **Internet Options** from the menu bar.
2. In the dialog box, on the **Content** tab click **Certificates** and then **Import**.
3. The Certificate Import Wizard guides you through the rest of the procedure. The file type to select is X.509, and the CA Public Root Certificate is the .crt file created in the procedure **Create a Root Certificate and Server Certificates**.

Create an SSL Server User Certificate.

1. On the Windows **Start** menu, select **Programs**, then **NMC Security Wizard**.
2. On the screen labeled **Step 1**, select **SSL Server Certificate** as the type of file, and then select the length of the key to generate (use 2048 bits, the default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).
3. Enter a name for this file, which will contain the server certificate and the private key. The file must have a .p15 suffix and, by default, will be created in the folder `C:\Program Files\American Power Conversion\Security Wizard`.
4. Click **Browse**, and select the CA root certificate created in the procedure **Create a Root Certificate and Server Certificates**. The CA Root Certificate is used to sign the Server User Certificate being generated.
5. On the screen labeled **Step 2**, provide the information to configure the server certificate. **Country** and **Common Name** are the only required fields. For the **Common Name** field, enter the IP address or DNS name of the server (the Management Card or device). By default, a server certificate is valid for 10 years but you can edit the **Validity Period Start** and **Validity Period End** fields.

Because the configuration information is part of the signature, the information for every certificate must be unique. The configuration of a server certificate cannot be the same as the configuration of the CA root certificate. (The expiration date is not considered part of the unique configuration. Some other configuration information must also differ.)

6. On the next screen, review the summary of the certificate. Scroll downward to view the certificate’s unique serial number and fingerprints. To make any changes to the information you provided, click **Back**. Revise the information.

7. The last screen verifies that the certificate has been created and instructs you to load the server certificate to the Management Card or device. It displays the location and name of the Server Certificate, which has a `.p15` file suffix and contains the private key and public root certificate of the Management Card or device.
Load the server certificate to the Management Card or device.

1. On the **Administration** tab, select **Network** on the top menu bar and **ssl certificate** under the **Web** heading on the left navigation menu.

2. Select **Add or Replace Certificate File**, and browse to the server certificate, the `.p15` file you created in the procedure Create a Root Certificate and Server Certificates. (The default location is `C:\Program Files\American Power Conversion\Security Wizard`.)

You can use FTP or Secure CoPy (SCP) instead to transfer the server certificate. For SCP, the command to transfer a certificate named `cert.p15` to a Management Card or device with an IP address of 156.205.6.185 would be:

```
scp cert.p15 apc@156.205.6.185
```

When you transfer the server certificate to a device running firmware version 3.x.x, you must specify the location `\sec` on the Management Card or device. For example:

```
scp cert.p15 apc@156.205.6.185:\sec\cert.p15
```
Create a Server Certificate and Signing Request

Summary

Use this procedure if your company or agency has its own Certificate Authority or if you plan to use a commercial Certificate Authority to sign your server certificates.

- Create a Certificate Signing Request (CSR). The CSR contains all the information for a server certificate except the digital signature. This process creates two output files:
 - The file with the `.p15` suffix contains the private key of the Management Card or device.
 - The file with the `.csr` suffix contains the certificate signing request, which you send to an external Certificate Authority.
- When you receive the signed certificate from the Certificate Authority, import that certificate. Importing the certificate combines the `.p15` file containing the private key and the file containing the signed certificate from the external Certificate Authority. The output file is a new encrypted server certificate file with a `.p15` suffix.
- Load the server certificate onto the Management Card or device.
- For each Management Card or device that requires a server certificate, repeat the tasks that create and load the server certificate.

The procedure

Create the Certificate Signing Request (CSR).

1. If the Security Wizard is not already installed on your computer, run the installation program (SecWiz 1.04SE Install.exe) by clicking the link Security Wizard, then Install the Wizard, in the interface of the Utility CD for the Management Card or device.

