

EcoStruxure Power SCADA Operation

A key component of EcoStruxure Power

Confidential Property of Schneider Electric

Power SCADA Operation Offer Overview

1	Introduction to Power SCADA
2	Power of a SCADA
3	Safety Applications
4	Reliability Applications: Overview
5	Reliability Applications: Events Analysis
6	Efficiency & Compliance Applications
7	Compliance: Cyber Resiliency Deep Dive

We have an opportunity to co-create the future as the new energy world becomes

More Electric

2X faster growth of electricity demand compared to energy demand by 2040

Source: IEA WEO 2014

More DIGITIZED

10X

more connected devices than people by 2025

Source: United Nations, IHS

More DECARBONIZED

82%

of untapped energy efficiency potential in buildings (and more than 50% in industry)

Source: World Energy Outlook 2012

More DECENTRALIZED

70% of new capacity additions will be renewable forms by 2040

Source: BNEF

Life Is On Schneider

Innovation at Every Level: Power SCADA Operation

Power SCADA Operation (PSO) brings edge control to power distribution

Power SCADA Operation for real-time situational awareness

The power of a **SCADA** uniquely designed for **Power Management Applications**

Power SCADA Operation enables Facilities teams in Power Critical Facilities to monitor, control, and troubleshoot issues in real-time with their electrical distribution systems to maximize power reliability and operational efficiency.

Power Monitoring & Alarming

- High performant real-time communications
- Native system redundancy and scalable architecture
- Extensive protocol support & open data exchange
- Highly customizable with scripting and an open API
- Cyber resilient networks and servers

Source Control

- Monitor complex auto-transfer schemes
- Remotely and safely control breakers

Avoid Disruption via Events Analysis

- Default, rich data integration for connected devices (e.g. Masterpact MTZ, ION9000, PM8000, etc.).
- Sequence of Events Recording (SER) (1ms)
- Power Quality Waveform Analysis (COMTRADE)

l ife Is On

Power SCADA: Markets & Users Mission Critical Facilities

⑤云らょうないゆう

Facility manager

The Power of a SCADA

Redundant, scalable, open and high performance

Power SCADA High Level Architecture

Overview of the Components in a Power SCADA system

Native Architectural Redundancy

Providing peace-of-mind that your system is reliable when the worst case scenario happens

Open Standard Protocols and Data Exchange

61850 Ed.2 and OPC UA available August 2018

Large variety of protocols allows for vendor agnostic equipment communication

Open Data Exchange

OPC support

- > OPC UA client
- > OPC DA v2 client & server
- > OPC AE v1 server

Database connectivity

> ODBC, OLE-DB, SQL

Other Schneider Electric software

> Web Services to integrate alarms with EcoStruxure Building Operation

Flexible and Extensible

Multiple means of extending and customizing your system

- > Cicode is a built-in and well-documented scripting language requiring no previous programming experience to use.
- Cicode allows you to access all real time data within Power SCADA.

- > CtAPI is a set of API's intended for programmers to create applications extending Power SCADA using industry standard programming languages (C, C#, etc.)
- > Requires programming experience.

Efficiency and Compliance Applications

Visualize energy usage, power demand and make actionable cost savings decisions

Maximize Energy Efficiency

Much more than your typical SCADA Historian

Via Advanced Reporting and Dashboards module:

- **Provide energy transparency** on where and how much energy and other utilities (WAGES) are generated, distributed and consumed.
- Set energy reduction targets and adjust operations for continuous efficiency improvements.
- Showcase energy performance to a broad group of stakeholders via Energy Kiosk displays.
- Create accountability by allocating costs to departments or processes
- Avoid Utility penalties and billing discrepancies due to peak demand, power factor and errors in utility bills

Simplify Regulatory Compliance

Standards relevant to your operation

Via **Advanced Reporting and Dashboards** module:

- Monitoring and reporting tools for energy efficiency and green building standards (ISO 50001, ISO 50002, ISO 50006, SEP, LEED, NABERS, etc)
- Ensure power quality compliance with standards to avoid unexpected downtime (EN50160, IEEE519, ITIC, etc)
- Ensure regulatory compliance with backup power system testing in healthcare facilities (NFPA110 and others)

Safety Applications

Protecting people and assets

Manually Control Loads

Open/close breakers remotely

Control breakers in real time using interactive Power graphics.

Operate breakers remotely from a safe distance from energized equipment to **minimize potential arc-flash risk**.

Continuous Thermal Monitoring

22% of fires in a facility are due to electrical failures

WITHOUT thermal monitoring

Avoid electrical fires by **detecting and alarming on abnormal temperature** rise in electrical distribution equipment.

24/7 continuous monitoring in MV and LV equipment to provide early detection of abnormal temperature rises.

Reduce total cost of ownership by 60% throughout the lifecycle by reducing periodic thermography.

Wireless, self-powered sensors (no batteries) can be deployed anywhere, including in areas that are difficult to see with a thermal camera

As busbar joints degrade, they can overheat and cause a fire risk.

Reduce recurring manual thermal imaging costs

Life Is On

Reliability Applications

Real-time monitoring of your electrical distribution systems

Real-time Situational Awareness

Animated one-line to visualize electrical system status

Quickly understand the state of your power system

Determine which parts of your electric network are energized and from what sources.

See in real time when **loads are shifted** as part of control schemes using PLC's, relays, etc.

