Altivar Machine ATV340
Asenkron ve Senkron Motorlar İçin Değişken Hız Sürücüleri

Programlama Kılavuzu

01/2019
Bu belgede sağlanan bilgiler burada bulunan ürünlerin genel açıklamalarını ve/veya performansının teknik özelliklerini içerir. Bu belgelerin özel kullanıcı uygulamalarının uygunluğunu ve güvenilirlğini belirlemek için kullanılması amaçlanmamıştır ve bunun için kullanılmamalıdır. İlgili özel uygulama veya kullanım amacı için ürünlerin uygun ve tanımlanmış kullanım için kullanilmamamalıdır. Bu belgelerin özel kullanıcı uygulamalarının uygunluğunu ve güvenilirlüğünü belirlemek için kullanılmamalıdır. İlgili özel uygulama veya kullanım amacı için ürünlerin uygun ve tanımlanmış kullanım için kullanilmamalıdır.

Schneider Electric, bu kılavuz veya içeriğine herhangi bir bağlılık veya yan kuruluşları verilmez. Bu kılavuz veya içeriğine herhangi bir bağlılık veya yan kuruluşları verilmez. Bu kılavuz veya içeriğine herhangi bir bağlılık veya yan kuruluşları verilmez.

Bu ürün monte edilirken veya kullanılırken, geçerli olan tüm eyalet, bölgesel ve lokal güvenlik yönetmeliklerine uyulmalıdır. Güvenlik nedenleriyle ve belgelenmiş sistem verilerine olan uyumu sağlamak için, komponentlerin onarımında yalnızca yetkilidir.

Ağrılar teknik güvenlik gereksinimi olan uygulamalarda kullanıldığında, ilgili talimatlara uymalıdır. Hardware ürünlerimizle birlikte Schneider Electric yazılımı veya onaylanmış yazılım kullanmak, yaralanma, hasar veya uygun olmayan çalışma sonuçlarına yol açabilir.

Bu bilgilere uyamamak yaralanmaya veya ekipmanın zarar görmesine yol açabilir.

© 2019 Schneider Electric. Tüm hakları saklıdır.
İçindekiler

Kısım I Giriş ... 21

Bölüm 1 Ayarlama .. 23
İlk Adımlar .. 24
Tahrik Ayarlama Adımları .. 26
Yazılım iyileştirmeleri ... 28

Bölüm 2 Jenerik Bilgi .. 29
Fabrika Konfigürasyonu ... 30
Uygulama Fonksiyonları .. 32
Ekran Terminalleri .. 34
Ürün LED'leri .. 39
Parametre Tablosunun Yapısı .. 42
Bu Belge İçinde bir Parametrenin Bulunması 43

Bölüm 3 Siber Güvenlik ... 45
Siber Güvenlik .. 45

Kısım II Programlama .. 47

Bölüm 4 [Hızlı Devreye Alma] S Y S - 49
[Hızlı devreye alma] S , Y - Menüsü 50
[Menüm] P Y N - Menüsü .. 56
[Değiştirilen parametreler] L N d - Menüsü 56

Bölüm 5 [Panel] d S H - ... 57
[Sistem] d S E - Menüsü .. 58
[Panel] d S H - Menüsü .. 59
[kWh Sayacıları] K W L - menüsü 60
[Panel] d S H - Menüsü .. 61

Bölüm 6 [Tanılama] d R A - ... 63
6.1 [Tanılama verileri] .. 64
[Tanılama veriler] d d t - Menüsü 65
[Hizmet mesajı] S E r - Menüsü 71
[Dışı Durum] S S t - Menüsü ... 72
[Tanılama] d R u - Menüsü ... 73
[Tanımlama] s r d - Menüsü ... 73
6.2 [Hata geçmiş] P F H - Menüsü 74
[Hata geçmiş] P F H - Menüsü 74
6.3 [Uygunlar] R L r - Menüsü ... 77
[Geçer Uygunlar] R L r d - Menüsü 78
[Uygun grubu 1 tanımı] R 1 C - Menüsü 78
[Uygun grubu 2 tanımı] R 2 C - Menüsü 78
[Uygun grubu 3 tanımı] R 3 C - Menüsü 78
[Uygun grubu 4 tanımı] R 4 C - Menüsü 78
[Uygun grubu 5 tanımı] R 5 C - Menüsü 79
[Uygunlar] R L r - Menüsü ... 79

Bölüm 7 [Ekran] N O n - ... 81
7.1 [Enerji parametreleri] .. 82
[Elek Ener Giriş Sayacı] E L i - Menüsü 83
[Elektrik Enerjisi Çıkar Sayacı] E L o - Menüsü 84
[Mekanik Enerji] P E C - Menüsü 86
[Enerji tasarrufu] E S R - Menüsü 87
7.2 [Uygulama parametreleri]
[Modbus ağ tanığı]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

7.3 [M/B parametreleri]
[PID ekranı]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

7.4 [Motor parametreleri]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

7.5 [Tahrik parametreleri]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

7.6 [Termal İzleme]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

7.7 [PID ekranı]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

7.8 [Sayaç Yönetimi]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

7.9 [Diğer durum]

<table>
<thead>
<tr>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

7.10 [I/O harita]

<table>
<thead>
<tr>
<th>Modbus ağ tanığı</th>
<th>Menüsü</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table notes:

- [CANopen haritası]
- [PDO3 görüntü]
- [PDO2 görüntü]
- [CANopen haritası]
- [FrekRef Kelime Hrtası]
- [Komut kelime görüntüsü]
- [Powerlink Tanı]
- [EtherCAT Modülü Tanısı]
- [DeviceNet Tanı]
- [Modbus HMI Tanı]
7.12 [Veri kaydı]...
[Değiştilmiş kayıt] \(d L o \) - Menü
[Kay. Dışın prn seç] \(L d P \) - Menü
[Değiştilmiş kayıt] \(d L o \) - Menü

Bölüm 8 [Tüm ayarlar] \(C S L \) -
8.1 [Motor parametreleri] \(N P R \) - Menü
[Motor parametreleri] \(N P R \) - Menüsü
[Veri] \(N L d \) - Menü
[Açtı testi ayarı] \(R S R \) - Menüsü
[Motor ince ayarı] \(N L w \) - Menü
[Motor izleme] \(N a P \) - Menüsü
[Termal izleme] \(E P P \) - Menüsü
[Motor izleme] \(N a P \) - Menü

8.2 [Motor kontrol] \(d r C \) - Menüsü
[DI ile Akıllama] \(F L \) - Menüsü
[Hız Çevrimi Optimizasyonu] \(N L L \) - Menüsü
[Motor kontrol] \(d r C \) - Menüsü
[Değiştirme frekans] \(S W F \) - Menüsü

8.3 [Sist.Birimleri tanımla] \(S u C \) - Menüsü
[Komut ve Referans] \(C r P \) - Menüsü

8.4 [Master/Bağış]
MultiDrive Link Mekanizması
[M/B Sistem Mimarisi] \(N S R \) - Menüsü
[Hız Ref A1 Konfig.] \(N S r I \) - Menüsü
[Hız Ref A2 Konfig.] \(N S r 2 \) - Menüsü
[Hız Ref A3 Konfig.] \(N S r 3 \) - Menüsü
[Hız Ref A4 Konfig.] \(N S r 4 \) - Menüsü
[Hız Ref A5 Konfig.] \(N S r 5 \) - Menüsü
[M/B Sistem Mimarisi] \(N S R \) - Menüsü
[Tork Ref A1 Konfig.] \(N t r I \) - Menüsü
[Tork Ref A2 Konfig.] \(N t r 2 \) - Menüsü
[Tork Ref A3 Konfigurasyon] \(N t r 3 \) - Menüsü
[Tork Ref A4 Konfig.] \(N t r 4 \) - Menüsü
[Tork Ref A5 Konfigurasyon] \(N t r 5 \) - Menüsü
[M/B Sistem Mimarisi] \(N S R \) - Menüsü
[M/B Sistem Mimarisi] \(N S R \) - Menüsü
[M/B Sistem Mimarisi] \(N S P \) - Menüsü
[Tork Ref A1 Konfig.] \(N t r I \) - Menüsü
[Tork Ref A2 Konfig.] \(N t r 2 \) - Menüsü
[Tork Ref A3 Konfigurasyon] \(N t r 3 \) - Menüsü
[Tork Ref A4 Konfig.] \(N t r 4 \) - Menüsü
[Tork Ref A5 Konfigurasyon] \(N t r 5 \) - Menüsü
[M/B Sistem Mimarisi] \(N S R \) - Menüsü
[M/B Sistem Mimarisi] \(N S R \) - Menüsü

8.5 [Kaldırma Fonksiyonları]
[Fren lojği kontrol] \(B L C \) - Menüsü
[Yük paylaşımlı M/B] \(N b b \) - Menüsü
[M/B Kontrolü] \(N S L \) - Menüsü
[M/B Kontrolü] \(N S R \) - Menüsü
[M/B Filtreleri] \(N S F \) - Menüsü
[Yük Paylaşımlı] \(L d S \) - Menüsü
[Gece Halat İşleme] \(S d r \) - Menüsü
8.6 [Kaldırma izleme] .. 300
[Dinamik yük algılay.] d L d - Menüsü .. 300
8.7 [Makine Fonksiyonları] .. 302
[Yük Paylaşımı] L d S - Menüsü. ... 303
[Geri tepme telafisi] b S 9 N - Menüsü .. 304
[Sensörler göre konumlandırma] L P o - Menüsü .. 314
[Fren lojgî kontrolü] b L C - Menüsü .. 314
[Tork kontrolü] t o r - Menüsü ... 314
8.8 [Jenerik fonksiyonlar] - [Hız Sınırları] ... 315
[Hız Sınırları] 5 L N - Menüsü. .. 315
8.9 [Jenerik fonksiyonlar] - [Rampa] .. 317
[Rampa] r R P - Menüsü .. 317
8.10 [Jenerik fonksiyonlar] - [Rampa anahtarı] ... 321
[Rampa değiş tirme] r P b - Menüsü .. 321
8.11 [Jenerik fonksiyonlar] - [Durma konfigür.] ... 323
[Durma yapılandırmaları] 5 b L - Menüsü ... 323
8.12 [Jenerik fonksiyonlar] - [Oto DC Enjeksiyonu] ... 328
[Oto DC Enjeksiyonu] R d L C - Menüsü .. 328
8.13 [Jenerik fonksiyonlar] - [Ref işlemleri] ... 331
[Ref işlemleri] r A 1 - Menüsü .. 331
8.14 [Jenerik fonksiyonlar] - [Önayar hızları] ... 333
[Önayar hızları] P 5 S - Menüsü .. 333
8.15 [Jenerik fonksiyonlar] - [+/- hız] ... 337
[+/- hız] u P d - Menüsü ... 337
8.16 [Genel fonksiyonlar] - [Ref etrafında +/- hız] ... 340
[Ref etrafında +/- hız] 5 r E - Menüsü .. 340
8.17 [Jenerik fonksiyonlar] - [Atlama frekansı] .. 343
[Atlama frekansı] J u F - Menüsü .. 343
8.18 [Jenerik fonksiyonlar] - [PID kontrolörü] ... 344
[PID kontrolörü] P r d - Genel Bakış .. 345
[PID Geri Besleme] F d b - Menüsü .. 349
[PID Referansları] r F - Menüsü .. 355
[PID önayar referansları] P r 1 - Menüsü ... 358
[PID Referansları] r F - Menüsü .. 360
[Ayarlar] 5 b L - Menüsü ... 361
8.19 [Jenerik fonksiyonlar] - [Eşiğe ulaşıldı] ... 364
[Eşiğe ulaşıldı] t H r E - Menüsü .. 364
[Anaşbk kontk. Komut] L L C - Menüsü .. 367
8.21 [Genel fonksiyonlar] - [Çıkış kontaktörü komutu] .. 369
[Çıkış kontaktörü komutu] o L C - Menüsü ... 369
[Geri devre dışelligence] r E i o - Menüsü ... 372
8.23 [Jenerik fonksiyonlar] - [Tork sınırlandırma] ... 373
[Tork sınırlandırma] b o L - Menüsü .. 373
[2. akım sınırl.] L L C - Menüsü .. 377
8.25 [Genel fonksiyonlar] - [Sarsma] .. 379
[Sarsma] J o G - Menüsü .. 379
8.26 [Genel fonksiyonlar] - [Yüksek Hız Değiştirme] ... 381
[Yüksek Hız Değiştirme] L H S - Menüsü ... 381
8.27 [Genel fonksiyonlar] - [Hafıza referans frekansı] .. 383
[Hafıza referans frekansı] S P N - Menüsü ... 383
8.28 [Genel fonksiyonlar] - [Fren lojgî kontrolü] ... 384
[Fren lojgî kontrolü] b L C - Menüsü .. 384
<table>
<thead>
<tr>
<th>Sayı</th>
<th>Konu</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30</td>
<td>[Genel fonksiyonlar] - [Sınır anahtarları]</td>
<td>385</td>
</tr>
<tr>
<td>8.31</td>
<td>[Genel fonksiyonlar] - [Tork kontrolü]</td>
<td>394</td>
</tr>
<tr>
<td>8.32</td>
<td>[Jenerik fonksiyonlar] - [Parametre anahtarlaması]</td>
<td>401</td>
</tr>
<tr>
<td>8.33</td>
<td>[Jenerik fonksiyonlar] - [Haz zaman aşımından sonra durma]</td>
<td>407</td>
</tr>
<tr>
<td>8.34</td>
<td>[Genel fonksiyonlar] - [DC barası beslemesi]</td>
<td>409</td>
</tr>
<tr>
<td>8.35</td>
<td>[Genel fonksiyonlar] - [Çoklu monitör konfigürasyonu]</td>
<td>412</td>
</tr>
<tr>
<td>8.37</td>
<td>[Genel fonksiyonlar] - [Harici Ağırlık Ölçümü]</td>
<td>415</td>
</tr>
<tr>
<td>8.38</td>
<td>[Jenerik izleme]</td>
<td>418</td>
</tr>
<tr>
<td>8.39</td>
<td>[Giriş/Cıkış] - [I/O ataması]</td>
<td>427</td>
</tr>
</tbody>
</table>

Tablo:

<table>
<thead>
<tr>
<th>Sayı</th>
<th>Konu</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.32</td>
<td>[Jenerik fonksiyonlar] - [Parametre anahtarlaması]</td>
<td>401</td>
</tr>
<tr>
<td>8.33</td>
<td>[Jenerik fonksiyonlar] - [Haz zaman aşımından sonra durma]</td>
<td>407</td>
</tr>
<tr>
<td>8.34</td>
<td>[Genel fonksiyonlar] - [DC barası beslemesi]</td>
<td>409</td>
</tr>
<tr>
<td>8.35</td>
<td>[Genel fonksiyonlar] - [Çoklu monitör konfigürasyonu]</td>
<td>411</td>
</tr>
<tr>
<td>8.37</td>
<td>[Genel Fonksiyonlar] - [Harici Ağırlık Ölçümü]</td>
<td>415</td>
</tr>
<tr>
<td>8.38</td>
<td>[Jenerik İzleme]</td>
<td>418</td>
</tr>
<tr>
<td>8.39</td>
<td>[Giriş/Cıkış] - [I/O ataması]</td>
<td>427</td>
</tr>
</tbody>
</table>

Tablo:

<table>
<thead>
<tr>
<th>Sayı</th>
<th>Konu</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.32</td>
<td>[Jenerik fonksiyonlar] - [Parametre anahtarlaması]</td>
<td>401</td>
</tr>
<tr>
<td>8.33</td>
<td>[Jenerik fonksiyonlar] - [Haz zaman aşımından sonra durma]</td>
<td>407</td>
</tr>
<tr>
<td>8.34</td>
<td>[Genel fonksiyonlar] - [DC barası beslemesi]</td>
<td>409</td>
</tr>
<tr>
<td>8.35</td>
<td>[Genel fonksiyonlar] - [Çoklu monitör konfigürasyonu]</td>
<td>411</td>
</tr>
<tr>
<td>8.37</td>
<td>[Genel Fonksiyonlar] - [Harici Ağırlık Ölçümü]</td>
<td>415</td>
</tr>
<tr>
<td>8.38</td>
<td>[Jenerik İzleme]</td>
<td>418</td>
</tr>
<tr>
<td>8.39</td>
<td>[Giriş/Cıkış] - [I/O ataması]</td>
<td>427</td>
</tr>
</tbody>
</table>
8.40 [Giriş/Çıkış] - [DI/DQ]
[DI1 Yapılandırması] d i 1 -
[DI2 Yapılandırması] d i 2 -
[DI3 Yapılandırması] d i 3 -
[DI4 Yapılandırması] d i 4 -
[DI5 Yapılandırması] d i 5 -
[DI6 Yapılandırması] d i 6 -
[DI7 Konfigürasyonu] d i 7 -
[DI8 Konfigürasyonu] d i 8 -
[DI11 Yapılandırması] d i 11 -
[DI12 Yapılandırması] d i 12 -
[DI13 Yapılandırması] d i 13 -
[DI14 Yapılandırması] d i 14 -
[DI15 Yapılandırması] d i 15 -
[DI16 Yapılandırması] d i 16 -

8.41 [Giriş/Çıkış] - [Analog I/O]
[AI1 konfigürasyonu] R 1 -
[AI2 konfigürasyonu] R 2 -
[AI3 konfigürasyonu] R 3 -
[AI4 konfigürasyonu] R 4 -
[AI5 konfigürasyonu] R 5 -
[AQ1 konfigürasyonu] R 6 -
[AQ2 konfigürasyonu] R 7 -
[Sanal AI1] R V 1 -

8.42 [Giriş/Çıkış] - [Röle]
[R1 konfigürasyonu] r 1 -
[R2 konfigürasyonu] r 2 -
[R3 konfigürasyonu] r 3 -
[R4 konfigürasyonu] r 4 -
[R5 konfigürasyonu] r 5 -
[R6 konfigürasyonu] r 6 -
[Giriş/Çıkış] r a -

8.43 [Kodlayıcı konfigürasyonu]
[Kodlayıcı konfigürasyonu] E a n -

8.44 [Gömülü Kodlayıcı]
[Gömülü Kodlayıcı] E E -

8.45 [Hata/Uyan yönetim]
[Oto hata sırflama] R t r -
[Hata sırflama] r S t -
[Dönenken yakalamaları] L F r -
[Hata algı. dvrdışı] r H n -
[Hariç hata] E F -
[Cıkış faz kaybı] P L -
[Giriş faz kaybı] P L -
[4-20 mA kaybı] L F L -

Bölüm 13 Tanılama ve Sorun Giderme

11.3 [Parametre erişimi] ... 557
 [Kısıtlı kanallar] P C d - Menüsü .. 558
 [Kısıtlı Param] P P R - Menüsü .. 559
 [Görülebilirlik] V, S - Menüsü ... 559

11.4 [Özellikleştirme] ... 560
 [Menü Konfig.] P Y C - Menü .. 561
 [Görüntü ekranı Türü] P S C - Menüsü 561
 [Param. Çubuk Seçimi] P b S - Menüsü 562
 [Müşteri parametreleri] C Y P - Menüsü 563
 [Hizmet mesajı] S E r - Menüsü .. 564

11.5 [Tarih ve Zaman ayarları] ... 565
 [Tarih/Zaman ayarları] r E C - Menüsü 565

11.6 [Erişim sevyesi] ... 566
 [Erişim sevyesi] L R C - Menüsü .. 566

11.7 [Web sunucusu] ... 567
 [Web sunucusu] W b S - Menüsü .. 567

11.8 [Fonks. Tuş yntm.] .. 568
 [Fonks. Tuş yntm.] F K G - Menüsü 568

11.9 [LCD ayarları] ... 569
 [LCD ayarları] C n L - Menüsü ... 569

11.10 [QR kodu] .. 570
 [QR kodu] f r C - Menüsü .. 570

11.11 [QR kodu] - [Linkim 1] .. 571
 [Linkim 1] P Y L 1 - Menüsü ... 571

11.12 [QR kodu] - [Linkim 2] .. 572
 [Linkim 2] P Y L 2 - Menüsü ... 572

11.13 [QR kodu] - [Linkim 3] .. 573
 [Linkim 3] P Y L 3 - Menüsü ... 573

 [Linkim 4] P Y L 4 - Menüsü ... 574

11.15 [Eşleme şifresi] .. 575
 [Eşleme parolası] P P r ... 575

Kısım III Bakım ve tanılama .. 577

Bölüm 12 Bakım .. 579
 Bakım .. 579

Bölüm 13 Tanılama ve Sorun Giderme .. 581

13.1 Uyarı Kodları ... 582
 Uyarı Kodları .. 582

13.2 Hata Kodları ... 584
 Genel Bilgi ... 587

 [Yük kayması] R n F ... 588
 [Açı hatası] R S F ... 588
 [Fren Kontrolü] b L F ... 589
 [Frenleme Direnci aş. yük] b o F 589
 [Fren Geri Beslemesi] b r F ... 590
 [Geri Tepme Hatası] b S f F ... 590
 [DB Ünitesi kısa devre] b u F .. 591
 [DB Ünitesi açık devre] b u F a 591
 [Devre Kesici Hatası] C b F ... 592
 [Hatalı Konfigürasyon] C F F .. 592
 [Geçersiz Konfigürasyon] C F ... 593
 [Konf Aktrm Hatası] C F, 2 .. 593
 [Ön Ayarlar Aktran hatası] C F, 3 594
 [Boş Konfigürasyon] C F, 4 ... 594
 [Fieldbus Ilet. Ksnt] C n F ... 595
[Çıkış Faz Kaybı] αPF ... 623
[Anaşbk Basınca Aşırı] αSF ... 623
[Proq Yükleme Hatası] PLF ... 624
[Proq Çalışma Hatası] PRF ... 624
[Giriş faz kaybı] PHF ... 625
[Dönüş Açısı İzleme] $RADF$.. 625
[Güvnlk Fonk. Hatası] $SRFF$... 626
[Motor kısa devre] $SCF1$... 626
[Topraklama Kısa Devresi] $SCF3$... 627
[IGBT Kısa Devresi] $SCF4$.. 627
[Motor Kısa Devre] $SCF5$... 628
[Modbus İlet Kesint.] $SLF1$... 628
[PC Hbr Kesintisi] $SLF2$.. 629
[HMI Hbr Kesintisi] $SLF3$.. 629
[Motor Aşırı Hızı] SOF ... 630
[Kodlayıcı Geri Besleme Kaybı] SPF 630
[Tork zaman aşımı] SRF .. 631
[Tork Sınırlama Hatası] SSF .. 631
[Motor Durma Hatası] $SLF1$... 632
[AI1 Term Sens Hatası] $tICF$.. 632
[AI3 Term Sens Hatası] $t3CF$.. 633
[AI4 Term Sens Hatası] $t4CF$.. 633
[AI5 Term Sens Hatası] $t5CF$.. 634
[Kodlayıcı Ter. Sensör Hatası] $tECF$ 634
[AI1 Termal Seviye Hatası] $tHEF$... 635
[AI3 Termal Seviye Hatası] tHF ... 635
[AI4 Termal Seviye Hatası] $t4HF$.. 636
[AI5 Termal Seviye Hatası] $t5HF$.. 636
[Kodlayıcı Ter. Algılanan Hatası] $tHEF$ 637
[IGBT Aşırı Isınması] tJF .. 637
[Sürücü Aşırı Yük] tJF .. 638
[Oto İnce Ayar Hatası] tJF .. 638
[Proses Düşük Yükü] tLF .. 639
[Anaşbk Basınca Dşkger] tSF .. 639

13.3 SSS ... 640
SSS ... 640

Sözlük .. 641
Güvenlik Bilgisi

Önemli Bilgi

BİLDİRİM

Bu talimatları dikkatli bir şekilde okuyun ve montajını, kullanını, servisini, bakımını veya muhafazasını denemeden önce cihaza aşınma olmak için cihaza bakın. Potansiyel tehlikelere karşı uyarmak veya bir prosedürü açıklayan veya basitleştiren bir bilgiye dikkatini çekmek için, bu belgelerin çeşitli kısımlarında veya aygıtta, aşağıda belirtilen özel mesajla görülebilir.

Bir “Tehlike” veya “Uyan” güvenlik etiketine bu sembolün eklenmesi, yönergeler izlenmediği takdirde kişisel yaralanmaya sonuçlanacak bir elektrik tehlikesinin bulunduğuunu gösterir.

Güvenlik uyarı simboldür. Sızi kişisel yaralanma tehlikelerine karşı uyarmak için kullanılır. Olası yaralanma veya ölüm tehlikelerinden kaçınmak için, tüm güvenlik uyanılarına uyun.

TEHLİKE

TEHLİKE, kaçırmadığı takdirde ölüme veya ciddi yaralanmaya sonuçlanacak tehlikeli bir durumu gösterir.

UYARI

UYARI, kaçırmadığı takdirde ölüme veya ciddi yaralanmaya sonuçlanabilecek tehlikeli bir durumu gösterir.

DİKKAT

DİKKAT, kaçırmadığı takdirde hafif veya orta derecede yaralanmaya sonuçlanabilecek tehlikeli bir durumu gösterir.

BİLDİRİM

BİLDİRİM fiziksel yaralanmaya ilgili olmayan uygulamaları belirlemek için kullanılır.

LÜTFEN UNUTMAYIN

Elektrikli cihazların montajı, kullanımı, bakımı ve muhafazası sadece kalifiye elemanlar tarafından yapılmalıdır. Bu materyalin kullanımından kaynaklanabilecek herhangi bir durum için Schneider Electric herhangi bir sorumluluk kabul etmemektedir.

Kalifiye eleman, elektrikli cihazların yapısı, çalısması ve montajı hakkında bilgi ve beceri sahibi olan, muhtemel tehlikeleri fark etmek ve bunlardan kaçınmak için güvenlik eğitimi almış olan kişidir.

Personel Yetkinliği

Yalnızca bu kilavuzu ve tüm diğer ilgili ürün belgelerini tanıyan ve anlayan, uygun eğitimi almış kişiler, bu ürün üzerinde ve ürünle çalışırken bilgi ve beceri sahipleri, ürünün montajında ve kullanımında bütün sistem mekanik, elektrikli ve elektronik ekipmanlarıyla, ürünün kullanılması nedeniyle ortaya çıkabilecek potansiyel tehlikeleri önceden görebilmeli ve algılayabilmelidir. Ürün üzerinde ve ürünle çalışan bütün kişiler, bu işleri gerçekleştirirken bütün geçerli standartları, direktifleri ve kaza önleme yönetmeliklerini çok iyi biliyor olmalıdır.
Kullanım Amacı

Ürunle İlgili Bilgiler
Bu tahrike bir prosedür gerçekleştirmenin den once bu talimatları okuyup anlayın.

TEHLİKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK SIÇRAMASI TEHLİKİSİ

- Yalnızca bu kılavuzu ve tüm diğer ilgili ürün belgelerini tanıyan ve anlayan, uygun eğitimi almış, tehlikeleri tanımak ve bunlardan kaçınmak için gerekli güvenlik eğitimini almış kişiler bu sürücü üzerinde ve bu sürücü sistemi ile çalışmaya yetkilidir. Kurulum, ayarlaması, onarımı ve bakım, yetkili personel tarafından gerçekleştirmelidir.
- Bütün ekipmanların topraklanmasıyla ilgili olan bütün diğer geçerli yönetmeliklerin yanı sıra, bütün yerel ve ulusal elektrik kuralları ve sistem integratörü sorumludur.
- Baskılı devre kartları da dahil olmak üzere birçok bileşen ana şebeke geriliminde çalışmaktadır.
- Yalnızca doğru anma değerine sahip, elektriksel olarak yalıtılmış aletler ve ölçüm cihazları kullanın.
- Gerilim varken ekransız bileşenlere veya terminalere dokunmayın.
- Motorlar mil dönüsen gerilimi oluşturabilir. Sürücü sistemi üzerinde herhangi bir çalışma yapımadan önce motor milini dönmesini engelleyecek şekilde sabitleyin.
- AC gerilimi motor kablosundaki kullanılmayan iletkenlere aktarılabilir. Motor kablosundaki kullanılmayan iletkenlerin her iki ucunu yalıtın.
- DC bara terminali veya DC bara kapasitör veya fren direnci terminalerinde kısa devre yapılmışsa şebeke giriş terminallerindeki topraklamayı ve kısa devreleri çıkarın.
- Tüm teçhizatın düzgün topraklandığına dair bilgi için "Gerilim Olmadığının Doğrulanması" bölümünde yer alan talimatları izleyin.

UYARI

TAHMİN EDİLEMEYEN EKİPMAN ÇALIŞMASI

- Kablo bağlantısını EMC gerekliliklerine uygun şekilde, dikkatlice yapın.
- Ürünü bilinmeyen ya da uygun olmayan ayarlarla ya da verilerle çalışmayın.
- Kapsamlı bir devreye alma testi geçerek çalıştırın.

Bu talimatları uygulamaması ölüme veya ağır yaralanmaları yol açacaktır.

Sürücü sistemleri; yanlış kablo bağlantısı, yanlış ayarlar, yanlış veriler ya da diğer hatalar nedeniyle beklenmedik hareketlerin önüne geçmek için önlemler alınmalıdır.

TAHİM EDİLEMEYEN EKİPMAN ÇALIŞMASI

- Kablo bağlantısını EMC gerekliliklerine uygun şekilde, dikkatlice yapın.
- Ürünü bilinmeyen ya da uygun olmayan ayarlarla ya da verilerle çalışmayın.
- Kapsamlı bir devreye alma testi geçerek çalıştırın.

Bu talimatları uygulamaması ölüme, ağır yaralanmaları veya ekipmanda maddi hasara yol açabilir.
Hasarlı ürünler ya da aksesuarlar, elektrik çarpmasına veya beklenmeyen ekipman çalışmasına neden olabilir.

TEHLIKE

ELEKTRİK ÇARPMASI YA DA TAHMİN EDİLEMEYEN EKİPMAN ÇALIŞMASI

Hasarlı ürünleri ya da aksesuarları kullanmayın.

Bu talimatı uygulamması, ölümü veya ağır yaralanmalara yol açacaktır.

Herhangi bir hasar tespit ederseniz, yerel Schneider Electric satış temsilcinizle irtibata geçin.

UYARI

KONTROL KAYBI

- Herhangi bir kontrol şemasını tasarlayan kişi, kontrol yollarının potansiyel arızalarını ve kritik kontrollere ait tüm arızaların potansiyel arıza durumlarını hesaba katmalı ve kritik kontrol fonksiyonları için anı anında ve sonrasında güvenli bir durum sağlamanmalıdır. Önemli kontrol işlemlerine örnek olarak acil stop, aşırı hareket durdurma, güç kesintisi ve tekrar yolverme verilebilir.
- Önemli kontrol fonksiyonları için ayrı veya yedek kontrol yolları sağlanmalıdır.
- Sistem kontrol yolları, iletişim bağlantılılarını içerebilir. Beklenmeyen iletişim gecikmeleri veya bağlantılı arızalarının sonuçları hesaba katmalıdır.
- Tüm kaza önleme yöntemlerine ve yerel güvenlik talimatlarına uyun (1).
- Ürünün her bir uygulaması, hizmete sokulmadan önce dış Cunningham çalışma bakımından özel ve eksiksiz olarak test edilmelidir.

Bu talimatı uygulamaması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

BİLDİRİM

HATALI ŞEBEKE GERİLİMİNE BAĞLI ARIZA

Ürünün gücünü açıp konfigüre etmeden önce şebekede gerilimini sorgulayın. Bu talimatı uygulamaması, ekipmanda maddi hasara yol açabilir.

Bu kilavuzda açıklanan ürünlerin sıcaklığı çalışma sırasında 80 °C'yi (176 °F) aşabilir.

UYARI

SICAK YÜZEYLER

- Sıcak yüzeylerle temastan kaçının.
- Yanıcı ya da isyana hassas parçaları sıcak yüzeylerin yakınında bırakmayın.
- Ürünün her türlü işlemeden önce yeterince soğukkanın emin olun.
- Maksimum yük koşulları altında birçok çalışma gerçekleştirerek ısı yayılımının yeterli olduğundan emin olun.

Bu talimatı uygulamaması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu teçhizat her türlü tehlikeli alanın dışında kullanılmak üzere tasarlanmıştır. Bu teçhizat yalnızca tehlikeli atmosfer içermediği bilinen bölgelere kurulmalıdır.

TEHLIKE

PATLAMA POTANSİYELİ

Bu teçhizatı yalnızca tehlikeli olmayan bölgelere kurun.

Bu talimatı uygulamaması, ölümü veya ağır yaralanmalara yol açacaktır.
Makiner, kontrol cihazları ve ilgili teçhizat genellikle ağlara entegre edilir. Yetkisiz kişiler ve kötü amaçlı yazılımlar yazılımlara ve ağlara yeterince güvenli olmayan erişimi kullanarak makineye ve ayrıca, makine ağ/fieldbus'ı ile bağlı ağların üzerindeki diğer cihazlara erişebilir.

UYARI

YAZILIM VE AĞLAR ARACILIĞIYLA MAKİNEYE YETKİSİZ ERİŞİM

- Tehlike ve risk analizinizde ağ/fieldbus'a erişim ve bunlar üzerindeki çalışmadan kaynaklanan tüm tehlikeleri göz önünde bulundurun ve uygun bir siber güvenlik konsepti geliştirin.
- Uygun ve kanıtlanmış yöntemleri kullanarak IT güvencesi ve siber güvenlik etkililiğinizi doğrulayın.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

UYARI

KONTROL KAYBI

İletişim izleme sisteminin iletişim kesintilerini doğru şekilde tespit ettiğini doğrulamak için kapsamlı bir işletme alma testi uygulayın.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
Kitap Hakkında

Bir Bakışta

Bu Dokümanın Amacı

Bu belgenin amacı:
- sürücüyü ayarlamanıza yardımcı olmak,
- sürücüyü nasıl programlayacağını göstermek,
- farklı menüler, modları ve parametreleri göstermek,
- bakım ve tanılamada yardımcı olmaktır.

Geçerlilik Notu

Bu kilavuzda sunulan orijinal talimatlar ile bilgiler İngilizce yazılımış (isteğe bağlı çeviriinden önce).
Bu belge Altivar Machine ATV340 sürücüsü için geçerlidir.
Bu belgede açıklanan aygıtların teknik özellikleri de çevrimiçi görünür. Bu bilgilere çevrimiçi erişmek için:

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schneider Electric ana sayfasına gidin www.schneider-electric.com.</td>
</tr>
</tbody>
</table>
| 2 | Ara (Search) kutusunda bir ürünün referansını veya ürün aralığının adını yazın.
- Referans veya ürün aralığı boş bırakmayın.
- Benzer modülleri gruplama hakkında bilgi almak için, yıldızları (*) kullanın. |
| 3 | Bir referans girdiyseniz, Ürün veri sayfaları (Product Datasheets) arama sonuçlarına gidin ve
ilgilediğiniz referansı tiklatin.
Bir ürün çeşidinin adını girerseniz, Ürün Çeşitleri (Product Ranges) arama sonuçlarına gidin ve sizi
ilgilenen model numarasına tıklayın. |
| 4 | Ürünler (Products) arama sonuçlarında birden fazla referans görüntüse, ilginizi çeken referansı tiklatin. |
| 5 | Ekranınızın boyutuna göre, veri sayfasını görmek için aşağıdaki kaydırmayız gerekebilir. |
| 6 | Bir veri sayfasını bir .pdf dosyası olarak kaydetmek veya yazdırmak için, Download XXX product
datasheet öğesini tiklatin. |

Bu kilavuzda sunulan özellikler çevrimiçi görünenlerle aynı olmalıdır. Sürekli iyileşme ikemize uygun
olarak, netliği ve doğruluğu iyileştirmek için zamanla içeriği değiştirebiliriz. Kilavuz ve çevrimiçi bilgiler
arasında bir fark görürseniz, referans olarak çevrimiçi bilgileri kullanın.
İlgili Belgeler

Ürünlerimiz hakkında www.schneider-electric.com sitesindeki ayrıntılı ve kapsamlı bilgilere hızlı bir şekilde erişmek için tabletinizi veya bilgisayarınızı kullanın.

İnternet sitesi, ürünler ve çözümler için ihtiyaç duyduğunuz bilgileri sağlar:
- Ayrıntılı özelliklerin tam kataloğu ve seçim kılavuzları,
- Tesisinizi tasarlamanıza yardımcı olacak, 20 farklı dosya formatında bulunabilen CAD dosyaları,
- Hız kontrol cihazınızı güncel tutmak için yazılım ve ürün yazılımı,
- Elektrik sistemlerimizi ve ekipman veya otomasyonu daha iyi anlamınız için çok sayıda Tanıtım Yazısı, Çevresel dokümanlar, Uygulama Çözümleri, Teknik Şartnameler,
- Ve son olarak hız kontrol cihazınızla ilgili, aşağıdaki listelenen tüm Kullanım Kılavuzları:

(Diğer seçenek kılavuzları ve Talimat sayfaları için bkz. www.schneider-electric.com)

<table>
<thead>
<tr>
<th>Belgelerin Başlığı</th>
<th>Katalog Numarası</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV340 Kataloğu</td>
<td>DIA2ED2160701EN (İngilizce), DIA2ED2160701FR (Fransızca)</td>
</tr>
<tr>
<td>ATV340 Başlarken</td>
<td>NVE37643 (İngilizce), NVE37642 (Fransızca), NVE37644 (Almanca), NVE37646 (İspanyolca), NVE37647 (İtalyanca), NVE37648 (Çince), NVE37643PT (Portekizce), NVE37643TR (Türkçe),</td>
</tr>
<tr>
<td>ATV340 Getting Started Annex (SCCR)</td>
<td>NVE37641 (İngilizce)</td>
</tr>
<tr>
<td>S1, S2, S3 Çerçeve Boyutları için Elektrik Tesisatı Semaları</td>
<td>NVE97896 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 Kurulum Kılavuzu</td>
<td>NVE61069 (İngilizce), NVE61071 (Fransızca), NVE61074 (Almanca), NVE61075 (İspanyolca), NVE61078 (İtalyanca), NVE61079 (Çince), NVE61069PT (Portekizce), NVE61069TR (Türkçe),</td>
</tr>
<tr>
<td>ATV340 Programlama Kılavuzu</td>
<td>NVE61643 (İngilizce), NVE61644 (Fransızca), NVE61645 (Almanca), NVE61647 (İspanyolca), NVE61648 (İtalyanca), NVE61649 (Çince), NVE61643PT (Portekizce), NVE61643TR (Türkçe),</td>
</tr>
<tr>
<td>ATV340 Modbus manual (Embedded)</td>
<td>NVE61654 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 Ethernet manual (Embedded)</td>
<td>NVE61653 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 PROFIBUS DP manual (VW3A3607)</td>
<td>NVE61658 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 DeviceNet manual (VW3A3609)</td>
<td>NVE61683 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 PROFINET manual (VW3A3627)</td>
<td>NVE61678 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 CANopen manual (VW3A3608, 618, 628)</td>
<td>NVE61655 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 POWERLINK manual - (VW3A3619)</td>
<td>NVE61681 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 EtherCAT manual - (VW3A3601)</td>
<td>NVE61682 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 Sercos III manual (embedded)</td>
<td>PHA33725 (İngilizce), PHA33737 (Fransızca), PHA33738 (Almanca), PHA33739 (İspanyolca), PHA33740 (İtalyanca), PHA33741 (Çince)</td>
</tr>
<tr>
<td>ATV340 Communication Parameters</td>
<td>NVE61728 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 ATEX manual</td>
<td>NVE61651 (İngilizce)</td>
</tr>
<tr>
<td>ATV340 Embedded Safety Function Manual</td>
<td>NVE61413 (İngilizce)</td>
</tr>
<tr>
<td>SoMove FDT</td>
<td>SoMove_FDT (İngilizce, Fransızca, Almanca, İspanyolca, İtalyanca, Çince)</td>
</tr>
<tr>
<td>Altivar 340: DTM</td>
<td>ATV340 DTM Library_EN (İngilizce), ATV340 DTM Lang_FR (Fransızca), ATV340 DTM Lang_DE (Almanca), ATV340 DTM Lang_SP (İspanyolca), ATV340 DTM Lang_IT (İtalyanca), ATV340 DTM Lang_CV (Çince)</td>
</tr>
</tbody>
</table>

Bu teknik yayınların ve diğer teknik bilgileri aşağıdaki İnternet sitemizden indirebilirsiniz: www.schneider-electric.com/en/download
Terminoloji

Bu kılavuzdaki teknik terimler, terminoloji ve ilgili tanımlar, normal şartlarda ilgili standartlarda yer alan terimleri ve tanımları kullanmaktadır.

Sürücü sistemleri alanında, bu terimler aşağıdakiler dahil olmak üzere ancak bunlarla sınırlı kalmamak kaydıyla **hata, hata mesajı, arıza, hata, hata sıfırlama, koruma, güvenli durum, güvenlik fonksiyonu, uyari, uyari mesajı** ve benzeri gibi terimleri içerir.

Diğerlerinin yanı sıra, şu standartlar da dahildir:

- IEC 61800 serisi: Ayarlanabilir hızlı elektrikli sürücü sistemleri
- IEC 61508 Ed.2 serisi: Elektrikli/elektronik/programlanabilir elektronik güvenlikle ilgili fonksiyonel güvenlik
- EN 954-1 Makine güvenliği - Kontrol sistemlerinin güvenlikle ilgili kısımları
- EN ISO 13849-1 & 2 Makine güvenliği - Kontrol sistemlerinin güvenlikle ilgili kısımları.
- IEC 61158 serisi: Endüstriyel iletişim ağları - Fieldbus özellikleri
- IEC 61784 serisi: Endüstriyel iletişim ağları - Profiler
- IEC 60204-1: Makine güvenliği - Makinelerin elektrikli ekipmanları – Bölüm 1: Genel gereksinimler

Ayrıca, belirli tehlikelerin açıklamasıyla bağlantılı olarak **çalışma alanı** terimi kullanılır ve EC Makine Direktifinde (2006/42/EC) ve ISO 12100-1'de **risk alanı** veya **tehlike alanı** nda olduğu gibi tanımlanır.

Ayrıca bu kılavuzun sonundaki sözlüğe de bakın.

İletişim

Ülkenizi seçin:

www.schneider-electric.com/contact

Schneider Electric Industries SAS

Genel Merkez

35, rue Joseph Monier

92500 Rueil-Malmaison

Fransa
Kısım I
Giriş

Bu Kısımda Neler Yer Alıyor?
Bu kısımda şu bölümleri içerir:

<table>
<thead>
<tr>
<th>Bölüm</th>
<th>Bölümün Adı</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ayarlama</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Jenerik Bilgi</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Siber Güvenlik</td>
<td>45</td>
</tr>
</tbody>
</table>
Bölüm 1
Ayarlama

Bu Bölümde Neler Yer Alıyor?
Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>İlk Adımlar</td>
<td>24</td>
</tr>
<tr>
<td>Tahrik Ayarlama Adımları</td>
<td>26</td>
</tr>
<tr>
<td>Yazılım İyleştirmeleri</td>
<td>28</td>
</tr>
</tbody>
</table>
İlk Adımlar

Tahriğe Güç Vermeden Önce

UYARI

TAHMIN EDİLEMEYEN EKİPMAN ÇALIŞMASI

Cihazın gücünü açmadan önce dijital giriselle, istenmeyen hareketlere sebep olabilecek istenmeyen sinyallerin uygulanamayacağını doğrulayın.

Bu talimatlara uymaması ölume, ağır yaralanmalara veya ekipmanda maddi hasara yol açılabilir.

Sürücü şebekeye uzun süre bağlanmamışsa motor çalıştırılmadan önce kondansatörler tam performanslarına dönüştürülürmelidir.

Belirtilen prosedüre dahil şebeke kontaktör kontrolünden dolayı Çalıştır komutu olmadan gerçekleştirmemelisiniz. Bu prosedürü güç aşaması etkin ama motor hareketsiz durumda yürütün.

Şebeke Kontaktörü

BİLDİRİM

AZALMIŞ KONDANSATÖR PERFORMANSI

- Sürücü şebekeye aşağıdaki süre boyunca bağlanmamışsa motoru çalıştırmadan önce sürücüye 1 saat boyunca şebeke geriliğini uygulayın:
 - +50°C (+122°F) maksimum depolama sıcaklığında 12 ay
 - +45°C (+113°F) maksimum depolama sıcaklığında 24 ay
 - +40°C (+104°F) maksimum depolama sıcaklığında 36 ay
- Bir saatlik süre geçmişden hiçbir Çalıştır komutunun uygulanmadığını doğrulayın.
- Sürücü ilk defa işletmeye alınırsa üretim tarihini doğrulayın ve üretim tarihi 12 aydan daha önceki tarihi gösteriyorsa belirtilen prosedürü uygulayın.

Bu talimatlara uymaması, ekipmanda maddi hasara yol açılabilir.

Belirtilen prosedür dahil şebeke kontaktör kontrolünden dolayı Çalıştır komutu olmadan gerçekleştirilemeyen kontansatörlere kayda değer şebeke akımı olması için bu prosedürü güç aşaması etkin, ama motor hareketsiz durumda yürütün.

Daha Düşük Değerli bir Motor Kullanma veya Motor Kullanmaktan Tamamen Vazgeçme

BİLDİRİM

MOTOR AŞIRI ISINMASI

Harici termal izleme teçhizatını aşağıdaki koşullarda takın:
- Sürücünün nominal akının %20ˈinden daha az nominal akına sahip bir motor bağlandiyrsa.
- Motor Anahtarlama işlevi kullanıiyorsanız.

Bu talimatlara uymaması, ekipmanda maddi hasara yol açılabilir.
TEHLİKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK PARLAMASI CİDDİ TEHLİKESİ

Çıkış fazı izlemesi devre dışı ise faz kaybı ve çıkarım olarak kabloların bağlantısının yanlışlıkla kesilmesi tespit edilmez.

- Bu parametrenin ayarının emniyetsiz bir durum doğurduğunu doğrulayın.

Bu talimatla uyuşmaması, ölüm veya ağır yaralanmala yol açacaktır.
Sürücü sistemleri; yanlış kablo bağlantısı, yanlış ayarlar, yanlış veriler ya da diğer hatalar nedeniyle beklenmedik hareketler gerçekleştirebilir.

1. **KURULUM**
 Kurulum kılavuzuna başvurun.

2. Tahriği aktif çalıştır komutu olmadan Devreye al.

3. Yapılandırın:
 - Motor nominal frekansı [Motor Standart]
 f_r bu 50 Hz değilse.
 - Şuradaki uygulama fonksiyonları: [Tüm ayarlar] E_s - menüsü, yalnızca tahriğin fabrika yapılandırması uygun değilse.

4. [Hızlı Devreye Alma] kısmında $S_Y S$ - menüsü, aşağıdaki parametreleri ayarlayın:
 - [Hızlanma] $R C C$ ve [Yavaşlama] $d E C$
 - [Düşük hız] $L S P$ ve [Yüksek Hız] $H S P$

5. Tahriği başlatın.

UYARI

TAHMİN EDİLEMEYEN EKİPMAN ÇALIŞMASI
- Kablo bağlantısını EMC gerekliliklerine uygun şekilde, dikkatlice yapın.
- Ürünü bilinmeyen ya da uygun olmayan ayarlarla ya da verilerle çalışırmayın.
- Kapsamlı bir devreye alma testi gerçekleştirin.

Bu talimatlara uymaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

İpuçları

NOT: Doğruluk ve tepki süresi açısından optimum tahrik performansı için aşağıdaki işlemlerin yapılması gerekir:
- [Motor parametreleri] \(N P R \) - menüsündeki motor etiket plakasında belirtilen değerleri girin.
- Motor soğuk ve bağlıyken [Oto. İnce Ayar] \(\ell \), \(n \) parametresini kullanarak otomatik tanıma gerçekleştirin.
Yazılım İyileştirmeleri

Genel Bilgi

ATV340'a ilk piyasaya çıktığından bu yana farklı yeni fonksiyonlar eklenmiştir. Yazılım sürümü, V1.6'ya yükseltildiştir.

Bu belgenin V1.6 sürümüyle ilgili olmasına rağmen, önceki sürümler için de kullanılabilir.

V1.5'e Kyasla Sürüm V1.6'da Yapılan İyileştirmeler

Menüle erişmek için parola koruması sınırlamasında iyileştirme.

V1.1'e Kyasla Sürüm V1.5'te Yapılan İyileştirmeler

VW3A3619 POWERLINK fieldbus modülü.

[Motor kontrolü] \textit{d r C} - menüsünde, "Çıkış Voltajı Yönetimi ve Aşırı modülasyon" fonksiyonu eklenir.

DURDUR/SIFIRLA tuşu için yeni bir olası davranış eklendi, bkz. [Durdurma Tuşu Aktif] \textit{P S t} parametresi.

[Fren lojik kontrolü] \textit{b L E} - işlevlerindeki iyileştirmeler ve yeni işlevsellikler ilgili menülerinde bulunabilir.

Yeni parametreler kullanılabilir ve [OTOMATİK] \textit{R u t a} ayar değerlerinin hesaplaması güncellenmiştir.

Sanal analog giriş türü artık \textit{AIv1 tipi} \textit{R v 1 t} parametreleriyle ayarlanabilir.

Çift yönlü ölçüklü analog girişleri desteğin için bkz. \textit{AIx aralığı} \textit{R x L} parametreleri.

[Dönerken Yakalama] \textit{F L r} - menüsünde, serbest duruştan farklı durma türlerinden sonra fonksiyonun aktif olmasını izin vermek için yeni bir seçim eklenmiştir.

Bölüm 2
Jenerik Bilgi

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrika Konfigürasyonu</td>
<td>30</td>
</tr>
<tr>
<td>Uygulama Fonksiyonları</td>
<td>32</td>
</tr>
<tr>
<td>Ekran Terminalleri</td>
<td>34</td>
</tr>
<tr>
<td>Ürün LED'leri</td>
<td>39</td>
</tr>
<tr>
<td>Parametre Tablosunun Yapısı</td>
<td>42</td>
</tr>
<tr>
<td>Bu Belge İçinde bir Parametrenin Bulunması</td>
<td>43</td>
</tr>
</tbody>
</table>
Fabrika Konfigürasyonu

Fabrika Ayarları

Tahrik, ortak çalışma koşulları için fabrika ayarılır:
- Ekran: motor çalışmaya hazır olduğunda tahrık hazır [Rampa önce Ref Frek] \(F \) \(r \) \(H \) ve motor çalışırken [Motor Frekansı] \(r \) \(F \) görüntülenir.
- Hata algılandığında durdurma modu: serbest durma.

Bu tablo, tahrık ile fabrika ayarı değerlerinin temel parametrelerini sunar:

<table>
<thead>
<tr>
<th>Kod</th>
<th>Adı</th>
<th>Fabrika ayarı değerleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>bFr</td>
<td>[Motor Standardı]</td>
<td>(50Hz IEC) 50</td>
</tr>
<tr>
<td>cEC</td>
<td>[2/3- Tel Kumanda]</td>
<td>[2 Kablolu Kontrol] 2C, 2 telli kontrol</td>
</tr>
<tr>
<td>CkRe</td>
<td>[Motor kontrol tipi]</td>
<td>[SVC V] V v C: gerilim vektör kontrolü</td>
</tr>
<tr>
<td>AEC</td>
<td>[Hızlanma]</td>
<td>3,0 sn</td>
</tr>
<tr>
<td>dEC</td>
<td>[Yavaşlama]</td>
<td>3,0 sn</td>
</tr>
<tr>
<td>LSP</td>
<td>[Düşük Hız]</td>
<td>0,0 Hz</td>
</tr>
<tr>
<td>HSP</td>
<td>[Yüksek Hız]</td>
<td>50,0 Hz</td>
</tr>
<tr>
<td>iEH</td>
<td>[Motor Termal Akımı]</td>
<td>Nominal motor akımı (değer tahrik değerine bağlıdır)</td>
</tr>
<tr>
<td>Frd</td>
<td>[İleri]</td>
<td>[DI1] d, i: Dijital giriş DI1</td>
</tr>
<tr>
<td>rS5</td>
<td>[Geri]</td>
<td>[DI2] d, i: Dijital giriş DI2</td>
</tr>
<tr>
<td>Fr 1</td>
<td>[Ref Frek 1 Konfig]</td>
<td>[AI1] A, i: Analog giriş AI1</td>
</tr>
<tr>
<td>r1</td>
<td>[R1 Atama]</td>
<td>(Çalışma Durumu Hatası) (F) (i): Kontak; tahrik bir hata algılandığında veya tahrik kapatıldığında açılır</td>
</tr>
<tr>
<td>ATr</td>
<td>[Oto Hata Sıfırlama]</td>
<td>[Hayır] n a: fonksiyon devre dışı</td>
</tr>
<tr>
<td>STr</td>
<td>[Durdurma türlü]</td>
<td>[Rampada] r (P): rampada</td>
</tr>
<tr>
<td>Ao1</td>
<td>[AQ1 ataması]</td>
<td>[Motor Frekansı] (r) (F): Motor frekansı</td>
</tr>
<tr>
<td>Ao2</td>
<td>[AQ2 ataması]</td>
<td>[Motor Akımı] (r) (F): Motor akımı</td>
</tr>
<tr>
<td>rSF</td>
<td>[Hata Sıfır. Atması]</td>
<td>[DI4] d, 4: Dijital giriş DI4</td>
</tr>
</tbody>
</table>

NOT: Tahriğin ön ayarlarını fabrika değerlerine sıfırlamak istiyorsanız [Konfig.] Source \(F \) \(C \) \(S \), değerini [Makro Konfig] \(n \), olarak ayarlayın.

Yukarıdaki değerlerin uygulamayla uyumu olup olmadığını kontrol edin ve gerekliyorsa değiştirin.
ATV340'ta, tahrik katalog numarasına bağlı olarak giriş ve çıkış kapasiteleri aynı değildir. Aşağıdaki tabloda tahrik anma değerlerine bağlı olarak giriş ve çıkış sayıları verilmiştir:

<table>
<thead>
<tr>
<th>Giriş/Çıkış Farkları</th>
<th>ATV340U07N4E ila ATV340D22N4E</th>
<th>ATV340D30N4E ila ATV340D75N4E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijital giriler</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Dijital çıkışlar</td>
<td>2(1)</td>
<td>1</td>
</tr>
<tr>
<td>Röleler</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>AI1</td>
<td>10 Vdc, 0-20mA, Termal</td>
<td>10 Vdc, 0-20mA, Termal</td>
</tr>
<tr>
<td>AI2</td>
<td>+10 Vdc</td>
<td>+10 Vdc</td>
</tr>
<tr>
<td>AI3</td>
<td>-</td>
<td>10 Vdc, 0-20mA, Termal</td>
</tr>
<tr>
<td>AQ1</td>
<td>10 Vdc, 0-20mA</td>
<td>10 Vdc, 0-20mA</td>
</tr>
<tr>
<td>AQ2</td>
<td>-</td>
<td>10 Vdc, 0-20mA</td>
</tr>
<tr>
<td>Darbe Giriş</td>
<td>Özel PTI konektörü</td>
<td>DI7, DI8</td>
</tr>
<tr>
<td>Darbe çıkışi (PTO)</td>
<td>Özel PTO konektörü</td>
<td>DQ1</td>
</tr>
</tbody>
</table>

(1) Kullanırken:
- DQ1, DI8 artık kullanılmaz.
- DQ2, DI7 artık kullanılmaz
Uygulama Fonksiyonları

Giriş

Aşağıdaki tablolarda, seçiminizde rehberlik etmek için fonksiyonlar ve uygulamaların kombinasyonlarını gösterir.
Bu tablolarındaki fonksiyonlar aşağıdaki uygulamalarla ilgilidir:

- Ambalaj:
 - Paletizör
 - Şrink kaplama makineleri
 - Karton kutu hazırlayıcı

- Malzeme İşleme:
 - Standart vinç
 - Otomatik depolama sistemi
 - Konveyörleri gruplama

- Malzemeye Çalışma:
 - Kesiciler
 - Panel bölme testeresi
 - Kablo bükmek

Her uygulamanın kendine özgü özellikleri bulunur ve burada listelenen kombinasyonlar, zorunlu değildir veya eksiksiz olarak verilmemişlerdir.
Başka fonksiyonlar belirli bir uygulama için özel olarak tasarlanmıştır. Bu durumda uygulama, ilgili programlama sayfalarındaki marj sekmesi ile belirlenir.

<table>
<thead>
<tr>
<th>Fonksiyon</th>
<th>Ambalaj</th>
<th>Malzeme İşleme</th>
<th>Malzemeye Çalışma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frenleme işlem dizisi (bkz. sayfa 274)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konik motorlar için güçlendirme (bkz. sayfa 197)</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Sınır anahtarı yönetimi (bkz. sayfa 385)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tork düzenlemesi</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Konumlandırma / Mesafede Otomatik Durma (bkz. sayfa 387)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>PLC için konumlandırma değeri (bkz. sayfa 489)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Yük paylaşımı (bkz. sayfa 286)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Ana/Bağlı yönetimi (bkz. sayfa 236)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Sert bağlantıda Master/Bağlı</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Elastik bağlantıda Master/Bağlı</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Yüksek hızda kaldırma (bkz. sayfa 49)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Yüksek hızda komutaşyon (bkz. sayfa 38)</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Fonksiyonların ve İzleme fonksiyonlarının kombinasyonu:

<table>
<thead>
<tr>
<th>Fonksiyon</th>
<th>Ambalaj</th>
<th>Malzeme İşleme</th>
<th>Malzemeye Çalışma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harici hata (bkz. sayfa 501)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dönen yükü yakalama (bkz. sayfa 497)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Motor Aşırı Hızı (bkz. sayfa 630)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tork sınırlaması (bkz. sayfa 373)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kodlayıcı kontrolü (bkz. sayfa 483)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Geri devre diş (bkz. sayfa 219)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Frenleme direncini termal izleme (bkz. sayfa 517)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yük altında algılama (bkz. sayfa 419)</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Hızlı duruş (bkz. sayfa 324)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dinamik yük algılama (bkz. sayfa 302)</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Mekanik rezonans reddi (bkz. sayfa 208)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oyalama izleme (bkz. sayfa 423)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Yük kayması izleme (bkz. sayfa 516)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gevşek halat ve gevşek halatı algılama (bkz. sayfa 283)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonksiyonların ve Konfigürasyon yönetiminin kombinasyonu:

<table>
<thead>
<tr>
<th>Fonksiyon</th>
<th>Ambalaj</th>
<th>Malzeme İşleme</th>
<th>Malzemeye Çalışma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor değiştirme (bkz. sayfa 411)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Konfigürasyon değiştirme (bkz. sayfa 411)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parametre değiştirme (bkz. sayfa 401)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Akım eşği fonksiyonu (bkz. sayfa 364)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tork eşği eşiğine erişildi (bkz. sayfa 386)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Termal duruma eşiğine erişildi (bkz. sayfa 369)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Otomatik hata sıfırlama (bkz. sayfa 494)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Yüksek hız ulaşıldı (bkz. sayfa 369)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Motorda dalgalanma gerilimi (bkz. sayfa 216)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametre özelleştirilmesi (bkz. sayfa 383)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Darbe girişi konfigürasyonu (bkz. sayfa 445)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çift anma değeri (bkz. sayfa 460)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Ekran Terminalleri

Giriş

Sürücü Düz Metin Ekran Terminali (VW3A1113) ile veya Grafik Ekran Terminali (VW3A1111) ile uyumludur. Bu ekran terminaleri ayrıca sipariş edilebilir.

NOT: Bu kılavuzda, her iki ekran terminali için Ekran Terminali terimi kullanılır.

Düz Metin Ekran Terminali (VW3A1113) Açıklaması

Düz Metin Ekran Terminali, sürücüye takılabilen veya özel kapak montaj kiti (VW3A1114) ile bir muhafazanın kapağına takılabilen yerel bir kontrol ünitesidir.

1 STOP / RESET: Durdurma komutu / Hata Sıfırlama uygulama.
2 ESC: Bir menüden/parametreden çıkmak ya da bellekte tutulan önceki değere dönmek üzere o anda gösterilen değeri silmek için kullanılır.
3 Graphic display.
4 Home: Doğrudan ana sayfaya erişim.
5 RUN: Fonksiyonu, konfigüre edildiğini varsayarak çalıştırır.

Grafik Ekranın Açıklaması

<table>
<thead>
<tr>
<th>Tuş</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ekran satırı: İçeriği konfigüre edilebilir</td>
</tr>
<tr>
<td>2</td>
<td>[Sürücü durumu] H N 5</td>
</tr>
<tr>
<td>3</td>
<td>Müşteri tarafından tanımlanmış</td>
</tr>
</tbody>
</table>
| 4 | Aktif kontrol kanalı
 - TERM: Terminaler
 - HMI: Ekran Terminali
 - MDB: Entegre Modbus seri
 - CAN: CANopen®
 - NET: Fieldbus modülü
 - ETH: Entegre Ethernet (ATV340…N4E için)
 - PWS: DTM tabanlı devreye alma yazılımı |
| 5 | Menü satırı: geçerli menü veya alt menünün adını gösterir |
| 6 | Menüler, alt menüler, parametreler, değerler, çubuk grafikler ve benzerleri, maksimum 2 satırlık aşağı açılır pencere formatında gösterilir. Gezinme butonu tarafından seçilen satır veya değer ters video olarak görüntülenir |
Grafik Ekran Terminalinin Açıklaması (VW3A1111)

Grafik Ekran Terminali, özel kapak montaj kiti (VW3A1112) ile bir muhafazanın kapağına takılabilen yerel bir kontrol ünitesidir. Grafik Ekran Terminali, kaydedilen verilerin ve zaman bilgisi gerektiren tüm diğer fonksiyonların zaman damgalaması için kullanılan gerçek zamanlı bir saat barındırır.

1 STOP / RESET: Durdurma komutu / Hata Sıfırlama uygulama.
2 LOCAL / REMOTE: Sürücünün yerel ve uzaktan kontrolü arasında geçiş yapmak için kullanılır.
3 ESC: Bir menüden/parametreden çıkmak ya da bellekte tutulan önceki değere dönme için kullanılır.
4 F1 - F4: Sürücü kimliği, QR kodu, hızlı görüntüleme ve alt menülerde erişim için kullanılan fonksiyon tuşlarıdır. F1 ve F4 tuşlarına aynı anda basmak, Grafik Ekran Terminalinin dahili hafızasında bir ekran görüntüsü oluşturulur.
5 Grafik ekran.
6 Ana sayfa: Ana sayfaya doğruan erişmek için kullanılır.
7 Bilgi: Menüler, alt menüler ve parametreler hakkında daha fazla bilgi sahibi olmak için kullanılır. Seçilen parametre ya da menü kodu, bilgi sayfasının ilk satırında görüntülenir.
8 RUN: Fonksiyonu, konfigüre edildiğini varsayarak çalıştırır.
9 Dokunmatik teker / OK: O andaki değeri kaydetmek veya seçilen menüyü/parametreyi seçmek için kullanılır.
10 RJ45 Modbus seri portu: Grafik Ekran Terminalini uzaktan kumandadaki sürücüye bağlamak için kullanılır.
11 Mini-B USB bağlantısı: Grafik Ekran Terminalini bir bilgisayara bağlamak için kullanılır.

NOT: 1, 8 ve 9 tuşları, Ekran Terminali üzerinden kumanda aktif hale getirilip/daştırılmak için kullanılabilir. Ekran Terminalindeki tuşlar etkili hale getirilir ve üst/alt oklar bir parametrenin sayısallı değerlerini ayarlamak için kullanılır.

VW3A1111 Grafik Ekranın Açıklaması

1 Ekran satırı: İçerikleri konfigüre edilebilir
2 Menü satırı: geçerli menü veya alt menünün adını gösterir
3 Menüler, alt menüler, parametreler, değerler, çubuk grafikler ve benzerleri, maksimum beş satırlık aşağı açılır pencere formatında gösterilir. Gezinme butonu tarafından seçilen satır veya değer ters video olarak gösterilir
4 Sekmeleri gösteren bölüm (menüde 1 - 4), bu sekmelere F1 ile F4 arasındaki tuşlar kullanılarak erişilebilir

NOT: Grafik Ekran Terminalindeki menülerin ve alt menülerin önündeki sayılar bu programlama kilavuzundaki bölüm numaralarından farklıdır.

Ekran satırı ayrıntıları:

Tuşlar:
1 [Sürücü durumu]
2 Müşteri tanımlı parametre değeri
3 Müşteri tanımlı parametre değeri
4 Aktif kontrol kanalı
 ● TERM: terminaller
 ● HMI: Ekran Terminali
 ● MDB: dahili Modbus seri
 ● CAN: CANopen®
 ● NET: fieldbus modülü
 ● ETH: Entegre Ethernet (ATV340xxxN4E için)
 ● PWS: DTM tabanlı devreye alma yazılımı
5 Mevcut zaman
6 Akü seviyesi

Bir Bilgisayara Bağlı Grafik Ekran Terminali

BİLDİRİM

BİLGİSAYARIN HASAR GÖRME RİSKİ

Grafik Ekran Terminali, bir bilgisayara bağlı olduğu zaman SE_VW3A1111 USB depolama cihazı adıyla görüntülenir.
Bu da kaydedilen sürücü konfigürasyonlarına (DRVCONF menüsü) ve Grafik Ekran Terminali ekran görüntülerine (PRTSCR menüsü) erişimini sağlar.
Ekran görüntüleri; F1 ve F4 fonksiyon tuşlarına aynı anda basılık kaydedilebilir
Grafik Ekran Terminalindeki Dil Dosyalarını Güncelleme Yöntemi Nedir?

Grafik Ekran Terminali (VW3A1111) dil dosyaları güncellenebilir.
Dil dosyalarının son sürümünü buradan indirebilirsiniz: Languages_Drives_VW3A1111
Dosyayı açın ve ReadMe metin dosyasındaki talimatları izleyin.
Ürün LED'leri

Giriş

Sürücüde, sürücü durumunu göstermek için kullanılan durum LED'leri bulunur.
Kullanılabilir LED sayısı sürücü sınıflandırmasına göre değişir.
- ATV340U07N4• - ATV340D22N4• için: 4 LED.
- ATV340D30N4E - ATV340D75N4E için: 10 LED.

ATV340U07N4• - ATV340D22N4•

Aşağıdaki tabloda sürücü durum LED'lerinin ayrıntıları verilmiştir:

<table>
<thead>
<tr>
<th>Öğe</th>
<th>LED</th>
<th>Durum ve renk</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATUS</td>
<td>KAPALI</td>
<td>Sürcünün gücünün kapalı olduğunu gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp sönme</td>
<td>Sürcünün çalışmadığını ve çalışmaya hazır olduğunu gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte titreşme</td>
<td>Sürcünün geçiş durumunda olduğunu gösterir (hızlanma, yavaşlama ve benzeri)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Sürcünün çalıştığini gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte sürekli yanma</td>
<td>DTM tabanlı devreye alma yazılımı kullanırken aygıt görsel açıklaması</td>
</tr>
<tr>
<td>2</td>
<td>Warning/Error</td>
<td>Kırmızı renkte yanıp sönme</td>
<td>Sürcünün bir uyarı algıladığını gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte sürekli yanma</td>
<td>Sürcünün bir hata algıladığını gösterir</td>
</tr>
<tr>
<td>3</td>
<td>ASF</td>
<td>Sarı renkte sürekli yanma</td>
<td>Güvenlik fonksiyonunun tetkilendiğini gösterir</td>
</tr>
<tr>
<td>4</td>
<td>COM</td>
<td>Sarı renkte yanıp sönme</td>
<td>Dahili Modbus seri aktivitesini gösterir</td>
</tr>
</tbody>
</table>

ATV340D30N4E - ATV340D75N4E
Aşağıdaki tabloda sürücü durum LED'lerinin ayrıntıları verilmiştir:

<table>
<thead>
<tr>
<th>Öğe</th>
<th>LED</th>
<th>Durum ve renk</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATUS</td>
<td>KAPALI</td>
<td>Sürücünün gücünün kapalı olduğunu gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp söme</td>
<td>Sürücünün çalışmadığını ve çalışmaya hazır olduğunu gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte titreşme</td>
<td>Sürücünün geçiş durumunda olduğunu gösterir (hızlanma, yavaşlama ve benzeri)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Sürücünün çalıştığını gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte sürekli yanma</td>
<td>SoMove ya da aygıt DTM'si kullanırken Aygıt Görsel tanımlama fonksiyonu</td>
</tr>
<tr>
<td>2</td>
<td>Warning/Error</td>
<td>Kırmızı renkte yanıp söme</td>
<td>Sürücünün bir uyarı algıladığını gösterir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte sürekli yanma</td>
<td>Sürücünün bir hata algıladığını gösterir</td>
</tr>
<tr>
<td>3</td>
<td>ASF</td>
<td>Sarı renkte sürekli yanma</td>
<td>Güvenlik fonksiyonunun tefkilediğini gösterir</td>
</tr>
</tbody>
</table>

Aşağıdaki tabloda dahili Ethernet LED'lerinin ayrıntıları verilmiştir:

<table>
<thead>
<tr>
<th>Öğe</th>
<th>LED</th>
<th>Durum ve renk</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>LNK1</td>
<td>KAPALI</td>
<td>Bağlanti yok.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil/Sarı renkte yanıp söme</td>
<td>Güç açık testi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Link, 100 Mbit/s'de oluşturuldu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp söme</td>
<td>Link, 10 Mbit/s'de oluşturuldu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte yanıp söme</td>
<td>100 Mbit/s'de fieldbus aktivitesi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte sürekli yanma</td>
<td>10 Mbit/s'de fieldbus aktivitesi.</td>
</tr>
<tr>
<td>5</td>
<td>MS</td>
<td>KAPALI</td>
<td>Aygıt'a hiçbir güç sağlanmıyor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil/Kırmızı renkte yanıp söme</td>
<td>Güç verme testi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Aygıt düzgün çalışıyor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp söme</td>
<td>Aygıt yapılandırılmadı.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte yanıp söme</td>
<td>Aygıt düzeltilebilir küçük bir hata algıladı.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte sürekli yanma</td>
<td>Aygıt düzeltilebilir büyük bir hata algıladı.</td>
</tr>
<tr>
<td>6</td>
<td>NS</td>
<td>KAPALI</td>
<td>Aygıtın IP adresi yok ya da gücü kapalı.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil/Kırmızı renkte yanıp söme</td>
<td>Güç açık testi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Komut kelimelerini kontrol etmek için bir bağlantı oluşturuldu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp söme</td>
<td>Aygıtın geçerli bir IP'si var ama komut kelimesi bağlantısı yok.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte yanıp söme</td>
<td>Çift IP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kırmızı renkte sürekli yanma</td>
<td>Komut kelimelerini kontrol etmek için oluşanulan bağlantı kapalı ya da zaman aşımına uğramış.</td>
</tr>
</tbody>
</table>
Aşağıdaki tabloda dahili Modbus seri LED'lerinin ayrıntıları verilmiştir:

<table>
<thead>
<tr>
<th>Öğe</th>
<th>LED</th>
<th>Durum ve renk</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>LNK2</td>
<td>KAPALI</td>
<td>Bağlanti yok.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil/Sarı renkte yanıp sönme</td>
<td>Güç açık testi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte sürekli yanma</td>
<td>Link, 100 Mbit/s'de oluşturuldu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yeşil renkte yanıp sönme</td>
<td>Link, 10 Mbit/s'de oluşturuldu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte yanıp sönme</td>
<td>100 Mbit/s'de fieldbus aktivitesi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarı renkte sürekli yanma</td>
<td>10 Mbit/s'de fieldbus aktivitesi.</td>
</tr>
</tbody>
</table>

Aşağıdaki tabloda fieldbus modülü LED'lerinin ayrıntılarını verilmiştir:

<table>
<thead>
<tr>
<th>Öğe</th>
<th>LED</th>
<th>Durum ve renk</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>COM</td>
<td>Sarı renkte yanıp sönme</td>
<td>Dahili Modbus seri aktivitesini gösterir</td>
</tr>
<tr>
<td>9</td>
<td>NET 1</td>
<td>Yeşil/Kırmızı</td>
<td>Ayrıntılar için fieldbus kılavuzuna bakın</td>
</tr>
<tr>
<td>10</td>
<td>NET 2</td>
<td>Yeşil/Kırmızı</td>
<td>Ayrıntılar için fieldbus kılavuzuna bakın</td>
</tr>
</tbody>
</table>

ATV340**S'de Sercos III LED'leri**

Lütfen bkz. ATV340 Sercos III manual **PHA33735** (İngilizce).
Parametre Tablosunun Yapısı

Genel Gösterge

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌟</td>
<td>Bu parametreler sadece bunlara karşılık gelen fonksiyon başka bir menüden seçilirse belirir. Parametreler, karşılık gelen fonksiyonlarının konfigürasyon menüsü içindeki erişilmiş ayarlamaları yapıldığında açıklanır, programlamaya yardımcı olmak amacıyla bu menülerde ayrıntılı olarak verilir.</td>
</tr>
<tr>
<td>()</td>
<td>Bu parametrenin ayarlanması, çalışma sırasında veya çalışma durdurulduğunda yapılabilir. NOT: Ayarlarından herhangi biri değiştirilmeden önce motorun durdurulması tavsiye edilir.</td>
</tr>
<tr>
<td>🍾</td>
<td>Parametreinin atamasını değiştirmek için takviyeli onay gereklidir.</td>
</tr>
</tbody>
</table>

Parametre Sunumu

Aşağıda bir parametre sunumunun bir örneği verilmiştir:

[Örnek Menü] Kₐ d ₁ – Menü

Erişimi
Aşağıda açıklanan parametrelerle şunlar şekilde erişilebilir:

- [Yol] ➔ [Alt yol]

Bu mBuBu menü hakkında
Menü ya da fonksiyon açıklaması

[Parametre1] Kₐ d ₁
Parametre açıklaması

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0... 10,000,0</td>
<td>Ayar aralığı için tablo örneği: Fabrika ayağı: 50,0</td>
</tr>
</tbody>
</table>

[Parametre2] Kₐ d ₂
Parametre açıklaması

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[50 Hz IEC]</td>
<td>5 Ø</td>
<td>IEC Fabrika ayağı</td>
</tr>
<tr>
<td>[60 Hz NEMA]</td>
<td>5 Ø</td>
<td>NEMA</td>
</tr>
</tbody>
</table>
Bu Belge İçinde bir Parametrenin Bulunması

Kılavuz

Kılavuzda seçilen parametrenin ayrıntılarını veren sayfayı aramak için parametre adının veya parametre kodunun kullanılması mümkündür.

