Security Handbook

Network Management Card 3, Firmware Version 1.3.x

990-91251A-001
Publication Date: January, 2020
Schneider Electric IT Corporation Legal Disclaimer

The information presented in this manual is not warranted by the Schneider Electric IT Corporation to be authoritative, error free, or complete. This publication is not meant to be a substitute for a detailed operational and site specific development plan. Therefore, Schneider Electric IT Corporation assumes no liability for damages, violations of codes, improper installation, system failures, or any other problems that could arise based on the use of this Publication.

The information contained in this Publication is provided as is and has been prepared solely for the purpose of evaluating data center design and construction. This Publication has been compiled in good faith by Schneider Electric IT Corporation. However, no representation is made or warranty given, either express or implied, as to the completeness or accuracy of the information this Publication contains.

IN NO EVENT SHALL SCHNEIDER ELECTRIC IT CORPORATION, OR ANY PARENT, AFFILIATE OR SUBSIDIARY COMPANY OF SCHNEIDER ELECTRIC IT CORPORATION OR THEIR RESPECTIVE OFFICERS, DIRECTORS, OR EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL, OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS, CONTRACT, REVENUE, DATA, INFORMATION, OR BUSINESS INTERRUPTION) RESULTING FROM, ARISING OUT, OR IN CONNECTION WITH THE USE OF, OR INABILITY TO USE THIS PUBLICATION OR THE CONTENT, EVEN IF SCHNEIDER ELECTRIC IT CORPORATION HAS BEEN EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SCHNEIDER ELECTRIC IT CORPORATION RESERVES THE RIGHT TO MAKE CHANGES OR UPDATES WITH RESPECT TO OR IN THE CONTENT OF THE PUBLICATION OR THE FORMAT THEREOF AT ANY TIME WITHOUT NOTICE.

Copyright, intellectual, and all other proprietary rights in the content (including but not limited to software, audio, video, text, and photographs) rests with Schneider Electric IT Corporation or its licensors. All rights in the content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.

This Publication shall not be for resale in whole or in part.
Table of Contents

Introduction ..1

- Content and Purpose of this Guide 1
- User Management .. 1
 - Types of User Accounts .. 1

Security ... 2

- Security Features ... 2
- Authentication ... 5
- Encryption ... 6
- Secure SHell (SSH) and Secure CoPy (SCP) for the Command Line Interface ... 6
- Secure Sockets Layer / Transport Layer Security (SSL/TLS) for the Web interface ... 6
- Creating and Installing Digital Certificates 7
- Choosing a Method for your System 8
- Firewalls ... 10

Using the NMC Security Wizard CLI Utility 11

- Overview ... 11
 - Authentication by Certificates and Host Keys 11
 - Files you Create for SSL/TLS and SSH Security 12

- Create a Root Certificate and Server Certificates 12
 - Summary .. 12
 - Procedure for Creating the CA Root Certificate 13
 - Load the CA Root Certificate to your Browser 14
 - Create an SSL/TLS Server Certificate 14
 - Load the Server Certificate to the Management Card or Device ... 14

- Create a Server Certificate and Signing Request 15
 - Summary .. 15
 - Procedure for Creating the Certificate Signing Request (CSR) ... 15
 - Import the Signed Certificate .. 15
 - Load the Server Certificate to the Management Card or Device ... 16
Introduction

Content and Purpose of this Guide

This guide documents security features for firmware version 1.3.0.6 for the APC® Network Management Card 3 and for devices with embedded components of APC Network Management Cards, which enable the devices to function remotely over the network.

This guide documents the following protocols and features, how to select which ones are appropriate for your situation, and how to set up and use them within an overall security system:

- Telnet and Secure SHell v2 (SSH)
- Secure Sockets Layer (SSL) v3 and Transport Layer Security (TLS) v1.0, v1.1, and v1.2
- RADIUS
- Extensible Authentication Protocol over LAN (EAPoL)
- SNMPv1 and SNMPv3

In addition, this guide documents how to use the NMC Security Wizard CLI utility to create the components required for the high security available through SSL/TLS and SSH.

Note: The NMC Security Wizard CLI utility can create security components for Management Cards or devices running firmware version 1.1.0.16 and higher.

User Management

Types of User Accounts

The Network Management Card has five basic levels of access:

- A Super User: can use all of the management menus available in the Web interface and all of the commands in the command line interface.
- Administrative User: can use all of the management menus available in the Web interface and all of the commands in the command line interface.
- A Device User: can access the event log and data log (but cannot delete the contents of either log), and can use the device-related menus and commands.
- Network-Only User: can only access information that is not device-related.
- A Read-Only User: can access the event log, data log, and device-related menus, but cannot change configurations, control devices, delete data, delete the content of logs, or use file transfer options.

Note: Some APC devices have additional user accounts, e.g., outlet users for Switched Rack PDUs and an A/C Manager for some NetworkAIR devices. For information on the additional account type, see the User’s Guide provided with the device.

Note: A Super User is an Administrator account which is persistent and cannot be deleted but can still be enabled or disabled.

Note: The Administrative, Device, Network-Only, and Read-Only user accounts are disabled by default, and cannot be enabled until a password is set for each user account.
Security

Security Features

Protection of passwords and passphrases

No password or passphrase is stored on the Network Management Card in plain text.

• Passwords are hashed using a one-way hash algorithm.
• Passphrases, which are used for authentication and encryption, are encrypted before they are stored on the Network Management Card.

Summary of access methods

Serial access to the command line interface.

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access is by user name and password and by security level</td>
<td>Always enabled</td>
</tr>
</tbody>
</table>

Remote access to the command line interface

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td></td>
</tr>
<tr>
<td>• User name and password</td>
<td></td>
</tr>
<tr>
<td>• Selectable server port</td>
<td></td>
</tr>
<tr>
<td>• Access protocols that can be enabled or disabled.</td>
<td></td>
</tr>
<tr>
<td>• Secure SHell (SSH)</td>
<td>Available methods:</td>
</tr>
<tr>
<td>• Telnet</td>
<td></td>
</tr>
<tr>
<td>– With Telnet, the user name and password are transmitted as plain text.</td>
<td></td>
</tr>
<tr>
<td>• SSH</td>
<td></td>
</tr>
<tr>
<td>– For high security, use SSH. SSH provides encrypted access to the command line interface, to provide additional protection from attempts to intercept, forge, or alter data during transmission. If you select SSH as your remote access protocol, disable Telnet.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Telnet is disabled, and SSH is enabled by default.
SNMPv1 and SNMPv3

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods (SNMPv1)*:</td>
<td>For both SNMPv1 and SNMPv3, the host name restricts access to the Network Management System (NMS) at that location only, and the NMS IP filters allow access only to the NMSs specified by one of the IP address formats in the following examples:</td>
</tr>
<tr>
<td>• Community Name</td>
<td>• 159.215.12.1: Only the NMS at the IP address 159.215.12.1.</td>
</tr>
<tr>
<td>• Host Name</td>
<td>• 159.215.12.255: Any NMS on the 159.215.12 segment.</td>
</tr>
<tr>
<td>• NMS IP filters</td>
<td>• 159.215.255.255: Any NMS on the 159.215 segment.</td>
</tr>
<tr>
<td>• Agents that can be enabled or disabled</td>
<td>• 159.255.255.255: Any NMS on the 159 segment.</td>
</tr>
<tr>
<td>• Four access communities</td>
<td>• 0.0.0.0 or 255.255.255.255: Any NMS.</td>
</tr>
<tr>
<td>• with read/write/disable capability</td>
<td>- SNMPv3 has additional security features that include the following:</td>
</tr>
<tr>
<td></td>
<td>- An authentication passphrase to ensure that an NMS trying to access the Management Card or device is the NMS it claims to be.</td>
</tr>
<tr>
<td></td>
<td>- Encryption of data during transmission, with a privacy passphrase required for encrypting and decrypting.</td>
</tr>
<tr>
<td></td>
<td>* SNMPv2c is also supported by SNMPv1 and its configuration settings.</td>
</tr>
</tbody>
</table>