2. On the Windows Start menu, select Programs, then NMC Security Wizard.

3. On the screen labeled Step 1, select Certificate Request as the type of file to create, and then select the length of the key to generate (use 2048 bits, the
default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).

4. Enter a name for this file, which will contain the private key of the Management Card or device. The file must have a .p15 suffix and, by default, will be created in the installation folder C:\Program Files\American Power Conversion\Security Wizard.

5. On the screen labeled Step 2, provide the information to configure the certificate signing request (CSR), i.e., the information that you want the signed server certificate to contain. The Country and Common Name fields are required. Other fields are optional. For the Common Name field, enter the IP Address or DNS name of the Management Card or device.

 By default, a server certificate is valid for 10 years from the current date and time, but you can edit the Validity Period Start and Validity Period End fields.

6. On the next screen, review the summary of the certificate. Scroll downward to view the unique serial number and fingerprints of the certificate. To make any changes to the information you provided, click Back. Revise the information.

 The certificate’s subject information and the certificate’s issuer information should be identical.

7. The last screen verifies that the certificate signing request was created and displays the location and name of the file, which has a .csr extension.

8. Send the certificate signing request to an external Certificate Authority, either a commercial Certificate Authority or, if applicable, a Certificate Authority managed by your own company or agency.

 See the instructions provided by the Certificate Authority regarding the signing and issuing of server certificates.
Import the signed certificate. When the external Certificate Authority returns the signed certificate, import the certificate. This procedure combines the signed certificate and the private key into an SSL server certificate that you then upload to the Management Card or device.

1. On the Windows Start menu, select Programs, then NMC Security Wizard.
2. On the screen labeled Step 1, select Import Signed Certificate.
3. Browse to and select the signed server certificate that you received from the external Certificate Authority. The file has a .cer or .crt suffix.
4. Browse to and select the file you created in step 4 of the task Create the Certificate Signing Request (CSR). This file has a .p15 extension, contains the private key of the Management Card or device, and, by default, is in the installation folder C:\Program Files\American Power Conversion\Security Wizard.
5. Specify a name for the output file that will be the signed server certificate that you upload to the management card or device. The file must have a .p15 suffix.
6. Click Next to generate the server certificate. Issuer Information on the summary screen confirms that the external Certificate Authority signed the certificate.
7. The last screen verifies that the certificate has been created and instructs you to load the server certificate to the Management Card or device. It displays the location and name of the server certificate, which has a .p15 file extension and contains the private key of the Management Card or device and the public key obtained from the .cer or .crt file.

Load the server certificate to the management card or device.

1. On the Administration tab, select Network on the top menu bar and ssl certificate under the Web heading on the left navigation menu.
2. Select Add or Replace Certificate File, and browse to the server certificate, the .p15 file you created in the procedure Create a Root Certificate and Server Certificates. (The default location is C:\Program Files\American Power Conversion\Security Wizard.)
Create an SSH Host Key

Summary

This procedure is optional. If you select SSH encryption, but do not create a host key, the Management Card or device generates a 2048-bit RSA key when it reboots. You define whether the host keys for SSH that are created with the Security Wizard are 1024-bit or 2048-bit RSA keys.

If your Management Card or device is running AOS firmware version 5.x.x, you can generate a 1024-bit key, or you can generate a 2048-bit key, which provides complex encryption and a higher level of security.

If your Management Card or device is running AOS firmware version 3.x.x, generate a 1024-bit key. Your device cannot generate a 2048-bit key.

- Use the Security Wizard to create a host key, which is encrypted and stored in a file with the .p15 suffix.
- Load the host key onto the Management Card or device.

Alternatively, you can use FTP or Secure CoPy (SCP) to transfer the server certificate to the Management Card or device. For SCP, the command to transfer a certificate named cert.p15 to a Management Card or device with an IP address of 156.205.6.185 would be:

```
scp cert.p15 apc@156.205.6.185
```

When you transfer the server certificate to a device running firmware version 3.x.x, you must specify the location \sec on the Management Card or device. For example:

```
scp cert.p15 apc@156.205.6.185:\sec\cert.p15
```
The procedure

Create the host key.