Menü ile Parametre Arasındaki Fark

Menü ve alt menü kodları, menü komutlarının parametre komutlarından ayrılması için kullanılır.

Örnek:

<table>
<thead>
<tr>
<th>Seviye</th>
<th>Adı</th>
<th>Kod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menü</td>
<td>[Rampa]</td>
<td>r A N P -</td>
</tr>
<tr>
<td>Parametre</td>
<td>[Hızlanma]</td>
<td>ACC</td>
</tr>
</tbody>
</table>
Siber Güvenlik

Giriş

Siber Güvenlik, bilgisayar ağları yoluyla ve bilgisayar sistemleri tarafından yapılan kazaya veya kasten bozulmalarla sonuçlanabilen saldırılarla hedeflenen ağ yönetimi dalıdır. Siber Güvenliğin amacı, amaçlanan kullanıcılarının erişimlerine izin verirken bilgi için ve hırsızlık, bozulma, kötüye kullanım veya kazalara karşı fiziki varlıkları koruma seviyesini artırmak için yardımcı olmaktadır.

Bu yaklaşımın temel bileşenleri şunlardır:
- Risk değerlendirmesi
- Risk değerlendirmesinin sonuçlarına göre oluşturulmuş bir güvenlik planı
- Bir çok fazıli eğitim kampanyası
- Bir sivil bölge (DMZ) kullanarak endüstriyel ağları kurumsal ağlardan fiziksel olarak ayırma ve diğer güvenlik bölgeleri oluşturmak için güvenlik duvarı ve yönlendirme kullanma
- Sistem erişim kontrolü
- Aygit sertleştirme
- Ağ izleme ve bakımı

Bu bölümde siber ataklara daha az duyarlı bir sistemi konfigüre etmenize yardımcı olan öğeler tanımlanır. Derinlemesine savunma yaklaşımı hakkında daha ayrıntılı bilgi için: How Can I Reduce Vulnerability to Cyber Attacks in the Control Room (STN V2) Schneider Electric web sitesindeki TVDA'ya bakın.

Bir Siber Güvenlik sorusu göndermek için güvenlik sorunlarını bildirin veya Schneider Electric web sitesini ziyaret ederek en son haberleri Schneider Electric'ten alın.

Parola Yönetimi

Sistem birçok parola sayesinde güvene alınmıştır:
- Sürücü parolası (bkz. sayfa 555) altı karakter (boşluklara izin verilir) içermelidir
- Web sunucusu parolası (bkz. sayfa 567) şunları içermelidir:
 - Toplam sekiz karakter
 - En az bir büyük harf
 - En az bir küçük harf
 - En az bir özel karakter (örneğin @, #, $)
 - Boş karakter yok

NOT: Beş başarısız oturum açma girişimden sonra erişim yönetici tarafından yeniden etkinleştirilmelidir.

Schneider Electric şunları önerir:
- Parolayı her 90 günde bir değiştirme
- Özel bir parola kullanmayı (kişisel parolanızla ilgisi olmayan)

NOT: Ürün parolanız biri tarafından ele geçirildiğinde ve aynı parolayı kişisel kullanım için de kullanıldığındada bu durumun sonuçlarından Schneider Electric bir sorumluluk kabul etmez.

Yazılım Konfigürasyonunu Yedekleme ve Geri Yüklemek

Verilerinizi korumak için Schneider Electric aygıt konfigürasyonunuzu yedeklemeniz ve yedeğinizi güvenli bir yerde tutmanız öneriliir. Yedek, "aygıttan yük" ve "aygita depola" fonksiyonları kullanılarak aygıt DTM'sinde kullanılabilir.

Sürücü öğesine Uzaktan Erişim

Bir aygıt ve sürücü arasında uzak erişim kullanıldığında ağınızın güvenli olduğundan emin olun (VPN, Güvenlik Duvarı...).
Makiner, kontrol cihazları ve ilgili teçhizat genellikle ağlara entegre edilir. Yetkisiz kişiler ve kötü amaçlı yazılımlar yazılımlara ve ağlara yeterince güvenli olmayan erişimi kullanarak makineye ve ayrıca, makine ağı/fieldbus'ı ile bağlı ağlara üzerindeki diğer cihazlara erişebilir.

UYARI

YAŽILIM VE AĞLAR ARACILIĞIYLA MAKİNEYE YETKİSİZ ERİŞİM
- Tehlike ve risk analizizinde ağ/fieldbus'a erişim ve bunlara üzerindeki çalışmanın kaynaklandırılan tüm tehlikeleri göz önünde bulundurun ve uygun bir siber güvenlik konsepti geliştirin.
- Uygun ve kantıtlanmış yöntemleri kullanarak IT güvenliği ve siber güvenlik etkiliğini doğrulayın.

Veri Akışı Kısıtlaması
Sürücü öğesine erişimi güvenli hale getirmek ve veri akışını sınırlamak için bir güvenlik duvarı aygıtını kullanmanız gerekir.

ConneXium Tofino Güvenlik Duvarı Ürünü
ConneXium TCSEFEA Tofino Güvenlik Duvarı, endüstriyel ağlar, otomasyon sistemleri, SCADA sistemleri ve işlem kontrol sistemleri için siber tehlikelere karşı koruma düzeyleri sağlayan bir güvenlik uygulamasıdır.

Bu Güvenlik Duvarı, Güvenlik Duvarı'nın haricî ağına bağlı aygıtlar arasındaki iletişimlere izin vermek veya engellemek için ve dahili bağlantılara bağlı aygıtları korumak için tasarlanmıştır.

Güvenlik duvarı, yalnızca yetkili aygıtlara, iletişime türlerine ve hizmetlere izin veren kullanıcı tanımlı korulara göre ağ trafiğini kısıtlayabilir.

Kontrol Komut Kısıtlaması
Sürücü komutunun yetkisiz kullanımını önlemek için IP master parametresi kullanılarak sınırlı sayıda IP adresine erişim vermek mümkündür.
IP Master parametresi aygıtlara hangi aygıtın komut verebileceğini tanımlar. Bu parametre aygıtt DTM'sinde kullanılabilir.

Kullanılmayan fonksiyonların devre dışı bırakılması
Yetkisiz erişimi önlemek için kullanılmayan fonksiyonları devre dışı bırakmak önerilir.
Örnek: Web Sunucusu, Hızlı Aygıt Değiştirme…
Kısım II

Programlama

Bu kısımda neler yer alıyor?

Bu kısım, şu bölümleri içerir:

<table>
<thead>
<tr>
<th>Bölüm</th>
<th>Bölümün Adı</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>[Hzl Devreye Alma] SYS-</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>[Panel] dSH-</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>[Tanılama] dRA-</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>[Ekran] NOn-</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>[Tüm ayarlar] C5b-</td>
<td>157</td>
</tr>
<tr>
<td>9</td>
<td>[İletişim] C8P-</td>
<td>533</td>
</tr>
<tr>
<td>10</td>
<td>[Dosya yönetimi] F8P-</td>
<td>545</td>
</tr>
<tr>
<td>11</td>
<td>[Tercihlerim] NYP-</td>
<td>553</td>
</tr>
</tbody>
</table>
Bölüm 4
[Hızlı Devreye Alma] 5 Y 5 -

Giriş

[Hızlı devreye alma] 5 Y 5 - menüsü, şebeke özelliklerine hızlı erişim için 3 sekme içerir:
- Ayarlanacak temel parametreleri hızlı erişim sağlayan Hızlı Devreye Alma sekmesi.
- Belirli parametreleri hızlı erişim için kullanıcı tarafından tanımlanan bir menü olan Menüm sekmesi.
- Son değiştirilen parametreleri hızlı erişim sağlayan Değiştirilen son 10 Parametre sekmesi.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hızlı devreye alma] 5 , (\eta) - Menüsü</td>
<td>50</td>
</tr>
<tr>
<td>[Menüm] (\eta) (\eta) - Menüsü</td>
<td>56</td>
</tr>
<tr>
<td>[Değiştirilen parametreler] (L \ \eta \ d) - Menüsü</td>
<td>56</td>
</tr>
</tbody>
</table>
[Hızlı devreye alma] S / N - Menüsü

Erişim

[Hzlı devreye alma] ➔ [Hzlı devreye alma]

Bu Menü Hakkında

UYARI

KONTROL KAYBI
- Bağlı motorun kilavuzunu tamamen okuyup kavrayın.
- İşim plakasına ve bağlı motorun kilavuzuna bakarak tüm motor parametrelerinin doğru ayarlandığını doğrulayın.

Bu talimatları uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu menü, ayarlanacak temel parametrelerle hızlı bir giriş sağlar.

[Motor Standardı] bFr ★

Motor standardı.
Bu parametreye [Motor kontrol türü] C ≤ t aşınmasi şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] S Y n veya
- [Senkr.CL.] F S Yveya
- [SYN_U VC] S Y n ve veya
- [Rel. Mot.] 5 r V ≤ e.

Bu parametre aşağıdaki parametrelerin ön ayarlarını değiştirir:
- [Yükseß Hız] H S P
- [Motor Frek Eşiğil] F ≤ d
- [Nom Motor Gerilimi] υ N 5
- [Nominal Motor Frek] F r 5
- [Maks Frekans] λ F r

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[50 Hz IEC]</td>
<td>S D</td>
<td>IEC Fabrika ayan</td>
</tr>
<tr>
<td>[60 Hz NEMA]</td>
<td>B D</td>
<td>NEMA</td>
</tr>
</tbody>
</table>

[Nominal motor gücü] nPr ★

Nominal motor gücü.
Bu parametreye şu şekilde erişilebilir:
- [Motor kontrol türü] C ≤ t aşınmasi şekilde ayarlanmazsa:
 - [Senkr. mot.] S Y n veya
 - [Senkr.CL.] F S Yveya
 - [SYN_U VC] S Y n ve veya
 - [Rel. Mot.] 5 r V ≤ e

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürönü anma değerlerine göre</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayan: sürönü anma değerlerine göre</td>
<td></td>
</tr>
</tbody>
</table>
[Nominal Motor Gerilimi] U ≤ 5 ★
Nominal motor gerilimi.
Bu parametre [Motor kontrol türü] C ≤ b aşağıdaki şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] 5 Y veya
- [Senkr.CL.] F 5 Y veya
- [SYN_U VC] 5 Y ve veya
- [Rel. Mot.] 5 r veya
Etket plakasında belirtilen nominal motor gerilimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,0...690,0 Vac</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: sürücü anma değerine ve [Motor Standardı]na göre b F r</td>
</tr>
</tbody>
</table>

[Nominal Motor Akımı] I ≤ 5 ★
Etket plakasında belirtilen nominal motor akımı.
Bu parametre [Motor kontrol türü] C ≤ b aşağıdaki şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] 5 Y veya
- [Senkr.CL.] F 5 Y veya
- [SYN_U VC] 5 Y ve veya
- [Rel. Mot.] 5 r veya
Etket plakasında belirtilen nominal motor akımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25...1,8 In (1)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: sürücü anma değerine ve [Motor Standardı]na göre b F r</td>
</tr>
</tbody>
</table>

(1) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.

[Nominal Motor Frek] f ≤ 5 ★
Nominal motor frekansı.
Bu parametre [Motor kontrol türü] C ≤ b aşağıdaki şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] 5 Y veya
- [Senkr.CL.] F 5 Y veya
- [SYN_U VC] 5 Y ve veya
- [Rel. Mot.] 5 r veya
Fabrika ayarı 50 Hz'dir veya [Motor Standardı] b F r, 60 Hz olarak ayarlanırsa ön ayar 60 Hz'dir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 50,0 Hz</td>
</tr>
</tbody>
</table>

[Nominal Motor Hızı] n ≤ P ★
Nominal motor hızı.
Bu parametre [Motor kontrol türü] C ≤ b aşağıdaki şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] 5 Y veya
- [Senkr.CL.] F 5 Y veya
- [SYN_U VC] 5 Y ve veya
- [Rel. Mot.] 5 r veya

NVE61643TR 01/2019
Etiket plakası, Hz cinsi veya % olarak senkron hız ve kayma veriyorsa nominal hızı hesaplamak için aşağıdaki formüllerden birini kullanın:

- Nominal hız = Senkronize hız x $\frac{100 - \%}{100}$ olarak oyulma
- Nominal hız = x senkronize hız $\frac{60 - Hz\text{ olarak oyulma}}{60}$ (60 Hz motorlar)
- Nominal hız = x senkronize hız $\frac{50 - Hz\text{ olarak oyulma}}{50}$ (50 Hz motorlar).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: sürücü anma değerlerine göre</td>
</tr>
</tbody>
</table>

[Motor 1 Kosinüs Fı] $\mathcal{C} \alpha S$

Nominal motor kosinüs Phi.

Bu parametreyle şu şekilde erişilebilir:

- [Motor kontrol türü] $\mathcal{C} \beta$ aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] $S \gamma$ veya
 - [Senkr.CL.] $F \gamma$ veya
 - [SYN_U VC] $S \gamma u$ veya
 - [Rel. Mot.] $S \gamma v$ veya

- [Motor para. seçimi] $P \in \mathcal{C}$. [Mot Kosinüsü] $\mathcal{C} \alpha S$ olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,50...1,00</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: sürücü anma değerlerine göre</td>
</tr>
</tbody>
</table>

[2/3-Kablolu Kumanda] $\mathcal{C} \beta$

2 kablolu veya 3 kablolu kontrol.

UYARI

TEÇHIZATIN UMULMAYAN ŞEKILDE ÇALIŞMASI

Bu parametre değiştirilirse [Ters Ata] $r \in S$ ve [2 telli tür] $\mathcal{C} \beta$ parametreleri ile dijital giriş atamaları fabrika ayarlarına sıfırlanır.

Bu değişikliğin kullanılan elektrik tesisatı türüyle uyumlu olduğunu doğrulayın.

Bu talimatları uygulaması ölümü, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 Kablolu Kontrol]</td>
<td>\mathcal{C}</td>
<td>2 kablolu kontrol (seviye komutları): Bu, çalıştırma ve durdurmayı kumanda eden giriş durumu (0 veya 1) veya uçtur (0’dan 1’e veya 1’den 0’a). Source kablo bağlantısına örnek:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 İleri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dlx Geri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
</tbody>
</table>
Hızlı Devreye Alma SYS-
NVE61643TR 01/2019 53

[Maks Frekans] F_r
Maksimum çıkış frekansı.
Fabrika ayarı 60 Hz'dir veya [Motor Standardı] F_r, 60 Hz olarak ayarlanırsa ön ayar 72 Hz'dir.

[Otomatik ince ayar] t_{in}

UEMARY
BEKLENMEDİK HAREKET
Otomatik ince ayar, kontrol çevrimerlerini ayarlamak için motoru hareket ettirir.
- Sistemi yalnızca çalışma bölgesinde hiçbir kişi ya da engel olmadığından çalıştırın.
Bu talimatlara uymaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Otomatik ince ayar sırasında sistemin gürültü ve salınım yapması normaldir.

[Otomatik ince ayar türü] $t_{\text{in}} t_{\text{out}}$
[Standart] $5 t_d$
olarkayarılanrsa otomatik ince ayar sırasında motor küçük hareketler yapar.

[Otomatik ince ayar türü] $t_{\text{in}} t_{\text{out}}$
[Dönüş] $r o t$
olarkayarılanrsa otomatik ince ayar sırasında motorın nominal frekansının yarından çalışır.
Her durumda motor, bir ince ayar işlemi gerçekleştişilmenden önce durdurulmuş olmalıdır. Uygulamanın ince ayar işlemi esnasında motoru döndürmededirin emin olun.
İnce ayar işlemi aşağıdaki kriterleri optimize eder:
- Düşük devrede motor performansları.
- Motor torku tahmini.
Otomatik ince ayar sadece hiçbir durumda komut aktif değişiken yapılar. Bir dijital giriş bir "serbest duruş" veya "hızlı duruş" atandığından, bu giriş 1 olarak ayarlanmalıdır (0'da aktif).
Otomatik ince ayar, otomatik ince ayar sırasında sonra ele alınacak olan her türlü çalıştır veya ön ayar komutundan öncelikli olarak ele alınır.
Otomatik ince ayar bir hata algılarsa sürücüde her zaman [Eylem yok] α değeriğini gösterir ve [Ince Ayar Hata Yanıtı] $t_{\text{in}} L$
konfigürasyonuna bağlı olarak [Oto. Ince Ayar] $t_{\text{in}} L$
hata algılandığı moduna geçebilir.
Otomatik ince ayar birkaç saniye sürebilir. İşlemi bolyemeyin. Ekran Terminali öğesinin [Eylem yok] α
olarak değiştirilmesi bekleyin.
NOT: Motor termal durumunun ince ayar sonucu üzerinde büyük bir etkiye vardır. Motor ince ayar işleminin her zaman motor durmuş ve soğukken yapılar. Uygulamanın ince ayar işlemini esnasında motoru çalıştırmadığından emin olun.
Hızlı Devreye Alma SYS-

Bir motor ince ayar işlemini yeniden yapmak için motorun durumasını ve soğumasını bekleyin. İlk [Oto. İnce Ayar] \(\mathbb{L} \) \(\mathbb{U} \) işlemi [Otomatik ince ayar sil] \(\mathbb{L} \) \(\mathbb{R} \) olarak ayarlayın ve ardından, motor ince ayar işlemini yeniden yapın.

İlk olarak bir [Otomatik ince ayar sil] \(\mathbb{L} \) \(\mathbb{R} \) işlemi gerçekleştirilmeden önce yapılan motor ince ayarı, motorun termal durumunu tahmin etmek için kullanılır.

Kablo uzunluğu ince ayar işleminin sonucuna etki eder. Kablo bağlantısı değiştirilirse ince ayar işleminin yeniden yapılması gerekir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>İşlem yok</td>
<td>(n \mathbb{O})</td>
<td>Otomatik ince ayar devam etmiyor Fabrika ayarı</td>
</tr>
<tr>
<td>[Oto. Ince Ayar Uygula]</td>
<td>(\mathbb{Y} \mathbb{E} \mathbb{S})</td>
<td>Otomatik ince ayar mümkünse derhal gerçekleştirilir ve ardından parametre otomatik olarak [Eylem yok] (n \mathbb{O}) değeri döner. Hız kontrol cihazının termal durumun ince ayar işleminin derhal yapılmasına için verimliyorsa parametre [Eylem yok] (n \mathbb{O}) olarak değiştir ve işlemin yeniden yapılmasını gerektir.</td>
</tr>
<tr>
<td>[Otomatik ince ayarı sil]</td>
<td>(\mathbb{L} \mathbb{R})</td>
<td>Otomatik ince ayar fonksiyonu ile ölçülen motor parametreleri sıfırlanır. Varsayılan motor parametre değerleri motoru kontrol etmek için kullanılır. [Oto. Ince Ayar Durumu] (\mathbb{L} \mathbb{U} \mathbb{S}) [Yapılmadı] (\mathbb{E} \mathbb{L} \mathbb{A} \mathbb{B}) olarak ayarlanır.</td>
</tr>
</tbody>
</table>

[Otomatik İnce Ayar Durumu] \(\mathbb{L} \mathbb{U} \mathbb{S} \)

Otomatik ince ayar durumu. (sadece bilgi amaçlıdır, değiştirilemez)
Bu parametre hız kontrol cihazının kapanışında kaydedilmek. Son açılıştan sonraki otomatik tanıma durumunu gösterir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yapılmadı]</td>
<td>(\mathbb{E} \mathbb{R} \mathbb{B})</td>
<td>Otomatik tanıma yapılmadı Fabrika ayarı</td>
</tr>
<tr>
<td>[Beklemede]</td>
<td>(\mathbb{P} \mathbb{E} \mathbb{n} \mathbb{d})</td>
<td>Otomatik tanıma talep edilmiş ancak henüz yapılmamıştır</td>
</tr>
<tr>
<td>[Devam Ediyor]</td>
<td>(\mathbb{P} \mathbb{r} \mathbb{o} \mathbb{G})</td>
<td>Otomatik tanıma devam ediyor</td>
</tr>
<tr>
<td>[Hata]</td>
<td>(\mathbb{F} \mathbb{A} \mathbb{L})</td>
<td>Otomatik ince ayar hata algılandı</td>
</tr>
<tr>
<td>[Oto İnce Ayar Yapıldı]</td>
<td>(\mathbb{d} \mathbb{a} \mathbb{n} \mathbb{E})</td>
<td>Otomatik ince ayar fonksiyonu ile ölçülen motor parametreleri motoru kontrol etmek için kullanılır</td>
</tr>
</tbody>
</table>

[İnce Ayar Seçimi] \(\mathbb{S} \mathbb{U} \mathbb{N} \)

İnce ayar seçimi.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Varsayılan]</td>
<td>(\mathbb{E} \mathbb{R} \mathbb{B})</td>
<td>Varsayılan motor parametre değerleri motoru kontrol etmek için kullanılır Fabrika ayarı</td>
</tr>
<tr>
<td>[Ölçü]</td>
<td>(\mathbb{N} \mathbb{E} \mathbb{R} \mathbb{S})</td>
<td>Otomatik ince ayar fonksiyonu ile ölçülen değerler motoru kontrol etmek için kullanılır</td>
</tr>
<tr>
<td>[Özel]</td>
<td>(\mathbb{L} \mathbb{U} \mathbb{S})</td>
<td>Manuel olarak ayarlanan değerler motoru kontrol etmek için kullanılır</td>
</tr>
</tbody>
</table>

[Motor Termal Akımı] \(\mathbb{I} \mathbb{H} \)

Etiket plakasında belirtilen anma akımına ayarlanacak olan motor termal izleme akımı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2...1,8 In(^{11})</td>
<td>Ayar aralığı Fabrika ayarı: Sürücü anma değerlerine göre</td>
</tr>
</tbody>
</table>

\(^{11}\) Kurulum kilavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.
[Hızlanma] **A C C**

0'dan [Nominal Motor Frek] F r S değerine hızlanma süresi. Rampalarda bir tekrarlanabilirlik sağlamak için parametreminin değeri, uygulamanın olabilirliğine göre ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...6.000,0 sn (1)</td>
<td>Ayar aralığı Fabrika ayarı: 3,0 sn</td>
</tr>
</tbody>
</table>

(1) [Rampa adımı] \(i_n r \) parametreine göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1...6.000 sn arasında aralık.

[Yavaşlama] **d E C**

[Nominal Motor Frek] F r S değerinden 0'a yavaşlamak için geçen süre. Rampalarda bir tekrarlanabilirlik sağlamak için parametreminin değeri, uygulamanın olabilirliğine göre ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...6.000,0 sn (1)</td>
<td>Ayar aralığı Fabrika ayarı: 3,0 sn</td>
</tr>
</tbody>
</table>

(1) [Rampa adımı] \(i_n r \) parametreine göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1...6.000 sn arasında aralık.

[Düşük Hız] **L 5 P**

Düşük hız.

Minimum referansta motor frekansı, 0 ve [Yüksek Hız] **H 5 P** arasında ayarlanabilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0... [Yüksek Hız] H 5 P Hz</td>
<td>Ayar aralığı Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Yüksek Hız] **H 5 P**

Yüksek hız.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...[Maks Frekana] (F_r) Hz</td>
<td>Ayar aralığı Fabrika ayarı: 50,0 Hz</td>
</tr>
</tbody>
</table>
[Menü] \(\mathcal{N} \mathcal{Y} \mathcal{N} \) - Menüsü

Erişim

[Hızlı devreye alma] \(\Rightarrow \) [Menü]

Bu Menü Hakkında

Bu menü, [Menü konfig.]'de seçilen parametreleri içermektedir. \(\mathcal{N} \mathcal{Y} \mathcal{C} \) - Menü.

NOT: Bu menü varsayılan olarak boştur.

[Değiştirilen parametreler] \(\mathcal{L} \mathcal{Y} \mathcal{O} \) - Menüsü

Erişim

[Hızlı Devreye Alma] \(\Rightarrow \) [Değiştirilen parametreler]

Bu Menü Hakkında

Bu menü, son değiştirilen 10 parametreye (ya da DTM'deki tüm listeye) hızlı bir erişim sağlar.
Bölüm 5
[Panel] d 5 H -

Giriş

[Panel] d 5 H - menüsü, sistem ve görüntüleme özelliklerine hızlı erişim için sekmeler içerir:
- Ana sistem parametrelerinin konfigüre edilmesi için sistem sekmesi.
- Ekran Terminali öğesindeki grafikler aracılığıyla anlık güç sayaçları ve enerji raporları için eksiksiz bir erişim sunan enerji sekmesi.

Bu Bölümde Neler Yer Alıyor?
Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sistem] d 5 E - Menüsü</td>
<td>58</td>
</tr>
<tr>
<td>[Panel] d 5 H - Menüsü</td>
<td>59</td>
</tr>
<tr>
<td>[kWh Sayaçları] k W C - menüsü</td>
<td>60</td>
</tr>
<tr>
<td>[Panel] d 5 H - Menüsü</td>
<td>61</td>
</tr>
</tbody>
</table>
[Sistem] d 5 e - Menüsü

Erişim

[Panel] ➔ [Sistem]

[Rampa Önce Ref Frek] F r H
Rampa öncesi frekans referansı (işaretlenen değer).
Referans değeri için hangi kanalın seçildiğinden bağımsız olarak motora bağlı gerçek frekans referansı.
Bu parametre salt okunur moddadır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yüksek Hız] H 5 P...[Yüksek Hız] H 5 P Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: –</td>
</tr>
</tbody>
</table>

[Sürücü durumu] H N 5
Sürücü durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik ince ayar]</td>
<td>t u n</td>
<td>Otomatik ince ayar</td>
</tr>
<tr>
<td>[DC enjeksiyonunda]</td>
<td>d C b</td>
<td>DC Enjeksiyon</td>
</tr>
<tr>
<td>[Hazır]</td>
<td>r d y</td>
<td>Sürücü hazır</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>n 5 e</td>
<td>Serbest durma kontrolü</td>
</tr>
<tr>
<td>[Çalışıyor]</td>
<td>r u n</td>
<td>Motor sürekli halde veya çalıştırma komutu mevcut ve sıfır referans</td>
</tr>
<tr>
<td>[Hızlanıyor]</td>
<td>A C C</td>
<td>Hızlanma</td>
</tr>
<tr>
<td>[Yavaşlıyor]</td>
<td>d E C</td>
<td>yavaşlama</td>
</tr>
<tr>
<td>[Akım sınırlama]</td>
<td>c L e</td>
<td>İn akım sınırlaması</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>f s e</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[Şebeke Gerilimi Yok]</td>
<td>n l P</td>
<td>Kontrol açık ancak DC barası yükü değil</td>
</tr>
<tr>
<td>[Kontrollü duruş]</td>
<td>c b L</td>
<td>Kontrollü duruş</td>
</tr>
<tr>
<td>[Yav. adapt.]</td>
<td>o b r</td>
<td>Uyarlanan yavaşlama</td>
</tr>
<tr>
<td>[Çıkış kesme]</td>
<td>s c c</td>
<td>Bekleme çıkış kesmesi</td>
</tr>
<tr>
<td>[Düşük Gerilim Uyarısı]</td>
<td>o s R</td>
<td>Düşük gerilim uyarısi</td>
</tr>
<tr>
<td>["Çalışma Durumu "Hata"]</td>
<td>f l e</td>
<td>Ürün hata algıldı</td>
</tr>
<tr>
<td>[DCP Sinyal Modu]</td>
<td>d C P</td>
<td>DCP sinyal modu</td>
</tr>
<tr>
<td>[STO Aktif]</td>
<td>s t o</td>
<td>Güvenli Tork Kapatma aktif</td>
</tr>
<tr>
<td>[Yazılım güncelleme]</td>
<td>f w p</td>
<td>Yazılım güncelleme</td>
</tr>
<tr>
<td>[Açı testi]</td>
<td>A S R</td>
<td>Açı ayarı</td>
</tr>
</tbody>
</table>

[Motor Akımı] L c r
Motor akımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü anma değerlerine göre</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: –</td>
</tr>
</tbody>
</table>
[Motor hızı] \(SP_d\)
Dev/dak cinsinden motor hızı.
Bu parametre motor sıyrılmadan tahmini rotor hızını görüntüler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: –</td>
</tr>
</tbody>
</table>

[Motor Termal durumu] \(t_{HR}\)
Motor termal durumu.
Nominal motor termal durumu, %100'dür [Motor Asırı Yük] \(OLF\) eşği %118 olarak ayarlanmıştır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: –</td>
</tr>
</tbody>
</table>

[Panel] \(dS H -\) Menüsü

Erişim

[Panel]

[Tork/Hız] \(C \& 5\)
Tork/hız eğrisini görüntüler.
[kWh Sayaçları] K W E - menüsü

Erişim

[Panel] ➔ [kWh Sayaçları]

Bu Menü Hakkında

Bu menü, anlık veriler ve kW tüketim raporları için mevcut olan pek çok enerji nesnesi sunar. F4 fonksiyon tuşuna basılmasıyla kaydedilen verileri grafiklerle görüntüleme olanağı sunar.

[Elekt. Enerji Tükt.] a C 4★

TWh cinsinden, motor tarafından harcanan elektrik enerjisi.
Bu parametre [Elekt. enerji tüket.(TWh)] a L 4, 0 olarak ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 TWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

[Elekt. Enerji Tükt.] a C 3★

GWh cinsinden, motor tarafından harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 GWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

[Elekt. Enerji Tükt.] a C 2★

MWh cinsinden, motor tarafından harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 MWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

[Elekt. Enerji Tükt.] a C 1★

kWh cinsinden, motor tarafından harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

[Elekt. Enerji Tükt.] a C 0★

Wh cinsinden, motor tarafından harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 Wh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

Aktif elektrik çıkışı güç tahmini.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>[Motor Standard] b F r ayanna göre kW veya HP cinsinden değer</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>
KWh cinsinden motor tarafından bugün harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4,294,967,295 kWh</td>
<td>kWh cinsinden ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı:</td>
<td>Salt Okunur</td>
</tr>
</tbody>
</table>

KWh cinsinden motor tarafından dün harcanan elektrik enerjisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4,294,967,295 kWh</td>
<td>kWh cinsinden ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı:</td>
<td>Salt Okunur</td>
</tr>
</tbody>
</table>

[Panel] d S H - Menüsü

Erişim

[Panel]

Bu Menü Hakkında
Ekran Terminali üzerindeki F4 fonksiyon tuşunu kullanarak [Enerji] sekmesi için aşağıdaki görunümlerden birini seçmek mümkündür.

[Anlık kW Eğilimi] ĵ V i
Tahrik çıkışında anlık elektrik enerjisi eğrisini görüntüler.

[Günlük kWh Raporu] H 5 d
Günlük enerji histogramını görüntüler.

[Haftalık kWh Raporu] H 5 W
Haftalık enerji histogramını görüntüler.

[Aylık kWh Raporu] H 5 n
Aylık enerji histogramını görüntüler.

[Yıllık kWh Raporu] H 5 Y
Yıllık enerji histogramını görüntüler.
Bölüm 6
[Tanılama] \(d \times A \) -

Giriş

[Tanılama] \(d \times A \) - menüsü, tanılama gerekli olduğunda faydalı tahrik ve uygulama verilerini sunar.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu alt bölümleri içerir:

<table>
<thead>
<tr>
<th>Alt Bölüm</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>[Tanılama verileri]</td>
<td>64</td>
</tr>
<tr>
<td>6.2</td>
<td>[Hata geçmişi] (PFH) - Menüsü</td>
<td>74</td>
</tr>
<tr>
<td>6.3</td>
<td>[Uyarılar] (RLr) - Menüsü</td>
<td>77</td>
</tr>
</tbody>
</table>
Alt bölüm 6.1
[Tanılama verileri]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanılama verileri] d d t - Menüsü</td>
<td>65</td>
</tr>
<tr>
<td>[Hizmet mesajı] 5 E r - Menüsü</td>
<td>71</td>
</tr>
<tr>
<td>[Diğer Durum] 5 5 t - Menüsü</td>
<td>72</td>
</tr>
<tr>
<td>[Tanılama] d R u - Menüsü</td>
<td>73</td>
</tr>
<tr>
<td>[Tanımlama] o i d - Menüsü</td>
<td>73</td>
</tr>
</tbody>
</table>
Bu menü, hız kontrol cihazları verilerine ek olarak gerçek uyarı ve algılanan hatayı sunar.

Meydana gelen son uyarılar:

<table>
<thead>
<tr>
<th>Aranılan Uyarı</th>
<th>Kod</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saklanan uyarı yok</td>
<td>η ο Α</td>
<td>Saklanan uyarı yok</td>
</tr>
<tr>
<td>Geri Çekilme Frekansı</td>
<td>Φ η Φ</td>
<td>Olayda Tepki: Geri çekilme frekansı</td>
</tr>
<tr>
<td>Hız Korunuyor</td>
<td>η L S</td>
<td>Olayda Tepki: Hız korunuyor</td>
</tr>
<tr>
<td>Durumü Türü</td>
<td>Φ η Φ</td>
<td>Olayda Tepki: Hata tetkiklemeden [Durum Türü] Φ η Φ</td>
</tr>
<tr>
<td>Ref Frekansı Uyarısı</td>
<td>Φ η Φ</td>
<td>Ref Frekansı uyarı (bkz. sayfa 362)</td>
</tr>
<tr>
<td>PID Geri Besleme Uyarısı</td>
<td>Φ η Φ</td>
<td>PID geri besleme uyarı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>PID Yüksek Geri Besleme Uyarısı</td>
<td>Φ η Φ</td>
<td>PID geri besleme yüksek eşitiği ulaşıldı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>PID Düşük Geri Besleme Uyarısı</td>
<td>Φ η Φ</td>
<td>PID geri besleme düşük eşitiği ulaşıldı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[Sınır Anahtarına Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Sınır anahtarına ulaşıldı (bkz. sayfa 389)</td>
</tr>
<tr>
<td>Gevşek Hali Uyarısı</td>
<td>Φ η Φ</td>
<td>Gevşek hali uyari (bkz. sayfa 200)</td>
</tr>
<tr>
<td>Dinnımik Yük Uyarısı</td>
<td>Φ η Φ</td>
<td>Dinamik yük uyari (bkz. sayfa 300)</td>
</tr>
<tr>
<td>[AI3 Ter Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI3 Terimlendirme uyari (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI4 Ter Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI4 Terimlendirme uyari (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI5 Ter Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI5 Terimlendirme uyari (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI1 4-20 Kayıbi Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI1 4-20 mA kaynağı uyari (bkz. sayfa 505)</td>
</tr>
<tr>
<td>[AI3 4-20 Kayıbi Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI3 4-20 mA kaynağı uyari (bkz. sayfa 505)</td>
</tr>
<tr>
<td>[AI4 4-20 Kayıbi Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI4 4-20 mA kaynağı uyari (bkz. sayfa 505)</td>
</tr>
<tr>
<td>[AI5 4-20 Kayıbi Uyarısı]</td>
<td>Φ η Φ</td>
<td>AI5 4-20 mA kaynağı uyari (bkz. sayfa 505)</td>
</tr>
<tr>
<td>[Sürücü Termal Uyarısı]</td>
<td>Φ η Φ</td>
<td>Sürücü aşırı ısınma uyari (bkz. sayfa 515)</td>
</tr>
<tr>
<td>[IGBT Termal Uyarısı]</td>
<td>Φ η Φ</td>
<td>IGBT termal durumu uyari</td>
</tr>
<tr>
<td>[Fan Sayıcı Uyarısı]</td>
<td>Φ η Φ</td>
<td>Fan sayacı hız uyari (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[Fan Geri Besleme Uyarısı]</td>
<td>Φ η Φ</td>
<td>Fan geri besleme uyari (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[BR Termal Uyarısı]</td>
<td>Φ η Φ</td>
<td>Frenleme direnci termal uyari</td>
</tr>
<tr>
<td>[Har. Hata Uyarısı]</td>
<td>Φ η Φ</td>
<td>Harici hata uyari (bkz. sayfa 561)</td>
</tr>
<tr>
<td>Düşük Gerilim Uyarısı</td>
<td>Φ η Φ</td>
<td>Düşük gerilim uyari (bkz. sayfa 251)</td>
</tr>
<tr>
<td>Önlçici Düşük Gerilim Aktif</td>
<td>Φ η Φ</td>
<td>Önlçici termal hız uyari (bkz. sayfa 251)</td>
</tr>
<tr>
<td>Mot Frek Yüksek Eşği</td>
<td>Φ η Φ</td>
<td>Motor frekansı yüksek eşitiği 1 ve ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>Mot Frek Düşük Eşği</td>
<td>Φ η Φ</td>
<td>Motor frekansı düşük eşitiği 1 ve ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Darbe Uyarısı Eşği Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Darbe uyari eşitiği ulaşıldı (bkz. sayfa 425)</td>
</tr>
<tr>
<td>[Mot Frek Düşük Eşği 2]</td>
<td>Φ η Φ</td>
<td>Motor frekansı düşük eşitiği 2 ve ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yükseki Hızı Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Yüksek hız ulaşıldı uyari</td>
</tr>
<tr>
<td>[Ref Frek Yüksek Eşği Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Referans frekansı yüksek eşitiği ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Ref Frek Düşük Eşği Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Referans frekansı düşük eşitiği ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[2. Frekans Eşği Ulaşıldı]</td>
<td>Φ η Φ</td>
<td>Motor frekansı yüksek eşitiği 2 ve ulaşıldı (bkz. sayfa 364)</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019
Meydana gelen son hata.

<table>
<thead>
<tr>
<th>Hata</th>
<th>Kod</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Akım Eşğine Ulaşıldı]</td>
<td>L R A</td>
<td>Motor akımı yüksek eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Düşük Akım Ulaşıldı]</td>
<td>L R L</td>
<td>Motor akımı düşük eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yüksek Tork Uyarısı]</td>
<td>L H A</td>
<td>Yüksek tork eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Düşük Tork Uyarısı]</td>
<td>L R A</td>
<td>Düşük tork eşğine ulaşıldı (bkz. sayfa 366)</td>
</tr>
<tr>
<td>[Proses Değik Uyarısı]</td>
<td>L R</td>
<td>Düşük yük uyarıtı (bkz. sayfa 419)</td>
</tr>
<tr>
<td>[Proses Aslı Yük Uyarısı]</td>
<td>R A</td>
<td>Aslı yük uyarıtı (bkz. sayfa 427)</td>
</tr>
<tr>
<td>[Tork Limitine Ulaşıldı]</td>
<td>S 5 A</td>
<td>Tork limitine ulaşıldı (bkz. sayfa 510)</td>
</tr>
<tr>
<td>[Tork Kontrol Uyarısı]</td>
<td>R A</td>
<td>Tork kontrol uyarıtı (bkz. sayfa 368)</td>
</tr>
<tr>
<td>[Sürücü Termal Eşğine ulaşıldı]</td>
<td>R A</td>
<td>Sürücü termal eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Motor Termal Eşğine ulaşıldı]</td>
<td>L 9 A</td>
<td>Motor termal eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Mot2 Termal Eşğ ulaşıldı]</td>
<td>L 9 2</td>
<td>Motor 2 termal eşğine ulaşıldı (bkz. sayfa 366)</td>
</tr>
<tr>
<td>[Mot3 Termal Eşğ ulaşıldı]</td>
<td>L 9 3</td>
<td>Motor 3 termal eşğine ulaşıldı (bkz. sayfa 369)</td>
</tr>
<tr>
<td>[Mot4 Termal Eşğ ulaşıldı]</td>
<td>L 9 4</td>
<td>Motor 4 termal eşğine ulaşıldı (bkz. sayfa 369)</td>
</tr>
<tr>
<td>[Güç Yüksek Eşği]</td>
<td>P H R</td>
<td>Güç yüksek eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Güç Düşük Eşği]</td>
<td>P H L</td>
<td>Güç düşük eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 1]</td>
<td>C A S 1</td>
<td>Müşteri uyarısı 1 aktif (bkz. sayfa 526)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 2]</td>
<td>C A S 2</td>
<td>Müşteri uyarısı 2 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 3]</td>
<td>C A S 3</td>
<td>Müşteri uyarısı 3 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 4]</td>
<td>C A S 4</td>
<td>Müşteri uyarısı 4 aktif (bkz. sayfa 528)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 5]</td>
<td>C A S 5</td>
<td>Müşteri uyarısı 5 aktif (bkz. sayfa 528)</td>
</tr>
<tr>
<td>[Güç Tüketim Uyarısı]</td>
<td>P o W d</td>
<td>Güç tüketimi uyarısı</td>
</tr>
<tr>
<td>[Kayma uyarısı]</td>
<td>R n A</td>
<td>Kayma uyarısı (bkz. sayfa 516)</td>
</tr>
<tr>
<td>[Yük Hrk Uyarısı]</td>
<td>b 5 A</td>
<td>Yük hareket uyarısı</td>
</tr>
<tr>
<td>[Fren Kon Uyarısı]</td>
<td>b C A</td>
<td>Fren kontak uyarısı (bkz. sayfa 288)</td>
</tr>
<tr>
<td>[A11 Ter Uyarısı]</td>
<td>L P / R</td>
<td>A11 Term uyarısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Akım Düş Uyarısı]</td>
<td>L L o W</td>
<td>Akım düşüm uyarısı (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[M/S Cihazı Uyarısı]</td>
<td>N 5 d A</td>
<td>Master/Bağlı cihaz uyarısı (bkz. sayfa 233)</td>
</tr>
<tr>
<td>[Geri Tep Uyarısı]</td>
<td>b 5 q A</td>
<td>Geri tepme uyarısı (bkz. sayfa 304)</td>
</tr>
<tr>
<td>[Kodlayıcı Termal Uyarısı]</td>
<td>L P E A</td>
<td>Kodlayıcı modülü termal uyarısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Kon. İzleme Uyarısı]</td>
<td>P F E S</td>
<td>Konum izleme uyarısı</td>
</tr>
<tr>
<td>[Sıc. Sens AI1 Uyarısı]</td>
<td>L 5 1 R</td>
<td>Sıcaklık sensörü AI1 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI3 Uyarısı]</td>
<td>L 5 3 A</td>
<td>Sıcaklık sensörü AI3 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI4 Uyarısı]</td>
<td>L 5 4 R</td>
<td>Sıcaklık sensörü AI4 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI5 Uyarısı]</td>
<td>L 5 5 R</td>
<td>Sıcaklık sensörü AI5 uyarısı (açık devre)</td>
</tr>
</tbody>
</table>

Son Hata: LF
<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yük Uyuması]</td>
<td>r n F</td>
<td>Yük uyumasi</td>
</tr>
<tr>
<td>[Giriş Açığı Isınma]</td>
<td>i H F</td>
<td>Giriş Açığı Isınma hatası</td>
</tr>
<tr>
<td>[Sürücü Açığı Isınma]</td>
<td>a H F</td>
<td>Hız kontrol cihazı açığı isınma hatası</td>
</tr>
<tr>
<td>[Motor Açığı Yük]</td>
<td>a L F</td>
<td>Motor açığı yük hatası</td>
</tr>
<tr>
<td>[DC Bara Açığı Ger.]</td>
<td>a b F</td>
<td>DC barası açığı gerilimi</td>
</tr>
<tr>
<td>[Anaşık Besleme Açığı]</td>
<td>a S F</td>
<td>Anaşık besleme hatası</td>
</tr>
<tr>
<td>[Tek Çıkış Faz Kaybı]</td>
<td>a P F i</td>
<td>Motor 1 faz kaybı</td>
</tr>
<tr>
<td>[Giriş Faz Kaybı]</td>
<td>p H F</td>
<td>Ana giriş 1 faz kaybı</td>
</tr>
<tr>
<td>[Anaşık Besleme Dışkı]</td>
<td>u S F</td>
<td>Düşük genilim hatası</td>
</tr>
<tr>
<td>[Motor Kısa Devre]</td>
<td>SC F i</td>
<td>Motor kısa devre hatası (donanım algılama)</td>
</tr>
<tr>
<td>[Motor Açığı Hızı]</td>
<td>S a F</td>
<td>Kararsızlık veya sürücü yük çok yüksek</td>
</tr>
<tr>
<td>[Oto Ayarlama Hatası]</td>
<td>i F n</td>
<td>Ayar hatası</td>
</tr>
<tr>
<td>[Dahili Hata 1]</td>
<td>i n F i</td>
<td>Bilinmeyen kontrol cihazı değeri</td>
</tr>
<tr>
<td>[Dahili Hata 2]</td>
<td>i n F 2</td>
<td>Bilinmeyen veya uyumsuz güç paneli</td>
</tr>
<tr>
<td>[Dahili Hata 3]</td>
<td>i n F 3</td>
<td>Dahili iletişim hatası</td>
</tr>
<tr>
<td>[Dahili Hata 4]</td>
<td>i n F 4</td>
<td>Dahili veriler tıtsız</td>
</tr>
<tr>
<td>[EEProm Güç]</td>
<td>E E F 2</td>
<td>Dahili bellek güç</td>
</tr>
<tr>
<td>[Topraklama Kısa Devresi]</td>
<td>SC F 3</td>
<td>Doğrudan topraklama kısa devre hatası (donanım algılama)</td>
</tr>
<tr>
<td>[Çıkış Faz Kaybı]</td>
<td>a P F 2</td>
<td>Motor 3 faz kaybı</td>
</tr>
<tr>
<td>[CANopen ilet Kesnt]</td>
<td>C a F</td>
<td>CANopen iletişim kesintisi</td>
</tr>
<tr>
<td>[Fren Kontrolü]</td>
<td>b L F</td>
<td>Fren Kontrolü</td>
</tr>
<tr>
<td>[Dahili Hata 7]</td>
<td>i n F 7</td>
<td>CPLD iletişim kesintisi</td>
</tr>
<tr>
<td>[Fieldbus Hatası]</td>
<td>E P F 2</td>
<td>Fieldbus modülünden harici hata</td>
</tr>
<tr>
<td>[Dahili Hata 8]</td>
<td>i n F 8</td>
<td>Güç anahtarlama besleme hatası</td>
</tr>
<tr>
<td>[Fren Geri Besleme Kaybı]</td>
<td>b r F</td>
<td>Fren Geri Besleme</td>
</tr>
<tr>
<td>[PC Hbr Kesintisi]</td>
<td>S L F 2</td>
<td>Bilgisayar yazılımı haberleşme kesintisi</td>
</tr>
<tr>
<td>[Kodlayıcı Bağlantısı]</td>
<td>E c F</td>
<td>Kodlayıcı bağlantısı</td>
</tr>
<tr>
<td>[Tork Sınırlama Hatası]</td>
<td>S S F</td>
<td>Tork sınırlama hatası</td>
</tr>
<tr>
<td>[HMI Hbr Kesintisi]</td>
<td>S L F 3</td>
<td>Ekran Terminali iletişim kesintisi</td>
</tr>
<tr>
<td>[Dahili Hata 9]</td>
<td>i n F 9</td>
<td>Akım ölçüm devresi arızası</td>
</tr>
<tr>
<td>[Dahili Hata 10]</td>
<td>i n F A</td>
<td>Müşteri besleme hatası</td>
</tr>
<tr>
<td>[Dahili Hata 11]</td>
<td>i n F b</td>
<td>Termal sensör hatası (DC veya SC)</td>
</tr>
<tr>
<td>[IGBT Açığı Isınma]</td>
<td>b J F</td>
<td>IGBT açığı isınma hatası</td>
</tr>
<tr>
<td>[IGBT Kısa Devresi]</td>
<td>SC F 4</td>
<td>IGBT kısa devre hatasi (donanım algılama)</td>
</tr>
<tr>
<td>[Motor Kısa Devre]</td>
<td>SC F 5</td>
<td>ION test sekansı esnasında yük kısa devre hatası (donanım algılama)</td>
</tr>
<tr>
<td>[Tork Zaman Açımı]</td>
<td>S r F</td>
<td>Tork zaman açımı</td>
</tr>
<tr>
<td>[Dahili Hata 12]</td>
<td>i n F c</td>
<td>Dahili hata 12 (dahili akımbesleme)</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>E n F</td>
<td>Kodlayıcı</td>
</tr>
<tr>
<td>[Giriş Kontaktörü]</td>
<td>L C F</td>
<td>Hat kontaktörü hatası</td>
</tr>
<tr>
<td>[Dahili Hata 6]</td>
<td>i n F 6</td>
<td>Bilinmeyen veya uyumsuz seçeneğ modülü</td>
</tr>
<tr>
<td>[Dahili Hata 14]</td>
<td>i n F E</td>
<td>CPU hatası (ram, flash, görev ...)</td>
</tr>
<tr>
<td>[Frenleme Direnci aş. yük]</td>
<td>b a F</td>
<td>Frenleme direnci açığı yük</td>
</tr>
<tr>
<td>[AI3 4-20 mA Kaybı]</td>
<td>L F F 3</td>
<td>AI3 4-20 mA kaybı</td>
</tr>
<tr>
<td>[AI4 4-20 mA Kaybı]</td>
<td>L F F 4</td>
<td>AI4 4-20 mA kaybı</td>
</tr>
<tr>
<td>[Kart Uyumluğunu]</td>
<td>H C F</td>
<td>Donanım konfigürasyonu hatası</td>
</tr>
<tr>
<td>[Dinamik Yük Hatası]</td>
<td>a L F</td>
<td>Dinamik yük hatası</td>
</tr>
<tr>
<td>[Kron Aktrım Hatası]</td>
<td>C F r 2</td>
<td>Konfigürasyon aktarılm hatası</td>
</tr>
<tr>
<td>[AI5 4-20 mA Kaybı]</td>
<td>L F F 5</td>
<td>AI5 4-20 mA kaybı</td>
</tr>
<tr>
<td>[Kanal Anahtarlama]</td>
<td>C S F</td>
<td>Kanal anahtarlama hatası</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>[Proses Düşük Yükü]</td>
<td>L F</td>
<td>Moment düşük yük hatası</td>
</tr>
<tr>
<td>[Proses Aşırı Yükü]</td>
<td>A L C</td>
<td>Moment aşırı yük hatası</td>
</tr>
<tr>
<td>[Açı Hatası]</td>
<td>R S F</td>
<td>Açı Ayar hatası</td>
</tr>
<tr>
<td>[AI1 4-20 mA kaybı]</td>
<td>L F F 1</td>
<td>AI1 4-20 mA kaybı</td>
</tr>
<tr>
<td>[Güvenlik Fon. Hatasi]</td>
<td>5 R F F</td>
<td>Güvenlik fonksiyonu hatası</td>
</tr>
<tr>
<td>[AI3 Trm Hata Seviesi]</td>
<td>E H 3 F</td>
<td>AI3 için termal hata seviyesi</td>
</tr>
<tr>
<td>[AI3 Term Sens Hatasi]</td>
<td>E 3 C F</td>
<td>AI3'te termik sensör seviyesi</td>
</tr>
<tr>
<td>[AI4 Trm Hata Seviesi]</td>
<td>E H 4 F</td>
<td>AI4 için termal hata seviyesi</td>
</tr>
<tr>
<td>[AI4 Term Sens Hatasi]</td>
<td>E 4 C F</td>
<td>AI4’dede termal sensör seviyesi</td>
</tr>
<tr>
<td>[AI5 Trm Hata Seviesi]</td>
<td>E H 5 F</td>
<td>AI5 için termal hata seviyesi</td>
</tr>
<tr>
<td>[AI5 Term Sens Hatasi]</td>
<td>E 5 C F</td>
<td>AI5’de termal sensör seviyesi</td>
</tr>
<tr>
<td>[Prog Yükleme Hatasi]</td>
<td>P G L F</td>
<td>Program yükleme algılanan hatası</td>
</tr>
<tr>
<td>[Son Hata]</td>
<td>L F t</td>
<td>Program çalıştırma algılanan hatası</td>
</tr>
<tr>
<td>[Dahili Hata 16]</td>
<td>1 n F G</td>
<td>Dahili hata 16</td>
</tr>
<tr>
<td>[Dahili Hata 17]</td>
<td>1 n F H</td>
<td>Dahili hata 17</td>
</tr>
<tr>
<td>[Dahili Hata 0]</td>
<td>1 n F 0</td>
<td>Dahili hata 0 (IPC)</td>
</tr>
<tr>
<td>[Dahili Hata 13]</td>
<td>1 n F d</td>
<td>Dahili hata 13 (farklı akım)</td>
</tr>
<tr>
<td>[Motor Stop Hatası]</td>
<td>S t F</td>
<td>Motor oyalama algılanan hatası</td>
</tr>
<tr>
<td>[Dahili Hata 21]</td>
<td>1 n F L</td>
<td>Dahili hata 21 (RTC)</td>
</tr>
<tr>
<td>[Dahili Eth list.Kesintisi]</td>
<td>E t H F</td>
<td>Dahili Ethernet haberleşme kesintisi</td>
</tr>
<tr>
<td>[Dahili Hata 15]</td>
<td>1 n F F</td>
<td>Dahili hata 15 (flash)</td>
</tr>
<tr>
<td>[Yazılım Güncellemeye Hatası]</td>
<td>F W E r</td>
<td>Yazılım Güncellemeye Hatası</td>
</tr>
<tr>
<td>[Dahili Hata 22]</td>
<td>1 n F F</td>
<td>Dahili hata 22 (dahili Ethernet)</td>
</tr>
<tr>
<td>[Dahili Hata 25]</td>
<td>1 n F P</td>
<td>Dahili hata 25</td>
</tr>
<tr>
<td>[Dahili Hata 20]</td>
<td>1 n F K</td>
<td>Dahili hata 20</td>
</tr>
<tr>
<td>[Dahili Hata 19]</td>
<td>1 n F J</td>
<td>Dahili hata 19 (kodlayıcı modülü)</td>
</tr>
<tr>
<td>[Dahili Hata 27]</td>
<td>1 n F r</td>
<td>Dahili hata 27</td>
</tr>
<tr>
<td>[DB ünitesi açık devre]</td>
<td>b u F o</td>
<td>DB ünitesi açık devre</td>
</tr>
<tr>
<td>[Tahrik Aşırı Yük]</td>
<td>E L 0 F</td>
<td>Tahrik aşırı yük</td>
</tr>
<tr>
<td>[MultiDrive Link Hatasi]</td>
<td>N d L F</td>
<td>MultiDrive link hatası</td>
</tr>
<tr>
<td>[AI1 Trm Hata Seviesi]</td>
<td>E H 1 F</td>
<td>AI1 için termal hata seviyesi</td>
</tr>
<tr>
<td>[AI1 Term Sens Hatasi]</td>
<td>E 1 C F</td>
<td>AI1’de termal sensör seviyesi</td>
</tr>
<tr>
<td>[Geri Tepme Hatasi]</td>
<td>b S 9 F</td>
<td>Geri tepme hatası</td>
</tr>
<tr>
<td>[M/S Cihaz Hatasi]</td>
<td>N S d F</td>
<td>Master/Bağlı cihaz hatası</td>
</tr>
<tr>
<td>[Kodlayıcı Ter. Algılanan Hatası]</td>
<td>E H E F</td>
<td>Kodlayıcı termal sensör algılanan hatası</td>
</tr>
<tr>
<td>[Kodlayıcı Ter. Sensör Hatasi]</td>
<td>E E C F</td>
<td>Kodlayıcıda Kodlayıcı termal sensör hatası</td>
</tr>
<tr>
<td>[Boş Konfigürasyonu Hatasi]</td>
<td>3 F 1 4</td>
<td>Boş konfigürasyonu hatası</td>
</tr>
<tr>
<td>[FDR 1 Hatası]</td>
<td>F d r 1</td>
<td>Dahili Ethernet FDR hatası</td>
</tr>
<tr>
<td>[Dış Kontaktör Kapandi Hatasi]</td>
<td>F C F 1</td>
<td>Çıkış kontaktörü kapandi hatası (bkz. sayfa 601)</td>
</tr>
<tr>
<td>[Dış Kontaktör Açılıdı Hatası]</td>
<td>F C F 2</td>
<td>Çıkış kontaktörü açılıdı hatası (bkz. sayfa 607)</td>
</tr>
<tr>
<td>[Yük Hrkt Hatasi]</td>
<td>N d C F</td>
<td>Yük hareket hatası</td>
</tr>
</tbody>
</table>

Tanımlama Hatası
Tanımlama Hatası (inF6).
Bu parametre, [Son Hata] L F t, [Tanımlama Hatası] 1 n F E olarak ayarlanmamışsa erişilebilir.
Tanılama dİA-

[Dahili Hata 19] 1nF1J
Kodlayıcı modülü hata kodu.
Bu parametreye [Son Hata] L F L : [Dahili Hata 19] 1nF1J olarak ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...12</td>
<td>(Heks. olarak değer)</td>
</tr>
<tr>
<td>Diğer</td>
<td>Hata algılanmadı</td>
</tr>
<tr>
<td>Diğer</td>
<td>seçenek modülüün yanıt yok</td>
</tr>
<tr>
<td>Diğer</td>
<td>İmza alım zaman aşımı</td>
</tr>
<tr>
<td>Diğer</td>
<td>ACK alım zaman aşımı</td>
</tr>
<tr>
<td>Diğer</td>
<td>İmza uzunluğu</td>
</tr>
<tr>
<td>Diğer</td>
<td>Sağlama</td>
</tr>
<tr>
<td>Diğer</td>
<td>Bilinmeyen durum</td>
</tr>
<tr>
<td>Diğer</td>
<td>UART alımı</td>
</tr>
<tr>
<td>Diğer</td>
<td>Bilinmeyen protokol sürümü</td>
</tr>
<tr>
<td>Diğer</td>
<td>Bilinmeyen modül türü</td>
</tr>
<tr>
<td>Diğer</td>
<td>5'ten fazla başarısız deneme</td>
</tr>
<tr>
<td>Diğer</td>
<td>Bilinmeyen modül türün</td>
</tr>
<tr>
<td>Diğer</td>
<td>Seçenek modülü yuva tarafından desteklenmiyor</td>
</tr>
<tr>
<td>Diğer</td>
<td>Birden fazla yuvada aynı seçenek modülü</td>
</tr>
<tr>
<td>Diğer</td>
<td>O1SV alımı</td>
</tr>
<tr>
<td>Diğer</td>
<td>O1SV seçenek modülü yazılım sürüm uyumlu değil</td>
</tr>
<tr>
<td>Diğer</td>
<td>O1SV ayrılması</td>
</tr>
<tr>
<td>Diğer</td>
<td>O1SV ayrılması</td>
</tr>
<tr>
<td>Diğer</td>
<td>Kontrol terminal modülü mevcut değil ya da tanınamıyor</td>
</tr>
<tr>
<td>Fabrika ayarı: –</td>
<td></td>
</tr>
</tbody>
</table>

[Kodlayıcı Geri Besleme Hatası] E nL E
Kodlayıcı geri besleme hata kodu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar Aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: –</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Kodlayıcı hatası ID</td>
<td></td>
</tr>
<tr>
<td>1: Kodlayıcı güç kaynağı aşırı akını</td>
<td></td>
</tr>
<tr>
<td>10: AB kodlayıcı: A-hatti bağlantısı kesildi</td>
<td></td>
</tr>
<tr>
<td>11: AB kodlayıcı: B-hatti bağlantısı kesildi</td>
<td></td>
</tr>
<tr>
<td>12: AB kodlayıcı: izleme hatası</td>
<td></td>
</tr>
<tr>
<td>13: AB kodlayıcı: ani gerilim yükselmeye hatası</td>
<td></td>
</tr>
<tr>
<td>20: Çözümleyici: LOS hatası</td>
<td></td>
</tr>
<tr>
<td>21: Çözümleyici: DOS hatası</td>
<td></td>
</tr>
<tr>
<td>22: Çözümleyici: LOT hatası</td>
<td></td>
</tr>
<tr>
<td>30: SinCos: sinyal kaybı</td>
<td></td>
</tr>
<tr>
<td>31: SinCos: sinyal kaybı</td>
<td></td>
</tr>
<tr>
<td>32: SinCos: izleme hatası</td>
<td></td>
</tr>
<tr>
<td>33: SinCos: ani gerilim yükseltmesi hatası</td>
<td></td>
</tr>
<tr>
<td>40: Hiperface: yanıt bekleme zaman aşımı ve yeniden deneme aşılı</td>
<td></td>
</tr>
<tr>
<td>41: Hiperface: kodlayıcı türün bilinmiyor ve EEPROM kodlayıcıdan okunamıyor</td>
<td></td>
</tr>
<tr>
<td>42: Hiperface: Hiperface komutu MutlakKonumAl hatası</td>
<td></td>
</tr>
<tr>
<td>43: Hiperface: sağlama hatası algılanı ve yeniden deneme aşılı</td>
<td></td>
</tr>
<tr>
<td>50: Endat: iletişim hatası</td>
<td></td>
</tr>
<tr>
<td>51: Endat: kodlayıcı bağlı değil</td>
<td></td>
</tr>
<tr>
<td>52...56: Endat: EnDat21 parametreleri okuma hatası</td>
<td></td>
</tr>
<tr>
<td>57: Endat: kodlayıcı EnDat22'yi desteklemediyor</td>
<td></td>
</tr>
<tr>
<td>58: Endat: çalışma zamanı telafi prosedürü</td>
<td></td>
</tr>
<tr>
<td>59: Endat: çalışma zamanı telafi prosedürü</td>
<td></td>
</tr>
<tr>
<td>60: Endat: siklik iletişimde hata</td>
<td></td>
</tr>
<tr>
<td>Fabrika ayarı: –</td>
<td></td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 69
[Yolverme sayısı] n S N
Motor yolvermeleri sayısı (sifirlanabilir).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[Motor Çalışma Süresi] r H H
Motor çalışma süresi.
0,1 saatte geçen çalışma süresi göstergesi (motorun açık kaldığı süre - sifirlanabilir).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...429.496.729,5</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Bu menü, hizmet mesajlarını sunar. Bu, [Tercihlerim] $\Pi \ U \ \mathcal{P} \ L \ U \ [\text{Özellleştirmeler}]$ \cup S \Rightarrow [Hizmet mesajları] $S \ E \ \mathcal{P}$ kapsamında konfigüre edilen, kullanıcı tarafından tanımlanan bir hizmet mesajıdır.
[Diğer Durum] 5 5 ₋ - Menüsü

Erişim

[Tanılama] ➔ [Tan. veriler] ➔ [Diğer Durum]

Bu Menü Hakkında

İkinci durumların listesi.

Liste

[Uyku Aktif] S L N
[Set 1 aktif] C F P 1
[Set 2 aktif] C F P 2
[Set 3 aktif] C F P 3
[Otomatik tekrar yolverme] R u t a
[DC Barası Yüklenmi] d b L
[Hızlı duruma Aктив] F S t
[Geri Çekilme Frekansı] F r F
[Hız Korunuyor] r L S
[Durdurma türü] S t t
[Kodlayıcı konfig.] C C
[Frenlemeye] b r S
[Ref Frek Uyanı] S r R
[İleri] N F r d
[Geri] N r r S
[Motor akılmada] F L X
[Otomatik ince ayar] t u n
[Tanılama] d R u - Menüsü

Erişim

[Tanılama] ➔ [Tanılama verileri] ➔ [Tanılama]

Bu Menü Hakkında

Bu menü, tanılama için basit test sekansları oluşturulmasını sağlar.

[FAN Tanılamaları] F n t

Dahili fan(lar)ı tanılama.
Bu işlem, bir test sekansı başlatacaktır.

[HMI LED Tanılama] H L t

Ürün LED(ler)inin tanılamaları.
Bu işlem, bir test sekansı başlatacaktır.

[IGBT Tanı. motorla] i W t

Ürün IGBT'sinin/IGBT'lerinin tanılamaları.
Bu işlem, bağlantılı motorla bir test sekansı başlatacaktır (açık devre/kısa devre).

[IGBT Tanı. motorsuz] i W o t

Ürün IGBT'sinin/IGBT'lerinin tanılamaları.
Bu işlem, motor olmadan bir test sekansı başlatacaktır (kısa devre).

[Tanımlama] o i d - Menüsü

Erişim

[Tanılama] ➔ [Tanımlama verileri] ➔ [Tanımlama]

Bu Menü Hakkında

Bu, konfigüre edilemeyen salt okunur bir menüdür. Aşağıdaki bilgilerin görüntülenmesini sağlar:

- Tahrik referansı, güç anma değeri ve gerilimi
- Tahrik yazılım sürümü
- Tahrik seri numarası
- Mevcut seçenek modüllerinin tipleri ve bunların yazılım sürümleri
- Ekran Terminali türü ve sürümü
Alt bölüm 6.2
[Hata geçmiş] P F H - Menüsü

[Hata geçmiş] P F H - Menüsü

Erişim

[Tanılama] ➞ [Hata geçmiş]

Bu Menü Hakkında

Bu menü 15 algılanan son hataları gösterir (dP₁ ila dPF₁).
Hata geçmiş listesinde seçilen hata kodu üzerinde OK tuşuna basmak, hata algılandığı zaman kaydedilen tahrik verilerini görüntüler.

[Son Hata 1] dP₁
Son hata 1.
[Son Hata] L F tₜ (bkz. sayfa 66) ile aynı.

[Tahrik durumu] H S tₜ
HMI durumu.
[Tahrik Durumu] H P₁ ,ₚ (bkz. sayfa 58) ile aynı.

[Son Hata 1 Durumu] E P₁
Son hata 1’in durumu.
DRIVECOM durum kaydı ([ETA durum kelimesi] E tₜ ile aynı).

[ETI durum kelimesi] , P₁
ETI durum kelimesi.
ETI durum kaydı (bkz. iletişim parametresi dosyası).

[Komut sözcüğü] L P₁
Cmd kelimesi.
Komut kaydı ([Komut sözcüğü] L d ile aynı).

[Motor akımı] L C P₁
Motor akımı ([Motor Akımı] L C ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...2*In (1) | Ayar aralığı
Fabrika ayar: _ |

(1) Kurulum kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

[Çıkış frekansı] r F P₁
Çıkış frekansı ([Çıkış frekansı] r F ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| -3.276,7…3.276,7 Hz | Ayar aralığı
Fabrika ayar: _ |
[Geçen süre] \(r \leq p \)
Geçen süre.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 sa</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[DC bara gerilimi] \(u \leq p \)
DC bara gerilimi ([DC bara gerilimi] \(u \leq p \) ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...860,0 Vac</td>
<td>Ayar aralığı: [Ölçüm yok] - - - - hiçbir değer ölçülmezse görüntülenir.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor termal durumu] \(t \leq h \)
Motor termal durumu ([Motor termal durumu] \(t \leq h \) ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Komut Kanalı] \(d \leq c \)
Komut kanalı ([Komut kanalı] \(d \leq c \) ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Terminaler]</td>
<td>(b \leq e)</td>
<td>Terminal bloğu</td>
</tr>
<tr>
<td>[Ref.Frek-Uzk.Term]</td>
<td>(l \leq c)</td>
<td>Ekran Terminali</td>
</tr>
<tr>
<td>[Modbus]</td>
<td>(n \leq d)</td>
<td>Modbus seri</td>
</tr>
<tr>
<td>[CANopen]</td>
<td>(e \leq r)</td>
<td>CANopen</td>
</tr>
<tr>
<td>[Com. Modül]</td>
<td>(n \leq e)</td>
<td>Haberleşme modülü</td>
</tr>
<tr>
<td>[Ethernet Modülü]</td>
<td>(e \leq h)</td>
<td>Dahili Ethernet</td>
</tr>
<tr>
<td>[PC aracı]</td>
<td>P(\leq w)</td>
<td>DTM tabanlı işletmeye alma yazılımı</td>
</tr>
</tbody>
</table>

[Ref Frekans Kanalı] \(d \leq e \)
Referans frekansı kanalı ([Ref Frekans Kanalı] \(d \leq e \) ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Komut Kanalı]</td>
<td>(d \leq c)</td>
<td>(bkz. sayfa 75) ile aynı.</td>
</tr>
</tbody>
</table>

[Motor Torku] \(a \leq p \)
Tahmini motor torku değeri ([Motor Torku] \(a \leq p \) ile aynı).