File transfer protocols

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>Available methods:</td>
</tr>
<tr>
<td>• User name and password</td>
<td>• FTP</td>
</tr>
<tr>
<td>• Selectable server port</td>
<td>- With FTP, the user name and password are transmitted as plain text, and files are transferred without encryption.</td>
</tr>
<tr>
<td>• Access protocols that can be enabled or disabled.</td>
<td>• SCP</td>
</tr>
<tr>
<td>• Secure CoPy (SCP)</td>
<td>- Use SCP to encrypt the user name and password and the files being transferred, such as firmware updates, configuration files, log files, Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates, and Secure SHell (SSH) host keys. If you choose SCP as your file transfer protocol, enable SSH and disable FTP.</td>
</tr>
</tbody>
</table>
Web Server

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>Available methods:</td>
</tr>
<tr>
<td>• User name and password</td>
<td>• HTTP</td>
</tr>
<tr>
<td>• Selectable server port</td>
<td>– In basic HTTP authentication mode, the user name and password are transmitted as plain text (with no encoding or encryption).</td>
</tr>
<tr>
<td>• Web interface access that can be enabled or disabled</td>
<td>• SSL/TLS</td>
</tr>
<tr>
<td>• Secure Sockets Layer/Transport Layer Security (SSL/TLS)</td>
<td>– SSL/TLS is available on Web browsers supported for use with the Management Card or network-enabled device and on most Web servers. The Web protocol HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) encrypts and decrypts page requests to the Web server and pages returned by the Web server to the user.</td>
</tr>
</tbody>
</table>

RADIUS

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>RADIUS (Remote Authentication Dial-In User Service) is an authentication, authorization, and accounting service used to centrally administer remote access for each Management Card or device. (APC supports the authentication and authorization functions.)</td>
</tr>
<tr>
<td>• A server secret shared between the RADIUS server and the Management Card or device</td>
<td></td>
</tr>
</tbody>
</table>

EAPoL (802.1X Security)

<table>
<thead>
<tr>
<th>Security Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available methods:</td>
<td>Extensible Authentication Protocol (EAP) over LAN (EAPoL) is a network port authentication protocol used in 802.1X (port-based Network Access Control)</td>
</tr>
<tr>
<td>• Access to network ports based on RADIUS server authorization.</td>
<td></td>
</tr>
</tbody>
</table>

Change default user names and passwords immediately

After installation and initial configuration of the Management Card or network-enabled device, immediately change the user names and passwords from their defaults to unique user names and passwords to establish basic security. You are required to change the default Super User password at first log in as a security measure.

Note: You cannot change the user name of the Super User. It is recommended that the Super User account is disabled, once any additional Administrator accounts are created.
Port assignments
If the Telnet, FTP, SSH/SCP, or the Web server uses a non-standard port, a user must specify the port in
the command line or Web address used to access the Management Card or device. A non-standard port
number provides an additional level of security. The ports are initially set at the standard "well known
ports" for the protocols. To increase security, change the ports to any unused port numbers from 5001 to
32768 for the FTP server and from 5000 to 32768 for the other protocols and servers. (The FTP server
uses both the specified port and the port one number lower than the specified port.)

User names, passwords, and community names with SNMPv1
All user names, passwords, and community names for SNMPv1 are transferred over the network as plain
text. A user who is capable of monitoring the network traffic can determine the user names and passwords
required to log on to the accounts of the command line interface or Web interface of the Management
Card or network-enabled device. If your network requires the higher security of the encryption-based
options available for the command line interface and Web interface, disable SNMPv1 access or set its
access to Read. (Read access allows you to receive status information and use SNMPv1 traps.)

To disable SNMPv1 access on the Configuration tab, select Network on the top menu bar and select
Access under the SNMPv1 heading. Clear the Enable SNMPv1 access check box and click Apply.

To set SNMPv1 access to Read, perform the following steps: On the Configuration tab select Network.
Select SNMPv1 and then Access Control. For each configured Network Management System (NMS),
click the community names and set the Access Type to Read. Select Apply.

Note: SNMPv1 is disabled by default and the Community Names are blank.

Authentication
You can choose security features for the Management Card or network-enabled device that control
access by providing basic authentication through network port access, user names, passwords, and IP
addresses, without using encryption. These basic security features are sufficient for most environments in
which sensitive data are not being transferred.

As an added layer of security, network-based port access via EAPoL can also be utilized to request
network access at the individual port level via the network’s switch or router (where applicable) which the
Management Card is connected.

SNMP GETS, SETS, and Traps
For enhanced authentication when you use SNMP to monitor or configure the Management Card or
network-enabled device, choose SNMPv3. The authentication passphrase used with SNMPv3 user
profiles ensures that a Network Management System (NMS) attempting to communicate with the
Management Card or device is the NMS it claims to be, that the message has not been changed during
transmission, and that the message was not delayed, copied, and sent again later at an inappropriate
time. SNMPv3 is disabled by default.

The APC implementation of SNMPv3 allows the use of the SHA-1 or MD5 protocol for authentication.

Web interface and command line interface
To ensure that data and communication between the Management Card or network-enabled device and
the client interfaces (the command line interface and the Web interface) cannot be intercepted, you can
provide a greater level of security by using one or more of the following encryption-based methods:

• For the Web interface, use the Secure Sockets Layer /Transport Layer Security (SSL/TLS) protocol
• To encrypt user names and passwords for command line interface access, use the Secure SHell
 (SSH) protocol
• To encrypt user names, passwords, and data for the secure transfer of files, use the Secure CoPy
 (SCP) protocol.

Note: For more information on encryption-based security, see Encryption.
Encryption

SNMP, GETS, SETS, and Traps
For encrypted communication when you use SNMP to monitor or configure the Management Card or network-enabled device, choose SNMPv3. The privacy passphrase used with SNMPv3 user profiles ensures the privacy of the data (by means of encryption, using the AES or DES encryption algorithm) that an NMS sends to or receives from the Management Card or device.

Secure SHell (SSH) and Secure CoPy (SCP) for the Command Line Interface

The Secure SHell protocol
SSH provides a secure mechanism to access computer consoles, or shells, remotely. The protocol authenticates the server (in this case, the Management Card or network-enabled device) and encrypts all transmissions between the SSH client and the server.

- SSH is a high-security alternative to Telnet. Telnet does not provide encryption.
- SSH protects the user name and password, which are the credentials for authentication, from being used by anyone intercepting network traffic.
- To authenticate the SSH server (the Management Card or network-enabled device) to the SSH client, SSH uses a host key unique to the SSH server. The host key is an identification that cannot be falsified, and it prevents an invalid server on the network from obtaining a user name and password by presenting itself as a valid server.

Note: For information on supported SSH client applications, see Telnet and Secure SHell (SSH). To create a host key, see Create an SSH Host Key.

The Management Card or device supports SSHv2, which provides protection from attempts to intercept, forge, or change data during transmission.

- When you enable SSH, you should disable Telnet. Note: Telnet is disabled, and SSH is enabled by default.
- The interface, user accounts, and user access rights are the same whether you access the command line interface through SSH or Telnet.

Secure CoPy
SCP is a secure file transfer application that you can use instead of FTP. SCP uses the SSH protocol as the underlying transport protocol for encryption of user names, passwords, and files.

- When you enable and configure SSH, you automatically enable and configure SCP. No further configuration of SCP is needed.
- You must explicitly disable FTP. It is not disabled by enabling SSH. To disable FTP, on the Configuration tab, select Network and then FTP Server. Clear the Enable check box and click Apply. Note: Telnet is disabled, and SSH is enabled by default.

Secure Sockets Layer / Transport Layer Security (SSL/TLS) for the Web interface
For secure Web communication, enable Secure Sockets Layer / Transport Layer Security (SSL/TLS) by selecting HTTPS as the protocol mode to use for access to the Web interface of the Management Card or network-enabled device. HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) is a Web protocol that encrypts and decrypts page requests from the user and pages that are returned by the Web server to the user. The Management Card or network-enabled device supports SSL version 3.0 and the associated Transport Layer Security (TLS) versions 1.0, 1.1 and 1.2. Most browsers let you select the version of SSL/TLS to enable.
Note: The Management Card automatically negotiates to use the highest supported protocol or cipher suite that is supported by the Management Card and the client. Use the client-side settings to enable/disable certain protocols or cipher suites. Alternatively, the various cipher suites/algorithms the Management Card supports can be configured via the CLI interface. The Minimum Protocol field can also be configured to be used to force the minimal protocol (SSL v3, TLS 1.0, TLS 1.1, or TLS 1.2) to use when negotiating a connection.