1. If the Security Wizard is not already installed on your computer, run the installation program (SecWiz 1.04SE Install.exe) by clicking the link Security Wizard, then Install the Wizard, in the interface of the Utility CD for the Management Card or device.

2. On the Windows Start menu, select Programs, then NMC Security Wizard.

3. On the Step 1 screen, select SSH Server Host Key as the type of file to create, and then select the length of the key to generate (use 2048 bits, the default setting, to provide complex encryption and a high level of security; use 1024 bits if your device is running AOS firmware version 3.x.x).

4. Enter a name for this file, which will contain the host key. The file must have a .p15 suffix. By default, the file will be created in the installation folder C:\Program Files\American Power Conversion\Security Wizard.

5. Click Next to generate the host key.

6. The summary screen displays the SSH version 2 fingerprints, which are unique for each host key and identify the host key. After you load the host key onto the Management Card or device, you can verify that the correct host key was uploaded by verifying that the fingerprints displayed here match the SSH fingerprints on the Management Card or device, as displayed by your SSH client program.

7. The last screen verifies that the host key was created, instructs you to load the host key to the Management Card or device, and displays the location and name of the host key, which has a .p15 file suffix.

Load the host key to the management card or device.

1. On the Administration tab, select Network on the top menu bar, and ssh host key under the Console heading on the left navigation menu.

2. Select Add or Replace Host Key, and browse to the host key, the .p15 file you created in the procedure Create the host key. (The default location is C:\Program Files\American Power Conversion\Security Wizard.)
3. At the bottom of the **User Host Key** page, note the SSH fingerprint. Log on to the Management Card or device through your SSH client program, and verify that the correct host key was uploaded by verifying that these fingerprints match the fingerprints that the client program displays.

Alternatively, you can use FTP or Secure CoPy (SCP) to transfer the host key file to the Management Card or device. For SCP, the following command would transfer a host key named `hostkey.p15` to a Management Card or device with an IP address of 156.205.6.185:

```
scp hostkey.p15 apc@156.205.6.185
```

When you transfer the server certificate to a device running firmware version 3.x.x, you must specify the location `\sec` on the Management Card or device. For example:

```
scp cert.p15 apc@156.205.6.185:\sec\hostkey.p15
```
Command Line Interface Access and Security

Introduction

You can access the command line interface through Telnet or Secure SHell (SSH), depending on which is enabled. (An Administrator can enable these access methods by selecting the Administration tab, then Network on the top menu bar and access under the Console heading on the left navigation menu.) By default, Telnet is enabled. Enabling SSH automatically disables Telnet.

Telnet for basic access. Telnet provides the basic security of authentication by user name and password, but not the high-security benefits of encryption.

SSH for high-security access. If you use the high security of SSL for the Web interface, use Secure SHell (SSH) for access to the command line interface. SSH encrypts user names, passwords and transmitted data.

The interface, user accounts, and user access rights are the same whether you access the command line interface through SSH or Telnet, but to use SSH, you must first configure SSH and have an SSH client program installed on your computer.

Telnet and Secure SHell (SSH)

While SSH is enabled, you cannot use Telnet to access the command line interface. Enabling SSH enables SCP automatically.

- When SSH is enabled and its port and encryption ciphers are configured, no further configuration is required to use Secure CoPy (SCP). SCP uses the same configuration as SSH.

- To use SSH, you must have an SSH client installed. Most Linux and other UNIX® platforms include an SSH client, but Microsoft Windows operating systems do not. SSH clients are available from various vendors.
To configure the options for Telnet and Secure SHell (SSH):

1. On the **Administration** tab of the Web interface, select **Network** on the top menu bar, and select **access** under the **Console** heading on the left navigation menu.