NOT: Görüntülenen değer, yön ne olursa olsun motor modunda her zaman pozitif ve jeneratör modunda her zaman negatiftr.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-300...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
[Tahrik Termi Durumu] \(t \leq P_1 \)
Ölçülen tahrik termal durumu ([Tahrik Term Durumu] \(t \leq H_d \) ile aynı).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[IGBT Bğnt N Sıcklıği] \(t \leq P_1 \)
Tahmin bağlantı sıcaklığı değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Değiştirmme Frekansı] \(S_1 P_1 \)
Değiştirmme frekansı uygulandi ([Değiştirmme Frekansı] \(S_1 F \) ile ilgili).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Son Hata 2] \(d_2 P_2 \) ila [Son Hata F] \(d_2 F_2 \) ile aynı
Son hata 2... Son hata F
[Son Hata1] \(d_1 P_1 \) (bkz. sayfa 74) ile aynı.
Alt bölüm 6.3
[Uyarılar] \(ALr \) - Menüsü

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gercek Uyarlari] (ALr d) - Menusu</td>
<td>78</td>
</tr>
<tr>
<td>[Uyan grubu 1 tanimi] (ALc) - Menusu</td>
<td>78</td>
</tr>
<tr>
<td>[Uyan grubu 2 tanimi] (ALc) - Menusu</td>
<td>78</td>
</tr>
<tr>
<td>[Uyan grubu 3 tanimi] (ALc) - Menusu</td>
<td>78</td>
</tr>
<tr>
<td>[Uyan grubu 4 tanimi] (ALc) - Menusu</td>
<td>78</td>
</tr>
<tr>
<td>[Uyan grubu 5 tanimi] (ALc) - Menusu</td>
<td>79</td>
</tr>
<tr>
<td>[Uyarlari] (ALr) - Menusu</td>
<td>79</td>
</tr>
</tbody>
</table>
Tanılama düğmesi

[Gerçek Uyarılar] \(A L d\) - Menüsü

Erişim

[Tanılama] ➔ [Uyarılar] ➔ [Gerçek Uyarılar]

Bu Menü Hakkında

Geçerli uyarıların listesi.

Bir uyarı aktifse Ekran Terminali öğesinde ✓ ve □ görüntülenir.

Mevcut Uyarılar Listesi

[Son uyarı] \(L A R\) (bkz. sayfa 65) ile aynı.

[Uyarı grubu 1 tanıımı] \(A 1 C\) - Menüsü

Erişim

[Tanılama] ➔ [Uyarılar] ➔ [Uyarı grubu 1 tanıımı]

Bu Menü Hakkında

Aşağıdaki altmenü grubu uyarıları, her bir uzaktan sinyalleşme sağlamak için bir röle veya dijital çıkışına atanabilen 1 ile 5 grup arasında değişecek şekilde gruplar.

Bir grupta seçilen bir veya daha fazla uyarı meydana geldiğinde bu uyarı grubu aktif haline getirilir.

Uyarılar Listesi

[Son uyarı] \(L A R\) (bkz. sayfa 65) ile aynı.

[Uyarı grubu 2 tanıımı] \(A 2 C\) - Menüsü

Erişim

[Tanılama] ➔ [Uyarılar] ➔ [Uyarı grubu 2 tanıımı]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(A 1 C\) (bkz. sayfa 78)

[Uyarı grubu 3 tanıımı] \(A 3 C\) - Menüsü

Erişim

[Tanılama] ➔ [Uyarılar] ➔ [Uyarı grubu 3 tanıımı]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(A 1 C\) (bkz. sayfa 78)

[Uyarı grubu 4 tanıımı] \(A 4 C\) - Menüsü

Erişim

[Tanılama] ➔ [Uyarılar] ➔ [Uyarı grubu 4 tanıımı]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(A 1 C\) (bkz. sayfa 78)
[Uyarı grubu 5 tanımı] \(R \subseteq C \) - Menüsü

Erişim

[Tanılama] \(\rightarrow \) [Uyanılar] \(\rightarrow \) [Uyarı grubu 5 tanımı]

Bu Menü Hakkında

[Uyarı grubu 1 tanımı] ile aynı \(R \subseteq C \) (bkz. sayfa 72)

[Uyanılar] \(R \ L \ r \) - Menüsü

Erişim

[Tanılama] \(\rightarrow \) [Uyanılar]

Bu Menü Hakkında

Bu menü, uyarı geçmişini sunar (30 geçmiş uyarı).

[Uyanı Geçmişi] \(R \ L \ H \)

[Son uyanı] \(L \ R \ L \ r \) (bkz. sayfa 68) ile aynı.
Bölüm 7
[Ekran] Menü -

Giriş

Menü, tahrik ve uygulamaya ilgili izleme verilerini gösterir. Enerji, maliyet, dönü, verimlilik gibi açılardan uygulama odaklı bir gösterge sunar. Bu özellik, özelleştirilmiş üniteler ve grafiklerin görünümüyle mevcuttur.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu alt bölümleri içerir:

<table>
<thead>
<tr>
<th>Alt Bölüm</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>[Enerji parametreleri]</td>
<td>82</td>
</tr>
<tr>
<td>7.2</td>
<td>[Uygulama parametreleri]</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>[M/B parametreleri]</td>
<td>89</td>
</tr>
<tr>
<td>7.4</td>
<td>[Motor parametreleri]</td>
<td>94</td>
</tr>
<tr>
<td>7.5</td>
<td>[Tahrik parametreleri]</td>
<td>96</td>
</tr>
<tr>
<td>7.6</td>
<td>[Termal İzleme]</td>
<td>100</td>
</tr>
<tr>
<td>7.7</td>
<td>[PID ekranı]</td>
<td>101</td>
</tr>
<tr>
<td>7.8</td>
<td>[Sayaç yönetimi]</td>
<td>102</td>
</tr>
<tr>
<td>7.9</td>
<td>[Diğer durum]</td>
<td>104</td>
</tr>
<tr>
<td>7.10</td>
<td>[I/O harita]</td>
<td>105</td>
</tr>
<tr>
<td>7.11</td>
<td>[İletişim haritası]</td>
<td>128</td>
</tr>
<tr>
<td>7.12</td>
<td>[Veri kaydı]</td>
<td>153</td>
</tr>
</tbody>
</table>
Alt bölüm 7.1
[Enerji parametreleri]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Elek Ener Giriş Sayacı] $E \text{L}_I$ - Menüsü</td>
<td>83</td>
</tr>
<tr>
<td>[Elektrik Enerjisi Çıkış Sayacı] $E \text{L}_O$ - Menüsü</td>
<td>84</td>
</tr>
<tr>
<td>[Mekanik Enerji] $\mathcal{R} \text{E}$ - Menüsü</td>
<td>86</td>
</tr>
<tr>
<td>[Enerji tasarrufu] $E \text{S}_A$ - Menüsü</td>
<td>87</td>
</tr>
</tbody>
</table>
[Elek Ener Giriş Sayacı] E L - Menüsü

Erişim

[Ekran] ➔ [Enerji parametreleri] ➔ [Elektrik Enerjisi Giriş Sayacı]

Bu Menü Hakkında

Bu menü, giriş elektrik enerjisi verilerini sunar.

[Grç Griş Enerji] , E 4 ★

Tüketilen giriş elektrik gücü (TWh).
Bu parametreye [Grç Griş Enerji] , E 4, 0 olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 TWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
</tr>
</tbody>
</table>

[Grç Griş Enerji] , E 3 ★

Tüketilen giriş elektrik gücü (GWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 GWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
</tr>
</tbody>
</table>

[Grç Griş Enerji] , E 2 ★

Tüketilen giriş elektrik gücü (MWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 MWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
</tr>
</tbody>
</table>

[Grç Griş Enerji] , E 1 ★

Tüketilen giriş elektrik gücü (kWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
</tr>
</tbody>
</table>

[Grç Griş Enerji] , E 0 ★

Tüketilen giriş elektrik gücü (Wh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 Wh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
</tr>
</tbody>
</table>
[Elektrik Enerjisi Çıkış Sayacı] \(E \ L \ o \ - \) Menüsü

Erişim

[Ekran] \(\rightarrow \) [Pano Enerjisi] \(\rightarrow \) [Enerji parametreleri] \(\rightarrow \) [Elektrik Enerjisi Çıkış Sayacı]

Bu Menü Hakkında

Bu menü, çıkış elektrik enerjisi verilerini sunar.

[Aktif çıkış gücü tah.] \(E \ P \ r \ W \)
Aktif elektrik çıkış gücü tahmini.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü anma değerine göre</td>
<td>[Motor Standardı] (b \ F \ r \cdot [50Hz IEC] \ 5 \ O) olarak ayarlanırsa W olarak veya [Motor Standardı] (b \ F \ r \cdot [60Hz NEMA]) olarak ayarlanırsa HP olarak ayar aralığı. (6 \ O) Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Gerçek Tüketim] \(o \ E \ 4 \ ★ \)
Tüketilen elektrik enerjisi (TWh).
Bu parametreye [Gerçek Tüketim] \(o \ E \ 4 \), 0 olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 TWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Gerçek Tüketim] \(o \ E \ 3 \)
Tüketilen elektrik enerjisi (GWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 GWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Gerçek Tüketim] \(o \ E \ 2 \)
Tüketilen elektrik enerjisi (MWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 MWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Gerçek Tüketim] \(o \ E \ 1 \)
Tüketilen elektrik enerjisi (kWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Gerçek Tüketim] \(o \ E \ 0 \)
Tüketilen elektrik enerjisi (Wh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-999...999 Wh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
[Ekl. En. Bugün]
Bugün motor tarafından harcanan elektrik enerjisi (kWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Ekl. En. Dün]
Dün motor tarafindan harcanan elektrik enerjisi (kWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Aşırı Tüketim Eşği]
Aşırı tüketim için güç seviyesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Düşük Tüketim Eşği] P C A L</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0,0</td>
</tr>
</tbody>
</table>

[Düşük Tüketim Eşği]
Düşük tüketim için güç seviyesi.
Maksimum değer = P C A H, P C A H ≤ %100 ise.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...100,0 veya [Aşırı Tüketim Eşği] P C A H, P C A H ≤ %100 ise</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0,0</td>
</tr>
</tbody>
</table>

[Aşırı/Düşk Tkmt Gckm]
Aşırı/düşük tüketim algılama süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...60 dak</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1 dak</td>
</tr>
</tbody>
</table>

[Çıkışı Tepe Gücü]
Tepe çıkış gücü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü anma değerine göre</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
[Mekanik Enerji] Π Ε Ε - Menüsü

Erişim

[Ekrان] ➔ [Pano Enerjisi] ➔ [Enerji parametreleri] ➔ [Mekanik enerji]

Bu Menü Hakkında

Bu menü, çıkış mekanik enerji verilerini sunar.

[Güç Tahmini Değeri] P W

Motor şafı güç tahmini.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü anma değeri göre</td>
<td>[Motor Standardı] b F r, [50Hz IEC] 5 D olarak ayarlanırsa W olarak veya</td>
</tr>
<tr>
<td></td>
<td>[Motor Standardı] b F r, [60Hz NEMA] olarak ayarlanırsa HP olarak ayar</td>
</tr>
<tr>
<td></td>
<td>aralığı. 6 D</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Tüketimi] Π Ε 4 ★

Enerji tüketimi (TWh).

Bu parametre [Motor Tüketimi] Π Ε 4, 0 olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 TWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Tüketimi] Π Ε 3 ★

Enerji tüketimi (GWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 GWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Tüketimi] Π Ε 2 ★

Enerji tüketimi (MWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 MWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Tüketimi] Π Ε 1 ★

Enerji tüketimi (kWh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Tüketimi] Π Ε 0 ★

Enerji tüketimi (Wh).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999 Wh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
[Enerji tasarrufu] E S A - Menüsü

Erişim

[Ekràn] ➔ [Pano Enerjisi] ➔ [Enerji parametreleri] ➔ [Enerji tasarrufu]

Bu Menü Hakkında

Bu menü, sürücüyle birlikte ve sürücü olmadan maliyet, enerji, CO2 açılarından çözümler arasındaki karşılaştırmayı sunar.

[Referans Gücü] P r E F

Sürücüsüz Referans Gücü

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...655,35 kW</td>
<td>[Motor Standardı] b F r. [50Hz IEC] 5 O olarak ayarlanırsa kW olarak veya</td>
</tr>
<tr>
<td></td>
<td>[Motor Standardı] b F r. [60Hz NEMA] 6 O olarak ayarlanırsa HP olarak</td>
</tr>
<tr>
<td></td>
<td>ayar aralığı.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 0,00 kW</td>
</tr>
</tbody>
</table>

[kWh Maliyeti] E C S t

KWh maliyeti.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...655,35 $</td>
<td>[Motor Standardı] b F r. [50 Hz IEC] 5 O olarak ayarlanırsa € olarak veya</td>
</tr>
<tr>
<td></td>
<td>[Motor Standardı] b F r. [60Hz NEMA] 6 O olarak ayarlanırsa $ olarak</td>
</tr>
<tr>
<td></td>
<td>ayar aralığı.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[CO2 Oranı]_p 2

KWh cinsinden CO2 miktarı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000...65,535 kg/kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 0,000 kg/kWh</td>
</tr>
</tbody>
</table>

[Tasarruf Enerjisi] E S A V

Sürücü çözümüyle tasarruf edilen enerji.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295 kWh</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[Kayıtlı Para] C A S H

Sürücü çözümüyle tasarruf edilen maliyet.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...42.949.672 $</td>
<td>[Motor Standardı] b F r. [50 Hz IEC] 5 O olarak ayarlanırsa € olarak veya</td>
</tr>
<tr>
<td></td>
<td>[Motor Standardı] b F r. [60 Hz NEMA] 6 O olarak ayarlanırsa $ olarak</td>
</tr>
<tr>
<td></td>
<td>ayar aralığı.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[Kayıtlı Co2] C p 2 5

Sürücü çözümüyle tasarruf edilen CO2.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...429.496.729,5 t</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>
Alt bölüm 7.2
[Uygulama parametreleri]

[Uygulama parametreleri] APPr - Menüsü

Erişim

[Ekran] ➔ [Uygulama parametreleri]

Bu Menü Hakkında

Bu menü, uygulamayla ilgili bilgileri görüntüler.

[Uygulama Durumu] APPS

Uygulama durumu.

Bu parametre tahrik uygulama durumunu gösterir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Çalışıyor]</td>
<td>run</td>
<td>Devam etmekte olan uygulama fonksiyonu yok; tahrik çalışıyor</td>
</tr>
<tr>
<td>[Durdurma]</td>
<td>STOP</td>
<td>Devam etmekte olan uygulama fonksiyonu yok; tahrik çalışmıyor</td>
</tr>
<tr>
<td>[Yerel mod Aktif]</td>
<td>LOCAL</td>
<td>Zorlamalı lokal mod aktif hale getirildi</td>
</tr>
<tr>
<td>[Kanal 2 Aktif]</td>
<td>OVER</td>
<td>Devre dışı bırakma hız kontrol modu aktif</td>
</tr>
<tr>
<td>[Manuel Mod Aktif]</td>
<td>MANu</td>
<td>Motor çalışıyor; manuel PID modu aktif</td>
</tr>
<tr>
<td>[PID Aktif]</td>
<td>Auto</td>
<td>Motor çalışıyor; otomatik PID modu aktif</td>
</tr>
<tr>
<td>[Takviye çalışıyor]</td>
<td>boost</td>
<td>Takviye devam ediyor</td>
</tr>
<tr>
<td>[Uyku Aktif]</td>
<td>SLEEP</td>
<td>Uyku aktif</td>
</tr>
<tr>
<td>[BL Devam Ediyor]</td>
<td>bQS</td>
<td>Geri tepme işlemi dizisi devam ediyor</td>
</tr>
</tbody>
</table>
Alt bölüm 7.3
[M/B parametreleri]

Bu Menü Hakkında
Bu menüye [M/B İletişim Modu] \(\mathbb{L} \ \mathbb{L} \ \mathbb{L} \) öğesi [Hayır] \(\mathbb{L} \) olarak ayarlanmazsa erişilebilir.

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th></th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[M/B Yerel Ekran] (\mathbb{L} \ \mathbb{L}) - Menüsü</td>
<td>90</td>
</tr>
<tr>
<td>[M/B Sistem Ekranı] (\mathbb{L} \ \mathbb{L}) - Menüsü</td>
<td>92</td>
</tr>
</tbody>
</table>
[M/B Yerel Ekran] π 5 ø - Menüsü

Erişim

[Ekran] ➾ [M/B parametreleri] ➾ [M/B Yerel Ekran]

Bu Menü Hakkında

Bu menü master bağlı yerel ekrana ilgili parametreleri sunar.

[M/B Durumu] π 5 S

M/B fonksiyonu durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yok]</td>
<td>n ə nE</td>
<td>Konfigüre Edilmemiş</td>
</tr>
<tr>
<td>[M/B Yerel Kontrolü]</td>
<td>n ə C b</td>
<td>M/B yerel kontrolü</td>
</tr>
<tr>
<td>[M/B Hazır Değil]</td>
<td>n r d y</td>
<td>M/B hazır değil</td>
</tr>
<tr>
<td>[M/B Hazır]</td>
<td>r E r d y</td>
<td>M/B hazır</td>
</tr>
<tr>
<td>[M/B Çalışıyor]</td>
<td>r u n</td>
<td>M/B çalışıyor</td>
</tr>
<tr>
<td>[M/B Uyan]</td>
<td>A L A r N</td>
<td>M/B uyan</td>
</tr>
</tbody>
</table>

[M/B Master Hız Ref] π 5 π ⭐

M/B Master hız referansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[M/B Master Tork Ref] F π r ⭐

M/B Master tork referansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Nm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[M/B Yerel Hız Ref] π 5 r ⭐

M/B Yerel hız referansı.
Bu parametreye şu şekilde erişilebilir:
- [M/B İletişim Modu] π 5 C π öğesi [Hayır] ø olarak ayarlanmazsa ve

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[M/B Yerel Tork Ref] F π r ⭐

M/B Yerel tork referansı.
Bu parametreye şu şekilde erişilebilir:
- [M/B İletişim Modu] π 5 C π öğesi [Hayır] ø olarak ayarlanmazsa ve
[Motor Frekansı] \(r \ F \ r \)

Motor frekansı.
Bu parametre motor sıyrılmadan tahmini rotor frekansını görüntüler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Nm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Motor Torku (Nm)] \(a \ L \ g \ n \)
Motor torku.
Çıkış tork değeri.

NOT: Görüntülenen değer, yön ne olursa olsun motorda her zaman pozitif ve jeneratör modunda her zaman negatifir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Nm</td>
<td>Ayar aralığı: sürücü anma değerlerine göre</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Ekran MOn-

[M/B Sistem Ekranı] \(\ni \ 5 \ \ni \) - Menüsü

Erişim

[Ekran] \(\ni \) [M/B parametreleri] \(\ni \) [M/B Sistem Ekranı]

Bu Menü Hakkında

Bu menü master bağlı sistemle ilgili parametreleri sunar.
Bu menüye [M/B İletişim Modu] \(\ni \ 5 \ \ni \) öğesi [MultiDrive Link] \(\ni \ d \ L \) olarak ayarlanırsa erişilebilir.

[M/B Yerel Hız Ref] \(\ni \ 5 \ \ni \)

M/B çıkış hız referansı.
Bu parametre şu şekilde erişilebilir:
- [M/B İletişim Modu] \(\ni \ 5 \ \ni \) öğesi [Hayır] \(\ni \) olarak ayarlanmazsa ve
- [M/B Aygıt Kimliği] \(\ni \ 5 \ \ni \) öğesi [Bağlı] \(\ni \ L \ A \ V \ E \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599.0...599 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[M/B Yerel Tork Ref] \(\ni \ 5 \ \ni \)

M/B çıkış tork referansı.
Bu parametre şu şekilde erişilebilir:
- [M/B İletişim Modu] \(\ni \ 5 \ \ni \) öğesi [Hayır] \(\ni \) olarak ayarlanmazsa ve
- [M/B Aygıt Kimliği] \(\ni \ 5 \ \ni \) öğesi [Bağlı] \(\ni \ L \ A \ V \ E \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Nm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[M/B Aygıtı Seçimi] \(\ni \ 5 \ \ni \)

M/B aygıtı seçimi.
Bu parametre görüntülenecek aygıt parametrelerini seçmenizi sağlar.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Master]</td>
<td>(\ni \ 5 \ \ni \ \ni \ \ni)</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Bağlı 1]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 1</td>
</tr>
<tr>
<td>[Bağlı 2]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 2</td>
</tr>
<tr>
<td>[Bağlı 3]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 3</td>
</tr>
<tr>
<td>[Bağlı 4]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 4</td>
</tr>
<tr>
<td>[Bağlı 5]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 5</td>
</tr>
<tr>
<td>[Bağlı 6]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 6</td>
</tr>
<tr>
<td>[Bağlı 7]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 7</td>
</tr>
<tr>
<td>[Bağlı 8]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 8</td>
</tr>
<tr>
<td>[Bağlı 9]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 9</td>
</tr>
<tr>
<td>[Bağlı 10]</td>
<td>(\ni \ L \ \ni \ \ni)</td>
<td>Bağlı 10</td>
</tr>
</tbody>
</table>
Ekran MON-

[M/B Aygıti Durumu] $\mathcal{N} \, \mathcal{O} \, d \, s$

M/B aygıtı durumu.

[M/B Aygıti Seçimi] $\mathcal{N} \, \mathcal{O} \, d \, s$

kullanılarak seçilen aygıtın durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yok]</td>
<td>n o n E</td>
<td>Konfigüre Edilmemiş</td>
</tr>
<tr>
<td>[M/B Hazır Değil]</td>
<td>n r d y</td>
<td>M/B hazır değil</td>
</tr>
<tr>
<td>[M/B Hazır]</td>
<td>r E r d y</td>
<td>M/B hazır</td>
</tr>
<tr>
<td>[M/B Çalışıyor]</td>
<td>r u n</td>
<td>M/B çalışıyor</td>
</tr>
<tr>
<td>[M/B Uyan]</td>
<td>r L r r N</td>
<td>M/B uyan</td>
</tr>
</tbody>
</table>

[M/B Aygıti Hız Ref] $\mathcal{N} \, \mathcal{O} \, x \, s$

M/B aygıtı hız referansı.

[M/B Aygıti Seçimi] $\mathcal{N} \, \mathcal{O} \, d \, s$

ögesi kullanılarak seçili aygıtın yerel hız referansı değerini görüntüler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[M/B Aygıti Tork Ref] $\mathcal{N} \, \mathcal{O} \, x \, t$

M/B aygıtı tork referansı.

[M/B Aygıti Seçimi] $\mathcal{N} \, \mathcal{O} \, d \, s$

ögesi kullanılarak seçili aygıtın yerel tork referansı değerini görüntüler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32,767...32,767 Nm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Alt bölüm 7.4
[Motor parametreleri]

Motor parametreleri [Motor parametreleri] menüsü

Erişim

[Ekran] ➔ [Motor parametreleri]

Bu Menü Hakkında

Bu menü, motorla ilgili parametreleri gösterir.

Motor hızı Spd

Motor hızı. Bu parametre motor sıyrılmadan tahmini rotor hızını görüntüler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

İşaretli Mek Hızı Spd_1

İşaretli Motor mekanik hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100.000...100.000 rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Motor Gerilimi Uo

Motor gerilimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 V</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Motor Gücü Pr

Motor gücü.

% olarak çıkış gücü (%100 = nominal motor gücü).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-300...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Nom Motor Torku tqn

Nm olarak hesaplanan nominal motor torku (+/- %2 tolerans).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...65.535 Nm</td>
<td>Tahrik anma değerine göre ayar aralığı.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
Motor Torku $\alpha \cdot \tau$

Motor torku.

Çıkış torku değeri (%100 = [Nominal Motor Torku] τ %).

NOT: Görüntülenen değer, yön ne olursa olsun motor modunda her zaman pozitif ve jeneratör modunda her zaman negatifir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-300,0...300,0%</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Motor Torku (Nm) $\alpha \cdot \tau_n$

Motor torku (Nm).

Çıkış tork değeri.

NOT: Görüntülenen değer, yön ne olursa olsun motor modunda her zaman pozitif ve jeneratör modunda her zaman negatifir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767 Nm...32.767 Nm</td>
<td>Ayar aralığı: tahrik anma değerlerine göre</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Motor Akımı $L \cdot I$

Motor akımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...65.535 A</td>
<td>Tahrik anma değerlerine göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

Motor Termal durumu $L \cdot H$

Motor termal durumu.

Normal motor termal durumu %100'dür. [Motor Aşırı Yük] $\alpha L F$, %118 olarak ayarlanmıştır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
Alt bölüm 7.5
[Tahrik parametreleri]

[Sürücü parametreleri] **P** - Menüsü

Erişim

[Ekran] → [Sürücü parametreleri]

Bu Menü Hakkında

Bu menü, sürücüyle ilgili parametreleri gösterir.

[AIV1 Görüntü girisi]** R , V I**

AIV1 Görüntü girisi.

Bu parametre salt okunurdur. Fieldbus kanalı aracılığıyla motora uygulanan hız referansının görüntülenmesini sağlar.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.000...10.000 (1)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

1): [AIV1 Türü] **R V I**'ye göre aralık.

[Rampa Önce Ref Frek]** F r H**

Rampa öncesi frekans referansı.

Bu parametre salt okunurdur. Referans değeri için hangi kanalın seçildiğine bakmakizin motora uygulanan referans freksansını görüntülemeyi etkinleştirir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>

[Ref Frekansı]** L F r**

Referans frekansı.

Bu parametre yalnızca fonksiyon devreye alındığında görülür. Uzaktan kumandadan referans freksansını değiştirmek için kullanılır. OK referans değiştirimeyi aktif hale getirmek için basılması gerekmez.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Tork ref.]** L E r**

Tork referansı.

Bu parametre yalnızca fonksiyon devreye alındığında görülür. Uzaktan kumandadan tork referansı değerini değiştirmek için kullanılır. Referans değerini değiştirmeyi aktif hale getirmek için Tamam'a basılması gerekmez.

Bu parametreyle şu şekilde erişilebilir:
- [Trk/hız değiştirme] € S 5. [Atanmadı] n o olarak ayarlanmazsa ve

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-300,0...300,0</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
[Tork referansı] \(T \)

Tork referansı.
Bu parametre şu şekilde erişilebilir:
- [M/B Aygıt Rolü] \(N S d \) \(s \) [Bağlı] \(S L T E \) olarak ayarlanırsa ve
- [M/B Kontrol Türü] \(N S L \) aşağıdaki şekilde ayarlanırsa:
 - [Tork Doğrudan] \(T r q d \) veya
 - [Ters Tork] \(T r q r \) veya
 - [Tork Özel] \(T r q c \).

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-3.276,7...3.276,7</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Motor Frekansı] \(F \)

Motor frekansı.
Bu parametre motor sıyrılmadan tahmini rotor frekansını görüntüler.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.276,7...3.276,7 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Statör Frekansı] \(S F \)

Statör frekansı.
Bu parametre [Erişim Seviyesi] \(L A C \) öğesi [Uzman] olarak ayarlanırsa erişilebilir \(E P r \)

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Frek Uygulanmadı] (F o)...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Rotor Frekansı] \(r F \)

Rotor frekansı.
Bu parametre motor sıyrılarak tahmini rotor frekansını görüntüler.
Bu parametre [Erişim Seviyesi] \(L A C \) öğesi [Uzman] olarak ayarlanırsa erişilebilir \(E P r \)

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Frek Uygulanmadı] (F o)...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Ölçülen çıkış fr.] \(n N F \)

Ölçülen çıkış frekansı.
Bu parametre eye ancak bir kodlayıcı modülü takılıysa veya dahili kodlayıcı kullanılıyorsa ve kullanılabilir seçimler kullanılan kodlayıcı modülü türune bağlıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.276,7...3.276,7 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
Çarpma Katsayısı NF_F

Çarpma katsayısı.
Bu parametreye, [Ref Frek - Çarpan] N_{A2}, N_{A3} atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Ölçülen Frek F_{Q5}

Darbe girişi ölçülen frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...30 KHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Şebeke Gerilimi u_Ln

Motor çalışırken veya durduğunda, şebeke gerilimi AC barasını temel alır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...860,0 Vac</td>
<td>Ayar aralığı: [ölç. yok] - - - - hiçbir değer ölçülmezse görüntülenir.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Şebeke Gerilimi faz 1-2 u_{L1}

Şebeke gerilim fazı 1-2 ölçümü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.276,7...3.276,7 Vac</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Şebeke Gerilimi faz 2-3 u_{L2}

Şebeke gerilim fazı 2-3 ölçümü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.276,7...3.276,7 Vac</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Şebeke Gerilimi faz 3-1 u_{L3}

Şebeke Gerilimi faz 3-1 ölçümü

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.276,7...3.276,7 Vac</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>

Şebeke Frekansı FR

Gerçek şebeke frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...999,9 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: —</td>
</tr>
</tbody>
</table>
[DC Bara Gerilimi] \(V_{b u} \simeq 5 \)

DC bara gerilimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6.553,5 Vdc</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Sürűcü Term Durumu] \(t_{Hd} \)

Sürűcü termal durumu.
Normal sürűcü termal durumu %100’dür, [Motor Aşın Yük] \(aL F \) %118 olarak ayarlanmışır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Kullanılan Param. Set] \(CFP\) ★

Kullanılan parametre seti.
Konfigürasyon parametresi durumu (parametre değiştirme fonksiyonu etkinleştirilmişse erişilebilir).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yok]</td>
<td>(\approx)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Set N°1]</td>
<td>(CFP1)</td>
<td>Parametre seti 1 aktif</td>
</tr>
<tr>
<td>[Set N°2]</td>
<td>(CFP2)</td>
<td>Parametre seti 2 aktif</td>
</tr>
<tr>
<td>[Set N°3]</td>
<td>(CFP3)</td>
<td>Parametre seti 3 aktif</td>
</tr>
</tbody>
</table>

[Yapiland. aktif] \(CNF\) 5

Aktif konfigürasyon.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Devam ediyor]</td>
<td>(\approx)</td>
<td>Geçici durum</td>
</tr>
<tr>
<td>[Konfig. No.0]</td>
<td>(CNF0)</td>
<td>Konfigürasyon 0 aktif</td>
</tr>
<tr>
<td>[Konfig. No.1]</td>
<td>(CNF1)</td>
<td>Konfigürasyon 1 aktif</td>
</tr>
<tr>
<td>[Konfig. No.2]</td>
<td>(CNF2)</td>
<td>Konfigürasyon 2 aktif</td>
</tr>
<tr>
<td>[Konfig 3 aktif]</td>
<td>(CNF3)</td>
<td>Konfigürasyon 3 aktif</td>
</tr>
</tbody>
</table>
Alt bölüm 7.6
[Termal izleme]

[Termal İzleme] \(P P - \) Menüsü

Erişim

[Ekran] \(\rightarrow \) [Termal İzleme]

Bu Menü Hakkında

Bu menünün içeriğine termal izleme fonksiyonu aktif hale getirilmişse erişilebilir.

Kablo Bağlantısı

[Termal izleme] \(PP - \) menüsünün kablo bağlantısına (bkz. sayfa 183) bakın.

[AI1 Termal Değeri] \(H I V \)

AI1 termal değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15...200°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[AI3 Termal Değeri] \(H 3 V \)

AI3 termal değeri.

[AI1 Termal Değeri] \(H I V \) ile aynı.

[AI4 Termal Değeri] \(H 4 V \)

AI4 termal değeri.

[AI1 Termal Değeri] \(H I V \) ile aynı.

Bu parametreyle, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[AI5 Termal Değeri] \(H 5 V \)

AI5 termal değeri.

[AI1 Termal Değeri] \(H I V \) ile aynı.

Bu parametreyle, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[Kod Tr Değeri] \(h E V \)

Kodlayıcı termal sensörü Değeri

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15...200°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
Alt bölüm 7.7
[PID ekranı]

[PID ekranı] *P, I, C* - Menüsü

Erişim

[Ekrana] [PID ekranına]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

[Dahili PID ref] *r* *P*, ★

Dahili PID referansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...32.767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 150</td>
</tr>
</tbody>
</table>

[PID Referansı] *r* *P*, ★

PID ayar noktası değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[PID geri besleme] *r* *P*, ★

PID geri besleme değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[PID Hatası] *r* *P*, ★

PID hata değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[PID Çıkışı] *r* *P*, ★

PID çıkış değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PID Min Çıkışı] Pₘₜₜ...[PID Maks Çıkışı] Pₘₚₚ</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Alt bölüm 7.8
[Sayaç yönetimi]

[Sayaç Yönetimi] E L ettings - Menüsü

Erişim

[Ekran] ➔ [Sayaç Yönetimi]

Bu Menü Hakkında

Bu menü, tahrik ve motorla ilgili sayaçları gösterir.

[Motor Çalışma Süresi] r t H H

Motor çalışma süresi.
0,1 saatte geçen çalışma süresi göstergesi (motorun açık kaldığı süre - sıfırlanabilir).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...429.496.729,5 s</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Güç Açık Zamanı] P t H H

Güç açık zamanı (sıfırlanabilir) ya da sayaç, [Saat Sayacı Sıfırlam] r P r parametresi kullanılarak 0 olarak ayarlanabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...429.496.729,5 s</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Fan Çalışma Süresi] F P b t

Fan çalışma süresi.

[Fan Çalışma Süresi] F P b t, önceden belirlenen 45.000 saat değerine ulaşır ulaşmaz, [Fan Sayacı Uyarı] F L r uyansı tetiklenir.

[Fan Çalışma Süresi] F P b t sayaç, [Sayaç Saat Sayacı Sıfırlam] r P r parametresi kullanılarak 0 olarak ayarlanabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...500.000 s</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt Okunur</td>
</tr>
</tbody>
</table>

[Yolverme sayısı] n 5 N

Motor yolvermeleri sayısı (sıfırlanabilir) ya da sayaç, [Saat Sayacı Sıfırlam] r P r parametresi kullanılarak 0 olarak ayarlanabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Saat sayacını sıfırlama.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
<tr>
<td>[Çalışma Zmnı Sıfırl]</td>
<td>r t H</td>
<td>Çalışma süresi sıfırlama</td>
</tr>
<tr>
<td>[Güç AÇIK Zmn Sıfırla]</td>
<td>P t H</td>
<td>Güç AÇIK süre sıfırlama</td>
</tr>
<tr>
<td>[Fan sayacı sıfıra]</td>
<td>F t H</td>
<td>Fan sayacını sıfıra</td>
</tr>
<tr>
<td>[NSM’yı Temizle]</td>
<td>n 5 P</td>
<td>Motor yolvelerleri sayısını temizle</td>
</tr>
</tbody>
</table>
Alt bölüm 7.9
[Diğer durum]

[Diğer durum] 5 5 ơ - Menüsü

Erişim

[Ekran] ➔ [Diğer durum]

Bu Menü Hakkında

İkincil durumların listesi.

Liste

[Set 1 aktif] C F P 1
[Set 2 aktif] C F P 2
[Set 3 aktif] C F P 3
[Otomatik tekrar yolverme] A u ơ a
[DC Barası Yüklandı] d b l
[Hızlı durma Aktif] F S ơ
[Gerçek Çekilme Frekansı] F r F
[Hız Korunuyor] r L 5
[Durdurma türü] 5 ơ ơ
[Kodlayıcı konfig.] , l C
[Frenlemede] b r 5
[Ref Frek Uyarısı] S r A
[İleri] N F r d
[Geri] N r r 5
[Motor akılama] F L X
[Otomatik ince ayar] t u n
Alt bölüm 7.10

I/O harita

Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Dij. Giriş Haritası] L , R - Menüsü</td>
<td>106</td>
</tr>
<tr>
<td>[AI1] R , IC - Menüsü</td>
<td>107</td>
</tr>
<tr>
<td>[AI2] R , 2 C - Menüsü</td>
<td>109</td>
</tr>
<tr>
<td>[AI3] R , 3 C - Menüsü</td>
<td>110</td>
</tr>
<tr>
<td>[AI4] R , 4 C - Menüsü</td>
<td>111</td>
</tr>
<tr>
<td>[AI5] R , 5 C - Menüsü</td>
<td>112</td>
</tr>
<tr>
<td>[Analog girişleri görüntüsü] R , R - Menüsü</td>
<td>113</td>
</tr>
<tr>
<td>[Dij. Çıkış Haritası] L o R - Menüsü</td>
<td>113</td>
</tr>
<tr>
<td>[AQ1] R o IC - Menüsü</td>
<td>114</td>
</tr>
<tr>
<td>[AQ2] R o 2 C - Menüsü</td>
<td>118</td>
</tr>
<tr>
<td>[PTO Frekansı] P o o C - Menüsü</td>
<td>120</td>
</tr>
<tr>
<td>[DI7 Ölçülen Frekansı] P FC 7 - Menüsü</td>
<td>122</td>
</tr>
<tr>
<td>[DI8 Ölçülen Frekansı] P FC 8 - Menüsü</td>
<td>124</td>
</tr>
<tr>
<td>[Ölçülen PTİ Frekansı] P o o F - Menüsü</td>
<td>125</td>
</tr>
<tr>
<td>[Frekans sinyali görüntüsü] F 5 - Menüsü</td>
<td>127</td>
</tr>
</tbody>
</table>
Dij. Giriş Haritası L R - Menüsü

Erişim

[Dij. Giriş Haritası] [I/O Harita] [Ekran]

Bu Menü Hakkında

Bu menü, dijital girişlerin durumunu ve atamasını sunar.
Salt okunur parametreler konfigüre edilemez.
[AI1] \(R \), \(I \) - Menüsü

Erişim

[Ekrana] ➔ [I/O Haritası] ➔ [Analog giriş görüntüsü] ➔ [AI1]

[AI1] \(R \), \(I \)

AI1 fiziksel değeri.
AI1 müşteri görüntüsü: analog giriş 1'in değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

NOT: [AI1 Ataması] \(R \), \(I \), [AI1 min değeri] \(u \), [AI1 maks değeri] \(h \) ve [AI1 filtresi] \(R \), \(I \) parametrelerine Ekran Terminali üzerinde OK tuşuna basarak ([AI1] \(R \), \(I \) parametresi üzerinde) basarak erişilebilir.

[AI1 Ataması] \(R \), \(I \)

Analog giriş AI1 fonksiyonları ataması.
Salt okunur parametre zonu configurable edilemez. Örneğin uyumluluk sorunlarını doğrulamak için AI1 giriş ile ilgili tüm fonksiyonları göstermektedir.

Hiçbir fonksiyon atanamamışsa [Hayır] \(\n \) gösterilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(\n)</td>
<td>Atanamamış</td>
</tr>
<tr>
<td>[Tork Ref Ofseti]</td>
<td>(b) (q)</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı]</td>
<td>(b) (q) (r)</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frek Kanalı 1]</td>
<td>(F) (r)</td>
<td>Referans frekansı kanalı 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayarı</td>
</tr>
<tr>
<td>[Ref Frek Kanalı 2]</td>
<td>(F) (r) (2)</td>
<td>Referans frekansı kanalı 2</td>
</tr>
<tr>
<td>[Ref Frekans 2 Toplama]</td>
<td>(S) (A) (2)</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[Moment sınırlaması]</td>
<td>(b) (A) (A)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>(b) (A) (A) (2)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2'yi Çıkar]</td>
<td>(d) (R) (2)</td>
<td>Referans frekansı 2'yi çıkar</td>
</tr>
<tr>
<td>[Manuel PID Ref.]</td>
<td>(P) (n)</td>
<td>PID kontrolörünün (oto-man) manuel hız referansı</td>
</tr>
<tr>
<td>[PID Ref Frekansı]</td>
<td>(F) (P) ()</td>
<td>PID referans frekansı</td>
</tr>
<tr>
<td>[Ref Frekans 3 Toplama]</td>
<td>(S) (A) (3)</td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frekansı 1B]</td>
<td>(F) (r) (1) (b)</td>
<td>Referans frekansı 1B</td>
</tr>
<tr>
<td>[Ref Frek 3'yi Çıkar]</td>
<td>(d) (R) (3)</td>
<td>Referans frekansı 3'yi çıkar</td>
</tr>
<tr>
<td>[Cebri lokal]</td>
<td>(F) (L) (L) (L)</td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı]</td>
<td>(L) (A) (2)</td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı]</td>
<td>(L) (A) (3)</td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork referansı]</td>
<td>(b) (r) (1)</td>
<td>Tork düzenlemesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork referansi 2]</td>
<td>(b) (r) (2)</td>
<td>Tork düzenlemesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Harici Besleme ileleri]</td>
<td>(b) (E) (F) (F)</td>
<td>Harici besleme ileleri</td>
</tr>
<tr>
<td>[M/S Hız Ref Grş]</td>
<td>(N) (S) (S) (S)</td>
<td>Master Bağlı: hız giriş</td>
</tr>
<tr>
<td>[M/S Trk Ref Grş]</td>
<td>(N) (S) (E) (E)</td>
<td>Master Bağlı: tork giriş</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>[Ağırlık giriş]</td>
<td>P E 5</td>
<td>Harici ağırlık sensörü girişi</td>
</tr>
</tbody>
</table>

[AI1 min. değeri] \(\omega L \) **
AI1 minimum değeri.
AI1 %0 gerilim ölçekleme parametresi.
Bu parametreye [AI1 Türü] \(R \), [Gerilim] \(I D \) olarak ayarlanış kısa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0...10,0 Vdc | Ayar aralığı
Fabrika ayarı: 0,0 Vdc |

[AI1 maks. değeri] \(\omega H \) **
AI1 maksimum değeri.
AI1 %100 gerilim ölçekleme parametresi.
Bu parametreye [AI1 Türü] \(R \), [Gerilim] \(I D \) olarak ayarlanış kısa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0...10,0 Vdc | Ayar aralığı
Fabrika ayarı: 10,0 Vdc |

[AI1 min. değeri] \(C r L \) **
AI1 minimum değeri.
AI1 %0 akım Ölçekleme parametresi.
Bu parametreye [AI1 Türü] \(R \), [Akım] \(D R \) olarak ayarlanış kısa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0...20,0 mA | Ayar aralığı
Fabrika ayarı: 0,0 mA |

[AI1 maks. değeri] \(C r H \) **
AI1 maksimum değeri.
AI1 %100 akım Ölçekleme parametresi.
Bu parametreye [AI1 Türü] \(R \), [Akım] \(D R \) olarak ayarlanış kısa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0...20,0 mA | Ayar aralığı
Fabrika ayarı: 20,0 mA |

[AI1 filtresi] \(R \), \(I F \)
AI1 filtresi.
Parazit filtreleme.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,00...10,00 sn | Ayar aralığı
Fabrika ayarı: 0,00 sn |
[AI2] R_{AI2} - Menüsü

Erişim

[Tahrik menüsü] ➔ [Ekran] ➔ [I/O Haritası] ➔ [Analog giriş görüntüsü] ➔ [AI2]

[AI2] R_{AI2}

AI2 fiziksel değeri.
AI2 müşteri görüntüsü: analog giriş 2'in değeri.

[AI1] R_{AI1} (bkz. sayfa 107) ile aynı.

[AI2 Ataması] R_{AI2A}

AI2'ün konfigürasyonu.

[AI1 Ataması] R_{AI1A} (bkz. sayfa 107) ile aynı.

[AI2 min. değeri] L_{AI2}

AI2 minimum değeri.
AI2 %0 gerilim ölçekleme parametresi.
Bu parametreye [AI2 Türü] R_{AI2T}, [Gerilim] U_{AI2} olarak ayarlanmışsa erişilebilir.

[AI1 min. değeri] L_{AI1} (bkz. sayfa 106) ile aynı.

[AI2 maks. değeri] H_{AI2}

AI2 maksimum değeri.
AI2 %100 gerilim ölçekleme parametresi.
Bu parametreye [AI2 Türü] R_{AI2T}, [Gerilim] U_{AI2} olarak ayarlanmışsa erişilebilir.

[AI1 maks. değeri] H_{AI1} (bkz. sayfa 108) ile aynı.

[AI2 filtresi] R_{AI2F}

AI2 filtresi.
Parazit filtreleme.

[AI1 Filtresi] R_{AI1F} (bkz. sayfa 108) ile aynı.
[AI3] \(R \text{ }*, \text{ } L \text{ }*, \text{ } H \text{ }*, \text{ } F \) - Menüsü

Erişim

[Ekran] ➔ [I/O Haritası] ➔ [Analog giriş görüntüsü] ➔ [AI3]
Bu menüye 22 kW'tan büyük güc olan tahrklerde erişilebilir.

[AI3] \(R \text{ }*, \text{ } L \text{ }*, \text{ } H \text{ }*, \text{ } F \)
AI3 fiziksel değeri.
AI3 müşteri görüntüsü: analog giriş 3’in değeri.
[AI1] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 107) ile aynı.

[AI3 Ataması] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) ➔ [AI3] \(\text{ }*, \text{ } I \text{ }*, \text{ } F \) [AI3] \(\text{ }*, \text{ } I \text{ }*, \text{ } F \) [AI3] \(\text{ }*, \text{ } I \text{ }*, \text{ } F \) [AI3] \(\text{ }*, \text{ } I \text{ }*, \text{ } F \)
AI3’ün konfigürasyonu.
[AI1 Ataması] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 107) ile aynı.

[AI3 min. değeri] \(L \text{ }*, \text{ } H \text{ }*, \text{ } F \)
AI3 %0 gerilim ölçekte parametresi.
Bu parametrede [AI3 Türü] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) [Gerilim] \[I/O \] olarak ayarlanmışsa erişilebilir.
[AI1 min. değeri] \(L \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 108) ile aynı.

[AI3 maks. değeri] \(L \text{ }*, \text{ } H \text{ }*, \text{ } F \)
AI3 %100 gerilim ölçekte parametresi.
Bu parametrede [AI3 Türü] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) [Gerilim] \[I/O \] olarak ayarlanmışsa erişilebilir.
[AI1 maks. değeri] \(L \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 108) ile aynı.

[AI3 min. değeri] \(L \text{ }*, \text{ } H \text{ }*, \text{ } F \)
Bu parametrede [AI3 Türü] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) [Akım] \[I/O \] olarak ayarlanmışsa erişilebilir.
[AI1 min. değeri] \(L \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 108) ile aynı.

[AI3 maks. değeri] \(L \text{ }*, \text{ } H \text{ }*, \text{ } F \)
AI3 %100 akım ölçekte parametresi.
Bu parametrede [AI3 Türü] \(R \text{ }*, \text{ } I \text{ }*, \text{ } F \) [Akım] \[I/O \] olarak ayarlanmışsa erişilebilir.
[AI1 maks. değeri] \(L \text{ }*, \text{ } I \text{ }*, \text{ } F \) (bkz. sayfa 108) ile aynı.

[AI3 Filtresi] \(R \text{ }*, \text{ } F \)
AI3 filtresi.
Parazit filtrleme.
[AI1 Filtresi] \(R \text{ }*, \text{ } F \) (bkz. sayfa 108) ile aynı.
[AI4] R , Ç C – Menüsü

Erişim

[Ekran] ➔ [GÇ Haritası] ➔ [Analog giriş görüntü] ➔ [AI4]

Bu Menü Hakkında

Bu menüye, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[AI4] R , Ç C

AI4 fiziksel değeri.
AI4 müşteri görüntü: analog giriş 4’ün değeri.

[AI4 Ataması] R , Ç R

[AI4 min. değeri] U , L Ç ✺

AI4 minimum değeri.
AI4 %0 gerilim ölçekte parametresi.
[AI1 min. değeri] U , L I (bkz. sayfa 108) ile aynı.

[AI4 maks. değeri] U , H Ç ✺

AI4 maksimum değeri.
AI4 %100 gerilim ölçekte parametresi.

[AI4 min. değeri] Ç r L Ç ✺

AI4 minimum değeri.
AI4 %0 akım ölçekte parametresi.
[AI1 min. değeri] Ç r L I (bkz. sayfa 108) ile aynı.

[AI4 maks. değeri] Ç r H Ç ✺

AI4 maksimum değeri.
AI4 %100 akım ölçekte parametresi.
[AI1 maks. değeri] Ç r H I (bkz. sayfa 108) ile aynı.

[AI4 filtresi] R , Ç F

AI4 filtresi.
Parazit filtreleme.
[AI5] R , S L – Menüsü

Erişim

[Ekran] ➞ [G/Ç Haritası] ➞ [Analog giriş görüntüsü] ➞ [AI5]

Bu Menü Hakkında

Bu menüye, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[AI5] R , S L

AI5 müşteri görüntüsü: analog giriş 5’in değeri.

[AI5 Ataması] R , S R

[AI5 min. değeri] L R, S L ★

AI5 %0 gerilim ölçekleme parametresi.
[AI1 min. değeri] L R, I L (bkz. sayfa 108) ile aynı.

[AI5 maks. değeri] L R, H L ★

AI5 %100 gerilim ölçekleme parametresi.
[AI1 maks. değeri] L R, H L (bkz. sayfa 108) ile aynı.

[AI5 min. değeri] L R, S L ★

AI5 %0 akım ölçekleme parametresi.
[AI1 min. değeri] L R, I L (bkz. sayfa 108) ile aynı.

[AI5 maks. değeri] L R, H L ★

AI5 %100 akım ölçekleme parametresi.
[AI1 maks. değeri] L R, H L (bkz. sayfa 108) ile aynı.

[AI5 filtresi] R , S F

AI5 filtresi.
Parazit filtreleme.
Ekran MOn-VE61643TR 01/2019 113

[Analog girişleri görüntüsü] A R - Menüsü

Erişim

[Ekrán] ➔ [I/O Haritası] ➔ [Analog girişleri görüntüsü]

[Kodlayıcı Direnci Değeri] T H E r

Kodlayıcı termal direnci değeri.
Bu parametre şu şekilde erişilebilir:

- Bir kodlayıcı modülü takılıysa ya da gömülü kodlayıcı kullanılar ve

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: _</td>
</tr>
</tbody>
</table>

[Dij. Çıkış Haritası] L o R - Menüsü

Erişim

[Ekrán] ➔ [G/Ç Haritası] ➔ [Dij. Çıkış Haritası]

Bu Menü Hakkında

22 kW’tan büyük gücü olan sürücülerde DQ ataması.
30 kW’tan küçük gücü olan sürücülerde DQ1, DQ2.
R1, R2 ataması.
22kW’tan büyük gücü olan tahrklerde R3 ataması.
VW3A3204 röle çıkış opsiyon modülü takılmışsa R4, R5, R6 ataması.
VW3A3203 G/Ç uzatma modülü takılmışsa DQ11, DQ12 ataması.
Atamayı görmek için Ekran Terminali üzerinde dijital çıkış tıklatin.
Salt okunur parametreler konfigüre edilemez.
Dijital bir çıkışa atanan fonksiyonu görüntüler. Hiçbir fonksiyon atanamamışsa [Atanamış] n o gösterilir.
Gecikmenin onaylanmasını, durumun aktif hale getirilmesini ve dijital çıkış için bekleme süresinin ayarlanmasını sağlar. Olası değerler, konfigürasyon menüsündeki değerlerle aynıdır.
Erişim

[AQ1] I / C - Menüsü

Minimum ve Maksimum Çıkış Değerleri

Volt cinsinden minimum çıkış değeri, atanmış parametrenin alt sınırına ve maksimum değeri üst sınırına karşılık gelir. Minimum değer maksimum değerin üstünde olabilir.

PA Atanan parametre
C / VO Akım veya gerilim çıkış
UL Üst sınır
LL Alt sınır
1 [Min Çıkış] \(R_{OL} \) X veya \(u_{OL} \) X
2 [Maks Çıkış] \(R_{OH} \) X veya \(u_{OH} \) X

Atanan Parametreinin Ölçeklenmesi

Atanan parametrenin ölçeği, her analog çıkış için iki parametreyle alt ve üst sınır değerlerini değiştirecek gereksinimlere uygun olarak uyarlanabilir.

Bu parametreler % cinsinden verilmiştir. %100, konfigüre edilen parametrenin toplam değişim aralığına karşılık gelir: %100 = üst sınır - alt sınır.

Nominal torkun –3 ve +3 katı arasında değişen [Yönlü tork] \(S \leq 9 \) örneğinde %100, nominal torkun 6 katına karşılık gelir.

- [Ölçekleme AQx min] \(R_{SL} \) X parametresi, alt sınırı değiştirir: yeni değer = alt sınır + (aralık \(R_{SL} \) X).
- %0 değeri (fabrika ayarı) alt sınırı değiştirmez.
- [Ölçekleme AQx maks] \(R_{SH} \) X parametresi, üst sınırı değiştirir: yeni değer = alt sınır + (aralık \(R_{SH} \) X). %100 değeri (fabrika ayarı) üst sınırı değiştirmez.
- [Ölçekleme AQx min] \(R_{SL} \) X, daima [Ölçekleme AQx maks] \(R_{SH} \) X'den daha düşük olmalıdır.
Uygulama Örneği

AQ1 çıkışındaki motor akım değeri, 0,8 In tahriğe eşdeğerde 0...20 mA, aralık 2 motorla aktarılacaktır.

- **[Motor Akımı]** α_L parametresi anma tahrik akımının 0 ila 2 katı arasında değişir.
- **[AQ1 min ölç.]** $R_S L \pm$, %0 fabrika ayarından kalan alt sınırını değiştirmemelidir.
- **[AQ1 maks ölç.]** $R_S H \pm$ üst sınırı, nominal motor torkunun 0,5 katı veya 100 - 100/5 = %80 oranında değiştirmelidir (yeni değer = alt sınır + (aralık x ASH1)).

[AQ1] $R_S L \pm$

AQ1 müşteri görüntüyü: analojik çıkış 1'in değeri.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767</td>
<td>Ayar aralığı Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[AQ1 ataması] $R_S I$

AQ1 ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n_o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>α_L</td>
<td>Motordaki akım 0'dan 2 In'ye (In = Kurulum kılavuzunda veya tahriğin isim plakasında gösterilen nominal tahrik akımı)</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>α_F</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans] \pm F_r$ Fabrika Ayarı</td>
</tr>
<tr>
<td>[Rampa çıkışı]</td>
<td>α_P</td>
<td>0'dan $[Maks Frekans] \pm F_r$</td>
</tr>
<tr>
<td>[Motor torku]</td>
<td>t_r</td>
<td>Motor torku, nominal motor torkunun 0'dan 3 katına kadardır</td>
</tr>
<tr>
<td>[İşaretlenmiş tork]</td>
<td>S_t</td>
<td>İşaretlenmiş motor torku, nominal motor torkunun -3 ile +3 katı arasındadır. + işareti, motor moduna ve – işareti jeneratör moduna (frenleme) karşılık gelir.</td>
</tr>
<tr>
<td>[İşaretlenmiş rampa]</td>
<td>S_r</td>
<td>İşaretlenmiş rampa çıkışı, $-[Maks Frekans] \pm F_r$ ile $+[Maks Frekans]$ arasında F_r</td>
</tr>
<tr>
<td>[PID ref.]</td>
<td>P_S</td>
<td>PID kontrolörü referansı $[Min PID referans] \pm P \pm$ ile $[Maks PID referans]$ arasında $P \pm$</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>[PID çıkışı]</td>
<td>α P r</td>
<td>PID kontrolörü çıkış [Düşük hız] L S P ile [Yüksek hız] arasında H S P</td>
</tr>
<tr>
<td>[Motor gücü]</td>
<td>α P r</td>
<td>Motor gücü, [Nominal motor gücü]nin 0 ile 2,5 katı arasında P r</td>
</tr>
<tr>
<td>[Motor termal]</td>
<td>t H r</td>
<td>Motor termik durumu, nominal termik durumunun %0dan 200'e kadarıdır</td>
</tr>
<tr>
<td>[Tahrik termal]</td>
<td>t H d</td>
<td>Tahrik termal durumu, nominal termal durumunun %0 ile %200'ü arasında</td>
</tr>
<tr>
<td>[Tork 4Q]</td>
<td>t r 4 q</td>
<td>İşaretlenmiş motor torku, nominal motor torkunun -3 ile +3 katı arasındadır, + ve - işaretleri moddan bağımsız olarak torkun fiziysel yönüne karşılık gelir (motor veya jeneratör)</td>
</tr>
<tr>
<td>[Ölçülen Motor Frek]</td>
<td>α F r r</td>
<td>Ölçülen motor frekansi</td>
</tr>
<tr>
<td>[İşaretlenmiş çık. frek]</td>
<td>α F 5</td>
<td>İşaretlenmiş çıkış frekansi, –[Maks Frekans] t F r ile +[Maks Frekans] arasında t F r</td>
</tr>
<tr>
<td>[Mot term2]</td>
<td>t H r 2</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>[Mot term3]</td>
<td>t H r 3</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>[Mot term4]</td>
<td>t H r 4</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>[İşaretlenmiş Trk Ref]</td>
<td>u 5 r</td>
<td>İşaretlenmiş tork referansı</td>
</tr>
<tr>
<td>[İşaretlenmiş Trk Ref]</td>
<td>s 5 r</td>
<td>İşaretlenmiş tork referansı</td>
</tr>
<tr>
<td>[Tork sınırlar]</td>
<td>t 9 L</td>
<td>Tork sınırı</td>
</tr>
<tr>
<td>[Motor ger.]</td>
<td>u 0 P</td>
<td>Motora uygulanlan gerilim, 0 ile [Nom Motor Gerilimi] arasında u 0 5</td>
</tr>
<tr>
<td>[M/S Çıkış Hız Ref]</td>
<td>P 55 0</td>
<td>Master / bağlı çıkış hız referansı</td>
</tr>
<tr>
<td>[M/S Çıkış Tork Ref]</td>
<td>N 5 t 0</td>
<td>Master / bağlı çıkış tork referansı</td>
</tr>
</tbody>
</table>

[AQ1 Min. Çıkışı] u 0 L / ★

AQ1 minimum çıkış.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 0,0 Vdc</td>
</tr>
</tbody>
</table>

[AQ1 maks. Çıkışı] u 0 H / ★

AQ1 maksimum çıkış.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 10,0 Vdc</td>
</tr>
</tbody>
</table>

[AQ1 min. çıkış] R o L / ★

AQ1 minimum çıkış.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı: 0,0 mA</td>
</tr>
</tbody>
</table>
[AQ1 maks. çıkış] R o H 1

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 20,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 min ölçceleme] R 5 L 1

Atanan parametrenin alt sınırının, maksimum olası değişim yüzdesi olarak ölçeklenmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...100,0</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %0,0</td>
</tr>
</tbody>
</table>

[AQ1 maks ölçceleme] R 5 H 1

Atanan parametrenin üst sınırının, maksimum olası değişim yüzdesi olarak ölçeklenmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...100,0</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100,0</td>
</tr>
</tbody>
</table>

[AQ1 Filtresi] R o IF

Parazit filtreleme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...10,00 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,00 sn</td>
</tr>
</tbody>
</table>
Ekran Menüsü

Erişim

[Ekrana] ➔ [I/O Harita] ➔ [Analog çıkış görüntüsü] ➔ [AQ2]
Bu menüye 22kW’tan büyük gücü olan tahriklerde erişilebilir.

[AQ2] Menüsü

AQ2 müşteri görüntüsü: analog çıkış 2’nin değeri.

[AQ1] (bkz. sayfa 115) ile aynı.

[AQ2 Atama] (bkz. sayfa 115) ile aynı.

Ayar Kod / Değer Açıklama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfigüre edilmemiş</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>Motor Akımı</td>
<td>a c r</td>
<td>Motor akımı 0’dan 2 In’ye (In = Kurulum kilavuzunda veya tahrik plakasında gösterilen nominal tahrik akımı) Fabrika Ayarı</td>
</tr>
<tr>
<td>Motor Frekansı</td>
<td>a f r</td>
<td>Çıkış frekansı, 0’dan [Maks Frekans] ile F r</td>
</tr>
<tr>
<td>Rampa çıkış</td>
<td>a r p</td>
<td>0’dan [Maks Frekans] ile F r</td>
</tr>
<tr>
<td>Motor torku</td>
<td>b r q</td>
<td>Motor torku, nominal motor torkunun 0’dan 3 katına kadardır</td>
</tr>
<tr>
<td>İşaretlenmiş tork</td>
<td>5 b q</td>
<td>İşaretlenmiş motor tork, nominal motor torkunun -3 ile +3 katı arasında.</td>
</tr>
<tr>
<td>İşaretlenmiş rampa çıkış</td>
<td>a r 5</td>
<td>İşaretlenmiş rampa çıkış, -[Maks Frekans] ile +[Maks Frekans] arasında F r</td>
</tr>
<tr>
<td>PID hatası</td>
<td>a p e</td>
<td>PID kontrolörü algılanan hatası, [Maks PID geri beslemesi] ile [Min PID geri beslemesi] arasında P , F 1</td>
</tr>
<tr>
<td>PID çıkış</td>
<td>a p ,</td>
<td>PID kontrolörü çıkış [Düşük hız] ile [Yüksek hız] arasında H S P</td>
</tr>
<tr>
<td>Motor gücü</td>
<td>a p r</td>
<td>Motor gücü, [Nominal motor gücü] hün 0 ile 2,5 katı arasında P r</td>
</tr>
<tr>
<td>Motor termal</td>
<td>b h r</td>
<td>Motor termal durumu, nominal motor torkunun %0’dan 200’e kadardır</td>
</tr>
<tr>
<td>Tahrık termal</td>
<td>b h d</td>
<td>Tahrık termal durumu, nominal motor torkunun %0’dan 200’e kadardır</td>
</tr>
<tr>
<td>[Tork 4Q]</td>
<td>b r 4 q</td>
<td>İşaretlenmiş motor tork, nominal motor torkunun -3 ile +3 katı arasında.</td>
</tr>
<tr>
<td>Ölçülen Motor Frek</td>
<td>a f r r</td>
<td>Ölçülen motor frekansı</td>
</tr>
<tr>
<td>İşaretlenmiş çıkış frek</td>
<td>a f 5</td>
<td>İşaretlenmiş çıkış frekansı, -[Maks Frekans] ile +[Maks Frekans] arasında F r</td>
</tr>
<tr>
<td>Mot term2</td>
<td>b h r 2</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>Mot term3</td>
<td>b h r 3</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>Mot term4</td>
<td>b h r 4</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>İşaretlenmemiş Trk Ref</td>
<td>u b r</td>
<td>İşaretlenmemiş tork referansı</td>
</tr>
<tr>
<td>İşaretlenmemiş Trk Ref</td>
<td>5 b r</td>
<td>İşaretlenmemiş tork referansı</td>
</tr>
<tr>
<td>Tork sınır</td>
<td>b q l</td>
<td>Tork sınır</td>
</tr>
<tr>
<td>Motor ger.]</td>
<td>u o p</td>
<td>Motora uygulanan gerilim, 0 ile [Nom Motor Gerilimi] arasında u o 5</td>
</tr>
<tr>
<td>[M/S Çıkış Hız Referansı]</td>
<td>n s s o</td>
<td>Master / bağlı çıkış hız referansı</td>
</tr>
</tbody>
</table>
[AQ2 Min. Çıkışı] $\alpha L 2$

AQ2 minimum çıkışı.

Bu parametreye, [AQ2 Türü] $R \alpha 2 \beta$, [Gerilim] $I D 0$, olarak ayarlanmuşsa erişilebilir.

* [AQ1 min. çıkışı] $\alpha L 1$ (bkz. sayfa 116) ile aynı.

[AQ2 maks. Çıkışı] $\alpha H 2$

AQ2 maksimum çıkışı.

Bu parametreye, [AQ2 Türü] $R \alpha 2 \beta$, [Gerilim] $I D 0$, olarak ayarlanmışsa erişilebilir.

* [AQ1 maks. çıkışı] $\alpha H 1$ (bkz. sayfa 116) ile aynı.

[AQ2 Min. Çıkışı] $R \alpha L 2$

AQ2 minimum çıkışı.

Bu parametreye, [AQ2 Türü] $R \alpha 2 \beta$, [Akım] $Q R$, olarak ayarlanmışsa erişilebilir.

* [AQ1 min. çıkışı] $R \alpha L 1$ (bkz. sayfa 251) ile aynı.

[AQ2 maks. Çıkışı] $R \alpha H 2$

AQ2 maksimum çıkışı.

Bu parametreye, [AQ2 Türü] $R \alpha 2 \beta$, [Akım] $Q R$, olarak ayarlanmışsa erişilebilir.

* [AQ1 maks. çıkışı] $R \alpha H 1$ (bkz. sayfa 251) ile aynı.

[AQ2 mín ölçekleme] $R 5 L 2$

Atanan parametrenin alt sınırının, maksimum olası değişim %si olarak ölçeklenmesi.

* [AQ2 mín ölçek.] $R 5 L 1$ (bkz. sayfa 117) ile aynı.

[AQ2 maks ölçekleme] $R 5 H 2$

Atanan parametrenin üst sınırının, maksimum olası değişim %si olarak ölçeklenmesi.

* [AQ1 maks ölçek.] $R 5 H 1$ (bkz. sayfa 117) ile aynı.

[AQ2 Filtresi] $R \alpha 2 F$

Parazit filtreleme.

* [AQ1 Filtresi] $R \alpha 1 F$ (bkz. sayfa 117) ile aynı.
PTO Frekansı $P t o C$ - Menüsü

Erişim

[Ekrani] \rightarrow [I/O Harita] \rightarrow [Analog çıkışlar görüntüsü] \rightarrow [PTO Frekansı]

Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.

PTO Frekansı $P t o C$

Darbe kati çıkış frekansı değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F r$</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans]$ a $F r$</td>
</tr>
<tr>
<td>$P o C$</td>
<td>Darbe kati çıkış frekansı değeri.</td>
</tr>
<tr>
<td>$M o n$</td>
<td>Ekran</td>
</tr>
<tr>
<td>$E r i$</td>
<td>Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.</td>
</tr>
</tbody>
</table>

PTO Ataması $P t a$

Darbe kati çıkış ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F r$</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans]$ a $F r$</td>
<td></td>
</tr>
<tr>
<td>$P o C$</td>
<td>Darbe kati çıkış frekansı değeri.</td>
<td></td>
</tr>
<tr>
<td>$M o n$</td>
<td>Ekran</td>
<td>I/O Harita</td>
</tr>
<tr>
<td>$E r i$</td>
<td>Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F r$</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans]$ a $F r$</td>
<td></td>
</tr>
<tr>
<td>$P o C$</td>
<td>Darbe kati çıkış frekansı değeri.</td>
<td></td>
</tr>
<tr>
<td>$M o n$</td>
<td>Ekran</td>
<td>I/O Harita</td>
</tr>
<tr>
<td>$E r i$</td>
<td>Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.</td>
<td></td>
</tr>
</tbody>
</table>

Motor Akımı $a C r$

Motor akımı değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F r$</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans]$ a $F r$</td>
<td></td>
</tr>
<tr>
<td>$P o C$</td>
<td>Darbe kati çıkış frekansı değeri.</td>
<td></td>
</tr>
<tr>
<td>$M o n$</td>
<td>Ekran</td>
<td>I/O Harita</td>
</tr>
<tr>
<td>$E r i$</td>
<td>Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.</td>
<td></td>
</tr>
</tbody>
</table>

Motor Frekansi $O F r$

Motor frekansı değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F r$</td>
<td>Çıkış frekansı, 0'dan $[Maks Frekans]$ a $F r$</td>
<td></td>
</tr>
<tr>
<td>$P o C$</td>
<td>Darbe kati çıkış frekansı değeri.</td>
<td></td>
</tr>
<tr>
<td>$M o n$</td>
<td>Ekran</td>
<td>I/O Harita</td>
</tr>
<tr>
<td>$E r i$</td>
<td>Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.</td>
<td></td>
</tr>
</tbody>
</table>
[PTO Maks Çıkış Frekansi] \(P \leq H \)
Darbe katarı çıkış maksimum çıkış frekansı.
Bu parametreye [PTO Ataması] \(P \leq a \), [Konfigüre Edilmedi] \(n \leq a \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Motor ger.]</td>
<td>(U \leq P)</td>
<td>Motora uygulanan gerilim, 0 ile [Nom Motor Gerilimi] arasında (U \leq 5)</td>
</tr>
<tr>
<td>[M/S Çıkış Hız Ref]</td>
<td>(n S \leq a)</td>
<td>Master / bağlı çıkış hız referansı</td>
</tr>
<tr>
<td>[M/S Çıkış Tork Ref]</td>
<td>(n S \leq a)</td>
<td>Master / bağlı çıkış tork referansı</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 1,00…30,00 kHz | Ayar aralığı
| Fabrika ayarı: 4,00 kHz |
[DI7 Ölçülen Frekansı] PFC7 - Menüsü

Erişim

![Ekran ➔ I/O Haritası ➔ [Frek. Sinyal görüntüsü] ➔ [DI7 Ölçülen Frekansı]]

Bu Menü Hakkında

[DI7 Ölçülen Frekansı] PFC7 parametrelerinde OK tuşuna basıldığında aşağıdaki parametrelerle Ekran Terminali üzerinden erişilebilir.

Bu menüye **22 kWtan büyük** gücü olan sürücülerde erişilebilir.

[DI7 Ölçülen Frekansı] PFC7

Filtrelenmiş özel darbeli giriş frekans referansı.

[DI7 Darbe Grş Atama] P₁R₁

DI7 darbe giriş ataması.