Note: When SSL/TLS is enabled, your browser displays a small lock icon.

SSL/TLS uses a digital certificate to enable the browser to authenticate the server (in this case, the Management Card or device). The browser verifies the following:

- The format of the server certificate is correct.
- The expiration date and time of the server certificate have not passed.
- The DNS name or IP address specified when a user logs on matches the Common Name (or Subject Alt Name) in the server certificate.
- The server certificate is signed by a trusted certifying authority. Each major browser manufacturer distributes CA root certificates of the commercial Certificate Authorities in the certificate store (cache) of its browser so that it can compare the signature on the server certificate to the signature on a CA root certificate.

You can use the NMC Security Wizard CLI utility to create a certificate signing request to an external Certificate Authority, or if you do not want to use an existing Certificate Authority, you can create an APC root certificate to upload to the certificate store (cache) of the browser. You can also use the utility to create a server certificate to upload to the Management Card or device.

Note: See Creating and Installing Digital Certificates for a summary of how these certificates are used. To create certificates and certificate requests, see Create a Root Certificate and Server Certificates and Create a Server Certificate and Signing Request.

SSL/TLS also uses various algorithms and encryption ciphers to authenticate the server, encrypt data, and ensure the integrity of the data, i.e., that it has not been intercepted and sent by another server.

Note: Web pages that you have recently accessed are saved in the cache of your Web browser and allow you to return to those pages without re-entering your user name and password. Always close your browser session before you leave your computer unattended.

Creating and Installing Digital Certificates

Purpose

For network communication that requires a higher level of security than password encryption, the Web interface of the Management Card or network-enabled device supports the use of digital certificates with the Secure Sockets Layer / Transport Layer Security (SSL/TLS) protocol. Digital certificates can authenticate the Management Card or device (the server) to the Web browser (the SSL/TLS client).

Note: While you can generate a 1024-bit key, it is highly recommended you generate a 2048-bit key, which provides complex encryption and a higher level of security.

The sections that follow summarize the three methods of creating, implementing, and using digital certificates to help you determine the most appropriate method for your system.

- **Method 1:** Use the default certificate auto-generated by the Network Management Card or network-enabled device (2048-bit).
 - **Note:** AOS 1.1.0.16 and higher use a SHA-2 signature algorithm.
- **Method 2:** Use the NMC Security Wizard CLI utility to create a CA certificate and a server certificate.
- **Method 3:** Use the NMC Security Wizard CLI utility to create a certificate-signing request to be signed by the root certificate of an external Certificate Authority and to create a server certificate.
Choosing a Method for your System

Using the Secure Sockets Layer (SSL/TLS) protocol, you can choose any of the following methods for using digital certificates.

Method 1: Use the default certificate auto-generated by the Network Management Card or network-enabled device.

When you enable SSL/TLS, you must reboot the Management Card or device. During rebooting, if no server certificate exists, the Management Card or device generates a default server certificate that is self-signed but that you cannot configure.

Method 1 has the following advantages and disadvantages.

Advantages:

- Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.
- You can use this default server certificate to provide encryption-based security while you are setting up either of the other two digital certificate options, or you can continue to use it for the benefits of encryption that SSL/TLS provides.

Disadvantages:

- The Management Card or device takes up to 1 minute to create this 2048-bit certificate, and the Web interface is not available during that time (This delay occurs the first time you log on after you enable SSL/TLS).
- This method does not include the authentication provided by a CA certificate (a certificate signed by a Certificate Authority) that Methods 2 and 3 provide. There is no CA Certificate cached in the browser. Therefore, when you log on to the Management Card or device, the browser generates a security alert, indicating that a certificate signed by a trusted authority is not available, and asks if you want to proceed. To avoid this message, you must install the default server certificate into the certificate store (cache) of the browser of each user who needs access to the Management Card or device, and each user must always use the fully qualified domain name of the server when logging on to the Management Card or device.
- The default server certificate has the serial number of the Management Card or device in place of a valid Common Name or Subject Alt Name (the DNS name or the IP address of the Management Card or device). Therefore, although the Management Card or device can control access to its Web interface by user name, password, and account type (e.g., Super User, Administrator, Device-Only User, or Read-Only User), the browser cannot authenticate which Management Card or device is sending or receiving data.
- The length of the public key (RSA key) that is used for encryption when setting up an SSL/TLS session is 2048 bits, by default.
Method 2: Use the NMC Security Wizard CLI utility to create a CA certificate and a server certificate

Use the NMC Security Wizard CLI utility to create two digital certificates:

- **CA root certificate** (Certificate Authority root certificate) that the NMC Security Wizard CLI utility uses to sign all server certificates and which you then install into the certificate store (cache) of the browser of each user who needs access to the Management Card or device.

- A **server certificate** that you upload to the Management Card or device. When the NMC Security Wizard CLI utility creates a server certificate, it uses the CA root certificate to sign the server certificate.

The Web browser authenticates the Management Card or device sending or requesting data:

- To identify the Management Card or device, the browser uses the **Common Name or Subject Alt Name** (IP address or DNS name of the Management Card or device) that was specified in the server certificate’s **distinguished name** when the certificate was created.

- To confirm that the server certificate is signed by a “trusted” signing authority, the browser compares the signature of the server certificate with the signature in the root certificate cached in the browser. An expiration date confirms whether the server certificate is current.

Method 2 has the following advantages and disadvantages.

Advantages

Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.

- You choose the length of the **public key** (RSA key) that is used for encryption when setting up an SSL/TLS session (use 2048-bit to provide complex encryption and a high level of security).

- The server certificate that you upload to the Management Card or device enables SSL/TLS to authenticate that data is being received from and sent to the correct Management Card or device. This provides an extra level of security beyond the encryption of the user name, password, and transmitted data.

- The root certificate that you install to the browser enables the browser to authenticate the server certificate of the Management Card or device to provide additional protection from unauthorized access.

Disadvantage

Because the certificates do not have the digital signature of a commercial Certificate Authority, you must load a root certificate individually into the certificate store (cache) of each user’s browser. (Browser manufacturers already provide root certificates for commercial Certificate Authorities in the certificate store within the browser, as described in Method 3.)

Method 3: Use the NMC Security Wizard CLI utility to create a certificate-signing request to be signed by the root certificate of an external Certificate Authority and to create a server certificate.

Use the NMC Security Wizard CLI utility to create a request (a `.csr` file) to send to a Certificate Authority. The Certificate Authority returns a signed certificate (a `.crt` file or `.cer` file typically) based on information you submitted in your request. You then use the NMC Security Wizard CLI utility to create a server certificate (a `.p15` file) that includes the signature from the root certificate returned by the Certificate Authority. Upload the server certificate to the Management Card or device.

Note: You can also use Method 3 if your company or agency operates its own Certificate Authority. Use the NMC Security Wizard CLI utility in the same way, but use your own Certificate Authority in place of a commercial Certificate Authority.

Method 3 has the following advantages and disadvantages.
Advantages

Before they are transmitted, the user name and password and all data to and from the Management Card or device are encrypted.

- You have the benefit of authentication by a Certificate Authority that already has a signed root certificate in the certificate cache of the browser. (The CA certificates of commercial Certificate Authorities are distributed as part of the browser software, and a Certificate Authority of your own company or agency has probably already loaded its CA certificate to the browser store of each user’s browser.) Therefore, you do not have to upload a root certificate to the browser of each user who needs access to the Management Card or device.
- You choose the length of the public key (RSA key) that is used for setting up an SSL/TLS session (use 2048-bit to provide complex encryption and a high level of security).
- The server certificate that you upload to the Management Card or device enables SSL/TLS to authenticate that data are being received from and sent to the correct Management Card or device. This provides an extra level of security beyond the encryption of the user name, password, and transmitted data.
- The browser matches the digital signature on the server certificate that you uploaded to the Management Card or device with the signature on the CA root certificate that is already in the browser’s certificate cache to provide additional protection from unauthorized access.

