

Technical Compliance Statement EMC Test Report

For the following information

Ref. File No.: C1M2005205

Product	:	APC Charge Mobile Power Supply for Surface Hub 2
Model Number	:	(1)CSH2 (2)CSH2-I
Brand	:	APC by Schneider Electric
Applicant	:	American Power Conversion Holdings Inc., Taiwan Branch
Manufacturer	:	American Power Conversion Holdings Inc., Taiwan Branch
Standards	:	
AS/NZS CISPR 32:2015 EN IEC 61000-3-2:2019 EN 55035:2017 (CISPR (IEC 61000-4-2:2008, IE	16 +/ 5 (CIS) and . 35:2 EC 61 EC 61 EC 61	A11:2020 (CISPR 32:2015 +COR1:2016), Class B SPR 32:2015), Class B EN 61000-3-3:2013+A1:2019 016) 000-4-3:2010, 000-4-5:2014 +A1:2017, 000-4-8:2009,

We hereby certify that the above product has been tested by us with the listed standards and found in compliance with the council EMC directive 2014/30/EU.

The test data and results are issued on the EMC test report no. EM-E200324.

Signature

Alex Deng/Deputy Manager Date: 2020. 08. 07

Test Laboratory: Audix Technology Corporation, EMC Department TAF Accreditation No.: 1724 Web Site: www.audixtech.com

The statement is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

TEST REPORT

Product: APC Charge Mobile Power Supply for Surface Hub 2 Model: (1)CSH2 (2)CSH2-I Brand: APC by Schneider Electric

Applicant for:

American Power Conversion Holdings Inc., Taiwan Branch 5F., No. 189, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 11494, Taiwan (R.O.C.)

Prepared by:

AUDIX Technology Corporation, EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

File No.	:	C1M2005205
Report No.	:	EM-E200324
Date of Report	:	2020. 08. 07

The test report is based on a single evaluation of one sample of the above-mentioned products. It does notimply an assessment of the whole production and does not permit the use of the test lab logo. This report contains data that are not covered by the NVLAP, TAF accreditation. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Test Report

Applicant	:	American Power Conversion Holdings Inc., Taiwan Branch
Manufacturer	:	American Power Conversion Holdings Inc., Taiwan Branch
EUT Description		
(1) Product	:	APC Charge Mobile Power Supply for Surface Hub 2
(2) Model	:	(1)CSH2 (2)CSH2-I
(3) Brand	:	APC by Schneider Electric
(4) Power Rating	:	AC 110-240V, 50-60Hz
(4)Test Voltage	:	AC 230V/50Hz
EN 55032:2012 +AC:2013 (CI	SPF	R 32:2012), Class B
		2020 (CISPR 32:2015 +COR1:2016), Class B
AS/NZS CISPR 32:2015 (CISI		
EN IEC 61000-3-2:2019 and E	-N 6	61000-3-3:2013+A1:2019

EN 55035:2017(CISPR 35:2016) (IEC 61000-4-2:2008, IEC 61000-4-3:2010, IEC 61000-4-4:2012. IEC 61000-4-5:2014 +A1:2017. IEC 61000-4-6:2013, IEC 61000-4-8:2009, IEC 61000-4-11:2004 +A1:2017)

The device described above was tested by Audix Technology Corporation to determine the maximum emission levels emanating from the device, its ensured severity levels, and performance criterion. This test report contains the measurement results, and Audix Technology Corporation assumes full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT is technically compliance with the requirements of EN 55032, EN IEC 61000-3-2, EN 61000-3-3 and EN 55035 standards.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Audix Technology Corporation.

Date of Report:

2020.08.07

Reviewed by:

Approved by:

 Unpr
 Jar
 (Ariel Chen/Administrator)

 May
 (Alex Deng/Deputy Manager)

Table of Content

1.	Revision of Test Report	6
2.	Summary of Test Result	7
2.1.	Test Result	7
2.2.	Description of Performance Criteria	9
2.3.	Description of Test Firm	10
3.	GeneralInformation	11
3.1.	Description of Application	11
3.2.	Description of the EUT	11
3.3.	Highest Frequency within EUT	11
3.4.	Determination of Worse Case Operating Modes	12
3.5.	Final Test Configuration	12
4.	Measurement Arrangement	13
4.1.	Equipment and cables arrangement	13
4.2.	Method of ExercisingEUT	14
4.3.	List of Supported Units under Test	14
4.4.	List of Used Cables under Test	15
5.	Measurement of Conducted Emissions	16
5.1.	List of Test Instruments	16
5.2.	Test Setup	17
5.3.	Applicable Limits	18
5.4.	Measurement Procedure	20
5.5.	Measurement Result	23
6.	Measurement of Radiated Emissions	25
6.1.	List of Test Instruments	25
6.2.	Test Setup	26
6.3.	Applicable Limits	27
6.4.	Measurement Procedure	
6.5.	Measurement Result	
7.	Measurement of Harmonics Current Emissions	33
7.1.	List of Test Instruments	33
	Test Setup	
	Applicable Standard and Limits	
	Measurement Procedure	
7.5.	Measurement Result	36
8.	Measurement of Voltage Fluctuations and Flicker Emissions	38
8.1.	List of Test Instruments	
	Test Setup	
8.3.	Applicable Standard and Limits	
	Measurement Procedure	
8.5.	Measurement Result	40

9.	Electrostatic Discharge Immunity Test	41
9.1.	List of Test Instruments	41
9.2.	Test Setup	41
9.3.	Applicable Standard and Test Specification	42
9.4.	Measurement Procedure	42
9.5.	Test Result	43
10.	Continuous RF Electromagnetic Field Disturbances Immunity Test (EN 55035).	44
10.1.	List of Test Instruments	44
10.2.	Test Setup	45
10.3.	Applicable Standard and Test Specification	45
10.4.	Measurement Procedure	46
10.5.	Test Result	48
11.	Electrical fast transient/burstImmunity Test	49
11.1.	List of Test Instruments	49
11.2.	Test Setup	49
11.3.	Applicable Standard and Test Specification	49
11.4.	Measurement Procedure	50
11.5.	Test Result	51
12.	SurgeImmunity Test	52
12.1.	List of Test Instruments	52
12.2.	Test Setup	52
12.3.	Applicable Standard and Test Specification	53
12.4.	Measurement Procedure	54
12.5.	Test Result	55
13.	Continuous Induced by RF Disturbances Immunity Test (EN 55035)	56
13.1.	List of Test Instruments	56
13.2.	Test Setup	56
13.3.	Applicable Standard and Test Specification	57
13.4.	Measurement Procedure	58
13.5.	Test Result	59
14.	Power Frequency Magnetic FieldImmunity Test	60
14.1.	List of Test Instruments	60
14.2.	Test Setup	60
14.3.	Applicable Standard and Test Specification	61
14.4.	Measurement Procedure	61
14.5.	Test Result	62
15.	Voltage Dips and Interruptions Immunity Test	63
15.1.	List of Test Instruments	63
15.2.	Test Setup	63
15.3.	Applicable Standard and Test Specification	64
15.4.	Measurement Procedure	65
15.5.	Test Result	66
16.	Measurement Uncertainty List	67
17.	Photographs	71

17.1. Conducted Emissions Measurement	71
17.2. Radiated Emissions Measurement	72
17.3. Harmonics Current Measurement	74
17.4. Voltage Fluctuation and Flicks Measurement	74
17.5. Electrostatic Discharge Immunity Test	75
17.6. Continuous RF Electromagnetic Field Disturbances Immunity Test (EN 55035)	79
17.7. Electrical Fast Transient/Burst Immunity Test	81
17.8. Surge Immunity Test	81
17.9. Immunity to Conducted Disturbances Induced by RF Fields	82
17.10. Power Frequency Magnetic Field Immunity Test	82
17.11. Voltage Dips and Interruptions Immunity Test	83

APPENDIX (Photos of EUT)

1. Revision of Test Report

Issued Date	Revision Summary	Report Number
2020. 08. 07	Original Report.	EM-E200324

2. Summary of Test Result

2.1. Test Result

	Emissions		
Test Item	Referred Standard	Limit	Result
	EN 55032:2012 +AC:2013 (CISPR 32:2012)		Pass
Conducted emissions at AC mains power port	EN 55032:2015+AC:2016 +A11:2020	Class B	Margin3.63dB at 1.746MHz
	(CISPR 32:2015 +COR1:2016) EN 55032:2012 +AC:2013		
Asymmetric mode con-	(CISPR 32:2012)		
ducted emissions at wired network port	EN 55032:2015+AC:2016 +A11:2020	Class B	N/A
	(CISPR 32:2015 +COR1:2016) EN 55032:2012 +AC:2013		
Asymmetric mode con-	(CISPR 32:2012)		
ducted emissions at broadcast receiver tuner port	EN 55032:2015+AC:2016 +A11:2020	N/A	N/A
	(CISPR 32:2015 +COR1:2016)		
Conducted differential	EN 55032:2012 +AC:2013 (CISPR 32:2012)		
voltage emissions at broadcast receiver tuner port	EN 55032:2015+AC:2016 +A11:2020	N/A	N/A
	(CISPR 32:2015 +COR1:2016)		
Radiated emissions (30 – 1000MHz)	EN 55032:2012 +AC:2013 (CISPR 32:2012)		Pass
	EN 55032:2015+AC:2016 +A11:2020	Class B	Margin 3.08dB at 170.220MHz
	(CISPR 32:2015 +COR1:2016)		
Radiated emissions (1 – 6GHz)	EN 55032:2012 +AC:2013 (CISPR 32:2012)		Pass
	EN 55032:2015+AC:2016 +A11:2020	Class B	Margin 17.62dB at 2061.188MHz
Harmonic current			
emissions	EN IEC 61000-3-2:2019	Class D	Pass
Voltage fluctuations & flicker	EN 61000-3-3:2013+A1:2019	Section 5	Pass
Voltage fluctuations &	(CISPR 32:2015 +COR1:2016) EN IEC 61000-3-2:2019		Pass

Note :

1. The uncertainties value is not used in determining the result.

2. N/A is an abbreviation for Not Applicable.

3. Special measures: None

4. Decision and justification not to measure: None

Immunity (EN 55035)				
Test Item	Basic Standard	Standard Criteria	EUT Criteria	Result
Electrostatic discharge	IEC 61000-4-2:2008	В	А	Pass
Continuous RF electro- magnetic field distur- bances, spot test	IEC 61000-4-3:2010	A	A	Pass
Electrical fast tran- sient/burst	IEC 61000-4-4:2012	В	А	Pass
Surges at AC main power port	IEC 61000-4-5:2014 +A1:2017	В	А	Pass
Surges at network port	IEC 61000-4-5:2014 +A1:2017	С	N/A	N/A
Continuous induced by RF disturbances	IEC 61000-4-6:2013	A	А	Pass
Power frequency magnetic field	IEC 61000-4-8:2009	A	А	Pass
Voltage dips, <5% residual		В	А	Pass
Voltage dips, 70% residual	IEC 61000-4-11:2004 +A1:2017	С	А	Pass
Voltage interruptions, <5% residual		С	В	Pass

Note :

1. The uncertainties value is not used in determining the result.

2. N/Ais an abbreviation for Not Applicable

3. Special measures: None

4. Decision and justification not to measure: None

2.2. Description of Performance Criteria

EN 55035

Performance Criteria		
Criterion A	The equipment shall continue to operate as intended without operator in- tervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the mini- mum performance level or the permissible performance loss is not speci- fied by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may rea- sonably expect from the equipment if used as intended.	
Criterion B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be re- placed by a permissible loss of performance.	
	If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as in- tended.	
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is al- lowed.	
	Information stored in non-volatile memory, or protected by a battery back- up, shall not be lost.	

	Performance Criteria
	Audio output function
A	The measured acoustic interference ratio and/or the measured electrical inter- ference ratio during the test shall be -20dB or better.

2.3. Description of Test Firm

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: <u>attemc_report@audixtech.com</u>		
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724 		
Test Facilities	 (1) No.3 Shielding Room (2) No.6 Open Area Test Site (3) No.2 3m Semi Anechoic Chamber (4) No.2 EMS Test Room 		

3. GeneralInformation

3.1. Description of Application

Applicant	American Power Conversion Holdings Inc., Taiwan Branch 5F., No. 189, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 11494, Taiwan (R.O.C.)
Product	APC Charge Mobile Power Supply for Surface Hub 2
Brand	APC by Schneider Electric
Madal Number	(1)CSH2 (2)CSH2-I
Model Number	The difference between above models was in sales marketing.