Örneğin uyumlu kullananı doğrulamak için darbe girişine ilgili tüm fonksiyonları göstermektedir. Hiçbir fonksiyon atanmamışsa [Hayır] nO görüntülenen.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır] nO</td>
<td></td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Tork Ref Ofset] t₉₀</td>
<td></td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı] t₉ᵣ</td>
<td></td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekansı 1] Fr₁</td>
<td></td>
<td>Referans frekansı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2] Fr₂</td>
<td></td>
<td>Referans frekansı 2</td>
</tr>
<tr>
<td>[Ref Frekansı 2 Toplama] S₁A₂</td>
<td></td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[PID Geri besleme] P₁F</td>
<td></td>
<td>PI kontrolörü geri beslemesi</td>
</tr>
<tr>
<td>[Moment sınırlaması] t₉₉₀</td>
<td></td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2] t₉₉₁</td>
<td></td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2’yi Çıkar] d₁A₂</td>
<td></td>
<td>Referans frekansı 2’yi çıkar</td>
</tr>
<tr>
<td>[Manuel PID Ref.] P₁P</td>
<td></td>
<td>PID kontrolörünün (oto-man) manuel hız referansı</td>
</tr>
<tr>
<td>[PID Ref Frekansı] F₁P</td>
<td></td>
<td>PID referans frekansı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 Toplama] S₁A₃</td>
<td></td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frekansı 1B] Fr₁₁b</td>
<td></td>
<td>Referans frekansı 1B</td>
</tr>
<tr>
<td>[Ref Frek 3’yi Çıkar] d₁A₃</td>
<td></td>
<td>Referans frekansı 3’yi çıkar</td>
</tr>
<tr>
<td>[Cebri lokal] F₁L₀C</td>
<td></td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı] ᵅ₁₀₂</td>
<td></td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı] ᵅ₁₀₃</td>
<td></td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork refansı] t₀₁</td>
<td></td>
<td>Tork düzenlemesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork refansı 2] t₀₂</td>
<td></td>
<td>Tork düzenlemesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Frekans Ölçer] F₁₀F</td>
<td></td>
<td>Frekans ölçer fonksiyonu aktivasyonu</td>
</tr>
<tr>
<td>[Harici Besleme [leri]] t₁EFF</td>
<td></td>
<td>Harici besleme leri</td>
</tr>
<tr>
<td>[M/S Hız Ref Grş]\n</td>
<td></td>
<td>M/S Master hız referansı girişi</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>[M/S Trk Ref Grit]</td>
<td>İ5 İ</td>
<td>M/S Master tork referansı giriş</td>
</tr>
<tr>
<td>[Ağırlık giriş]</td>
<td>P E 5</td>
<td>Harici ağırlık sensörü giriş</td>
</tr>
</tbody>
</table>

[D7 Darbe Giriş Düşük Frek] $P \cdot L$
Di7 darbe giriş düşük frekansı.
Darbe giriş ölçekleme parametresi, Hz x 10 birimi olarak %0.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...30,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>

[D7 Darbe Giriş Yüksek Frek] $P \cdot H$
Di7 darbe giriş yüksek frekansı.
Darbe giriş ölçekleme parametresi, Hz x 10 birimi olarak %100.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...30,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 30,00 kHz</td>
</tr>
</tbody>
</table>

[D7 Frekans Filtresi] $P F$
Alt filtre parazit filtreleme darbeli giriş kesme süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1.000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 ms</td>
</tr>
</tbody>
</table>
[DI8 Ölçülenn Frekansı] P FC B - Menüsü

Erişim

[Ekran] ➔ [I/O Haritası] ➔ [Frek. Sinyal görüntüsü] ➔ [DI8 Ölçülenn Frekansı]

Bu Menü Hakkında

[DI8 Ölçülenn Frekansı] P FC B parametrelerinde OK tuşuna basıldığında aşağıdaki parametreler Ekran Terminali üzerinden erişilebilir.
Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[DI8 Ölçülenn Frekansı] P FC B
Filtrelenmiş özel darbeli giriş frekans referansı.

[DI7 Ölçülenn Frekansı] P FC 7 (bkz. sayfa 122) ile aynı.

[DI8 Darbe Giriş Ataması] P , B A
DI8 darbe giriş ataması.

[DI8 Darbe Giriş Düşük Frek] P , L B
DI8 darbe giriş düşük frekansı.

[DI7 Darbe Giriş Düşük Frek] P , 7 L (bkz. sayfa 123) ile aynı.

[DI8 Darbe Giriş Yüksek Frek] P , H B
DI8 darbe giriş yüksek frekansı.

[DI8 Frekans Filtresi] P F , B
Alt filtre parazit filtreleme darbeli giriş kesme süresi.

[DI7 Frekans Filtresi] P F , 7 (bkz. sayfa 123) ile aynı.
**[Ölçülen PTI Frekansı] ** P, F - Menüsü

Erişim

[Ekrann] ➔ [I/O haritası] ➔ [Frek. sinyal görüntü] ➔ [Ölçülen PTI Frekansı]

Bu Menü Hakkında

Bu menüye 30 kW'tan küçük gücü olan sürücülerde erişilebilir.

**[Ölçülen PTI Frekansı] ** P, F

Ölçülen PTI frekansi

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21.474.836,47...21.474.836,47 Hz</td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>

**[RP ataması] ** P, R ★

Darbe girisi atama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n = 0</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Tork Ref Ofseti]</td>
<td>t q o</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı]</td>
<td>t q r</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekansı 1]</td>
<td>f r 1</td>
<td>Referans frekansı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2]</td>
<td>f r 2</td>
<td>Referans frekansı 2</td>
</tr>
<tr>
<td>[Ref Frekansı 2 Toplama]</td>
<td>S A 2</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[PID Geri besleme]</td>
<td>P , f</td>
<td>PI kontrolörü geri beslemesi</td>
</tr>
<tr>
<td>[Tork sınırlaması]</td>
<td>t A r</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>t A R 2</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2yi Çıkar]</td>
<td>d A 2</td>
<td>Referans frekansı 2'yi çıkar</td>
</tr>
<tr>
<td>[Manuel PID Ref.]</td>
<td>P , n</td>
<td>PID kontrolörüünün (oto-man) manuel hız referansı</td>
</tr>
<tr>
<td>[PID Ref Frekansı]</td>
<td>F P 1</td>
<td>PID referans frekansı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 Toplama]</td>
<td>S A 3</td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frekansı 1B]</td>
<td>F r 1 b</td>
<td>Referans frekansı 1B</td>
</tr>
<tr>
<td>[Ref Frek 3'ü Çıkar]</td>
<td>d A 3</td>
<td>Referans frekansı 3'ü çıkar</td>
</tr>
<tr>
<td>[Cebri lokal]</td>
<td>F L o L</td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı]</td>
<td>N A 2</td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı]</td>
<td>N A 3</td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork referansı]</td>
<td>t r 1</td>
<td>Tork düzenlemesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork referansı 2]</td>
<td>t r 2</td>
<td>Tork düzenlemesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Frenks Ölçer]</td>
<td>F Q F</td>
<td>Frekans ölçer fonksiyonu aktivasyonu</td>
</tr>
<tr>
<td>[Harcı Besleme Ileri]</td>
<td>t E F F</td>
<td>Harcısı besleme ileri</td>
</tr>
<tr>
<td>[M/B Hız Ref Grs]</td>
<td>n 5 5 1</td>
<td>M/B Master hız referansı girisi</td>
</tr>
<tr>
<td>[M/B Trk Ref Grs]</td>
<td>n 5 6 1</td>
<td>M/B Master tork referansı girisi</td>
</tr>
</tbody>
</table>
[PTİ Düşük Frekansı] $L \rightarrow L$
Darbe Katarı Giriş düşük frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| -1000000,00...1000000,00 Hz | Ayar aralığı
 | Fabrika ayarı: 0 Hz |

[PTİ Yüksek Frekansı] $L \rightarrow I$
Darbe Katarı Giriş yüksek frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| -1000000,00...1000000,00 Hz | Ayar aralığı
 | Fabrika ayarı: 0 Hz |

[PTİ Filtresi Süresi Analog] $L \rightarrow L$
PTİ filtresi süresi analog

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...1000 ms | Ayar aralığı
 | Fabrika ayarı: 0 ms |

[PTİ Modu] $L \rightarrow M$
PTİ modu

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A/B]</td>
<td>A/B</td>
<td>A/B giriş sinyalleri</td>
</tr>
</tbody>
</table>
<pre><code> | | Fabrika Ayarı |
</code></pre>
<p>| [Darbe/Yön] | P,d | Darbe yönü giriş sinyalleri |
| [Saat Yönü/Saatin Tersi Yönü] | C,ω | Saat yönü/Saatin tersi yönü giriş sinyalleri |</p>

[PTİ Filtresi Süresi Giriş] $L \rightarrow S$
PTİ Filtresi Süresi Giriş

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,00...13,00 µs | Ayar aralığı
 | Fabrika ayarı: 0,25 µs |

[PTİ Sayımı Yönü Ters] $L \rightarrow L$
PTİ yönü ters çevirme

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KAPALI]</td>
<td>α , F</td>
<td>Sayım yönünün tersine çevirmesi yok</td>
</tr>
</tbody>
</table>
<pre><code> | | Fabrika Ayarı |
</code></pre>
<p>| [AÇIK] | α , n | Sayım yönünün tersine çevirmesi |</p>

126 NVE61643TR 01/2019
[Frekans sinyali görüntüsü] F S , - Menüsü

Erişim

[Ekrana] ➔ [I/O haritası] ➔ [Frekans sinyal görüntüsü]

[Kodlayıcı Darbe Frekansı] E C F r
Kodlayıcı darbe frekansı.
Bu parametreye şu şekilde erişilebilir:
• bir kodlayıcı modülü takıldıysa ve
• [Kodlayıcı kullanımı] E n u öğesi [Hız Referansı] P G r olarak ayarlanırsa ve
• [Referans Türü] P G A öğesi [Frekans Oluşturucu] olarak ayarlanırsa P E G

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21.474.836,47...21.474.836,47_kHz</td>
<td>Ayar aralığı Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Kodlayıcı Frekansı] E , F C
Kodlayıcı frekansı.
Bu parametreye şu şekilde erişilebilir:
• bir kodlayıcı modülü takıldıysa ve
• [Kodlayıcı kullanımı] E n u öğesi [Hız Referansı] P G r olarak ayarlanırsa ve
• [Referans Türü] P G A öğesi [Frekans Oluşturucu] olarak ayarlanırsa P E G

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21.474.836,47...21.474.836,47_kHz</td>
<td>Ayar aralığı Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
Alt bölüm 7.11
[İletişim haritası]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[İletişim haritası] C N N - Menüsü</td>
<td>129</td>
</tr>
<tr>
<td>[Modbus ağ tanı] N d - Menüsü</td>
<td>132</td>
</tr>
<tr>
<td>[İlet. Tara. grňhra.] S R - Menüsü</td>
<td>133</td>
</tr>
<tr>
<td>[İlet tarama çks hrt.] S R - Menüsü</td>
<td>134</td>
</tr>
<tr>
<td>[Modbus HMI Tan] P d H - Menüsü</td>
<td>135</td>
</tr>
<tr>
<td>[Ethernet Göm. Tan] P E - Menüsü</td>
<td>136</td>
</tr>
<tr>
<td>[DeviceNet Tanı] d n - Menüsü</td>
<td>137</td>
</tr>
<tr>
<td>[Profibus Tanı] P r b - Menüsü</td>
<td>138</td>
</tr>
<tr>
<td>[PROFINET Tanı] P r n - Menüsü</td>
<td>140</td>
</tr>
<tr>
<td>[EtherCAT Modülü Tansı] E d - Menüsü</td>
<td>142</td>
</tr>
<tr>
<td>[Powerlink Tanı] P W L - Menüsü</td>
<td>143</td>
</tr>
<tr>
<td>[Komut kelime görünüşü] L . - Menüsü</td>
<td>144</td>
</tr>
<tr>
<td>[FrekRef Kelime Hrtası] r . - Menüsü</td>
<td>145</td>
</tr>
<tr>
<td>[Konum ref. word haritası] P r L N - Menüsü</td>
<td>146</td>
</tr>
<tr>
<td>[CANopen haritası] C N N - Menüsü</td>
<td>147</td>
</tr>
<tr>
<td>[PDO1 görünüşü] P a 1 - Menüsü</td>
<td>148</td>
</tr>
<tr>
<td>[PDO2 görünüşü] P a 2 - Menüsü</td>
<td>150</td>
</tr>
<tr>
<td>[PDO3 görünüşü] P a 3 - Menüsü</td>
<td>151</td>
</tr>
<tr>
<td>[CANopen haritası] C N N - Menüsü</td>
<td>152</td>
</tr>
</tbody>
</table>
[İletişim haritası] C → C - Menüsü

Erişim

[Ekrannın ana menüsü]

[Komut Kanalı] C → C

Komut kanalı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Terminaller]</td>
<td>t E r</td>
<td>Terminal bloğu kaynağı</td>
</tr>
<tr>
<td>[Ref. Frek-Uzk.Term]</td>
<td>L C C</td>
<td>Ekran Terminali aracılığıyla komut</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>P d b</td>
<td>Modbus aracılığıyla komut</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>E R n</td>
<td>CANopen modülü takılması CANopen aracılığıyla komut</td>
</tr>
<tr>
<td>[Ref. Frek-İlet. Modül]</td>
<td>n E t</td>
<td>Fieldbus modülü takılması fieldbus modülü aracılığıyla komut</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>E t H</td>
<td>Gömülü Ethernet aracılığıyla komut</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.

[Kmt Kaydı] C → C

Komut kaydı.

[Kontrol Modu] C → C, [I/O profil] olarak ayarlanan, i/o CiA402 profilinin olası değerleri, aynı veya ayrı olmayan modundadır:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Açıklama, Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 olarak ayarlanmış: "Açma"/Kontaktör komutu</td>
</tr>
<tr>
<td>1</td>
<td>0 olarak ayarlanmış: "Genel devre dışı"/AC gücü besleme yetkisi</td>
</tr>
<tr>
<td>2</td>
<td>0 olarak ayarlanmış: "Hızlı dururma"</td>
</tr>
<tr>
<td>3</td>
<td>1 olarak ayarlanmış: "Çalışmayı etkinleştir"/Çalıştırma komutu</td>
</tr>
<tr>
<td>4 - 6</td>
<td>Aynıması (=0)</td>
</tr>
<tr>
<td>7</td>
<td>"Hata sıfırlama" onaylama 0'dan 1'e yükselen uçta aktif</td>
</tr>
<tr>
<td>8</td>
<td>1 olarak ayarlanmış: [Duruş Tipi] 5 t ε parameteresine göre çalışma aktif durumundan çıkmadan Halt Dururma</td>
</tr>
<tr>
<td>9 ve 10</td>
<td>Aynıması (=0)</td>
</tr>
<tr>
<td>11 - 15</td>
<td>Komutlara atanmış olabilir</td>
</tr>
</tbody>
</table>

I/O profilindeki olası değerler. Durum komutunda [2 Kablolu Kontrol] 2 C:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Açıklama, Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>İleri (durum) komutu:</td>
</tr>
<tr>
<td>1</td>
<td>İleri komutu yok</td>
</tr>
<tr>
<td>2</td>
<td>İleri komutu</td>
</tr>
<tr>
<td>NOT: Bit 0 ataması değiştirilemez. Terminallerin atamalarına karşılık gelir. Değiştirilebilir. Bit 0 C d 0 0, sadece bu kontrol keleminin kanalı aktif olduğunda aktiftir.</td>
<td></td>
</tr>
<tr>
<td>1 - 15</td>
<td>Komutlara atanmış olabilir</td>
</tr>
</tbody>
</table>

I/O profilindeki olası değerler. Kenar komutunda [3 Kablolu Kontrol] 3 C:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Açıklama, Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Durdurma (çalıştırma yetkisi):</td>
</tr>
<tr>
<td>1</td>
<td>Durdurma</td>
</tr>
<tr>
<td>2</td>
<td>Çalıştırma ileri veya geri komutuyyla yetkilendirilir</td>
</tr>
<tr>
<td>1</td>
<td>İleri (0'dan 1'e yükselen uç) komutu</td>
</tr>
<tr>
<td>2 - 15</td>
<td>Komutlara atanmış olabilir</td>
</tr>
<tr>
<td>NOT: Bit 0 ve 1 atamaları değiştirilemez. Terminallerin atamalarına karşılık gelir. Değiştirilebilir. Bit 0 C d 0 0 ve 1 C d 0 1, sadece bu kontrol keleminin kanalı aktif olduğunda aktiftir.</td>
<td></td>
</tr>
</tbody>
</table>
[Ref Frekans Kanalı] r F C C
Referans frekansının kanalı.

[Komut Kanalı] ile aynı C N d C (bkz. sayfa 129)

[Rampa Önce Ref Frek] F r H
Rampa öncesi frekans referansı.
Bu parametre salt okunurdur. Referans değeri için hangi kanalın seçildiğine bakmaksızın motora uygulanan referans frekansını görüntülemeyi etkinleştirir.

Ayar	Açıklama
-599,0...599,0 Hz | Ayar aralığı
Fabrika ayarı: 0 Hz

[CIA402 Durum Kaydı] E t R
CIA402 Durum Kaydı.
CIA402 profilinin olası değerleri, aynı veya ayrı olmayan modundaş:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Açıklama, Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>"Açılmaya hazır", güç bölümü hat beslemesi bekleniyor</td>
</tr>
<tr>
<td>1</td>
<td>"Açma", hazır</td>
</tr>
<tr>
<td>2</td>
<td>"Çalışma aktif", çalışıyor</td>
</tr>
<tr>
<td>3</td>
<td>Çalışmada tespit edilen hata durumu: 0: Devre dışı 1: Aktif</td>
</tr>
<tr>
<td>4</td>
<td>"Gerilim aktif", güç bölümü hat beslemesi mevcut: 0: Güç bölümü hat beslemesi kullanılmaz 1: Güç bölümü hat beslemesi mevcut NOT: Sürücü sadece güç bölümü ile çalıştırıldığında, bit her zaman 1'de olur.</td>
</tr>
<tr>
<td>5</td>
<td>Hızlı dururma</td>
</tr>
<tr>
<td>6</td>
<td>"Açma devre dışı", güç bölümü hat beslemesi kilitli</td>
</tr>
<tr>
<td>7</td>
<td>Uyan: 0: Uyanı yok 1: Uyan</td>
</tr>
<tr>
<td>8</td>
<td>Aynılışm (¬0)</td>
</tr>
<tr>
<td>9</td>
<td>Uzaktan: ağ üzerinden komut veya referans 0: Ekran Terminali üzerinden komut veya referans 1: Ağ üzerinden komut veya referans</td>
</tr>
<tr>
<td>10</td>
<td>Hedef referansına ulaşıldı: 0: Referansa ulaşılmadı 1: Referansa ulaşıldı NOT: Sürücü hz modunda olduğunda bu, hız referansı</td>
</tr>
<tr>
<td>12</td>
<td>Aynılış</td>
</tr>
<tr>
<td>13</td>
<td>Aynılış</td>
</tr>
<tr>
<td>14</td>
<td>"Dururma tuşu", dururma tuşu ile DURURMA: 0: DURURMA tuşuna basılmadı 1: Ekran Terminali STOP tuşuya tetiklenen dururma</td>
</tr>
<tr>
<td>15</td>
<td>"Yön", döndürme yönü: 0: Çıkışta ileriye dönme 1: Çıkışta geriye dönme</td>
</tr>
</tbody>
</table>

NOT: 0, 1, 2, 4, 5 ve 6 bitlerinin kombinasyonu, DSP 402 durum tablosundaki durumu belirler (bkz. iletişim kilavuzları).
I/O profilindeki olası değerler:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Açıklama, Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ayrılmış (= 0 veya 1)</td>
</tr>
<tr>
<td>1</td>
<td>Hazır:</td>
</tr>
<tr>
<td></td>
<td>0: Hazır değil</td>
</tr>
<tr>
<td></td>
<td>1: Hazır</td>
</tr>
<tr>
<td>2</td>
<td>Çalışıyor:</td>
</tr>
<tr>
<td></td>
<td>Sıfırdan farklı bir referans uygulanırsa sürücü çalışmaz</td>
</tr>
<tr>
<td></td>
<td>1: Çalışıyor, sıfırdan farklı bir referans uygulanırsa sürücü çalıştırılabilir</td>
</tr>
<tr>
<td>3</td>
<td>Çalışmada tespit edilen hata durumu:</td>
</tr>
<tr>
<td></td>
<td>0: Devre dışı</td>
</tr>
<tr>
<td></td>
<td>1: Aktif</td>
</tr>
<tr>
<td>4</td>
<td>Güç bölümü hat beslemesi mevcut:</td>
</tr>
<tr>
<td></td>
<td>0: Güç bölümü hat beslemesi kullanılamaz</td>
</tr>
<tr>
<td></td>
<td>1: Güç bölümü hat beslemesi mevcut</td>
</tr>
<tr>
<td>5</td>
<td>Ayrılmış (=1)</td>
</tr>
<tr>
<td>6</td>
<td>Ayrılmış (= 0 veya 1)</td>
</tr>
<tr>
<td>7</td>
<td>Uyanı</td>
</tr>
<tr>
<td></td>
<td>0: Uyanı yok</td>
</tr>
<tr>
<td></td>
<td>1: Uyan</td>
</tr>
<tr>
<td>8</td>
<td>Ayrılmış (=0)</td>
</tr>
<tr>
<td>9</td>
<td>Ağ üzerinden komut:</td>
</tr>
<tr>
<td></td>
<td>0: Terminaler veya Ekran Terminali üzerinden komut</td>
</tr>
<tr>
<td></td>
<td>1: Ağ üzerinden komut</td>
</tr>
<tr>
<td>10</td>
<td>Referansa ulaşıldı:</td>
</tr>
<tr>
<td></td>
<td>0: Referansa ulaşılmadı</td>
</tr>
<tr>
<td></td>
<td>1: Referansa ulaşıldı</td>
</tr>
<tr>
<td>11</td>
<td>Referans sınırlarının dışında:</td>
</tr>
<tr>
<td></td>
<td>0: Referans sınırların içinde</td>
</tr>
<tr>
<td></td>
<td>1: Referans sınırların içinde değil</td>
</tr>
<tr>
<td></td>
<td>NOTE: Sürücü hız modunda olduğunda sınırlar, LSP ve HSP parametreleriyle belirlenir.</td>
</tr>
<tr>
<td>12</td>
<td>Ayrılmış (=0)</td>
</tr>
<tr>
<td>13</td>
<td>Ayrılmış (=0)</td>
</tr>
<tr>
<td>14</td>
<td>DÜRDURMA tuşu üzerinden durdurma:</td>
</tr>
<tr>
<td></td>
<td>0: DÜRDURMA tuşuna basılmadı</td>
</tr>
<tr>
<td></td>
<td>1: Ekran Terminali STOP tuşuya tetiklenen durdurma</td>
</tr>
<tr>
<td>15</td>
<td>Döndürme yönü:</td>
</tr>
<tr>
<td></td>
<td>0: Çıkışta ileriye dönme</td>
</tr>
<tr>
<td></td>
<td>1: Çıkışta geriye dönme</td>
</tr>
<tr>
<td></td>
<td>NOTE: CiA402 profili ve I/O profilindeki değerler tamamen aynıdır. I/O profilinde, değerlerin açıklaması basitleştirilmiştir ve CiA402 (Drivecom) durum tablosuna referans vermez.</td>
</tr>
</tbody>
</table>

Ekran MON-
Ekran Menüleri

[Modbus ağ tanı] \(\mathbb{N} \) - Menüsü

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [Modbus ağ tanı]

Bu Menü Hakkında

Kontrol bloğunun altındaki Modbus seri iletişim portu için kullanılır. Eksiksiz bir tanırm için Modbus seri dahili iletişim kılavuzuna bakın.

[COM LED]\(d \) \(b \) \(i \)

Modbus iletişim LEDinin görünümü.

[Mdb çerçeve sayısı] \(M \) \(d \) \(b \) \(C \)

Modbus ağ kare sayacı: işlenen kare sayısı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...65.535 | Ayar aralığı
| | Fabrika ayarı: Salt okunur |

[Mb AĞ CRC hataları] \(M \) \(b \) \(C \) \(R \) \(C \)

Modbus ağ CRC hata sayısı: CRC hataları sayısı

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...65.535 | Ayar aralığı
| | Fabrika ayarı: Salt okunur |
[İlet. Tara. grşhrta.] 5 A - Menüşü

Erişim

[Ekr] [İletişim haritası] [Modbus ağ tanı] [İlet. tara. grşhrta.]

Bu Menü Hakkında

CANopen® ve Modbus ağı için kullanılmıştır.

[İlet.Tara.Gir.1 değ.] \(n \) \(1 \)

İlet. tarayıcı giriş 1 değeri. Birinci giriş kelimesi değeri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: Salt okunur</td>
</tr>
</tbody>
</table>

[İlet.Tara.Gir.2 değ.] \(n \) \(2 \)

İlet. tarayıcı giriş 2 değeri. İkinci giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.3 değ.] \(n \) \(3 \)

İlet. tarayıcı giriş 3 değeri. Üçüncü giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.4 değ.] \(n \) \(4 \)

İlet. tarayıcı giriş 4 değeri. Dördüncü giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.5 değ.] \(n \) \(5 \)

İlet. tarayıcı giriş 5 değeri. Beşinci giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.6 değ.] \(n \) \(6 \)

İlet. tarayıcı giriş 6 değeri. Altıncı giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.7 değ.] \(n \) \(7 \)

İlet. tarayıcı giriş 7 değeri. Yedinci giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)

[İlet.Tara.Gir.8 değ.] \(n \) \(8 \)

İlet. tarayıcı giriş 8 değeri. Sekizinci giriş kelimesi değeri.

[İlet.Tara.Gir.1 değ.] ile aynı. \(n \) \(1 \) (bkz. sayfa 133)
Bu Menü Hakkında

CANopen® ve Modbus ağları için kullanılmıştır.

İlet.Tara.Çık.1 değ.

İlet tarayıcı çıkış 1 değeri. Birinci çıkış kelimesi değeri.

<table>
<thead>
<tr>
<th>Ayar (Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı: Salt okunur</td>
</tr>
</tbody>
</table>

İlet.Tara.Çık.2 değ.

İlet tarayıcı çıkış 2 değeri. İkinci çıkış kelimesi değeri.

İlet.Tara.Çık.3 değeri

İlet tarayıcı çıkış 3 değeri. Üçüncü çıkış kelimesi değeri.

İlet.Tara.Çık.4 değ.

İlet tarayıcı çıkış 4 değeri. Dördüncü çıkış kelimesi değeri.

İlet.Tara.Çık.5 değ.

İlet tarayıcı çıkış 5 değeri. Beşinci çıkış kelimesi değeri.

İlet.Tara.Çık.6 değ.

İlet tarayıcı çıkış 6 değeri. Altıncı çıkış kelimesi değeri.

İlet.Tara.Çık.7 değ.

İlet tarayıcı çıkış 7 değeri. Yedinci çıkış kelimesi değeri.

İlet.Tara.Çık.8 değ.

İlet tarayıcı çıkış 8 değeri. Sekizinci çıkış kelimesi değeri.
Ekran MONVE61643TR 01/2019 135

[Modbus HMI Tanı] Menüsü

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [Modbus HMI Tanı]

Bu Menü Hakkında

Kontrol bloğunun önündeki Modbus seri iletişim portu için kullanılır (Ekran Terminali tarafından kullanılır)

[COM LED’si]

Modbus HMI iletişim LEDinin görünümü.

[Mdb Ağ çerçevesi]

Terminal Modbus 2: İşlenen çerçeve sayısı.

<table>
<thead>
<tr>
<th>Ayar (Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Mdb Ağ CRC hataları]

Terminal Modbus 2: CRC hatalarının sayısı.

<table>
<thead>
<tr>
<th>Ayar (Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
[Ethernet Göm. Tanı] \(PE \) - Menüsü

Erişim

[Ekran] \[İletişim haritası\] \[Ethernet Göm. Tanı\]

Bu Menü Hakkında

Eksiksiz bir tanıım için Modbus TCP Ethernet IP iletişim kılavuzuna bakın.

[MAC @] \(N A E \)

Dahili Ethernet adaptörünün MAC adresi.
Salt okunur parametre.
Adres formatı XX-XX-XX-XX-XX-XX şeklindedir.

[ETH tml Rx kareleri] \(E r X E \)

Ethernet dahili Rx çerçeve sayısı.

<table>
<thead>
<tr>
<th>Ayar (')</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[ETH tml Tx kareleri] \(E t X E \)

Ethernet dahili Tx çerçeve sayısı.

<table>
<thead>
<tr>
<th>Ayar (')</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[ETH tmlş hata kare.] \(E E r E \)

Ethernet dahili hata çerçeve sayısı.

<table>
<thead>
<tr>
<th>Ayar (')</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4.294.967.295</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Ethernet Diğer Vrtr] \(R r d E \)

Gerçek veri oranı.

<table>
<thead>
<tr>
<th>Ayar (')</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Oto.]</td>
<td>R u t o</td>
<td>Otomatik</td>
</tr>
<tr>
<td>[10M. tam]</td>
<td>I O F</td>
<td>10 Mega bayt tam dupleks</td>
</tr>
<tr>
<td>[10M. yarım]</td>
<td>I O H</td>
<td>10 Mega bayt yarım dupleks</td>
</tr>
<tr>
<td>[100M. tam]</td>
<td>I O O F</td>
<td>100 Mega bayt tam dupleks</td>
</tr>
<tr>
<td>[100M. yarım]</td>
<td>I O O H</td>
<td>100 Mega bayt yarım dupleks</td>
</tr>
</tbody>
</table>
Ekran MOn-

[DeviceNet Tanı] d v n - Menüsü

Erişim

[Ekrân] ➔ [İletişim haritası] ➔ [DeviceNet Tanı]

Bu Menü Hakkında

Aşağıdaki parametrere DeviceNet modülü (VW3A3609) takıldığında erişilebilir.

[Kullanılan data hızı] b d r u

Fieldbus modülü tarafından kullanılan veri oranı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik]</td>
<td>Aut a</td>
<td>Otomatik algılama</td>
</tr>
<tr>
<td>[125 Kbps]</td>
<td>125 k</td>
<td>125.000 baud</td>
</tr>
<tr>
<td>[250 Kbps]</td>
<td>250 k</td>
<td>250.000 baud</td>
</tr>
<tr>
<td>[500 Kbps]</td>
<td>500 k</td>
<td>500.000 baud</td>
</tr>
</tbody>
</table>

[Fieldbus Hatası] E P F 2

Fieldbus modülünden tespit edilen harici hata.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1</td>
<td>0: Hata Yok</td>
</tr>
<tr>
<td></td>
<td>1: Profile hatası, [Komut ve Referans] C r P - menüsündeki ayarları doğrulayın.</td>
</tr>
</tbody>
</table>

[Fieldbus İlet. Ksnt] C n F

Fieldbus modülü iletişim kesintisi. Lütfen fieldbus kılavuzuna başvurun.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>0: Hata yok</td>
</tr>
<tr>
<td></td>
<td>1: Ağ tarafından tetiklenen hatalar</td>
</tr>
<tr>
<td></td>
<td>2: Çift MAC ID</td>
</tr>
<tr>
<td></td>
<td>3: FIFO Rx hatası</td>
</tr>
<tr>
<td></td>
<td>4: FIFO Tx hatası</td>
</tr>
<tr>
<td></td>
<td>5: CAN aşırı çalışması</td>
</tr>
<tr>
<td></td>
<td>6: İletişim hatası</td>
</tr>
<tr>
<td></td>
<td>7: Veri yolu kapalı</td>
</tr>
<tr>
<td></td>
<td>8: I/O Zm Aşımı</td>
</tr>
<tr>
<td></td>
<td>9: Kabul hatası</td>
</tr>
<tr>
<td></td>
<td>10: DeviceNet ağ sıfırlaması</td>
</tr>
<tr>
<td></td>
<td>11: I/O bağlantısı silindi</td>
</tr>
<tr>
<td></td>
<td>12: Ağ gücü yok</td>
</tr>
<tr>
<td></td>
<td>13: IOC hatası</td>
</tr>
</tbody>
</table>
[Profibus Tanı]

Erişim

[Ekran] ➔ [İletişim] ➔ [Profibus Tanı]

Bu Menü Hakkında

Profibus DP modülü (VW3A3607) takıldığında aşağıdaki parametrelere erişilebilir.

[Kullanılan data hızı]

Fieldbus modülü tarafından kullanılan veri oranı.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik]</td>
<td>AUTO</td>
<td>Otomatik algılama</td>
</tr>
<tr>
<td></td>
<td>9K6</td>
<td>9.600 Baud</td>
</tr>
<tr>
<td></td>
<td>19K2</td>
<td>19.200 Baud</td>
</tr>
<tr>
<td></td>
<td>33K7</td>
<td>33.750 Baud</td>
</tr>
<tr>
<td></td>
<td>187K</td>
<td>187.500 Baud</td>
</tr>
<tr>
<td></td>
<td>500K</td>
<td>500.000 Baud</td>
</tr>
<tr>
<td></td>
<td>1N5</td>
<td>1.5 Mbaud</td>
</tr>
<tr>
<td></td>
<td>3N</td>
<td>3 Mbaud</td>
</tr>
<tr>
<td></td>
<td>6N</td>
<td>6 Mbaud</td>
</tr>
<tr>
<td></td>
<td>12N</td>
<td>12 Mbaud</td>
</tr>
</tbody>
</table>

[KullanılanPPOprofili]
PPO profili kullanımda.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre Edilmemiș]</td>
<td>UNGG</td>
<td>Konfigüre Edilmemiș</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>PROFIdrive</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>106</td>
<td>106</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>107</td>
<td>107</td>
<td>Özel cihaz</td>
</tr>
</tbody>
</table>

[DP Master Aktif]

Aktif master: 1 veya 2.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MCL1]</td>
<td>1</td>
<td>Master 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[MCL2]</td>
<td>2</td>
<td>Master 2</td>
</tr>
</tbody>
</table>

[Fieldbus Hatası]

Fieldbus modülünden tespit edilen harici hata.
[Fieldbus İlet. Ksnt] \(E \ n \ F \)

Fieldbus modülü iletişim kesintisi. İlgili fieldbus kılavuzuna başvurun.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...65.535 | 0: Hata yok
1: Alınan talepler için ağ zaman aşımı
2: Modül ile master arasında tanımlama hatası
3: Master, temizleme modunda
4: Master sınırlı 2 zaman aşımı |

[Dahili İlet.Hatası 1] \(I \ L \ F \ I \)

Seçenek modülü iletişim kesintisi. İlgili fieldbus kılavuzuna başvurun.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...65.535 | Ayar aralığı
Fabrika ayar: Salt okunur |
[PROFINET Tanı] **P r P n - Menüsü**

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [PROFINET Tanı]

Bu Menü Hakkında

PROFINET® modülü (VW3A3627) girilmişse parametrelerin izlenmesine erişilebilir.

[MAC @]**

PROFINET modülünün MAC adresi.
salt okunur parametre.
Adres formatı XX-XX-XX-XX-XX-XX şeklindedir.

[KullanımPPOprofili]**

PPO profili kullanılmadı.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yapilandırılmamış</td>
<td>UnGG</td>
<td>Yapılandırılmamış</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>PROFIdrive</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>106</td>
<td>106</td>
<td>Özel cihaz</td>
</tr>
<tr>
<td>107</td>
<td>107</td>
<td>Özel cihaz</td>
</tr>
</tbody>
</table>

[iPar Durumu]**

PROFINET: IPAR servis durumu.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boşta Durumu</td>
<td>dLE</td>
<td>Boşta durumu</td>
</tr>
<tr>
<td>[Init]</td>
<td>n Ed</td>
<td>Bağlantı</td>
</tr>
<tr>
<td>Konfigürasyon</td>
<td>Conf</td>
<td>Konfigürasyon</td>
</tr>
<tr>
<td>[Hazır]</td>
<td>dYy</td>
<td>Hazır</td>
</tr>
<tr>
<td>[Çalışır durumda]</td>
<td>PE</td>
<td>Çalışır durumda</td>
</tr>
<tr>
<td>Konfigüre edilmemiş</td>
<td>UCFG</td>
<td>Yapılandırılmamış</td>
</tr>
<tr>
<td>[Onanlamaz Hata]</td>
<td>uECE</td>
<td>Giderilemez hata algılandı</td>
</tr>
</tbody>
</table>

[iPar Hata Kodu]**

IPar algılanan hata kodu.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...5</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
DP Master Aktif

Aktif master: 1 veya 2.

<table>
<thead>
<tr>
<th>Ayar(Ç)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MCL1]</td>
<td>1</td>
<td>Master 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[MCL2]</td>
<td>2</td>
<td>Master 2</td>
</tr>
</tbody>
</table>

Haberleşme Hatası

Haberleşme modülünden tespit edilen harici hata.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...13</td>
<td>0: Hata Yok
9: Çift IP.
10: IP adresi yok
12: IPAR yapılandırılmadı
13: IPAR dosyası tanınamadı</td>
</tr>
</tbody>
</table>

Haberleşme İlet. Ksnt

Haberleşme modülü iletişim kesintisi.

<table>
<thead>
<tr>
<th>Ayar(Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>0: Hata yok
1: Ağ zaman aşımı
2: Ağ aşırı yükü
3: Ethernet taşıyıcı kaybı
17: IOC tarayıcı hatası</td>
</tr>
</tbody>
</table>

Dahili İlet. Hatası

Seçenek modülü iletişim kesintisi.

<table>
<thead>
<tr>
<th>Ayar(Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı
Fabrika ayar: Salt okunur</td>
</tr>
</tbody>
</table>
[EtherCAT Modülü Tanısı] E € d - Menüsü

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [EtherCAT Modülü Tanısı]

Bu Menü Hakkında

EtherCAT modülü (VW3A3601) takılıysa aşağıdaki parametrilere erişilebilir.

[Harici Hata] E P F 2
Fieldbus modülünden tespit edilen harici hata.

[Fieldbus İlet. Ksnt] E n F
Fieldbus modülü iletişim kesintisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika aya: _</td>
</tr>
</tbody>
</table>

[Dahili İlet.Hatası 1] I L F 1
Dahili iletişim kesintisi 1.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika aya: _</td>
</tr>
</tbody>
</table>
[Powerlink Tanı] \(PWL \) - Menüsü

Erişim

[Ekrân] \(\rightarrow \) [İletişim haritası] \(\rightarrow \) [Powerlink Tanı]

Bu Menü Hakkında

[Mac @] \(N A C \)

POWERLINK modülünün MAC adresi.
Adres formatı XX-XX-XX-XX-XX-XX

[Fieldbus Hatası] \(E P F 2 \)
Fieldbus modülden tespit edilen harici hata.

[Fieldbus İlet. Ksnt] \(E n F \)
Fieldbus modülü iletim kesintisi. İlgili fieldbus kılavuzuna başvurun.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>0: Ağ kesintisi yok</td>
</tr>
<tr>
<td></td>
<td>1: Belirtilmemiş kesinti</td>
</tr>
<tr>
<td></td>
<td>17: Bağlantı kaybı (2 bağlantı noktası)</td>
</tr>
<tr>
<td></td>
<td>23: Geçersiz Senk Yöneticisi konfigürasyonu</td>
</tr>
<tr>
<td></td>
<td>25: Geçerli çıkış yok</td>
</tr>
<tr>
<td></td>
<td>27: Senk Yöneticisi izleyicisi (1 bağlantı noktası)</td>
</tr>
<tr>
<td></td>
<td>30: Geçersiz Senk Yöneticisi dışarı konfigürasyonu</td>
</tr>
<tr>
<td></td>
<td>31: Geçersiz izleyici konfigürasyonu</td>
</tr>
<tr>
<td></td>
<td>36: Geçersiz giriş eşlemesi</td>
</tr>
<tr>
<td></td>
<td>37: Geçersiz çıkış eşlemesi</td>
</tr>
<tr>
<td></td>
<td>38: Tutarsız ayarlar</td>
</tr>
<tr>
<td></td>
<td>43: Geçerli giriş ve çıkış yok</td>
</tr>
<tr>
<td></td>
<td>44: Senk hatası</td>
</tr>
<tr>
<td></td>
<td>80: EE erişimi yok</td>
</tr>
<tr>
<td></td>
<td>81: EE hatası</td>
</tr>
<tr>
<td></td>
<td>96: 0x60</td>
</tr>
</tbody>
</table>

[Dahili İlet.Hatası 1] \(i L F 1 \)
Seçenek modülü iletim kesintisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>
| | **Fabrika ayar**: Salt okunur **
[Komut kelime görüntüsü] \[\text{Menü} \rightarrow \text{[İletişim haritası]} \rightarrow \text{[Komut kelime görüntüsü]} \]

Erişim

[Ekran]

Bu Menü Hakkında

Komut kelimesi görüntüsü.

[Modbus Komutu] \[\text{CMd1} \]

Modbus port kaynağıyla oluşturulan komut kelimesi görüntüsü.

[CMD Kaydı] \[\text{CMd} \] (bkz. sayfa 129) ile aynı.

[CANopen Komutu] \[\text{CMd2} \]

CANopen® port kaynağıyla oluşturulan komut kelimesi görüntüsü.

[CMD Kaydı] \[\text{CMd} \] (bkz. sayfa 129) ile aynı.

[COM. Modül Kmt.] \[\text{CMd3} \]

Fieldbus modülü kaynağıyla oluşturulan komut kelimesi görüntüsü.

[CMD Kaydı] \[\text{CMd} \] (bkz. sayfa 129) ile aynı.

[Ethernet Göm. Komut] \[\text{CMd5} \]

Ethernet dahili kaynağıyla oluşturulan komut kelimesi görüntüsü.

[CMD Kaydı] \[\text{CMd} \] (bkz. sayfa 129) ile aynı.
Ekran Menüleri

[Ekran] ➔ [İletişim Haritası] ➔ [FrekRef Kelime Hrtası]

Bu Menü hakkında

Frekans referansı görüntüsü.

[Modbus Ref Frek] L F r 1

Modbus port kaynağıyla oluşturulan frekans referansı görüntüsü (LFR_MDB).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[CAN Ref Frek] L F r 2

CANopen® port kaynağıyla oluşturulan frekans referansı görüntüsü (LFR_CAN).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[İltş Mod. Ref Frek] L F r 3

Haberleşme modülü kaynağıyla oluşturulan frekans referansı görüntüsü (LFR_COM).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Ethrn Tmlş Ref Frek] L F r 5

Dahili Ethernet referans frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.767...32.767 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Konum ref. word haritası] \(P \rightarrow N \) – Menüsü

Erişim

[Ekran] \(\rightarrow \) [İletişim haritası] \(\rightarrow \) [Konum ref. word haritası]

Bu Menü Hakkında

Konum referans word görüntüsü.
Bu menüye [???] öğesi \(o \ P \ N A \) [Evet] \(Y \ E \ S \) olarak ayarlanırsa erişilebilir.

[Modbus Ref Konumu] \(P \rightarrow G \) 1

Modbus referansı konumu.

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.147.483.648...2.147.483.647</td>
<td>Kullanıcı tanımlı konum biriminde ayar aralığı. Fabrika ayarı: -</td>
</tr>
</tbody>
</table>

[CANopen Ref Kon.] \(P \rightarrow G \) 2

CANopen referans konumu.

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.147.483.648...2.147.483.647</td>
<td>Kullanıcı tanımlı konum biriminde ayar aralığı. Fabrika ayarı: -</td>
</tr>
</tbody>
</table>

[İletişim Modülü Ref Konumu] \(P \rightarrow G \) 3

Fieldbus modülü referans konumu.

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.147.483.648...2.147.483.647</td>
<td>Kullanıcı tanımlı konum biriminde ayar aralığı. Fabrika ayarı: -</td>
</tr>
</tbody>
</table>

[Dahili Eth Ref Konumu] \(P \rightarrow G \) 5

Dahili ethernet referans konumu.

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.147.483.648...2.147.483.647</td>
<td>Kullanıcı tanımlı konum biriminde ayar aralığı. Fabrika ayarı: -</td>
</tr>
</tbody>
</table>
[CANopen haritası] C n P - Menüsü

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [CANopen haritası]

Bu Menü Hakkında
Bu menü, bir CANopen fieldbus modülünün mevcut olması halinde görünürdür. CANopen iletişim modülü kilavuzuna başvurun.

[ÇALIŞMA LED'i] C o n
Bitfield: CANopen® Çalıştırma LED'i durumunun görüntüsü.

[HATA LED'i] C a n E
Bitfield: CANopen® hata LED'i durumunun görüntüsü.
[PDO1 görüntüşi] P O I - Menüsü

Erişim

[Ekran] ➔ [İletişim haritası] ➔ [CANopen haritası] ➔ [PDO1 görüntüşi]

Bu Menü Hakkında

PDO1 Alma ve PDO1 Aktarma görüntüüsü.

[Alici: PDO1-1] r P 1

İlk PDO1 alma çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Alici: PDO1-2] r P 2

İkinci PDO1 alma çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Alici: PDO1-3] r P 3

Üçüncü PDO1 alma çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Alici: PDO1-4] r P 4

Dördüncü PDO1 alma çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[İletilen PDO1-1] ™ P 1

İletilen PDO1'in birinci çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[İletilen PDO1-2] ™ P 2

İletilen PDO1'in ikinci çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
İletilen PDO1'ın üçüncü çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

İletilen PDO1'ın dördüncü çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
[PDO2 görüntüsü] \(P \circ \overrightarrow{2} \) - Menüsü

Erişim

[Ekran] \(\leftrightarrow \) [İletişim haritası] \(\leftrightarrow \) [CANopen haritası] \(\leftrightarrow \) [PDO2 görüntüsü]

Bu Menü Hakkında

RPDO2 ve TPDO2'nin görünümü: [PDO1 görüntüsü] \(P \circ \overrightarrow{1} \) - (bkz. sayfa 148) ile aynı yapı.

[Alici: PDO2-1] \(r \ P \circ \overrightarrow{2} \) \(\uparrow \)
İlk PDO2 alma çerçevesi.

[Alici: PDO2-2] \(r \ P \circ \overrightarrow{2} \) \(\star \)
İkinci PDO2 alma çerçevesi.

[Alici: PDO2-3] \(r \ P \circ \overrightarrow{2} \) \(\star \)
Üçüncü PDO2 alma çerçevesi.

[Alici: PDO2-4] \(r \ P \circ \overrightarrow{2} \) \(\star \)
Dördüncü PDO2 alma çerçevesi.

[İletilen PDO2-1] \(t \ P \circ \overrightarrow{2} \) \(\uparrow \)
İletilen PDO2'nin birinci çerçevesi.

[İletilen PDO2-2] \(t \ P \circ \overrightarrow{2} \) \(\star \)
İletilen PDO2'nin ikinci çerçevesi.

[İletilen PDO2-3] \(t \ P \circ \overrightarrow{2} \) \(\star \)
İletilen PDO2'nin üçüncü çerçevesi.

[İletilen PDO2-4] \(t \ P \circ \overrightarrow{2} \) \(\star \)
İletilen PDO2'nin dördüncü çerçevesi.
Ekran MONVE61643TR 01/2019 151

[PDO3 görüntüsü] $P \circ \mathcal{E}$ - Menüsü

Erişim

[Ekran] \leftrightarrow [İletişim haritası] \leftrightarrow [CANopen haritası] \leftrightarrow [PDO3 görüntüsü]

Bu Menü Hakkında

RPDO3 ve TPDO3’ün görünümü.

[Alici: PDO3-1] $r \; P \; 3 \; I$

İlk PDO3 alma çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Alici: PDO3-2] $r \; P \; 3 \; 2$

İkinci PDO3 alma çerçevesi.

[PDO3-1 Al] $r \; P \; 3 \; I$ ayarları ile aynı.

[Alici: PDO3-3] $r \; P \; 3 \; 3$

Üçüncü PDO3 alma çerçevesi.

[PDO3-1 Al] $r \; P \; 3 \; I$ ayarları ile aynı.

[Alici: PDO3-4] $r \; P \; 3 \; 4$

Dördüncü PDO3 alma çerçevesi.

[PDO3-1 Al] $r \; P \; 3 \; I$ ayarları ile aynı.

[İletilen PDO3-1] $t \; P \; 3 \; I$

İletilen PDO3’ün birinci çerçevesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[İletilen PDO3-2] $t \; P \; 3 \; 2$

İletilen PDO3’ün ikinci çerçevesi.

[PDO3-1 İlet] $t \; P \; 3 \; I$ ayarları ile aynı.

[İletilen PDO3-3] $t \; P \; 3 \; 3$

İletilen PDO3’ün üçüncü çerçevesi.

[PDO3-1 İlet] $t \; P \; 3 \; I$ ayarları ile aynı.

[İletilen PDO3-4] $t \; P \; 3 \; 4$

İletilen PDO3’ün dördüncü çerçevesi.

[PDO3-1 İlet] $t \; P \; 3 \; I$ ayarları ile aynı.
Ekran MOn-

[CANopen haritası] $E \cap \Pi$ - Menüsü

Erişim

[Ekran] ⟷ [İletişim haritası] ⟷ [CANopen haritası]

Bu Menü Hakkında

CANopen® görüntüsü.

[CANopen NMT durumu] $n \in \mathbb{N}$

CANopen® bağlı'nın tahrik NMT durumu.

<table>
<thead>
<tr>
<th>Ayarlar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Başlatılıyor]</td>
<td>$B \circ t$</td>
<td>Önyükleme</td>
</tr>
<tr>
<td>[Durdurulmuş]</td>
<td>$S \leq P$</td>
<td>Durdurulmuş</td>
</tr>
<tr>
<td>[Çalışma]</td>
<td>$P \circ E$</td>
<td>Çalışır durumda</td>
</tr>
<tr>
<td>[Önişlem]</td>
<td>$P \circ P E$</td>
<td>Ön çalışmalı</td>
</tr>
</tbody>
</table>

[TX PDO sayısı] $n \leq P$

İletilen PDO sayısı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[RX PDO sayısı] $n \geq P$

Alınan PDO sayısı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[CANopen Hatası] $E \cap C \alpha$

Hata kaydı CANopen®.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...5</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[RX Hata Sayacı] $r \leq C \mathbb{L}$

Alım hatası sayısı sayacı (güç kapalıken kaydedilmem).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[TX Hata sayacı] $\leq C \mathbb{L}$

Aktrarım hatası sayısı sayacı (güç kapalıken kaydedilmem).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Dağıtılmış kayıt] d L o - Menüsü</td>
<td>154</td>
</tr>
<tr>
<td>[Kay. Dg'tm prm seç] L d P - Menüsü</td>
<td>155</td>
</tr>
<tr>
<td>[Dağıtılmış kayıt] d L o - Menüsü</td>
<td>156</td>
</tr>
</tbody>
</table>
[Dağıtılmış kayıt] \(d \, L \, a \) - Menüsü

Erişim

[Ekran] ➞ [Veri kaydı] ➞ [Dağıtılmış kayıt]

Bu Menü Hakkında

Bu menü, belirli parametreleri izleyen verilerin kaydedilmesi için kullanılır.

Dağıtılmış kayıt fonksiyonu, aynı anda en fazla dört parametre dağıtımda oturum açılmasına izin verir. Her parametre depoşu, aynı örnek türüyle senkronizedir.

Bu fonksiyonun sonucu, seçilen dört parametrenin her biri için dağıtım görüntülemek üzere 10 barlık bir bar grafiği (tanımlanılan maksimum değerin her \%10'u bölümü) çıkarma olasılığını vermektedir.

NOT: Veri kaydı fonksiyonu konfigürasyonunda yapılan herhangi bir değişiklik, önceden saklanan verileri silmektedir.

Bu fonksiyon, veri örneklerini saklamak üzere çıkarmayı amaçlamaktadır. Mevcut olduğu zaman, bu örnekler diğer araçlarla yüklenebilir (SoMove ve/veya Web sunucusu). Veri kaydı, zaman içerisinde veri kaydetme ve saklama ihtiyacını karşılar.

Sürücü, aşağıdaki verileri saklayabilir:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü tanımlaması</td>
<td>Sürücü tanımlama verileri</td>
<td>Otomatik, [Panel] d S H - menüsünde</td>
<td>SoMove Web sunucusu</td>
</tr>
<tr>
<td>Olay uyanı kaydı</td>
<td>Uyan kaydı</td>
<td>Otomatik, [Panel] d S H - menüsünde</td>
<td>SoMove Web sunucusu</td>
</tr>
<tr>
<td>Olay hatası kaydı</td>
<td>Hata kaydı</td>
<td>Otomatik, [Panel] d S H - menüsünde</td>
<td>SoMove Web sunucusu</td>
</tr>
<tr>
<td>Dağıtım kaydı</td>
<td>4 Dağıtım verisi</td>
<td>Manuel</td>
<td>Web sunucusu</td>
</tr>
<tr>
<td>Enerji kaydı</td>
<td>1 Enerji kaydı verisi</td>
<td>Otomatik, [Panel] d S H - menüsünde</td>
<td>SoMove Web sunucusu</td>
</tr>
</tbody>
</table>

Aktivasyon

[Dağıtılmış kayıt] \(d \, L \, a \) - seçeneğini aktif hale getirmek için:
- [Log. Dğtm prm seç] ile kaydetmek için 1 ile 4 arasındaki verileri seçin \(L \, d \, P \) -
- [Başlat] seçeneği için [Kayıt Dğtm Durumu] \(L \, d \, E \, n \) ayarlayın \(S \, t \, R \, r \, t \)

Kaydetme, motor çalıştırma çalıştırma başlar.

Kaydı durdurmak için [Kayıt Dğtm Durumu] \(L \, d \, E \, n \) seçeneğini [Durdur] \(S \, t \, a \, P \) olarak ayarlayın.

[Kayıt Dğtm Durumu] \(L \, d \, E \, n \)

Kayıt dağıtım durumu.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Durdurma]</td>
<td>(S , t , a , P)</td>
<td>Dağıtım kaydı devre dışı bırakıldı</td>
</tr>
<tr>
<td>[Başlat]</td>
<td>(S , t , R , r , t)</td>
<td>Dağıtım, sadece motor çalıştığı zaman kaydedilir</td>
</tr>
<tr>
<td>[Her zaman]</td>
<td>(R , L , W , A , Y , S)</td>
<td>Dağıtım her zaman kaydedilir</td>
</tr>
<tr>
<td>[Sıfırla]</td>
<td>(r , E , S , E , t)</td>
<td>Dağıtım kaydı sıfırlama (konfigürasyon, veriler)</td>
</tr>
<tr>
<td>[Temizle]</td>
<td>(C , L , E , R , r)</td>
<td>Dağıtım verilerini temizle</td>
</tr>
<tr>
<td>[Hata]</td>
<td>(E , r , r)</td>
<td>Dağıtım kaydı esnasında bir hata tespit edildi</td>
</tr>
</tbody>
</table>
Ekran MONVE61643TR 01/2019 155

[Kay. Dğıtm prn seç] L d P - Menüsü

Erişim

[Kay.] ➔ [Veri kaydı] ➔ [Dağıtılmış kayıt] ➔ [Kay. Dğıtm prn seç]

Bu Menü Hakkında

Bu menü, veri kaydı için en çok 4 parametre seçmenize izin verir. Her parametre için tepe değer de saklanır.

[Kay. Dğıtm. Veriler 1] L d d 1

Kayıt dağıtım verileri 1.

<table>
<thead>
<tr>
<th>Ayar Ç</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Dağ. Kay. Seçilemez kil]</td>
<td>r a</td>
<td>Dağıtım kaydı devre dışı bırakma Fabrika ayaı</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>r F r</td>
<td>Motor frekansı</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>L C r</td>
<td>Motor akımı</td>
</tr>
<tr>
<td>[Motor Hızı]</td>
<td>S P d</td>
<td>Motor hızı</td>
</tr>
<tr>
<td>[Motor Gerilimi]</td>
<td>u α P</td>
<td>Motor gerilimi</td>
</tr>
<tr>
<td>[Motor Mek. Güç]</td>
<td>α P r W</td>
<td>Motor mekanik gücü</td>
</tr>
<tr>
<td>[Giriş Elek. Güç]</td>
<td>i P r W</td>
<td>Giriş elektrik gücü</td>
</tr>
<tr>
<td>[Çıkış Elek. Güç]</td>
<td>E P r W</td>
<td>Çıkış elektrik gücü</td>
</tr>
<tr>
<td>[Motor Torku]</td>
<td>α t r</td>
<td>Motor torku</td>
</tr>
<tr>
<td>[Şebeke Gerilimi]</td>
<td>u L n</td>
<td>Şebeke gerilimi</td>
</tr>
<tr>
<td>[DC Bara Gerilimi]</td>
<td>V b u 5</td>
<td>DC bara gerilimi</td>
</tr>
<tr>
<td>[PID Geri Besleme]</td>
<td>r P F</td>
<td>PID geri besleme</td>
</tr>
<tr>
<td>[A11 Ter Değer]</td>
<td>t H 1 V</td>
<td>Termal sensör A1</td>
</tr>
<tr>
<td>[A13 Ter Değer]</td>
<td>t H 3 V</td>
<td>Termal sensör A13</td>
</tr>
<tr>
<td>[A14 Ter Değer]</td>
<td>t H 4 V</td>
<td>Termal sensör A14</td>
</tr>
<tr>
<td>[A15 Ter Değer]</td>
<td>t H 5 V</td>
<td>Termal sensör A15</td>
</tr>
<tr>
<td>[Tahrik Termi Durumu]</td>
<td>t H d</td>
<td>Tahrik termal durumu</td>
</tr>
<tr>
<td>[Motor Termal Durumu]</td>
<td>t H r</td>
<td>Motor termal durumu</td>
</tr>
<tr>
<td>[DBR term.durum]</td>
<td>t H b</td>
<td>Fren.dir.term.durum</td>
</tr>
</tbody>
</table>

[Kay. Dğıtm. Veriler 2] L d d 2

Kayıt dağıtım verileri 2.

[Kay Dağ.] ile aynı[Veriler 1] L d d 1 (bkz. sayfa 155).

Kayıt dağıtım verileri 3.

[Kay Dağ.] ile aynı[Veriler 1] L d d 1 (bkz. sayfa 155).

[Kay. Dğıtm. Veriler 4] L d d 4

Kayıt dağıtım verileri 4.

[Kay Dağ.] ile aynı[Veriler 1] L d d 1 (bkz. sayfa 155).
[Dağıtılmış kayıt] \(dL o \) - Menüsü

Erişim

[Ekran] ➔ [Veri kayıt] ➔ [Dağıtılmış kayıt]

Bu Menü Hakkında

NOT: Bir kayıt verisi, kayıt dağıtım verileri için kullanıcı tarafından tanımlanan maksimum değerleri aşarsa bu değer kayıt dağıtımında saklanmayacaktır.

[Kyt Dğtm Örn Süresi] \(LdS t \)

Kayıt dağıtım örneği süresi.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 ms</td>
<td>2 0 0 N 5</td>
<td>200 ms</td>
</tr>
<tr>
<td>1 saniye</td>
<td>1 5</td>
<td>1 sn</td>
</tr>
<tr>
<td>2 saniye</td>
<td>2 5</td>
<td>2 sn</td>
</tr>
<tr>
<td>5 saniye</td>
<td>5 5</td>
<td>5 sn</td>
</tr>
</tbody>
</table>

[Dğtm Max Dğr 1] \(LdN 1 \)

Kayıt dağıtım verileri 1'in maksimum değeri.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10…65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Dğtm Max Dğr 2] \(LdN 2 \)

Kayıt dağıtım verileri 2'nin maksimum değeri.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10…65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Dğtm Max Dğr 3] \(LdN 3 \)

Kayıt dağıtım verileri 3'ün maksimum değeri.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10…65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>

[Dğtm Max Dğr 4] \(LdN 4 \)

Kayıt dağıtım verileri 4'ün maksimum değeri.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10…65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Salt okunur</td>
</tr>
</tbody>
</table>
Bölüm 8
[Tüm ayarlar] Ç 5 Ė -

Giriş

[Tüm ayarlar] Ç 5 Ė - menüsü, aşağıdaki hususlara tahrif fonksiyonları konusundaki bütün ayarları sunar:

- Motor ve tahrif konfigürasyonu
- Uygulama fonksiyonları
- İzleme fonksiyonları

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu alt bölümleri içerir:

<table>
<thead>
<tr>
<th>Alt Bölüm</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>[Motor parametreleri] P R A - Menüsü</td>
<td>159</td>
</tr>
<tr>
<td>8.2</td>
<td>[Sisten birimlerini tanımla]</td>
<td>217</td>
</tr>
<tr>
<td>8.3</td>
<td>[Komut ve Referans] r P - Menüsü</td>
<td>219</td>
</tr>
<tr>
<td>8.4</td>
<td>[Master/Bağlı]</td>
<td>233</td>
</tr>
<tr>
<td>8.5</td>
<td>[Kaldırma Fonksiyonları]</td>
<td>273</td>
</tr>
<tr>
<td>8.6</td>
<td>[Kaldırma İzleme]</td>
<td>300</td>
</tr>
<tr>
<td>8.7</td>
<td>[Makine Fonksiyonları]</td>
<td>302</td>
</tr>
<tr>
<td>8.8</td>
<td>[Jenerik fonksiyonlar] - [Hz Sınırları]</td>
<td>315</td>
</tr>
<tr>
<td>8.9</td>
<td>[Jenerik fonksiyonlar] - [Rampa]</td>
<td>317</td>
</tr>
<tr>
<td>8.10</td>
<td>[Jenerik fonksiyonlar] - [Rampa anahtar]</td>
<td>321</td>
</tr>
<tr>
<td>8.11</td>
<td>[Jenerik fonksiyonlar] - [Durma konfigür.]</td>
<td>323</td>
</tr>
<tr>
<td>8.12</td>
<td>[Jenerik fonksiyonlar] - [Oto DC Enjeksiyonu]</td>
<td>328</td>
</tr>
<tr>
<td>8.13</td>
<td>[Jenerik fonksiyonlar] - [Ref işlemleri]</td>
<td>331</td>
</tr>
<tr>
<td>8.15</td>
<td>[Jenerik fonksiyonlar] - [+/- hız]</td>
<td>337</td>
</tr>
<tr>
<td>8.16</td>
<td>[Genel fonksiyonlar] - [Ref etrafında +/- hız]</td>
<td>340</td>
</tr>
<tr>
<td>8.17</td>
<td>[Jenerik fonksiyonlar] - [Atıma frekansı]</td>
<td>343</td>
</tr>
<tr>
<td>8.18</td>
<td>[Jenerik fonksiyonlar] - [PID kontrolörü]</td>
<td>344</td>
</tr>
<tr>
<td>8.21</td>
<td>[Genel fonksiyonlar] - [Çıkış kontaktörü komutu]</td>
<td>369</td>
</tr>
<tr>
<td>8.23</td>
<td>[Jenerik fonksiyonlar] - [Tork sınırlandırması]</td>
<td>373</td>
</tr>
<tr>
<td>8.25</td>
<td>[Genel fonksiyonlar] - [Sarsma]</td>
<td>379</td>
</tr>
<tr>
<td>8.26</td>
<td>[Genel fonksiyonlar] - [Yüksek Hız Değiştirmesi]</td>
<td>381</td>
</tr>
<tr>
<td>8.27</td>
<td>[Genel fonksiyonlar] - [Hafıza referans frekansı]</td>
<td>383</td>
</tr>
<tr>
<td>8.28</td>
<td>[Genel fonksiyonlar] - [Fren lojği kontrolü]</td>
<td>384</td>
</tr>
<tr>
<td>8.29</td>
<td>[Genel fonksiyonlar] - [Sınır anahtarları]</td>
<td>385</td>
</tr>
<tr>
<td>8.30</td>
<td>[Genel fonksiyonlar] - [Sensörlerere göre konumlandırma]</td>
<td>387</td>
</tr>
<tr>
<td>8.31</td>
<td>[Genel fonksiyonlar] - [Tork kontrolü]</td>
<td>394</td>
</tr>
<tr>
<td>8.32</td>
<td>[Jenerik fonksiyonlar] - [Parametre anahtarlaması]</td>
<td>401</td>
</tr>
<tr>
<td>8.33</td>
<td>[Jenerik fonksiyonlar] - [Hz zaman aşımından sonra durma]</td>
<td>407</td>
</tr>
<tr>
<td>8.34</td>
<td>[Genel fonksiyonlar] - [DC barası besleme]</td>
<td>409</td>
</tr>
<tr>
<td>8.35</td>
<td>[Genel fonksiyonlar] - [Çoklu monitör konfigürasyonu]</td>
<td>411</td>
</tr>
<tr>
<td>Alt Bölüm</td>
<td>Başlık</td>
<td>Sayfa</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>8.37</td>
<td>[Genel Fonksiyonlar] [Harici Ağırlık Ölçümü]</td>
<td>415</td>
</tr>
<tr>
<td>8.38</td>
<td>[Jenerik izleme]</td>
<td>418</td>
</tr>
<tr>
<td>8.42</td>
<td>[Giriş/Çıkış] - [Röle]</td>
<td>474</td>
</tr>
<tr>
<td>8.43</td>
<td>[Kodlayıcı konfigürasyonu]</td>
<td>483</td>
</tr>
<tr>
<td>8.44</td>
<td>[Gömülü Kodlayıcı]</td>
<td>490</td>
</tr>
<tr>
<td>8.45</td>
<td>[Hata/Uyarı yönetim]</td>
<td>493</td>
</tr>
<tr>
<td>8.46</td>
<td>[Bakım]</td>
<td>524</td>
</tr>
</tbody>
</table>
Alt bölüm 8.1
[Motor parametreleri] \(\Pi P R \) - Menüsü

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Motor parametreleri] (\Pi P R) - Menüsü</td>
<td>160</td>
</tr>
<tr>
<td>[Veri] (\Pi d) - Menüsü</td>
<td>163</td>
</tr>
<tr>
<td>[Açı testi ayarı] (R S R) - Menüsü</td>
<td>172</td>
</tr>
<tr>
<td>[Motor ince ayarı] (\Pi u) - Menüsü</td>
<td>175</td>
</tr>
<tr>
<td>[Motor izleme] (\Pi P) - Menüsü</td>
<td>182</td>
</tr>
<tr>
<td>[Termal izleme] (t P P) - Menüsü</td>
<td>183</td>
</tr>
<tr>
<td>[Motor izleme] (\Pi C) - Menüsü</td>
<td>191</td>
</tr>
<tr>
<td>[Motor kontrolü] (d C) - Menüsü</td>
<td>194</td>
</tr>
<tr>
<td>[DI ile Aklama] (F L) - Menüsü</td>
<td>199</td>
</tr>
<tr>
<td>[Hz Çevrimi Optimizasyonu] (\Pi L) - Menüsü</td>
<td>202</td>
</tr>
<tr>
<td>[Motor kontrolü] (d C) - Menüsü</td>
<td>212</td>
</tr>
<tr>
<td>[Değiştirme frekansı] (S W F) - Menüsü</td>
<td>215</td>
</tr>
</tbody>
</table>
[Motor parametreleri] P R A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri]

Bu Menü Hakkında

Yüksek anma değeri seçildiysse tahriğin akım sınırını 1.8'e uzatılır. Motor parametrelerinin akıma ve/veya gücü bağlı iç ve maksimum değerleri düşürülür. Bir seçimden diğerine geçildiğinde, bütün ilgili parametreler fabrika ayarı değerlerine ayarlanır.

ATV340 Motor Kontrol Türleri

ATV340 tahriği, uygulamaya bağlı olarak tüm kullanım durumlarını kapsayan 8 motor kontrol türlerini içinde barındırır.

Aşağıdaki tabloda uygulama ihtiyaçlarına bağlı olarak Motor Kontrol türlerini seçimi gösterir:

<table>
<thead>
<tr>
<th>Kontrol</th>
<th>Motor Türü</th>
<th>[Motor Kontrol Türü] L L L seçimi</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Açılan Çevrim</td>
<td>Asenkronize motor</td>
<td>[SVC V] V V L</td>
<td>Sıyrımla telafili gerilim vektör kontrol yasası</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[U/F VC S nokta] F 5</td>
<td>5 noktalı U/F vektör kontrol yasası</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Enerji Tasarruflu] n L d</td>
<td>Enerji tasarruflu kontrol yasası</td>
</tr>
<tr>
<td></td>
<td>Senkronize motor</td>
<td>[Senk. mot.] 5 Y n</td>
<td>Kalıcı mıknatıs kontrol yasası</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[SYN_U VC] 5 Y n u</td>
<td>Değişken tork uygulamaları için kalıcı mıknatıs kontrol yasası</td>
</tr>
<tr>
<td></td>
<td>Manyetik dirençli motor</td>
<td>[Rel. Mot.] S r V L</td>
<td>Manyetik dirençli motor kontrol yasası</td>
</tr>
<tr>
<td>Kapatılmış Çevrim 1</td>
<td>Asenkronize motor</td>
<td>[FVC] F V L</td>
<td>Akım vektör kontrol yasası</td>
</tr>
<tr>
<td></td>
<td>Senkronize motor</td>
<td>[Senk. CL] F 5 Y</td>
<td>Kalıcı mıknatıs kontrol yasası</td>
</tr>
</tbody>
</table>

(1) Bu uygulamalar için bir kodlayıcı mevcut olmalı ve yapılandırılmalıdır.

Asenkronize Motorlar için Parametreler Listesi

Aşağıdaki tabloda [Motor Kontrol Türü] L L L seçime bağlı olarak yapılandırılması gereken minimum parametreler listesi gösterilmiştir:

NOT: Bu parametreler ayarlanduktan sonra, performanslarını optimize edilmesi için bir [Oto. ince ayar] L L L yapımı önerilir.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Motor Standardı] b F r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Nominal Motor Gücü] n F r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Nom Motor Gerilimi] u n S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Nom Motor Akımı] n L r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Nominal Motor Frek] F r S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Nominal Motor Hızı] n S P</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(1) Uygulamada kullanılan kodlayıcıya bağlı kodlayıcı ayarları. (bkz. sayfa 483) veya (bkz. sayfa 490)
Senkronize veya Manyetik Dirençli Motorlar için Parametreler Listesi

Aşağıdaki tabloda [Motor Kontrol Türü] C: t ve seçiminin bağlı olarak, senkronize veya manyetik dirençli motorlar için yapılandırılması gereken minimum parametreler listesi gösterilmiştir:

NOT: Bu parametreler ayarlandıkten sonra, performanslarını optimize edilmesi için bir [Oto. ince ayar] t: u: n: yapılması önerilir.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Nom Motor torku] t: 9: S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Kutup çiftleri] P: P: n: 5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Açı ayar tipi] A: S: r</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>[Kodlayıcı besleme ger.] u: E: C: V veya [Göm Kod Besleme Ger.] E: E: C: V</td>
<td>✓ (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Oto. İnce Ayar Türü] t: u: n: t</td>
<td>✓ (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Uygulamada kullanılan kodlayıcıya bağlı kodlayıcı ayarları. (bkz. sayfa 483) veya (bkz. sayfa 490)

Çift Anma Değeri d: r: t

Ikili derecelendirme durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Normal Hizmet]</td>
<td>n: r N: L</td>
<td>Normal değer, tahrik akım limiti 1.5 In'dir</td>
</tr>
<tr>
<td>[Ağır Hizmet]</td>
<td>H: G: H</td>
<td>Yüksek anma değeri, tahrik akım limiti 1.8 In'dir Fabrika ayan</td>
</tr>
</tbody>
</table>

Motor Kontrol Türü C: t

Motor kontrol türü.

NOT: Parametre değerlerini girmeden önce motor kontrol türünü seçilin.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| [U/F VC 5 nokta] | μ F S | 5 bölümlü V/F profili:

Bu profil U_5, F_5, $μ_1$ to $μ_5$ ve F_1 ila F_5 parametrelerinin değerleri ile tanımlanır.

$F_5 > F_4 > F_3 > F_2 > F_1$

NOT: U0, motor parametrelerini temel alan bir dahili hesaplamanın sonucudur ve $μ F_r$ (%)' ile çarpılır. U0, $μ F_r$ değeri değiştirilerek ayarlanabilir. |
| [Senkr. mot.] | S Y n | Açık çevrim senkronize motorlar: Sabit mıknatıslı senkron motorlarla özel motor kontrol türü. |
[Veri] \(N \in d \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri] ➔ [Motor verileri] ➔ [Veriler]

Bu Menü Hakkında

Senkron motor parametreleri için, Özel parametreler [Motor kontrol türü] \(C \in C \) aşağıdaki şekilde ayarlanırsa erişilebilir:

- [Senk. mot.] \(S \in S \) veya
- [Senk. CL.] \(F \in F \) veya
- [SYN. U VC] \(S \in S \) veya
- [Rel. Mot.] \(S \in S \).