Disadvantages

Setup requires the extra step of requesting a signed root certificate from a Certificate Authority.

- An external Certificate Authority may charge a fee for providing signed certificates.

Firewalls

Although some methods of authentication provide a higher level of security than others, complete protection from security breaches is almost impossible to achieve. Well-configured firewalls are an essential element in an overall security scheme.

Logs: The Active Firewall Policy Log lists the most recent firewall events, including the protocol, traffic, action, and rule priority, in reverse chronological order.

Note: This log is not persistent and can hold up to 50 events.

Configuration: Enable or disable the overall firewall functionality.

Active Policy: Select an active policy from the available firewall policies.

Active Rules: Lists the individual rules that are being enforced based on the current active policy.

Create/Edit Policy: Create a new policy or edit an existing one.

Active Policy: Load a policy file (.fwl suffix) from a source external to this device.

Test policy: Temporarily enforce the rules of a chosen policy.
Using the NMC Security Wizard CLI Utility

Overview

The NMC Security Wizard CLI utility creates components needed for high security for a Management Card or network-enabled device on the network when you are using Secure Sockets Layer / Transport Layer Security (SSL/TLS) and related protocols and encryption routines.

Note: The NMC Security Wizard CLI utility can create security components for Management Cards or devices running firmware 1.1.0.16 or higher.

Authentication by Certificates and Host Keys

Authentication verifies the identity of a user or a network device (such as an APC Network Management Card or network-enabled device). Passwords typically identify computer users. However, for transactions or communications requiring more stringent security methods on the Internet, the Management Card or device supports more secure methods of authentication.

- Secure Sockets Layer / Transport Layer Security (SSL/TLS), used for secure Web access, uses digital certificates for authentication. A digital CA root certificate is issued by a Certificate Authority (CA) as part of a public key infrastructure, and its digital signature must match the digital signature on a server certificate on the Management Card or device.
- Secure SHell (SSH), used for remote terminal access to the command line interface of the Management Card or device, uses a public host key for authentication.

How certificates are used

Most Web browsers, including all browsers supported by Network Management Cards or network-enabled devices, contain a set of CA root certificates from all of the commercial Certificate Authorities. Authentication of the server (in this case, the Management Card or device) occurs each time a connection is made from the browser to the server. The browser checks to be sure that the server’s certificate is signed by a Certificate Authority known to the browser. For authentication to occur:

- Each server (Management Card or device) with SSL/TLS enabled must have a server certificate on the server itself.
- Any browser that is used to access the Web interface of the Management Card or device must contain the CA root certificate that signed the server certificate. If authentication fails, a browser message asks you whether to continue even though it cannot authenticate the server.

If your network does not require the authentication provided by digital certificates, you can use the default certificate that the Management Card or device generates automatically. The default certificate’s digital signature will not be recognized by browsers, but a default certificate enables you to use SSL/TLS for the encryption of transmitted user names, passwords, and data. (If you use the default certificate, the browser prompts you to agree to unauthenticated access before it logs you on to the Web interface of the Management Card or device.)

How SSH host keys are used

An SSH host key authenticates the identity of the server (the Management Card or device) each time an SSH client contacts that server. Each server with SSH enabled must have an SSH host key on the server itself.
Files you Create for SSL/TLS and SSH Security

Use the NMC Security Wizard CLI to create these components of an SSL/TLS and SSH security system:

- The server certificate for the Management Card or network-enabled device, if you want the benefits of authentication that such a certificate provides. You can create either of the following types of server certificate:

a. A server certificate signed by a custom CA root certificate also created with the NMC Security Wizard CLI. Use this method if your company or agency does not have its own Certificate Authority and you do not want to use an external Certificate Authority to sign the server certificate.

b. A server certificate signed by an external Certificate Authority. This Certificate Authority can be one that is managed by your own company or agency or can be one of the commercial Certificate Authorities whose CA root certificates are distributed as part of a browser’s software.

- A certificate signing request containing all the information required for a server certificate except the digital signature. You need this request if you are using an external Certificate Authority.

- A CA root certificate

- An SSH host key that your SSH client program uses to authenticate the Management Card or device when you log on to the command line interface.

Note: You define whether the public keys for SSL/TLS certificates and the host keys for SSH that are created with the NMC Security Wizard CLI are 2048-bit RSA keys (the default setting), or 1024-bit RSA keys, which provide complex encryption and a higher level of security.

Note: NMC Security Wizard CLI uses the SHA-2 signature algorithm.

Note: If you do not create and use SSL/TLS server certificates and SSH host keys with the NMC Security Wizard CLI, the Management Card or device generates 2048-bit RSA keys using the SHA-2 signature algorithm.

Only APC server management and key management products can use server certificates, host keys, and CA root certificates created by the NMC Security Wizard CLI. These files will not work with products such as OpenSSL® and Microsoft® Internet Information Services (IIS).

Create a Root Certificate and Server Certificates

Summary

Use this procedure if your company or agency does not have its own Certificate Authority and you do not want to use a commercial Certificate Authority to sign your server certificates.

Note: Define the size of the public RSA key that is part of the certificate generated by the NMC Security Wizard CLI. You can generate a 1024-bit key, or you can generate a 2048-bit key, which provides complex encryption and a higher level of security. (The default key generated by the Management Card or network-enabled device, if you do not use the NMC Security Wizard CLI, is 2048 bits.)
Create a CA root certificate that will sign all server certificates to be used with Management Cards or devices. During this task, two files are created:

- The file with the .p15 suffix is an encrypted file that contains the Certificate Authority’s private key and public root certificate. This file signs server certificates.
- The file with the .crt suffix contains only the Certificate Authority’s public root certificate. Load this file into each Web browser that will be used to access the Management Card or device so that the browser can validate the server certificate of that Management Card or device.
- Create a server certificate, which is stored in a file with a .p15 suffix. During this task, you are prompted for the CA root certificate that signs the server certificate.
- Load the server certificate onto the Management Card or device.
- For each Management Card or device that requires a server certificate, repeat the tasks that create and load the server certificate.

Procedure for Creating the CA Root Certificate

1. If the NMC Security Wizard CLI is not already extracted to a folder on your computer, double-click the self-extracting archive to extract the necessary files.
2. Open a command prompt and navigate to the folder containing the extracted NMC Security Wizard CLI files.
3. Issue the below command and complete the fields to create the CA Root Certificate:

   ```
   NMCSecurityWizardCLI --caroot -o <file> -n <common_name> -c <country> [-m <state_province> -l <locality> -g <organization> -u <organization_al_unit> -e <email> -f <validity_from> -t <validity_to> -i <uri_name> -d <dns_name> -a <ip_address>]
   ```

 Note: Enter a name for this file using the -o flag, which will contain the certificate authority’s public root certificate and private key. The file must not contain a suffix/file extension and, by default, will be created in the current folder.

 Note: You can use the -k flag to specify the length of the key to generate (use 1024 bits or 2048 bits, which is the default setting, to provide complex encryption and a high level of security).

 Note: When you provide the information to configure the CA root certificate, the Country and Common Name fields are the only required fields. For the Common Name field, enter an identifying name of your company or agency. Use only alphanumeric characters, with no spaces.

 Note: By default, a CA root certificate is valid for 4 years from the current date, but you can edit the Validity Period Start and Validity Period End fields.
Load the CA Root Certificate to your Browser

Load the .crt file to the browser of each user who needs to access the management card or device.

Note: See the help system of the browser for information on how to load the .crt file into the browser’s certificate store (cache). Following is a summary of the procedure for Microsoft Internet Explorer.

1. Select **Tools**, then **Internet Options** from the menu bar.
2. In the dialog box, on the **Content** tab click **Certificates** and then **Import**.
3. The Certificate Import Wizard guides you through the rest of the procedure. The file type to select is X.509, and the CA Public Root Certificate is the .crt file created in the procedure Create a Root Certificate and Server Certificates.