3.2. Description of the EUT

Test Model	CSH2
Serial Number	N/A
Power Rating	AC Input: 110-240Vac, 8A, 50-60Hz AC Output: 110-240Vac, 4A, 403W DC Output: 24V, 16.2A, 388W
Firmware Version	N/A
Sample Status	Trial sample
Date of Receipt	2020. 05. 21
Date of Test	2020. 06. 04 ~ 07. 22
I/O Ports List	 USB x1 AC Out x1 DC Out x1 AC lnx1
Accessories Supplied	None

3.3. Highest Frequency within EUT

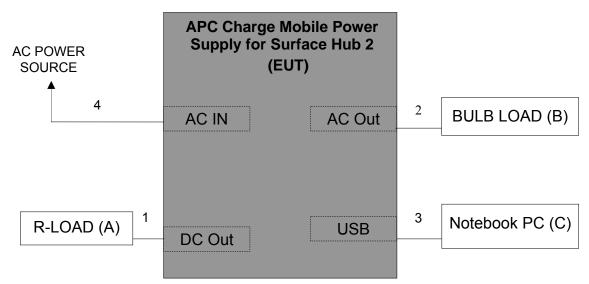
The highest frequency is 192MHz of EUT.

3.4. Determination of Worse Case Operating Modes

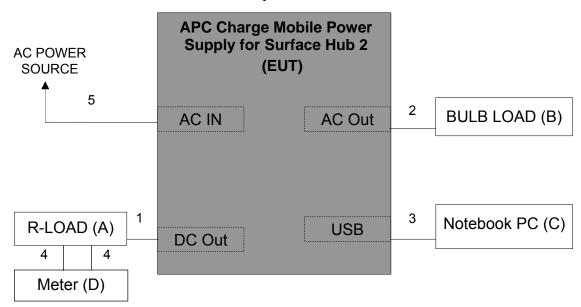
According to the specification, the EUT was estimated to determine the highest emissions by following configurations:

Test Item	Test Voltage	Operating of EUT
		Online Discharge Mode
Conducted emissions at AC mains	AC 230V, 50Hz	Online Charge Mode
power port		Battery Mode
	AC 110V, 60Hz	Online Discharge Mode
		Online Discharge Mode
Padiated omission (20, 1000MHz)	AC 230V, 50Hz	Online Charge Mode
Radiated emission (30-1000MHz)		Battery Mode
	AC 110V, 60Hz	Online Discharge Mode
Radiated emission (above 1GHz)	AC 230V, 50Hz	Online Charge Mode
Harmonics current emission		Online Charge Mode
Harmonics current emission	AC 230V, 50Hz	Online Discharge Mode
Voltage fluctuations & flicker	AC 230V, 50Hz	Online Charge Mode
Voltage fluctuations & flicker	AC 230V, 50HZ	Online Discharge Mode
Electrostatic discharge &		Online Discharge Mode
Continuous RF electromagnetic	AC 230V, 50Hz	Online Charge Mode
field disturbances, spot test		Battery Mode
Other Immunity tests	AC 230V, 50Hz	Online Charge Mode

3.5. Final Test Configuration


The worst showed as following configuration was tested and recorded in the report.

Test Item	Test Voltage	Operating of EUT
Conducted emissions at AC mains power port	AC 230V, 50Hz	Online Discharge Mode
Radiated emission	AC 230V, 50Hz	Online Charge Mode
Harmonics current emission	AC 230V, 50Hz	Online Charge Mode
Voltage fluctuations & flicker	AC 230V, 50Hz	Online Charge Mode
Electrostatic discharge & Continuous RF electromagnetic field disturbances, spot test	AC 230V, 50Hz	Online Charge Mode
Other Immunity tests	AC 230V, 50Hz	Online Charge Mode



4. Measurement Arrangement

- 4.1. Equipment and cables arrangement
- Connection Diagram of EUT and Peripheral Devices
 For conducted and radiated test

 Connection Diagram of EUT and Peripheral Devices For harmonics, flicker and immunity test

- 4.2. Method of ExercisingEUT
- The methods for exercising the EUT during the measurement specified in EN 55032 (CISPR 32) Annex B were used.
- 1. Turn on the power of all equipments.

2. Set EUT under Online Discharge or Online Charge or battery mode.

- 3. The AC outputs of EUT was linked to bulb loads with full load.
- 4. The other peripheral devices were driven and operated in turn during all testing.
- The methods for exercising the EUT during the measurement specified in EN IEC 61000-3-2、EN 61000-3-3 and EN 55035 were used.
- 5. Turn on the power of all equipments.
- 6. Set EUT under Online Discharge or Online Charge or battery mode.
- 7. The AC outputs of EUT was linked to bulb loads with full load.
- 8. The other peripheral devices were driven and operated in turn during all testing.

4.3. List of Supported Units under Test

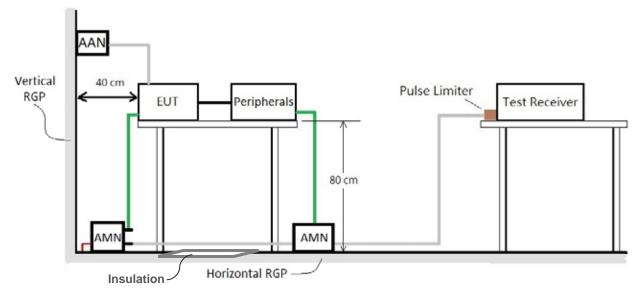
Item	Product	Brand	Model No.	Serial No.	Approval			
For C	For Conducted and Radiated test							
Α	R-Load (388W)	N/A	N/A	N/A	N/A			
В	Bulb Load (400W)	N/A	N/A	N/A	N/A			
С	Notebook PC	Lenovo	81LG	PF210KKS	By DoC			
For H	larmonic、Flicker and Ir	nmunity Tes	ts					
А	R-Load (388W)	N/A	N/A	N/A	N/A			
В	Bulb Load (400W)	N/A	N/A	N/A	N/A			
С	Notebook PC	Lenovo	81LG	PF210KKS	By DoC			
D	Digital Multimeter	Agilent	34401A	MY41005248	N/A			

4.4. List of Used Cables under Test

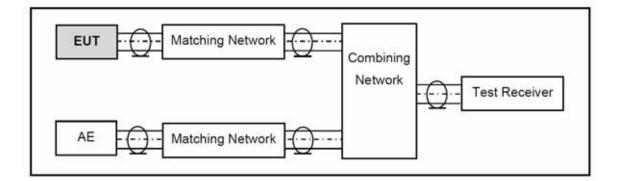
Item	Туре	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remark
For C	Conducted and Radiat	ed test				
1	DC Power Cord	1	1.2	No	0	Provided by LAB
2	AC Power Cord	1	1.0	No	0	Provided by LAB
3	USB Cable	1	1.2	Yes	0	Provided by LAB
4	AC Power Cord (3C)	1	1.9	No	0	Provided by LAB for above supported units
For H	larmonic、Flicker and	l Immur	nity Tests	5		
1	DC Power Cord	1	1.2	No	0	Provided by LAB
2	AC Power Cord	1	1.0	No	0	Provided by LAB
3	USB Cable	1	1.2	Yes	0	Provided by LAB
4	Power Wire	2	1.5	No	0	Provided by LAB
5	AC Power Cord (3C)	1	1.9	No	0	Provided by LAB for above supported units

5. Measurement of Conducted Emissions

5.1. List of Test Instruments


Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Test Receiver	R&S	ESR3	101772	2020. 02. 04	1 Year
2	A.M.N.	R&S	ENV4200	100003	2019. 09. 10	1 Year
3	L.I.S.N.	Kyoritsu	KNW-407	8-1370-9	2020. 01. 17	1 Year
4	Pulse Limiter	R&S	ESH3-Z2	100041	2020. 01. 05	1 Year
5	Signal Cable	CDM Elec- tronics, Inc.	RG-142	CE-02	2020. 01. 31	1 Year
6	Digital Ther- mo-Hygro Meter	YICHUN	TFC-9606	No.3 S/R	2020. 04. 17	1 Year
7	Test Software	Audix	e3	V6.120703a	N.C.R.	N.C.R.

5.2. Test Setup


The EUTs and test equipment were configured in accordance with the requirement of EN 55032 (CISPR 32) Annex C, D:

- For AC mains power port
- For wired network port
- For TV broadcast receiver tuner port, asymmetric mode

EUT, local AE and associated cabling; and metal surfaces other than the RGP 80cm

For TV broadcast receiver tuner port, differential voltage

5.3. Applicable Limits

• For conducted emissions from the AC mains power ports

Frequency Range (MHz)	Coupling Device	Detector Type / Bandwidth	Class A Limit dB(μV)	Class B Limit dB(µV)
0.15 – 0.5			79	66 – 56
0.5 – 5.0	AMN	Quasi Peak / 9 kHz	73	56
5.0 - 30		0 112	73	60
0.15 – 0.5		· · ·	66	56 – 46
0.5 – 5.0	AMN	Average / 9 kHz	60	46
5.0 - 30		0 12	60	50

- For asymmetric mode conducted emissions
 - Applicable to:
 - (1) Wired network ports
 - (2) Optical fibre portswith metallic shield or tension members
 - (3) Broadcast receiver tuner ports
 - (4) Antenna ports

Frequency Range (MHz)	Coupling Device	Detector Type / Bandwidth	Class A Voltage Limit dB(µV)	Class A Current Limit dB(µA)
0.15 – 0.5	AAN	Quasi Peak /	97– 87	
0.5– 30	AAN	9 kHz	87	n/o
0.15 – 0.5	AAN	Average /	84 – 74	n/a
0.5– 30	AAN	9 kHz	74	
0.15 – 0.5	CVP	Quasi Peak /	97– 87	53 – 43
0.5– 30	and current probe	ent probe 9 kHz		43
0.15 – 0.5	CVP	Average /	84 – 74	40 – 30
0.5– 30	and current probe	9 kHz	74	30
0.15 – 0.5	Current Drobe	Quasi Peak /		53 – 43
0.5– 30	Current Probe	9 kHz	nla	43
0.15 – 0.5	Current Probe	Average /	n/a	40 – 30
0.5– 30	Current Probe	9 kHz		30

Frequency Range (MHz)	Coupling Device	Detector Type / Bandwidth	Class B Voltage Limit dB(µV)	Class B Current Limit dB(µA)
0.15 – 0.5	AAN	Quasi Peak /	84 – 74	
0.5– 30	AAN	9 kHz	74	n/o
0.15 – 0.5	0.0 NI	Average /	74 – 64	n/a
0.5– 30	AAN	9 kHz	64	
0.15 – 0.5	CVP	Quasi Peak /	84 – 74	40 – 30
0.5– 30	and current probe	9 kHz	74	30
0.15 – 0.5	CVP	Average /	74 – 64	30 – 20
0.5– 30	and current probe	9 kHz	64	20
0.15 – 0.5	Ourrent Droke	Quasi Peak /		40 – 30
0.5– 30	Current Probe	9 kHz	2/2	30
0.15 – 0.5	Current Drobe	Average /	n/a	30 – 20
0.5– 30	Current Probe	9 kHz		20

• For conducted differential voltage emissions

Applicable to:

- (1) TV broadcast receiver tuner ports with an accessible connector
- (2) RF modulator output ports

(3) FM broadcast receiver tuner ports with an accessible connector

			Class B Lim	it	
Frequency Range	Detector Type /		dB(μV)75Ω	1	Applica-
(MHz)	Bandwidth	Other	Local Oscillator Fundamental	Local Oscillator Harmonics	bility
30–950	For frequencies	46	46	46	See ^a
950–2150	≤1 GHz	46	54	54	366
950 –2150	Quasi Peak /	46	54	54	See ^b
30–300	120 k	46	54	50	See ^c
300–1000		40	54	52	366
30 – 300	For frequencies	46	66	59	See ^d
300 – 1000	≥1 GHz Peak /	40	00	52	366
30 – 950	1MHz	46	76	46	See ^e
950 – 2150		40	n/a	54	366

^a Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

^b Tuner units (not the LNB) for satellite signal reception

^c Frequency modulation audio receivers and PC tuner cards.

^d Frequency modulation car radio.

^e Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports. Limits specified for the LO are for the RF modulator carrier signal and harmonics.

5.4. Measurement Procedure

For AC mains power port

The measurement procedure specified in EN 55032 (CISPR 32) clause 6.3 was used.

- Setup the EUT and associated equipment described as clause 4.1, and they were located 40cm from the vertical conducting plane.
- Connect the EUT power cord to the main A.M.N and associated equipment to the second A.M.N. All ports of the A.M.N not connecting to the measuring equipment was terminated into 50 ohm resistive load.
- Connectreceiver tuner port to an AAN that is bondedto the RGP.
- Setup the resolution bandwidth of the test receiver at 9kHz(while testing within 0.15 to 30MHz).
- Operate the EUT system as described in clause 4.2.
- For the exploratory measurement, determine the highest emission amplitude relative to the limit on each of the EUT power cord with the peak detector by each of the EUT operation over the specified frequency range and record it, and then
- For final measurement, select the EUT operation mode that produced the highest amplitude in the exploratory measurement to determine the highest emissions with each specified detector and record it. All of the current-carrying conductors of each of the EUT power cords, except the ground conductor, must be measured over the specified frequency range.
- The measurement result was calculated by following formula :

Emission Level = Reading (Receiver) + Factor(A.M.N)+ Insertion Loss (Pulse Limiter) + Cable Loss

• If the average limit is met when using a Quasi-Peak detector receiver, the EUT is deemed to meet both limits and measurement with the average detector is unnecessary.