UYARI

KONTROL KAYBI
- Bağlı motorun kilavuzunu tamamen okuyup kavrayın.
- İsim plakasına ve bağlı motorun kilavuzuna bakarak tüm motor parametrelerinin doğru ayarlandığını doğrulayın.

Bu talimatlarla uyulmasması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu tablo, motor verilerinin ayarlanması ve optimize edilmesi için izlenmesi gereken adımları sunar:

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor etiket plakasını girin</td>
</tr>
<tr>
<td>2</td>
<td>[OtoAyar] (t \in t) işlemini gerçekleștirin</td>
</tr>
</tbody>
</table>
| 3 | Davranışı optimize etmek için [Senkr. EMF sabiti] \(P \in P \) değerini ayarlayın:
 - Motoru makinenin üzerinde mevcut olan minimum sabit frekansla (minimum yükte) çalıştırın.
 - [\% hata EMF senkr] \(r \in R \) \(E \in E \) değerini kontrol edip not alın:
 - [\% hata EMF senkr] \(r \in R \) \(E \in E \) değeri %0'dan düşükse [Senkr. EMF sabiti] \(P \in P \) arttırılabilir.
 - [\% hata EMF senkr] \(r \in R \) \(E \in E \) değeri %0'dan yüksekse [Senkr. EMF sabiti] \(P \in P \) azaltılabilir.
 - [Senkr. EMF sabiti] \(P \in P \) değerini [\% hata EMF senkr] \(r \in R \) \(E \in E \) değerine uygun olarak (daha önce not edilen) değiştirir.

[Motor Standardı] \(b \in F \) ★

Motor standardı.

Bu parametre aşağıdaki parametrelerin ön ayarlarını değiştirir:

- [Yüksek Hız] \(H \in H \) \(P \in P \)
- [Motor Frek Eşğiği] \(F \in F \) \(d \in d \)
- [Nom Motor Gerilimi] \(u \in n \) \(5 \)
- [Nominal Motor Frek] \(F \in F \) \(r \in r \)
- [Maks Frekans] \(F \in F \) \(r \in r \)

NOT: Fabrika parametreleri katalog sayıları için [60 Hz NEMA] olarak değiştirilir.

Bu parametre [Motor kontrol türü] \(C \in C \) aşağıdaki şekilde ayarlanmazsa erişilebilir:

- [Senk. mot.] \(S \in S \) veya
- [Senk. CL.] \(F \in F \) veya
- [SYN. U VC] \(S \in S \) veya
- [Rel. Mot.] \(S \in S \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Hz IEC</td>
<td>(S \in G)</td>
<td>IEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
<tr>
<td>60 Hz NEMA</td>
<td>(G \in G)</td>
<td>NEMA</td>
</tr>
</tbody>
</table>
Nominal motor gücü.

Bu parametreye [Motor kontrol türü] \(E \leq E \) aşağıdaki şekilde ayarlanmazsa erişilebilir:

- [Senkr. mot.] \(S \leq S \) veya
- [Senkr.CL] \(F \leq F \) veya
- [SYN_U VC] \(Y \leq Y \) veya
- [Rel. Mot.] \(r \leq r \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürücü anma değerlerine göre – Fabrika ayarı: sürücü anma değerlerine göre</td>
<td></td>
</tr>
</tbody>
</table>

Nominal motor gerilimi.

Bu parametreye [Motor kontrol türü] \(E \leq E \) aşağıdaki şekilde ayarlanmazsa erişilebilir:

- [Senkr. mot.] \(S \leq S \) veya
- [Senkr.CL] \(F \leq F \) veya
- [SYN_U VC] \(Y \leq Y \) veya
- [Rel. Mot.] \(r \leq r \).

Etiket plakasında belirtilen nominal motor gerilimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...690 Vac</td>
<td>Ayar aralığı: sürücü anma değerine ve [Motor Standardı]'na göre (b F r) Fabrika ayarı: sürücü anma değerine göre</td>
</tr>
</tbody>
</table>

Nominal motor akımı.

Bu parametreye [Motor kontrol türü] \(E \leq E \) aşağıdaki şekilde ayarlanmazsa erişilebilir:

- [Senkr. mot.] \(S \leq S \) veya
- [Senkr.CL] \(F \leq F \) veya
- [SYN_U VC] \(Y \leq Y \) veya
- [Rel. Mot.] \(r \leq r \).

(1) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25...1,8 In (1)</td>
<td>Ayar aralığı: sürücü anma değerine ve [Motor Standardı]'na göre (b F r) Fabrika ayarı: sürücü anma değerine göre</td>
</tr>
</tbody>
</table>

Nominal motor frekans.

Bu parametreye [Motor kontrol türü] \(E \leq E \) aşağıdaki şekilde ayarlanmazsa erişilebilir:

- [Senkr. mot.] \(S \leq S \) veya
- [Senkr.CL] \(F \leq F \) veya
- [SYN_U VC] \(Y \leq Y \) veya
- [Rel. Mot.] \(r \leq r \).

Fabrika ayarı 50 Hz'dir veya [Motor Standardı] \(b F r \), 60 Hz olarak ayarlanırsa ön ayar 60 Hz'dir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0...599,0 Hz</td>
<td>Ayar aralığı: Fabrika ayarı: 50 Hz</td>
</tr>
</tbody>
</table>
Nominal motor hızı.
Bu parametre [Motor kontrol türü] C 6 t aşağıdaki şekilde ayarlanmaza karşılanabilir:
- [Senkr. mot.] S Y n veya
- [Senkr.C.L.] F S Y veya
- [SYN_U VC] S Y n veya
- [Rel. Mot.] S r V c.

Etiket plakası Hz cinsi veya % olarak senkron hız ve kayma veriyorsa nominal hızı hesaplamak için aşağıdaki formüllerden herhangi birini kullanın:
- Nominal hız = Senkronize hız x \(\frac{100 - \% \text{ olarak sinyal}}{100} \)
- Nominal hız = x senkronize hızı \(\frac{60 - \text{Hz olarak sinyal}}{60} \) (60 Hz motorlar)
- Nominal hız = x senkronize hızı \(\frac{50 - \text{Hz olarak sinyal}}{50} \) (50 Hz motorlar).

Motor parametre seçimi P L ☆
Motor parametresi seçimi.
Bu parametre [Motor kontrol türü] C 6 t aşağıdaki şekilde ayarlanmaza karşılanabilir:
- [Senkr. mot.] S Y n veya
- [Senkr.C.L.] F S Y veya
- [SYN_U VC] S Y n veya
- [Rel. Mot.] S r V c.

Nominal motor sıyrılması n sl
Motor nominal sıyrılması, sürücü tarafından hesaplanır.
Bu salt okunur parametredir.
Nominal motor sıyrılmasını değiştirmek için [Motor anma hızı] n s p öğesini değiştirin.
Bu parametre şu şekilde erişilebilir:

- [Motor kontrol türü] E t t öğesi aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] S Y m veya
 - [Senkr. CL.] F 5 Yveysa
 - [SYN_U VC] S Y m veya
 - [Rel. Mot.] S r V e.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6553,5 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: ...</td>
</tr>
</tbody>
</table>

[Aşenk. Motor R Statr] r S R ★

Asenkron motor stator direnci.
Bu parametre şu şekilde erişilebilir:

- [Motor kontrol türü] E t t öğesi aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] S Y m veya
 - [Senkr. CL.] F 5 Yveysa
 - [SYN_U VC] S Y m veya
 - [Rel. Mot.] S r V e.

Fabrika ayarı gerçekleştirilirse otomatik tanıma çalışmasının sonucu ile değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 mOhm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 mOhm</td>
</tr>
</tbody>
</table>

[Miknatıslama Akımı] i d R ★

Miknatıslama akımı.
Bu parametre şu şekilde erişilebilir:

- [Motor kontrol türü] E t t öğesi aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] S Y m veya
 - [Senkr. CL.] F 5 Yveysa
 - [SYN_U VC] S Y m veya
 - [Rel. Mot.] S r V e.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6.553,5 A</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 A</td>
</tr>
</tbody>
</table>

[AşenkMotor Lf Endükt] L F R ★

Asenkron motor kaçak endüktansi.
Bu parametre şu şekilde erişilebilir:

- [Motor kontrol türü] E t t öğesi aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] S Y m veya
 - [Senkr. CL.] F 5 Yveysa
 - [SYN_U VC] S Y m veya
 - [Rel. Mot.] S r V e.

Fabrika ayarı gerçekleştirilirse otomatik tanıma çalışmasının sonucu ile değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...655,35 mH</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 mH</td>
</tr>
</tbody>
</table>
[Rotor Süresi Sabiti] \(t \rightarrow r \star \)

Rotor süresi sabiti.
Bu parametreye şu şekilde erişilebilir:
- [Erışim Seviyesi] \(L \rightarrow \ell \) öğesi [Uzman] \(E \rightarrow P \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(C \rightarrow \ell \) öğesi aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] \(\phi \rightarrow Y \) veya
 - [Senkr.CL.] \(F \rightarrow Y \) veya
 - [SYN_U VC] \(Y \rightarrow Y \) veya
 - [Rel. Mot.] \(\phi \rightarrow Y \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65,535 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 ms</td>
</tr>
</tbody>
</table>

[Senk.Nominal I] \(\ell \rightarrow \ell \star \)

Senk motor nominal akımı.
Bu parametre [Motor kontrol türü] \(C \rightarrow \ell \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] \(\phi \rightarrow Y \) veya
- [Senkr.CL.] \(F \rightarrow Y \) veya
- [SYN_U VC] \(Y \rightarrow Y \) veya
- [Rel. Mot.] \(\phi \rightarrow Y \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25...1,8 In (^{(1)})</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: sürücü anma değerlerine göre.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Kurulum kilavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.

[Nom Senk Motor Hızı] \(\ell \rightarrow \ell \star \)

Nominal senkronize motor hızı.
Bu parametre [Motor kontrol türü] \(C \rightarrow \ell \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] \(\phi \rightarrow Y \) veya
- [Senkr.CL.] \(F \rightarrow Y \) veya
- [SYN_U VC] \(Y \rightarrow Y \) veya
- [Rel. Mot.] \(\phi \rightarrow Y \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...48,000 rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: sürücü anma değerlerine göre.</td>
</tr>
</tbody>
</table>

[Nom Motor torku] \(\ell \rightarrow \ell \star \)

Nominal motor torku.
Bu parametre [Motor kontrol türü] \(C \rightarrow \ell \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] \(\phi \rightarrow Y \) veya
- [Senkr.CL.] \(F \rightarrow Y \) veya
- [SYN_U VC] \(Y \rightarrow Y \) veya
- [Rel. Mot.] \(\phi \rightarrow Y \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...6,553,5 Nm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: sürücü anma değerlerine göre.</td>
</tr>
</tbody>
</table>
Kutup çiftleri [PS] \(P \) \(S \)
Kutup çiftleri.
Bu parametre [Motor kontrol türü] \(C \) \(t \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] \(S \) \(Y \) veya
- [Senkr.CL.] \(F \) \(S \) \(Y \) veya
- [SYN_U VC] \(S \) \(Y \) \(u \) veya
- [Rel. Mot.] \(S \) \(r \) \(\varnothing \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...50</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: sürücü anma değerlerine göre.</td>
</tr>
</tbody>
</table>

Açı ayar tipi [PS] \(R \) \(S \)
Otomatik açı ayar tipi.
Bu parametre [Motor kontrol türü] \(C \) \(t \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] \(S \) \(Y \) \(v \) veya
- [Senkr.CL.] \(F \) \(S \) \(Y \) veya
- [SYN_U VC] \(S \) \(Y \) \(u \) veya
- [Rel. Mot.] \(S \) \(r \) \(\varnothing \).

[PSI hizalama] \(P \) \(S \) , ve [PSIO hizalama] \(P \) \(S \) , tüm senkron motor türleri için çalıştırıyor. [SPM hizalama] \(S \) \(P \) \(n \) \(R \) ve [IPM hizalama] \(S \) \(P \) \(n \) \(R \) senkron motor türune bağlı olarak performansları artırır. [Dönel Akım Enjeksiyonu] \(r \) \(C \) , [PSI hizalama] \(P \) \(S \) , ile [PSIO hizalama] \(P \) \(S \) , diğer öğelerin beklenen performansları vermediği durumlarında kullanılabiliyor.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PSI hizalama]</td>
<td>(P) (n) (R)</td>
<td>IPM motoru hizalaması. Dahili Gümüllü Kalıcı Mıknatı̇s motoru (bu tür motorda genellikle yüksek çıkıntılı seviyesi vardır) için hizalama modu. Standart hizalama modundan daha az gürültülü olan yüksek frekanslı enjeksiyon kullanılır.</td>
</tr>
<tr>
<td>[SPM hizalama]</td>
<td>(S) (P) (n) (R)</td>
<td>SPM motoru hizalaması. Yüzeye takılı Kalıcı Mıknatı̇s motoru modu (bu tür motorda genellikle orta veya düşük çıkıntılı seviyesi vardır). Standart hizalama modundan daha az gürültülü olan yüksek frekanslı enjeksiyon kullanılır.</td>
</tr>
<tr>
<td>[PSI hizalama]</td>
<td>(P) (S)</td>
<td>Darbeli sinyal enjeksiyonu. Rotor hareketi olmadan standart hizalama modu Açı ölçüsü, statör akımı tepkisinin geniş frekans aralığı üzerinden bir darbe sinyali enjeksiyonuna izlenmesyle gerçekleştirilir</td>
</tr>
<tr>
<td>[PSIO hizalama]</td>
<td>(P) (S)</td>
<td>Darbe sinyal enjeksiyonu - optimize. Rotor hareketi olmadan optimize hizalama modu Optimize bir frekans aralığı üzerinden [PSI hizalama] (P) (S) , ile aynı işlem被执行etilir Ölçüm süresi, tahnik kapalı bile olsa, ilk çalıştırma emrinden veya tanıma işleminden sonra azalır Fabrika ayarı</td>
</tr>
<tr>
<td>[Hizalama yok]</td>
<td>(n) (\varnothing)</td>
<td>Hizalama yok</td>
</tr>
</tbody>
</table>
[Senk. EMF sabiti] \(P H 5 \) ★

Senkron motor EMF sabiti

Bu parametreye [Motor kontrol türü] \([\text{Senkr. mot.}] F [\text{SYn} \text{U VC}] \) aşağıdaki şekilde ayarlanır:

- [Senk. mot.] \(F Y n u \) veya
- [Senk.CL.] \(F Y n u \) veya
- [SYN_U VC] \(F Y n u \) veya

\(P H 5 \) ayarı, yüküz çalışmada akımı azaltmaya olanak tanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6.553,5 mV/rpm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 mV/rpm</td>
</tr>
</tbody>
</table>

[Senk. Motor Statörü R] \(r 5 R 5 \) ★

Hesaplanan senkronize motor statörü R.

Soğuk hal statör direnci (sargı başına). Fabrika ayarı gerçekleştirilme tanıtma çalışmasının sonucu ile değiştirilir.

Bu parametreye şu şekilde erişilebilir:

- [Erişim Seviyesi] \(L R F \) öğesi [Uzman] \(E P r \) olarak ayarlanır ve
- [Motor kontrol türü] \(L 5 Y n u \) öğesi aşağıdaki şekilde ayarlanır:
 - [Senk. mot.] \(F Y n u \) veya
 - [Senk.CL.] \(F Y n u \) veya
 - [SYN_U VC] \(F Y n u \) veya
 - [Rel. Mot.] \(F Y n u \) veya

Değeri biliyorsanz girebilirsiniz.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 mOhm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 mOhm</td>
</tr>
</tbody>
</table>

[Otomatik ayar L d ekseni] \(L d 5 \) ★

Otomatik ayar L d ekseni.

"d" ekseni stator endüktansı mH cinsinden (faz başına).

Bu parametreye şu şekilde erişilebilir:

- [Erişim Seviyesi] \(L R F \) öğesi [Uzman] \(E P r \) olarak ayarlanır ve
- [Motor kontrol türü] \(L 5 Y n u \) öğesi aşağıdaki şekilde ayarlanır:
 - [Senk. mot.] \(F Y n u \) veya
 - [Senk.CL.] \(F Y n u \) veya
 - [SYN_U VC] \(F Y n u \) veya
 - [Rel. Mot.] \(F Y n u \) veya

Düz kutuplu motorlarda [OtoAyar L d-ekseni] \(L d 5 \) = [OtoAyar L q-ekseni] \(L q 5 \) = Statör endüktansı L.

Fabrika ayarı gerçekleştirilme otomatik tanıma çalışmasının sonucu ile değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...656,35 mH</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>
Otomatik ayar L q-ekseni \(L qS\)

Otomatik ayar L q-ekseni.

"q" ekseninin stator endüktanunu mH cinsinden (faz başına).

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C\) öğesi [Uzman] \(E P F\) olarak ayarlanırsa ve
- [Motor kontrol türü] \(L h \leq \) öğesi aşağıdaki şekilde ayarlanırsa:
 - [Senkr. mot.] \(5 Y n\) veya
 - [Senkr.CL.] \(F 5 Y v e y a \)
 - [SYN_U VC] \(5 Y n v e y a \)
 - [Rel. Mot.] \(5 r V c\).

Düz kutuplu motorlarda [OtoAyar L d-ekseni] \(L dS = \) [OtoAyar L q-ekseni] \(L qS =\) Statör endüktanını L.

Fabrika ayarı gerçekleştirilmiştir otomatik tanıma çalışmasının sonucu ile değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...655,35 mH</td>
<td>Ayar alanı: 0</td>
</tr>
</tbody>
</table>

Senk. Nominal Frek \(F r S\)

Senkronize motor nominal frekansı.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C\) öğesi [Uzman] \(E P F\) olarak ayarlanırsa ve
- [Motor kontrol türü] \(L h \leq \) öğesi aşağıdaki şekilde ayarlanırsa:
 - [Senkr. mot.] \(5 Y n\) veya
 - [Senkr.CL.] \(F 5 Y v e y a \)
 - [SYN_U VC] \(5 Y n v e y a \)
 - [Rel. Mot.] \(5 r V c\).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0...599.0 Hz</td>
<td>Ayar alanı: (n S P n S \times P P n S / 60)</td>
</tr>
</tbody>
</table>

PSI HızalamaMaksAkımı \(R c \mu r\)

PSİ hizalamasının maksimum akımı.

[PSI hizalama] \(P S o\) ve [PSI hizalama] \(P \mu o\) açı kayması ölçüm modları için [Senkr Nominal I] \(n C r S\) öğisinin %inde akım seviyesi. Bu parametre, endüktör ölçümünde etkilidir.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C\) öğesi [Uzman] \(E P F\) olarak ayarlanırsa ve
- [Motor kontrol türü] \(L h \leq \) öğesi aşağıdaki şekilde ayarlanırsa:
 - [Senkr. mot.] \(5 Y n\) veya
 - [Senkr.CL.] \(F 5 Y v e y a \)
 - [SYN_U VC] \(5 Y n v e y a \)
 - [Rel. Mot.] \(5 r V c\).

Bu akım, uygulamanın maksimum akım seviyesine eşit veya daha yüksek olmalıdır, aksi halde kararsızlık oluşabilir.

[PSI Hızalama Maks Akımı] \(P C n r\). [OTO] \(R \mu o\) olarak ayarlanırsa [PSI Hızalama Maks Akımı] \(P C n r\) motor veri ayarlarına göre sürücü tarafından benimsenir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OTO] (R \mu o) ...%300</td>
<td>Ayar alanı: [OTO.] (R \mu o)</td>
</tr>
</tbody>
</table>

NOT: Instablite durumunda istenen performansları elde etmek için [PSI Hızalama Maks Akımı] \(P C n r\) yukarı adımları artırmalıdır.
Tüm ayarlar CST-

[Akıml Filtre Süresi] $C \in F$

Akımın filtre süresi.
Bu parametreye [Erişim Seviyesi] $L \in C$ öğesi [Uzman] $E \in P$ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OTO] $R \in O$...100,0 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [OTO] $R \in O$</td>
</tr>
</tbody>
</table>

[Akımlar Filtresi] $C \in F$

Dahili akımların filtre süresi.
Bu parametreye [Erişim Seviyesi] $L \in C$ öğesi [Uzman] $E \in P$ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (1)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...100,0 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Sürücü anma değerlerine göre</td>
</tr>
</tbody>
</table>

[有一定的 EMF senk] $d \in R E$

Oran D ekseni akımı.
Bu parametreye [Motor kontrol türü] $L \in L$ aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Senkr. mot.] $S \in Y$ veya
- [Senkr.CL.] $F \in Y$ veya
- [SYN_U VC] $S \in Y$.

[有一定的 EMF senk] $d \in R E$ Owensı kullanarak [Senkr. EMF sabiti] $P \in H$ değerini ayarlayın, [有一定的 EMF senk] $d \in R E$ değeri %0'a yaklaştırılmalıdır.

[有一定的 EMF senk] $d \in R E$ değeri aşağıdaki şekildeyse:
- %0'dan küçük: [Senkr. EMF sabiti] $P \in H$ artırılabilir.
- %0'dan büyük: [Senkr. EMF sabiti] $P \in H$ azaltılabilir.

Senkronize motor ayarlarını optimize etmek için izlenmesi gereken bütün adımlar için (bkz. sayfa 163).

<table>
<thead>
<tr>
<th>Ayar (3)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...6.553,5</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>
[Açı testi ayarı] A 5 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri] ➔ [Motor verileri] ➔ [Açı testi ayarı]

Bu Menü Hakkında

Senkron motor parametreleri için.

Bu menüye [Motor kontrol türü] C t b şu şekilde ayarlanırsa erişilebilir:

- [Senk. CL.] F 5 Y
Ve bir kodlayıcı modülü takılırsa veya gömülü kodlayıcı kullanılırsa.

[Açı ayrı tipi] A 5 R ★

Otomatik açı ayır tipi.

Bu parametreye [Motor Kontrol Türü] C t b şu şekilde ayarlanırsa erişilebilir:

- [Senk. mot.] S Y n veya
- [Senk. CL] F 5 Y veya
- [SYN_U VC] S Y n u veya
- [Rel. Mot.] S r V Ė .

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PSI hizalama]</td>
<td>P 5</td>
<td>Darbeli sinyal enjeksiyonu. Rotor hareketi olmadan standart hizalama modu Aç ölçüsü, statör akımı tepkisinin geniş frekans aralığına uzanan bir darbe sinyalini enjeksiyonuna izlenmesiyle gerçekleştirilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Uyumlama sinüs filtresi kullanıldığına bu ayar önerilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Senkronize manyetik dirençli motor için bu ayarın kullanımı önerilir.</td>
</tr>
<tr>
<td>[Hizalama yok]</td>
<td>r o</td>
<td>Hizalama yok</td>
</tr>
</tbody>
</table>

[Açı otomatik testi] A 5 R

Açı ayardan.
[Açık Testi Ataması] R 5 L
Lojik sinyalle otomatik açı ayağı aktive ediyor.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yapıldı]</td>
<td>do nE</td>
<td>Otomatik açı ayağı yapıldı.</td>
</tr>
</tbody>
</table>

NOT: Bir hat kontaktörü fonksiyonu konfigüre edilirse ölçüm sırasında kontaktör kapanır.

[Açık Modu] R t A
Otomatik açı ayağı aktive ediyor.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Otomatik açı ayağı etkinleştirilmed</td>
</tr>
<tr>
<td>[Çalıştırma Komutu]</td>
<td>R t o</td>
<td>Sürücü hizalanmış durumda değişse çalışma komutunda otomatik açı ayağı başlatıldı. Fabrika ayağı</td>
</tr>
</tbody>
</table>

[Açık ofset değeri] R 5 V
Otomatik açı ayağı değer.
Motor ve kodlayıcı arasında faz-kaydırma aşısı. 8192, 360°'ye karşılık gelir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Hayır]..8192 | Otomatik açı ayağı değeri
Fabrika ayağı: [Hayır] n o |
Açıkla

Açık ayar durumu

Otomatik açı ayar durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yapılmadı]</td>
<td>tAb</td>
<td>Açık ayar değeri tanımlı değil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Beklemeye]</td>
<td>Pend</td>
<td>Açık ayarı beklemeye durumunda</td>
</tr>
<tr>
<td>[Devam ediyor]</td>
<td>PrOg</td>
<td>Açık ayarı fonksiyonu sürüyor</td>
</tr>
<tr>
<td>[Hata]</td>
<td>Fail</td>
<td>Açık Ayarı fonksiyonu başarısız oldu</td>
</tr>
<tr>
<td>[Yapıldı]</td>
<td>done</td>
<td>Açık fonksiyonu Tamam</td>
</tr>
<tr>
<td>[Özel Değer]</td>
<td>C u S</td>
<td>Faz-kaydırma değeri ekran terminali veya seri Bağlantı yoluyla kullanıcı tarafından girildi</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

Menüsü

- [Tüm ayarlar] ➡ [Motor parametreleri] ➡ [Motor verileri] ➡ [Motor ince ayarı]

- [Otomatik ince ayar]

UYARI

BEKLENMEDİK HAREKET

Otomatik ince ayar, kontrol çevrimlerini ayarlamak için motoru hareket ettirir.
- Sistemi yalnızca çalışma bölgesinde hiçbir kişi ya da engel olmalıdır.
- Bu talimatları uygulaması ölüme, yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Otomatik ince ayar sırasında sistemin gürültü ve salınım yapması normaldir.

[Otomatik ince ayar türü] : S. D. (Standart)
- Otomatik ince ayar sırasında motor nominal frekansının standart değerini sağlar.

- Otomatik ince ayar sırasında motor nominal frekansının standart değerini sağlar.

Her durumda motor, bir ince ayar işlemi gerçekleştirildiğinde önce durdurulmuş olmalıdır. Uygulamanın ince ayarı işlemini esnasında motoru döndürmede izin verilmemeli.

[Motor kontrol türü] : L. E. (Rel. Mot.)
- Motorun mekanik hizalamasını çalıştırır (Açık ayar türü)
- Motor nominal frekansının yarısında çalışır.

İnce ayar işlemi aşağıdakileri optimize eder:
- Düşük devirde motor performansları.
- Motor torku tahmini.
- Sensörsüz çalışma ve izleme esnasında sürekli değerlerinin tahmininin kesinliği.

Otomatik ince ayar bir haata algılarak haata zaman [Eylem yok] (Hayır) değerini görüntüler ve [İnce Ayar Hata Yanıt] (YES) komutunun sonucu 1 olarak ayarlanmalıdır (0'da aktiftir).

Otomatik ince ayar, otomatik ince ayar sırasından sonra ele alınacak olan her türlü çalıştır veya ön arama komutundan öncelikli olarak ele alınır.

Otomatik ince ayar bir haata algılarak haata zaman [Eylem yok] (Hayır) değerini görüntüler ve [İnce Ayar Hata Yanıt] (YES) komutunun sonucu 1 olarak ayarlanmalıdır (0'da aktiftir).

Otomatik ince ayar bir haata algılarak haata zaman [Eylem yok] (Hayır) değerini görüntüler ve [İnce Ayar Hata Yanıt] (YES) komutunun sonucu 1 olarak ayarlanmalıdır (0'da aktiftir).

NOT: Motor termal durumunun ince ayar sonucu üzerinde büyük bir etki vardır. Motor ince ayar işlemi her zaman motorun durumu ve sıcaklık değerleri ile alının. Motorun termal durumuna takip edilmesi gerekir.

Bir motor ince ayar işlemi yeniden yapmak için motorun durumunu ve sıcaklığını bekleyin. İlk [Oto. İnce Ayar] (YES) işlemi [Otomatik ince ayarı sil] (YES) işlemi ile silinir. Ardından, motor ince ayar işlemi yeniden yapılır.

İlk olarak bir [Otomatik ince ayarı sil] (YES) işlemi gerçekleştirildiğinde önce yapılan motor ince ayarı, motorun termal durumunu tahmin etmek için kullanılabilir.

Kablo uzunluğu ince ayar işlemi sonucuna etki eder. Kablo bağlantısını değiştirilirse ince ayar işlemi yeniden yapılması gerekir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[İşlem yok]</td>
<td>n o</td>
<td>Otomatik ince ayar devam etmiyor Fabrika ayar</td>
</tr>
<tr>
<td>[Oto. İnce Ayar Uygula]</td>
<td>y E S</td>
<td>Otomatik ince ayar mümkünse deriv aktif değilken. Hız kontrol cihazının termal durumunu ince ayar işlemi derhal yapılamasına izin vermek için parametre [Hayır] (Hayır) olarak değiştirilebilen işlevsel olarak kullanılabilir.</td>
</tr>
</tbody>
</table>
[Otomatik İnce Ayar Sil] \(\mathcal{C} \mathcal{L} \mathcal{r} \)

Otomatik ince ayar silil.

Bu parametre motor parametrelerinin ölçüm edilen termal durumunu silmek için kullanılır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik ince ayar sil]</td>
<td>(\mathcal{C} \mathcal{L} \mathcal{r})</td>
<td>Otomatik ince ayar fonksiyonu ile ölçülen motor parametreleri sıfırlanır. Varsayılan motor parametre değerlerini motoru kontrol etmek için kullanılır.</td>
</tr>
</tbody>
</table>

[Otomatik İnce Ayar Durumu] \(\mathcal{E} \cup \mathcal{S} \)

Otomatik ince ayar durumu.

Bu parametre tahrığın gücü kapatıldığında kaydedilmez. Gücün son açılmasından beri oto. ince ayar durumunu gösterir (yalnızca bilgi amaçlı, değiştirilemez).

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik İnce Ayar Durumu]</td>
<td>(\mathcal{E} \cup \mathcal{S})</td>
<td>Otomatik ince ayar durumu.</td>
</tr>
</tbody>
</table>

[Otomatik Ince Ayar Kullanımı] \(\mathcal{L} \cup \mathcal{A} \)

Otomatik ince ayar kullanımı.

Bu parametre motor parametrelerinin tahmin edilen termal durumunu değiştirmek için kullanılabılır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Otomatik Ince Ayar Kullanımı]</td>
<td>(\mathcal{L} \cup \mathcal{A})</td>
<td>Otomatik ince ayar kullanımı.</td>
</tr>
</tbody>
</table>

[Termainal Ayar Hata Yanıtı] \(\mathcal{K} \mathcal{L} \mathcal{r} \)

Otomatik ince ayar hata yanıtı.

Bu parametre motor parametrelerinin tahmin edilen termal durumunun hatalarını yok eder.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Termainal Ayar Hata Yanıtı]</td>
<td>(\mathcal{K} \mathcal{L} \mathcal{r})</td>
<td>Otomatik ince ayar hata yanıtı.</td>
</tr>
</tbody>
</table>

[Oto. İnce Ayar Ataması] \(\mathcal{E} \cup \mathcal{L} \)

Otomatik ince ayar ataması.

Bu parametre motor parametrelerinin tahmin edilen termal durumunun atamasını yapar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Oto. İnce Ayar Ataması]</td>
<td>(\mathcal{E} \cup \mathcal{L})</td>
<td>Otomatik ince ayar ataması.</td>
</tr>
</tbody>
</table>

[DI1]...[DI8]

<table>
<thead>
<tr>
<th>DI1 ... DI8</th>
<th>LI1 LI2 ... LI8</th>
<th>Dijital giriş DI1...DI8</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td>Dijital giriş DI1...DI8</td>
</tr>
</tbody>
</table>

NOT: DI8 seçimi, 22kW'tan büyük gücüt olan tahriklerde erişilebilir.

[DI11]...[DI16]

<table>
<thead>
<tr>
<th>DI11 ... DI16</th>
<th>LI11 LI12 ... LI16</th>
<th>VW3A3203 G/C uzatma modülü takılması dijital giriş DI11...DI16</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td>VW3A3203 G/C uzatma modülü takılması dijital giriş DI11...DI16</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

[Oto. İnce Ayar Türü] t u n t ★

Otomatik ince ayar türü.
Bu parametreye aşağıdaki koşullarda erişilebilir:
• [Erişim Seviyesi] L R C, [Uzman] E Pr olarak ayarlanışına ve
• [Motor kontrol türü] Ç t 0 Ç t [Rel. Mot.] S r V Ç olarak ayarlanışına.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>S t d</td>
<td>Standart oto. ince ayar Fabrika ayar</td>
</tr>
</tbody>
</table>

[Otomatik oto. ince ayar] R u t ★

Otomatik otomatik ince ayar.

UYARI

BEKLENMEDİK HAREKET
Bu işlev aktive edilirse tahriğin gücü her açıldığında otomatik ince ayar gerçekleşebreakerılır.
• Bu işlevin etkinleştirilmesinin emniyetiniz bir durum doğruluğunu doğrulayın.
Bu talimatı uyumaması ölümle, ağır yaralanmalarla veya ekipmanda maddi hasara yol açabilir.

Hız kontrol cihazı açıldığında motor durdurulmuş olmalıdır.
İnce ayar seçimi

İnce ayar seçimi.

Çıkıntı mot. durumu

Senkronize motor çıkıntısını hakkında bilgiler.

Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] L R C öğesi [Uzman] E P r olarak ayarlanırsa ve
- [İnce Ayar Seçimi] S t u v öğesi [Ölçü] N E A S ve
- [Motor kontrol türü] L t t öğesi aşağıdaki şekilde ayarlanırsa:
 - [Senkr. mot.] L Y n veya
 - [Senkr. CL.] F S Y veya
 - [SYN_U VC] S Y n veya
 - [Rel. Mot.] S r V L olarak ayarlanmışsa.

Bu parametre senkronize motorlar için motor kontrol performanslarının optimizasyonuna yardımcı olur.

Akımın Oto. İnce Ayar Seviyesi

İnce yar akım oranı.

Bu parametre otomatik ince ayar sırasında motora uygulanacak çeşitli seviyesini tahrik nominal akımın yüzdesi olarak gösterir.

Bu parametre, endüktör ölçümünde etkilidir.
Açık ayar tipi \(R \& R \star \)

Otomatik açı ayar tipi.

Bu parametre [Motor kontrol türü] \(L \& R \) aşağıdaki şekilde ayarlanışta erişilebilir:

- [Senkr. mot.] \(S \& Y \) veya
- [Senkr.CL.] \(S \& Y \) veya
- [SYN_U VC] \(S \& Y \& u \) veya
- [Rel. Mot.] \(S \& V \& L \) olarak ayarlanmışsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PSI hizalama]</td>
<td>(P & S)</td>
<td>Darbeli sinyal enjeksiyonu. Rotor hareketi olmadan standart hizalama modu açı ölçüsü, statör akımı tepkisinin geniş frekans aralığından bir darbe sinyali enjeksiyonuna izlenmesiyle gerçekleştirilir.</td>
</tr>
<tr>
<td>[Hizalama yok]</td>
<td>(n & o)</td>
<td>Hizalama yok</td>
</tr>
</tbody>
</table>

[PSI HizalaMaksAkımı] \(n \& r \star \)

PSI hizalamanın maksimum akımı.

Bu parametre [ERIŞIM SEVİYESI] \(L \& R \), [UZMAN] \(E \& P \& r \) olarak ayarlanmıştır ve [Motor kontrol türü] \(L \& R \) aşağıdaki şekilde ayarlanışta erişilebilir:

- [Senkr. mot.] \(S \& Y \) veya
- [Senkr.CL.] \(S \& Y \) veya
- [SYN_U VC] \(S \& Y \& u \) veya
- [Rel. Mot.] \(S \& V \& r \) olarak ayarlanmışsa.

Bu akım, uygulanmanın maksimum akım seviyesine eşit veya daha yüksek olmalıdır, aksi halde kararsızlık oluşabilir.

[PSI Hizalama Maks Akımı] \(n \& r \& [OTO] \) \(R \& t \& o \) olarak ayarlanırsa [PSI Hizalama Maks Akımı] \(n \& r \) motor veri ayarlarına göre tahrik tarafından benimsenir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OTO] (R & t & o & %300)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: [OTO] (R & t & o)</td>
</tr>
</tbody>
</table>
[Dönel Akım Seviyesi] \(r \ L \)

Dönel akım seviyesi.
Bu parametreyle [Açı ayar türü] \(R \ 5 \ t \) [Dönel Akım Enjeksiyonu] \(r \ L \), olarak ayarlanmışsa erişilebilir.
Akım seviyesi hizalama işlemi sırasında gerekli torka göre ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%10...300</td>
<td>Nominal motor akımının yüzdesi olarak ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %75</td>
</tr>
</tbody>
</table>

[Dönel Tork Akımı] \(r \ L \)

Dönel tork akımı.
Bu parametreyle aşağıdaki koşullarda erişilebilir:
- [Erişim Seviyesi] \(L \ R \ L \), [Uzman] \(E \ P \ r \) olarak ayarlanmışsa ve
- [Açı ayar türü] \(R \ 5 \ t \), [Dönel Akım Enjeksiyonu] \(r \ L \), olarak ayarlanmışsa ve
- [Motor kontrol türü] \(C \ t \) aşağıdaki şekilde ayarlanmamışsa:
 - [Senkr. mot.] \(5 \ Y \) veya
 - [Senkr.CL.] \(F \ 5 \ Y \) veya
 - [SYN_U VC] \(5 \ Y \) veya

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0</td>
</tr>
</tbody>
</table>

[RCI Maks Frek] \(r \ L \ P \)

RCI maksimum çıkış frekansı.
Bu parametreyle aşağıdaki koşullarda erişilebilir:
- [Erişim Seviyesi] \(L \ R \ L \), [Uzman] \(E \ P \ r \) olarak ayarlanmışsa ve
- [Açı ayar türü] \(R \ 5 \ t \), [Dönel Akım Enjeksiyonu] \(r \ L \), olarak ayarlanmışsa ve
- [Motor kontrol türü] \(C \ t \) aşağıdaki şekilde ayarlanmamışsa:
 - [Senkr. mot.] \(5 \ Y \) veya
 - [Senkr.CL.] \(F \ 5 \ Y \) veya
 - [SYN_U VC] \(5 \ Y \) veya

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OTO.] (R \ u \ t \ a) ...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [OTO.] (R \ u \ t \ a)</td>
</tr>
</tbody>
</table>

[RCI Yuvralık No] \(r \ L \ P \)

RCI yuvarlık no.
Bu parametreyle aşağıdaki koşullarda erişilebilir:
- [Erişim Seviyesi] \(L \ R \ L \), [Uzman] \(E \ P \ r \) olarak ayarlanması ve
- [Açı ayar türü] \(R \ 5 \ t \), [Dönel Akım Enjeksiyonu] \(r \ L \), olarak ayarlanması ve
- [Motor kontrol türü] \(C \ t \) aşağıdaki şekilde ayarlanmamışsa:
 - [Senkr. mot.] \(5 \ Y \) veya
 - [SYN_U VC] \(5 \ Y \) veya

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OTO.] (R \ u \ t \ a) ...32767</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [OTO.] (R \ u \ t \ a)</td>
</tr>
</tbody>
</table>

[Transformatörlü RCI] \(r \ L \ r \)

Transformatörlü RCI hizalaması.
Bu parametre aşağıdaki koşullarda erişilebilir:
- [Erişim Seviyesi] LRC, [Uzman] EPR olarak ayarlanırsa ve
 - [Açı ayar türü] R5E [Döner Akım Enjeksiyonu] olarak ayarlanırsa RC,
- [Motor kontrol türü] L5E aşağıdaki şekilde ayarlanırsa:
 - [Senkr. mot.] 5 n veya
 - [SYN_U VC] 5 n veya
 - [Sync.CL] F5 Y veya
 - [Rel. Mot.] 5 r ve olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E S</td>
<td>Fonksiyon aktif</td>
</tr>
</tbody>
</table>
[Motor izleme] \(P \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Motor parametreleri] \(\rightarrow \) [Motor izleme]

[Motor Termal Akımı] \(t_H \)
Etket plakasında belirtilen anma akımına ayarlanacak olan motor termal izleme akımı.

<table>
<thead>
<tr>
<th>Ayar ((\alpha))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2...1,8 In(1)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Tahrik anma değerlerine göre</td>
</tr>
<tr>
<td></td>
<td>(1) Kurulum kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.</td>
</tr>
</tbody>
</table>

[Motor Termal Modu] \(t_H t \)
Motor termal izleme modu.

NOT: Termal durum nominal durumun %118'ine ulaşaucoup bir hata algılanır ve durum tekrar %100'ün altında düşüğünde yeniden aktif hale gelir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n)</td>
<td>Termal izleme yok</td>
</tr>
<tr>
<td>[Kendinden soğutmalı]</td>
<td>(A C L)</td>
<td>Kendinden soğutmalı motor</td>
</tr>
<tr>
<td>[Zorla soğutma]</td>
<td>(F C L)</td>
<td>Fan soğutmalı motor</td>
</tr>
</tbody>
</table>

[Motor Sic HataYanıtı] \(\alpha L L \)
Aşırı yük hata yanıtı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>(n)</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>(Y E S)</td>
<td>Serbest kadran</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı</td>
<td></td>
</tr>
</tbody>
</table>
[Termal İzleme] ➔ [Motor parametreleri] ➔ [Motor İzleme] ➔ [Termal İzleme]

Bu Menü Hakkında

Termal izleme fonksiyonu, tahrikin gerçek sıcaklığını izleyerek yüksek sıcaklığın önlenmesine yardımcı olur.

PTC, PT100, PT1000 ve KTY84 termik algılayıcıları, bu fonksiyon tarafından desteklenmektedir.

Fonksiyon, 2 izleme seviyesini yönetme olanağını sunar:
- Uyarı Seviyesi: tahrik, uygulamayı durdurmadan bir olayı tetikler.
- Hata Seviyesi: tahrik, bir olayı tetikler ve uygulamayı durdurur.

Termik algılayıcı, aşağıdaki algılanan hataları takip etmek için izlenir:
- Aşırı ısıma
- Algılayıcı kırılması (sinyal kaybı)
- Algılayıcı kısa devresi

Aktivasyon

[Alx Th İzleme] ➔ [Hayır X 5], ilgili analog girisinde termal izlemeyi aktif hale getirmenize olanak verir:
- [Hayır] ➔ sensör devre dışı
- [Evet] ➔ 5: termal İzleme, ilgili Alx üzerinde aktif hale getirilir.

Termal Prob Türü Seçimi

[Alx Türü] ➔ [Hayır X ile ilgili analog girişinde termal sensörün/sensörlerin türünü seçmenize olanak sağlar:
- [Hayır] ➔ sensör yok
- [PTC Yönetimi] ➔ 1 ila 6 PTC (seri) kullanılır
- [KTY] ➔ 1 KTY84 kullanılır
- [PT100] ➔ 2: İki telle bağlanan 1 PT100 kullanılır
- [PT1000] ➔ 3: İki telle bağlanan 1 PT1000 kullanılır
- [3 kabloda PT100] ➔ 2: Üç telle bağlanan 1 PT100 kullanılır (sadece Al4 ve Al5)
- [3 kabloda PT1000] ➔ 3: Üç telle bağlanan 1 PT1000 kullanılır (sadece Al4 ve Al5)
- [3 kabloda 3 PT100] ➔ 3: Üç telle bağlanan 3 PT100 kullanılır (sadece Al4 ve Al5)
- [3 kabloda 3 PT1000] ➔ 3: Üç telle bağlanan 3 PT1000 kullanılır (sadece Al4 ve Al5)

2 kablolu termik algılayıcılar, analog girisi 2 ile analog girisi 5 arasında desteklenir.

PT100 ve PT1000 Probları için Kablo Bağlantısı

2 kablolu algılayıcılar için aşağıdaki kablo bağlantıları mümkündür:
[AI1 Ter İzleme] – \(H / 5 \)
Al1'de termal izleme aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[AI1 Tipi] – \(R, I \) *
Al1 atama.
Bu parametreye [AI1 Termal izleme] – \(H / 5 \), [Hayır] \(n o \) olarak ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>10 u</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td></td>
<td>0 A</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Akım]</td>
<td>0 A</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[AI1 Trm Hata Yanıtı] – \(H / b \) *
AI1 için algılanan bir hata termal izleme tepkisi.
Bu parametreye, [AI1 Tipi] \(R, I \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 u \) veya
- [Akım] \(0 A \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E 5</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>5 b t</td>
<td>[Duruş türü] (5 b t) parametresine uygun ancak duroştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğçe ve komut kaldırılmadığı sürece korunur.(^1)</td>
</tr>
<tr>
<td>[Rampa duroşu]</td>
<td>r N P</td>
<td>Rampada durma</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir rôle veya mantık çıkış atanması tavsiye edilir.

[AI1 Trm Hata Seviyesi] – \(H / F \) *
AI1 için hata algılama seviyesi.
Bu parametreye, [AI1 Tipi] \(R, I \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 u \) veya
- [Akım] \(0 A \) veya
- [PTC Yönetimi] \(P b C \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 110,0°C</td>
</tr>
</tbody>
</table>
[AI1 Tr Uyan Seviyesi] \(\text{\(T\)} \) \text{\(H\)} \text{\(\frac{1}{10}\)}

AI1 için uyarı seviyesi.
Bu parametre, [AI1 Tipi] \(\text{\(R\)} \), \(\text{\(I\)} \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(\text{\(10U\)} \) veya
- [Akım] \(\text{\(0A\)} \) veya
- [PTC Yönetimi] \(\text{\(P\)} \), \(\text{\(C\)} \).

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0...200,0°C</td>
<td>Ayar aralığı: 90,0°C</td>
</tr>
</tbody>
</table>

[AI1 Termal Değeri] \(\text{\(T\)} \) \text{\(H\)} \text{\(1V\)}

AI1 termal değeri.
Bu parametre, [AI1 Tipi] \(\text{\(R\)} \), \(\text{\(I\)} \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(\text{\(10U\)} \) veya
- [Akım] \(\text{\(0A\)} \) veya
- [PTC Yönetimi] \(\text{\(P\)} \), \(\text{\(C\)} \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0...200,0°C</td>
<td>Ayar aralığı: _</td>
</tr>
</tbody>
</table>

[AI3 Term İzleme] \(\text{\(T\)} \) \text{\(H\)} \text{\(3S\)}

AI3'te termik izleme aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>nO</td>
<td>Hayır</td>
</tr>
<tr>
<td>[EVET]</td>
<td>YE 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[AI3 Tipi] \(A13Ik\)

AI3 atama.
Bu parametre, [AI3 Tipi] \(A13Ik\) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(\text{\(10U\)} \) veya
- [Akım] \(\text{\(0A\)} \) veya

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>nO</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duroş]</td>
<td>YE 5</td>
<td>Serbest duroş</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>5 (\leq) 5</td>
<td>[Duroş türü] 5 (\leq) 5 ; parametreresine uygun ancak duroştan sonra tetiklenen bir hatanın olmadığı duroş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>LFF</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettikçe ve komut kaldırılmadığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Rampa duroşu]</td>
<td>rNP</td>
<td>Rampada duroş</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir rôle veya mantık çıkış atanması tavsiye edilir.
[AI3 Trn Hata Seviyesi] \(\text{H 3 F} \) ★
AI3 için hata algılama seviyesi.
Bu parametreye, [AI3 Tipi] \(R , \bar{3} \leq \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \mu \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \leq C \).

<table>
<thead>
<tr>
<th>Ayar (°C)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0...200.0°C</td>
<td>Ayar aralığı Fabrika ayarı: 110,0°C</td>
</tr>
</tbody>
</table>

[AI3 Tr Uyarı Seviyesi] \(\text{H 3 A} \) ★
AI3 için uyarı seviyesi.
Bu parametreye, [AI3 Tipi] \(R , \bar{3} \leq \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \mu \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \leq C \).

<table>
<thead>
<tr>
<th>Ayar (°C)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0...200.0°C</td>
<td>Ayar aralığı Fabrika ayarı: 90,0°C</td>
</tr>
</tbody>
</table>

[AI3 Termal Değeri] \(\text{H 3 V} \) ★
AI3 termik değeri.
Bu parametreye, [AI3 Tipi] \(R , \bar{3} \leq \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \mu \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \leq C \).

<table>
<thead>
<tr>
<th>Ayar (°C)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15.0...200.0°C</td>
<td>Ayar aralığı Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[AI4 Ter İzleme] \(\text{H 4 5} \) ★
AI4’te termik izleme aktivasyonu.
Bu parametreye, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n \sigma)</td>
<td>Hayır Fabrika ayarı</td>
</tr>
<tr>
<td>[EVET]</td>
<td>(y \sigma 5)</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[AI4 Tipi] \(R , \bar{4} \leq \) ★
AI4 atama.
Bu parametreye [AI4 Termal İzleme] \(\text{H 4 5} , [\text{Hayır}] n \sigma \) olarak ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(10 \mu)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(0)</td>
<td>0-20 mA Fabrika ayarı</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>(n \sigma 10 \mu)</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>
[AI4 Trm Hata Yanıtı] \(\Leftrightarrow H 4 b \)

AI4 için algılanan bir hataya termal izleme tepkisi.

Bu parametre, [AI4 Tipi] \(R \), \(4 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \) veya
- [Akım] \(0 \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>(4 E 5)</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT’ye göre]</td>
<td>(5 t)</td>
<td>[Duruş türü] (5 t) parametresine uygun ancak duruştan sonra tetiklenen bir hata olmadığını olduğu duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>(L F F)</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiği ve komut kaldırılmadığı sürece korunur. (1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>(r n P)</td>
<td>Rampada durma</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir röle veya mantık çıkış atanması tavsiye edilir.

[AI4 Trm Hata Seviyesi] \(\Leftrightarrow H 4 F \)

AI4 için hata algılama seviyesi.

Bu parametre, [AI4 Tipi] \(R \), \(4 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \) veya.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı: 110,0°C</td>
</tr>
</tbody>
</table>

[AI4 Tr Uyan Seviyesi] \(\Leftrightarrow H 4 A \)

AI4 için uyarı seviyesi.

Bu parametre, [AI4 Tipi] \(R \), \(4 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \) veya.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı: 90,0°C</td>
</tr>
</tbody>
</table>

[AI4 Termal Değeri] \(\Leftrightarrow H 4 V \)

AI4 termik değeri.

Bu parametre, [AI4 Tipi] \(R \), \(4 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(10 \) veya
- [Akım] \(0 \) veya
- [PTC Yönetimi] \(P \) veya.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 187
[AI5 Ter İzleme] \(H 5 S \) ★

AI5'te termik izleme aktivasyonu.
Bu parametreye, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>☑</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td>☑</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[EVET]</td>
<td>☑</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[AI5 Tipi] \(R \), \(S \) ★

AI5 atama.
Bu parametre [AI5 Termal İzleme] \(H 5 S \), [Hayır] ☑ olarak ayarlanmamışsa erişilebilir.

[AI4 Tipi] \(R \), \(4 \) (bkz. sayfa 186) ile aynı.

[AI5 Trm Hata Yanıtı] \(H 5 b \) ★

AI5 için algılanan bir hataya termal izleme tepkisi.
Bu parametreyle [AI5 Termal İzleme] \(H 5 S \), [Hayır] ☑ olarak ayarlanmamışsa erişilebilir:
- [Gerilim] \(I \) [U] veya
- [Akım] \(0 \) [A].

[AI5 Trm Hata Seviyesi] \(H 5 F \) ★

AI5 için hata algılama seviyesi.
Bu parametreyle, [AI5 Tipi] \(R \), \(5 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(I \) [U] veya
- [Akım] \(0 \) [A] veya
- [PTC Yönetimi] \(P \) [C]

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı: 110,0°C</td>
</tr>
</tbody>
</table>

[AI5 Tr Uyarı Seviyesi] \(H 5 A \) ★

AI5 için uyarı seviyesi.
Bu parametreyle, [AI5 Tipi] \(R \), \(5 \) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(I \) [U] veya
- [Akım] \(0 \) [A] veya
- [PTC Yönetimi] \(P \) [C]
Tüm ayarlar CSt-

<table>
<thead>
<tr>
<th>Ayar (°C)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 90,0°C</td>
</tr>
</tbody>
</table>

[AI5 Termal Değeri] \(H5V\) ★

AI5 termik değeri. Bu parametre, [AI5 Tipi] \(R\) , \(S\) \(b\) aşağıdaki şekilde ayarlanmamışsa erişilebilir:
- [Gerilim] \(I \Omega\) veya
- [Akım] \(O \Omega\) veya
- [PTC Yönetimi] \(P \Omega\).

<table>
<thead>
<tr>
<th>Ayar (°C)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: _</td>
</tr>
</tbody>
</table>

[Kod Term Sensör Türü] \(HE\) ★

Kodlayıcı termal sensör türü. Bu parametre bir HTL kodlayıcısından farklı bir kodlayıcı modül takıldığında veya katılaştırılmış kodlayıcı kullanılırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayarlar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yok]</td>
<td>(n) (n) (E)</td>
<td>Yok Fabrika ayarları</td>
</tr>
<tr>
<td>[PTC]</td>
<td>(P \Omega)</td>
<td>PTC</td>
</tr>
<tr>
<td>[PT100]</td>
<td>(1 \Omega)</td>
<td>PT100</td>
</tr>
<tr>
<td>[PT1000]</td>
<td>(1 \Omega)</td>
<td>PT1000</td>
</tr>
<tr>
<td>[KTY]</td>
<td>(K \Omega)</td>
<td>KTY</td>
</tr>
<tr>
<td>[Klixon]</td>
<td>(K \Omega)</td>
<td>Klixon</td>
</tr>
</tbody>
</table>

[Kod Tr HataYanıtı] \(HE\) ★

Kodlayıcı giriş için algılanan bir hataya termal izleme tepkisi. Bu parametreye aşağıdaki şartlarla erişilebilir:
- bir kodlayıcı modülü takılı olmalı ya da gömülü kodlayıcı kullanılmalıdır ve
- [Kod Term Sensör Türü] \(HE\) , [Hayir] \(n\) \(n\) \(E\) olarak ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>(n)</td>
<td>Harici algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>(Y \Omega)</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>(S \Omega)</td>
<td>Hataya geçmeden, [Duruş türü] (S \Omega) (bkz. sayfa 223) konfigürasyonuna göre durdurma. Bu durumda, algılanan hata rolüsi açılmaz ve tahrik, aktif komut kanalının yeniden yolverme koşullarına göre (örneğin: kontrol, terminaler üzerinden gerçekleştirilir) ya da görülmüş kodlayıcı kullanılamamıdır ve [Kod Term Sensör Tür] (HE) , [Hayir] (n) (n) (E) olarak ayarlanmalıdır.</td>
</tr>
<tr>
<td>[Geri çekilme hızı]</td>
<td>(L \Omega)</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğinde ve çalıştırma komutu kaldırılamadığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hz korunuyor]</td>
<td>(L \Omega)</td>
<td>Tahrik, algılanan hata oluştuğunda uygulanılan hızı, algılanan hata aktif olduğu ve çalıştırma komutu kaldırılamadığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>(r \Omega)</td>
<td>Rampada durma</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir durdurma tetiklemesinden, bu gösterge için bir rol veya dijital çıkış atanması tavsiye edilir.
<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hzli duruş]</td>
<td>F S E</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC Enjeksiyon]</td>
<td>d E</td>
<td>DC enjeksiyonlu duruş. Bu dururma türü diğer fonksiyonlarla birlikte kullanılamaz</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir dururma tetiklememediğinden, bu gösterge için bir röle veya dijital çıkış atanması tavsiye edilir.

[Kod Trm Hata Seviyesi] t H E F ★

Kodlayıcı için termal hata seviyesi.

Bu parametreye aşağıdaki şartlarla erişilebilir:
- bir kodlayıcı modülü takılı olmalı ya da gömülü kodlayıcı kullanılmalıdır ve
- [Kod Term Sensör Türü] t H E t aşağıdaki ayardakine ayarlanmamalıdır:
 - [Yok] n n E veya
 - [PTC] P E C.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 110,0°C</td>
</tr>
</tbody>
</table>

[Kod Trm Uyarı Seviyesi] t H E A ★

Kodlayıcı için termal uyarı seviyesi.

Bu parametreyle aşağıdaki şartlarla erişilebilir:
- bir kodlayıcı modülü takılı olmalı ya da gömülü kodlayıcı kullanılmalıdır ve
- [Kod Term Sensör Türü] t H E t aşağıdaki ayardakine ayarlanmamalıdır:
 - [Yok] n n E veya
 - [PTC] P E C.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 90,0°C</td>
</tr>
</tbody>
</table>

[Kod Tr Değeri] t H E V ★

Kodlayıcı termal değeri.

Bu parametreyle aşağıdaki şartlarla erişilebilir:
- bir kodlayıcı modülü takılı olmalı ya da gömülü kodlayıcı kullanılmalıdır ve
- [Kod Term Sensör Türü] t H E t aşağıdaki ayardakine ayarlanmamalıdır:
 - [Yok] n n E veya
 - [PTC] P E C.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15,0...200,0°C</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>

[Geri Çekilme Hızı] L F F

Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Motor izleme] \(P \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Motor parametreleri] \(\rightarrow \) [Motor izleme]

Bu Menü Hakkında

Termal izleme fonksiyonu, motorun termal durumunun tahminiyle motorun aşırı ısınmaktan korunmasına yardımcı olur.

[Akım Sınırlaması] \(L \)

Dahili akım sınırları.

BİLDİRİM

AŞIRI ISINMA
- Motor anma değerinin, motora uygulanacak maksimum akıma uygun olduğunu doğrulayın.
- [Akım Sınırlaması] \(L \), parametrelerinin bu tabloda gösterilen değerden küçük eşit bir değere ayarlandığını doğrulayın.
- Akım sınırlını belirlerken azalta形象 gereksinimleri dahil motorun görev döngüsünü ve uygulamanızın tüm faktörlerini göz önünde bulundurun.

Ayar	Kod / Değer	Açıklama
0...1,8 In(1) | | Ayar aralığı
Fabrika ayarı: 1,8 In(1)
(1) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.

[Azalma Süresi] \(S \) \(P \)

Azalma süresi.

Bu parametre [Mot.aşırıger.sınırl.] \(S \) V L öğesi [Hayır] \(\alpha \) olarak ayarlanmazsa erişilebilir.

[Aşırı ger.sınırl.etki] \(S \) \(P \) parametrelerinin değeri, kullanılan kablonun zayıflatma süresine karşılık gelmektedir. Uzun kablolarдан kaynaklanan gerilim dalgaları yansımalarının üst üstü bimnesini engellemeye yardımcı olmak amacıyla tanımlanmıştır. Aşırı gerilimleri, DC bara nominal geriliminin iki katı ile sınırlandırır.

Dalgalanma gerilimi; kablo tipleri, paralel bağlı farklı motor güçleri, paralel bağlı farklı kablo uzunlukları ve benzeri gibi pek çok parametreye bağlı olduğundan, motor terminalerinde oluşan aşırı gerilim değerlerini kontrol etmek için bir osiloskop kullanılması tavsiye edilir.

Genel sürücü performansını korumak için gereksiz yere SOP değerini artırmayın.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6 µs]</td>
<td>5</td>
<td>6 µs</td>
</tr>
<tr>
<td>[8 µs]</td>
<td>B</td>
<td>8 µs Fabrika ayarı</td>
</tr>
<tr>
<td>[10 µs]</td>
<td>D</td>
<td>10 µs</td>
</tr>
</tbody>
</table>
[Sinüs Filtre Aktivs] F_1

Sinüs filtresi aktivasyonu.
Bu parametre [Motor kontrol türü] C_t aşağıdaki şekilde ayarlanmazsa erişilebilir:
- [Senkr. mot.] S_Y veya
- [Senkr.CL.] S_F veya
- [SYN_U VC] S_Y veya
- [Rel. Mot.] S_r veya C_t.

BİLDİRİM

SİNÜS FİLTRESİNİN HASAR GÖRME RİSKİ

Sinüs filtresinin kullanıldığı sistemlerde, maksimum çıkış frekansı [Maks. frekans] F_1 100 Hz’yi geçmemelidir.
Bu talimatla uygulanması, ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n_0</td>
<td>Sinüs filtresi yok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y_5</td>
<td>Motordaki aşırı gerilimleri sınırlamak ve topraklama algılanan hatası kaçak akımını düşürmek için ya da yükseltici transformator içeren uygulamalarda bir sinüs filtresi kullanın.</td>
</tr>
</tbody>
</table>

Çıkış Kısa Dvre Testi S_5

Çıkış kısa devre testi konfigürasyonu.

Sürücü çıkış kısa devresi (U-V-W terminalleri): SCF hatası algılanabilir.
Katalog numaralarına göre fabrika ayarı değeri [Evet] Y_5 olarak değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n_0</td>
<td>Çalıştır komutunda test etme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y_5</td>
<td>Her çalıştır komutunda çıkış kısa devre testi</td>
</tr>
</tbody>
</table>

Motor Termal Eşiği t_1

[Motor Termal Eşiği] t_5 uyarı aktivasyonu motor termal eşği.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

Motor2 Termal Eşği t_2

[Motor2 Termal Eşği] t_5 uyarı aktivasyonu için Motor 2 termal seviyesi.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>
[Motor 3 tercih] E ⪣ d Ǝ

[Motor 3 Termal Eşği] E ⪣ Ǝ uyarısı aktivasyonu için Motor 3 termal seviyesi.

<table>
<thead>
<tr>
<th>Ayar (K)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>

[Motor 4 tercih] E ⪣ d 4

<table>
<thead>
<tr>
<th>Ayar (K)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>
[Motor kontrolü] d r C - Menüsü

Erişim

[Tüm ayarlar] ➞ [Motor parametreleri] ➞ [Motor kontrolü]

Bu Menü Hakkında

Bu menü, motor kontrolüyle ilgili parametreleri gösterir.

[IR telafisi] u F r

<table>
<thead>
<tr>
<th>Ayar (°)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...200</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Kayma telafisi] S L P ★

Kayma telafisi.

Bu parametre [Motor kontrol Türü] C t t aşağıdaki şekilde ayarlanır:

- [SVC V] V V C veya
- [U/F VC 5 nokta] u F 5 veya
- [Enerji Tasarrufu] n L d .

Motor etiket plakasında verilen hizların tam olması gerektir. Kayma ayarı, gerçek kaymadan az ise, motor, sabit durumda doğru hızda dönüyor referanstan daha düşük bir hızda dönüyor demektir.

Kayma ayarı gerçek kaymadan yüksekse, motor aşırı telafi edilmiştir ve hız dengesizdir.

<table>
<thead>
<tr>
<th>Ayar (°)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[U1] u 1 ★

5 noktalı V/F'de gerilim noktası 1.

Bu parametre [Motor Kontrol Türü] C t t, [V/F 5 nokta] u F 5 olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar (°)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...800 Vac</td>
<td>Değere göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Vac</td>
</tr>
</tbody>
</table>

[U2] u 2 ★

5 noktalı V/F'de gerilim noktası 2.

V/F profili ayarı.

Bu parametre [Motor Kontrol Türü] C t t, [V/F 5 nokta] u F 5 olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar (°)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...800 Vac</td>
<td>Değere göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Vac</td>
</tr>
</tbody>
</table>
[U3] 3 ★

5 noktalı V/F'de gerilim noktası 3.
V/F profil ayar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...800 Vac</td>
<td>Değere göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Vac</td>
</tr>
</tbody>
</table>

[U4] 4 ★

4 noktalı V/F'de gerilim noktası.
V/F profil ayar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...800 Vac</td>
<td>Değere göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Vac</td>
</tr>
</tbody>
</table>

[U5] 5 ★

5 noktalı V/F'de gerilim noktası 5.
V/F profil ayar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...800 Vac</td>
<td>Değere göre ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Vac</td>
</tr>
</tbody>
</table>

[F1] F 1 ★

5 noktalı V/F'de frekans noktası 1.
V/F profil ayar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[F2] F 2 ★

5 noktalı V/F'de frekans noktası 2.
V/F profil ayar.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>
5 noktalı V/F’den frekans noktası 3.
V/F profil ayarı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>

5 noktalı V/F’den frekans noktası 4.
V/F profil ayarı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>

5 noktalı V/F’den frekans noktası 5.
V/F profil ayarı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>

Çıkış Fazi Dönüşü
Çıkış fazı dönüşü.
Bu parametrein değiştirilmesi, üç motor fazının 2'sinin enversiyonu olarak çalışır. Bu da motorun dönüş yönünün değişmesine neden olur.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ABC]</td>
<td>R b C</td>
<td>Standart dönüş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[ACB]</td>
<td>R C b</td>
<td>Ters dönüş</td>
</tr>
</tbody>
</table>

Eylemsizlik Faktörü
Eylemsizlik faktörü
Bu parametreye şu şekilde erişilebilir:
• [Erişim Seviyesi] L R C öğesi [Uzman] E P F olarak ayarlanırsa ve
• [Motor Kontrol Türü] Ctt aşağıdaki şekilde ayarlanırsa:
 • [U/F VC 5 nokta] UF5 veya
 • [SYN_U VC] SYnU ve

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...1.000</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %40</td>
</tr>
</tbody>
</table>
Destek aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Devre dışı]</td>
<td>r n o</td>
<td>Yüksektme yok</td>
</tr>
<tr>
<td>[Dinamik]</td>
<td>d y n R</td>
<td>Dinamik takviye, mknatslama akımı değeri, motor yüküne göre değiştiğin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Sürücü, performansları optimize etmek için [Mknatslama Akımı]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i d R değerini bizzat yönetir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime, [Motor Kontrol Türü] L b b şu şekilde ayarlanırsa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>erişilemez: [Senkr. mot.] 5 y n. [Senkr.CL] F 5 y. [Rel. Mot.] 5 r V L veya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[SYN_U VC] 5 y n u olarak ayarlanmazsa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Statik]</td>
<td>S E R b</td>
<td>Statik yükseltme, mknatslama akımı değeri, motor yükünün profilini takip eder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçimi, [Takviye] b o o değerinin negatif olarak ayarlandığı konik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>motor için kullanılabilir.</td>
</tr>
<tr>
<td>[Sabit]</td>
<td>C S E L</td>
<td>Sabit takviye, mknatslama akımı motor yönü değiştiğinde korur. Yavaşlama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ve durma fazını yönetmek için ilave bir parametre ayarlanabilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L S E [Motor Kontrol Türü] L b b öğesi şu şekilde ayarlanırsa erişilebilir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Senkr. mot.] 5 y n. [Senkr.CL] F 5 y. [Rel. Mot.] 5 r V L veya [SYN_U VC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 y n u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçim ile yalnızca [Takviye] b o o dikkate alınır.</td>
</tr>
<tr>
<td>[Konik Motor]</td>
<td>C n b L</td>
<td>Konik takviye, [Motor Kontrol Türü] L b b öğesi şu şekilde ayarlanmazsa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>erişilebilir: [Senkr. mot.] 5 y n. [Senkr.CL] F 5 y. [Rel. Mot.] 5 r V L ve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[SYN_U VC] 5 y n u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçim ile, hızlanma için [Takviye] b o o ve yavaşlama için</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Yavaşlamada Takviye] b o o ayarlanabilir.</td>
</tr>
</tbody>
</table>

[Takviye] b a a

0 Hz'de değer: nominal mknatslama akımının % değeri (0’dan farklıysa dikkate alınır).
Çok yüksek bir [Takviye] b a a değeri, motorun manyetik doygunluğuyla sonuçu çıkanabilir, bu da torkun düşmesine neden olur.
Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] L R L öğesi [Uzman] E P R olarak ayarlanır ve

NOT: Senkronize motorlar için bu değerin düşük hızda kontrolü optimize etmek için ayarlanması önerilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-100...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>[Takviye Aktivasyonu] b a R öğesi [Dinamik] d y n R olarak ayarlanırsa</td>
</tr>
<tr>
<td></td>
<td>[Takviye] b a a %25 olarak ayarlanır.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %0</td>
</tr>
</tbody>
</table>
[Yavaşlamada Takviye] \(b \circ o \) 2

Nominal mıknatıslama akımının \%'si olarak değer (0'dan farklıysa dikkate alınır).

Bu parametre, durma fazında mıknatıslama akımını düşürmek için yavaşlama fazında kullanılır.

Bu parametreye şu şekilde erişilebilir:

- [Erişim Seviyesi] \(L \circ R \) öğesi [Uzman] EPr olarak ayarlanırsa ve
- [Takviye Aktivasyonu] \(b \circ R \). [Konik Motor] \(C \times G \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100...0</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: -%25</td>
<td></td>
</tr>
</tbody>
</table>

[Frek Takviye] \(F \circ R \) b

0 Hz'de değer: nominal mıknatıslama akımına erişmek için hız eşiği.

Bu parametreyle şu şekilde erişilebilir:

- [Erişim Seviyesi] \(L \circ R \) öğesi [Uzman] EPr olarak ayarlanırsa ve
- [Takviye Aktivasyonu] \(b \circ R \). [Hayır] \(n \circ R \) olarak ayarlanmazsa ve
- [Takviye Aktivasyonu] \(b \circ R \). [Sabit] \(S \times E \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>[Takviye Aktivasyonu] (b \circ R) öğesi [Dinamik] (d \times n \circ R) olarak ayarlanırsa</td>
<td></td>
</tr>
<tr>
<td>[Fren Takviye] (F \circ R) b olarak ayarlanır.</td>
<td></td>
</tr>
<tr>
<td>Fabrika ayarı: 0,0 Hz</td>
<td></td>
</tr>
</tbody>
</table>

NOT: Senkronize motorlar için bu değerin düşük hızda kontrolü optimize etmek için ayarlanması önerilir.

[Frenleme seviyesi] \(V \circ b \)

Frenleme transistör komutu seviyesi.

<table>
<thead>
<tr>
<th>Ayar (V)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>335...1130 V</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: Sürücü anma değeri gerilimine göre</td>
<td></td>
</tr>
</tbody>
</table>
[DI ile Aklama] FL - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri] ➔ [Motor kontrolü] ➔ [DI ile Aklama]

Bu Menü Hakkında

Dijital giriş ile aklamayı konfigüre edin.

[Motor aklama] FL ★

Motor aklama konfigürasyonu

TEHLIKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK PARLAMASI CİDDİ TEHLİKESİ

- Bu ayarın kullanmanın emniyetsiz bir durum doğurmadığını doğrulayın.

Bu talimatı uyulmasa, ölüme veya ağır yaralanmalara yol açacaktır.

BİLDİRİM

AŞIRI ISINMA

Bağlı motor anma değerinin, uygulanacak aki akıma uygun olduğunu doğrulayın.

Bu talimatı uyulmasa, ekipmanda maddi hasara yol açabilir.

Başlangıçta hızlı yüksek tork elde etmek için, manyetik aklamanın zaten motorda kurulu olması gerekir.

[Sürekli] FCE modunda, gücü açıkken sürücü otomatik olarak aki biriktirir.

[Sürekli değil] FC modunda, aklama motor başlatıldığında oluşur.

Aki kuruluğu ve motor miknatıslama akımına ayarlandığında, aki akımı [Nom Motor Akımı] nC (konfigüre edilmiş nominal motor akımı)增大されています.

<table>
<thead>
<tr>
<th>Ayar İ</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sürekli değil]</td>
<td>FC</td>
<td>Sürekli değil moda</td>
</tr>
<tr>
<td>[Sürekli]</td>
<td>FC</td>
<td>Sürekli modulo</td>
</tr>
<tr>
<td>[Hayır]</td>
<td>FNO</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan</td>
<td></td>
</tr>
</tbody>
</table>
Tüm ayarlar CST

[Atamayı akılama] \(F_L \), ★
Giriş atamasını akılama

BİLDİRİM

AŞIRI ISINMA
Bağlı motor anma değerinin, uygulanacak aki akıma uygun olduğunu doğrulayın.
Bu talimatla uyulmaması, ekipmanda maddi hasara yol açabilir.