2. Configure the port settings for Telnet and SSH.

 For information on the extra security a non-standard port provides, see **Port assignments**.

3. Under **Console** on the left navigation menu, select **ssh host key**, specify a host key file previously created with the Security Wizard, and load it to the Management Card or device.

 If you do not specify a host key file here, if you install an invalid host key, or if you enable SSH with no host key installed, the Management Card or device generates an RSA host key of 2048 bits. For the Management Card or device to create a host key, it must reboot. **The Management Card or device can take up to 1 minute to create this host key, and SSH is not accessible during that time.**

 Alternatively, from a command line interface such as the command prompt on Windows operating systems, you can use FTP or Secure CoPy (SCP) to transfer the host key file.

 If your Network Management Card or device is running AOS firmware version 3.x.x, you must transfer the host key file to the location \sec on the Management Card or device.

4. Display the **fingerprint** of the SSH host key for SSH version 2. Most SSH clients display the fingerprint at the start of a session. Compare the fingerprint displayed by the client to the fingerprint that you recorded from the Web interface or command line interface of the Management Card or device.
Web Interface Access and Security

HTTP and HTTPS (with SSL)

HyperText Transfer Protocol (HTTP) provides access by user name and password, but does not encrypt user names, passwords, and data during transmission. HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) encrypts user names, passwords, and data during transmission, and provides authentication of the Management Card or device by means of digital certificates.

To configure HTTP and HTTPS:

1. On the Administration tab, select Network on the top menu bar and access under Web on the left navigation menu.
2. Enable either HTTP or HTTPS and configure the ports that each of the two protocols will use. Changes take effect the next time you log on. When SSL is activated, your browser displays a small lock icon.

3. Select ssl certificate under Web on the left navigation menu to determine whether a server certificate is installed on the Management Card or device. If a certificate was created with the Security Wizard but is not installed:
 - In the Web interface, browse to the certificate file and upload it to the Management Card or device.
 - Alternatively, use the Secure CoPy (SCP) protocol or FTP to upload the certificate file to the Management Card or device.

See Creating and Installing Digital Certificates to choose among the several methods for using digital certificates.

For information on the extra security a non-standard port provides, see Port assignments.
Creating and uploading a server certificate in advance reduces the time required to enable HTTPS. If you enable HTTPS with no server certificate loaded, the Management Card or device creates one when it reboots. The Management Card or device can take up to 1 minute to create the certificate, and the SSL server is unavailable during that time.

A certificate that the Management Card or device generates has some limitations. See Method 1: Use the default certificate auto-generated by the Network Management Card or network-enabled device.

4. If a valid digital server certificate is loaded, the **Status** field displays the link **Valid Certificate**. Click the link to display the parameters of the certificate.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued To:</td>
<td>Common Name (CN): The IP Address or DNS name of the Management Card or device. This field controls how you must log on to the Web interface.</td>
</tr>
<tr>
<td></td>
<td>• If an IP address was specified for this field when the certificate was created, use an IP address to log on.</td>
</tr>
<tr>
<td></td>
<td>• If the DNS name was specified for this field when the certificate was created, use the DNS name to log on.</td>
</tr>
<tr>
<td></td>
<td>If you do not use the IP address or DNS name that was specified for the certificate, authentication fails, and you receive an error message asking if you want to continue.</td>
</tr>
<tr>
<td></td>
<td>For a server certificate generated by default by the Management Card or device, this field displays the serial number of the Management Card or device instead.</td>
</tr>
<tr>
<td></td>
<td>Organization (O), Organizational Unit (OU), and Locality, Country: The name, organizational unit, and location of the organization using the server certificate. For a server certificate generated by default by the Management Card or device, the Organizational Unit (OU) field displays “Internally Generated Certificate.”</td>
</tr>
<tr>
<td></td>
<td>Serial Number: The serial number of the server certificate.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Issued By: | **Common Name (CN):** The Common Name as specified in the CA root certificate. For a server certificate generated by default by the Management Card or device, this field displays the serial number of the Management Card or device instead.
Organization (O) and Organizational Unit (OU): The name and organizational unit of the organization that issued the server certificate. If the server certificate was generated by default by the Management Card or device, this field displays “Internally Generated Certificate.” |
| Validity: | **Issued on:** The date and time at which the certificate was issued.
Expires on: The date and time at which the certificate expires. |
| Fingerprints | Each of the two fingerprints is a long string of alphanumeric characters, punctuated by colons. A fingerprint is a unique identifier to further authenticate the server. Record the fingerprints to compare them with the fingerprints contained in the certificate, as displayed in the browser.
SHA1 Fingerprint: A fingerprint created by a Secure Hash Algorithm (SHA-1).
MD5 Fingerprint: A fingerprint created by a Message Digest 5 (MD5) algorithm. |
Supported RADIUS Functions and Servers