Power Availability Applications: Power Events Analysis

Avoid disruption of business by maximizing uptime of electrical distribution

Power Events Analysis

Help determine root cause and get back to normal quickly

Identify exact sequence of power events across system

View electrical waveforms associated with specific events for deeper analysis

Re-establish normal operations quickly and safely once root cause is determined

Sequence of Events Functionality

Fully-featured waveform viewer to analyze electrical events

Perform deeper Sequences of Events analysis by displaying and analyzing waveforms generated as a result of associated alarms

Analyze the harmonics that are impacting your Power Quality and affecting large equipment

Display Phasor or circular diagram to view individual V, I and Harmonics channels

Supports ION waveforms along with IEEE Std. C37.111 (1991, 1999, and 2013 COMTRADE formats)

Compliance: Cyber Resiliency Deep Dive

Enable compliance with IT security requirements

Secure at Server Level

Technology: Wi-Fi Attacks Ethernet Attacks USB Attacks

Secure Development Lifecycle (SDL) Industry standard process (based on Microsoft model and IEC 62443)

Security-Related Feature Development Driven by standards alignment (IEC 62443, etc)

Dealing with potential "Zero Day" cyber-attacks

Even air-gapped systems (not connected to Internet) are susceptible to attack! Application Whitelisting via McAfee Application Control provides **protection against "Zero Day" attacks** and advanced persistent threats.

Application Whitelisting **proactively blocks unauthorized executables** on PSO Server that are not part of 'whitelist' such as executables, java apps, Active X controls, scripts, etc.

PSO validated with McAfee Whitelisting application.

Microgrid Solutions & Energy Management Solutions

September 2019

Distributed Energy Ressources (DER)

Microgrid

Life Is On

Schneider

Electric

What is a Microgrid?

Optimize your electrical bill & sustainability footprint

Hybrid system : Grid + local generation/storage + load management

Grid-tied

Manage blackouts while optimizing your electrical bill & sustainability footprint

Hybrid system : Grid + local generation/storage + load management

Island-able

"Power on" with efficient and future proof power systems

Hybrid system : Diesel/Gas &/or renewable generation + storage + load management

Off-grid

Life Is Or

Our Microgrid markets

Schneider Electric EcoStruxure Microgrid Solutions

Energy Consulting

- Demand expertise : analysis of present and future energy needs, energy efficiency
- Supply expertise : analysis of present and alternative energy supply
- Financial, environmental, TCO analysis
- Regulation, standards and country codes

Power System Engineering

- Technical & economical sizing
- Technical studies : Load flow, voltage plan, protection studies
- · Dynamic stabilities

EcoStruxure [™] Microgrid Advisor Forecast and optimize when to consume, produce, store, or sell energy

EcoStruxure[™] Microgrid Operation

Manage island mode and optimize DER in real time

Demonstration EcoStruxure Microgrid Operation (EMO)

Zoom on EMO: EcoStruxure[™] Microgrid Operation

Manage island mode and optimize DER in real time (s)

- Industrial computer with a local HMI embedding advanced control algorithms, leveraging years of experience in critical facilities
- Able to manage up to 100% renewable in off grid mode depending on the DER available
- DER agnostic
- Extensive library of algorithms for optimized execution and commissioning cycles, easier operation and maintenance
- Dedicated HMI (EcoStruxure Power SCADA Operation), or integration with third party SCADA system
- Cyber security compliance with IEC62443-4-2 and IEC/ISA 62443-3-3
- Communication protocol available: Modbus TCP IP, IEC 61850, DNP3, IEC 101, IEC 104
- Connection with EMS (Schneider Electric, third party) or ADMS (Schneider Electric, third party)

	Use cases / DER			
	Ensure microgrid stability in all grid situations	Grid connection management	Automatically manages connection / disconnection from the grid	
	Manage DER in island mode	Sharing strategy	Maximize renewables consumption within the microgrid / per type of DER	
		Load sharing	Ensure the stability for the voltage and frequency by balancing the production and consumption in real time	
		Load shedding	Cut-off non-priority loads when the production can not reach the consumption	
5.) -	Ensure microgrid safety in island mode	Protection relay and earthing scheme management	Manage the protection relays and if needed the global system protection when islanded	
	Grid services in grid connected mode	No export limit	Manage the level of authorized energy export back to the grid following a utility signal / third party / a threshold	
		Life Is 🛈	Schneider	

Demonstration EcoStruxure Microgrid Advisor (EMA)

Zoom on EMA: EcoStruxure[™] Microgrid Advisor

Forecasting and economic dispatch of Distributed Energy Resources

- Software as a Service (SaaS) Business Model continuous updates for customers
- Predictive and automatic management of DER (hours, days) – 24/7/365
- Intuitive and easy to use user interface
- Connection with third party platform (web services)

Use cases / DER

Remote monitoring & forecasting	Monitoring Power / Energy and other KPI for each DER using a web access
Tariff Management	Control DER (consume/produce/store energy) according to variable electricity tariff rate
Demand Charge reduction	Control DER (consume/produce/store energy) for reducing site consumption peak
Self consumption	Control energy storage and PV system for maximizing the energy consumption from PV system
Demand Response	Control DER for participating in DR mechanisms
Off grid mode preparation	Control DER for anticipating on future off grid events
No export	Control DER for avoiding exporting energy to the grid

Architectures

Islandable/off grid microgrid

Microgrid PMS

Life Is On Schneider