Atama yalnızca [Motor aklama] \(F_L \) \(\lambda \) öğesi [Sürekli değil] \(F_n \), \(\lambda \) olarak ayarlanışına mümkündür.
Motor aklama komutuna bir DI veya bir bit ataması atanan giriş veya bit 1'deyken akılama birikir.
Bir DI veya bir bit atanmadıysa veya bir çalıştır konumu gönderildiğinde atanan DI veya bit 0'daysa, motor başlatıldığında akılama oluşur.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]-[DI8]</td>
<td>L, l...L, B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td>[DI11]-[DI16]</td>
<td>L, l...L, B</td>
<td>Dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]-[CD10]</td>
<td>C d 0 0...C d 1 0</td>
<td>[GÇ profili] (\lambda) konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]-[CD15]</td>
<td>C d 1 1...C d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]-[C110]</td>
<td>C 1 0 0...C 1 0 0</td>
<td>[GÇ profili] (\lambda) konfigürasyonunda entegre Seri Modbusu olan CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]-[C115]</td>
<td>C 1 1 1...C 1 1 5</td>
<td>entegre Seri Modbusu olan CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]-[C210]</td>
<td>C 2 0 1...C 2 1 0</td>
<td>[GÇ profili] (\lambda) konfigürasyonunda CANopen® fieldbus modülü olan CMD.01...CMD.20 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]-[C215]</td>
<td>C 2 1 1...C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD.21...CMD.20 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]-[C310]</td>
<td>C 3 0 1...C 3 1 0</td>
<td>[GÇ profili] (\lambda) konfigürasyonunda fieldbus modülü olan CMD.01...CMD.30 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]-[C315]</td>
<td>C 3 1 1...C 3 1 5</td>
<td>entegre fieldbus modülü olan CMD.31...CMD.35 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]-[C510]</td>
<td>C 5 0 1...C 5 1 0</td>
<td>[GÇ profili] (\lambda) konfigürasyonunda Ethernet’i olan CMD.01...CMD.50 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]-[C515]</td>
<td>C 5 1 1...C 5 1 5</td>
<td>[GÇ profili] (\lambda) entegre AES modülü olan CMD.51...CMD.55 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E tahrirlerinde erişilebilir.

[Açı ayar tipi] \(R 5 \) ★
Otomatik açı ayar tipi.
Bu parametre [Motor Kontrol Türü] \(C \) \(\lambda \) şu şekilde ayarlanırsa erişilebilir:
• [Senkr. mot.] \(S \ y_n \) veya
• [Senkr.CL] \(F \ y \) veya
• [SYN_U VC] \(S \ y_n \) veya
• [Rel. Mot.] \(S \ y \) veya

[PSI hizalama] \(P \) \(S \) \(\lambda \) ve [PSIO hizalama] \(P \) \(S \) \(\lambda \) tüm senkron motor türleri için çalışıyor. [SPM hizalama] \(P \) \(P \) \(\lambda \) ve [IPM hizalama] \(P \) \(P \) \(\lambda \) senkron motor türü baglı olarak performansları artırır. [Dönel Akım Enjeksiyon] \(r \) \(C \) \(\lambda \), [PSI hizalama] \(P \) \(S \) \(\lambda \) ile [PSIO hizalama] \(P \) \(S \) \(\lambda \) öğelerin beklenen performansı vermediği durumlarda kullanılabilir.
<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PSI hizalama]</td>
<td>P Ν R</td>
<td>IPM motoru hizalaması. Dahili Gömüldü Kalıcı Miknatis motoru (bu tür motorda genellikle yüksek çıkıntı seviyesi vardır) için hizalama modu. Standart hizalama modundan daha az gürültülü olan yüksek frekanslı enjeksiyon kullanılır.</td>
</tr>
<tr>
<td>[PSI hizalama]</td>
<td>P 5 ,</td>
<td>Darbeli sinyal enjeksiyonu. Rotor hareketi olmadan standart hizalama modu. Açlık ölçüsü, statör akımı tepkisinin geniş frekans açıları üzerinden bir darbeli sinyal enjeksiyonuna izlenmesiyle gerçekleştirilir.</td>
</tr>
<tr>
<td>[Hızalama yok]</td>
<td>n o</td>
<td>Hızalama yok</td>
</tr>
</tbody>
</table>
Hız Çevrimi Optimizasyonu - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri] ➔ [Motor kontrolü] ➔ [Hız Çevrimi Optimizasyonu]

Bu Menü Hakkında

Yüksek Performanslı Hız Çevrimi Ayarı İçin Önerilen Prosedür

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor parametrelerini girin. Daha sonra bunlardan birini değiştirirseniz, bu tam prosedürü yeniden gerçekleştirmeniz gerekir.</td>
</tr>
<tr>
<td>3</td>
<td>Önce [İleri besleme] F F P öğesi 0 (sonraki sayfada grafiklere bakın) olarak ayarlayarak hız çevrimi yanıtı süresini kontrol edin.</td>
</tr>
<tr>
<td>5</td>
<td>Rampa izlemeyi optimize etmek için en iyi sonuç alınamak için [İleri besleme] F F P ile eylemsizleme parametresini önceki sayfada gösterilen şekilde artırın.</td>
</tr>
<tr>
<td>6</td>
<td>İleri besleme süresi bant genişliğini rampa izlemeyi daha da iyileştirmek için veya hız referansında gürültüyü filtrelemek için gerekirse ayarlanabilir (sonraki sayfada gösterildiği gibi).</td>
</tr>
</tbody>
</table>

Yüksek Performanslı Hız Çevrimi - İleri Besleme F F P Parametrelerini Ayarlama

FFP=0 iken ilk tepki

R: Referans bölümü

FFP değerinde artış

R: Referans bölümü
Yüksek Performanslı Hız Çevrimi - [İleri Besleme Bant Genişliği] \(\text{FFV} \) Parametresini Ayarlama

Bu dinamik tork ileri besleme süresinin bant genişliğini ayarlamak için kullanılır. Bu parametrenin rampadaki etkisi aşağıda gösterilmiştir. \(\text{FFV} \) değerini azaltma hız referansında (tork dalgalanması) gürültü etkisini azartır. Ancak, rampa ayarlarında çok büyük bir azalma (kisa rampalarda) bir geçikmeye neden olabilir ve rampa izleme bundan olumsuz etkilenebilir. \(\text{FFV} \) değerini yükselme rampanın daha yakından izlenmesini sağlar, ancak gürültü hassasiyetini de yükseltir. Optimum ayar, rampa izleme ve varolan gürültü hassasiyeti arasında en iyi uyuşmaya erişilerek elde edilir.

\(\text{FFV} \) ayarlar

\[\text{FFV}=\%100 \text{ ile ilk tepki} \]
\[\text{R: Referans bölümü} \]

\[\text{FFV} \text{ değerinde artış} \quad \text{R: Referans bölümü} \]

\[\text{FFV} \text{ değerinde azalış} \quad \text{R: Referans bölümü} \]
[Hız çevrimi türü] S $ L

Hız çevrimi türü.
Bu parametre [Motor kontrol türü] $ L $ öğesi şu şekilde ayarlanırsa erişilebilir:
• [U/F VC 5 nokta] $ F $ veya
• [SYN_U VC] $ Y $ $ U $.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>$ S d $</td>
<td>Standart hız çevrimi Fabrika ayarı</td>
</tr>
</tbody>
</table>

[Hız oransal kazanç] S $ P G

Hız çevrimi oransal kazanç.
Bu parametre şu şekilde erişilebilir:
• [Hız çevrimi tipi] $ S L $ öğesi [Standart] $ S d $ olarak ayarlanırsa ve
• [Motor kontrol türü] $ L $ $ d $ şu şekilde ayarlanmazsa:
 • [U/F VC 5 nokta] $ F $ veya
 • [SYN_U VC] $ Y $ $ U $.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...1.000</td>
<td>Ayar aralığı Fabrika ayarı: %40</td>
</tr>
</tbody>
</table>

[Hız zaman integrali] S $ i b

Hız çevrimi entegral süresi sabiti.
Bu parametre şu şekilde erişilebilir:
• [Hız çevrimi tipi] $ S L $ öğesi [Standart] $ S d $ olarak ayarlanırsa ve
• [Motor kontrol türü] $ L $ $ d $ şu şekilde ayarlanmazsa:
 • [U/F VC 5 nokta] $ F $ veya
 • [SYN_U VC] $ Y $ $ U $.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...65.535 ms</td>
<td>Ayar aralığı Fabrika ayarı: Sürücü anma değerine göre.</td>
</tr>
</tbody>
</table>

[K hızı çevr. filtr.] S $ F C

Hız filtresi katsayısı (0(IP) ila 1(PI)).

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...100</td>
<td>Ayar aralığı Fabrika ayarı: 65</td>
</tr>
</tbody>
</table>

[Hız tahmini filtre süresi] F $ F H

Tahmini hızın filtre süresi.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...100,0 ms</td>
<td>Ayar aralığı Fabrika ayarı: Sürücü anma değerine göre</td>
</tr>
</tbody>
</table>
[Frekans Çevrimi Kararlılığı] $R A$

Frekans çevrimi kararlılığı (Hız çevrimi بصورة مفهوم تكامل). Bu parametre şu şekilde erişilebilir:
- [Hız çevrimi tipi] $S L$ öğesi [Standart] $S L$ olarak ayarlanırsa ve
- [Motor kontrol türü] L L şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] U F veya
 - [SYN_U VC] $Y N U$

Kararlılık: Makinenin dinamikine göre bir hız geçiciliğinden sonra dönüşü sabit duruma adapte etmek için kullanılır. Kontrol çevrimi azalmasını sağlamak ve böylece aşırı hızı azaltmak için kademeli olarak kararlılığı artırın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı: %20</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %20</td>
</tr>
</tbody>
</table>

[Frekans Çevrimi Kazanımı] $L C$

Frekans çevrimi kazanımı (Hız çevrimi bant genişliği). Bu parametre şu şekilde erişilebilir:
- [Hız çevrimi tipi] $S L$ öğesi [Standart] $S L$ olarak ayarlanırsa ve
- [Motor kontrol türü] L L şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] U F veya
 - [SYN_U VC] $Y N U$

Makine hızı geçicilinin tepkisini dinamiklere göre adapte etmek için kullanılır. Yüksek dirençli torka sahip makineler için, hızlı çevrilerin yüksek eylemsizliği kazancı kademeli olarak artırın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı: %20</td>
</tr>
</tbody>
</table>

[İleri Besleme] $F P$

İleri Besleme süresi aktivasyonu ve ayarı. Bu parametre şu şekilde erişilebilir:
- [Hız çevrimi tipi] $S L$ öğesi [Standart] $S L$ olarak ayarlanırsa ve
- [Motor kontrol türü] L L şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] U F veya
 - [SYN_U VC] $Y N U$

Yüksek performanslı regülatör ileri besleme süresi yüzde 100. [Uygulama Eylemsizliği] $J R P L$ değeri kullanılarak hesaplanan süresine karşılık gelir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar aralığı: %0</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0</td>
</tr>
</tbody>
</table>
İleri Besleme Bant Genişliği | F F V ★

İleri besleme süresinin filtrresinin bant genişliği.
Bu parametreye şu şekilde erişilebilir:
- [Hız çevrimi tipi] | S S L ögesi [Standart] S t d olarak ayarlanırsa ve
- [Motor kontrol türü] | t t t şu şekilde ayarlanmazsa:
 - [U/FVC 5 nokta] u F 5 veya
 - [SYNU VC] S Y n u.

Önceden tanımlanan değerin yüzdesi olarak sürekli performans hızlı çevir ileri besleme süresinin bant genişlikleri.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| %20...500 | Ayar aralığı
| | Fabrika ayar: %100 |

Harici İleri Besleme Ataması | E F F ★

Harici ileri besleme modu

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Hayır] | n o | Analog giriş atandı
| | Fabrika ayar |
| [AI1]...[AI3] | R , 1...R , 3 | Analog giriş AI1...AI3
| | NOT: AI3 seçimi, 22kW'tan büyük gücü olan sürücülerde erişilebilir. | |
| [AI4]...[AI6] | R , 4...R , 5 | VW3A3203 G/C uzatma modülü takılmsa analog giriş AI4...AI5 |
| [Ref.Frek-Uzk.Term] | L C C | Uzaktan terminal üzerinden Referans Frekansı |
| [Ref. Frek-Modbus] | P d b | Modbus üzerinden referans frekansı |
| [Ref. Frek-CANopen] | C A n | CANopen modülü takılmsa CANopen üzerinden referans frekansı |
| [Ref. Frek-İlet. Modül] | n E t | Fieldbus modülü takılımsa fieldbus modülü üzerinden referans frekansı |
| [Gömülü Ethernet] | E t H | Gömülü Ethernet |
| | NOT: Bu seçime ATV340•••N4E sürücülerinde erişilebilir. |
| [D17 Darbe Giriş]...[D18 Darbe Giriş] | P , 7...P , B | Dijital giriş D17...D18 darbe girişleri olarak kullanılır |
| | NOT: Bu seçime 22 kW'tan büyük gücü olan sürücülerde erişilebilir. |
| [RP] | P , | Darbe giriş |
| | NOT: Bu seçime 30 kW'tan küçük gücü olan sürücülerde erişilebilir. |
| [Kodlayıcı] | P G | Bir kodlayıcı modülü takılısyada veya katıştırılmış kodlayıcı kullanılıyorsa kodlayıcı referansı |
| | NOT: Katıştırılmış kodlayıcı yalnızca 22 kW'ye kadar olan sürücülerde kullanılabilir. |
[Eylemsizlik Çoklu Katsayısı.] \(J \bar{N} \mu L \)

Eylemsizlik için ölçekte fakتورü görüntülênir.
Bu parametreye şu şekilde erişilebilir:
- [Hız çevrimi tipi] \(S \leq L \) öğesi [Standart] \(S \leq d \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(C \leq d \) şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] u F 5 veya
 - [SYN_U VC] S Y n u.

Salt okunur modda sürücü tarafından hesaplanan [Uygulama Eylemsizliği] \(J R P L \) ve [Tahmini uygulama eylemsizliği] \(J E S \) parametreleri için artış: 0,1 gm², 1 gm², 10 gm², 100 gm², 1000 gm².

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...6553,5 gm²</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 gm²</td>
</tr>
</tbody>
</table>

[Tahmini uygulama eylemsizliği] \(J E S \)

Tahmini uygulama eylemsizlidir.
Bu parametreye şu şekilde erişilebilir:
- [Hız çevrimi tipi] \(S \leq L \) öğesi [Standart] \(S \leq d \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(C \leq d \) şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] u F 5 veya
 - [SYN_U VC] S Y n u.

Sürme sırasında eylemsizlik, sürücü tarafından motor parametrelerine uyunşuk şekilde salt okunur modda tahmin edilir. Hız çevrimi varsayanı ayarları bu eylemsizlikten sürücü tarafından belirlenir.
Şunun tarafından verilen artış: [Eylemsizlik Çoklu Katsayısı.] \(J \bar{N} \mu L \): - 0,1 gm², 1 gm², 10 gm², 100 gm² veya 1000 gm².

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...9.999 kg.m²</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: –</td>
</tr>
</tbody>
</table>

[Uygulama Eylemsizlik Katsayısı.] \(J A C o \)

Ayarlanabilir uygulama eylemsizlik oranı.
Bu parametreye şu şekilde erişilebilir:
- [Hız çevrimi tipi] \(S \leq L \) öğesi [Standart] \(S \leq d \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(C \leq d \) şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] u F 5 veya
 - [SYN_U VC] S Y n u.

[Uygulama Eylemsizliği] \(J R P L \) = [Tahmini uygulama eylemsizliği] \(J E S \) \(J R P L \) parametreleri arasında sabitleyici katsayı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10...100,00</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1</td>
</tr>
</tbody>
</table>
[Uygulama Eylemsizliği] \(L R P L \) ★

Ayarlanabilir uygulama eylemsizliği.

Bu parametreye şu şekilde erişilebilir:
- [Hız çevrimi tipi] \(S L \) öğesi [Standart] \(S L d \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(F L \) öğesi şu şekilde ayarlanmazsa:
 - [U/F VC 5 nokta] \(F U \) veya
 - [SYN_U VC] \(YN \).

Hız çevrimi ayarlarını optimize etmek için sürücü tarafından kullanılan ayarlanabilir uygulama eylemsizliği).

Şunun tarafından verilen artış: [Eylemsizlik Çoklu Katsayısı.] \(JMUL \)

NOT: Bir motor parametresi değiştirildiğinde tahmini eylemsizlik yeniden hesaplanır ve güncellenir (parametreler [Tahmini uygulama eylemsizliği] \(J E L \) ve [Eylemsizlik Çoklu Katsayısı.] \(JNUL \)).

[Uygulama Eylemsizliği] \(J R P L \) ayrıca, [Tahmini uygulama eylemsizliği] \(J E L 5 \) yeni değerine göre varsayılan değerine döner.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...655,35 kgm²</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: -</td>
</tr>
</tbody>
</table>

[Kodlayıcı filtresi aktivasyonu] \(FF R \) ★

Kodlayıcı geri besleme filtresi aktivasyonu.

Bu parametreye erişilebilmesi için bir kodlayıcı modülü takılı olması ya da gömülü kodlayıcı kullanılamalıdır.

Bu parametreye şu şekilde erişilebilir:
- [Kodlayıcı kullanımı] \(ENU \) öğesi [Hayır] \(n o \) a’ya ayarlanmazsa veya
- [Göm Kod Kullanıcı] \(ENU \) öğesi [Hayır] \(n o \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n o)</td>
<td>Filtre devre dışı bırakıldı</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>Filtre etkinleştirildi</td>
</tr>
</tbody>
</table>

[Kodlayıcı filtresi değeri] \(FF r \) ★

Kodlayıcı geri besleme filtresi değeri.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Sevyesi] \(L R C \) öğesi [Uzman] \(EF R \) olarak ayarlanırsa ve
- [Kodlayıcı filtresi aktivasyonu] \(FF R \) [Evet] \(Y E 5 \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...40,0 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: kodlayıcı anma değerlerine göre</td>
</tr>
</tbody>
</table>

[Notch Filtresi Aktivasyonu] \(n F R \) ★

Notch filtresi aktivasyonu.

Bu parametre notch filtresi fonksiyonunun etkinleştirilmesi için başımsız notch filtresi konfigüre edilebilir.

Notch filtresi merkez frekansı ayarlanmalı veya mekanik rezonans frekansından biraz yüksek olmalıdır. Ana görev rezonans frekansını mümkün olduğunda doğru tanımlamaktır.

Devreye almak için aşağıdaki eylemleri gerçekleştirin:
1. Motor verilerini ayarla
2. Uygulama verilerini ayarla
3. Hız çevrimi ayarlarını yap
4. Titreşim olduğunda aşağıda açıkladığı gibi Notch filtresi ayarlarınızı yapın
5. Performanslar Tamam değilse adım 3’ten yeniden başlayın
Bu parametre şu şekilde erişilebilir:

- Bir kodlayıcı modülü takıldıysa veya gömülü kodlayıcı kullanılsa.
- [Erişim Seviyesi] LRC öğesi [Uzman] EPr olarak ayarlanır ve

Notch filtresi ayarları

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>İlk</td>
<td>1st</td>
<td>Notch filtresi 1 etkin</td>
</tr>
<tr>
<td>2.</td>
<td>2nd</td>
<td>Notch filtresi 2 etkin</td>
</tr>
<tr>
<td>Tümü</td>
<td>ALL</td>
<td>Notch filtresi 1 ve 2 etkin</td>
</tr>
<tr>
<td>Hayır</td>
<td>no</td>
<td>Etkin notch filtresi yok</td>
</tr>
</tbody>
</table>

Fabrika aya
Notch Filtresi Frekansı 1 $\nu F F$

Notch filtresi 1 merkezi frekansı.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] $L R E$ öğesi [Uzman] $E P R$ olarak ayarlanırsa ve
- [Hız çevrimi tipi] $S S L$ öğesi [Yüksek Performans] $H P F$ olarak ayarlanırsa ve
- [Notch Filtresi Aktivasyonu] $\nu F A$ şu şekilde ayarlanırsa:
 - ![İlk] $I S L$ veya
 - ![Tüm] $R L L$.

Ayar	**Açıklama**
10,0...150,0 Hz | Ayar aralığı
Fabrika ayarı: 15,0 Hz

Notch Filtresi Bant Genişliği 1 $\nu F b$

Notch filtresi 1 bant genişliği.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] $L R E$ öğesi [Uzman] $E P R$ olarak ayarlanırsa ve
- [Hız çevrimi tipi] $S S L$ öğesi [Yüksek Performans] $H P F$ olarak ayarlanırsa ve
- [Notch Filtresi Aktivasyonu] $\nu F A$ şu şekilde ayarlanırsa:
 - ![İlk] $I S L$ veya
 - ![Tüm] $R L L$.

Bu parametre notch filtresi 1’nin bant genişliğini tanımlar. Yük rezonans frekansı değiştiğinde (araba konumu veya yük) yüksek bant genişliği sahip filtre daha iyi karaşıklik marjını sağlar.

NOT: Bant genişliğini yükseltme beklenen sürücü dinamiğine karşıabilir (hız çevrinin dinamiğini azaltarak).

Ayar	**Açıklama**
%10...400 | Ayar aralığı
Fabrika ayarı: %100

Notch Filtresi Derinliği 1 $\nu F d$

Notch filtresi 1 derinliği.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] $L R E$ öğesi [Uzman] $E P R$ olarak ayarlanırsa ve
- [Hız çevrimi tipi] $S S L$ öğesi [Yüksek Performans] $H P F$ olarak ayarlanırsa ve
- [Notch Filtresi Aktivasyonu] $\nu F A$ şu şekilde ayarlanırsa:
 - ![İlk] $I S L$ veya
 - ![Tüm] $R L L$.

Bu parametre, merkezi frekansta notch filtresi 1’nin kazancını tanımlar. NFD1=%100 iken hiç hiçbir filtre uygulanmaz.

Ayar	**Açıklama**
%0...99 | Ayar aralığı
Fabrika ayarı: %10
[Notch Filtresi Frekansı 2] \(n F F \geq \)

Notch filtresi 2 merkezi frekansı.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P r \) olarak ayarlanır ve
- [Hız çevrimi tipi] \(S S L \) öğesi [Yüksek Performans] \(H P F \) olarak ayarlanır ve
- [Notch Filtresi Aktivasyonu] \(n F A \) şu şekilde ayarlanır:
 - [İkinci] \(Z n d \) veya
 - [Tümü] \(R L L \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0...150,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 85,0 Hz</td>
</tr>
</tbody>
</table>

[Notch Filtresi Bant Genişliği 2] \(n F b \geq \)

Notch filtresi 2 bant genişliği.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P r \) olarak ayarlanır ve
- [Hız çevrimi tipi] \(S S L \) öğesi [Yüksek Performans] \(H P F \) olarak ayarlanır ve
- [Notch Filtresi Aktivasyonu] \(n F A \) şu şekilde ayarlanır:
 - [İkinci] \(Z n d \) veya
 - [Tümü] \(R L L \).

Bu parametre notch filtresi 2'nin bant genişliğini tanımlar. Yük rezonans frekansı değiştiğinde (araba konumu veya yük) yüksek bant genişliğine sahip filtre daha iyi kararlılık marjını sağlar.

NOT: Bant genişliğini yükseltme beklenen sürücü dinamiğine karışabilir (hız çevriminin dinamiğini azaltarak).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%10...400</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>

[Notch Filtresi Derinliği 2] \(n F d \geq \)

Notch filtresi 2 derinliği.

Bu parametreye şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P r \) olarak ayarlanır ve
- [Hız çevrimi tipi] \(S S L \) öğesi [Yüksek Performans] \(H P F \) olarak ayarlanır ve
- [Notch Filtresi Aktivasyonu] \(n F A \) şu şekilde ayarlanır:
 - [İkinci] \(Z n d \) veya
 - [Tümü] \(R L L \).

Bu parametre, merkezi frekansta notch filtresi 2'nin kazancını tanımlar. \(n F d \geq \)%100 iken hiç filtre uygulanmaz.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...99</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %25</td>
</tr>
</tbody>
</table>
[Motor kontrolü] \(d \& C \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Motor parametreleri] \(\rightarrow \) [Motor kontrolü]

Bu Menü Hakkında

Bu menü, motor kontrolüyle ilgili parametreleri gösterir.

[HF enj. aktivasyonu] \(H F \) ,

HF enjeksiyonu aktivasyonu.
Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P F \) olarak ayarlanırsa ve
- [Motor kontrol türü] \(C \& L \) aşağıdaki şekilde ayarlanmazsa:
 - [Senkr. mot.] \(S \) \& \(n \) veya
 - [Senkr.CL.] \(F \) \& \(S \) veya
 - [SYN_U VC] \(S \) \& \(n \) veya
 - [Rel. Mot.] \(S \) \& \(V \) \& \(C \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açılamalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayır</td>
<td>(n)</td>
<td>HF enjeksiyonu etkin değil</td>
</tr>
<tr>
<td>Evet</td>
<td>(Y & 5)</td>
<td>HF enjeksiyonu etkin</td>
</tr>
</tbody>
</table>

[HF enjeksiyonu frekansı] \(F r \) ,

HF enjeksiyonu sinyalinin frekansı.
Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P F \) olarak ayarlanırsa ve
- [HF enj. aktivasyonu] \(H F \) öğesi [evet] \(Y \& 5 \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>250...1000 Hz</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 500 Hz</td>
</tr>
</tbody>
</table>

[HF PLL bant genişliği] \(S P b \)

HF PLL’nin bant genişliği.
Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P F \) olarak ayarlanırsa ve
- [HF enj. aktivasyonu] \(H F \) öğesi [evet] \(Y \& 5 \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...400</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: %100</td>
</tr>
</tbody>
</table>

[Akım Seviyesi Hizalaması] \(L r \)

HF hizalamasının akım seviyesi.
Bu parametreyle şu şekilde erişilebilir:
- [Erişim Seviyesi] \(L R C \) öğesi [Uzman] \(E P F \) olarak ayarlanırsa ve
- [HF enj. aktivasyonu] \(H F \) öğesi [evet] \(Y \& 5 \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: %50</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

[Takviye seviyesi hizalaması] S_{IR}

IPMA hizalaması için takviye seviyesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...200</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>Fabrika ayarı: %100</td>
<td></td>
</tr>
</tbody>
</table>

[Açı hatası Telafisi] PEC

Açı konumu hatası telafisi.
Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] LAC öğesi [Uzman] EP_{EC} olarak ayarlanırsa ve

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...500</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>Fabrika ayarı: %0</td>
<td></td>
</tr>
</tbody>
</table>

Çıkış Gerilimi Yönetimi ve Aşırı Modülasyon

[Aşırı modül. Aktivasyon] $a \land R$

Aşırı modülasyon aktivasyonu.

Aşırı modülasyonun amacı:
- sürücü yüklenildiğinde DC barasındaki gerilim kaybını telafi etmek.
- yüksek motor geriliminde akım telafisini azaltmak için maksimum olası gerilimi artırmak ve motordaki termal etkiye sınırılmaktır.

Fabrika ayarlarında, sürücünün ortasının sağladığı motor şuna sahiptir:
- DC bara beslemesi bağlı null oımayan ortak bir çıkış gerilimi modu.
- ana güç kaynağına bağlı DC bara beslemesine bağlı olarak maksimum olası değerle sınırı çıkış gerilimi.

1 Çıkış gerilimi sınırlamasının maksimum olası değeri (varsayılan değer)
2 Maksimum sınırlama altında sayısal değerle $VLim$
3 Çıkış voltaşi
4 Tam aşırı modülasyon ile çıkış gerilimi sınırlaması (altgen biçim)
Çıkış gerilimi sınırlandırması

Bu parametre şu durumda sayısal bir değere ayarlanamaz: [Aşırı modül] [Aktivasyon] o V n R öğesi [DOLU] F u L L olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tam]</td>
<td>F u L L</td>
<td>Aşırı modülasyon aktif ve dolu. Çıkış gerilimi sınırlandırması, DC bara gerilimine bağlı olarak normal bir altgeni açıklar. Faz gerilimlerine faz sinüzoidal değildir.</td>
</tr>
</tbody>
</table>

[Çıkış gerilimi sınırlaması] V L n

Çıkış gerilimi sınırlandırması.
Bu parametrein amacı çıkış gerilimi sınırmasını maksimum varsayılan değerden daha düşük bir değere değiştirmektir.
Bu parametrein sayısal değerinin birimi faz rms gerilimine fazdadır.
Bu parametre şu durumda sayısal bir değere ayarlanamaz: [Aşırı modül] [Aktivasyon] o V n R öğesi [DOLU] F u L L olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
[Değiştirme frekansı] SWF - Menüsü

Erişim

[Tüm ayarlar] ➔ [Motor parametreleri] ➔ [Değiştirme frekansı]

[Değiştirme frekansı] SF_F

Tahrik değiştirme frekansı.

Ayar aralığı: [Mot. aşırı ger.sınrl.] parametresi konfigür edilmişse maksimum sınır 4 kHz SWL ile sınırlanır.

[Sinüs Filtre Aktive] OFI, değeri, [Evet] YES olarak ayarlanmasıyla minimum değer 2 kHz'dir ve maksimum değer, tahrik anma değerlerine göre 6 kHz ya da 8 kHz ile sınırlıdır.

NOT: Aşırı sıcaklık artış durumunda tahrik, değiştirme frekansını otomatik olarak düşürür ve sıcaklık normale döndüktten sonra sıfırlar.

Yüksek hızlı motorlarda, PWM frekansının [Değiştirme frekansı] SF_F 8, 12 kHz veya 16 kHz değerine yükseltilmesi tavsiye edilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>2...8 veya 16 kHz tahrik değerlerine göre</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 4,0 kHz veya 2,5 kHz tahrik değerlerine göre</td>
</tr>
</tbody>
</table>

[Gürültü Azaltma] nr_d

Motor gürültüsü azaltma.

Rastgele frekans modülasyonu, sabit bir frekansta oluşabilecek her tür rezonansı önlemeye yardımcı olur.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>nO</td>
<td>Sabit frekans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>YES</td>
<td>Düzensiz modülasyonlu frekans</td>
</tr>
</tbody>
</table>

[Değiştirme.Frek.Tipi] SF_F^*

Değiştirme frekansı tipi.

Tahriğin dahili sıcaklığı çok yüksek olduğunda, motor değiştirme frekansı değiştirilir (düşürilir).

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SFR tip 1]</td>
<td>HF_1</td>
<td>İstima kayıbi optimizasyonu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistemin, değiştirme frekansını motor freksansına göre uyarlamasına olanak verir. Bu ayar, tahriğin verimliliğini arttırır ve tahriğin ısı kaybını optimize eder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 215
Dalgalanma gerilimi sınırlanması.
Bu fonksiyon motor aşırı akımlarını sınırlar ve aşağıdaki uygulamalarda yararlıdır:
- NEMA motorları
- Eski ya da düşük kaliteli motorlar
- İş mili motorları
- Yeniden sargılı motorlar

230 Vac’da kullanılan 230/400 Vac motorlar için veya tahrikle motor arasındaki kablonun uzunluğu aşağıdaki değerleri geçmeyorsa bu parametre [Hayır] \(n \) olarak ayarlanmış şekilde kalır:
- ekransız kabloyla 4 m
- ekranlı kabloya 10 m

NOT: [Mot.aşırıger.sınrl.] S V L [Evet] \(Y \) \(E \) \(S \) olarak ayarlanırsa maksimum değiştirme frekansı [Değiştirme frek] \(S F \) değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n)</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(Y) (E) (S)</td>
<td>Fonksiyon aktif</td>
</tr>
</tbody>
</table>

Ayar

Genel tahrik performansını korumak için \(S \) \(P \) değerini gereksiz yere artırmayın.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) µs</td>
<td>(6)</td>
<td>6 µs</td>
</tr>
<tr>
<td>(8) µs</td>
<td>(8)</td>
<td>8 µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>(10) µs</td>
<td>(10)</td>
<td>10 µs</td>
</tr>
</tbody>
</table>
Alt bölüm 8.2
[Sistren birimlerini tanımla]

[Sistren birimleri birle] 5 ü C - Menüsü

Erişim

[Tüm ayarlar] ➔ [Sistren birimleri birle]

Bu Menü Hakkında

Konfigürasyon, devreye alma, çalışma ve bakım kolaylaştırmanın için tahrik uygulama üniteleri kullanılır.

Uygulama üniteleriyle ilgili olan fiziksel bağlantılar şunlardır:
- Sıcaklık değerleri
- Akım değerleri

NOT: Bazı diğer varsayılan sistem üniteleri, konfigüre edilebilir sistem ünitelerinden ya da diğer parametrelerden otomatik olarak düşürürlür.

Sistem ünitesi, varsayılan olarak bütün iletişim parametrelerine ve HMI'ya (Ekran Terminali, Web sunucusu, DTM tabanlı yazılım) uygulanır.

Bir sistem ünitesi değiştirildiği zaman, değerler yeniden ölçeklendirilmez. Sayısal değerler muhafaza edilir ancak bu değerlerin anlamı aynı değildir:
- Bir değişiklikten sonra, ürünün davranışı değişmeyecektir (sistem rakamsal olarak aynı kalır).
- Yeni değerler yeni ünite iletişimi ve da HMI'ya yazılıp ve ardından davranışı etkilenir. Bu durumda, bütün parametreler yeni ünitede gore yeniden konfigür edilir.
- Sistem ünite parametrelerinde yapılan bir değişiklik nedeniyle sorunların oluşmasını önlemek için sistem üniteleri sadece ürünün kurulumu esnasında ve fonksiyonların devreye alınmasından önce değiştirilmelidir.

Fiziksel değerlerin hassasiyeti, üniteyle aynı zamanda seçilir.

Değerler varsayılan olarak işaretlendirilir.

Varsayılan değerler aralığı şu şekildedir:

<table>
<thead>
<tr>
<th>16 bit değeri</th>
<th>32 bit değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32.768...32.767</td>
<td>-2.147.483.648...2.147.483.648</td>
</tr>
</tbody>
</table>

[Sıcaklık birimi] 5 ü P

Sıcaklık için kullanılan varsayılan sistem uygulaması ünitesi.

Mevcut sıcaklık üniteleri:

<table>
<thead>
<tr>
<th>Birim</th>
<th>Sembol</th>
<th>Dönüştürme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selsiyus Derecesi</td>
<td>°C</td>
<td>–</td>
</tr>
<tr>
<td>Fahrenhayt Derecesi</td>
<td>°F</td>
<td>TF = 9/5*Tc+32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,1°C]</td>
<td>D / C</td>
<td>0,1 °C Fabrika ayarı</td>
</tr>
<tr>
<td>[0,1°F]</td>
<td>D / F</td>
<td>0,1 °F Fabrika ayarı</td>
</tr>
</tbody>
</table>
Para birimi listesi | S u į u

Akım için kullanılan varsayılan sistem uygulaması ünitesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EURO]</td>
<td>€uro</td>
<td>Euro Fabrika ayarı</td>
</tr>
<tr>
<td>[Dolar]</td>
<td>dollar</td>
<td>Dolar</td>
</tr>
<tr>
<td>[Sterlin]</td>
<td>Pound</td>
<td>Sterlin</td>
</tr>
<tr>
<td>[Kron]</td>
<td>kr</td>
<td>Kron</td>
</tr>
<tr>
<td>[Renminbi]</td>
<td>rMB</td>
<td>Renminbi</td>
</tr>
<tr>
<td>[Diğer]</td>
<td>other</td>
<td>Diğer</td>
</tr>
</tbody>
</table>
Alt bölüm 8.3

[Komut ve Referans] C - P - Menüsü

Erişim

[Tüm ayarlar] ➔ [Komut ve Referans]

Komut ve Referans Kanalları Parametresine Erişilebilir

Çalıştırma komutları (ileri, geri, durdurma gibi) ve referanslar aşağıdaki kanallar kullanılarak gönderilabilir:

<table>
<thead>
<tr>
<th>Komut</th>
<th>Referans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminaller: Dijital giriş DI</td>
<td>Terminaller: AI analog girişleri, darbe girişı</td>
</tr>
<tr>
<td>Ekran Terminali</td>
<td>Ekran Terminali</td>
</tr>
<tr>
<td>Dahili Modbus</td>
<td>Dahili Modbus</td>
</tr>
<tr>
<td>CANopen®</td>
<td>CANopen</td>
</tr>
<tr>
<td>Fieldbus modülü</td>
<td>Fieldbus modülü</td>
</tr>
<tr>
<td>–</td>
<td>Ekran Terminali aracılığıyla +/- hızı</td>
</tr>
<tr>
<td>Entegre Ethernet</td>
<td>Entegre Ethernet</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E sürücülerinde erişilebilir.

Sürücünün davranış aşağıdaki gereksinimlere göre uyalar:\n
- **[Ayn değil]** 5, 7: Komut ve referans, aynı kanal üzerinden gönderilir.

NOT: Ekran Terminali öğesinden gelen durdurma komutları, terminaller aktif komut kanalı olmasa da aktif kalır.
[Ayrı değil] için Referans Kanalı \(S \), [Ayrı] \(S E P \) ve [I/O profil] \(I/O \) Konfigürasyonları, PID Yapılandırılmadı

(1) **Not:** Zorlamalı lokal, [I/O]’da aktif değildir.

Siyah kare, fabrika ayar atamasını temsil eder.

Fr1: terminaler (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet, DI7 Darbe Girişi, DI8 Darbe Girişi.

Fr1b, SEP ve I/O için: terminaler (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet, DI7 Darbe Girişi, DI8 Darbe Girişi.

Fr2: terminaler (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet ve DI aracılığıyla Ref Frek.
Tüm ayarlar CST-

[Ayrı değil] için Referans Kanalı \(S \), [Ayrı] \(S E P \) ve [I/O profili] \(R \) Konfigürasyonları, Terminallerde PID Referanslarıyla yapılandırılmış PID

(1) Not: Zorlamalı lokal, [I/O profili] içinde aktif değildir.
(2) Rampalar, PID fonksiyonu otomatik modda aktfse aktif değildir.

Siyah kare, fabrika ayarı atamasını temsil eder.

Fr1: terminaller (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet, DI7 Darbe Giriş, DI8 Darbe Giriş.

Fr1b, SEP ve IO için: terminaller (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet, DI7 Darbe Giriş, DI8 Darbe Giriş.

Fr1b, SIM için: terminaller (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet, DI7 Darbe Giriş, DI8 Darbe Giriş ise erişilebilir.

Fr2: terminaller (I/O genişletme modülü dahil), Ekran Terminali, entegre Modbus, CANopen®, dahili Ethernet ve DI aracılığıyla Ref Frek.

[Ayrı değil] için Komut Kanalı. \(S \), \(R \) konfigürasyon

Referans ve komut, ayrı değil.
Komut kanalı referans kanalı tarafından belirlenir. Fr1, Fr2, rFC, Fla ve Flac parametreleri referans ve komut için ortaktır.

Örnek: Referans Fr1 \(R = A \), I (terminallerde analog giriş) ise kontrol DI (terminallerde dijital giriş) yoluyladır.
Siyah kare, fabrika aya atamasını temsil eder.

[Ayn] S E P konfigürasyonu için Komut Kanalı

Aynı Referans ve komut.

F L o ve F L o C parametreleri referans ve komut için ortaktır.

Örnek: Referans AI1 (terminallerde analog giriş) yoluyla zorlanan yerel moddaysa zorlanan yerel modda komut DI (terminallerde dijital giriş) yoluyla da zorlanır.

C d 1 ve C d 2 komut kanalları F r 1, F r 1 b ve F r 2 referans kanallarından bağımsızdır.

Siyah kare, [Kontrol Modu] C H C F hariç fabrika aya atamasını temsil eder.
I/O profili için konfigürasyonu için Komut Kanalı

[Ayn] 5 E P konfigürasyonunda olduğu gibi Ayrı Referans ve komut.

Komut kanalları F r 1, F r 1b ve FR2 referans kanallarından bağımsızdır.

Siyah kare, [Kontrol Modu] 3 [H C F hariç fabrika ayarını atamasını temsil eder.

Bir komut veya bir eylem atanabilir:
- Bir Dijital Giriş (Dix) veya bir Cxxx bit seçerek sabit bir kanalı:
 - Örneğin L13 seçilen, hangi komut kanalına değiştirildiğine bakılmaksızın dijital giriş DI3 ile bu eylem tetiklenebilir.
 - Örneğin C214 seçilen, hangi komut kanalına değiştirildiğine bakılmaksızın bit 14 ile entegre CANopen® ile bu eylem tetiklenebilir.
- Bir CDxx bit seçilerek değiştirilebilir bir kanalı:
 - Örneğin Cd11 seçilerek bu eylem şununla tetiklenebilir: Terminaller kanalı etkinse LI12, entegre Modbus kanalı etkinse C111, entegre CANopen® kanalı etkinse C211, iletişim kartı kanalı etkinse C311, Ethernet kanalı etkinse C511.

Etkin kanal grafik ekran terminali ise CDxx değiştirilebilir dahili bitlerine atanan işlev ve komutlar devre dışı olur.

NOT: Birçok CDxx eşdeğer dijital girişlere sahip değildir ve yalnızca 2 ağ arasında değiştirilebilir için kullanılabilir.

[Ref Frek 1 Konfig] F r 1

Konfigürasyon referans frekansı 1.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilemez]</td>
<td>n o</td>
<td>Atannamış</td>
</tr>
<tr>
<td>[AI1]</td>
<td>R 1</td>
<td>Analog giriş AI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayar</td>
</tr>
<tr>
<td>[AI2]...[AI3]</td>
<td>R 2...R 3</td>
<td>Analog giriş AI2...AI3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: AI3 seçimi, 22 kW’tan büyük gücü olan tahlklerde erişilebilir.</td>
</tr>
<tr>
<td>[AI Sanal 1]</td>
<td>R 1 V 1</td>
<td>Sanal analojik giriş 1</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>R 4...R 5</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa analog giriş AI4...AI5</td>
</tr>
</tbody>
</table>
Tüm ayarlar CSt-

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DI aracığıyla Ref Frekans]</td>
<td>P d t</td>
<td>Yukarı/Aşağı fonksiyonu Dİ tarafından atanmıştır</td>
</tr>
<tr>
<td>[Ref.Frek-Uzik.Term]</td>
<td>L C L</td>
<td>Uzakta terminal üzerinden Referans Frekans</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>n d b</td>
<td>Modbus üzerinden referans frekans</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>C A n</td>
<td>CANopen modülü takılımsa CANopen üzerinden referans frekans</td>
</tr>
<tr>
<td>[Ref. Frek-ilet. Modul]</td>
<td>n E t</td>
<td>Fieldbus modülü takımmsa fieldbus modülü üzerinden referans frekans</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>E t H</td>
<td>Gömülü Ethernet</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340...N4E tahriklerinde erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ref. kanalı 1B] F r 1 b</td>
<td></td>
<td>Konfigürasyon referans frekans 1B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarlarıyla [Ref Frek 1 Konfig] F r 1 (yukarıya bakın) aynı: [Konfigüre edilmemiş] n o.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ref 1B değiştirme] r C b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UYARI

TEÇHİZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI
Bu parametre istenmeyen hareketlere yol açabilir; örneğin, motorun dönüş yönünde ters dönme, ani hızlanma ya da durma.
- Bu parametrenin ayarının istenmeyen hareketlere yol açmadığını doğrulayın.
- Bu parametrenin ayarının emniyetiz siz bir durum doğurmadığını doğrulayın.

Bu talimatlara uyunmaması ölüm, ağır yaralanmalarla veya ekipmanda maddi hasara yol açabilir.

Anahtarla seçin (1 - 1B).
- Atanan giriş ya da bit D'da ise [Ref Frek 1 Konfig] F r 1 aktiftir.
- Atanan giriş veya bit 'de ise, [Ref. kanalı 1B] F r 1 b aktiftir.

NOT: Bu seçime 30 kW'tan küçük gücü olan tahriklerde erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ref Frek Kanalı 1]</td>
<td>F r 1</td>
<td>Referans kanalı = kanal 1 (RFC için)</td>
</tr>
<tr>
<td>[Ref. kanalı 1B] F r 1 b</td>
<td></td>
<td>Referans kanalı = kanal 1b (RFC için)</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L , l...L , B</td>
<td>Dijital giriş Dİ1...Dİ8</td>
</tr>
<tr>
<td>[CD101]...[CD10]</td>
<td>C d D O...C d D</td>
<td>Konfigürasyonunda bağimsız olarak sanal dijital giriş CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d 1...C d 15</td>
<td>Konfigürasyondan bağimsız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 10 I...C 11 O</td>
<td>Konfigürasyonunda entegre Modbus Seri ile sanal dijital giriş CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 11 I...C 11 S</td>
<td>Konfigürasyondan bağimsız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 20 I...C 21 O</td>
<td>Konfigürasyonunda CANopen® haberleşme modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

Geri Devre Diş

Ters yönleri devre dışı bırakma.

Ters yöndeki hareketin engellenmesi, dijital girişler tarafından gönderilen yön istekleri için geçerli değildir.

Dijital girişler tarafından gönderilen ters yön istekleri dikkate alınır.

Ekran Terminali ya da satır tarafından gönderilen ters yön istekleri dikkate alınmaz.

PID, toplama giriş ve benzeri kaynaklı herhangi bir ters hız referansı, sıfır referans (0 Hz) olarak yorumlanır.

[???] aşağıdaki şekilde ayarlanırsa bu parametre Hayır NO olmaya zorlanır:

- **[Hayır]**
- **[Evet]**

UYARI

TEÇHIZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI

[ɑ] [G/Ç profili] nun devre dışı bırakılması tahrîği fabrika ayarlarına sifirlar.

- Fabrika ayarlarının geri yüklenmesinin kullanılan elektrik tesisatı türünü uyumlu olduğunu doğrulayın.

Bu talimatlara uygulaması ölümle, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Kontrol Modu

Kanışık mod konfigürasyonu.

Ayar Kod / Değer Açıklama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 I...C 2 I 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® haberleşme modülü ile sanal dijital giriş CMD2.11...CMD2.15</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 I...C 3 I 0</td>
<td>[I/O profili] konfigürasyonunda haberleşme modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 I...C 3 I 5</td>
<td>Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 I...C 5 I 0</td>
<td>[G/Ç profili] konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 I...C 5 I 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340...N4E sürücülerinde erişilebilir.

Ayar Kod / Değer Açıklama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n ɑ</td>
<td>Hayır Fabrika Ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

Ayar Kod / Değer Açıklama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ayrı değil]</td>
<td>S ; P</td>
<td>Referans ve komut, ayn değil Fabrika Ayarı</td>
</tr>
<tr>
<td>[I/O profili]</td>
<td>ɑ</td>
<td>I/O profili</td>
</tr>
</tbody>
</table>

UYARI

TEÇHIZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI

[ɑ] [G/Ç profili] nun devre dışı bırakılması tahrîği fabrika ayarlarına sifirlar.

- Fabrika ayarlarının geri yüklenmesinin kullanılan elektrik tesisatı türünü uyumlu olduğunu doğrulayın.

Bu talimatlara uygulaması ölümle, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
Kontrol kanalı anahtarı.

NOT: Bu fonksiyonun başka bir aktif kanaldan aktive edilmesi de bu yeni kanalin izlenmesini aktive eder.

Ayar Kod / Değer Açıklama

[Komut kanalı 1] C d 1 Komut kanalı = kanal 1 (CCS için)
Fabrika ayarı

[Komut kanalı 2] C d 2 Komut kanalı = kanal 2 (CCS için)

[DI1]...[DI8] L , I...L , B Dijital giriş Di1...Di8
NOT: Di8 seçimi, 22kW’tan büyük gücü olan sürücülerde erişilebilir.

[DI11]...[DI16] L , I...L , I 16 VW3A3203 G/C uzatma modülü takılmışsa dijital giriş Di11...Di16
[O profili] : konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş CMD1.11...CMD1.15
[O profili] : konfigürasyonunda CANopen® haberleşme modülü olan CMD2.01...CMD2.10 sanal dijital giriş CMD2.11...CMD2.15
[O profili] : konfigürasyonunda CANopen® haberleşme modülü ile sanal dijital giriş CMD2.11...CMD2.15

[Ayar Kod / Değer Açıklama]

[Terminaller] tEr Terminal bloğu kaynağı
Fabrika ayarı

[Ref.Frek-Uzk.Term] L C L Ekran Terminali aracılığıyla komut

[Ref. Frek-Modbus] N d b Modbus aracılığıyla komut

[Ref. Frek-CANopen] C A n CANopen modülü takılımsa CANopen aracılığıyla komut

[Ref. Frek-İlet. Modülü] n E t Fieldbus modülü takılımsa fieldbus modülü aracılığıyla komut

NOT: Bu seçime ATV340•••N4E sürücülerinde erişilebilir.
Ayar	Kod / Değer	Açıklama
[Gömülü Ethernet] | E & H | Gömülü Ethernet aracılığıyla komut
NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.

[Komut kanalı 2] L d 2

Komut kanalı 2 ataması.

[Frek Anaht. Ataması] r F C

UYARI

TEÇHİZATIN UUMULMAYAN ŞEKİLDE ÇALIŞMASI
Bu parametre istenmeyen hareketlere yol açabilir; örneğin, motorun dönüş yönünde ters dönme, ani hızlanma ya da durma.
- Bu parametre için ayarların istenmeyen hareketlere yol açmadığını doğrulayın.
- Bu parametre için emniyet sistemizi durumuna uyunsun.

Bu talimatlar uygulaması ölüme, ağır yaralanmaları veya ekipmanda maddi hasara yol açabilir.

frekans anahtarlama ataması.
Atanan giriş veya bit 0'de ise [Ref Frek Kanalı 1] F r 1 kanalı aktiftir.
Atanan giriş veya bit 1'de ise [Ref Frek Kanalı 2] F r 2 kanalı aktiftir.

NOT: Bu fonksiyonun başka bir aktif kanaldan aktive edilmesi de bu yeni kanalin izlenmesini aktive eder.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ref Frek Kanalı 1]</td>
<td>F r 1</td>
<td>Referans kanalı = kanal 1 (RFC için)</td>
</tr>
<tr>
<td>[Ref. kanalı 1B]</td>
<td>F r 1 b</td>
<td>Referans kanalı = kanal 2 (RFC için)</td>
</tr>
</tbody>
</table>
| [D11]...[D18] | L 1 ... L 8 | Dijital giriş DI1...DI8
NOT: DI8 seçimi, 22kW'tan büyük güçteki sürücülerde erişilebilir.

| [D11]...[D16] | L 1 ... L 8 | DI2 seçimi, 22kW'tan büyük güçteki sürücülerde erişilebilir.
| [D10]...[D10] | C d 0 0 ... C d 0 6 | I/O profili
| [C00]...[CD15] | L 1 ... L 16 | VV3A3203 G/C uzatma modülü takılımı dijital giriş DI11...DI16
| [CMD1.01]...[CMD1.10] | C 1 1 1 ... C 1 1 5 | Konfigürasyondan bağımsız olarak sanal dijital giriş CMD.11...CMD.15
| [CMD2.01]...[CMD2.10] | C 2 0 ... C 2 1 0 | I/O profili
| [CMD3.01]...[CMD3.10] | C 3 0 ... C 3 1 0 | I/O profili
| [CMD5.01]...[CMD5.10] | C 5 0 ... C 5 1 0 | I/O profili

NOT: Bu seçime ATV340•••N4E sürücülerinde erişilebilir.
Kanal 1 referans frekansını kanal 2'ye kopyalayın.

UYARI

TEŞEHIRATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI
Bu parametre istenmeyen hareketlere yol açabilir; örneğin, motorun dönüş yönünde ters dönme, ani hızlanma ya da duruma. Bu talimatları uygulamak Họm BEREK tente IDE ÇALIŞMASI.

Örneğin, hiz dalgalanmalarını engellemek için anahtarlama yoluya geçerli referans ve/veya komut kopyalamak için kullanabilir.

[Kontrol Modu] [H C F] (bkz. sayfa 228) [Ayn değil] veya [S , N] [Ayn] [S E P] olarak ayarlanırsa kopyalama yalnızca kanal 1'den kanal 2'ye yapılabilir.

[Kontrol Modu] [H C F] [I/O profilisi] olarak ayarlanırsa kopyalama her iki yönde mümkündür. Bir referans ya da komut, terminalerdeki bir kanala kopyalanamaz. Hedef kanal referansı +/- hızı aracılığıyla ayarlanmamış kopyalanana referans [Ön Rampa Ref Frek] [F r] (rampadan önce) şeklindedir. Bu durumda, kopyalanın referans [Çıkış frekansı] r F r (rampa sonrası) olur.
Komut ve/veya referans kanalı seçileceği gibi Ekran Terminali de seçilebilir, hareket modları konfigüre edilebilir.

Yorumlar:
- Ekran Terminali komutu/referansı ancak terminaldeki komut ve/veya referans kanalları daaktifse aktif durumdadır ancak bu kanallara göre öncelikli olan ve Yerel/Uzak tuşu (Ekran Terminali aracılığıyla komut) içeren BCP durumu istisnadir. Kontrolü seçili kanala geri döndürmek için yeniden Yerel/Uzak tuşuna basın.
- Ekran Terminali birden fazla tahriğe bağlıysa bunun aracılığıyla komut ve referans mümkün değildir.
- Ön ayarlı PID referans fonksiyonlarına, ancak [Kontrol Modu] CHCF, [Ayrı değil] veya
[SIM] Ayrı olarak ayarlanırsa erişilebilir.
- Ekran Terminali aracılığıyla verilen komuta [Kontrol Modu] CHCF modundan bağımsız olarak erişilebilir.

[Zorla Lokal Frek] FL α E
Zorlamalı lokal referans kaynağı ataması.

Ayar	Kod / Değer	Açıklama
[Hayır] | n α | Kopyalama yok
[Referans Frekansı] | S P | Kopya referansı
[Komut] | L L | Kopya komutu
[Kmt + Ref Frekansı] | A L L | Kopyalama referansı ve komutu

[Konfigüre edilmemiş] | n α | Atanmamış (sifir referansla terminaler üzerinden kontrol)
[A11]...[A13] | R 1...R 3 | Analog giriş A11...A13
[Ref.Frek-Uz. Term] | L L C | Grafik Ekran Terminali
[DI7 Darbe Giriş]...[DI8 Darbe Giriş] | P 7...P B | Dijital giriş DI7...DI8 darbe giriş olarak kullanılır
[RPI] | P 1 | Darbe giriş
[Kodlayıcı] | P G | Bir kodlayıcı modülü takılıysa veya katıştırılmış kodlayıcı kullanilyorsa kodlayıcı referansı.

[Zaman Aşımı Zorl. Lokal] FL α E
Zorla lokalden sonraki kanal onayı süresi.

Ayar	Açıklama
0,1...30,0 sn | Ayar aralığı
10,0 sn | Fabrika ayarı
[Zoria Lokal Atama] \(F \ L \ o \)
Zorlamalı lokal atama.
Giriş, durum 1'deyken, zorlamalı lokal mod aktiftir.

[Kontrol Modu] \(C \ H \ C \ F \) [I/O profili] \(o \) olarak ayarlanırsa [Zoria Lokal Atama] \(F \ L \ o \) [Hayır] \(n \) \(o \) değerine zorlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>(n)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>(L \ L \ L \ B)</td>
<td>Dijital giriş D11...D18</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>(C \ D \ B ...D \ B)</td>
<td>[G/Ç profili] (o) konfigürasyonunda CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>(C \ D \ I ...D \ I)</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>(C \ I \ O ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>(C \ O \ I ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>(C \ B \ I ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>(C \ I \ S ...S \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahrirlerinde erişilebilir.</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>(C \ I \ S ...S \ I)</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahrirlerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[Ters Ata] \(F \ C \)
Ters atama.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>(n)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>(L \ L \ L \ B)</td>
<td>Dijital giriş D11...D18</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td></td>
<td>NOT: D18 seçimi, 22kW'tan büyük güç olan tahrirlerde erişilebilir.</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>(C \ D \ B ...D \ B)</td>
<td>[G/Ç profili] (o) konfigürasyonunda CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>(C \ D \ I ...D \ I)</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>(C \ I \ O ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>(C \ O \ I ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>(C \ B \ I ...I \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>(C \ I \ I ...I \ I)</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>(C \ I \ S ...S \ I)</td>
<td>[G/Ç profili] (o) konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahrirlerinde erişilebilir.</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>(C \ I \ S ...S \ I)</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahrirlerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[2/3-kablo lu kumanda] \(F \ L \)
2 kablo lu veya 3 kablo lu kontrol.

⚠️ UYARI

TEÇHİZATIN UMULMAYAN ŞEKİLTE ÇALIŞMASI
Bu parametre değiştirilirse [Ters Ata] \(F \ C \) ve [2 telli tür] \(F \ C \) parametreleri ile dijital giriş atamaları fabrika ayarlarına sıfırlanır.
Bu değişikliğin kullanılan elektrik tesisi türüyle uyumlu olduğunu doğrulayın.
Bu talimatlara uyunmaması ölümce, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
Ayar	Kod / Değer	Açıklama
[2 Kablolu Kontrol] | 2 L | 2 kablolu kontrol (seviye komutları): Bu, çalısmaya ve durdurmayı kumanda eden giriş durumu (0 veya 1) veya uçtur (0'dan 1'e veya 1'den 0'a).

Source kablo bağlantısına örnek:

[3 Kablolu Kontrol] | 3 L | 3 kablolu kontrol (darbe komutları) [3 kabolu]: Yolvermeyi kumanda etmek için ileri veya geri darbesi, durdurmayı kumanda etmek için dururma darbesi yeterlidir.

Source kablo bağlantısına örnek:

UYARI
TEÇHİZATIN UMULMAYAN ŞEKİLE ÇALIŞMASI
Parametre ayarının kullanılan elektrik tesisatı türüyle uyumlu olduğunu doğrulayın.
Bu talimatlara uyuşmaması ölümle, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Ayar	Kod / Değer	Açıklama
[Seviye] | L E L | Çalıştırma (1) veya dururma (0) için durum 0 veya 1 dikkate alınır
[Dönüşüm] | L E L | Besleme sebekeindeki bir kesintinin ardından istenmeyen yeniden başlatma işlemlerinin önlenmesi amacıyla çalışmayı başlatmak için bir durum değişikliği (geçiş veya uç) gerekliyor. Fabrika ayarı
[İleri Önceliğe Sahip Seviye] | P F o | Çalıştırma veya dururma için durum 0 veya 1 dikkate alınır, ancak ileri girisi geri girişine göre önceliğidir.
[Durdurma Tuşu Aktif Hale Getirme] $P \leq \alpha$

STOP/RESET tuşu etkin.

[Komut Kanalı] $C \land d$ parametresinin ayan $\text{[Ref.Frek-Uzk.Term]} L \land C$ değilsese bu fonksiyonu α olarak ayarlamak Ekran Terminalinde STOP tuşunu devre dışı bırakır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Durdurma Tuşu Önceliği Yok]</td>
<td>α</td>
<td>Ekran Terminal üzerindeki STOP/RESET tuşunu devre dışı bırakır.</td>
</tr>
<tr>
<td>[Durdurma Tuşu Önceliği]</td>
<td>$\gamma \leq \delta$</td>
<td>Ekran Terminal üzerindeki STOP/RESET tuşuna öncelik verir. Yalnızca durdurma işlevi etkinleşir. Durdurma serbest gerçekleştirildir. Fabrika Ayarı</td>
</tr>
<tr>
<td>[Tüm Durdurma Tuşu Önceliği]</td>
<td>RL</td>
<td>Önceliği Grafiik Ekran Terminalinde STOP/RESET tuşuna verir. Anıra sıfırlama işlemi ve durdurma işlevi etkinleştirilir. Durdurma $[Durdurma türü] 5 \leq \alpha$ ayar değerine göre gerçekleştirildir.</td>
</tr>
</tbody>
</table>

UYARI

Bu parametreyi yalnızca uygun alternatif durdurma işlevleri uyguladığınız α olarak ayarlayın.

Bu talimatla uyuşmazsanız, ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

UYARI

Bu ayarın güvensiz durumlarda sonuçlanamayacağını doğruladıktan sonra yalnızca 2 kablolu kontrolde [Durdurma Tuşu Aktif Hale Getirme] $P \leq \alpha$ parametresini [Tüm Durdurma Tuşu Önceliği] RL olarak ayarlayın.

Bu talimatı uyuşmazsa, ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Aşağıdaki tabloda Grafik Ekran Terminali etkin komut kanalı değişken işlevin davranışını verilmektedir:

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Durdurma]</td>
<td>$5 \leq \alpha P$</td>
<td>Sürücüyü durdurur (öncesi kanalin kontrol edilen çalışma ve referans yönü kopyalandığı halde (bir sonraki ÇALIŞTIR komutunda dikkate alınmak üzere))</td>
</tr>
<tr>
<td>[Etkisiz]</td>
<td>$b \land P$</td>
<td>Sürücüyü durdurmaz (öncesi kanalin kontrol edilen çalışma ve referans yönü kopyalanır)</td>
</tr>
<tr>
<td>[Devre dışı]</td>
<td>$a \land 5$</td>
<td>Devre dışı Fabrika Ayarı</td>
</tr>
</tbody>
</table>
Alt bölüm 8.4
[Master/Bağlı]

Bu Alt Bölümdede Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiDrive Link Mekanizması</td>
<td>234</td>
</tr>
<tr>
<td>[M/B Sistem Mimarisi] P5R - Menüsü</td>
<td>236</td>
</tr>
<tr>
<td>[Hz Ref Al1 Konfig.] P5r1 - Menüsü</td>
<td>239</td>
</tr>
<tr>
<td>[Hz Ref Al2 Konfig.] P5r2 - Menüsü</td>
<td>240</td>
</tr>
<tr>
<td>[Hz Ref Al3 Konfig.] P5r3 - Menüsü</td>
<td>241</td>
</tr>
<tr>
<td>[Hz Ref Al4 Konfig.] P5r4 - Menüsü</td>
<td>242</td>
</tr>
<tr>
<td>[Hz Ref Al5 Konfig.] P5r5 - Menüsü</td>
<td>243</td>
</tr>
<tr>
<td>[M/B Sistem Mimarisi] P5R - Menüsü</td>
<td>244</td>
</tr>
<tr>
<td>[Tork Ref Al1 Konfig.] P6r1 - Menüsü</td>
<td>245</td>
</tr>
<tr>
<td>[Tork Ref Al2 Konfig.] P6r2 - Menüsü</td>
<td>246</td>
</tr>
<tr>
<td>[Tork Ref Al3 Konfigürasyonu] P6r3 - Menüsü</td>
<td>247</td>
</tr>
<tr>
<td>[Tork Ref Al4 Konfig.] P6r4 - Menüsü</td>
<td>248</td>
</tr>
<tr>
<td>[Tork Ref Al5 Konfigürasyonu] P6r5 - Menüsü</td>
<td>249</td>
</tr>
<tr>
<td>[M/B Sistem Mimarisi] P5R - Menüsü</td>
<td>250</td>
</tr>
<tr>
<td>[Hz Ref AQ1 Konfig.] P5n1 - Menüsü</td>
<td>251</td>
</tr>
<tr>
<td>[Hz Ref AQ2 Konfig.] P5n2 - Menüsü</td>
<td>252</td>
</tr>
<tr>
<td>[M/B Sistem Mimarisi] P5R - Menüsü</td>
<td>253</td>
</tr>
<tr>
<td>[Tork Ref AQ1 Konfigürasyonu] P6n1 - Menüsü</td>
<td>254</td>
</tr>
<tr>
<td>[Tork Ref AQ2 Konfigürasyonu] P6n2 - Menüsü</td>
<td>255</td>
</tr>
<tr>
<td>[M/B Sistem Mimarisi] P5R - Menüsü</td>
<td>256</td>
</tr>
<tr>
<td>[M/B Kontrolü] P5t - Menüsü</td>
<td>258</td>
</tr>
<tr>
<td>[M/B Tork Kontrolü] P5t9 - Menüsü</td>
<td>260</td>
</tr>
<tr>
<td>[M/B Kontrolü] P5t - Menüsü</td>
<td>264</td>
</tr>
<tr>
<td>[M/B Filtreleri] P5F - Menüsü</td>
<td>265</td>
</tr>
<tr>
<td>[Yük Paylaşımı M/B] P5b - Menüsü</td>
<td>268</td>
</tr>
<tr>
<td>[M/B Kontrolü] P5t - Menüsü</td>
<td>271</td>
</tr>
</tbody>
</table>
MultiDrive Link Mekanizması

Giriş
MultiDrive Link fonksiyonu sürücüler grubu arasında doğrudan iletişime izin verir.
Bu iletişim her bir sürücü arasında bir Ethernet link aracılığıyla yapılır.
Bazı sürücü fonksiyonları MultiDrive Link ile konfigüre edilebilir.

Topoloji
MultiDrive Link fonksiyonu Ethernet tabanlı bir protokoldür.
Aşağıdaki topolojilerde kullanılabilir:
- Daisy chain
- Yıldız
- RSTP ile yedekli
Topolojiler hakkında daha fazla bilgi ATV340 Gömülü Ethernet Kılavuzu içinde bulunabilir.

MultiDrive Link Özellikleri

MultiDrive Link Grubu:
Bir MultiDrive Link grubu şunlardan oluşabilir:
- Master, zorunludur.
- En fazla 10 Bağlı.
Bir MultiDrive Link grubunda yalnızca 1 master bulunmalıdır.
Bağlı görevi gören her sürücüde kendi bağlı kimliği bulunmalıdır.

Veri Alışveriş İlkesi:
MultiDrive Link grubunun her bir sürücüyü kendi grubundaki tüm sürüclere veri gönderir.
Bu veriler kombinasyon halinde kullanılan her bir uygulamaya özel veri gruplarını sıralanır.
Bu veriler çoklu gönderim IP adreslemesine sahip UDP çerçeveleri kullanılarak gönderilir.

Ağ Konfigürasyonu
MultiDrive Link fonksiyonu aşağıdaki ağ kaynaklarını kullanır:
- IP adresi: 239.192.152.143
- UDP bağlantı noktaları: 6700 ve 6732
- Yönlendirilmeyen ağlar
MultiDrive Link fonksiyonu bir Ethernet ağı üzerinden kullanılırsa konfigürasyonunda bu kaynakların dikkate alınması zorundudur.
Yani Ethernet ağından yalnızca tek bir MultiDrive Link grubu kullanılabilir.

Sürücü Konfigürasyonu
Bir MultiDrive Link grubunda kullanılan her bir tahrikte tek bir IP adresi olmalıdır.
Bu IP adresi manuel olarak ayarlayabilir ya da bir DHCP sunucusu tarafından atanabilir.

MultiDrive Link İletişim İzleme
İletişimin kalıcı olarak izlenmesi aşağıdakilerden sakınmak amacıyla MultiDrive Link Grubunun her bir sürücüyü tarafından gerçekleştirilir:
- Aynı komutun yürütülmesi
- MultiDrive Link Grubundaki verilerin bozulması
Bağlı ID'nin kopyalanması:
Aşağıdaki tabloda, çift bağlı ID algılanması durumunda fonksiyonunun nasıl tepki verdiği gösterilmiştir:

<table>
<thead>
<tr>
<th>Çift Bağlı ID şu ise...</th>
<th>Şu olur...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aynı anda MultiDrive Link Grubunda tespit edilirse</td>
<td>Geçerli sürücü tanımlanamaz. Bu durumda her iki sürücü de: ● geçersiz kabul edilir ● MultiDrive Link Grubunda kullanılamaz ● MultiDrive Link Grubunda veri göndermez</td>
</tr>
<tr>
<td>Tespit edilirse ve zaten bu Bağlı ID'nin çalıştığı tek tahrikse</td>
<td>Mevcut sürücü geçerli kabul edilir. Çift sürücü: ● geçersiz kabul edilir ● MultiDrive Link Grubunda kullanılamaz ● MultiDrive Link Grubunda veri göndermez NOT: Bu durumda uygulamaya etkisi olmaz.</td>
</tr>
</tbody>
</table>

Davetsiz misafir:
Bir sürücü, Bağlı Kimliği eğer Ana konfigürasyonunda belirtilen bağlı sürücü sayısıyla tutarlı değilse, MultiDrive Link grubunun davetsiz misafiri kabul edilir.
Sürücü Bağlı kimliği konfigürasyonla tutarlı değilse:
● Kendini geçersiz olarak ele alır
● MultiDrive Link grubuna veri göndermez
● MultiDrive Link grubundan veri kabul etmez

NOT: Bu durumda uygulamaya etkisi olmaz.
[M/B Sistem Mimarisi] π 5 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi]

Bu Menü Hakkında

Bu menü kullanıcının Master/Bağlı mimarısını konfigüre etmesine izin verir.

Master/Bağlı hata yanıtı: Bir hata algılanırsa Master veya Bağlıların nasıl karşılık vereceğini konfigüre etmeyi sağlar (Master yok, Bağlı hazır değil veya iletişim bağlantısı hatası).

Aşağıdaki şemada konfigürasyonlarına bağlı olarak Master/Bağlıyla ilgili parametreler gösterilir:

Aşağıdaki tabloda [Analog] R n R veya [MultiDrive Link] π d L modunda parametrelerin görünürlüğü gösterilir:

<table>
<thead>
<tr>
<th>[M/B İletişimi Modu] π 5 L π M/B iletişim modu</th>
<th>Analog</th>
<th>MultiDrive Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>[M/B Aygıt Kimliği] π 5 d</td>
<td>Master veya Bağlı Kimlik seçimi</td>
<td>-</td>
</tr>
<tr>
<td>[M/B Aygıt Rolü] π 5 d t</td>
<td>Master veya Bağlı seçimi</td>
<td>Master Bağlı - -</td>
</tr>
<tr>
<td>[M/B Bağlı Sayısı] π 5 n</td>
<td>M/B bağlı sayısı</td>
<td>-</td>
</tr>
<tr>
<td>[M/B Hız Ref Giriş Ataması] π 5 5</td>
<td>M/B Master hız referansı giriş ataması</td>
<td>-</td>
</tr>
<tr>
<td>[M/B Tork Ref Giriş Ataması] π 5 5</td>
<td>M/B Master tork referansı giriş ataması</td>
<td>-</td>
</tr>
<tr>
<td>[M/B Hız Ref Çıkışı Ataması] π 5 5 d</td>
<td>M/B hız referansı çıkış ataması</td>
<td>Analog Çıkış Analog Çıkış* Analog Çıkış* Analog Çıkış*</td>
</tr>
<tr>
<td>[M/B Tork Ref Çıkışı Ataması] π 5 5 d</td>
<td>M/B tork referansı çıkış ataması</td>
<td>Analog Çıkış Analog Çıkış* Analog Çıkış* Analog Çıkış*</td>
</tr>
<tr>
<td>[M/B Yerel Modu Ataması] π 5 d</td>
<td>M/B yerel modu giriş ataması</td>
<td>-</td>
</tr>
</tbody>
</table>

NOT: Master/Bağlı konfigürasyonunu uygulamak için sürücü yeniden başlatılmalıdır.