For Wired network port

The method of EN 55032 (CISPR 32) Annex C 4.1.6.2 was used.

- Setup the EUT and associated equipment described as clause 4.1, and they were located 40cm from the vertical conducting plane.
- Connect wired network port between EUT and AE through the AAN.
- Setup the resolution bandwidth of the test receiver at 9kHz(while testing within 0.15 to 30MHz).
- Operate the EUT system as described in clause 4.2.
- For the exploratory measurement, determine the highest emission amplitude relative to the limit on each of the EUT LAN port with the peak detector by each of the transmission rate over the specified frequency range and record it, and then
- For final measurement, select the worst network port that produced the highest amplitude in the exploratory measurement to determine the highest emissions with each specified detector and record it. All of the transmission rates must be measured over the specified frequency range.
- The measurement result was calculated by following formula :

Emission Level = Reading (Receiver) + Factor(AAN)+ Insertion Loss (Pulse Limiter) + Cable Loss

• If the average limit is met when using a Quasi-Peak detector receiver, the EUT is deemed to meet both limits and measurement with the average detector is unnecessary.

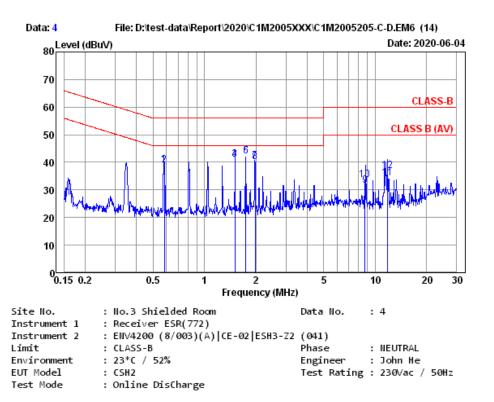
For TV broadcast receiver tuner port, Asymmetric mode

The method of EN 55032 (CISPR 32) Annex C 4.1.6.2 was used.

- Setup the EUT and associated equipment described as clause 4.1, and they were located 40cm from the vertical conducting plane.
- Connect TV broadcast receiver tuner port between EUT and S.G. through the AAN.
- Setup the resolution bandwidth of the test receiver at 9kHz(while testing within 0.15 to 30MHz).
- Operate the EUT system as described in clause 4.2.
- For the exploratory measurement, determine the highest emission amplitude relative to the limit on TV broadcast receiver tuner port with the peak detector by the TV channel over the specified frequency range and record it, and then
- For final measurement, the TV channel that produced the highest amplitude in the exploratory measurement to determine the highest emissions with each specified detector and record it. All of the transmission rates must be measured over the specified frequency range.
- The measurement result was calculated by following formula: Emission Level = Reading (Receiver) + Factor(AAN)+ Insertion Loss (Pulse Limiter) + Cable Loss
- If the average limit is met when using a Quasi-Peak detector receiver, the EUT is deemed to meet both limits and measurement with the average detector is unnecessary.

For TV broadcast receiver tuner port, Differential voltage

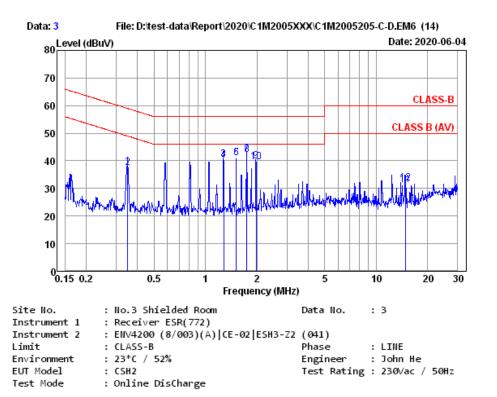
The method of EN 55032 (CISPR 32) Annex C 4.1.6.2 was used.


- The EUT and test equipment was set-up as section 4.1 and 5.2.
- The resolution bandwidth of the test receiver was at 120kHz (Quasi Peak) for frequencies below 1GHz or 1MHz (Peak) for frequencies above 1GHz.
- The antenna input terminal of EUT was connected to the test receiver via 75-50 ohm matching pad and T-Pad. The EUT and TV Pattern Generator or DVB-T signal card (inside PC system) were set to one of the same frequency (channel) specified in following test channel and frequency list, measuring both radiated frequency and disturbance voltage present at antenna input terminal over the frequency range from 30MHz up to at last the second harmonic of the highest local oscillator frequency (2150MHz).
- Record the final readings from test receiver with Quasi-Peak detector.
- The measurement result was calculated by following formula: Measurement Level = Factor (Matching Pad Loss + Cable Loss) + Test Receiver Reading

5.5. Measurement Result

The following data are the worst emissions based on the prescan measurement result.

Test Phase	Neutral	Test Result	Pass
Test Mode	Online Discharge Mode		


	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBµV)	Ewission Level (dBµV)	Limits (dBµV)	Margin (dB)	Remark
1	0.582	10.28	0.04	9.85	18.92	39.09	46.00	6.91	Average
2	0.582	10.28	0.04	9.85	18.78	38.95	56.00	17.05	QP
3	1.511	10.28	0.06	9.86	20.87	41.07	46.00	4.93	Average
4	1.511	10.28	0.06	9.86	20.72	40.92	56.00	15.08	QP
5	1.743	10.29	0.07	9.86	22.08	42.30	46.00	3.70	Average
6	1.743	10.29	0.07	9.86	21.96	42.18	56.00	13.82	QP
7	1.976	10.29	0.07	9.86	20.10	40.32	46.00	5.68	Average
8	1.976	10.29	0.07	9.86	19.96	40.18	56.00	15.82	QP
9	8.724	10.50	0.12	9.91	11.15	31.68	50.00	18.32	Average
10	8.724	10.50	0.12	9.91	13.25	33.78	60.00	26.22	QP
11	11.744	10.81	0.14	9.92	13.42	34.29	50.00	15.71	Average
12	11.744	10.81	0.14	9.92	15.94	36.81	60.00	23.19	QP

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading. 2. If the average limit is met when using a quasi-peak detector,

the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

Test Phase	Line	Test Result	Pass
Test Mode	Online Discharge Mode		

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBμV)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Remark
1	0.349	10.25	0.04	9.85	17.61	37.75	48.98	11.23	Average
2	0.349	10.25	0.04	9.85	17.38	37.52	58.98	21.46	QP
3	1.281	10.26	0.06	9.86	20.16	40.34	46.00	5.66	Average
4	1.281	10.26	0.06	9.86	20.03	40.21	56.00	15.79	QP
5	1.514	10.27	0.06	9.86	20.92	41.11	46.00	4.89	Average
6	1.514	10.27	0.06	9.86	20.77	40.96	56.00	15.04	QP
7	1.746	10.27	0.07	9.86	22.17	42.37	46.00	3.63	Average
8	1.746	10.27	0.07	9.86	22.01	42.21	56.00	13.79	QP
9	1.980	10.28	0.07	9.86	19.60	39.81	46.00	6.19	Average
10	1.980	10.28	0.07	9.86	19.44	39.65	56.00	16.35	QP
11	14.915	10.99	0.15	9.94	10.31	31.39	50.00	18.61	Average
12	14.915	10.99	0.15	9.94	10.71	31.79	60.00	28.21	QP

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading.

If the average limit is met when using a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

6. Measurement of Radiated Emissions

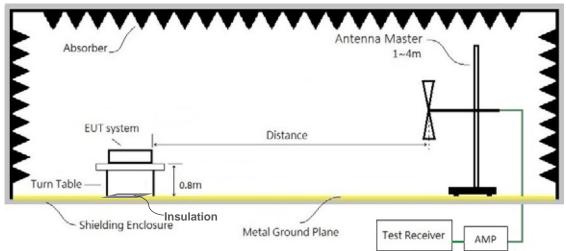
6.1. List of Test Instruments

• For measurement of 30 to 1000MHz frequency range

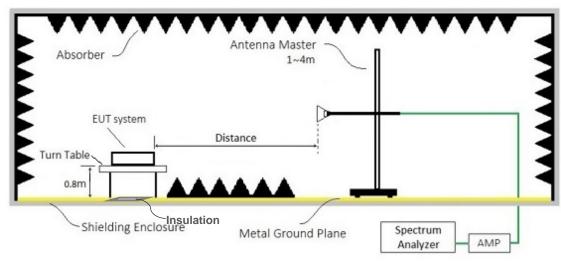
Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. In- terval
1	Spectrum Analyzer	Agilent	N9010A-503	MY51120074	2019. 10. 16	1 Year
2	Test Receiver	R&S	ESCS30	100337	2020. 05. 06	1 Year
3	Amplifier	HP	8447D	2727A05737	2020. 01. 05	1 Year
4	Bilog Antenna	Schaffner	CBL6112B	2818	2020. 01. 17	1 Year
5	Signal Cable	HUBER+SU HNER	RG217U	RE-07	2020. 01. 31	1 Year
6	Test Software	Audix	e3	V5.04507	N.C.R.	N.C.R.
7	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.6 O/S	2020. 04. 17	1 Year

• For measurement of above 1GHz frequency range

Item	Туре	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
	Spectrum Analyzer	Keysight	N9010B-526	MY57410128	2020. 01. 12	1 Year
	Microwave Preamplifier	Agilent	8449B	3008A02681	2020. 03. 20	1 Year
3	Double-Ridged Waveguide Horn	ETS-Lindgren	3117	00227045	2020. 03. 10	1 Year
4	Digital Thermo -Hygro Meter	iMax	HTC-1	No.3 3m A/C	2020. 04. 17	1 Year
5	Signal Cable	HUBER+SUHN ER	SUCOFLEX 104	RE-15	2020. 01. 31	1 Year
6	Test Software	Audix	e3	V9.20180702	N.C.R.	N.C.R.



6.2. Test Setup


• For frequency range 30 to 1000MHz (at Open Area Test Site)

• For frequency range 30 to 1000MHz (at SemiAnechoic Chamber)

• For frequency range 1 to 6GHz (at SemiAnechoic Chamber)

6.3. Applicable Limits

For radiated emissions at frequencies up to 1GHz

Frequency Range		Measurem	ent	Class A	Class B
(MHz)	Facility	Distance (m)	Detector Type/ Bandwidth	Limits dB(µV/m)	Limits dB(µV/m)
30 – 230		10		40	30
230 – 1000	OATS/	10	Quasi Peak/	47	37
30 – 230	SAC	2	120 kHz	50	40
230 – 1000		3		57	47

• For radiated emissions at frequencies above 1GHz

Frequency Range	ency Range Measurement		Class A	Class B	
(MHz)	Facility	Distance (m)	Detector Type/ Bandwidth	Limits dB(µV/m)	Limits dB(µV/m)
1000 – 3000			Average/	56	50
3000 - 6000	FSOATS	3	1 MHz		54
1000 – 3000	FSUATS	5	Peak/	76	70
3000 - 6000			1 MHz	80	74

• For radiated emissions at frequencies from FM receivers

Frequency Range		Measurem	Class B Limits dB(μ V/m)		
(MHz)	Facility	Distance (m)	Detector Type/ Bandwidth	Fundamental	Harmonics
30–230	• • - • <i>i</i>				42
230–300	OATS/ SAC	10		50	42
300–1000	0,10		Quasi Peak/		46
30–230	0.1 T 0/		120 kHz		52
230–300	OATS/ SAC	3		60	52
300–1000	0,10				56

• Required highest frequency for radiated measurement

Highest frequency generated or used in the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	Up to 5 times of the highest frequency or 6GHz, whichever is less

• For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

 For outdoor units of home satellite receiving systems highest measured frequency shall be 18 GHz.

6.4. Measurement Procedure

The measurement procedure specified in EN 55032 (CISPR 32) clause was performed.

- The EUT and peripherals were placed on the rotatable non-conduction table, which is 0.8meters above the ground reference plane at the semianechoic chamber as described in section 4.1 and 6.2.
- The measurement distance is set as specified in section 6.3. The specified distance is between the horizontal projection onto the ground plane of the closest periphery of the EUT and the projection onto the ground plane of the center of the axis of the elements of the receiving antenna.
- The resolution bandwidth of the test receiver was at 120kHz (testingfrom 30 to 1000MHz) or 1MHz (testing above 1000MHz).
- For the exploratory measurement, determine the highest emission amplitude relative to the limit on each of antenna polarization with the peak detector by each of the EUT operations over the specified frequency range and record it, and then
- For final measurement, select the EUT operation mode that produced the highest amplitude in the exploratory measurement to determine the highest emissions with each specified detector and record it.
- In order to determine the maximum emission level, must rotate the table in 360 degree and move the receiving antenna between 1~4m height above the ground reference plane.
- Both polarizations of receiving antenna were determined.
- The measurement result was calculated by following formulas:

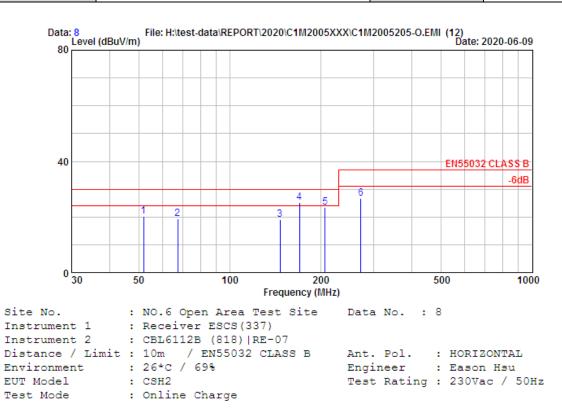
(30 – 1000MHz)

Emission Level = Reading (Receiver) + Cable Loss+ Antenna Factor

(Above 1GHz)

Emission Level = Reading (Spectrum) + Cable Loss+ Antenna Factor – Preamp Gain

 The 3dB bandwidth of the horn antenna is minimum 52 degree (or w=2.93m at 3m distance) for 1~6 GHz.