Create an SSL/TLS Server Certificate

1. Open a command prompt and navigate to the folder containing the extracted NMC Security Wizard CLI files.
2. Issue the below command and complete the fields to create the SSL Server Certificate:

   ```
   NMCSecurityWizardCLI --sslcert -o <file> -r <file> -n <common_name> -c <country> [-m <state_province> -l <locality> -g <organization> -u <organizational_unit> -e <email> -f <validity_from> -t <validity_to> -i <uri_name> -d <dns_name> -a <ip_address>]
   ```

 Note: Enter a name for this file using the `-o` flag, which will contain the SSL server certificate and corresponding browser certificate. The file must not contain a suffix/file extension and, by default, will be created in the current folder with the .p15 and .crt extensions respectively.

 Note: Enter the name for the CA Public Root Certificate using the `-r` flag. The value must not contain the suffix/file extension of the actual file.

 Note: You can use the `-k` flag to specify the length of the key to generate (use 1024 bits or 2048 bits, which is the default setting, to provide complex encryption and a high level of security).

 Note: When you provide the information to configure the CA root certificate, the **Country** and **Common Name** fields are the only required fields. For the **Common Name** field, enter an identifying name of your company or agency. Use only alphanumeric characters, with no spaces.

 Note: By default, a CA root certificate is valid for 4 years from the current date, but you can edit the **Validity Period Start** and **Validity Period End** fields.

 Note: Because the configuration information is part of the signature, the information for every certificate must be unique. The configuration of a server certificate cannot be the same as the configuration of the CA root certificate. (The expiration date is not considered part of the unique configuration. Some other configuration information must also differ.

3. The output will then display the certificate issuer and certificate subject information. If any information is incorrect, rerun the command with the correct values.

Load the Server Certificate to the Management Card or Device

1. Select **Configuration > Network > Web > SSL Certificate tab**
2. Select **Add or Replace Certificate File**, and browse to the server certificate, the .p15 file you created in the procedure Create a Root Certificate and Server Certificates.

 Note: You can use FTP or Secure CoPy (SCP) instead to transfer the server certificate. An example command for SCP to transfer a certificate named **cert.p15** to a Management Card or device with an IP address of 156.205.6.185 would be: `scp cert.p15 apc@156.205.6.185:/ssl/`

 Note: SCP utilities may have different command syntax.
Create a Server Certificate and Signing Request

Summary

Use this procedure if your company or agency has its own Certificate Authority or if you plan to use a commercial Certificate Authority to sign your server certificates.

- Create a Certificate Signing Request (CSR). The CSR contains all the information for a server certificate except the digital signature. This process creates two output files:
 a. The file with the .p15 suffix contains the private key of the Management Card or device.
 b. The file with the .csr suffix contains the certificate signing request, which you send to an external Certificate Authority.
- When you receive the signed certificate from the Certificate Authority, import that certificate. Importing the certificate combines the .p15 file containing the private key and the file containing the signed certificate from the external Certificate Authority. The output file is a new encrypted server certificate file with a .p15 suffix.
- Load the server certificate onto the Management Card or device.
- For each Management Card or device that requires a server certificate, repeat the tasks that create and load the server certificate.

Procedure for Creating the Certificate Signing Request (CSR)

1. If the NMC Security Wizard CLI is not already extracted to a folder on your computer, double-click the self-extracting archive to extract the necessary files.
2. Open a command prompt and navigate to the folder containing the extracted NMC Security Wizard CLI files.
3. Issue the below command and complete the fields to create the Certificate Signing Request:

   ```
   NMCSecurityWizardCLI --csr -o <file> -n <common_name> -c <country> 
   [-m <state_province> -l <locality> -g <organization> -u <organization-
   al_unit> -e <email> -i <uri_name> -d <dns_name> -a <ip_address>]
   ```

 Note: Enter a name for this file using the `-o` flag, which will contain the certificate signing request and corresponding private key. The file must not contain a suffix/file extension and, by default, will be created in the current folder with the .csr and .p15 extensions respectively.

 Note: You can use the `-k` flag to specify the length of the key to generate (use 1024 bits or 2048 bits, which is the default setting, to provide complex encryption and a high level of security).

 Note: When you provide the information to configure the CA root certificate, the Country and Common Name fields are the only required fields. For the Common Name field, enter an identifying name of your company or agency. Use only alphanumeric characters, with no spaces.

 Note: By default, a CA root certificate is valid for 4 years from the current date, but you can edit the Validity Period Start and Validity Period End fields.

4. Send the certificate signing request to an external Certificate Authority, either a commercial Certificate Authority or, if applicable, a Certificate Authority managed by your own company or agency.

 Note: See the instructions provided by the Certificate Authority regarding the signing and issuing of server certificates.
Import the Signed Certificate

When the external Certificate Authority returns the signed certificate, import the certificate. This procedure combines the signed certificate and the private key into an SSL/TLS server certificate that you then upload to the Management Card or device.

1. Open a command prompt and navigate to the folder containing the extracted NMC Security Wizard CLI files
2. Issue the below command and complete the fields to create the SSL/TLS Server Certificate:

 NMCSecurityWizardCLI --import -o <file> -s <file> -p <file>

 Note: Enter a name for this file using the `-o` flag, which will contain the SSL/TLS server certificate. The file must not contain a suffix/file extension and, by default, will be created in the current folder with the .p15 extension.

 Note: Enter a name for this file using the `-s` flag, which contains the signed server certificate. The file must contain a suffix/file extension of .cer or .crt.

 Note: Enter a name for this file using the `-p` flag, which contains the private key. The file must not contain a suffix/file extension, but locally will have the .p15 extension.

3. The output will then display the Issuer Information on the summary screen which confirms that the external Certificate Authority signed the certificate.

Load the Server Certificate to the Management Card or Device

1. Select: **Configuration > Network > Web > SSL Certificate**
2. Select **Add or Replace Certificate File**, and browse to the server certificate, the .p15 file you created in the procedure Create a Root Certificate and Server Certificates.

 Note: You can use FTP or Secure CoPy (SCP) instead to transfer the server certificate. An example command for SCP to transfer a certificate named cert.p15 to a Management Card or device with an IP address of 156.205.6.185 would be: `scp cert.p15 apc@156.205.6.185:/ssl/`.

 Note: SCP utilities may have different command syntax.

Create an SSH Host Key

Summary

This procedure is optional. If you select SSH encryption, but do not create a host key, the Management Card or device generates a 2048-bit RSA key when it reboots. You define whether the host keys for SSH that are created with the NMC Security Wizard CLI are 1024-bit or 2048-bit RSA keys.

Note: You can generate a 1024-bit key, or you can generate a 2048-bit key, which provides complex encryption and a higher level of security.

- Use the NMC Security Wizard CLI to create a host key, which is encrypted and stored in a file with the .p15 suffix.
- Load the host key onto the Management Card or device.

Procedure for Creating the Host Key

1. If the NMC Security Wizard CLI is not already extracted to a folder on your computer, double-click the self-extracting archive to extract the appropriate files.
2. Open a command prompt and navigate to the folder containing the extracted NMC Security Wizard CLI files.
3. Issue the below command and complete the fields to create the SSH Server Host Key:

 NMCSecurityWizardCLI --sshkey -o <file>
Note: Enter a name for this file using the `-o` flag, which will contain the SSH server host key. The file must not contain a suffix/file extension and, by default, will be created in the current folder with the `.p15` extension.

Note: You can use the `-k` flag to specify the length of the key to generate (use 1024 bits or 2048 bits, which is the default setting, to provide complex encryption and a high level of security).

Load the Host Key to the Management Card or Device

1. Select: **Configuration > Network > Console > SSH Host Key**
2. Select **Add or Replace Host Key**, and browse to the host key, the `.p15` file you created in the procedure Create the host key.
3. At the bottom of the **User Host Key** page, note the SSH fingerprint. Log on to the Management Card or device through your SSH client program and verify that the correct host key was uploaded by verifying that these fingerprints match the fingerprints that the client program displays.

Note: Alternatively, you can use FTP or Secure CoPy (SCP) to transfer the host key file to the Management Card or device. An example command for SCP to transfer a host key named `hostkey.p15` to a Management Card or device with an IP address of 156.205.6.185 would be: `scp hostkey.p15 apc@156.205.6.185:/ssh/`

Note: SCP utilities may have different command syntax.
Command Line Interface Access and Security

Introduction

Users with Super User, Administrator or Device User accounts can access the command line interface through Telnet or Secure SHell (SSH), depending on which is enabled. (A Super User or Administrator can enable these access methods by selecting the Configuration > Network > Console > Access. By default, Telnet is disabled, and SSH is enabled.