M/B İletişimi Modu \(\mathbb{L} \mathbb{C} \mathbb{L} \mathbb{L} \)
Master / Bağlı iletişimi modu.

Master Bağlı mimarisinde bulunan sürücüler arasında veri değişim yapmak için Master Bağlıyi aktifleştiren ve iletişim modunu seçin.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Master/Bağlı konfigüre edilmedi. Fabrika ayar</td>
</tr>
<tr>
<td>[MultiDrive Link]</td>
<td>n d L</td>
<td>Master/Bağlı MultiDrive Link kullanılarak konfigüre edildi</td>
</tr>
<tr>
<td>[Analog]</td>
<td>A n A</td>
<td>Master/Bağlı Analog I/O'ları kullanılarak konfigüre edildi</td>
</tr>
</tbody>
</table>

Bağlı öğenin [Çalışma Durumu Arızası] FLt için atanmış bir dijital çıkışın master öğenin [Harici Hata ataması] ETF için atanmış bir dijital girişine bağlanması önerilir; bu ayarla bağlı öğeden oluşan bir hata master için bir durdurma oluşturur.

NOT: Gerekkorsa, bir bağlı sürücüde hata algılandığında master öğesi durumda için bağlı öğelerin [Çalışma Durumu Arızası] FLt için atanmış bir dijital çıkışın master öğenin [Harici Hata ataması] ETF için atanmış bir dijital girişine bağlanabilir.

M/B Aygıtı Kimliği \(\mathbb{L} \mathbb{C} \mathbb{L} \mathbb{L} \)
Master / Bağlı Kimliği seçimi.

Bu parametre Master Bağlı uygulaması için Sürücü kimlik numarasını seçer.

Bu parametre [M/B İletişim Modu] \(\mathbb{L} \mathbb{C} \mathbb{L} \mathbb{L} \) öğesi [MultiDrive Link] olarak ayarlanırsa erişilebilir \(n d L \)

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Master]</td>
<td>n S E r</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
</tbody>
</table>

NOT: Bir sürücüyü master olarak seçmeden önce otomatik ince aray yapılandırımdan emin olun. Aksi halde, geçici Master/Bağlı fonksiyonunu devre dışı bırak ve otomatik ince aray işlemi gerçekleştirmek için [M/B Yerel Mod Ataması] \(n d l \), girisini kullanın.
[M/B Aygıt Rolü] $\mathbb{L} \ 5 \ 4 \ 5$

Master / Bağlı seçimi.
Sürücünün master veya bağlı olduğunu seçin.
Bu parametreye [M/B İletişim Modu] $\mathbb{L} \ 5 \ 4 \ L$ öğesi [Analog] olarak ayarlanırsa erişilebilir $\mathbb{R} \ 5 \ 8$

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Master]</td>
<td>$\mathbb{L} \ 5 \ 4 \ 5$</td>
<td>Sürücü Master Sürücü olarak konfigüre edilir, (Bağlılara hız ve tork referansı değerini sağlar). Fabrika ayarı</td>
</tr>
<tr>
<td>[Bağlı]</td>
<td>$\mathbb{L} \ 5 \ 4 \ 5$</td>
<td>Sürücü Bağlı Sürücü olarak konfigüre edilir. (Master'dan hız ve tork referansı değerini kullanır).</td>
</tr>
</tbody>
</table>

[M/B Bağlı Sayısı] $\mathbb{L} \ 5 \ 4 \ 5$

Bağlıların Master / Bağlı sayısı.
Master Bağlı mimarında toplam bağlı sayısı. Çoklu sürücü bağlantılı mimarında maksimum bağlı sayısı 10'dur. Analog mimaride maksimum bağlı sayısı Analog I/O özelliklerine bağlıdır.
Bu parametreye şu şekilde erişilebilir:
- [M/B İletişim Modu] $\mathbb{L} \ 5 \ 4 \ L$ öğesi [MultiDrive Link] $\mathbb{L} \ 5 \ 4 \ L$ olarak ayarlanırsa ve
- [M/B Aygıt Kimliği] $\mathbb{L} \ 5 \ 4 \ 5$ öğesi [Master] $\mathbb{L} \ 5 \ 4 \ 5$ olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...10</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[M/B Hız Ref Giriş Ataması] $\mathbb{L} \ 5 \ 4 \ 5$

Master / Bağlı hız referansı giriş ataması.
Bu parametreye şu şekilde erişilebilir:
- [M/B İletişim Modu] $\mathbb{L} \ 5 \ 4 \ L$ öğesi [Analog] $\mathbb{R} \times \mathbb{R}$ olarak ayarlanırsa ve
- [M/B Aygıt Rolü] $\mathbb{L} \ 5 \ 4 \ 5$ öğesi [Bağlı] $\mathbb{S} \ 5 \ 4 \ 5$ olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>\mathbb{R}</td>
<td>Analog giriş konfigüre edilmedi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>\mathbb{R}</td>
<td>Analog giriş AI1...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>\mathbb{R}</td>
<td>VW3A3203 I/O uzatma modülü takılmışsa analog giriş AI4...AI5</td>
</tr>
</tbody>
</table>
[Hız Ref Al1 Konfig.] / 5 r / l - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi] ➔ [Hız Ref Al1 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] / 5 d t ⋆ [Bağlı] 5 L R V E olarak ayarlanırsa ve
- [Atamada M/B Hız Ref] / 5 5 ⋆ öğrenci [Al1] R l olarak ayarlanırsa.

[Al1 Tipi] R l / t

Analog giriş Al1'in konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>I 0</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Akım]</td>
<td>0 R</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[Al1 min. değeri] u L / *

Al1 %0 gerilim ölçekleme parametresi.
Bu parametre, [Al1 Türü] R l / t, [Gerilim] I 0 ⋆ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Vdc</td>
</tr>
</tbody>
</table>

[Al1 maks. değeri] u H / *

Al1 %100 gerilim ölçekleme parametresi.
Bu parametre, [Al1 Türü] R l / t, [Gerilim] I 0 ⋆ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 10,0 Vdc</td>
</tr>
</tbody>
</table>

[Al1 min. değeri] c r L / *

Al1 %0 akım ölçekleme parametresi.
Bu parametre, [Al1 Türü] R l / t, [Akım] 0 R ⋆ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 mA</td>
</tr>
</tbody>
</table>

[Al1 maks. değeri] c r H / *

Al1 %100 akım ölçekleme parametresi.
Bu parametre, [Al1 Türü] R l / t, [Akım] 0 R ⋆ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 20,0 mA</td>
</tr>
</tbody>
</table>
[Hız Ref Al2 Konfig.] \(N \) \(5 \) \(2 \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimari] ➔ [Hız Ref Al2 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıtı Rolü] \(N \) \(5 \) \(d \) \(L \). [Bağlı] \(S \) \(L \) \(R \) \(V \) \(E \) olarak ayarlanırsa ve
- [Atamada M/B Hız Ref] \(N \) \(5 \) \(S \) \(i \) öğesi [Al2] \(R \) \(2 \) olarak ayarlanırsa.

[Al2 Tipi] \(R \) \(2 \) \(t \)

Analog giriş Al2'nin konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>10U</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>n 10U</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[Al2 min. değeri] \(u \) \(L \) \(2 \)

Al2 %0 gerilim ölçekleme parametresi.
Bu parametreye, [Al2 Tipi] \(R \) \(2 \) \(t \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] 10U veya
- [Gerilim+/-] n 10U.

[Al1 min. değeri] \(u \) \(L \) \(I \) (bkz. sayfa 239) ile aynı.

[Al2 maks. değeri] \(u \) \(H \) \(2 \)

Al2 %100 gerilim ölçekleme parametresi.
Bu parametreye, [Al2 Tipi] \(R \) \(2 \) \(t \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] 10U veya
- [Gerilim+/-] n 10U.

[Al1 maks. değeri] \(u \) \(H \) \(I \) (bkz. sayfa 239) ile aynı.
[Hız Ref Al3 Konfig.] \(\cap 5 \cap 3 \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Master/Bağlı] \(\rightarrow \) [M/B Sistemi Mimarisi] \(\rightarrow \) [Hız Ref Al3 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] \(\cap 5 \cap d \cap L \) \(\cap B \) \(\cap E \) olarak ayarlanırsa ve
- [Atamada M/B Hız Ref] \(\cap 5 \cap S \) öğesi [Al3] \(\cap R \) \(\cap E \) olarak ayarlanırsa.

[A3 Tipi] \(\cap R \) \(\cap 3 \) \(\cap L \)

Analog giriş Al3'ün konfigürasyonunu.
Aşağıdaki fabrika ayarıyla [Al2 Tipi] \(\cap R \) \(\cap 2 \) \(\cap L \) (bkz. sayfa 240) ile aynı: [Akım] \(\cap D \) \(\cap R \).

[A3 min. değeri] \(\cap L \) \(\cap 3 \) \(\cap L \)

Al3 %0 gerilim ölçekleme parametresi.
[A31 min. değeri] \(\cap L \) \(\cap 1 \) (bkz. sayfa 239) ile aynı.
Bu parametreye, [Al3 Türü] \(\cap R \) \(\cap 3 \) \(\cap L \) öğesi [Gerilim] \(\cap D \) \(\cap L \) olarak ayarlanırsa erişilebilir.

[A3 maks. değeri] \(\cap L \) \(\cap 3 \) \(\cap H \)

Al3 %100 gerilim ölçekleme parametresi.
[A31 maks. değeri] \(\cap H \) \(\cap 1 \) (bkz. sayfa 239) ile aynı.
Bu parametreye, [Al3 Türü] \(\cap R \) \(\cap 3 \) \(\cap L \) öğesi [Gerilim] \(\cap D \) \(\cap L \) olarak ayarlanırsa erişilebilir.

[A3 min. değeri] \(\cap L \) \(\cap 3 \) \(\cap L \)

Al3 %0 akım ölçekleme parametresi.
[A31 min. değeri] \(\cap L \) \(\cap 1 \) (bkz. sayfa 239) ile aynı.
Bu parametreye, [Al3 Türü] \(\cap R \) \(\cap 3 \) \(\cap L \) öğesi [Akım] \(\cap D \) \(\cap R \) olarak ayarlanırsa erişilebilir.

[A3 maks. değeri] \(\cap L \) \(\cap 3 \) \(\cap H \)

Al3 %100 akım ölçekleme parametresi.
[A31 maks. değeri] \(\cap H \) \(\cap 1 \) (bkz. sayfa 239) ile aynı.
Bu parametreye, [Al3 Türü] \(\cap R \) \(\cap 3 \) \(\cap L \) öğesi [Akım] \(\cap D \) \(\cap R \) olarak ayarlanırsa erişilebilir.
[Hız Ref AI4 Konfig.] / 5 r 4 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi] ➔ [Hız Ref AI4 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] / 5 d b / [Bağlı] / 5 L R v E olarak ayarlanırsa ve

[AI4 Tipi] / 4 e *

Analog giriş AI4'ün konfigürasyonu.
Bu parametreye, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>10 u</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>0 A</td>
<td>0-20 mA</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>n 10 u</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[AI4 min. değeri] / 4 / L 4 *

AI4 %0 gerilim ölçekleme parametresi.
Bu parametreye, [AI4 Tipi] / 4 e aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] / 10 u veya
- [Gerilim +/-] / n 10 u.

[AI1 min. değeri] / 4 / L 1 (bkz. sayfa 239) ile aynı.

[AI4 maks. değeri] / 4 / H 4 *

AI4 %100 gerilim ölçekleme parametresi.
Bu parametreye, [AI4 Tipi] / 4 e aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] / 10 u veya
- [Gerilim +/-] / n 10 u.

[AI1 maks. değeri] / 4 / H 1 (bkz. sayfa 239) ile aynı.

[AI4 min. değeri] / L 4 *

AI4 %0 akım ölçekleme parametresi.
Bu parametreye, [AI4 Türü] / 4 e , [Akım] / 0 R olarak ayarlanırsa erişilebilir.

[AI1 min. değeri] / L 1 (bkz. sayfa 239) ile aynı.

[AI4 maks. değeri] / H 4 *

AI4 %100 akım ölçekleme parametresi.
Bu parametreye, [AI4 Türü] / 4 e , [Akım] / 0 R olarak ayarlanırsa erişilebilir.

[AI1 maks. değeri] / H 1 (bkz. sayfa 239) ile aynı.
[Hız Ref Al5 Konfig.] \(5 \leq 5 \) – Menü Yönetimi

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Master/Bağlı] \(\Rightarrow \) [M/B Sistem Mimarisı] \(\Rightarrow \) [Hız Ref Al5 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] \(5 \leq 5 \leq d \leq b \) [Bağlı] \(5 \leq 5 \leq R \leq E \) olarak ayarlanırsa ve
- [Atamada M/B Hız Ref] \(5 \leq 5 \leq i \) öğesi [Al5] \(5 \leq 5 \) olarak ayarlanırsa.

[Al5 Tipi] \(A \leq 5 \leq b \)

Analog giriş Al5'ın konfigürasyonu.
Bu parametreyle, VW3A3203 I/O uzatma modülü takılrsa erişilebilir.
[Al4 Tipi] \(A \leq 4 \leq b \) ile aynı. (bkz. sayfa 242)

[Al5 min. değeri] \(u \leq L \leq 5 \)

AI5 %0 gerilim ölçekleme parametresi.
Bu parametreyle, [Al5 Tipi] \(A \leq 5 \leq b \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] \(10u \) veya
- [Gerilim+/-] \(\geq 10u \).
[Al1 min. değeri] \(u \leq L \leq 1 \) (bkz. sayfa 239) ile aynı.

[Al5 maks. değeri] \(u \leq H \leq 5 \)

AI5 %100 gerilim ölçekleme parametresi.
Bu parametreyle, [Al5 Tipi] \(A \leq 5 \leq b \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] \(10u \) veya
- [Gerilim+/-] \(\leq 10u \).
[Al1 maks. değeri] \(u \leq H \leq 1 \) (bkz. sayfa 239) ile aynı.

[Al5 min. değeri] \(c \leq L \leq 5 \)

AI5 %0 akım ölçekleme parametresi.
Bu parametreyle, [Al5 Türü] \(A \leq 5 \leq b \) [Akım] \(0 \leq A \) olarak ayarlanırsa erişilebilir.
[Al1 min. değeri] \(c \leq L \leq 1 \) (bkz. sayfa 239) ile aynı.

[Al5 maks. değeri] \(c \leq H \leq 5 \)

AI5 %100 akım ölçekleme parametresi.
Bu parametreyle, [Al5 Türü] \(A \leq 5 \leq b \) [Akım] \(0 \leq A \) olarak ayarlanırsa erişilebilir.
[Al1 maks. değeri] \(c \leq H \leq 1 \) (bkz. sayfa 239) ile aynı.
[M/B Sistem Mimarisi] 7 5 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi]

[M/B Tork Ref Giriş Ataması] 7 5 E

Master / Bağlı tork referansı giriş ataması.
Bu parametreyle şu şekilde erişilebilir:
- [M/B İletişim Modu] 7 5 E N öğesi [Analog] olarak ayarlanırsa R n R
- [M/B Aygıt Rolü] 7 5 d E öğesi [Bağlı] olarak ayarlanırsa S L A V E

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Analog giriş konfigüre edildi Fabrika ayan</td>
</tr>
<tr>
<td>[A1]:[A3]</td>
<td>R , i...R , 3</td>
<td>Analog giriş A1...A3</td>
</tr>
<tr>
<td>[A4]:[A5]</td>
<td>R , 4...R , 5</td>
<td>VW3A3203 I/O uzatma modülü takılmışsa analog giriş A4...A5</td>
</tr>
</tbody>
</table>
[Tork Ref Al1 Konfig.] \(\mathbb{N} \in \mathbb{M} - \) Menüsü

Erişim

[Tüm ayarlar] ⇔ [Master/Bağlı] ⇔ [M/B Sistem Mimarisi] ⇔ [Tork Ref Al1 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] \(\mathbb{N} \in \mathbb{M} \), [Bağlı] \(\mathbb{L} \in \mathbb{E} \) olarak ayarlanırsa ve
- [Atamada M/B Tork Ref] \(\mathbb{N} \in \mathbb{M} \) , öğesi [Al1] \(\mathbb{R} \), \(\mathbb{I} \) olarak ayarlanırsa.

[Al1 Tipi] \(\mathbb{R} \), \(\mathbb{I} \)

Analog giriş Al1’nin konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>10 (\mathbb{U})</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(0 \mathbb{R})</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[Al1 min. değeri] \(\mathbb{U} \), \(\mathbb{L} \)

Al1 %0 gerilim ölçekleme parametresi.

Bu parametre, [Al1 Türü] \(\mathbb{R} \), \(\mathbb{I} \), [Gerilim] \(10 \mathbb{U} \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Vdc</td>
</tr>
</tbody>
</table>

[Al1 maks. değeri] \(\mathbb{U} \), \(\mathbb{H} \)

Al1 %100 gerilim ölçekleme parametresi.

Bu parametre, [Al1 Türü] \(\mathbb{R} \), \(\mathbb{I} \), [Gerilim] \(10 \mathbb{U} \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 10,0 Vdc</td>
</tr>
</tbody>
</table>

[Al1 min. değeri] \(\mathbb{C} \), \(\mathbb{L} \)

Al1 %0 akım ölçekleme parametresi.

Bu parametre, [Al1 Türü] \(\mathbb{R} \), \(\mathbb{I} \), [Akım] \(0 \mathbb{R} \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 mA</td>
</tr>
</tbody>
</table>

[Al1 maks. değeri] \(\mathbb{C} \), \(\mathbb{H} \)

Al1 %100 akım ölçekleme parametresi.

Bu parametre, [Al1 Türü] \(\mathbb{R} \), \(\mathbb{I} \), [Akım] \(0 \mathbb{R} \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 20,0 mA</td>
</tr>
</tbody>
</table>
[Tork Ref Al2 Konfig.] ★ R 2 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi] ➔ [Tork Ref Al2 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:

- [M/B Aygıt Rolü] ★ S d L ➔ [Bağlı] 5 L R V E olarak ayarlanırsa ve

[AI2 Tipi] Rı Z

Analog giriş Al2’nin konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>10u</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>n 10u</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[AI2 min. değeri] u L Z

AI2 %0 gerilim ölçekleme parametresi.

Bu parametreye, [AI2 Tipi] Rı Z aşağıdaki şekilde ayarlanırsa erişilebilir:

- [Gerilim] 10u veya
- [Gerilim +/-] n 10u.

[AI1 min. değeri] u L 1 (bkz. sayfa 245) ile aynı.

[AI2 maks. değeri] u H Z

AI2 %100 gerilim ölçekleme parametresi.

Bu parametreye, [AI2 Tipi] Rı Z aşağıdaki şekilde ayarlanırsa erişilebilir:

- [Gerilim] 10u veya
- [Gerilim +/-] n 10u.

[AI1 maks. değeri] u H 1 (bkz. sayfa 245) ile aynı.
[Tork Ref AI3 Konfigürasyonu] Mzę ʒ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisı] ➔ [Tork Ref AI3 Konfigürasyonu]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:

[AI3 Tipli] R lę

Analog giriş AI3'ün konfigürasyonu.
Aşağıdaki fabrika ayarıyla [AI2 Tipli] R lę (bkz. sayfa 240) ile aynı: [Akım] O R.

[AI3 min. değeri] lę, lę, lę

AI3 %0 gerilim ölç克莱me parametresi.
[AI1 min. değeri] lę, lę (bkz. sayfa 245) ile aynı.

[AI3 maks. değeri] lę, lę, lę

AI3 %100 gerilim ölç克莱me parametresi.
[AI1 maks. değeri] lę, lę (bkz. sayfa 249) ile aynı.

[AI3 min. değeri] C lę, lę

AI3 %0 akım ölç克莱me parametresi.
[AI1 min. değeri] C lę, lę (bkz. sayfa 245) ile aynı.

[AI3 maks. değeri] C lę, lę

AI3 %100 akım ölç克莱me parametresi.
[AI1 maks. değeri] C lę, lę (bkz. sayfa 249) ile aynı.
Tüm ayarlar CST-

[Tork Ref Al4 Konfig.] \(\Pi \in 4 \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Master/Bağlı] \(\rightarrow \) [M/B Sistem Mimarisi] \(\rightarrow \) [Tork Ref Al4 Konfig.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Aygıt Rolü] \(\checkmark \) \(\frac{5}{2} d \) \(\checkmark \) \(\frac{5}{2} L \) \(\checkmark \) \(E \) olarak ayarlanırsa ve
- [Atamada M/B Tork Ref] \(\checkmark \) \(\frac{5}{2} L \) \(\checkmark \) öğesi [Al4] \(\checkmark \) \(\checkmark \) olarak ayarlanırsa.

[Al4 Tipi] \(\checkmark \) \(\Pi \in 4 \) ★

Analog giriş Al4’ün konfigürasyonu.
Bu parametre, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(i0)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(oA)</td>
<td>0-20 mA</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>(n) (oA)</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[Al4 min. değeri] \(\checkmark \) \(\Pi \in 4 \) ★

Al4 %0 gerilim ölçkeleme parametresi.
Bu parametre, [Al2 Tipi] \(\checkmark \) \(\Pi \in 2 \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] \(i0 \) veya
- [Gerilim +/-] \(n \) \(oA \).

[Al1 min. değeri] \(\checkmark \) \(\Pi \in 1 \) (bkz. sayfa 245) ile aynı.

[Al4 maks. değeri] \(\checkmark \) \(\Pi \in 4 \) ★

Al4 %100 gerilim ölçkeleme parametresi.
Bu parametre, [Al2 Tipi] \(\checkmark \) \(\Pi \in 2 \) aşağıdaki şekilde ayarlanırsa erişilebilir:
- [Gerilim] \(i0 \) veya
- [Gerilim +/-] \(n \) \(oA \).

[Al1 maks. değeri] \(\checkmark \) \(\Pi \in 1 \) (bkz. sayfa 245) ile aynı.

[Al4 min. değeri] \(\checkmark \) \(\Pi \in L \) ★

Al4 %0 akım ölçkeleme parametresi.
Bu parametre, [Al4 Türü] \(\checkmark \) \(\Pi \in 4 \) \(\checkmark \) \(\checkmark \) \(\checkmark \) olarak ayarlanırsa erişilebilir.

[Al1 min. değeri] \(\checkmark \) \(\Pi \in L \) (bkz. sayfa 245) ile aynı.

[Al4 maks. değeri] \(\checkmark \) \(\Pi \in H \) ★

Al4 %100 akım ölçkeleme parametresi.
Bu parametre, [Al4 Türü] \(\checkmark \) \(\Pi \in 4 \) \(\checkmark \) \(\checkmark \) \(\checkmark \) olarak ayarlanırsa erişilebilir.

[Al1 maks. değeri] \(\checkmark \) \(\Pi \in H \) (bkz. sayfa 245) ile aynı.
[Tork Ref AI5 Konfigürasyonu] \(\mathcal{N} \in \mathcal{S} \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Master/Bağlı] \(\rightarrow \) [M/B Sistem Mimarisı] \(\rightarrow \) [Tork Ref AI5 Konfigürasyonu.]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:

- [M/B Aygıt Rolü] \(\mathcal{N} \in \mathcal{S} \) ile [Bağlı] \(\mathcal{L} \in \mathcal{E} \) olarak ayarlanırsa ve
- [Atamada M/B Tork Ref] \(\mathcal{N} \in \mathcal{E} \), öğesi [AI5] \(\mathcal{R} \in \mathcal{S} \) olarak ayarlanırsa.

[AI5 Tipi] \(\mathcal{A} \in \mathcal{S} \)

Analog giriş AI5'in konfigürasyonu.
Bu parametre, VW3A3203 I/O uzatma modülü takılırsa erişilebilir.
[AI4 Tipi] \(\mathcal{A} \in \mathcal{A} \) ile aynı. (bkz. sayfa 242)

[AI5 min. değeri] \(\mathcal{U} \in \mathcal{S} \)

AI5 %0 gerilim ölç克莱me parametresi.
Bu parametre, [AI2 Tipi] \(\mathcal{A} \in \mathcal{I} \) aşağıdaki şekilde ayarlanırsa erişilebilir:

- [Gerilim] \(\mathcal{I} \in \mathcal{O} \) veya
- [Gerilim+/-] \(\mathcal{N} \in \mathcal{O} \).

[AI1 min. değeri] \(\mathcal{U} \in \mathcal{I} \) (bkz. sayfa 245) ile aynı.

[AI5 maks. değeri] \(\mathcal{U} \in \mathcal{H} \)

AI5 %100 gerilim ölç克莱me parametresi.
Bu parametre, [AI2 Tipi] \(\mathcal{A} \in \mathcal{I} \) aşağıdaki şekilde ayarlanırsa erişilebilir:

- [Gerilim] \(\mathcal{I} \in \mathcal{O} \) veya
- [Gerilim+/-] \(\mathcal{N} \in \mathcal{O} \).

[AI1 maks. değeri] \(\mathcal{U} \in \mathcal{H} \) (bkz. sayfa 245) ile aynı.

[AI5 min. değeri] \(\mathcal{C} \in \mathcal{L} \)

AI5 %0 akım ölç克莱me parametresi.
Bu parametre, [AI5 Türü] \(\mathcal{A} \in \mathcal{S} \) ile [Akım] \(\mathcal{O} \) olarak ayarlanırsa erişilebilir.

[AI1 min. değeri] \(\mathcal{C} \in \mathcal{L} \) (bkz. sayfa 245) ile aynı.

[AI5 maks. değeri] \(\mathcal{C} \in \mathcal{H} \)

AI5 %100 akım ölç克莱me parametresi.
Bu parametre, [AI5 Türü] \(\mathcal{A} \in \mathcal{S} \) ile [Akım] \(\mathcal{O} \) olarak ayarlanırsa erişilebilir.

[AI1 maks. değeri] \(\mathcal{C} \in \mathcal{H} \) (bkz. sayfa 245) ile aynı.
[M/B Sistem Mimarisi] 5 5 A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi]

[M/B Hız Ref Çıkışı Ataması] 5 5 5 A

Master / Bağlı çıkış hız referansı.
Master Sürücü için hız referansı için seçilen analog çıkış.
Bu parametre [M/B İletişim Modu] 5 5 C ß öğesi [Hayır] ß olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>ß</td>
<td>Hız referansı için analog çıkış konfigüre edilmez. Fabrika ayan</td>
</tr>
<tr>
<td>[AQ1 ataması]</td>
<td>ß 1</td>
<td>Hız referansı için Analog Çıkış ß 1'e konfigüre edilir.</td>
</tr>
<tr>
<td>[AQ2 ataması]</td>
<td>ß 2</td>
<td>Hız referansı için Analog Çıkış ß 2'e konfigüre edilir.</td>
</tr>
</tbody>
</table>

Sinyal kaybını izlemek için master ve bağlı arasında bir 4-20 mA bağlantısı kullanılması ve [4-20 mA kaybı] L F L - menüsünde izleme fonksiyonunun konfigüre edilmesi önerilir.

NOT: Konfigürasyona izin vermek için çıkışların varsayılan konfigürasyonunun konfigüre edilmemesi gerekir.
Tüm ayarlar CSt-

NVE61643TR 01/2019 251

[Hız Ref AQ1 Konfig.] "Menüsü"

Erişim

[Tüm ayarlar] ↦ [Master/Bağlı] ↦ [M/B Sistem Mimarisi] ↦ [Hız Ref AQ1 Konfig.]

Bu Menü Hakkında

Bu menüye [M/B Hız Ref Çıkış Ataması] "Menüsü" öğesi [AQ1 ataması] R a o ile ayarlanırsa erişilebilir.

[AQ1 Tipli] R a o l t

AQ1 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>l 0 u</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>0 R</td>
<td>0-20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 min. çıkışı] R a o l t

AQ1 %0 akım ölçekteleme parametresi.
Bu parametreyle, [AQ1 Türü] R a o l t , [Akım] 0 R olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı Fabrika ayarı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 maks. çıkışı] R a o H t

AQ1 %100 akım ölçekteleme parametresi.
Bu parametreyle, [AQ1 Türü] R a o l t , [Akım] 0 R olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı Fabrika ayarı: 20,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 min Çıkışı] u a l t

AQ1 %0 gerilim ölçekteleme parametresi.
Bu parametreyle, [AQ1 Türü] R a o l t , [Gerilim] l 0 u olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı Fabrika ayarı: 0,0 Vdc</td>
</tr>
</tbody>
</table>

[AQ1 maks. Çıkışı] u a H t

AQ1 %100 gerilim ölçekteleme parametresi.
Bu parametreyle, [AQ1 Türü] R a o l t , [Gerilim] l 0 u olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı Fabrika ayarı: 10,0 Vdc</td>
</tr>
</tbody>
</table>
[Hız Ref AQ2 Konfig.] \(\frac{7}{5} \frac{7}{2} \ - \) Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow [\text{Master/Bağlı}] \rightarrow \text{[M/B Sistem Mimarisi]} \rightarrow \text{[Hız Ref AQ2 Konfig.]} \)

Bu Menü Hakkında

Bu menüye [M/B Hız Ref Çıkış Ataması] \(\frac{7}{5} \frac{7}{6} \) öğesi [AQ2 ataması] \(\frac{7}{2} \) olarak ayarlanırsa erişilebilir.

[AQ2 Tipi] \(\frac{7}{2} \frac{7}{2} \)

AQ2 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(I)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(O)</td>
<td>0-20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[AQ2 min. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) *

AQ2 %0 akım ölçekte parametresi.
Bu parametreye, [AQ2 Türü] \(\frac{7}{2} \frac{7}{2} \) \(\cdot [\text{Akım}] \) \(O \) olarak ayarlanırsa erişilebilir.

[AQ1 min. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) \(\frac{7}{2} \) (bkz. sayfa 25) ile aynı.

[AQ2 maks. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) *

AQ2 %100 akım ölçekte parametresi.
Bu parametreye, [AQ2 Türü] \(\frac{7}{2} \frac{7}{2} \) \(\cdot [\text{Akım}] \) \(O \) olarak ayarlanırsa erişilebilir.

[AQ1 maks. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) \(\frac{7}{2} \) (bkz. sayfa 25) ile aynı.

[AQ2 min Çıkışı] \(\frac{7}{2} \frac{7}{2} \) *

AQ2 %0 gerilim ölçekte parametresi.
Bu parametreye, [AQ2 Türü] \(\frac{7}{2} \frac{7}{2} \) \(\cdot [\text{Gerilim}] \) \(I \) olarak ayarlanırsa erişilebilir.

[AQ1 min. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) \(\frac{7}{2} \) (bkz. sayfa 25) ile aynı.

[AQ2 maks. Çıkışı] \(\frac{7}{2} \frac{7}{2} \) *

AQ2 %100 gerilim ölçekte parametresi.
Bu parametreye, [AQ2 Türü] \(\frac{7}{2} \frac{7}{2} \) \(\cdot [\text{Gerilim}] \) \(I \) olarak ayarlanırsa erişilebilir.

[AQ1 maks. çiğnemi] \(\frac{7}{2} \frac{7}{2} \) \(\frac{7}{2} \) (bkz. sayfa 25) ile aynı.
[M/B Sistem Mimarisi] 75A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi]

[M/B Tork Ref Çıkışı Ataması] 75A

Master / Bağlı çıkış tork referansı.
Master Sürücü için tork referansı için seçilen analog çıkış.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>no</td>
<td>Tork referansı için analog çıkış konfigüre edilmez. Fabrika ayar</td>
</tr>
<tr>
<td>[AQ1 ataması]</td>
<td>R 1</td>
<td>Hız referansı için Analog Çıkış R 1'e konfigüre edilir.</td>
</tr>
<tr>
<td>[AQ2 ataması]</td>
<td>R 2</td>
<td>Hız referansı için Analog Çıkış R 2'e konfigüre edilir.</td>
</tr>
</tbody>
</table>

Sinyal kaybını izlemek için master ve bağlı arasında bir 4-20 mA bağlantısı kullanılması ve [4-20 mA kaybı] LFL - menüsünde izleme fonksiyonunun konfigüre edilmesi önerilir.

NOT: Konfigürasyona izin vermek için çıkışların varsayılan konfigürasyonunun konfigüre edilmesi gerekir.
[Tork Ref AQ1 Konfigürasyonu] воротын - Menüsü

Erişim

[Tüm ayarlar] → [Master/Bağlı] → [M/B Sistem Mimarisi] → [Tork Ref AQ1 Konfigürasyonu.]

Bu Menü Hakkında

Bu menüye [M/B Tork Ref Çıkış Ataması] воротыны [AQ1 ataması] R o t 01 olarak arananırsa erişilebilir.

[AQ1 Tipi] R o t

AQ1 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>U</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>I</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[AQ1 min. çıkışı] R o t L /★

AQ1 %0 akım ölçekleme parametresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 maks. çıkışı] R o t H /★

AQ1 %100 akım ölçekleme parametresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı: 20,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 min Çıkışı] U o L /★

AQ1 %0 gerilim ölçekleme parametresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 0,0 Vdc</td>
</tr>
</tbody>
</table>

[AQ1 maks. Çıkışı] U o H /★

AQ1 %100 gerilim ölçekleme parametresi.
Bu parametreye, [AQ1 Türü] R o t H . [Gerilim] I O U olarak arananırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 10,0 Vdc</td>
</tr>
</tbody>
</table>
Tork Ref AQ2 Konfigürasyonu N B Z - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi] ➔ [Tork Ref AQ2 Konfigürasyonu.]

Bu Menü Hakkında

[AQ2 Tipi] R o Z t

AQ2 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>I 0 V</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>0 R</td>
<td>0-20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
</tbody>
</table>

[AQ2 min. çıkışı] R o L t ⭐

AQ2 %0 akım ölçekte parametresi.
Bu parametreye, [AQ2 Türü] R o Z t, [Akım] R o L olarak ayarlanırsa erişilebilir.

[AQ2 maks. çıkışı] R o H t ⭐

AQ2 %100 akım ölçekte parametresi.
Bu parametreye, [AQ2 Türü] R o Z t, [Akım] R o H olarak ayarlanırsa erişilebilir.

[AQ2 min Çıkışı] R o L t ⭐

AQ2 %0 gerilim ölçekte parametresi.

[AQ2 maks. Çıkışı] R o H t ⭐

AQ2 %100 gerilim ölçekte parametresi.
[M/B Sistem Mimarisi] § 5 A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Sistem Mimarisi]

[M/B Yerel Modu Ataması] § 5 d ,

Master / Bağlı yerel mod ataması.
Dijital giriş Master/Bağlı otomatik işlem ve yerel kontrol modu (örneğin bakım modunda) arasında geçiş yapmak için kullanılır.

NOT: Sistem durduğuunda ve mümkünse motor bağlantısı mekanik olarak kesildiğinde bu modu kullanmak önerilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L , L...L , B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22 kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L , L...L , B</td>
<td>VW3A3203 G/Ç uzatma modülü takılırsa dijital giriş DI11...DI16</td>
</tr>
</tbody>
</table>

[MDL İlet Zaman Aşımı] § 5 L ≤ α

MultiDrive Link iletişim zaman aşımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...10,00 sn</td>
<td>Ayar aralığı: 0,05 sn</td>
</tr>
</tbody>
</table>

[M/B İletişimi HataYanıtı] § 5 C b

Bir iletişim hatasına Master / Bağlı yanıtı.
Çoklu sürücü bağlantı ile iletişim hatası algılanıığında sürücünün nasıl davranacağını tanımlayın.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E 5</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>S ≤ t</td>
<td>[Duruş türü] S ≤ t parametresine uygun ancak duruştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r ∨ P</td>
<td>Rampada durma</td>
</tr>
</tbody>
</table>

[M/B Aygıtı HataYanıtı] § 5 d b

Aygıt hatasına Master / Bağlı yanıtı.
Aygıt kaybolduğunda sürücünün nasıl davranacağını tanımlayın

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E 5</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir dururma tetiklediğinden, bu gösterge için bir röle veya mantık çıkış atanması tavsiye edilir.
NOT: Master [Rampa duruşu] \(r \neq P \) durumundaysa bağlının [Serbest Duruş] \(Y \neq 5 \) olarak ayarlanması gereklidir, [Hız korunuyor] \(r \neq L \) ve [Geri Çekilme Hızı] \(L \neq F \) bağlı sürücüler için kullanılamaz.

[M/B Aygıt Hatası Geçikmesi] \(n_5 d d \)

Master / Bağlı aygıt hatası geçikmesi.
Sistem hazır olmadan önceki geçikmeyi izleme. Sistemdeki sürücülerden biri bu geçikmeden sonra hazır değilse bir [M/B Aygıt Hatası] \(n_5 d F \) tetiklenir.

Bu parametre [M/B İletişim Modu] \(n_5 C \) öğesi [Hayır] \(n d L \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...60 sn | Ayar aralığı
| | Fabrika ayarı: \(n a \) sonsuz süre için bekle |

[Geri Çekilme Hızı] \(L \neq F \)

Geri çekilme hızı.
Bu parametre hata yanıtı parametresi [Geri Çekilme Hızı] \(L \neq F \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>
Mekanik Bağlantıda Master/Bağlı

Master / Bağlı mekanik bağlantını türü iki tür bağlantıyı seçmeyi sağlar:
- [Katı] $r \cdot G \cdot d$ bağlantısı, her motorun rotor hızının uygulama tarafından aynı olmaya zorlandığı anlamına gelir. Bu seçim tipik olarak dişli kutusu, dişli bandı gibi bağlantı için ve elastiklik '0'a yakın olduğunda kullanılır.
- [Elastik] $E \cdot L \cdot R \cdot S \cdot t$ bağlantında, elastiklik veya bağlantılı kayma gibi nedenlerle motorların rotorları aynı değildir. Bu tür bağlantıyı örneğin baş üstü konveyör (bir germe sistemi kullanılan), uzun bant için kullanılır.

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Kontrolü]

Bu Menü Hakkında

Master/Bağlı Kontrol Türü

Master / Bağlı kontrol türü, bağlıda hangi tür kontrolünün uygulanacağını seçmenizi sağlar ve Master’in yönüyle ilgili bağlantının yönü:
- [Hız Yönü] $S \cdot P \cdot d \cdot r$: Bağlı aynı yönde Master’in hız referansını izler.
- [Ters Hız] $S \cdot P \cdot d \cdot r$: Bağlı ters yönde Master’in hız referansını izler. Tipik olarak yüz yüze motorlar için.
- [Tork Yönü] $t \cdot r \cdot Q \cdot r$: Bağlı aynı yönde Master’in tork referansını izler.
- [Ters Tork] $t \cdot r \cdot Q \cdot r$: Bağlı ters yönde Master’in tork referansını izler. Tipik olarak yüz yüze motorlar için.
- [Tork Özel] $t \cdot r \cdot Q \cdot r$: Bağlı hızlı referansı çevresinde Master’in tork referansını izler. Hızın yönü [Hiz Ref Yönü] $S \in d \in$ ile ve torkun yönü [Tork ref. işareti] $t \in d \in$ ile ayarlanabilir.

Uygulama gereklidirde bir tork oranı veya tork rampasını uygulaymayı sağlar.

Aşağıdaki tabloda [M/B Kontrol Türü] $M \in L \in$ öğesi [Tork Özel] $t \in Q \in$ olarak ayarlanrsa [Hiz Ref Yönü] $S \in d \in$ ve [Tork ref. işareti] $t \in d \in$ arasındaki olası durumlar gösterilmektedir:

<table>
<thead>
<tr>
<th>[Hız Ref Yönü] $S \in d \in$</th>
<th>[Tork ref. işareti] $t \in d \in$</th>
<th>[M/B Kontrol Türü] $M \in L \in$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devre dışı</td>
<td>Devre dışı</td>
<td>Bağlı Master ile aynı yönde çalışır (hız ve tork)</td>
</tr>
<tr>
<td>Devre dışı</td>
<td>Aktif</td>
<td>Bağlı Master ile aynı yönde ancak zıt torkta çalışır</td>
</tr>
<tr>
<td>Aktif</td>
<td>Devre dışı</td>
<td>Bağlı Master ile ters yönde çalışır ve zıt tork uygular</td>
</tr>
<tr>
<td>Aktif</td>
<td>Aktif</td>
<td>Bağlı hız ve tork için Master'in zıt yönünde çalışır.</td>
</tr>
</tbody>
</table>
Konfigürasyonu Durdur

Bağlilar konfigürasyonlarıyla ve master durma türlerine göre farklı durma davranışlarına sahiptir.

Master serbest durduğuunda:
- [M/B Kontrol Türü] \(P \ S \ C \) \(\ell \) öğesi [Hız Yöni] \(S \ P \ d \ r \) veya [Ters Hız] \(S \ P \ d \ r \) olarak ayarlanırsa bağlantılar [Dururma Türü] \(S \ S \) \(\ell \) konfigürasyonunu izleyerek durur.
- [M/B Kontrol Türü] \(P \ S \ C \) \(\ell \) öğesi [Tork Yöni] \(r \ r \ q \ r \) veya [Ters Tork] \(r \ r \ q \ r \) ya da [Tork Özel] \(r \ r \ q \ c \) olarak ayarlanırsa bağlılar aralarındaki önceliğe bağlı olarak [Tork kontrol durdurma] \(S \ S \) \(\ell \) veya [Dururma Türü] \(S \ S \) \(\ell \) öğesi izleyerek durur.

Örnek: [Tork kontrol durdurma] \(S \ S \) \(\ell \) öğesi [Serbest Duruş] \(n \ S \) \(\ell \) olarak ayarlanırsa ve [Dururma türü] \(S \ S \) \(\ell \) öğesi [Rampada] \(r \ P \) olarak ayarlanırsa bağlılar serbest duracaktır.

Rampada Master durduğuunda:
- [M/B Kontrol Türü] \(P \ S \ C \) \(\ell \) öğesi [Hız Yöni] \(S \ P \ d \ r \) veya [Ters Hız] \(S \ P \ d \ r \) olarak ayarlanırsa bağlantılar hız kontrolünde master rampayı izleyerek durur.
- [M/B Kontrol Türü] \(P \ S \ C \) \(\ell \) öğesi [Tork Yöni] \(r \ r \ q \ r \) veya [Ters Tork] \(r \ r \ q \ r \) ya da [Tork Özel] \(r \ r \ q \ c \) olarak ayarlanırsa bağlılar tork kontrolünde master rampayı izleyerek durur.

Fren yönetimi

Fren sırası yalnızca Master tarafından yönetilir.

Master frenini, [MultiDrive Link] \(P \ d \ L \) veya [Analogn] \(A n \ A n \)'da fren sırasına göre yönetir. Opsiyonel olarak, aynı fren komutuyla Master bağlarınıların frenlerini yönetebilir. Uygulamada frenlerin bırakma ve kavrama süreleri aynı olmalıdır.

Fren sırası Master ve Bağlıklar tarafindan yönetilir.

[MultiDrive Link] \(P \ d \ L \)'de frenler her Sürücüde yönetilebilir. Bırakma ve kavrama sürelerinin senkronizasyonu [MultiDrive Link] \(P \ d \ L \) yoluya Master tarafından yönetilir.

[M/B Bağlantı Türü] \(P \ S \ C \)

Master / Bağlı mekanik bağlanı türü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Katı]</td>
<td>(r \ G \ d)</td>
<td>Katı bağlantı
Fabrika ayarı</td>
</tr>
<tr>
<td>[Elastik]</td>
<td>(E L A S \ C)</td>
<td>Elastik bağlantı</td>
</tr>
</tbody>
</table>

[M/B Kontrol Türü] \(P \ S \ C \) ★

Master / Bağlı kontrol türü.
Bu parametre [M/B Aygıt Rolü] \(P \ d \ L \) \(\ell \) öğesi [Bağlı] \(S \ L \ A n \ L \) olarak ayarlanırsa veya [M/B Aygıt Kimliği] \(P \ d \ L \) \(\ell \) öğesi [Bağlı 1] - [Bağlı 10] olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tork Yöni]</td>
<td>(r \ r \ q \ d)</td>
<td>Tork yönü kontrolü
Fabrika ayarı</td>
</tr>
<tr>
<td>[Ters Tork]</td>
<td>(r \ r \ q \ r)</td>
<td>Ters tork kontrolü</td>
</tr>
<tr>
<td>[Tork Özel]</td>
<td>(r \ r \ q \ c)</td>
<td>Tork özel kontrolü
Farklı motorlar olduğunda tork rampasında bir tork oranını uygulamaya izin verin</td>
</tr>
<tr>
<td>[Hız Yöni]</td>
<td>(S \ P \ d \ r)</td>
<td>Hız yönü kontrolü
[M/B Bağlantı Türü] (P \ S \ C) (\ell) öğesi [Katı] olarak ayarlanırsa kullanılamaz (r \ G \ d)</td>
</tr>
<tr>
<td>[Ters Hız]</td>
<td>(S \ P \ d \ r)</td>
<td>Ters hız kontrolü
[M/B Bağlantı Türü] (P \ S \ C) (\ell) öğesi [Katı] olarak ayarlanırsa kullanılamaz (r \ G \ d)</td>
</tr>
</tbody>
</table>
[M/B Tork Kontrolü] \(\lor \ S \ q \ - \) Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Kontrolü] ➔ [M/B Tork Kontrolü]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:

- [M/B Aygıt Rolü] \(\lor \ S \ d \) öğesi \(\lor \ R \ V \ E \) olarak ayarlanırsa veya [M/B Aygıt Kimliği] \(\lor \ S \ d \) öğesi \(\lor \ R \ q \) olarak ayarlanırsa ve
- [M/B Kontrol Türü] \(\lor \ S \ L \) aşağıdaki şekilde ayarlanırsa:
 - [Tork Doğrudan] \(\lor \ q \ H \) veya
 - [Ters Tork] \(\lor \ q \ R \) veya
 - [Tork Özel] \(\lor \ q \ C \).

[Hız Ref Yönu] \(\lor \ S \ d \) ★

Hız referans yönü.

Master'dan referans hız değerinin imza tersine çevrilmesi için atama.

Bu parametreye şu şekilde erişilebilir:

- [M/B İletişim Modu] \(\lor \ S \ L \) öğesi \(\lor \ H \) olarak ayarlanmazsa ve
- [M/B Kontrol Türü] \(\lor \ S \ L \) öğesi [Tork Özel] \(\lor \ R \ c \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>(n \ o)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td>(y \ e \ 5)</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(D)</td>
<td>Evet</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>(L \ , l \ , l \ , B)</td>
<td>Dijital giriş D11...D18</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td>(L \ , l \)</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa dijital giriş D11...D16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>(C \ d \ 0 0 \ ...C \ d \ 1 0)</td>
<td>[G/C profil] (\lor) konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>(C \ d \ 1 1 \ ...C \ d \ 1 5)</td>
<td>Konfigürasyondan bağımız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>(C \ I 0 \ 1 \ ...C \ I 1 0)</td>
<td>[G/C profil] (\lor) konfigürasyonunda entegre Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td>(C \ I 1 1 \ ...C \ I 1 5)</td>
<td>Konfigürasyondan bağımız olarak entegre Modbus Seri ile sanal dijital giriş CMD1.11...CMD1.15</td>
</tr>
<tr>
<td></td>
<td>(C)</td>
<td>Konfigürasyondan bağımız olarak entegre CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>(C \ 3 1 1 \ ...C \ 3 1 5)</td>
<td>Konfigürasyondan bağımız olarak bir fieldbus modülü olan CMD3.01...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td>(C \ 5 0 \ 1 \ ...C \ 5 1 0)</td>
<td>[G/C profil] (\lor) konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td>(C \ 5 1 1 \ ...C \ 5 1 5)</td>
<td>Konfigürasyondan bağımız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

[Tork ref. işareti] \(\lor \ S \ d \) ★

Tork düzenleme fonksiyonu için referansın işaretinin tersine çevrilmesi için atama.

Bu parametreye şu şekilde erişilebilir:

- [M/B İletişim Modu] \(\lor \ S \ L \) öğesi \(\lor \ H \) olarak ayarlanmazsa ve
- [M/B Kontrol Türü] \(\lor \ S \ L \) öğesi [Tork Özel] \(\lor \ R \ c \) olarak ayarlanır.

[Hız Ref Yönu] \(\lor \ S \ d \) ile aynı.
Tüm ayarlar CSt-

[Tork oranı] \(t \) \(r \) ★

Tork oranı.

Bu parametre master motordan farklı bir nominal tork ile bir bağlı motor kullanılması durumunda veya master ve bağlı arasındaki torkun dengesini bozmak için kullanılır.

Bu parametre master'dan alınan tork referansında bir faktörü % olarak uygular.

Bu parametreye şu şekilde erişilebilir:

- [M/B İletişim Modu] \(M \) \(B \) öğesi [Hayır] \(n \) olarak ayarlanmazsa ve
- [M/B Kontrol Türü] \(M \) \(B \) öğesi [Tork Özel] \(t \) \(r \) \(q \) \(L \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar ((t))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| \(0 \)\%...1000,0 | [Tork ref. kanalı] \(t \) \(r \) \(1 \) veya [Tork ref. 2 kanalı] değerine uygulanan katsayı \(t \) \(r \) \(2 \)
Fabrika ayarı: %100,0 |

[Tork Offseti] \(t \) \(q \) \(P \) ★

Torkların referans ofseti.

Bu parametre tork referans değerini ölçekte değişim için kullanılır.

Bu parametre tork referansında % olarak bir ofset uygulanır.

Bu parametreye şu şekilde erişilebilir:

- [M/B İletişim Modu] \(M \) \(B \) öğesi [Hayır] \(n \) olarak ayarlanmazsa ve
- [M/B Kontrol Türü] \(M \) \(B \) öğesi [Tork Özel] \(t \) \(r \) \(q \) \(L \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar ((t))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| \(-1000,0...1000,0 \) | Ayar aralığı
Fabrika ayarı: %0,0 |

[Tork rampa zamanı] \(t \) \(r \) ★

Tork rampa zamanı.

Bu parametre rampa zamanı için kullanılır.

Bu parametreye şu şekilde erişilebilir:

- [M/B İletişim Modu] \(M \) \(B \) öğesi [Hayır] \(n \) olarak ayarlanmazsa ve
- [M/B Kontrol Türü] \(M \) \(B \) öğesi [Tork Özel] \(t \) \(r \) \(q \) \(L \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar ((t))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| \(0 \),0...99,99 sn | Nominal torkun %100 değişimi için yükselseme ve düşme zamanı
Fabrika ayarı: 3,00 sn |

[Tork kontrol durma] \(t \) \(S \) \(L \)

Tork kontrol durma türü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hz]</td>
<td>(S) (P) (d)</td>
<td>Durdurma türü konfigürasyonuna göre hız düzenlenmesi durma</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>(n) (S) (L)</td>
<td>Fabrika ayarı: Serbest duruş</td>
</tr>
<tr>
<td>[Dönme]</td>
<td>(S) (P) (n)</td>
<td>Sıfır durum, ancak motorda aki korunuyor (yalnızca kapalı çevrimde)</td>
</tr>
</tbody>
</table>

[Dönme süresi] \(S \) \(P \) ★

Tork düzenlemesi: dönme süresi.

Hızlı bir şekilde yeniden başlatmak için bir kalmak için dönme süresi ardından duruma.

Bu parametre sıfır hız ulaşılduktan sonra motorun aklanmış durumunda tutulacağı süreyi belirter.

Bu parametre [Tork kontrol durdurma] \(t \) \(S \) \(L \) öğesi [Dönme] \(S \) \(P \) \(n \) olarak ayarlanırsa erişilebilir.
Tüm ayarlar CST-262 NVE61643TR 01/2019

[Benzinli ölü bant] d_P

Tork düzenleme pozitif ölü bandı.
Bu alanın dışında, sürücü tork kontrol alanı içinde hızın dönmesini sağlamak için hız kontrolünde otomatik değişir.
Değer hız referansına cebirsel olarak eklenir.

[Benzinli ölü bant] $d_P = 10$ için örnek:
- Referans = + 50 Hz ise: + 50 + 10 = 60 Hz
- Referans = - 50 Hz ise: - 50 + 10 = - 40 Hz

[Negatif ölü bant] d_n

Tork düzenleme negatif ölü bandı.
Bu alanın dışında, sürücü tork kontrol alanı içinde hızın dönmesini sağlamak için hız kontrolünde otomatik değişir.
Değer hız referansından cebirsel olarak çıkarılır.

[Negatif ölü bant] $d_n = 10$ için örnek:
- Referans = + 50 Hz ise: + 50 - 10 = 40 Hz
- Referans = - 50 Hz ise: - 50 - 10 = - 60 Hz

[Tork kontrol zaman aşımı] r_a

Tork kontrol zaman aşımı.
Hata durumunda tork kontrol modunun otomatik kısıtlaması izleyen veya bir uyanı tetiklendiğinde süre.

[Tork Kontrol HataYanıtı] t_o

Tork kontrol hatasına yanıt.
[Tork kontrol zaman aşımı] r_a bir kez geçtiğinde sürücünün yanıtını.
[Düşük Tork] $L \leq q$

Düşük tork eşği sınır.

Bağlıda uygulanan tork [Düşük Tork] $L \leq q$ ve [Yüksek Tork] $H \leq q$ (nominal torkun %'si olarak açıklanır) arasında sınırlanacaktır.

Bu parametre [Yüksek Tork] $H \leq q$ değerinden yüksek olamaz.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| -300.0...[Yüksek Tork] $H \leq q$ | Ayar aralığı
Fabrika ayarı: -300.0% |

[Yüksek Tork] $H \leq q$

Yüksek tork eşği sınır.

Bu parametre [Düşük Tork] $L \leq q$ değerinden küçük olamaz.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Düşük Tork] $L \leq q$...%300.0 | Ayar aralığı
Fabrika ayarı: 300.0% |
[M/B Kontrolü] \(\cap S \ell \) - Menüsü

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Master/Bağlı] \(\Rightarrow \) [M/B Kontrolü]

Bu Menü Hakkında

Bu menüye [M/B İletişim Modu] \(\cap S \ell \) \(\cap \) öğesi [Hayır] \(\cap \) olarak ayarlanmazsa erişilebilir.

[Tork Filtresi] \(\ell \ r \ F \) ★

Bu fonksiyon dinamik kontrol kısıtlamalarıyla uğraşmak için Bağlıklar Sürücülerini için tork referansında bir filter sağlar (iletşim gecikmeleri gibi). Giriş tork referansında filtrelemenin bulunup bulunmadığını seçin.

Bu parametreyle şu şekilde erişilebilir:

- [M/B Aygıt Rolü] \(\cap S \ell \ \ell \) öğesi [Bağlı] \(5 \ L \ A \ V \ E \) olarak ayarlanırsa veya [M/B Aygıt Kimliği] \(\cap S \ell \ d \) öğesi [Bağlı1] - [Bağlı10] olarak ayarlanırsa ve
- [M/B Kontrol Türü] \(\cap S \ell \) aşağıdaki şekilde ayarlanırsa:
 - [Tork Doğrudan] \(\ell \ r \ q \ d \) veya
 - [Ters Tork] \(\ell \ r \ q \ r \) veya
 - [Tork Özel] \(\ell \ r \ q \ C \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>no</td>
<td>Giriş torku referans filtrelemesi devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>YES</td>
<td>Giriş torku referans filtrelemesi etkin</td>
</tr>
</tbody>
</table>

[Tork Filtresi Bant Genişliği] \(\ell \ r \ W \) ★

Filtrenin Bant genişliğini Hertz cinsinden tanımlar.

Bu parametreyle şu şekilde erişilebilir:

- [Tork Filtresi] \(\ell \ r \ F \) öğesi [Evet] \(Y E S \) olarak ayarlanırsa ve
- [M/B Kontrol Türü] \(\cap S \ell \) aşağıdaki şekilde ayarlanırsa:
 - [Tork Doğrudan] \(\ell \ r \ q \ d \) veya
 - [Ters Tork] \(\ell \ r \ q \ r \) veya
 - [Tork Özel] \(\ell \ r \ q \ C \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...1000 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 20 Hz.</td>
</tr>
</tbody>
</table>
[M/B Filtreleri] \(M S F \) - Menüsü

Erişim

[M/B Filtreleri] \(M S F \) Menüsü

Bu Menü Hakkında

Master kontrol hızı ve Bağlı tork kontrolüdür. Bu özellik bağlama dinamiginde (elastik) bağlı olarak Master ve Bağlı arasında aktarım fonksiyonunu konfigüre etmeye izin verir.

Gelişmiş filtre bağlamının elastikliğini telafi etmek için Master veya/ve Bağlılarda bağımsız olarak ayarlanabilir:

1. Master
2. Bağlı
3. Bu elastik bağlama için gelişmiş filtre ayarlanabilir

[M/B Gelişmiş Filtresi] \(M S F E \)

Master / Bağlı gelişmiş filtresi aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n o)</td>
<td>Gelişmiş filtreleme devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(Y E S)</td>
<td>Gelişmiş filtreleme etkin</td>
</tr>
</tbody>
</table>

[M/B Gelişmiş Filtresi Frekansı] \(M S F F \)

Filtrenin frekansını Hz cinsinden tanımlar.

[M/B Gelişmiş Filtresi Frekansı] \(M S F F \) Parametresinin Etkisi

<table>
<thead>
<tr>
<th>(M S F F)</th>
<th>(M S F F) artır</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F) (rad/s)</td>
<td>(F) (rad/s)</td>
</tr>
</tbody>
</table>

Bu parametreye [M/B Gelişmiş Filtresi] \(M S F E \) öğesi [Hayır] \(n o \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0...150 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 15,0 Hz</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019

265
[M/B Gelişmiş Filtresi Bant Genişliği] n_5F_b ★
Bant genişliğini tanımlar. Filtre frekansının %’si olarak filtrenin durma bandının genişliği anlamına gelir.

[M/B Gelişmiş Filtresi Bant Genişliği] n_5F_b Parametresinin Etkisi

<table>
<thead>
<tr>
<th>n_5F_b</th>
<th>n_5F_b artır</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%10...400</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>

[M/B Gelişmiş Filtresi Derinliği] n_5F_d ★
Filtre frekansının azalma seviyesini tanımlar.

[M/B Gelişmiş Filtresi Derinliği] n_5F_d Parametresinin Etkisi

<table>
<thead>
<tr>
<th>n_5F_d</th>
<th>n_5F_d artır</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...99</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %10</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

[M/B Gelişmiş Filtresi Kazanımı] N S F G ★

Filtrenin kazanımını tanımlar. %100 bir bütün kazanım anlamına gelir.

[M/B Gelişmiş Filtresi Kazanımı] N S F G Parametresinin Etkisi

<table>
<thead>
<tr>
<th>N S F G</th>
<th>N S F G artır</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...1.000</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>

[M/B Gelişmiş Filtresi Katsayısı] N S F C ★

Master / Bağlı gelişmiş filtresi katsayısı.

[M/B Gelişmiş Filtresi Katsayısı] N S F C Parametresinin Etkisi

<table>
<thead>
<tr>
<th>N S F C</th>
<th>N S F C artır</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...1.000</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %100</td>
</tr>
</tbody>
</table>
[Yük Paylaşımı M/B] / 5 b - Menüsü

Erişim

[Tüm ayarlar] ➔ [Master/Bağlı] ➔ [M/B Kontrolü] ➔ [Yük Paylaşımı M/B]

Bu Menü Hakkında

Bu menüye şu şekilde erişilebilir:
- [M/B Bağlantı Türü] / 5 S L E öğesi [Elastik] L A S E olarak ayarlanırsa ve

Ya da:
- [M/B Kontrol Türü] / 5 L E aşağıdaki şekilde ayarlanırsa:
 - [Hız Yöntü] S P d d veya
 - [Ters Hız] S P d r.

Yük paylaşımı, Uzman Seviyesinde Erişilebilen Parametreler

Like:

Yük paylaşım faktörü K, K1 ve K2 (K = K1 x K2) faktörüyle tork ve hız ile belirlenir.

\[
K_1
\]

\[
1
\]

\[
LbC1 \quad LbC2
\]

\[
S
\]

\[
K2
\]

\[
LbC
\]

\[
LbC3
\]

\[
T
\]

\[
Rt \times (1 + LbC3)
\]

\[
S \quad Hız
\]

\[
T \quad Tork
\]

\[
Rt \quad Nominal tork
\]
[Yük paylaşımı] L b A
Yük dengeleme konfigürasyonu.
2 motor mekanik olarak ve dolayısıyla aynı hızda bağlandığında, her biri bir sürücü ile kontrol edilir, bu fonksiyon iki motor arasında tork dağılimini iyileştirmek için kullanılır. Bunu yapmak için torka göre hızı değiştürir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E S</td>
<td>Fonksiyon aktif</td>
</tr>
</tbody>
</table>

[Yük düzeltme] L b C
Nominal hız güçlü denge düzeltmesi.
Bu parametre ye [Yük paylaşımı] L b A öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

![Diagram](image)

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...1000,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Düzeltme min hızı] L b C
Tork azaltma fonksiyon hızı referansı için Düşük Hz.
Hz olarak yük düzeltmesi için minimum hız. Bu eşliğin altında, hiç düzeltme yapılmaz. Bu, motor dönüşüne engel olacaksa çok düşük hızda düzeltmeyi önlemek için kullanılır.
Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] L R C öğesi [Uzman] E P r olarak ayarlanır ve
- [Yük paylaşımı] L b A öğesi [Hayır] n o olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...999,9 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Düzeltme maks hızı] \(LbC2 \) ★
Tork azalma fonksiyon hız referansı için yüksek hız
Maksimum yüksek düzeltmesinin uygulandığı değerin üzerinde Hz cinsinden hız eşiği.
Bu parametre şu şekilde.erişilebilir:
- [Erişim Seviyesi] \(LbC \) öğesi [Uzman] \(EPr \) olarak ayarlanırsa ve
- [Yük paylaşımı] \(LbR \) öğesi [Hayır] \(no \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LbC)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>1...1000,0 Hz</td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Tork ofseti] \(LbC3 \) ★
Tork düzeltmesi için tork ofseti.
Nominal torkun %'si olarak yüksek düzeltmesi için minimum tork. Bu eşeğin altında, hiç düzeltme yapılmaz. Tork yönü sabit olmadığında tork kararsızlıklarından kaçınmak için kullanılabilir.
Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] \(LbR \) öğesi [Uzman] \(EPr \) olarak ayarlanırsa ve
- [Yük paylaşımı] \(LbR \) öğesi [Hayır] \(no \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: %0</td>
<td></td>
</tr>
</tbody>
</table>

[Paylaşım filtresi] \(LbF \) ★
Süre sabiti filtresi.
Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] \(LbC \) öğesi [Uzman] \(EPr \) olarak ayarlanırsa ve
- [Yük paylaşımı] \(LbR \) öğesi [Hayır] \(no \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...20.000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 100 ms</td>
<td></td>
</tr>
</tbody>
</table>

[M/B Denge Tork Ref Seçimi] \(NSEfb \) ★
Master / Bağlı yük dengeleme tork referans seçimi.
Bu parametre [Yük paylaşımı] \(LbR \) öğesi [Hayır] \(no \) olarak ayarlanmazsa erişilebilir.
[M/B Gelişmiş Filtresi] \(NSEF \) öğesi [Hayır] \(no \) olarak ayarlanırsa bu parametrenin bir etkisi olmaz.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Uygulanmadı]</td>
<td>(no)</td>
<td>Uygulanmadı</td>
</tr>
<tr>
<td>[Gelişmiş Filtreden Önce]</td>
<td>(bF) (\cdot) (L) (\cdot)</td>
<td>Gelişmiş filtreden önce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Gelişmiş Filtreden Sonra]</td>
<td>(RF) (\cdot) (L) (\cdot)</td>
<td>Filtreden sonra</td>
</tr>
</tbody>
</table>
[M/B Kontrolü] \(N \leq 5 \) - Menüşi

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Master/Bağlı] \(\Rightarrow \) [M/B Kontrolü]

Bu Menü Hakkında

Bu fonksiyona [M/B iletişim Modu] \(N \leq 5 \) \(N \) öğesi [Hayır] \(n \alpha \) olarak ayarlanmazsa erişilebilir.

Aşağıdaki şemada referans girişlerinin etkisi ve Master/Bağlı yapısındaki seçenekler gösterilmektedir:

[M/B Tork Ref Giriş] \(N \leq 5 \) ★

Kontrol zincirinde Master / Bağlı tork referansı girişi.

Bu parametreye şu şekilde erişilebilir:
- [M/B Gelişmiş Filtresi] \(N \leq 5 \) \(F E \) öğesi [Hayır] \(n \alpha \) olarak ayarlanmazsa.
- [M/B Bağlantı Türü] \(N \leq 5 \) \(L \) öğesi [Elastik] \(E L \) \(R S \) \(L \) olarak ayarlanır ve
- [M/B Aygıt Rolü] \(N \leq 5 \) \(d \) öğesi [Bağlı] \(S L R V \) \(E \) olarak ayarlanır veya [M/B Aygıt Kimliği] \(N \leq 5 \) \(d \) öğesi [Bağlı 1] - [Bağlı 10] olarak ayarlanır.

Ayar Kod / Değer Açıklama

[Uygulanmadı]	\(n \alpha \)	Uygulanmadı
[Gelişmiş Filtreden Öncesi]	\(b F \) \(L \) \(n \alpha \)	Gelişmiş filtreden önce Fabrika ayar
[Gelişmiş Filtreden Sonra]	\(R F \) \(L \) \(n \alpha \)	Gelişmiş filtreden sonra

[M/B Çıkış Tork Ref Seçimi] \(N \leq 5 \) ★

Master / Bağlı çıkış tork referansı seçimi.

Dengeleme özelliğinin Giriş yönlendirmesini seçin.

Bu parametreye şu şekilde erişilebilir:
- [M/B Bağlantı Türü] \(N \leq 5 \) \(L \) öğesi [Elastik] \(E L \) \(R S \) \(L \) olarak ayarlanır ve
- [M/B Gelişmiş Filtresi] \(N \leq 5 \) \(F E \) öğesi [Hayır] \(n \alpha \) olarak ayarlanmazsa.

[M/B Hız Ref Giriş] \(N \leq 5 \) ★

Kontrol zincirinde Master / Bağlı hız referansı girişi.

Yeni hız referansı girişin yönlendirmesini seçin.

Bu parametreye [M/B Aygıt Rolü] \(N \leq 5 \) \(d \) öğesi [Bağlı] \(S L R V \) \(E \) olarak ayarlanır veya [M/B Aygıt Kimliği] \(N \leq 5 \) \(d \) öğesi [Bağlı 1] - [Bağlı 10] olarak ayarlanır ve erişilebilir.

<table>
<thead>
<tr>
<th>(\text{Ayar Kod / Değer})</th>
<th>(\text{Açıklama})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Uygulanmadı})</td>
<td>(\text{Uygulanmadı})</td>
</tr>
<tr>
<td>(\text{Gelişmiş Filtreden Öncesi})</td>
<td>(\text{Gelişmiş filtreden önce Fabrika ayar})</td>
</tr>
<tr>
<td>(\text{Gelişmiş Filtreden Sonra})</td>
<td>(\text{Gelişmiş filtreden sonra})</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 271
Tüm ayarlar CST-

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Uygulanmadi]</td>
<td>n o</td>
<td>Uygulanmadi</td>
</tr>
<tr>
<td>[Rampadan Önce]</td>
<td>br n p</td>
<td>Giriş hızı referansı kontrol referansında rampa girişinden önce Fabrika ayar</td>
</tr>
<tr>
<td>[Rampadan Sonra]</td>
<td>Ar n p</td>
<td>Giriş hızı referansı kontrol referansında rampa girişinden sonra</td>
</tr>
<tr>
<td>[Kontrol Çevriminden Önce]</td>
<td>br l r l</td>
<td>Giriş hızı referansı kontrol referansında kontrol girişinden önce</td>
</tr>
</tbody>
</table>

[M/B Çıkış Hız Ref Seçimi] $\pi 5 o 5$

Master / Bağlı çıkış hız referansı seçimi.

[M/B Hız Ref Giriş] $\pi 5 , 5$ ile aynı.
Alt bölüm 8.5
[Kaldırma Fonksiyonları]

Bu Alt Bölümdede Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fren logiği kontrolü] b L e - Menüsü</td>
<td>274</td>
</tr>
<tr>
<td>[Yüksek hızda kaldırma] h S h - Menüsü</td>
<td>289</td>
</tr>
<tr>
<td>[Yük Paylaşımı] l d s - Menüsü</td>
<td>296</td>
</tr>
<tr>
<td>[Geçiş Hali İşleme] s d r - Menüsü</td>
<td>299</td>
</tr>
</tbody>
</table>
Fren lojiği kontrolü \(b \ L \ C \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Kaldırma Fonksiyonları] ➔ [Fren lojiği kontrolü]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Yatay ve dikey kaldırma uygulamaları için sürücü ile bir elektromanyetik freni kontrol etmek için ve dengesiz makinerler için kullanılır.

Kaldırma hareketleri ikişesi:
- Dikey hareket: yükü tutmak için fren açma ve kapatma sırasında sürücü yükü tutma yönünde motor torkunu korur. Fren bırakıldığında sorunsuzca başlatın ve fren kavrandığında sorunsuzca durur.
- Yatay hareket: sarsıntıyı önlemek için, başlama sırasında biriken tork ile frenin bırakılması ve durma sırasında sıfır hızda frenin kavramasını senkronize et.

Dikey Kaldırma Uygulması İçin Fren Lojik Kontrolü İçin Talimatlar

UYARI

İSTENMEYEN EKİPMAN ÇALIŞMASI
- EN/ISO 12100 ve uygulanana uygun diğer tüm standartlar için bir risk değerlendirme gerçekleştirin.
- Risk değerlendirmenize tanımlanan tüm kritik kontrol fonksiyonlarının yedek bileşenlerini ve/veya kontrol yollarını kullanın.
- Yükleri hareket ettirme, örnek sürüşinde saatli hareketlerinde torku oluşturuncaya kadar hareketin kontrolünde bulunun.
- Uygulanan izleme işlevlerinin etkili olduğunu doğrulayın ve düzeltmek için gerekli eylemler gerçekleştirin.
- Uygulanan işlevin etkili olduğunu doğrulayın ve düzeltmek için gerekli eylemler gerçekleştirin.
- Tüm parametrelerin işlevinin etkili olduğunu doğrulayın ve düzeltmek için gerekli eylemler gerçekleştirin.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

Çalışma durumuna sürücü geçişleri Arıza veriyorsa şebeke bağlantılı ve fren kontaktörü enerjisi kesilmelidir.