Supported functions

American Power Conversion supports the authentication and authorization functions of Remote Authentication Dial-In User Service (RADIUS). Use RADIUS to administer remote access for each Management Card or network-enabled device centrally. When a user accesses the Management Card or device, an authentication request is sent to the RADIUS server to determine the permission level of the user.

For more information on permission levels, see Types of user accounts.

Supported RADIUS servers

American Power Conversion supports FreeRADIUS and Microsoft IAS 2003. Other commonly available RADIUS applications may work but have not been fully tested.
Configure the Management Card or Device

Authentication

RADIUS user names used with Network Management Cards or devices are limited to 32 characters.

On the Administration tab, select Security on the top menu bar. Then, under Remote Users on the left navigation menu, select authentication to define an authentication method:

- **Local Authentication Only**: RADIUS is disabled. Local authentication is enabled.
- **RADIUS, then Local Authentication**: Both RADIUS and local authentication are enabled. Authentication is requested from the RADIUS server first; local authentication is used only if the RADIUS server fails to respond.
- **RADIUS Only**: RADIUS is enabled. Local authentication is disabled.

If **RADIUS Only** is selected, and the RADIUS server is unavailable, improperly identified, or improperly configured, remote access is unavailable to all users. You must use a serial connection to the command line interface and change the RADIUS access setting to local or radiusLocal to regain access. For example, the command to change the access setting to local would be:

```bash
radius -a local
```
RADIUS

To configure RADIUS, on the Administration tab, select Security on the top menu bar. Then, under Remote Users on the left navigation menu, select RADIUS.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Server</td>
<td>The server name or IP address of the RADIUS server.</td>
</tr>
<tr>
<td>NOTE: RADIUS servers use port 1812 by default to authenticate users. To use a different port, add a colon followed by the new port number to the end of the RADIUS server name or IP address.</td>
<td></td>
</tr>
<tr>
<td>Secret</td>
<td>The secret shared between the RADIUS server and the Management Card or device.</td>
</tr>
<tr>
<td>Reply Timeout</td>
<td>The time in seconds that the Management Card or device waits for a response from the RADIUS server.</td>
</tr>
<tr>
<td>Test Settings</td>
<td>Enter the Administrator user name and password to test the RADIUS server path that you have configured.</td>
</tr>
<tr>
<td>Skip Test and Apply</td>
<td>Do not test the RADIUS server path.</td>
</tr>
</tbody>
</table>

If two configured servers are listed and RADIUS, then Local Authentication or RADIUS Only is the enabled authentication method, you can change which RADIUS server will authenticate users by clicking the Switch Server Priority button.

Configure the RADIUS Server

You must configure your RADIUS server to work with the Management Card or device. The examples in this section may differ somewhat from the required content or format of your specific RADIUS server. In the examples, any reference to outlets applies only to Schneider Electric devices that support outlet users.