Telnet for basic access. Telnet provides the basic security of authentication by user name and password, but not the high-security benefits of encryption.

SSH for high-security access. If you use the high security of SSL/TLS for the Web interface, use Secure SHell (SSH) for access to the command line interface. SSH encrypts user names, passwords and transmitted data.

The interface, user accounts, and user access rights are the same whether you access the command line interface through SSH or Telnet, but to use SSH, you must first configure SSH and have an SSH client program installed on your computer.

Telnet and Secure SHell (SSH)

If SSH is enabled, you should disable Telnet access the command line interface, for improved security. Enabling SSH enables SCP automatically.

Note: When SSH is enabled and its port is configured, no further configuration is required to use Secure CoPy (SCP). SCP uses the same configuration as SSH. To use SSH, you must have an SSH client installed. Most Linux and other UNIX® platforms include an SSH client, but Microsoft Windows operating systems do not. SSH clients are available from various vendors.

To configure the options for Telnet and Secure SHell (SSH):

- On the Configuration tab of the Web interface, select Network on the top menu bar, and select Access under the Console heading.
- Configure the port settings for Telnet and SSH.

Note: For information on the extra security a non-standard port provides, see Port assignments.

- Select: Configuration > Network > Console > SSH Host Key. specify a host key file previously created with the APC Security Wizard, and load it to the Management Card or device.

If you do not specify a host key file here, if you install an invalid host key, or if you enable SSH with no host key installed, the Management Card or device generates an RSA host key of 2048 bits. For the Management Card or device to create a host key, it must reboot. The Management Card or device can take up to 1 minute to create this host key, and SSH is not accessible during that time.

Note: Alternatively, from a command line interface such as the command prompt on Windows operating systems, you can use FTP or Secure CoPy (SCP) to transfer the host key file.

- Display the fingerprint of the SSH host key for SSH version 2. Most SSH clients display the fingerprint at the start of a session. Compare the fingerprint displayed by the client to the fingerprint that you recorded from the Web interface or command line interface of the Management Card or device.
Web Interface Access and Security

HTTP and HTTPS (with SSL/TLS)

HyperText Transfer Protocol (HTTP) provides access by user name and password, but does not encrypt user names, passwords, and data during transmission. HyperText Transfer Protocol over Secure Sockets Layer (HTTPS) encrypts user names, passwords, and data during transmission, and provides authentication of the Management Card or device by means of digital certificates. By default, HTTP is disabled, and HTTPS is enabled.

Note: See Creating and Installing Digital Certificates to choose among the several methods for using digital certificates.

To configure HTTP and HTTPS:

- On the **Configuration** tab, select **Network** on the top menu bar and **Access** under the **Web** tab.
- Enable either HTTP or HTTPS and configure the ports that each of the two protocols will use. Changes take effect the next time you log on. When SSL/TLS is activated, your browser displays a small lock icon.

Note: For information on the extra security a non-standard port provides, see Port assignments.

- Select: **Configuration > Network > Web > SSL Certificate** to determine whether a server certificate is installed on the Management Card or device. If a certificate was created with the NMC Security Wizard CLI utility but is not installed:
 - In the Web interface, browse to the certificate file and upload it to the Management Card or device.
 - Alternatively, use the Secure CoPy (SCP) protocol or FTP to upload the certificate file to the /ssl folder of the Management Card or device.

Note: Creating and uploading a server certificate in advance reduces the time required to enable HTTPS. If you enable HTTPS with no server certificate loaded, the Management Card or device creates one when it reboots. **The Management Card or device can take up to 1 minute to create the certificate, and the SSL/TLS server is unavailable during that time.**

Note: A certificate that the Management Card or device generates has some limitations. See Method 1: Use the default certificate auto-generated by the Network Management Card or network-enabled device.

- If a valid digital server certificate is loaded, the **Status** field displays the link **Valid Certificate**. Click the link to display the parameters of the certificate.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued To:</td>
<td>Common Name (CN): The IP Address or DNS name of the Management Card or device. This field controls how you must log on to the Web interface.</td>
</tr>
<tr>
<td></td>
<td>• If an IP address was specified for this field when the certificate was created, use an IP address to log on.</td>
</tr>
<tr>
<td></td>
<td>• If the DNS name was specified for this field when the certificate was created, use the DNS name to log on.</td>
</tr>
<tr>
<td></td>
<td>Note: Full certificate properties can be verified via the browser.</td>
</tr>
<tr>
<td></td>
<td>If you do not use the IP address or DNS name that was specified for the certificate, authentication fails, and you receive an error message asking if you want to continue. For a server certificate generated by default by the Management Card or device, this field displays the serial number of the Management Card or device instead.</td>
</tr>
<tr>
<td></td>
<td>Organization (O), Organizational Unit (OU), and Locality, Country: The name, organizational unit, and location of the organization using the server certificate. For a server certificate generated by default by the Management Card or device, the Organizational Unit (OU) field displays “Internally Generated Certificate.”</td>
</tr>
<tr>
<td></td>
<td>Serial Number: The serial number of the server certificate.</td>
</tr>
<tr>
<td>Issued By:</td>
<td>Common Name (CN): The Common Name as specified in the CA root certificate. For a server certificate generated by default by the Management Card or device, this field displays the serial number of the Management Card or device instead.</td>
</tr>
<tr>
<td></td>
<td>Organization (O) and Organizational Unit (OU): The name and organizational unit of the organization that issued the server certificate. If the server certificate was generated by default by the Management Card or device, this field displays “Internally Generated Certificate.”</td>
</tr>
<tr>
<td>Validity:</td>
<td>Issued on: The date and time at which the certificate was issued.</td>
</tr>
<tr>
<td></td>
<td>Expires on: The date and time at which the certificate expires.</td>
</tr>
<tr>
<td>Fingerprints</td>
<td>Each of the two fingerprints is a long string of alphanumeric characters, punctuated by colons. A fingerprint is a unique identifier to further authenticate the server. Record the fingerprints to compare them with the fingerprints contained in the certificate, as displayed in the browser.</td>
</tr>
<tr>
<td></td>
<td>SHA1 Fingerprint: A fingerprint created by a Secure Hash Algorithm (SHA-1).</td>
</tr>
<tr>
<td></td>
<td>MD5 Fingerprint: A fingerprint created by a Message Digest 5 (MD5) algorithm.</td>
</tr>
<tr>
<td></td>
<td>Note: This does not represent the signature hash algorithm used on the certificate.</td>
</tr>
</tbody>
</table>
Supported RADIUS Functions and Servers

Supported functions

APC supports the authentication and authorization functions of Remote Authentication Dial-In User Service (RADIUS). Use RADIUS to administer remote access for each Management Card or network-enabled device centrally. When a user accesses the Management Card or device, an authentication request is sent to the RADIUS server to determine the permission level of the user.

Note: For more information on permission levels, see Types of user accounts.

Supported RADIUS Servers

FreeRADIUS v1.x and v2.x, and Microsoft Server 2008 and 2012 Network policy Server (NPS) are supported. Other commonly available RADIUS applications may work, but may not have been fully tested.

Configure the Management Card or Device

Authentication

Note: RADIUS user names used with APC Network Management Cards or devices are limited to 64 characters.

On the Configuration tab, select Security on the top menu bar. Then, under Remote Users on the left navigation menu, select authentication to define an authentication method:

- **Local Authentication Only**: RADIUS is disabled. Local authentication is enabled.
- **RADIUS, then Local Authentication**: Both RADIUS and local authentication are enabled. Authentication is requested from the RADIUS server first; local authentication is used only if the RADIUS server fails to respond.
- **RADIUS Only**: RADIUS is enabled. Local authentication is disabled.

Note: If RADIUS Only is selected, and the RADIUS server is unavailable, improperly identified, or improperly configured, remote access is unavailable to all users. You must use a serial connection to the command line interface and change the RADIUS access setting to local or radiusLocal to regain access. For example, the command to change the access setting to local would be: radius -a local.