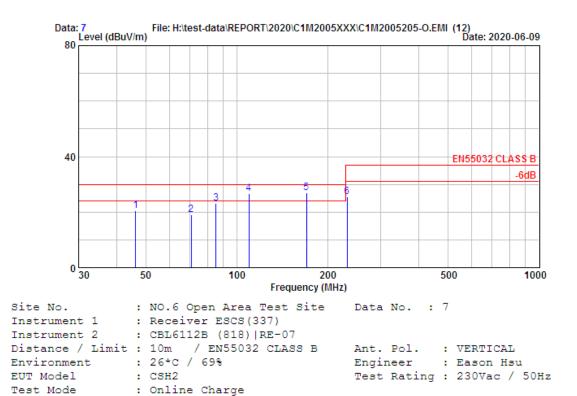


6.5. Measurement Result

The following data are the worst emissions based on the prescan measurement result.

• For frequency range 30 – 1000MHz

Ant. Polarity	Horizontal	Test Result	Pass
Test Mode	Online Charge Mode		

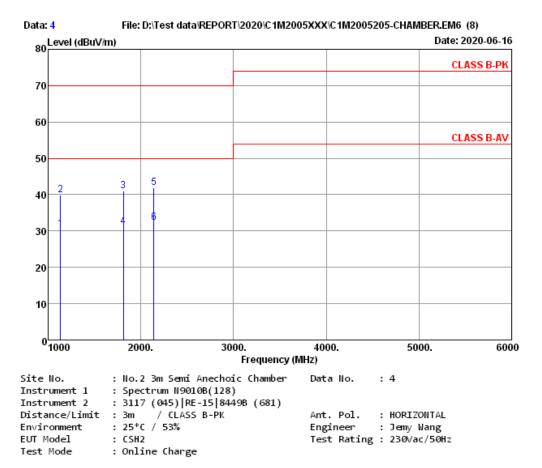


	Freq. (MHz)	Factor			Emission Level (dBµV/m)		Margin (dB)	Remark
1	51.891	13.39	0.97	5.97	20.32	30.00	9.68	QP
2	67.410	12.28	1.12	5.90	19.30	30.00	10.70	QP
3	146.918	16.45	1.82	0.79	19.06	30.00	10.94	QP
4	170.260	15.26	2.06	7.80	25.12	30.00	4.88	QP
5	207.220	15.45	2.27	5.60	23.32	30.00	6.68	QP
6	271.619	18.45	2.51	5.62	26.57	37.00	10.43	QP

2. The emissions not reported are 20 dB lower than the specified limit.

Ant. Polarity	Vertical	Test Result	Pass
Test Mode	Online Charge Mode		

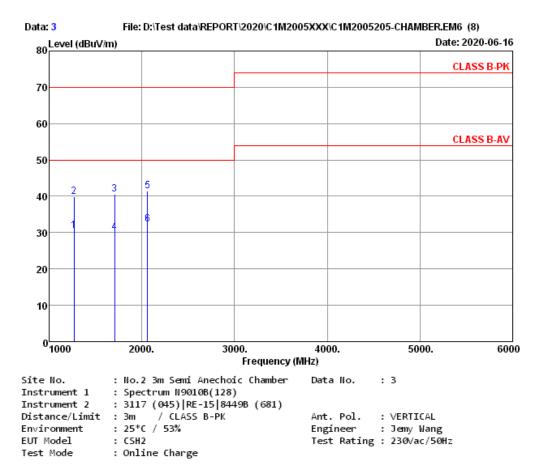
	Freq. (MHz)	Factor			Emission Level (dBµV/m)			Remark
L	46.375	15.68	0.92	4.06	20.65	30.00	9.35	QP
2	70.660	12.33	1.15	5.50	18.98	30.00	11.02	QP
3	85.560	14.03	1.28	7.90	23.21	30.00	6.79	QP
1	109.860	17.33	1.49	7.90	26.72	30.00	3.28	QP
5	170.220	15.26	2.06	9.60	26.92	30.00	3.08	QP
6	232.230	17.04	2.35	6.18	25.57	37.00	11.43	QP


Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emissions not reported are 20 dB lower than the specified limit.

• For frequency range 1 – 6 GHz

Ant. Polarity	Horizontal	Test Result	Pass
Test Mode	Online Charge Mode		



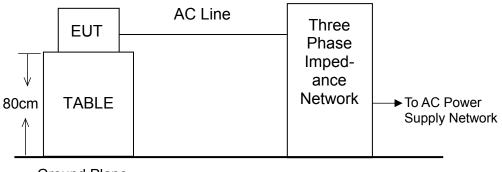
_	Ant.	Cable	Preamp					
Freq. (MHz)	Factor (dB/m)	Loss (dB)	Gain (dB)	Reading (dBµV)	Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1134.917	28.41	4.21	36.15	34.08	30.55	50.00	19.45	Average
1135.000	28.41	4.21	36.15	43.41	39.88	70.00	30.12	Peak
1810.000	30.84	5.24	35.59	40.62	41.11	70.00	28.89	Peak
1811.122	30.84	5.24	35.59	30.74	31.23	50.00	18.77	Average
2140.000	31.48	5.79	35.56	40.25	41.96	70.00	28.04	Peak
2141.142	31.48	5.79	35.56	30.51	32.22	50.00	17.78	Average
_	1134.917 1135.000 1810.000 1811.122 2140.000	Freq. Factor (MHz) (dB/m) 1134.917 28.41 1135.000 28.41 1810.000 30.84 1811.122 30.84 2140.000 31.48	Freq. Factor Loss (MHz) (dB/m) (dB) 1134.917 28.41 4.21 1135.000 28.41 4.21 1810.000 30.84 5.24 1811.122 30.84 5.24 2140.000 31.48 5.79	Freq. Factor Loss Gain (MHz) (dB/m) (dB) (dB) 1134.917 28.41 4.21 36.15 1135.000 28.41 4.21 36.15 1810.000 30.84 5.24 35.59 1811.122 30.84 5.24 35.59 2140.000 31.48 5.79 35.56	Freq. Factor Loss Gain Reading (MHz) (dB/w) (dB) (dB) (dBµV) 1134.917 28.41 4.21 36.15 34.08 1135.000 28.41 4.21 36.15 43.41 1810.000 30.84 5.24 35.59 40.62 1811.122 30.84 5.24 35.59 30.74 2140.000 31.48 5.79 35.56 40.25	Freq. (MHz) Factor (dB/m) Loss (dB) Gain (dB) Reading (dBµV) Level (dBµV/m) 1134.917 28.41 4.21 36.15 34.08 30.55 1135.000 28.41 4.21 36.15 43.41 39.88 1810.000 30.84 5.24 35.59 40.62 41.11 1811.122 30.84 5.24 35.59 30.74 31.23 2140.000 31.48 5.79 35.56 40.25 41.96	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cash and the specified limit.
 2. The emissions not reported are 20 dB lower than the specified limit.

Ant. Polarity	Vertical	Test Result	Pass
Test Mode	Online Charge Mode		

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading (dBµV)	Emission Level (dBμV/m)	Limits (dBµV/m)	Margin (dB)	Remark
1	1269.365	27.81	4.30	35.99	34.43	30.55	50.00	19.45	Average
2	1270.000	27.81	4.30	35.99	43.82	39.94	70.00	30.06	Peak
3	1705.000	29.49	5.04	35.64	41.66	40.55	70.00	29.45	Peak
4	1706.118	29.49	5.04	35.64	31.26	30.15	50.00	19.85	Average
5	2060.000	31.17	5.63	35.54	40.14	41.40	70.00	28.60	Peak
6	2061.188	31.17	5.63	35.54	31.12	32.38	50.00	17.62	Average

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Preamp Gain + Reading. 2. The emissions not reported are 20 dB lower than the specified limit.


7. Measurement of Harmonics Current Emissions

7.1. List of Test Instruments

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	AC Power Source	TESEQ	NSG 1007-45	1248A04038	2017. 11. 28	3 Years
2	Signal Condi- tioning Unit	TESEQ	CCN 1000-3	1234A03680	2017. 11. 28	3 Years
	Three Phase Impedance Network	TESEQ	INA 2197	1234A03681	2017. 11. 28	3 Years
4	Profline AC Switching Unit	TESEQ	NSG 2200-3	EK 22713	2019. 07. 04	2 Years
5	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 Har- monics Room	2020. 04. 17	1 Year

7.2. Test Setup

The EUT and test equipment were configured in accordance with the requirement of EN IEC 61000-3-2.

Ground Plane

7.3. Applicable Standard and Limits

Limits for Class A Equipment

Class A is classified according to section 5 of EN IEC 61000-3-2

Harmonic order	Maximum permissible
n	harmonic current A
Odd Harmon	ics Only
3	2.30
5	1.14
7	0.77
9	0.40
11	0.33
13	0.21
15 ≤ n ≤ 39	0.15x15/n
Even Ha	armonics
2	1.08
4	0.43
6	0.30
8 ≤ n ≤ 40	0.23x8/n

Note:

According to section 7 of EN IEC 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

Limits for Class D Equipment

Class D is classified according to section 5 of EN IEC 61000-3-2

Harmonic order n	Maximum permissible harmonic current per watt mA/W	Maximum permissible harmonic current A					
Odd Harmonics Only							
3	3.4	2.30					
5	1.9	1.14					
7	1.0	0.77					
9	0.5	0.40					
11	0.35	0.33					
13	0.30	0.21					
15≤n≤39	3.85/n	0.15x15/n					

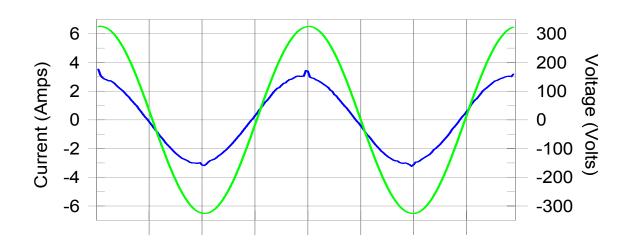
Note:

According to section 7 of EN IEC 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

7.4. Measurement Procedure

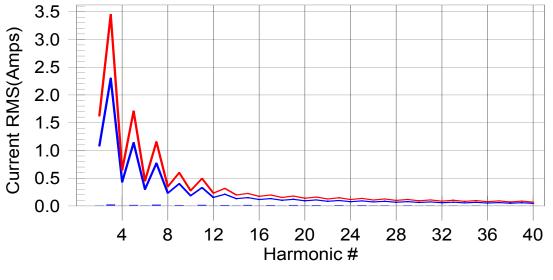
The measurement procedure specified in EN IEC 61000-3-2 clause 6.2 was used.

- Setup the EUT and associated equipment described as clause 4.1.
- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- Apply a 230V/50Hz rated test voltage which shall be maintained within ±2.0% and the frequency within ±0.5% of the nominal value to EUT.
- Let EUT work as stated and through three phase impedance network to measure the EUT to get the harmonic current for Odd & Even harmonics up to 40th.


7.5. Measurement Result

Test Date	2020. 06. 12	Environment	26°C, 43%
Input Power	AC 230V, 50Hz	Test Result	Pass (Class A)
Tested By	Newman Yang		
Test Mode	Online Charge Mode		
Test Result: Pass	Source qualification: Normal		

t Result: Pass


Source qualification: Norma

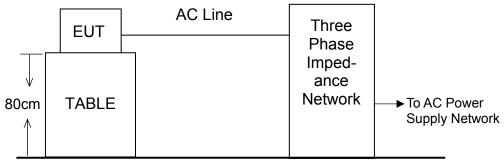
Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Test result: Pass Worst harmonics H23-8.6% of 150% limit, H25-12.3% of 100% limit.