1. Add the IP address of the Management Card or device to the RADIUS server client list (file).

2. Users must be configured with Service-Type attributes unless Vendor Specific Attributes (VSAs) are defined instead. If no Service-Type attribute is configured,
the user has read-only access (to the Web interface only). The two acceptable values for Service-Type are Administrative-User (6), which gives the user Administrator permissions, and Login-User (1), which gives the user Device permissions.

See your RADIUS server documentation for information about the RADIUS users file.

Example using Service-Type Attributes

In the following example of a RADIUS users file:

- **UPSAdmin** corresponds to **Service-Type: Administrative-User, (6)**
- **UPSDevice** corresponds to **Service-Type: Login-User, (1)**
- **UPSSReadOnly** corresponds to **Service-Type: null**

UPSAdmin

- Auth-Type = Local, Password = "admin"
- Service-Type = Administrative-User

UPSDevice

- Auth-Type = Local, Password = "device"
- Service-Type = Login-User

UPSSReadOnly

- Auth-Type = Local, Password = "readonly"
Examples using Vendor Specific Attributes

Vendor Specific Attributes (VSAs) can be used instead of the Service-Type attributes provided by your RADIUS server. This method requires a dictionary entry and a RADIUS users file. In the dictionary file, you can define the names for the ATTRIBUTE and VALUE keywords, but not the numeric values. If you change the numeric values, RADIUS authentication and authorization will not work correctly. VSAs take precedence over standard RADIUS attributes.

Dictionary file. Following is an example of a RADIUS dictionary file (dictionary.apc):

```plaintext
#
# dictionary.apc
#
#
VENDOR   APC     318
#
# Attributes
#
ATTRIBUTE APC-Service-Type 1 integer APC
ATTRIBUTE APC-Outlets      2 string  APC

VALUE APC-Service-Type Admin    1
VALUE APC-Service-Type Device   2
VALUE APC-Service-Type ReadOnly 3
#
# For devices with outlet users only
#
VALUE APC-Service-Type Outlet   4
```
RADIUS Users file with VSAs. Following is an example of a RADIUS users file with VSAs:

- VSAAadmin
 Auth-Type = Local, Password = "admin"
 APC-Service-Type = Admin

- VSADevice
 Auth-Type = Local, Password = "device"
 APC-Service-Type = Device

- VSAReadOnly
 Auth-Type = Local, Password = "readonly"
 APC-Service-Type = ReadOnly

- VSAOutlet
 Auth-Type = Local, Password = "outlet"
 APC-Service-Type = Outlet,
 APC-Outlets = "1,2,3"

See the following related topics:

- **Types of user accounts** for information on the three basic user permission levels (Administrator, Device User, and Read-Only User). If your device has an additional user account type, e.g., outlet user for a Switched Rack PDU, see the *User’s Guide* provided with your device for information on the additional account type

- **Supported RADIUS servers** for information on RADIUS servers tested and supported by American Power Conversion.
Example with UNIX shadow passwords. If UNIX shadow password files are used (/etc/passwd) with the RADIUS dictionary files, the following two methods can be used to authenticate users:

- If all UNIX users have administrative privileges, add the following to the RADIUS “user” file. To allow only Device Users, change the APC-Service-Type to Device.

```
DEFAULT  Auth-Type = System
        APC-Service-Type = Admin
```

- Add user names and attributes to the RADIUS "user" file, and verify the password against /etc/passwd. The following example is for users bconners and thawk:

```
bconners  Auth-Type = System
        APC-Service-Type = Admin
thawk     Auth-Type = System
        APC-Service-Type = Outlet
        APC-Outlets = "1,2,3"
```
Index

A	Administrator account	2
	Authentication	
	for Web interface and command line interface	8
	with RADIUS	37
	with SNMPv3	7
	with SSL	10

B	Browsers	
	CA certificates in browser’s store (cache)	10
	danger of leaving browser open	11
	lock icon when SSL is installed	10