Note: RADIUS configuration supports Password Authentication Protocol (PAP) only.

RADIUS

To configure RADIUS, on the Configuration tab, select Security on the top menu bar. Then, under Remote Users on the left navigation menu, select RADIUS.

<table>
<thead>
<tr>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS</td>
<td>The server name or IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Port</td>
<td>The port of the RADIUS server (1812 by default).</td>
</tr>
<tr>
<td>Secret</td>
<td>The secret shared between the RADIUS server and the Management Card or device.</td>
</tr>
<tr>
<td>Reply Timeout</td>
<td>The time in seconds that the Management Card or device waits for a response from the RADIUS server.</td>
</tr>
</tbody>
</table>
If two configured servers are listed and RADIUS, then Local Authentication or RADIUS Only is the enabled authentication method, you can change which RADIUS server will authenticate users by clicking the Switch Server Priority button.

Configure the RADIUS Server

You must configure your RADIUS server to work with the Management Card or device. The examples in this section may differ somewhat from the required content or format of your specific RADIUS server. In the examples, any reference to outlets applies only to APC devices that support outlet users.

• Add the IP address of the Management Card or device to the RADIUS server client list (file).
• Users must be configured with Service-Type attributes unless Vendor Specific Attributes (VSAs) are defined instead. If no Service-Type attribute is configured, the user has read-only access (to the Web interface only). The two acceptable values for Service-Type are Administrative-User (6), which gives the user Administrator permissions, and Login-User (1), which gives the user Device permissions.

Note: See your RADIUS server documentation for information about the RADIUS users file.

Example using Service-Type Attributes

In the following example of a RADIUS users file:
- UPSAdmin corresponds to Service-Type: Administrative-User, (6)
- UPSDevice corresponds to Service-Type: Login-User, (1)
- UPSReadOnly corresponds to Service-Type: null

UPSAdmin Auth-Type = Local, Password = "admin"
Service-Type = Administrative-User

UPSDevice Auth-Type = Local, Password = "device"
Service-Type = Login-User

UPSReadOnly Auth-Type = Local, Password = "readonly"

Examples using Vendor Specific Attributes

Vendor Specific Attributes (VSAs) can be used instead of the Service-Type attributes provided by your RADIUS server. This method requires a dictionary entry and a RADIUS users file. In the dictionary file, you can define the names for the ATTRIBUTE and VALUE keywords, but not the numeric values. If you change the numeric values, RADIUS authentication and authorization will not work correctly. VSAs take precedence over standard RADIUS attributes.

Dictionary file. Following is an example of a RADIUS dictionary file (dictionary.apc):
dictionary.apc
#
#
VENDOR APC 318
#
Attributes
#
ATTRIBUTE APC-Service-Type 1 integer APC
ATTRIBUTE APC-Outlets 2 string APC
VALUE APC-Service-Type Admin 1
VALUE APC-Service-Type Device 2
VALUE APC-Service-Type ReadOnly 3
#
For devices with outlet users only
#
VALUE APC-Service-Type Outlet 4

RADIUS Users file with VSAs

Following is an example of a RADIUS users file with VSAs:

VSAAdmin Auth-Type = Local, Password = "admin"
APC-Service-Type = Admin
VSADevice Auth-Type = Local, Password = "device"
APC-Service-Type = Device
VSAReadOnly Auth-Type = Local, Password = "readonly"
APC-Service-Type = ReadOnly
Give user access to device outlets 1, 2 and 3.
VSAOutlet Auth-Type = Local, Password = "outlet"
APC-Service-Type = Outlet,
APC-Outlets = "1,2,3"

Note: The information below applies to AP8xxx SKUs when using the Network Port Sharing (NPS) feature.

give user access to outlets 1,2, and 3 on unit 1,
outlet 7 on unit 2, outlets 1 through 6
on unit 3, and outlets 1,2,4 through 6, 7 through 10,
and 20 on unit 4
newOutletUser Auth-Type = Local, User-Password = "newoutlets"
APC-Service-Type = Outlet,
APC-Outlets = "1[1,2,3];2[7];3[1-6];4[1,2,4-6,7-10,20];"

Note: See the following related topics:

- **Types of User Accounts** for information on the three basic user permission levels (Super User/Administrator, Device User, and Read-Only User). If your APC device has an additional user
account type, e.g., outlet user for a Switched Rack PDU, see the User’s Guide provided with your device for information on the additional account type.

- **Supported RADIUS Servers** for information on RADIUS servers tested and supported by APC.

Example with UNIX shadow passwords

If UNIX shadow password files are used (/etc/passwd) with the RADIUS dictionary files, the following two methods can be used to authenticate users:

- If all UNIX users have administrative privileges, add the following to the RADIUS "user" file. To allow only Device Users, change the APC-Service-Type to **Device**.

 DEFAULT Auth-Type = System
 APC-Service-Type = Admin

- Add user names and attributes to the RADIUS "user" file, and verify the password against /etc/passwd. The following example is for users bconners and thawk:

 bconners Auth-Type = System
 APC-Service-Type = Admin
 thawk Auth-Type = System
 APC-Service-Type = Outlet
 APC-Outlets = "1,2,3"

Additionally, the Network Management Card provides a mechanism for RADIUS to be overridden on a per-user basis. This allows a specific account to login serially even when the NMC authentication is set to RADIUS. To enable this feature, navigate to Configuration > Security > Session Management and enable the Remote Authentication Override feature. Now you can go into each user account (Configuration > Security > Local Users > Management) and enable the Serial Remote Authentication Override check box for each user you want to allow this override for.
Appendix 1: Network Management Card
Security Deployment Guide

Overview

As network security continues to grow and change in the fast-paced IT industry, user requirements for security solutions are becoming a requirement for system delivery. The Network Management Card (NMC) interfaces are implemented to provide users with as much flexibility as possible. Industry standard security implementation coupled with the flexibility of the Network Management Card, enables products to exist in different user environments.

Best Practices for the Network Management Card

To maintain security throughout the deployment lifecycle, Schneider Electric recommends reviewing the following considerations for:

• Physical Security
• Device Security
• Network Security

Note: Different deployments may require different security considerations.
This document provides general security guidance to help you decide on an appropriate secure deployment based on your specific security requirements.

Physical Security

Deploy the equipment in a secure location

Custodians should secure equipment from unauthorized physical access.

• Access should be restricted to those who require access to maintain the equipment.
• Restricted areas should be clearly marked for authorized personnel only.
• Restricted areas should be secured by locked doors.
• Access to the restricted areas should produce a physical or electronic audit trail.

Secure access to the device front panel and console port

Deploy the device in a rack or cage that can be locked with a suitable key, or other physical methods. This will prevent access to the physical ports of the device.

Description of Risk

Attackers with physical access to covered equipment can access the device without authorization.

Recommendations

Physical security must be in place to control physical access to restricted areas and facilities containing devices. Devices should be locked behind cabinets or protected by physical restraints that prevent unauthorized access or removal from restricted areas. Access to areas containing covered equipment should only be granted to personnel who require access based on their job function.

Restricted areas should display signs that clearly indicate access is for authorized personnel only. Facilities containing covered devices should give minimum indication of their purpose, with no obvious signs identifying the presence of related functions.
Physical access control devices, such as key card readers, doors and cabinet locks, should be tested prior to use and on a periodic basis (e.g. annually). Resource custodians should produce physical or electronic audit trails to record all personnel’s physical access to restricted areas for security incident investigation. Inventory of who has physical access to control devices should be regularly reviewed, and any inappropriate access identified during the review should be promptly removed.

Device Security

Note: For more information on Device Security options, refer to the Network Management Card Security Hardening Guide.

Software Patch Updates

Schneider Electric strongly recommends that, prior to deployment, customers ensure their devices have been updated with the latest firmware versions.

Customers are also strongly advised to review security bulletins that relate to their Schneider Electric products. For information on new and updated security bulletins, visit the Schneider Electric Security Bulletins web page.

Network Management Card devices must only run software for which security patches are made available in a timely fashion. All currently available security patches must be applied on a schedule appropriate to the severity of the risk they mitigate.

Privileged Accounts

Privileged and super-user accounts (Administrator, root, etc.) must not be used for non-administrator activities. Network services must run under accounts assigned the minimum necessary privileges.