Test Result: PassSource qualificTHC(A): 0.062I-THD(%): 2				on: Normal POHC(A): 0.027	POHC Limit(A): 0.251	
Highes	t parameter valu	es during t	est				
mgnes	V_RMS (Volts):	230.443	esti	Frequency(Hz)	50.00		
	I_Peak (Amps):	3.616		I_RMS (Amps):	2.166		
	I_Fund (Amps):	2.165		Crest Factor:	1.670		
	Power (Watts):	492.8		Power Factor:	0.987		
	i owei (watts).	472.0		I Ower Pactor.	0.907		
Harm#	Harms(avg) 10	00%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.007	1.080	0.6	0.009	1.620	0.6	Pass
3	0.024	2.300	1.1	0.025	3.450	0.7	Pass
4	0.006	0.430	1.4	0.008	0.645	1.3	Pass
5	0.016	1.140	1.4	0.016	1.710	0.9	Pass
6	0.007	0.300	2.3	0.008	0.450	1.8	Pass
7	0.019	0.770	2.5	0.019	1.155	1.7	Pass
8	0.005	0.230	N/A	0.005	0.345	N/A	Pass
9	0.014	0.400	3.6	0.015	0.600	2.5	Pass
10	0.005	0.184	N/A	0.005	0.276	N/A	Pass
11	0.017	0.330	5.3	0.018	0.495	3.6	Pass
12	0.005	0.153	3.6	0.006	0.230	2.6	Pass
13	0.014	0.210	6.8	0.015	0.315	4.6	Pass
14	0.006	0.131	4.8	0.007	0.197	3.3	Pass
15	0.015	0.150	9.8	0.015	0.225	6.7	Pass
16	0.005	0.115	4.7	0.006	0.173	3.3	Pass
17	0.013	0.132	10.1	0.015	0.198	7.3	Pass
18	0.005	0.102	5.3	0.006	0.153	3.8	Pass
19	0.014	0.118	11.4	0.014	0.178	8.1	Pass
20	0.007	0.092	7.7	0.008	0.138	5.4	Pass
21	0.011	0.107	10.7	0.012	0.161	7.6	Pass
22	0.005	0.084	6.1	0.005	0.125	4.3	Pass
23	0.011	0.098	11.5	0.013	0.147	8.6	Pass
24	0.006	0.077	7.6	0.006	0.115	5.4	Pass
25	0.011	0.090	12.3	0.012	0.135	8.5	Pass
26	0.007	0.071	9.7	0.007	0.107	6.8	Pass
27	0.008	0.083	9.5	0.008	0.125	6.5	Pass
28	0.005	0.066	N/A	0.005	0.099	N/A	Pass
29	0.009	0.078	12.0	0.010	0.116	8.3	Pass
30	0.006	0.061	9.6	0.006	0.092	6.8	Pass
31	0.007	0.073	9.6	0.007	0.109	6.6	Pass
32	0.005	0.058	9.6	0.006	0.086	6.7	Pass
33	0.007	0.068	10.3	0.007	0.102	7.2	Pass
34	0.005	0.054	N/A	0.005	0.081	N/A	Pass
35	0.006	0.064	, 9.8	0.007	0.096	6.9	Pass
36	0.005	0.051	9.8	0.005	0.077	6.9	Pass
37	0.005	0.061	N/A	0.005	0.091	N/A	Pass
38	0.004	0.048	, N/A	0.004	0.073	, N/A	Pass
39	0.005	0.058	, 8.8	0.005	0.087	6.2	Pass
40	0.004	0.046	N/A	0.004	0.069	N/A	Pass
			,			,	


8. Measurement of Voltage Fluctuations and Flicker Emissions

8.1. List of Test Instruments

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	AC Power Source	TESEQ	NSG 1007-45	1248A04038	2017. 11. 28	3 Years
2	Signal Condi- tioning Unit	TESEQ	CCN 1000-3	1234A03680	2017. 11. 28	3 Years
	Three Phase Impedance Network	TESEQ	INA 2197	1234A03681	2017. 11. 28	3 Years
4	Profline AC Switching Unit	TESEQ	NSG 2200-3	EK 22713	2019. 07. 04	2 Years
5	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 Har- monics Room	2020. 04. 17	1 Year

8.2. Test Setup

The EUT and test equipment were configured in accordance with the requirement of EN 61000-3-3.

Ground Plane

8.3. Applicable Standard and Limits

Tested Items	Description	Limit
P _{st}	Short-term Flicker Indicator	≤1.0
Plt	Long-term Flicker Indicator	≤0.65
d _(t)	Voltage change more than 500ms	≤3.3%
T _{max}	Maximum time duration during the observation period that the voltage deviation $d_{(t)}$ exceeds the limit for d_c	500ms
d _c	Relative steady-state voltage change	≤3.3%
	Maximum relative voltage change	≤4%
<i>d</i> _{max}	Maximum relative voltage change	≤6%
	Maximum relative voltage change	≤7%

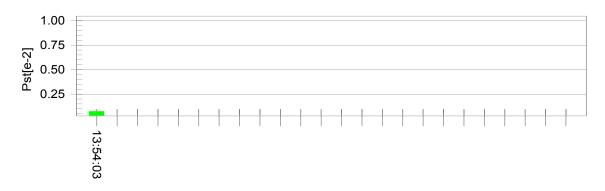
(1) Limits is according to section 5 of EN 61000-3-3

8.4. Measurement Procedure

The measurement procedure specified in EN 61000-3-3 clause 6 was used.

- Setup the EUT and associated equipment described as clause 4.1.
- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.
- Apply a 230V/50Hz rated test voltage which shall be maintained within ±2.0% and the frequency within ±0.5% of the nominal value to EUT.

8.5. Measurement Result


Test Date	2020. 06. 12	Environment	26°C, 43%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Newman Yang		
Test Mode	Online Charge Mode		

Test Result: Pass

Status: Test Completed

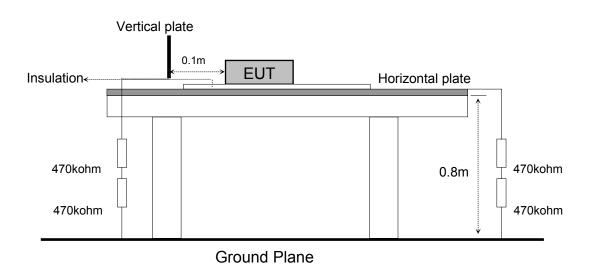
<u>Pst_i and limit line</u>

European<u>Limits</u>

Plt and limit line

Parameter values recorded during the test:

	0			
Vrms at the end of test (Volt):	229.64			
T-max (mS):	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.03	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.073	Test limit:	1.000	Pass


9. Electrostatic Discharge Immunity Test

9.1. List of Test Instruments

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	ESD Simulator	EM TEST	dito	V0503100055	2020. 03. 11	1 Year
	Digital Ther- mo-Hygro meter	CUSTOM	WF-301	01780	2019. 10. 14	1 Year

9.2. Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-2.

9.3. Applicable Standard and Test Specification

Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.1 Test specification is in accordance with CISPR 35 Table 1.4 Basic standard is in accordance with IEC 61000-4-2

Test Spec	Performance Criterion	
Contact Discharge Voltage	P	
Air Discharge Voltage	$\pm 2kV$, $\pm 4kV$ and $\pm 8kV$	D

 Deviation from applicable standard No deviation

9.4. Measurement Procedure

The measurement procedure specified in IEC 61000-4-2 clause 8.3.1 and A.5 was used.

- Setup the EUTs and associated equipment described as clause 4.1.
- Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the ESD generator discharge electrode shall be removed from the EUT. The generator is then retrigged for a new single discharge and repeated 10 discharges each at positive and negative polarity for each preselected test point. This procedure shall be repeated until all the air discharge completed.

• Contact Discharge

All the procedure is same as foregoing subclause. except that the tip of the discharge electrode shall touch the EUT conductive surfaces & repeated 25(10) discharges each discharges each at positive and negative polarity for each test point before the discharge switch is operated.

• Indirect discharge for horizontal coupling plane

At least 25(10) dischargeseach at positive and negative polarity shall be applied to the horizontal coupling plane, at points on each side of the EUT. The ESD generator positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

• Indirect discharge for vertical coupling plane

At least 25(10)dischargeseach at positive and negative polarity shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5mx0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

• For above tests, the voltage was increased from the minimum to the selected test level.

9.5. Test Result

• For EN 55035

Test Date	2020. 06. 11	Environment	22ºC, 41%, 99.3kPa
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Sam Yan		
Test Mode	Online Charge Mode		

Air Discharge	Voltag rion	je Leve	el kV /	Discha	rge pei	r polar	ity 10 /	Obse	rvationCrite-
Test Location	+2	-2	+4	-4	+8	-8			Comments
Seam*4*(1~4)	А	А	Α	А	А	А			
LED(5)	ND	ND	Α	А	А	Α			
USB(17)	ND	ND	Α	А	А	А			
AC IN(18)	ND	ND	А	А	А	А			
AC OUT(19)	ND	ND	Α	А	А	Α			
DC OUT(20)	ND	ND	Α	А	А	Α			
Contact Discharge	Voltag rion	je Leve	el kV /	Discha	rge pei	r polar	ity 10 /	Obse	rvationCrite-
Test Location	+2	-2	+4	-4					Comments
Screw*5(6~10)	А	А	Α	А					
METAL*6(11~16)	А	А	Α	А					
Indirect Contact	Voltag rion	je kV L	_evel /	Discha	rge pe	r pola	rity 10/	Obse	rvationCrite-
Test Location	+2	-2	+4	-4					Comments
VCP Front	А	Α	Α	Α					
VCP Right	Α	А	Α	А					
VCP Left	А	А	Α	А					
VCP Back	Α	А	Α	А					
HCP Bottom	Α	А	Α	А					
Additional Notes									
MeasurementPoints Please refer to the Photos of ESD Test Points									
ND=No Discharge; Meets criteria but unable to obtain an electrostatic discharge (ESD) at this test point.									

10.Continuous RF Electromagnetic Field Disturbances Immunity Test (EN 55035)

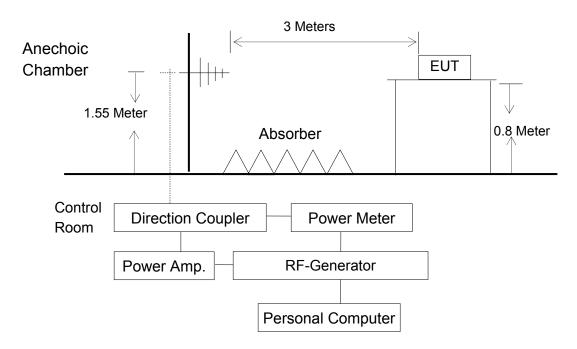
10.1.List of Test Instruments

• For 80MHz - 1GHz

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Radiated Immuni- ty System	TESEQ	ITS 6006	033009	2019.09.03	1 Year
2	Power Amplifier	TESEQ	CBA 1G-275	T44214	N.C.R.	N.C.R.
3	Power Meter	TESEQ	PM 6006	073364	2019.09.04	1 Year
4	Power Antenna	Schwarzbeck	STLP 9128 E	9128E084	N.C.R.	N.C.R.
5	Direction Coupler	TESEQ	C5982-10	98618	2019.08.08	1 Year
6	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 RS Room	2020.04.17	1 Year

• For 1GHz ~ 3GHz

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
	Radiated Immuni- ty System	TESEQ	ITS 6006	033009	2019.09.03	1 Year
2	Power Amplifier	TESEQ	CBA 3G-050	T44215	N.C.R.	N.C.R.
3	Power Meter	TESEQ	PM 6006	073363	2019.09.04	1 Year
4	Power Antenna	Schwarzbeck	STLP 9149	9149-185	N.C.R.	N.C.R.
5	Direction Coupler	TESEQ	C5982-10	98618	2019.08.08	1 Year
6	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 RS Room	2020.04.17	1 Year


For 3GHz ~ 6GHz

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
	Radiated Immuni- ty System	TESEQ	ITS 6006	033009	2019.09.03	1 Year
2	Power Amplifier	TESEQ	CBA 6G-050	1053053	N.C.R.	N.C.R.
3	Power Meter	TESEQ	PM 6006	073364	2019.09.04	1 Year
4	Power Antenna	Schwarzbeck	STLP 9149	9149-185	N.C.R.	N.C.R.
5	Direction Coupler	TESEQ	C5982-10	98618	2019.08.08	1 Year
6	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 RS Room	2020.04.17	1 Year

10.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-3.

10.3. Applicable Standard and Test Specification

 Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.2 and 4.2.2.2 Test specification is in accordance with CISPR 35Table 1.2 and 1.3 Basic standard is in accordance with IEC 61000-4-3

Test	Test Specification				
Swept test -					
Frequency Range	80–1000MHz				
Field Strength 3V/m (unmodulated, r.m.s)		А			
Amplitude Modulated 80%, 1kHz AM					
Spot test -					
Frequency(±1 %)	1800MHz, 2600MHz, 3500MHz, 5000MHz				
Field Strength3V/m (unmodulated, r.m.s)		A			
Amplitude Modulated	80%, 1kHz AM				

 Deviation from applicable standard Additional Test: Test Specification from applicant requirement. Frequency level is up to 1~3GHz & 3~6GHz. Field Strength level is up to 5V/m

10.4.Measurement Procedure

- The measurement procedure specified in IEC 61000-4-3 clause 8 was used.
- Setup the EUT and associated equipment described as clause 4.1.
- The EUT was placed on a non-conductive table 0.8 meter above the ground, the EUT and its simulators on the turn table and keep them 3 meters away from the transmitting antenna which is mounted on an antenna tower and fixes at 1.55 meter height.
- The test was performed with the EUT exposed to both horizontally and vertically polarized fields on each of the four sides.
- All the scanning conditions are as follows:

Field Strength:	5 V/m (r.m.s, Unmodulated)
Scanning Frequency:	80-1000MHz, 1-3GHz, 3-6GHz
Amplitude Modulated:	AM 1kHz, 80%
Step Size:	1% increments
The Rate of Sweep:	0.0015 decade/s
Dwell Time:	3sec.
Test Position Angle:	0°, 90°, 180° and 270°
Polarity of Antenna:	H: Horizontal, V: Vertical

The broadcast reception function test :

(The method of EN/CISPR 35 Annex A.3 was used)

 The broadcast reception function has been tested in each reception mode for which the receiver is designe, for example analogue reception, DVB-T, DVB-T2, DVB-C, DVB-C2, DVB-S, DVB-S2. The receiver tuned to one channel and provided with an appropriate wanted signal on that channel or other input typical of normal use.