C	Certificates	
	choosing which method to use	11
	creating and installing for SSL	11
	methods	
	Security Wizard creates all certificates	13
	Use a Certificate Authority (CA)	15
	Use the default certificate	12

| C | Cipher suites |
| | purpose of the algorithms and ciphers | 11 |

| Configuring |
| SSH | 31 |
| SSL | 33 |

| D | Device user account | 2 |

E	Encryption	
	with SNMPv3	8
	with SSH and SCP for the command line interface	8
	with SSL for the Web interface	33

F	Fingerprints, displaying and comparing	32
FTP	disabling FTP if you use SSH and SCP	9
	for transferring host keys	32
	for transferring server certificates	24, 33
	using a non-standard port for extra security	6

H	Host keys	
	creating with the Security Wizard	28
	generated by the Management Card or device	32
	transferring to the Management Card or device	32

P	Passwords	
	change immediately for security	6
	using non-standard ports for extra security	6
Ports, assigning	6	
R

RADIUS Server setting 38
Read-only user account 2
Root certificates, creating 20

S

SCP
 enabled and configured with SSH 9, 31
 for encrypted file transfer 9
 for transferring host keys 30
 for transferring server certificates 24, 28
 using non-standard port 6

Secure CoPy. See SCP.
Secure SHell. See SSH.
Secure Sockets Layer. See SSL

Security
 authentication
 through digital certificates with SSL 10
 through RADIUS 37
 with SSH and SCP 8
 certificate-signing requests 10
 disabling less secure interfaces 8, 9
 encryption with SSH and SCP 8
 how certificates are used 17
 how SSH host keys are used 18
 immediately changing username and password 6
 SCP as alternative to FTP 9

SSL
 choosing a method to use certificates 11
 cipher suites algorithms and ciphers 11
 summary of access methods 3
 supported SSH clients 31
 using non-standard ports for extra security 6

Security menu
 local users, defining access 2
 RADIUS settings 38
 remote users, authentication 37

Security Wizard 17
 creating certificates
 to use with a Certificate Authority 25
 without a Certificate Authority 20
 creating signing requests 25
 creating SSH host keys 28

Server certificates
 creating to use with a Certificate Authority 25
 creating without a Certificate Authority 20

Signing requests, creating 25

SNMP
 v1
 disabling 6
 READ access 6
 v3
 authentication 7
 encryption 8

SSH
 configuring 31
 enabling 31
 encryption 8
 fingerprints, displaying and comparing 32
 host key
 as identifier that cannot be falsified 8
 transferring to the Security Wizard 28
 transferring to the Management Card or device 32
 obtaining an SSH client 31

SSL
 authentication through digital certificates 10
 certificate signing requests 10
T
Timeout setting for RADIUS 38

U
User accounts, types 2
User Name, change immediately for security 6
APC Worldwide Customer Support

Customer support for this or any other APC product is available at no charge in any of the following ways:

- Visit the APC Web site to access documents in the APC Knowledge Base and to submit customer support requests.
 - www.apc.com (Corporate Headquarters)
 Connect to localized APC Web sites for specific countries, each of which provides customer support information.
 - www.apc.com/support/
 Global support searching APC Knowledge Base and using e-support.
- Contact the APC Customer Support Center by telephone or e-mail.
 - Local, country-specific centers: go to www.apc.com/support/contact for contact information.

For information on how to obtain local customer support, contact the APC representative or other distributors from whom you purchased your APC product.
Copyright

Entire contents copyright 2010 Schneider Electric. All rights reserved. Reproduction in whole or in part without permission is prohibited. The Schneider Electric logo is a trademark of Schneider Electric. All other trademarks, product names, and corporate names are the property of their respective owners and are used for informational purposes only.

Cryptlib, the toolkit used to develop the library of cryptographic routines in the Network Management Card: copyright © 1998 Digital Data Security, Ltd., New Zealand.

990-3895-001

03/2010