Also minimize the number of local accounts.

Certificates

Replace the Default SSL/TLS Certificate

Default SSL/TLS certificates are created during the initial configuration of the device. These certificates are not intended for use in production deployments and should be replaced. Schneider Electric recommends that customers configure the device to use certificates either from a reputable Certificate Authority (CA) or appropriate certificates from your enterprise CA.

Use of Authentication

Network services and local (console) device access must require authentication by means of passphrases or other secure authentication mechanisms unless the explicit purpose of the service/device is to provide unauthenticated access. Schneider Electric supports the authentication and authorization functions of Remote Authentication Dial-In User Service (RADIUS). You can configure the device to use RADIUS to authenticate remote users. [Configuration;Security;Remote Users;Authentication]

Minimum Protocol

Set the minimum allowed Transport Layer Security Protocol that Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS) uses to secure the communication between the browser and the device. This should be set to TLS 1.2. [Configuration;Network;Webaccess]

SSH Host Key

Schneider Electric recommends the use of an SSH host key. An SSH host key authenticates the identity of the server (the Management Card or device) each time an SSH client contacts that server. Each server with SSH enabled must have an SSH host key on the server itself. Use the NMC Security Wizard CLI utility to create this key.
Logging

Schneider Electric recommends enabling the generation (and therefore, the logging) of Syslog messages for events that have Syslog configured as a notification method. To configure notification methods for events, select the Administration tab, the Network menu on the top menu bar, and one of the Event Actions options on the left navigation menu. Use the available functionality to integrate with Syslog. Use TCP/IP only for logging.

Note: NTP should be enabled on the device.

No Unattended Console Sessions

Devices must be configured to “lock” or log out and require a user to re-authenticate if left unattended for more than a specified number of minutes. By default, this is set to 3 minutes.

No Unnecessary Services

If a network service is not necessary for the intended purpose or operation of the device, ensure that service is not running.

Network Security

When deploying a Network Management Card to a production environment, Schneider Electric strongly recommends that the below key configuration changes are made.

Firewalls

Deploy a Network Layer Firewall

Schneider Electric strongly recommends that the device is not exposed to the public Internet and is deployed behind an appropriate Stateful Packet Inspection (SPI) firewall.

Enable Device Firewall Software

The device’s Firewall software must be running and configured to block all inbound traffic that is not explicitly required for the intended use of the device (default: deny). Use of a network-based firewall does not obviate the need for host-based firewalls.

Use a ‘Default Deny’ policy.

Schneider Electric recommends that administrators configure the Application Firewall with a deny all policy at the global level to block all requests that do not match the Application Firewall policy.

Background and Description of Risk

Insufficient restrictions on system access over the network increases exposure to attacks from viruses, worms, and spyware, and may also facilitate undesired access to resources. Not having a rule in place that denies incoming traffic unnecessarily exposes a system to compromise.

Recommendations

Log firewall activity

A firewall will reduce the likelihood of compromise, but cannot prevent all attacks. Firewall logs, if enabled, can be used to identify successful attacks. In the event of a system compromise, these logs are used in forensic analysis to determine the extent of the compromise and nature of the attack.

Enable logs; retain at least 30 days of data; and collect at least source and destination IP addresses and ports, application, protocol, direction, date and time, and rule.

Log files should be read-only, and with write access granted only to the firewall service account.
Allow incoming traffic from Information Security scanners

Configure your firewalls to allow network-based scanning by Information Security (IS) vulnerability scanners. IS should scan hosts on the network and determine if hosts are vulnerable to common network threats, or if a system appears to have been compromised.

Network Segmentation

Schneider Electric strongly recommends that network traffic to the device’s management interface is separated, either physically or logically, from normal network traffic. A flat network architecture makes it easier for malicious actors to move around within the network; whereas with network segmentation, organizations can enhance network security by controlling access to sensitive data in the form of enabling or denying network access. A strong security policy entails segmenting the network into multiple zones, with varying security requirements, and rigorously enforcing the policy on what is allowed to move from zone to zone.

Other Security Detection and Monitoring Tools

Schneider Electric recommends that the environment is protected and monitored by appropriate physical, technical and administrative tools for network intrusion and monitoring such as IDS/IPS and appropriate SIEM solutions.
Appendix 2: Network Management Card
Security Hardening Checklist

Upgrade to the latest firmware version
Visit the Schneider Electric website to verify you are running the latest firmware for your device. This will help ensure security vulnerabilities and features are up-to-date for your protection.

Disable HTTP and enable HTTPS
By default, HTTP is disabled on Network Management Card-enabled products. Disable HTTP if it is enabled, and enable HTTPS for a more secure and encrypted channel for web communication.

Upload a custom HTTPS certificate
Your Network Management Card-enabled device creates an internally-generated HTTPS certificate. It is recommended that you use the NMC Security Wizard CLI utility to create a custom certificate to help strengthen authenticity.

Disable older versions of TLS
Transport Layer Security (TLS) is a cryptographic protocol that provides communication security over the internet. Ensure that older versions of TLS are disabled on your Network Management Card-enabled device, and use the latest version available.

Disable Telnet and enable SSH
By default, Telnet is disabled on Network Management Card-enabled products. Disable Telnet if it is enabled, and enable SSH for a more secure and encrypted channel for web communication.

Disable FTP
Disable FTP when it is not in use to help harden security on your device. If SSH is enabled, SCP, which is more secure than FTP, can be used for file transfers. Note: By default, FTP is disabled.

Disable SNMPv1 and enable SNMPv3
If enabled and configured, your device can be accessed via SNMP. It is recommended to use SNMPv3 as it is more secure than SNMPv1. By default, SNMPv1 and SNMPv3 are disabled.

Configure SNMPv3 to use AES/SHA
Configure SNMPv3 to use the most secure algorithms, AES and SHA, to provide encryption and authentication.

Use custom network ports where applicable
By using a non-standard port, your device may not be detected by scans looking only for standard ports. This applies to protocols such as HTTPS, SSH, SMTP, Syslog, etc.

Change the Super User account password
After installation and initial configuration of your Network Management Card-enabled device, immediately change the default Super User account password. Note: You will be prompted to change the Super User password at first login to the NMC.
Disable Super User account

Ensure there is at least one Administrator account enabled on your device. Once an Administrator account is configured, it is recommended that the Super User account is disabled. The Administrator account has the same privileges as the Super User account.

Delete Read-Only/Device User accounts (if applicable)

Read-Only and Device User accounts are automatically created on your Network Management Card-enabled device. If not required, disabled or delete these accounts to manage access control. Note: The Read-Only and Device user accounts are disabled by default.

Enable Strong Passwords

Enable this feature to ensure strong passwords are created. All passwords will be required to be a minimum length and contain special characters to make passwords harder to guess.

Enable Force Password Change

Enable this feature to force all passwords to be changed after a user-specified number of days.

Disable unused network addressing protocols (IPv4/IPv6)

To help secure your device, disable unused addressing protocols such as IPv4 and IPv6.

Disable Ping Response (IPv4)

IPv4 Ping Response allows your device to respond to network pings. Disable this feature to help make your device undetectable.

Enable internal firewall with appropriate access rules

Your Network Management Card-enabled device has an inbuilt firewall that can be used to restrict access to and from your device for various protocols and addresses.

Copyright © 1990, 1993, 1994 The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by Mike Olson.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment:
 This product includes software developed by the University of California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
APC by Schneider Electric
Worldwide Customer Support

Customer support for this or any other product is available at no charge in any of the following ways:

• Visit the APC by Schneider Electric web site, to access documents in the APC Knowledge Base and to submit customer support requests.
 – www.apc.com (Corporate Headquarters)
 Connect to localized APC by Schneider Electric web site for specific countries, each of which provides customer support information.
 – www.apc.com/support/
 Global support searching APC Knowledge Base and using e-support.

• Contact the APC by Schneider Electric Customer Support Center by telephone or e-mail.
 – Local, country-specific centers: go to www.apc.com/support/contact for contact information.

For information on how to obtain local customer support, contact the APC by Schneider Electric representative or other distributor from whom you purchased your APC by Schneider Electric product.