The audio output function test:

(The method of EN/CISPR 35 Annex G.6.4, G7 and G8 were used)

This method establishes an acoustic reference level using an SPL meter and microphone. During the test, the demodulated audio levels are measured, the interference ratio is then established and the results are compared to the interference ratio limits given in Clause G.7.

- Configure the measuring transducer to measure the level of acoustic output from the port under test.
- Configure the EUT in accordance with Clause G.5
- Apply an appropriate input signal to the EUT so that a sine wave (tone) at the frequency that will be used to modulate the applied disturbance (typically 1 kHz) is generated from the port under test at a level equal to the acoustic reference level.
- Record the resulting dB (SPL) level (or other appropriate dB unit) as the value of L0.
- Change the input to the EUT so that the port under test is silent, or represents silence. This change shall not alter the terminating impedance at the EUT's input.
- Apply the RF disturbance to the applicable port of the EUT and record the resulting demodulated audio level in dB (SPL) (or other dB unit used in step d)) as the value of L1.
- Ensure that non-linear processing does not impact the measurements.
- Calculate the acoustic interference ratio using the following formula:

Acoustic interference ratio = L1 – L0

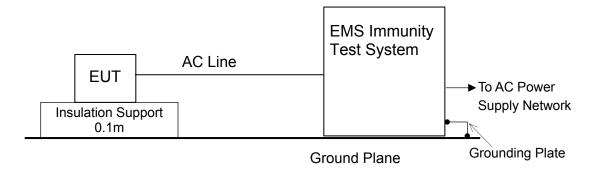
- Compare the acoustic interference ratio with the relevant limit. The measured acoustic interference ratio and/or the measured electrical interference ratio during the test was–20 dB or better.
- Repeat above steps for all required disturbance frequencies.

10.5.Test Result

Test Date	2020. 07. 22	Environment	23°C, 44%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Joe Huang		
Test Mode	Online Charge Mode		

Frequency Range	Position	Polarity	Field Strength	Observation
(MHz)	Angle (°)	(H or V)	(V/m)	Criterion
80 - 1000	0	Н	5V/m +Modulated	A
80 - 1000	90	Н	5V/m +Modulated	A
80 - 1000	180	н	5V/m +Modulated	А
80 - 1000	270	Н	5V/m +Modulated	А
80 - 1000	0	V	5V/m +Modulated	А
80 - 1000	90	V	5V/m +Modulated	А
80 - 1000	180	V	5V/m +Modulated	А
80 - 1000	270	V	5V/m +Modulated	А
1000 - 3000	0	Н	5V/m +Modulated	А
1000 – 3000	90	Н	5V/m +Modulated	А
1000 – 3000	180	Н	5V/m +Modulated	А
1000 – 3000	270	Н	5V/m +Modulated	А
1000 – 3000	0	V	5V/m +Modulated	А
1000 – 3000	90	V	5V/m +Modulated	А
1000 – 3000	180	V	5V/m +Modulated	А
1000 – 3000	270	V	5V/m +Modulated	А
3000- 6000	0	Н	5V/m +Modulated	А
3000- 6000	90	Н	5V/m +Modulated	А
3000- 6000	180	Н	5V/m +Modulated	А
3000- 6000	270	Н	5V/m +Modulated	А
3000- 6000	0	V	5V/m +Modulated	А
3000- 6000	90	V	5V/m +Modulated	A
3000- 6000	180	V	5V/m +Modulated	А
3000- 6000	270	V	5V/m +Modulated	А

Remark1:Modulation Signal:1kHz 80% AM. Remark 2: No error occurred.


11.Electrical fast transient/burstImmunity Test

11.1.List of Test Instruments

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	EMS Immunity Test System	TESEQ	NSG 3060	1519	2019. 07. 04	1 Year
2	Automated three phase Coupl- ing/Decoupling Networks	TESEQ	CDN 3063	2074	2019. 07. 04	1 Year
3	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 EFT/SURGE	2020. 04. 17	1 Year

11.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-4.

11.3.Applicable Standard and Test Specification

Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.4
 Test specification is in accordance with CISPR 35 Table 2.5 and 3.3 and 4.5
 Basic standard is in accordance with IEC 61000-4-4

Performance Criteria	
В	

 Deviation from applicable standard No deviation

11.4.Measurement Procedure

The measurement procedure specified in IEC 61000-4-4 clause 8 was used.

- Setup the EUTs and associated equipment described as clause 4.1.
- The EUT and its simulators was placed 0.1m high above the ground reference plane which was a min. 1m*1m metallic sheet with 0.65mm minimum thickness.
- This reference ground plane is projectbeyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.
- For input and output AC power ports

The EUT was connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines, and the length of the power line between the coupling device and the EUT shall be 0.5m or less. Both polarities of the test voltage should be applied during compliance test and the duration of the test can't less than 1min.

For signal lines and control lines ports

The I/O interface cable of the EUT is connected to its simulator through a capacitive coupling clamp that is 1 meter long. The capacitive coupling clamp is impressed with burst noise for 1min and indirectly couples burst to I/O interface cable.

[Remark: Applicable only to cables which according to the manufacturer's specification supports communication on cable lengthsgreater than 3 m.]

• For DC input and DC output power ports

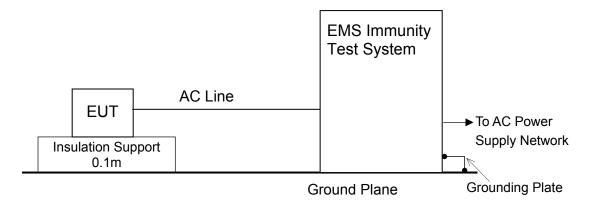
The DC power cable of the EUT is connected to the DC power source by using a coupling device which couples the EFT interference signal to DC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test can't less than 2min

[Remark: Applicable only to DC power ports when the EUT supports this ports.]

11.5.Test Result

Test Date	2020. 06. 11	Environment	21°C, 53%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Fans Lee		
Test Mode	Online Charge Mode		

	Input AC Power Port							
Inject Line	Polarity (+/-)	Test Voltage Peak (kV)	Inject Time(s)	Inject Method	Observation Criterion			
L	+	0.5, 1	60	Direct	А			
L	-	0.5, 1	60	Direct	A			
N	+	0.5, 1	60	Direct	А			
N	-	0.5, 1	60	Direct	А			
PE	+	0.5, 1	60	Direct	А			
PE	-	0.5, 1	60	Direct	А			
L, N, PE	+	0.5, 1	60	Direct	А			
L, N, PE	-	0.5, 1	60	Direct	А			
Remark: No error o	Remark: No error occurred.							


12.SurgeImmunity Test

12.1.List of	Test Instruments
--------------	-------------------------

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	EMS Immunity Test System	TESEQ	NSG 3060	1519	2019. 07. 04	1 Year
2	Automated three phase Coupl- ing/Decoupling Networks	TESEQ	CDN 3063	2074	2019. 07. 04	1 Year
3	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 EFT/SURGE	2020. 04. 17	1 Year

12.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-5.

12.3.Applicable Standard and Test Specification

Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.5
 Test specification is in accordance with CISPR 35 Table 2.4 and 3.2 and 4.4
 Basic standard is in accordance with IEC 61000-4-5

Test Specification	Performance Criteria	
Analogue/digital data ports Port type: unshielded symmetrical -line to ground: ±1 and 4kV (primary protection is intended) ±1kV(primary protection is not intended)	С	
Waveform <i>T</i> r/ <i>T</i> h: 10/700 (5/320) μs (*)		
Analogue/digital data ports Port type: coaxial or shielded shield to ground: ±0.5kV	В	
Waveform <i>T</i> r/ <i>T</i> h: 1.2/50(8/20)µs		
DC network power ports Surges are applied line to reference ground for each individual line: ±0.5kV	В	
Waveform <i>T</i> r/ <i>T</i> h: 1.2/50(8/20)µs		
ACmains power ports line to line : ±1kV line to earth (ground): ±2kV	В	
Waveform <i>T</i> r/ <i>T</i> h: 1.2/50(8/20)µs		
(*)Where the coupling network for the 10/700 (5/320) μ s waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20) μ s waveform and appropriate coupling network.		

Deviation from applicable standard

No deviation

12.4.Measurement Procedure

For Input and Output AC Power Port

- The measurement procedure specified in IEC 61000-4-5 clause 8 was used.
- Setup the EUTs and associated equipment described as clause 4.1.
- For line to line coupling mode, provided a 0.5/1kV 1.2/50µs current surge (at open-circuit condition) and 8/20µscurrent surge to EUT selected points.
- At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate.
- Different phase angles (at 0°, 90°, 180° and 270°) were done individually.
- Repeat above procedure except the open-circuit test voltages 0.5kV/1kV/2kV for line to earth coupling mode test.

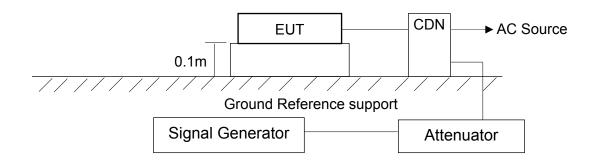
For Telecommunication Port

- Setup the EUTs and associated equipment described as clause 4.1.
- For Off Line Mode: The waveform is an open-circuit voltage front time of 10 μs, and an open-circuit voltage time to half value of 700 μs.
- For On Line mode: The waveform is an open-circuit voltage front time of 1.2 μs, and an open-circuit voltage time to half value of 50 μs.
- In the case of shielded line, the surge is applied to direct application.

12.5.Test Result

Test Date	2020. 06. 11	Environment	21°C, 53%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Fans Lee		
Test Mode	Online Charge Mode		

Input AC Power Port, Open Circuit Voltage					
Location	Polarity (+/-)	Phase Angle (°)	Test Voltage Peak (kV)	No of Pulse	Observation Criterion
	+	0	0.5, 1	5	A
	+	90	0.5, 1	5	А
	+	180	0.5, 1	5	А
L-N	+	270	0.5, 1	5	А
L-IN	-	0	0.5, 1	5	A
	-	90	0.5, 1	5	A
	-	180	0.5, 1	5	A
	-	270	0.5, 1	5	A
	+	0	0.5, 1, 2	5	A
	+	90	0.5, 1, 2	5	А
	+	180	0.5, 1, 2	5	A
L-PE	+	270	0.5, 1, 2	5	A
L-PE	-	0	0.5, 1, 2	5	A
	-	90	0.5, 1, 2	5	A
	-	180	0.5, 1, 2	5	A
	-	270	0.5, 1, 2	5	А
	+	0	0.5, 1, 2	5	A
	+	90	0.5, 1, 2	5	А
	+	180	0.5, 1, 2	5	A
N-PE	+	270	0.5, 1, 2	5	A
	-	0	0.5, 1, 2	5	A
	-	90	0.5, 1, 2	5	A
	-	180	0.5, 1, 2	5	A
	-	270	0.5, 1, 2	5	A
Remark: No error occurred.					


13.Continuous Induced by RF Disturbances Immunity Test (EN 55035)

13.1.List of Test Instruments

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Signal Genera- tor	R&S	SML03	103251	2020. 02. 15	1 Year
2	Power Amplifier	A/R	100A250A	0330351	N.C.R.	N.C.R.
3	Attenuator	Weinschel	40-6-34	NB538	2020. 04. 23	1 Year
4	C.D.N.	Fischer	FCC-801-M2 -25A	2010	2020. 03. 04	1 Year
5	Digital Ther- mo-Hygrometer	iMax	HTC-1	No.2 CS Room	2020. 04. 17	1 Year

13.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-6.

13.3.Applicable Standard and Test Specification

 Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.2 and 4.2.2.3 Test specification is in accordance with CISPR 35 Table 2.1 and 3.1 and 4.1 Basic standard is in accordance with IEC 61000-4-6

Tes	Performance Criterion	
Analogue/digital data po DC network power ports AC mains power ports		
Frequency Range: Test Level:	0.15–10MHz 3V (unmoulated, r.m.s)	
Frequency Range:10–30MHzTest Level:3V–1V (unmoulated, r.m.s)		А
Frequency Range:30–80MHzTest Level:1V (unmoulated, r.m.s)		
Amplitude Modulated	80%, 1kHz AM	

 Deviation from applicable standard No deviation

13.4.Measurement Procedure

The measurement procedure specified in IEC 61000-4-6clause 8 was used.

For AC Mains Power Ports

Setup the EUT and associated equipment described as clause 4.1.

- The EUT and supporting equipment were placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) was placed on the ground plane making contact with it at about 0.1-0.3m from EUT. Cables between CDN and EUT were as short as possible.
- The disturbance signal described below was injected to EUT through CDN.
- The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- The frequency range was swept from 0.15 to 80MHz using 3V or 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- The rate of sweep shall not exceed 1.5*10^3decades/s. Where the frequency was swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

The broadcast reception function test

• The mode of operation described as section 11.4.

The audio output function test

• The method of audio measurement described as section 11.4.

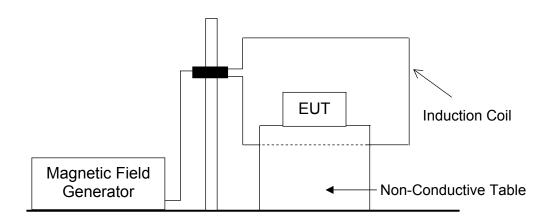
For Signal Data Ports

- The EUT and supporting equipment were placed on an insulating support 0.1m high above a ground reference plane. EM Injection Clamp (coupling and decoupling device) was placed on the ground plane making contact with it at about 0.1-0.3m from EUT. Cables between EM Injection Clamp and EUT were as short as possible.
- The CDN was placed on between AE and EUT. The EUT and AE of power through CDN, CDN terminated with 50Ω at the RF disturbance input port.
- The disturbance signal described below was injected to EUT through EM Injection Clamp.

13.5.Test Result

Test Date	2020. 06. 11	Environment	24°C, 44%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Joe Huang		
Test Mode	Online Charge Mode		

Frequency Range (MHz)	Injected Position	Voltage Level	Observation Criterion	
0.15 – 10	Main (Input ACPower Line)	3V(rms) + Modulated	A	
10 – 30	Main (Input AC Power Line)	3~1V(rms) + Modulated	A	
30 - 80	30 – 80 Main (Input AC Power Line) 1V(rms) + Modulated		A	
Remark 1: Modulation Signal:1kHz 80% AM. Remark2: No error occurred.				



14. Power Frequency Magnetic FieldImmunity Test

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Magnetic Field Tester	Narda S.T.S. / PMM	PMM1008	0100X30101	2019. 09. 27	1 Year
2	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 Mag- netic Room	2020. 04. 17	1 Year

14.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-8.

14.3.Applicable Standard and Test Specification

 Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.3 Test specification is in accordance with EN/CISPR 35 Table 1.1 Basic standard is in accordance with IEC 61000-4-8

Test Specification	Performance Criteria	
Power Frequency	50Hz or 60Hz	٨
Magnetic Field Strength	1A/m (rms)	A

 Deviation from applicable standard No deviation

14.4.Measurement Procedure

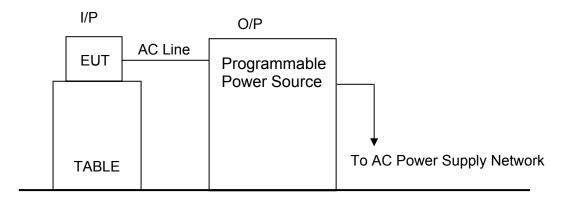
The measurement procedure specified in EN 61000-4-8 clause 8 was used.

- Setup the EUT and associated equipment described as clause 4.1.
- The equipment cabinets which can be earthed shall be connected to the safety earth directly on the GRP or via the earth terminal to PE.
- The EUT was placed on 0.8m high table, and subjected to the test magnetic field by using the induction coil of standard dimensions (1m x 2.6m).
- The induction coil rotated by 90 degrees in order to expose the EUT to the test field with different orientations (at X-axis, Y-axis and Z-axis).
- The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- All cables of EUT exposed to magnetic field for 1m of their length.
- The preferential range of test levels, respectively for continuous of the magnetic field, applicable to distribution networks at 50 Hz or 60 Hz.

14.5.Test Result

Test Date	2020. 06. 12	Environment	29°C, 36%
Input Power	AC 230V, 50Hz	Test Result	Pass
Tested By	Newman Yang		
Test Mode	Online Charge Mode		

Power Frequency	Magnetic Field Strength	Coil Orientation	Testing Duration	Observation Criterion
50Hz	1 A/m	X-axis	1 Min	А
50Hz	1 A/m	Y-axis	1 Min	А
50Hz	1 A/m	Z-axis	1 Min	A
Remark: No error occurred.				


15.Voltage Dips and Interruptions Immunity Test

15.1.List of	Test Instruments
--------------	------------------

Item	Equipment	Manufacture	Model No.	Serial No.	Cal. Date	Cal. Interval
1	Power Source	TESEQ	NSG 1007-45	1248A04038	2017. 11. 28	3 Years
2	Digital Ther- mo-Hygro Meter	iMax	HTC-1	No.2 Har- monics Room	2020. 04. 17	1 Year

15.2.Test Setup

The EUT and test equipment were configured in accordance with the basic standard requirement of IEC 61000-4-11.

15.3. Applicable Standard and Test Specification

 Immunity requirement is in accordance with EN/CISPR 35 clause 4.2.6 Test specification is in accordance with CISPR 35 Table 4.2 and 4.3 Basic standard is in accordance with IEC 61000-4-11

Test Specification		Performance Criterion
Voltage Dips	<5% residual, 0.5 cycles	В
Voltage Dips	70% residual, 25 cycles for 50Hz 70% residual, 30 cycles for 60Hz	С
Voltage Interruptions	<5% residual, 250 cycles for 50Hz <5% residual, 300 cycles for 60Hz	С

 Deviation from applicable standard No deviation

15.4.Measurement Procedure

The measurement procedure specified in EN 61000-4-11 clause 8 was used.

- Setup the EUT and associated equipment described as clause 4.1.
- During the tests, the mains voltage for testing shall be monitored within an accuracy of 2 %.
- The EUT shall be tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested.
- For voltage dips, changes in supply voltage shall occur at zero crossings of the voltage, and at additional angles considered critical by product committees or individual product specifications preferably selected from 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° on each phase.
- For short interruptions, the angle shall be defined by the product committee as the worst case. In the absence of definition, it is recommended to use 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° on each phase.
- For each test, any degradation of performance shall be recorded. The monitoring equipment should be capable of displaying the status of the operational mode of the EUT during and after the tests. After each group of tests, a full functional check shall be performed.

15.5.Test Result

 For EN 5503 	5		
Test Date	2020. 06. 12	Environment	29°C, 36%
Input Power	AC 100-240V, 50/60Hz	Test Result	Pass
Tested By	Newman Yang		
Test Mode	Online Charge Mode		

Tupo of Toot	Test Phase	Phase	Residual	Cycle		Observation Criterion
Type of Test	Type of Test Voltage		(%)	50Hz	60Hz	
Voltage	100V	0	0	0.5	0.5	A
Dips 240V	0	70	25	30	A	
Voltage Interruptions	100V 240V	0	0	250	300	B (Note)

Note: During the test, the EUT with bulb load was stopped working, but it's self-recoverable after test.

16.Measurement Uncertainty List

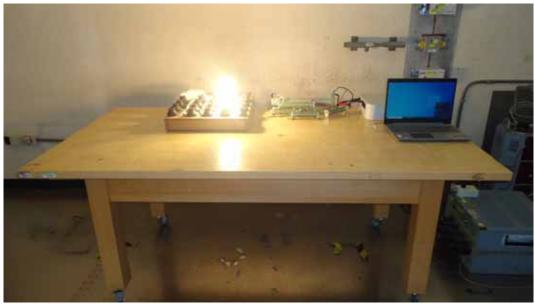
The measurement uncertainty was estimated for test on the EUT according to CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage of K=2.

The uncertainties value is not used in determining the PASS/FAIL results.

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
Conducted emissions	9kHz-150kHz	±3.7dB
at AC mains power port	150kHz-30MHz	±3.5dB
Conducted emissionsat wired network port	150kHz-30MHz	±3.5dB
Conducted emissionsat broadcast receiver tuner port	150kHz-30MHz	±3.5dB
Conducted emissions Power Clamp (No. 7 Shielded Room)	30MHz-300MHz	±4.4dB
Conducted emissions Power Clamp (No. 8 Shielded Room)	30MHz-300MHz	±4.4dB
Radiated, magnetic field (Triple-Loop Antenna)	9kHz-30MHz	±0.5dB
Radiated, magnetic field (Loop Antenna)	9kHz-150kHz	±3.1dB
Radiated, magnetic field (Loop Antenna)	150kHz-30MHz	±3.0dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.1dB
	30MHz-200MHz, 3m, Vertical	±4.3dB
	200MHz-1000MHz, 3m, Vertical	±4.2dB
Radiated emissions	30MHz-200MHz, 10m, Horizontal	±4.3dB
(No.1 10m Semi Anechoic Chamber)	200MHz-1000MHz, 10m, Horizontal	±3.9dB
	30MHz-200MHz, 10m, Vertical	±4.3dB
	200MHz-1000MHz, 10m, Vertical	±3.9dB
	1GHz-6GHz, 3m	±4.1dB
	6GHz-18GHz, 3m	±4.4dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.2dB
	30MHz-200MHz, 3m, Vertical	±4.1dB
	200MHz-1000MHz, 3m, Vertical	±4.4dB
Radiated emissions	30MHz-200MHz, 10m, Horizontal	±4.3dB
(No.2 10m Semi Anechoic Chamber)	200MHz-1000MHz, 10m, Horizontal	±4.0dB
	30MHz-200MHz, 10m, Vertical	±4.1dB
	200MHz-1000MHz, 10m, Vertical	±4.1dB
	1GHz-6GHz, 3m	±4.2dB
	6GHz-18GHz, 3m	±4.4dB

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
	30MHz-200MHz, 3m, Horizontal	±4.1dB
	200MHz-1000MHz, 3m, Horizontal	±3.9dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.2dB
(No.1 3m Semi Anechoic Chamber)	200MHz-1000MHz, 3m, Vertical	±4.1dB
	1GHz-6GHz, 3m	±4.2dB
	6GHz-18GHz, 3m	±4.6dB
	30MHz-200MHz, 3m, Horizontal	±3.7dB
	200MHz-1000MHz, 3m, Horizontal	±4.0dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.2dB
(No.2 3m Semi Anechoic Chamber)	200MHz-1000MHz, 3m, Vertical	±4.5dB
	1GHz-6GHz, 3m	±4.3dB
	6GHz-18GHz, 3m	±4.7dB
	30MHz-200MHz, 3m, Horizontal	±3.9dB
Radiated emissions	200MHz-1000MHz, 3m, Horizontal	±3.9dB
(No.3 3m Semi Anechoic Chamber)	30MHz-200MHz, 3m, Vertical	±4.4dB
	200MHz-1000MHz, 3m, Vertical	±4.1dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.0dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.3dB
(No.4 3m Semi Anechoic Chamber)	200MHz-1000MHz, 3m, Vertical	±4.4dB
	1GHz-6GHz, 3m	±4.5dB
	6GHz-18GHz, 3m	±4.6dB
	30MHz-200MHz, 3m, Horizontal	±4.0dB
	200MHz-1000MHz, 3m, Horizontal	±3.9dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.2dB
(No.5 3m Semi Anechoic Chamber)	200MHz-1000MHz, 3m, Vertical	±4.3dB
	1GHz-6GHz, 3m	±4.3dB
	6GHz-18GHz, 3m	±4.7dB

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
	30MHz-200MHz, 3m, Horizontal	±4.4dB
	200MHz-1000MHz, 3m, Horizontal	±4.2dB
	30MHz-200MHz, 3m, Vertical	±4.2dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.4dB
(No.3 Open Area Test Site)	30MHz-200MHz, 10m, Horizontal	±4.4dB
	200MHz-1000MHz, 10m, Horizontal	±4.0dB
	30MHz-200MHz, 10m, Vertical	±4.2dB
	200MHz-1000MHz, 10m, Vertical	±4.2dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.4dB
	30MHz-200MHz, 3m, Vertical	±4.4dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.9dB
(No.5 Open Area Test Site)	30MHz-200MHz, 10m, Horizontal	±4.3dB
	200MHz-1000MHz, 10m, Horizontal	±4.2dB
	30MHz-200MHz, 10m, Vertical	±4.4dB
	200MHz-1000MHz, 10m, Vertical	±4.7dB
	30MHz-200MHz, 3m, Horizontal	±3.6dB
	200MHz-1000MHz, 3m, Horizontal	±4.4dB
	30MHz-200MHz, 3m, Vertical	±4.0dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.2dB
(No.6 Open Area Test Site)	30MHz-200MHz, 10m, Horizontal	±3.6dB
	200MHz-1000MHz, 10m, Horizontal	±4.2dB
	30MHz-200MHz, 10m, Vertical	±4.0dB
	200MHz-1000MHz, 10m, Vertical	±4.0dB
	30MHz-200MHz, 3m, Horizontal	±3.6dB
	200MHz-1000MHz, 3m, Horizontal	±4.5dB
	30MHz-200MHz, 3m, Vertical	±4.3dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.7dB
(No.7 Open Area Test Site)	30MHz-200MHz, 10m, Horizontal	±3.6dB
	200MHz-1000MHz, 10m, Horizontal	±4.3dB
	30MHz-200MHz, 10m, Vertical	±4.3dB
	200MHz-1000MHz, 10m, Vertical	±4.5dB
	30MHz-200MHz, 3m, Horizontal	±3.8dB
	200MHz-1000MHz, 3m, Horizontal	±4.2dB
	30MHz-200MHz, 3m, Vertical	±4.5dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.3dB
(No.8 Open Area Test Site)	30MHz-200MHz, 10m, Horizontal	±3.7dB
	200MHz-1000MHz, 10m, Horizontal	±4.0dB
	30MHz-200MHz, 10m, Vertical	±4.5dB
	200MHz-1000MHz, 10m, Vertical	±4.1dB



Test Items/Facilities	Frequency/Equipment/Unit		Uncertainty
Harmonic current	NSG 1007-45		±0.7%
Voltage fluctuations & flicker	NSG 1007-45		±0.2%
	NSG 437		Ucurrent = 13.8% Uvoltage = 1.3%
Electrostatic discharge	Ditto	Ditto	
(ESD)	MZ-15/EC		Ucurrent = 27.5% Uvoltage = 3.1%
	NSG 437		Ucurrent = 4.8% Uvoltage = 4.7%
Radio-frequency electromagnetic field, Continuous radiated disturbances	80MHz-1000MHz		±1.6dB
(RS)	1GHz-6GHz		±2.2dB
Radio-frequency electromagnetic field, Continuous radiated disturbances	80MHz-1000MHz		±1.6dB
(RS) (Audio)	1GHz-6GHz		±2.2dB
		AC power port	Uvoltage = 5.6% Utime = 29.4%
Electrical fast transient/burst	ECM Pro Plus	Signal port	Uvoltage = 5.1% Utime = 20.3%
(EFT)	E411	AC power port	Uvoltage = 5.6% Utime = 14.2%
		Signal port	Uvoltage = 5.1% Utime = 29.4%
	Open-circuit output voltage		Uvoltage = 3.8%
	Rise time		Utime = 13.3%
Surge	Duration time		Utime = 17.9%
Suige	Short-circuit output c	urrent	Ucurrent = 5.6%
	Rise time		Utime = 17.0%
	Duration time	Utime = 9.5%	
Radio-frequency,	CDN (AC power port)		2.9dB
continuous conducted disturbances (CS)	EM-Clamp (Signal po	EM-Clamp (Signal port)	
Radio-frequency,	CDN (AC power port)		2.9dB
continuous conducted disturbances (CS) (Audio)	EM-Clamp (Signal port)		3.6dB
Power-frequency magnetic field	MAG100.1		4%
(PFMF)	PMM1008		2.4%
Voltage dips	TESEQ		Uvoltage = 0.1% Ucurrent = 0.2%

17.Photographs

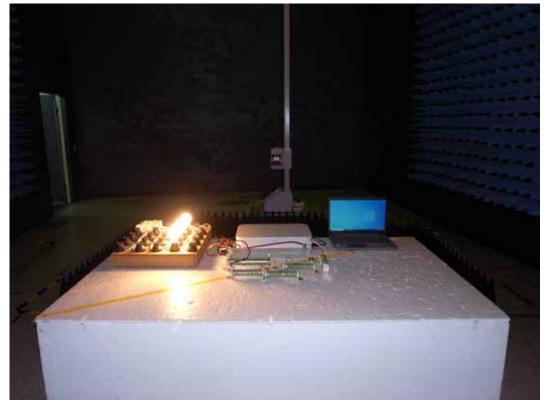
17.1.Conducted Emissions Measurement

Front View of Conducted Measurement

Back View of Conducted Measurement

17.2.Radiated Emissions Measurement

• For Frequency Range 30 – 1000MHz


Front View of Radiated Measurement

Back View of Radiated Measurement

• For Frequency Range 1 – 6GHz


Front View of Radiated Measurement

Back View of Radiated Measurement

17.3.Harmonics Current Measurement

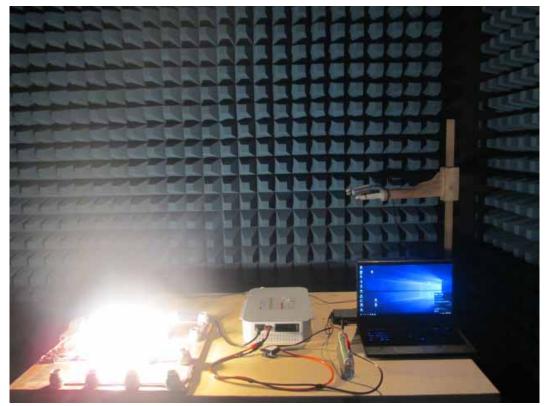
17.4. Voltage Fluctuation and Flicks Measurement

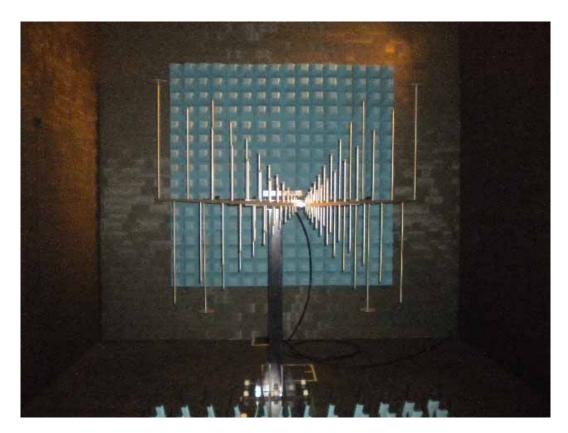
- 17.5.Electrostatic Discharge Immunity Test
- Air& Contact Discharge

HCP &VCP

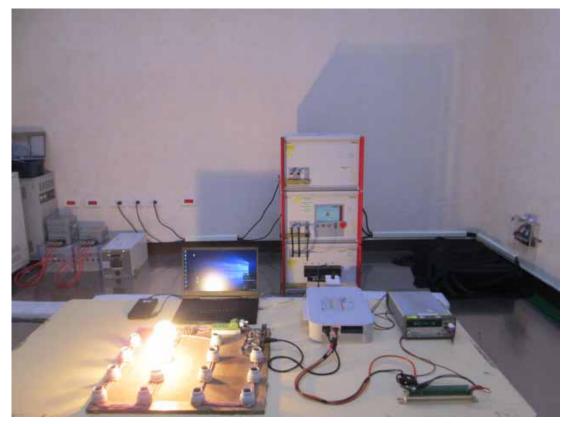
• ESD Test Points

• ESD Test Points




• ESD Test Points

- 17.6.Continuous RF Electromagnetic Field Disturbances Immunity Test (EN 55035)
- For 80MHz 1000MHz



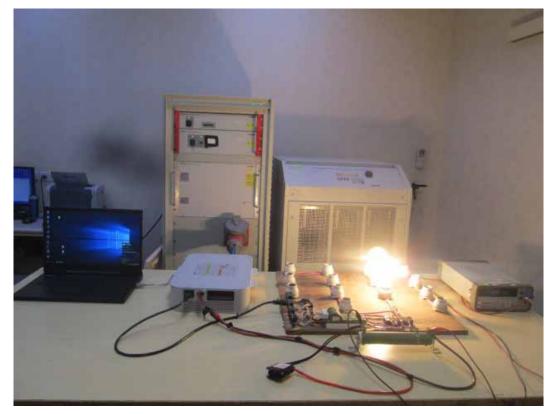
• For Above 1GHz



17.7.Electrical Fast Transient/Burst Immunity Test

17.8. Surge Immunity Test

17.9.Immunity to Conducted Disturbances Induced by RF Fields



17.10. Power Frequency Magnetic Field Immunity Test

17.11.Voltage Dips and Interruptions Immunity Test

APPENDIX (Photos of EUT)

Figure 1 General Appearance(Front& Side View)

Figure 2 General Appearance(Back & Side View)

Figure 3 General Appearance(I/O View)

Figure 4 General Appearance(I/O View)

Audix Technology Corporation Report No.: EM-E200324

Figure 5 General Appearance(LabelView)

Figure 6 Internal View (Removed Covers)

Figure 7 Internal View (Removed Covers)

Figure 8 Internal View (Removed Covers)

Audix Technology Corporation Report No.: EM-E200324

Figure 10 Internal View (Battery Label View)

Figure 9 Internal View (Battery, Front & Side View)

Figure 11 Internal View (Main Board, Front View)

Figure 12 Internal View (Main Board, Back View)

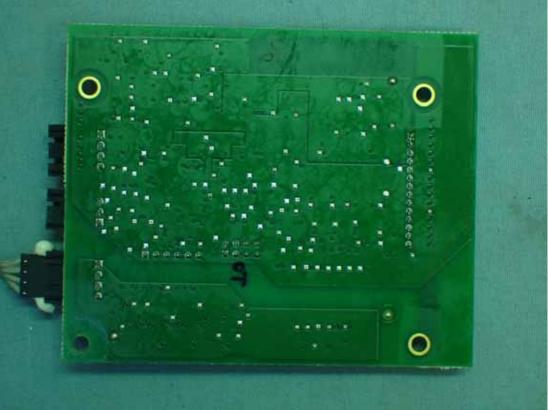


Figure 13 Internal View (Internal Board, Front View)

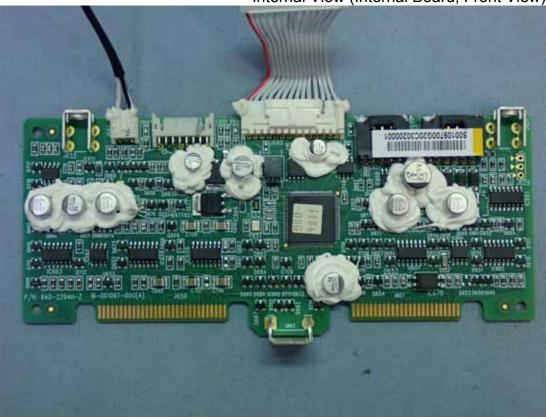


Figure 14 Internal View (Internal Board, Back View)

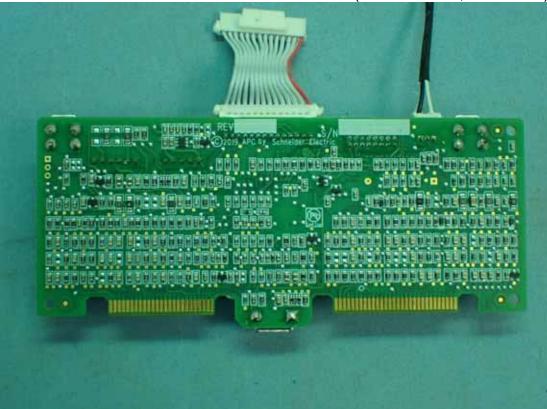


Figure 15 Internal View (Power Board, Front View)

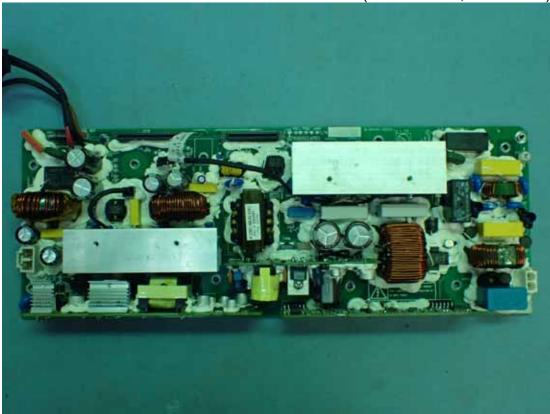


Figure 16 Internal View (Power Board, Back View)

Figure 17 Internal View (Internal Board, Front View)

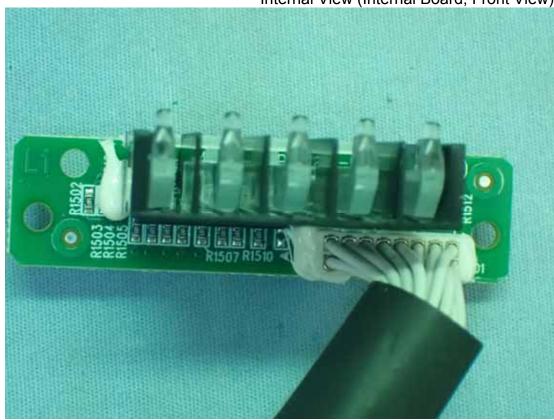


Figure 18 Internal View (Internal Board, Back View)

 Internal View (FAN View)

Figure 19 Internal View (FAN View)