UYARI

TAHMİN EDİLEMEYEN EKİPMAN ÇALIŞMASI
- [Çalışma durumu hatası] \(F \ L \ L \) öğesi çiğ hücreyi R1'e atayın.
- Şebeke bağlantılı bobini çekinmesi için çekinmesi R1'e bağlayın.
- Fren kontaktörünün birakma akımını fren kontrolüne bağlayın.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Fren Birakma Darbesi] (b \ L P) : EVET. Dönüş İLERİ yönünün yükü kaldırınca karşılık geldiğinden emin olun. İndirilekte olan yükün kaldırılmakta olan yükten çok farklı olduğu uygulamalar için, [Fren Birakma Darbesi] (b \ L P = [2 \text{IBR}] 2 \ L b r) olarak ayarlayın (örneğin, her zaman bir yükle yukarı çıkın ve her zaman yüksülüs aşağı içinde).</td>
</tr>
<tr>
<td>2</td>
<td>[Fren Birakma Darbesi] (b \ L P = [2 \text{IBR}] 2 \ L b r) ise Fren birakma akımı[Fren Birakma Akımı] (b \ L r) ve [Fren birakma l Geril] (r \ L d) : fren birakma akımı motorda gösterilen nominal akına ayarlayın. Test sırasında, yük sorunsuz tutun için fren birakma akını ayarlayın.</td>
</tr>
<tr>
<td>3</td>
<td>Hızlanma süresi: kaldırma uygulamalarını için hızlanma rampalarını 0,5 saniyeden fazla bir değere ayarlayın. Sürüşünün akım sınırlarının aşmadığından emin olun. Ayrıca önerileri yasayalatıza için de geçerlidir. Anımsatıcı: bir kaldıra hareketi için bir frenleme direnci kullanılamaz.</td>
</tr>
<tr>
<td>4</td>
<td>[Fren Birakma süresi] (b \ L) : frenin türüne göre ayarlayın. Mekanik frenin bırakılması için gerekli sürücü.</td>
</tr>
</tbody>
</table>
Yatay Kaldırma Uygulaması İçin Fren Lojik Kontrolü İçin Talimatlar

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>[Fren bırakma frek] $b \cdot r$, yalnızca açık çevrim modunda: [Oto.] $A \cup O$ ayarında bırakın, gerekirse ayarlayın.</td>
</tr>
<tr>
<td>6</td>
<td>[Fren kavrama frek] $b \cdot E$; [Oto.] ayarında bırakın, gerekirse ayarlayın.</td>
</tr>
<tr>
<td>7</td>
<td>[Fren kavrama süresi] $b \cdot t$: frenin türe感受到了ye göre ayarlayın. Mekanik frenin kavranması için gerekli süredir.</td>
</tr>
</tbody>
</table>

UYARI

ISTENMЕYEN ЕKİPMAN ÇALIŞMASИ
- EN/ISO 12100 ve uygulamanıza uygun diğer tüm standartlar için bir risk değerlendirmesi gerçekleştirin
- Risk değerlendirmenizde tanımlanan tüm kritik kontrol fonksiyonlarının yedek bileşenlerini ve/veya kontrol yollarını kullanın.
- Yükleri hareket ettirme, örneğin kaldırma uygulamalarında yüklerin kayması veya düşmesi gibi tehlikeleye sonuçlanabilecek bir durumda çalıştırın.
- Uygulanan işleme etkileyici olarak etkileşimini koruyan, kaldırmayı gerçekleştiren; kodlayıcılar kullanarak hız ileme ve tüm bağlı cihazlar için kısa devre oluşturushi olarak ancak bunlarla sınırlı değil.
- Tüm parametrelerin değerlerini ve/veya kontrol yollarını içeren, kaldırmayı gerçekleştiren; kodlayıcılar kullanarak hız ileme ve tüm bağlı cihazlar için kısa devre oluşturushi olarak ancak bunlarla sınırlı değil.

Bu talimatlara uymaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

TAHMİN EDİLEMEYEN ЕKİPMAN ÇALIŞMASИ
- [Çalışma durumu hatası] $F L t$: öğesini çıkış rölesi R1'e atayın.
- Şebeke kontakörüne çıkış rölesi R1'e bağlayın.
- Fren kontakörünün aşağı akışını fren kontakörüne bağlayın.

Bu talimatlara uymaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Fren Birakma Darbesi] $b \cdot P$: hayır</td>
</tr>
<tr>
<td>2</td>
<td>[Fren Birakma Akımı] $b \cdot r$, O olarak ayarlayın.</td>
</tr>
<tr>
<td>3</td>
<td>[Fren Birakma süresi] $b \cdot t$: frenin türe感受到了ye göre ayarlayın. Mekanik frenin birakılması için gerekli süredir.</td>
</tr>
<tr>
<td>4</td>
<td>[Fren kavrama frek] $b \cdot E$, yalnızca açık çevrim modunda: [Oto.] $A \cup O$ ayarında bırakın, gerekirse ayarlayın.</td>
</tr>
<tr>
<td>5</td>
<td>[Fren kavrama süresi] $b \cdot t$: frenin türe感受到了ye göre ayarlayın. Mekanik frenin kavranması için gerekli süredir.</td>
</tr>
</tbody>
</table>
Açık Çevrim Modunda Yatay Hareket

- Frekans
- Referans
- tEn
- Nominal akıtma akımı
- tbr
- İşlem yönü
- Röle veya kök çıkış
- Fren kontagi
- Fren durumu
- Serbest Brakıldı
- Vites geçmişdi
- Motor kontrolü türü

- İleri
- Geri
- İleri ulaşılığı
- 0 ulaşılığı

- Akıllı motor

- İleri
- Geri

- İleriGelecek
- İleriGelecek
- İleriGelecek
Açık Çevrim Modunda Dikey Hareket

Frekans
Referans
bIr
JoC
bEn
Akışma akımı
Nominal akışma akımı
Tork akımı
Ibr
İşlem yönü
Artan
Azaltan
Rıza veya çıkış çıkışı
bCI
Fren durumu
Serbest Bırakıldı
Vites geçildi
Motor kontrolü forı

İbr = Yukan
nS = Aşağı
Kapalı Çevrim Modunda Dikey veya Yatay Hareket

Frekans
Referans
Akışma akımı
Nominal akışma akımı
Tork akımı
İbr
İşlem yönü
Röle veya kıkıdık (ţiş)
hC1
Fren durumu
Serbest Bırakıldı
Vites geçirişi
Motor kontrolü (tül)

Akışma
Tork
Frekans
rıE
ıbıL
ıbr

Diyak hareket
Frıd = Yakarı
rıS = Araya

Tüm ayarlar CSt-
278 NVE61643TR 01/2019
Çalıştır komutunda davranış

Çalıştır komutu verildiğinde, motorda yeterli bir tork uygulayabilmek için kısa bir süre boyunca sürücü motoru aşırı akılar. Tork düzeyi [Fren Birakma Akımı] \(b \) \(r \) parametresi ile ayarlanır. Bu tork, frenin bırakılmaması sırasında ve hız düzenleme başlamadan önce yükü korumak için gerekir. Motor rotor süresi parametresi [Rotor Süresi Sabit] \(t \) \(r \) motorun akıllanması gerekli süredir. Bu parametre motor özelliklerine göre düzgün ayarlanması gerekken [Nom Motor akımı] \(n \) \(e \) \(r \), [Motor 1 Kosinüs Phi] \(L \) \(o \) \(S \), [Nom Motor Gerilimi] \(u \) \(n \) \(S \) ve [Nominal Motor Hızı] \(n \) \(S \) \(P \) parametrelerinin değeri kullanılarak sürücü tarafından hesaplanır.

Freni bırakmadan önce, [Fren ataması] \(b \) \(L \) \(e \) parametresiyle aranan röle çıkışı R2 yoluyla sürücü aşağıdaki 2 koşulu doğrular:
- Akılama akımı kararlı olmalıdır.
- Tork ayar noktasına gelindi.

Her iki koşuldan biri karşılanmazsa sürücü freni açmaya ve [Fren Kontrolü] \(b \) \(L \) \(F \) hata kodunu tetikleyecektir.

Bu hata kodu örneğin motorun bir fazı sürücü motor çıkışına düzgün bağlanmazsa tetiklenebilir.

[Fren araması] \(b \) \(L \) \(E \)

Fren fonksiyonu ataması.

[Fren ataması] \(b \) \(L \) \(E \) öğesi şu durumlarında [Hayır] \(n \) \(o \) değerine zorlanır:
- [Motor kontrol türü] \(L \) \(t \) \(e \) öğesi [U/F VC 5 nokta] \(U \) \(F \) \(S \), [SYN_U VC] \(S \) \(Y \) \(n \) \(u \), [Senkr. mot.] \(S \) \(Y \) \(n \), [Rel. Mot.] \(S \) \(r \) \(V \) \(E \).
- [DC Enjeksiyon Ataması] \(d \) \(L \) \(e \) öğesi [Atanmamış] olarak arananmazsa \(n \) \(o \)
- [Dönerken Yakalama] \(F \) \(L \) \(r \) öğesi [Hayır] olarak arananmazsa \(n \) \(o \)
- [Sarsma Ataması] \(J \) \(o \) \(L \) öğesi [Atanmamış] olarak arananmazsa \(n \) \(o \)
- [PID geri besleme] \(P \) \(L \) öğesi [Konfigüre edilememiş] olarak arananmazsa \(n \) \(o \)
- [ÇıkFazKııbı Ataması] \(o \) \(P \) \(L \) öğesi [Tetiklenen Hata Yok] olarak arananmazsa \(o \) \(A \) \(L \)
- [BL modu] \(b \) \(n \) \(L \) öğesi [Konfigüre edilememiş] olarak arananmazsa \(n \) \(o \)

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n) (o)</td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[R2]...[R3]</td>
<td>(r) (2) ... (r) (3)</td>
<td>Röle çıkışı R2...R3\nNOT: R3 seçimi, 22 kW'tan büyük güç olan tahrirlerde erişilebilir.</td>
</tr>
<tr>
<td>[R4]...[R6]</td>
<td>(r) (4) ... (r) (6)</td>
<td>VW3A3204 röle çıkış opsiyon modülü takılması röle çıkışı R4...R6</td>
</tr>
<tr>
<td>[DQ11 Dijital Çıkışı]...[DQ12 Dijital Çıkışı]</td>
<td>(d) (1) ... (d) (2)</td>
<td>VW3A3203 G/C uzatma modülü takılması dijital çıkış DQ11...DQ12</td>
</tr>
</tbody>
</table>
| [DQ1 Dijital Çıkışı]...[DQ2 Dijital Çıkışı] | \(d \) \(1 \) ... \(d \) \(2 \) | VW3A3203 G/C uzatma modülü takılması dijital çıkış DQ1...DQ2\nNOT: DQ2 seçimi 30 kW'tan küçük güç olan tahrirlerde erişilebilir.
[Hareket türü] b ≤ 5

Fren sırası türü.

[Fren kontağı] b ≤ L

Fren kontak giriş.
Fren bir izleme kontağına sahipse (bırakılan fren için kapalı).

[Fren Geri Besleme Filtresi] F b L

Fren geri besleme filtresi.

[Fren Rölesi Geri Besleme] b r

Fren rölesi geri besleme giriş.
[Fren kontağı] $b\,c$, öğesiyle aynıdır.

[Fren Rölesi Geri Besleme Filtresi] $F\,b\,r$,

Fren rölesi geri besleme filtresi.

<table>
<thead>
<tr>
<th>Ayar (ç)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...1000 ms | Ayar aralığı
| | Fabrika ayarı: 100 ms |

[Fren Rölesi Geri Besleme filtresi] $F\,b\,r$

Fren rölesi geri besleme filtresi.

<table>
<thead>
<tr>
<th>Ayar (ç)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Hayır] | $n\,o$ | Motor torku gerekli çalışma yönünde, [Fren Bırakma Akımı] $i\,b\,r$ akımında verilir.
| | | Fabrika ayarı: [Hareket türü] $b\,l\,c$ = [Seyahat] ise $H\,o\,r$ |
| [Evet] | $Y\,E\,S$ | Motor torku (bu yönün artana karşılığı düzen kilitini kontrol edin), [Fren Bırakma Akımı] $i\,b\,r$ akımında her zaman İleridir.
| | | Fabrika ayarı: [Hareket türü] $b\,l\,c$ = [Kaldırma] ise $V\,E\,r$ |
| [2 IBR] | $2\,i\,b\,r$ | Gereken yönde tork, belirli bazı uygulamalar için leri için [Fren Bırakma Akımı] $i\,b\,r$ ve Geri için [Fren bırakma I Geri] $i\,r\,d$. |

[Fren Bırakma Akımı] $i\,b\,r$

Fren bırakma akımı seviyesi.

Bu parametre şu şekilde erişilebilir:
- [Fren ataması] $b\,l\,c$ öğesi [Hayır] $n\,o$ olarak ayarlanmazsa ve

<table>
<thead>
<tr>
<th>Ayar (ç)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...1,1 inç $^{(1)}$ | Ayar aralığı
| | Fabrika ayarı: [Nom Motor Akımı] $n\,c\,r$ |

(1) In, Kurulum Kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

[Fren bırakma I Geri] $i\,r\,d$

Aşağı gitme için fren bırakma akımı seviyesi.

Bu parametre şu şekilde erişilebilir:
- Fren ataması $b\,l\,c$ öğesi [Hayır] $n\,o$ olarak ayarlanmazsa ve
- Fren Birakma Darbesi $b\,\,P$ öğesi [2 IBR] $2\,i\,b\,r$ olarak ayarlanırsa ve
- Ağırlik Sensörü Ataması $P\,E\,S$ öğesi [Yapılandırılmamış] $n\,o$ olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar (ç)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...1,1 inç $^{(1)}$ | Ayar aralığı
| | Fabrika ayarı: 0 |

(1) In, Kurulum Kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

[Fren Birakma zamanı] $b\,r\,t$

Fren bırakma zamanı.

Parametre [Fren ataması] $b\,l\,c$ öğesi [Hayır] $n\,o$ olarak ayarlanmazsa erişilebilir $n\,o$.
Ayar (s)	**Açıklama**
0,0...5,00 sn | Ayar aralığı: 0,50 sn

NOT: Sürücü tarafından ele alınan minimum değer [Fren Geri Besleme Filtresi] F b L ve [Fren Rölesi Geri Besleme Filtresi] F b r değerlerinin maksimumudur.

Fren bırakma frekansı

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Hz</td>
<td></td>
<td>Sürücü, sürücü parametreleri kullanılarak hesaplanan motorun nominal kaymasına göre bir değer alır</td>
</tr>
</tbody>
</table>

Fren kavrama frekansı

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Hz</td>
<td></td>
<td>Sürücü, sürücü parametreleri kullanılarak hesaplanan motorun nominal kaymasına göre bir değer alır</td>
</tr>
</tbody>
</table>

O'da fren kavraması

Referans frekansı = 0 Hz iken 0 hıza ulaşıldığında fren kavrama gecikmesi.
Bu parametre [Motor kontrol türü] C b t su sekilde ayarlanırsa erişilebilir:
- [FVC] F V L olarak ayarlanmazsa veya
- [Senkr.CL] F S Y.

Bu parametre, sıfır hıza erişildiğinde fren kavrama gecikmesini ayarlamak için kullanılabilir.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...30,0 sn</td>
<td></td>
<td>Sıfır hız korunurken fren kavranmaz.</td>
</tr>
</tbody>
</table>

Fren kavrama geckmesi

Fren kavrama frekansı zamanına uyum.

Freni kavramak için istekten önce geçikme süresi. Sürücü tam bir durdurmaya geçtiğinde frenin kavramasını istiyorsanız fren kavramasını geçiktirir.
[Fren kavrama zamanı] \(b \in E \)

Fren kavrama zamanı.

Parametre [Fren ataması] \(b \in E \) öğesi [Hayır] \(n \in \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ((n))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...5,00 sn</td>
<td>Fabrika ayarı: 0,00 sn</td>
</tr>
</tbody>
</table>

NOT: Sürücü tarafından ele alınan minimum değer [Fren Geri Besleme Filtresi] \(F \in b \in E \), ve [Fren Rölesi Geri Besleme Filtresi] \(F \in b \in E \), değerlerinin maksimumudur.

[OtoDC En].Seviyesi1] \(5 d \in E \)

Otomatik DC enjeksiyon seviyesi 1.

BİLDİRİM

MOTORDA AŞIRİ ISINMA VE HASAR

Motorda aşınma ve hasarı önlemek için bağlı motor anna değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatların uygulanması, ekipmanda maddi hasara yol açabilir.

Bu parametre şu şekilde erişilebilir:
- [Hareket Türü] \(b \in E \) öğesi [Seyahat] \(H \in r \) olarak ayarlanır ve
- [Motor kontrol türü] \(c \in E \) öğesi [FVC] \(F \in V \in E \) veya [Senkr.CL] \(F \in S \in Y \) olarak ayarlanmasız.

<table>
<thead>
<tr>
<th>Ayar ((c))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,1 In ((1))</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 0,7 In ((1))</td>
<td></td>
</tr>
</tbody>
</table>

\((1) \) In, Kurulum Kılavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

[Geride kavra] \(b \in d \)

Hız tersine çevirmeye fren kavraması.

Çalışma yönü tersine çevrilidğinde sıfır hıza dönüşümde frenin kavranıp kavramamasını seçmek için kullanılabılır.

Parametre [Fren ataması] \(b \in E \) öğesi [Hayır] \(n \in \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ((n))</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayır</td>
<td></td>
<td>Fren kavranmaz</td>
</tr>
<tr>
<td></td>
<td>n \in \</td>
<td>Fabrika ayar</td>
</tr>
</tbody>
</table>

[Geride atlama] \(j \in E \)

Fren: Yö'n değişiminde sıçrama frekansı.

Bu parametre şu şekilde erişilebilir
- [Motor kontrol türü] \(c \in E \) şu şekilde ayarlanamazsa:
 - [FVC] \(F \in V \in E \) olarak ayarlanamazsa veya
 - [Senkr.CL] \(F \in S \in Y \) ve
- [Hareket Türü] \(b \in E \) öğesi [Kaldırma] \(V \in r \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Oto.]</td>
<td>R u t o</td>
<td>Sürücü, sürücü parametreleri kullanılarak hesaplanan motorun nominal kaymasına göre bir değer alır</td>
</tr>
</tbody>
</table>
| 0,0...10,0 Hz | Manüel kontrol | Fabrika ayar:
 - 0, [Hareket türü] b 5 t öğesi [Seyahat] H o r veya [Kaldırma] V E r olarak ayarlanırsa ve kapalı çevrimde.
 - [Oto.] R u t o, [Hareket türü] b 5 t öğesi [Kaldırma] V E r olarak ayarlanırsa ve açık çevrimde |

[Yen. Başl. zamanı] t t r

Yeniden başlatmak için fren süresi.
Fren sırası sonu ve sonraki fren bırakma sırasının başlaması arasındaki süre.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...15,00 sn</td>
<td>Fabrika ayar: 0,00 sn</td>
</tr>
</tbody>
</table>

[BRH b0] b r H D

Fren kavramının bir çalıştır komutu tekrarlanırna fren yeniden başlatma sırası seçimi.

Açık çevrim ve kapalı çevrim modunda kullan
Fren kavraması fazı sırasında bir çalıştır komutu istenmese [BRH b0] b r H D için seçil en değere bağlıdır.

NOT:
- [Yen. Başl. zamanı] t t r fazı sırasında bir çalıştır komutu istenirse tam fren kontrol sırası başlatılır.
- [Geride kavram] b E d etkiken bir çalıştır komutu istenirse tam fren kontrolü sırası başlatılır.
Sabit durum hatasında fren kontağının devre dışı bırakılması.

Bu parametreyle [Fren ataması] \(b \ L \ C \) öğesi [Hayır] no olarak ayarlanmazsa ve [Erişim Seviyesi] \(L \ R \ C \) öğesi [Uzman] \(E \ P \ r \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Sabit durum hatasında fren kontağı etkindir (çalışma sırasında kontak açıkça hata tetiklenir). [Fren Geri Besleme] (b \ F) tüm çalışma fazlarında izlenir Fabrika ayarı</td>
</tr>
</tbody>
</table>
| 1 | 1 | Fren bırakım fazında çalıştır komutu şunu ister:
- [Fren kavrama zamanı] \(b \ E \) fazından önce, yeniden başlatmadan önce [Fren Birakma zamanı] \(b \ r \) süresi işletmesiyle çalıştır komutu ele alınır;
- [Fren kavrama zamanı] \(b \ E \) fazından sonra, fren lojji sırası tam tamamlanır. |

**[BRH b1] \(b \ r \ H \) **

Fren kontrol sırası için fren kontağını hesaba katın.

Bu parametreyle [Fren ataması] \(b \ L \ C \) öğesi [Hayır] no olarak ayarlanmazsa ve [Erişim Seviyesi] \(L \ R \ C \) öğesi [Uzman] \(E \ P \ r \) olarak ayarlanırsa erişilebilir.

Bir basamak giriş fren kontağınatandır.

- [BRH b2] \(b \ r \ H \) = [0]: Fren bırakma sırasında, [Fren Birakma zamanı] \(b \ r \) süresi sonunda referans etkinleştirilir. Fren kavrama sırasında. [Fren kavrama zamanı] \(b \ E \) sonundaki [Akım rampa süresi] \(b \ r \) rampasına göre akım [0] \(D \) a değişir.
- [BRH b2] \(b \ r \ H \) = [1]: Fren bırakıldığında, [fren kontağı] \(b \ L \ C \) , dijit girişi 1 olarak değiştirildiğinde referans etkinleştirilir. Fren kavrandığında, [fren kontağı] \(b \ L \ C \) , dijit girişi 0 değeriine değiştirildiğinde rampa [Akım rampa zamanı] \(b \ r \) üyesine bağlı olarak akım \(D \) değeriine değişir.

![Diagram](image-url)
Kavrama/bırakma sırası tam yürütülür.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Fren anında bırakılır.</td>
</tr>
</tbody>
</table>

Fren kavrama sırası sırasında, [Fren kavrama zamanı] bE t sonu öncesinde fren kavrama sırası zamanı ayarlanır, fren kavrama sırası zamanı ayarlandığında fren kavraması geçerli olmayacak, aksi halde sürücünün hâlinde bir [Fren Geri Beslemesi] bF fren kontak hatasıyla kilitlenir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Fren kavrama sırası zamanı ayarlanır, fren kavrama sırası zamanı ayarlandığında fren kavraması geçerli olmayacak, aksi halde sürücünün hâlinde bir [Fren Geri Beslemesi] bF fren kontak hatasıyla kilitlenir, Fabrika ayarı</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Fren kavrama sırası zamanı ayarlanır, fren kavrama sırası zamanı ayarlandığında fren kavraması geçerli olmayacak, aksi halde bir [Fren kontak uyanı] bC A t têkitlenir ve sıfır hız korunur.</td>
</tr>
</tbody>
</table>

AZALAN YÜK

UYARI

- Uyarı b L C tetiklenirse aşağıdaki eylem kullanıcı tarafından gerçekleştirilmelidir.
 a. Yükü güvenli bir konuma taşıyın.
 b. Sürücünün gücünü kapatın.
 c. Uyarının nedenini tanımlayın ve düzeltin.
 d. Normal işlemi sürdürmeden önce frenin tüm elektrikli ve mekanik bileşenlerinin doğru çalıştığını doğrulayın.

Bu talimatlara uymaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

AZALAN YÜK

UYARI

- Uyarı b L C tetiklenirse aşağıdaki eylem kullanıcı tarafından gerçekleştirilmelidir.
 a. Yükü güvenli bir konuma taşıyın.
 b. Sürücünün gücünü kapatın.
 c. Uyarının nedenini tanımlayın ve düzeltin.
 d. Normal işlemi sürdürmeden önce frenin tüm elektrikli ve mekanik bileşenlerinin doğru çalıştığını doğrulayın.

Bu talimatlara uymaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
Tüm ayarlar CST-

NOT: Ürün Cia402 profili ile kontrol edildiğinde, yalnızca çalışma durumu "Çalışma Etkin" (Çalışma, durdurma...) ise [BRH <b4>] fonksiyonu etkinleştirilir

[BRH b6] <br h b6 ★

[0’da fren kavrama] E d öğesi sayısal bir değere ayarlanırsa bir değilere ayarlansırsa fren kavrama türünün seçimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>0</td>
<td>Hiç komutun verilmediği bir hareket oluşursa [Yük Hareketi Hatası] hatası tetiklenir. Fabrika ayarı</td>
</tr>
</tbody>
</table>

[Akım rampa zamanı] <br r r ★

Fren akım rampasını.

[Fren Birakma Akımı] <i b d öğe> eşit bir akım değişimi için tork akım rampası süresi (artış ve azalış).

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...5,00 sn</td>
<td>Fabrika ayarı: 0,00 sn</td>
</tr>
</tbody>
</table>

[BRH_b4_freq] <br h b4 ★

BRH_b4 frekans eşği algılama.

Bu parametre [BRH b4] <br h 4 için algılama eşeğini temsil eder. Gereken değer mekanik kurulumda teşkil edilir.

[BRH_b4_freq] E d parametresinin değeri çok düşükse, bu, yüksek hareketi izlemenin istenmeyen tetiklenmesine yol açabilir.

[BRH_b4_freq] E d parametresinin değeri çok yüksekse yük hareketi izleme gerektiğiinde tetiklenmeyeabilir.
UYARI

KONTROL KAYBI

Tüm yük koşulları için ve olası tüm hata koşulları için kapsamlı devreye alma testleri gerçekleştirerek bu parametrenin ayarlarının uygun olduğunu doğrulayın.

Bu talimatı ayarlama yük hareketi izleme devresini devre dışı bırakır. Bu ayarla istenmeyen hareket ve yükün düşmesi algılanmaz.

[BRH_b4_freq] \(bFt \) öğesi [Hayır] \(nO \) olarak ayarlanırsa ve

[Motor Kontrol Türü] \(Ctt \) öğesi [FVC] \(FvC \) veya [Senk.CL] \(FsY \) olarak ayarlanırsa.

UYARI

AZALAN YÜK

Bu parametre ayarının emniyetsiz bir durum doğurmadığını doğrulayın.

Bu talimatı uyulmazsa ölüm, ağır yaralanmalar veya ekipmanda maddi hasara yol açabilir.

Bu parametre şu şekilde erişilebilir:

- [Fren ataması] \(bLC \) öğesi [Hayır] \(nO \) olarak ayarlanmasa ve
- [Motor Kontrol Türü] \(Ctt \) öğesi [FVC] \(FvC \) veya [Senk.CL] \(FsY \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>nO</td>
<td>Hareket algılama işleme devre dışıdır.</td>
</tr>
</tbody>
</table>

Ayar aralığı

Fabrika ayan: [Motor kontrol türü] \(Ctt \) öğesi bağlı olarak [Nominal Motor Frekansı] \(Frs \) veya [Senk. Nominal Frekansı] \(Frs5 \) öğesinin %10'ւ. |
[Yüksek hızda kaldırmá] **H S H - Menüsü**

Erişim

[Tüm ayarlar] ➔ [Kaldırma fonksiyonları] ➔ [Yüksek hızda kaldırmá]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Bu menüye [???] öğesi **P N R [Hayır]** olarak ayarlanırsa erişilebilir.

Bu fonksiyon, sıfır yük veya hafif yükler için kaldırmá hareketleri için çevrim sürelerini optimize etmek için kullanılabilir.

Bu, nominal motor akımını aşmadan nominal hızından daha büyük bir hız erişim için "sabit güç" te işlemi yetkilendirir.

Hız [Yüksek hız] **H S P** ile sınırlı kalır.

Fonksiyon, referansın kendisinde değil hız referansı sabitinde görev görür.

İlke

![Diagram](image)

İki olası çalışma modu bulunur:

- **Hız referansı modu:** ayarlanan bir hız adım sırasında izin verilen maksimum hız sürücü tarafından hesaplanır, bu yüzden sürücü yükü ölçülebilir.
- **Akım sınırlama modu:** izin verilen hız yalnızca "artan" yönde motor modunda akım sınırlamasını destekleyen hızdır. "Azalan" yön için çalışma Hız referansı modundadır.
Hız Referansı Modu

A / D Artan veya azalan komut
R Referans
F Frekans
Cl Hesaplanan sınır
oSP Yük ölçümü için ayarlanabilir hız adımı
t0S Yük ölçümü süresi

2 parametre sürücü tarafından hesaplanan hız düşümek için kullanılır, artan ve azalan.
Akım Sınırlama Modu

A Artan komutu
R Referans
F Frekans
L Akım sınırlamasından etkilenen sınır
C Akım
SCL Ayarlanabilir hız eşği; bunun üstünde akım sınırlama etkindir
CLO Yüksek hızlı fonksiyon için akım sınırlaması

NOT: Belirli bir akım için erişilen hız, nominal şebeke gerilimiyle karşılaştırıldığında ağ düşük gerilimi durumunda düşecektir.
87 Hz'ye Kadar Sabit Torkta Çalışma

Motor yalıtım sınıfinin çalışma frekansını belirtir. Motoru bağlamazsa, daha yüksek bir gerilimle beslemek mümkündür.

Örneğin, 230 Vac / 50 Hz'de çalışmak için 230/400 Vac motor kablolu ve bağlantılı (deltada) 87 Hz'ye kadar sabit torkla çalışmak için 400 V'de sağlanır.

Bazı motorların isim plakasında 400 Vac / 87 Hz'de çalışmak için bilgiler bulunur.

87 Hz'ye çalışan yüksek hızda kaldırma fonksiyonuna izin vermek için aşağıdaki parametreler şu şekilde konfigüre edilmelidir:

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Maks Frekans] F</td>
</tr>
<tr>
<td>2</td>
<td>[Yüksek Hız] H</td>
</tr>
<tr>
<td>3</td>
<td>[Nom Motor Akımı] n</td>
</tr>
<tr>
<td>4</td>
<td>[Nominal Motor Frek] F</td>
</tr>
<tr>
<td>5</td>
<td>[Nominal Motor Gerilimi] u</td>
</tr>
<tr>
<td>6</td>
<td>[Nominal Motor Hız] n</td>
</tr>
<tr>
<td>7</td>
<td>[Nominal Motor Gücü] n</td>
</tr>
<tr>
<td>8</td>
<td>[Otomatik ince ayar] E</td>
</tr>
</tbody>
</table>

NOT: Np ile: ile
Halat Gevşek

Halat Gevşek fonksiyonu, kaldırma için hazır bir yük ayarlandığında, ancak halat hala gevşekse (aşağıda gösterildiği gibi) yüksek hızda başlatmayı önlemeye yardımcı olmak için kullanılabilir.

[Yüksek hıza kaldırma] H5 α

Yüksek Hızda Optimize Edilen aktivasyon fonksiyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>α α</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td>[Referans Frekansı]</td>
<td>5 5 α</td>
<td>Hız referansı modu</td>
</tr>
<tr>
<td>[Akım Sınırı]</td>
<td>5 5 α</td>
<td>Akım sınırlama modu</td>
</tr>
</tbody>
</table>

[Motor hızı katsayısı] C α F ★

İleri Optimize Etme Katsayısı (motor kadranı).

Bu parametreye [Yüksek hıza kaldırma] H5 α öğesi [Hız ref] 5 5 α olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>
[Jen. hızı katsayısı] α ϕ ★
Ters Optimize Etme Katsayısı (Jeneratör kadranı).
Bu parametreye [Yüksek hızda kaldırma] H_5 ϕ öğesi [Hayır] ϕ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %50</td>
</tr>
</tbody>
</table>

[Yük ölçümü süresi] ℓ ϕ ★
Tork ölçüm süresi.
Bu parametreye [Yüksek hızda kaldırma] H_5 ϕ öğesi [Hayır] ϕ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10...65,00 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,50 sn</td>
</tr>
</tbody>
</table>

[Ölçüm hızı] α 5 P ★
Hızı optimize edin.
Bu parametreye [Yüksek hızda kaldırma] H_5 ϕ öğesi [Hayır] ϕ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 40 Hz</td>
</tr>
</tbody>
</table>

[High hız I Sınırı] C L ϕ ★
Akım Sınırlama Optimizasyonu.
Bu parametreye [Yüksek hızda kaldırma] H_5 ϕ öğesi [I Sınırı] L_5 ϕ olarak ayarlanırsa erişilebilir.

NOT: Ayar 0,25 inçten küçükse bu etkinleştirilmişse sürücü [Çıkış Faz Kaybı] P_L hatasında kilitlenebilir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,1 In $^{(1)}$</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: In$^{(1)}$</td>
</tr>
</tbody>
</table>

$^{(1)}$ kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına karşılık gelir.

[I Sınırı frekansı] S C L ★
Frekans eşği; bunun üzerinde yüksek hız sınırlama akımı etkindir.
Bu parametreye [Yüksek hızda kaldırma] H_5 ϕ öğesi [I Sınırı] L_5 ϕ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 40,0 Hz</td>
</tr>
</tbody>
</table>
[Gevşek halat konfig.] \(5 \ddagger \)

Yük ölçümü geri beslemesi.
Bu parametreye [Yüksek hızda kaldırma] \(H S O \) öğesi [Hayır] \(n o \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n o)</td>
<td>Fonksiyon devre dışı Fabrika ayar</td>
</tr>
<tr>
<td>[Ağırlık Tahmini]</td>
<td>(d r s)</td>
<td>Sürücü tarafından oluşturulan tork tahmin edilerek yükün ölçümü</td>
</tr>
</tbody>
</table>

[Gevşek halat tork seviyesi] \(5 \leq L \) \(\ddagger \)

Nominal yükün yüzdesi olarak, yük altında değişken kancadan biraz daha hafif olan bir yüke karşılık gelen ayarlama eşliği.
Bu parametreye [Gevşek halat konfig.] \(5 \ddagger \) atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ((C))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| %0...100 | Ayar aralığı Fabrika ayar: %0
[Yük Paylaşımı] L d 5 - Menüsü

Erişim

[İlk Menü] ➔ [Kaldırma Fonksiyonları] ➔ [Yük Paylaşımı]

Bu Menü Hakkında

Bu menüye [Hayır] öğesi olarak ayarlanırsa erişilebilir.

İlke:

Yük paylaşım faktörü K, K1 ve K2 (K = K1 x K2) faktörüyle tork ve hız ile belirlenir.

\[\frac{S}{H} \text{ Hız, } \frac{T}{T_0} \text{ Tork, } R_t \text{ Nominal tork} \]

[Yük paylaşımı] L b R

Yük dengeleme konfigürasyonu

2 motor mekanik olarak ve dolayısıyla aynı hızda bağlandığında, her biri bir sürücü ile kontrol edilir, bu fonksiyon iki motor arasında tork dağılımını iyileştirmek için kullanılabilir. Bu parametre ayarlamak için torka göre hızı değiştirmektir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>
[Yük düzeltme] L b C 1

Nominal hız yükü denge düzeltmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Fonksiyon aktif</td>
</tr>
</tbody>
</table>

[Düzeltme min hızı] L b C 1

Tork azaltma fonksiyon hızı referansı için Düşük Hız
Hz olarak yük düzeltmesi için minimum hız. Bu eşliğin altında, hiç düzeltme yapılmaz. Bu, motor dönüşüne engel olacaksa çok düşük hızda düzeltmeyi önlemek için kullanılır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1000,0 Hz</td>
<td>Ayar alanı: 0,0 Hz</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>

[Düzeltme maks hızı] L b C 2

Tork azaltma fonksiyon hızı referansı için yüksek hız
Maksimum yük düzeltmesinin uygulandığı değerin üzerinde Hz cinsinden hız eşği.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...999,9 Hz</td>
<td>Ayar alanı: 0,0 Hz</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>

[Tork ofseti] L b C 3

Tork düzeltmesi için tork ofseti.
Nominal torkun %'si olarak yük düzeltmesi için minimum tork. Bu eşliğin altında, hiç düzeltme yapılmaz. Tork yönü sabit olmayan tork kararsızlıklarından kaçınmak için kullanılır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>L b C 1 1000,0 Hz'de Hz</td>
<td>Ayar alanı: 0 Hz</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>
Paylaşım Filtresi

LbF

Süre sabit filtresi.

Bu parametre, Yük paylaşımı **LbR = [Evet]** ve Erişim Seviyesi **LAC** öğesi **Uzman** **EPr** olarak ayarlanırsa erişilebilir. Kararsızlıkların kaçınmak için esnek mekanik bağlama olayında kullanılır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...20000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 100 ms</td>
</tr>
</tbody>
</table>
[Gevşek Halat İşleme] 5 d r - Menüsü

Erişim

[Tüm ayarlar] ➔ [Kaldırma Fonksiyonları] ➔ [Gevşek Halat İşleme]

Bu Menü Hakkında

[Gevşek halat konfig.] r 5 d ★

Yük ölçümü geri beslemesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon aktif değil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Ağırlık Tahmini]</td>
<td>d r</td>
<td>Sürücü motor torku tahmini</td>
</tr>
<tr>
<td>[Harici Ağırlık</td>
<td>P E S</td>
<td>Bir ağırlık sensörü kullanarak yükün ölçümü.</td>
</tr>
</tbody>
</table>

[Gevşek halat tork seviyesi] r 5 l ★

Gevşek halat algıama için tork seviyesi.

Bu parametre [Gevşek halat konfig.] r 5 d öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0</td>
</tr>
</tbody>
</table>
Alt bölüm 8.6
[Kaldırma izleme]

[Dinamik yük algıla.] \(d \ L \ d \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Kaldırma izleme] ➔ [Dinamik yük algıla.]

Bu Menü Hakkında

Bu menüye [??] öğesi olarak ayarlanırsa erişilebilir.

Bu algılama yalnızca yüksek hızda kaldırma fonksiyonuyla mümkündür. Bir engele erişilip erişilmediğini, yükte ani bir (yukarı) artış veya (aşağı) azalış tetiklemeyi algılamak için kullanılır.

Yük değişimi algılama bir [Dinamik Yük Hatası] \(d \ L \ F \) tetikler. [Dinamik Yük Yönetimi] \(d \ L \ b \) parametresi bu algılanan hata durumunda sürücünün yanıtını konfigüre etmek için kullanılır.

Yük değişimi algılama da bir röleye veya dijital çıkışa atılabilir.

Yüksek hızda kaldırma konfigürasyonuna bağlı olarak iki olasılığı algılama modu bulunur:

- Hız referansı modu
 [Yüksek hızda kaldırma] \(H \ S \ o \) öğesi olarak ayarlanır.
 Tork değişimi algılaması.
 Yüksek hızlı işlem sonrasında yük, hız adımı sırasında ölçülenle karşılaştırılır. İzin verilen yük değişimi ve süresi konfigüre edilebilir. Aşılrsa bir hata tetiklenir.

- Akım sınırlama modu
 [Yüksek hızda kaldırma] \(H \ S \ o \) öğesi olarak ayarlanır. Yüksek hızlı işlem sırasında arttığında yük ve hız adımı sırasında ölçülenle karşılaştırılır. Yüksek hızlı işlem etkinleştirilmiş olması bile motor frekansı \([I \ Sınırı Frekansı] \ S \ L \) eşinin altında düşerse bir hata tetiklenir. Algılama yalnızca yükün pozitif bir değişimi için ve yalnızca yüksek hızlı alanda (\([I \ Sınırı Frekansı] \ S \ L \) üzerindeki alan) gerçekleşir. Azalırken, işlem hızı referans modu formunu alır.

[Dinamik yük süresi] \(t \ L \ d \)

Yük değişimi algılamasını aktivasyonu ve yük değişiminin algılanan bir [Dinamik Yük Hatası] \(d \ L \ F \) hatasını hesaba katması için gecikme süresi ayarlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayr]</td>
<td>(n \ a)</td>
<td>Hiç yük değişimi algılanmadı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>0,00...10,00 sn</td>
<td></td>
<td>Algılamanın bir hatayı hesaba katmak için gecikme süresi ayarlaması.</td>
</tr>
</tbody>
</table>

[Dinamik yük eşği] \(d \ L \ d \)

Hz adımı sırasında ölçülen yükün %'si olarak yük değişimi algılaması için açtırma eşği ayarlanır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>
Yük değişimi hatası algıldığında sürücü yanıt.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E S</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>S t t</td>
<td>[Duruş türü] S t t parametresine uygun ancak duruştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam etti ve çalıştırma komutu kaldınladığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Hız korunuyor]</td>
<td>r L s</td>
<td>Hız, algılanan hata devam etti ve çalıştırma komutu kaldınladığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r n P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S t</td>
<td>Hızlı duruş</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir dururma tetiklendiğinden, bu gösterge için bir röle veya mantık çıkış atanması tavsiye edilir.
Alt bölüm 8.7
[Makine Fonksiyonları]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yük Paylaşımı] L d 5 - Menüsü</td>
<td>303</td>
</tr>
<tr>
<td>[Geri tepme telafisi] b 5 4 n - Menüsü</td>
<td>304</td>
</tr>
<tr>
<td>[Sensörler göre konumlandırma] L P a - Menüsü</td>
<td>314</td>
</tr>
<tr>
<td>[Fren lojigi kontrolü] b L E - Menüsü</td>
<td>314</td>
</tr>
<tr>
<td>[Tork kontrolü] t o r - Menüsü</td>
<td>314</td>
</tr>
</tbody>
</table>
[Yük Paylaşımı] L 5 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Makine Fonksiyonları] ➔ [Konveyör Fonksiyonları] ➔ [Yük Paylaşımı]

Bu Menü Hakkında

[Yük Paylaşımı] L 5 - menüsü ile aynı (bkz. sayfa 296)
[Geri tepme telafisi] \(b 5 9 \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Makine Fonksiyonları] ➔ [Geri tepme telafisi]

Bu Menü Hakkında

Bu menü şunları sunar:
- Geri tepme telafisi sırası.
- Sert bağlantıda Master/Bağlı'ya özel geri tepme telafisi sırası.

Bu menünün amacı darbe anında torku sınırlayarak dişlilerin aşınmasını azaltmak için geri tepmeleri telafi etmek için özel bir sıra sağlamaktır:

Bu menü frenler olmadan sürülmeyen yükler (yatay hareket) için özellikle. Tork kontrolünde veya hız kontrolünde kullanılabılır.

Geri Tepme Sırası

Geri tepme sırasının amacı, geri tepme tam olarak telafi edilene kadar harekete izin vererek bir tork sınır altında hız başlatmayı düzenlemektir. Yük torku tork sınırlamasından büyük olacak ve hareketi durduracaktır. Çalışma uygulanan sınırlama torkundan başlayarak ilerleyebilir.

Üç farklı kullanım durumu vardır:
- Yalnızca başlangıçta geri tepme sırası (UC-1)
- Yönlendirme dur (UC-2)
- Yönlendirme 0 Hz hızı düzenleme (UC-3)

Durumları kontrol moduna bağlı olarak kullanılanlar:

<table>
<thead>
<tr>
<th>Geri Tepme Sırası</th>
<th>Tork kontrolü</th>
<th>Hız kontrolü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Açık çevrim</td>
<td>(UC-1)</td>
<td>(UC-1)</td>
</tr>
<tr>
<td></td>
<td>(UC-2)</td>
<td>(UC-2)</td>
</tr>
<tr>
<td>Kapalı çevrim</td>
<td>(UC-1)</td>
<td>(UC-1)</td>
</tr>
<tr>
<td></td>
<td>(UC-3)</td>
<td>(UC-3)</td>
</tr>
</tbody>
</table>

Yalnızca başlangıçta geri tepme sırası (UC-1)
Geri tepme sırası yalnızca sürücü başlangıç sırasında konfigüre edilir ve çalışma sırasında saydam hale gelir:

Yön değişiminde dur (UC-2)
Hareket yönü değiştiğinde sürücü durur ve çalışma sırası hala varsa sürücü başlar. Sonra yeni yönüne göre bir geri tepme sırası yapın:
Yön değişiminde 0 Hz hızı düzenleme (UC-3)
Sürücünün değişen yönünde 0 Hz hız düzenlenenecek ve sırasının sonunda çalışmada geri gelmek için hareketin yeni yönüne göre geri tepme sırasına geçilecektir:

Sert Bağlantıda Master/Bağlıya Özel Geri Tepme Sırası
Bu menünün amacı Sert bağlantılı bağlamında Master/Bağlı yapılara özel geri tepme telafisini sağlamaktır. Amaç aşınmayı azaltmak için dişli tekerleklerde etki torkunu sınırlamaktır.

Dört farklı Çoklu Sürücü geri tepme telafisi sırası stratejisi vardır:
- Doğrudan sıralı bağlı geri tepme telafisi (1)
- Doğrudan eş zamanlı bağlı geri tepme telafisi (2)
- Kontrollü sıralı bağlı geri tepme telafisi (3)
- Kontrollü eş zamanlı bağlı geri tepme telafisi (4)

Aşağıdaki şemada farklı telafi sırası stratejilerini konfigüre etme gösterilmektedir:
Doğrudan sıralı bağlı geri tepme telafisi (1)
Her Bağlı, hız kontrolünde değiştirilerek geri tepmesini telafi edecek. Konfigüre edilen zamanda ayarların geri tepme açısını telafi etmesine izin verdiği düşünülen sırası bir kerede bir yapma. Sonunda, master kendi geri tepme sırasını başlatır, bu sırada Master durmada (açık çevrim) veya 0 Hz hızını (kapalı çevrim) düzenlemeye kalır:

Aşağıda komut tablosundan açıklama yapalım:

- **a** Bağlı 1 başlar
- **b** Bağlı 2 başlar, Bağlı 1 durur
- **c** Bağlı 2 durur
- **d** Tüm bağlıların çalışması başlar
- **e** 0 Hz düzenlemesi veya durdurması

![Komut Tablosu](image)
Doğrudan eş zamanlı bağlı geri tepme telafisi (2)

İnce ayarın konfigüre edilen sürede geri tepme açısını telafi etmesine izin verdiği düşünülerek tüm bağlıklar geri tepme açısını eş zamanlı olarak telafi edecek tir. Bu sırada Master durmada (açık çevrim) veya 0 Hz hızını (kapalı çevrim) düzenlemede kalır:

a Tüm bağlıklar durur
b Tüm bağlıklar başlar
c 0 Hz düzenleme veya durdurması

![Diagram](image-url)
Kontrollü sıralı bağlı geri tepme telafişi (3)

Tüm Bağlılar bir kerede biri olmak üzere geri tepme açılarını telafi edecek. Yapıldığında Master'a bildirirler. Bu sırada Master durmada (açık çevrim) veya 0 Hz hızını (kapalı çevrim) düzenlemede kalır. Sonra geri tepmeyi telafi etmeye başlar ve son Bağlı geri tepmesini telafi eder etmez çalışma durumuna geçer:

- **a** Bağlı 1 başlar
- **b** Bağlı 2 başlar, Bağlı 1 durur
- **c** Bağlı 2 durur
- **d** Tüm bağlılar başlar
- **e** 0 Hz düzenlemesi veya durdurması
- **f** Bağlı 1 geri beslemesi
- **g** Bağlı 2 geri beslemesi

Diagram:

- Master'da Komut (a)
- Master Hz Referansı
- Bağlı 1 Hz Referansı
- Bağlı 2 Hz Referansı
- Master Tork Referansı
- Bağlı 1 Tork Referansı
- Bağlı 2 Tork Referansı
- Geri tepme telafişi Master
- Sert bağlantida Master Bağlı

Legend:

- **Frd**
- **bqSL**
- **bgSL**
- **bgTL**
- **bqTL**
Kontrollü eş zamanlı bağlı geri tepme telafisi (4)

Tüm Bağlıklar yapıldıklarında Master’a eş zamanlı yayınına geri tepme açılarını telafi edecek. Bu sırada Master sürücü durmada (açık çevrim) veya 0 Hz hızını (kapalı çevrim) düzenlemede kalır.

Sonra geri tepmeyi telafi etmeye başlar ve son Bağlı geri tepmesini telafi eder etmez çalışma durumuna geçer:

a Geri besleme bittiğinde sıralar durur
b Tüm bağlılar başlar
c 0 Hz düzenlemesi veya durdurması
d Bağlı 1 geri beslemesi
e Bağlı 2 geri beslemesi

[BL Modu] b 9 n

Geri tepme modu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n #</td>
<td>Geri tepme telafisi konfigüre edilmez</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Bağlatmada]</td>
<td>S E A r t</td>
<td>Geri tepme telafisi her Sürück başlatmasında gerçekleşir (çalışma sırası görülür veya durma kaybolur)</td>
</tr>
<tr>
<td>[Bağlatmada + Yön Değişiminde]</td>
<td>C H G d i r</td>
<td>Geri tepme telafisi her Sürück başlatmasında (çalışma sırası görülür veya durma kaybolur) ve her yön değiştiğinde gerçekleşir</td>
</tr>
<tr>
<td>[Master isteğinde]</td>
<td>n 5</td>
<td>Master/Bağlı fonksiyonuya yönetilen geri tepme telafisi.</td>
</tr>
</tbody>
</table>
[BL Türü] \(b \quad n \quad n \quad ★\)

Geri tepme türü.
Bu parametreye şu şekilde erişilebilir:
- [BL Modu] \(b \quad n \quad n \quad o\) öğesi [Konfigür Edilmedi] \(n \quad o\) olarak ayarlanmazsa ve
- [M/B İletişim Modu] \(n \quad S \quad L \quad n \quad o\) öğesi [MultiDrive Link] \(n \quad d \quad L\) olarak ayarlanırsa ve
- [M/B Aygıt Rolü] \(n \quad S \quad d \quad E\) öğesi [Master] \(n \quad S \quad L \quad E \quad r\) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sıralı]</td>
<td>(S \quad E \quad 9)</td>
<td>Her bağlı sırasını bir bir yapacaktır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
<tr>
<td>[Eş Zamanlı]</td>
<td>(5 \quad n \quad u \quad L)</td>
<td>Geri tepme telafisi her Sürűcü başlatmasında gerçekleştilir (çalışma sırası görünür veya durma kaybolur)</td>
</tr>
</tbody>
</table>

[BL Bağlı Geri Beslemesi] \(b \quad n \quad L \quad ★\)

Bağlıklar geri beslemesinde Geri Tepme.
Bu parametreye şu şekilde erişilebilir:
- [BL Modu] \(b \quad n \quad n \quad o\) öğesi [Konfigür Edilmedi] \(n \quad o\) olarak ayarlanmazsa ve
- [M/B İletişim Modu] \(n \quad S \quad L \quad n \quad o\) öğesi [MultiDrive Link] \(n \quad d \quad L\) olarak ayarlanırsa ve
- [M/B Aygıt Rolü] \(n \quad S \quad d \quad E\) öğesi [Master] \(n \quad S \quad L \quad E \quad r\) olarak ayarlanırsa ve
- [Erişim Seviyesi] \(L \quad R \quad L \quad E\) öğesi [Uzman] \(E \quad P \quad r\) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n \quad o)</td>
<td>Master bağlıların geri beslemesini hesaba katmaz</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(y \quad E \quad 5)</td>
<td>Master bağlıların geri beslemesini hesaba katar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
</tbody>
</table>

[BL Süresi] \(b \quad n \quad E \quad ★\)

Geri tepme süresi.
Bu parametreye şu şekilde erişilebilir:
- [BL Modu] \(b \quad n \quad n \quad o\) öğesi [Konfigür Edilmedi] \(n \quad o\) olarak ayarlanmazsa ve
- [M/B İletişim Modu] \(n \quad S \quad L \quad n \quad o\) öğesi [MultiDrive Link] \(n \quad d \quad L\) olarak ayarlanırsa ve
- [M/B Aygıt Rolü] \(n \quad S \quad d \quad E\) öğesi [Master] \(n \quad S \quad L \quad E \quad r\) olarak ayarlanırsa ve
- [Erişim Seviyesi] \(L \quad R \quad L \quad E\) öğesi [Uzman] \(E \quad P \quad r\) olarak ayarlanırsa ve
- [BL Bağlı Geri Beslemesi] \(b \quad n \quad L \quad E\) öğesi [Hayır] \(n \quad o\) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1...100,0) sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 0,5 sn</td>
</tr>
</tbody>
</table>

[BL Ref Frekansı] \(b \quad n \quad L \quad ★\)

Geri tepme referansı frekansi.
Bu parametreye [BL Modu] \(b \quad n \quad n \quad o\) öğesi [Konfigür edilmemiş] \(n \quad o\) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0...599,0) Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: [Motor kontrol türü] (C \quad L \quad E) öğesine bağlı olarak [Nominal Motor Frekansı] (F \quad W \quad 5) veya [Senk.Nominal Freq] (F \quad 5 \quad 5) ölçüsünün %1'i.</td>
</tr>
</tbody>
</table>
[GT Hızlanması] \(\text{b} \ \text{q} \ \text{R} \ ★

Geri tepme hızlanması.
Geri Tepme Hızlanması rampa değeri.
Bu parametre [BL Modu] \(\text{b} \ \text{q} \ \text{n} \) öğesi [Konfigüre edilmemiş] \(\text{n} \ \text{a} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...999,90 sn ((1))</td>
<td>Ayar aralığı: 10,00 sn</td>
</tr>
<tr>
<td>((1)) Aralik, [Rampa adımı] na göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1 - 9.999 arasında olabilir.</td>
<td></td>
</tr>
</tbody>
</table>

[GT Tork Sınırlama Değeri] \(\text{b} \ \text{q} \ \text{L} \ ★

Geri tepme tork sınırlama değeri.
Bu parametre [BL Modu] \(\text{b} \ \text{q} \ \text{n} \) öğesi [Konfigüre edilmemiş] \(\text{n} \ \text{a} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...%100,0</td>
<td>Ayar aralığı: %5,0</td>
</tr>
</tbody>
</table>

[GT İzleme Gecikmesi] \(\text{b} \ \text{q} \ \text{t} \ ★

Geri tepme tork sınırlaması izleme gecikmesi.
Geri tepme hız rampasının başlangıcından ve tork sınırlaması kontrolünden gecikme.
Bu parametre [BL Modu] \(\text{b} \ \text{q} \ \text{n} \) öğesi [Konfigüre edilmemiş] \(\text{n} \ \text{a} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...100,0 sn</td>
<td>Ayar aralığı: 0,5 sn</td>
</tr>
</tbody>
</table>

NOT: Bu parametreyi ayarlamak için Açı testi fonksiyonu için gereken süre ele alınmalıdır.

[GT Başlatma Gecikmesi] \(\text{b} \ \text{q} \ \text{s} \ \text{t} \ ★

Geri tepme başlatma gecikmesi.
Geri tepme sırasında önce durdurma veya beklemede harcanan süre.
Bu parametre [BL Modu] \(\text{b} \ \text{q} \ \text{n} \) öğesi [Konfigüre edilmemiş] \(\text{n} \ \text{a} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...100,0 sn</td>
<td>Ayar aralığı: 0,0 sn</td>
</tr>
</tbody>
</table>

[GT Zaman Aşımı] \(\text{b} \ \text{q} \ \text{f} \ \text{d} \ ★

Geri tepme zaman aşımı.
Bu parametre [BL Modu] \(\text{b} \ \text{q} \ \text{n} \) öğesi [Konfigüre edilmemiş] \(\text{n} \ \text{a} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...100,0 sn</td>
<td>Ayar aralığı: 5,0 sn ([GT İzleme Gecikmesi] (\text{b} \ \text{q} \ \text{t} \ \text{x} \ 10)</td>
</tr>
</tbody>
</table>
Geri tepme telafi hatası yanıtı.
Bu parametreye [BL Modu] ⊂[Konfigüre edilmemiş] ⊂ olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n ☐</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>☑ E 5</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
</tbody>
</table>
[Sensörlere göre konumlandırma] L P₀ - Menüsü

Erişim
[Tüm ayarlar] ➞ [Makine Fonksiyonları] ➞ [Sensörlere göre konumlandırma]

Bu Menü Hakkında
[Sensörlere göre konumlandırma] L P₀ - menüsü ile aynı (bkz. sayfa 387)

[Fren lojiği kontrolü] b L C - Menüsü

Erişim
[Tüm ayarlar] ➞ [Makine Fonksiyonları] ➞ [Fren lojiği kontrolü]

Bu Menü Hakkında
[Fren lojiği kontrolü] b L C - menüsü ile aynı (bkz. sayfa 274)

[Tork kontrolü] t o r - Menüsü

Erişim
[Tüm ayarlar] ➞ [Makine Fonksiyonları] ➞ [Tork kontrolü]

Bu Menü Hakkında
[Tork kontrolü] t o r - menüsü ile aynı (bkz. sayfa 394)
Alt bölüm 8.8
[Jenerik fonksiyonlar] - [Hız Sınırları]

[Hız Sınırları] 5 L / - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Hız Sınırları]

[Düşük Hız] L 5 P

Düşük hızda motor frekansı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>

[Yüksek Hız] H 5 P

Yüksek hızda motor frekansı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 50,0 Hz</td>
</tr>
</tbody>
</table>

[Ref Frek Şablonu] b 5 P

Düşük hız yönetimi (şablon).

Bu parametre hız referansının sadece analog girişler ve darbe girişinde nasıl hesaba katılması gerektiğini tanımlamaktadır. PID kontrolörü durumunda bu PID çıkış referansıdır.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Standart]</td>
<td>[Ref Frek Şablonu] b 5 P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Düşük hız] L 5 P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

Referans = 0, frekans = [Düşük hız] L 5 P

- F: Frekans
- R: Referans

Referans = 0, frekans = [Düşük hız] L 5 P

Fabrika ayarı
<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sabit]</td>
<td>b L 5</td>
<td> Referans = 0 [Düşük Hız] L S P, frekans = [Düşük Hız] L S P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Ölü bant]</td>
<td>b n 5</td>
<td> Referans = 0’dan L S P’ye frekans = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[%0’da ölü bant]</td>
<td>b n 5 0</td>
<td> F Frekans R Referans</td>
</tr>
</tbody>
</table>

Alt bölüm 8.9
[Jenerik fonksiyonlar] - [Rampa]

[Rampa] \(r \leftrightarrow P \leftrightarrow M \) - Menüsü

Erişim

[Tüm ayarlar] \(r \leftrightarrow [Jenerik fonksiyonlar] \leftrightarrow [Rampa]

[Rampa Türü] \(r \leftrightarrow P \leftrightarrow E \)

Rampa tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Lineer]</td>
<td>Lin</td>
<td>Doğrusal rampa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[S-Rampa]</td>
<td>S</td>
<td>S rampası</td>
</tr>
<tr>
<td>[U-Rampa]</td>
<td>U</td>
<td>U rampası</td>
</tr>
<tr>
<td>[Özelleştirilmiş]</td>
<td>C u 5</td>
<td>Müşteri rampası</td>
</tr>
</tbody>
</table>

[Rampa adım] \(r \leftrightarrow n \leftrightarrow r \)

<table>
<thead>
<tr>
<th>Ayar ((r))</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,01)</td>
<td>0.01</td>
<td>99,99 saniyeye kadar rampa</td>
</tr>
<tr>
<td>(0,1)</td>
<td>0.1</td>
<td>999,9 saniyeye kadar rampa</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>6.000 saniyeye kadar rampa</td>
</tr>
</tbody>
</table>

[Hızlanma] \(A C C \)

O'dan [Nominal Motor Frek] \(F \leftrightarrow 5 \) değerine hızlanma süresi.
Rampalarda tekrarlanabilirlik sağlamak için parametre değerini, uygulamanın olabilirliğine göre ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar ((r))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...6.000,00 sn ((1))</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 3,00 sn</td>
</tr>
</tbody>
</table>

(1) Aralık, [Rampa adım]\(r \)na göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1 - 6.000 arasında olabilir

[Yavaşlama] \(d E C \)

[Nominal Motor Frek] \(F \leftrightarrow 5 \) değerinden O'a yavaşlamak için geçen süre.
Rampalarda tekrarlanabilirlik sağlamak için parametre değerini, uygulamanın olabilirliğine göre ayarlanmalıdır.

<table>
<thead>
<tr>
<th>Ayar ((r))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...6.000,00 sn ((1))</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 3,00 sn</td>
</tr>
</tbody>
</table>

(1) Aralık, [Rampa adım]\(r \)na göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1 - 6.000 arasında olabilir
[Hızlı başı yuvarlam] $t \ R \ 1 \ ★$

Hızlanma rampasının başlangıcının, [Hızlanma] $R \in C$ veya [Hızlanma 2] $R \in Z$ rampa süresinin bir yüzdesi olarak yuvarlanması.

0 ila %100 arasında ayarlanabilir.

Bu parametre, [Rampa Türü] $r \ P$ t., [Özelleştirilmiş] $C \cup S$ olarak ayarlanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %10</td>
</tr>
</tbody>
</table>

[Hızlı sonu yuvarlam] $t \ R \ 2 \ ★$

Hızlanma rampasının sonunun, [Hızlanma] $R \in C$ veya [Hızlanma 2] $R \in Z$ rampa süresinin bir yüzdesi olarak yuvarlanması.

0 ve (%100 - [Hızlı başı yuvarlam] $t \ R \ 1$) arasında ayarlanabilir.

Bu parametre, [Rampa Türü] $r \ P$ t., [Özelleştirilmiş] $C \cup S$ olarak ayarlanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %10</td>
</tr>
</tbody>
</table>

[Yav. başı yuvarlam] $t \ R \ 3 \ ★$

Yavaşlama rampasının başlangıcının, [Yavaşlama] $d \in C$ veya [Yavaşlama 2] $d \in Z$ rampa süresinin bir yüzdesi olarak yuvarlanması.

0 ila %100 arasında ayarlanabilir.

Bu parametre, [Rampa Türü] $r \ P$ t., [Özelleştirilmiş] $C \cup S$ olarak ayarlanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %10</td>
</tr>
</tbody>
</table>

[Yav. sonu yuvarlama] $t \ R \ 4 \ ★$

Yavaşlama rampasının sonunun, [Yavaşlama] $d \in C$ veya [Yavaşlama 2] $d \in Z$ rampa süresinin bir yüzdesi olarak yuvarlanması.

0 ve (%100 - [Yav. başı yuvarlam] $t \ R \ 3$) arasında ayarlanabilir.

Bu parametre, [Rampa Türü] $r \ P$ t., [Özelleştirilmiş] $C \cup S$ ise erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %10</td>
</tr>
</tbody>
</table>
Yavaşlama rampasının adaptasyonu.

Yavaşlama rampası yüksek atleti için çok düşük bir değere ayarlanışa bu fonksiyon aktif hale getirildiğinde otomatik olarak yavaşlama rampasına adapte olur ve bir aşırı gerilim algılandı hatasına neden olur.
Bu fonksiyon, aşağıdaki koşullara sahip uygulamalar için uygun değildir:
- Bir rampa üzerinde konuşul
- Fren Güç Dengesi

Ayar Kod / Değer Açıklama

[İhvan]

- **Fonksiyon devre dışı.**

NOT:
Aşağıdaki durumlarında [Yavaş.Ramp.Adapt] boo [İhvan] n o değerine zorlanır:
- [Fren ataması] b L C yapılandırılmasıyla veya
- [Frenleme dengesi] b b R. [Evet] olarak ayarlanırsa veya

[Evet]

- **YES** Kuvvetli yavaşlama gerektirmeyen uygulamalar için fonksiyon aktif

Fabrika ayarı

[Yüksek Tork]

Fren Güç Dengesi
boo

Fren Güç Dengesi
Bu parametre DC barası aracılığıyla bağlanan tahrikler arasındaki frenleme gücünü dengelemek için kullanılır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[İhvan]</td>
<td>n o</td>
<td>Fonksiyon devre dışı.</td>
</tr>
<tr>
<td>[İhvan]</td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>YES</td>
<td>Fonksiyon aktif.</td>
</tr>
</tbody>
</table>
Frenleme direnci bağlandı.

NOT: Fren ataması yapılındığırsa parametrenin fabrika ayar değeri **Evet** olarak değiştirilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçimle DB ünitesi açık devre hatası tetiklemez.</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Fonksiyon aktif</td>
</tr>
</tbody>
</table>
Alt bölüm 8.10
[Jenerik fonksiyonlar] - [Rampa anahtarı]

[Rampa değiştirme] \(r \text{ } P \text{ } t \) - Menüşi

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Rampa değiştirme]

[Rampa 2 Eşiği] \(F \text{ } r \text{ } t \)

Rampa 2 frekans eşiği

[Rampa 2 Eşiği] \(F \text{ } r \text{ } t \)'nin değeri 0 değişse (0, fonksiyonun devre dışı kalmasına neden olur) ve çıkış frekansı [Rampa 2 Eşiği] \(F \text{ } r \text{ } t \) değerinden büyükse ikinci rampa değiştirilir.

Eşik rampası değiştirme, aşağıdaki şekilde [Rampa değiştirme Ataması] \(r \text{ } P \text{ } 5 \) değiştirme ile birleştirilebilir:

<table>
<thead>
<tr>
<th>DI veya Bit</th>
<th>Frekans</th>
<th>Rampa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(< F \text{ } r \text{ } t)</td>
<td>(R \text{ } C \text{ } C \text{ } , \text{ } d \text{ } E \text{ } C)</td>
</tr>
<tr>
<td>0</td>
<td>(> F \text{ } r \text{ } t)</td>
<td>(R \text{ } C \text{ } 2 \text{ } , \text{ } d \text{ } E \text{ } 2)</td>
</tr>
<tr>
<td>1</td>
<td>(< F \text{ } r \text{ } t)</td>
<td>(R \text{ } C \text{ } 2 \text{ } , \text{ } d \text{ } E \text{ } 2)</td>
</tr>
<tr>
<td>1</td>
<td>(> F \text{ } r \text{ } t)</td>
<td>(R \text{ } C \text{ } 2 \text{ } , \text{ } d \text{ } E \text{ } 2)</td>
</tr>
</tbody>
</table>

Ayar ()

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Rampa anahtar Ataması] \(r \text{ } P \text{ } 5 \)

Rampa değiştirme.

Ayar

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L \text{ } l \text{ } ... \text{ } L \text{ } \text{ } B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L \text{ } l \text{ } ... \text{ } L \text{ } \text{ } \text{ } l \text{ } \text{ } B</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d \text{ } d \text{ } 0 \text{ } ... \text{ } c d \text{ } i \text{ } o</td>
<td>\text{[G/C profil]} \text{ i } o \text{ } konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d \text{ } i \text{ } l \text{ } ... \text{ } c d \text{ } i \text{ } 5</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C i \text{ } i \text{ } ... \text{ } c i \text{ } i</td>
<td>\text{[G/C profil]} \text{ i } o \text{ } konfigürasyonunda entegre Seri Modbusu olan CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C i \text{ } i \text{ } ... \text{ } c i \text{ } i</td>
<td>entegre Seri Modbusu olan CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 \text{ } 0 \text{ } i \text{ } ... \text{ } c 2 \text{ } i</td>
<td>\text{[G/C profil]} \text{ i } o \text{ } konfigürasyonunda CANopen® fieldbus modülü olan CMD.201...CMD.20 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 \text{ } i \text{ } ... \text{ } c 2 \text{ } i</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD.211...CMD.215 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 \text{ } 0 \text{ } i \text{ } ... \text{ } c 3 \text{ } i</td>
<td>\text{[G/C profil]} \text{ i } o \text{ } konfigürasyonunda fieldbus modülü olan CMD.301...CMD.30 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 \text{ } i \text{ } ... \text{ } c 3 \text{ } i</td>
<td>entegre fieldbus modülü olan CMD.311...CMD.315 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 \text{ } 0 \text{ } i \text{ } ... \text{ } c 5 \text{ } i</td>
<td>\text{[G/C profil]} \text{ i } o \text{ } konfigürasyonunda entegre Ethernet'i olan CMD.501...CMD.510 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.
[Hızlanma 2] \textbf{AC2} ★

Hızlanma 2 rampası süresi.

0'dan [Nominal Motor Frek] \(F_r \) değerine hızlanma süresi. Rampalarda tekrarlanabilirlik sağlamak için parametrein değeri, uygulamanın olabilişine göre ayarlanmalıdır.

Bu parametreye [Rampa 2 Eşiği] \(F_r \) 0'dan büyükse veya [Rampa değiştirme Atamsı] \(rPS \) atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>C511...C515</td>
<td>C5 1...C5 1S</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.

[Yavaşlama 2] \textbf{dE2} ★

Yavaşlama 2 rampası süresi.

[Nominal Motor Frek] \(F_r \) değerinden 0'a yavaşlamak için geçen süre. Rampalarda tekrarlanabilirlik sağlamak için parametrein değeri, uygulamanın olabilişine göre ayarlanmalıdır.

Bu parametreye şu şekilde erişilebilir:

- [Rampa 2 Eşiği] \(F_r \) 0'dan büyükse veya
- [Rampa değiştirme Atamsı] \(rPS \) atanmışsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...6.000 sn (1)</td>
<td></td>
<td>Ayar aralığı [Rampa adım] (inr) parametresine göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1...6.000 sn arasında aralık.</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.

Ayarlar: C511...C515

Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.
Alt bölüm 8.11
[Jenerik fonksiyonlar] - [Durma konfigür.]

[Durma yapılandırması] 5 բ ե - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Durma konfigür.]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

[Durma türü] 5 բ ե

Normal dururma modu.
Çalıştırma komutu kaybolduğunda ve dururma komutu verildiğinde gerçekleşen dururma modu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hızlı duruş]</td>
<td>F ե բ</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>ɾ ե բ</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d c</td>
<td>DC enjeksiyonu duruş. [Motor kontrol türü] c բ c aşağıdaki şekilde ayarlanmamışsa kullanılabilir: • [Senkr. mot.] 5 y ն versa • [Senkr.CL] F 5 y versa • [SYN_U VC] 5 y ն versa • [Rel. Mot] 5 r V c</td>
</tr>
</tbody>
</table>

[Serbest duruş at.] ɾ ե բ

Serbest duruş.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n ա</td>
<td>Atanmamış Fabrika ayar</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>ɾ d ɾ ɾ...ɾ d ɾ d ɾ d ɾ d ɾ</td>
<td>[G/C profil] ɾ ա konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>ɾ d ɾ ɾ...ɾ d ɾ d ɾ d ɾ d ɾ</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>[G/C profil] ɾ ա konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>[G/C profil] ɾ ա konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>[G/C profil] ɾ ա konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>ɾ ɾ ɾ...ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>
Serbest durma Eşği

Serbest duruş eşği.
Aşağıdaki hız eşğinin altında rampa duruşu veya hızlı duruştan serbest duruşa geçiş destekler.
Bu parametreye aşağıdaki koşularda erişilebilir:
- [Duruş türü] Stt, [Hızlı Dur] FSt veya [Rampada] rMP olarak ayarlanırsa ve
- [Oto. DC Enjeksiyonu] AdC yapılandırılırsa.

Hızlı durma Ataması

Hızlı duruş.
Giriş 0 olarak veya bit 1 olarak değişirse durdurma aktif halde getirilir (0’da [G/Ç profil] nO içindeki bit).

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılmalıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C501]...[C510]</td>
<td>C S 0 I…C S 1 D</td>
<td>[G/Ç profil] i d konfigürasyonunda entegre Ethernet ‘si olan CMD5.01...CMD5.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C S 1 I…C S 1 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet ‘si olan CMD5.11...CMD5.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[D11 (Düşük seviye)]...[D18 (Düşük seviye)]</td>
<td>L I L...L B L</td>
<td>Düşük seviyede kullanılan dijital giriş D11...D18</td>
</tr>
<tr>
<td>[D11 (Düşük seviye)]...[D16 (Düşük seviye)]</td>
<td>L I L...L I 6 L</td>
<td>VW3A3203 GÇ uzatma modülü takılmışsa düşük seviyede kullanılan dijital giriş D11...D16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2...599,0 Hz</td>
<td></td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarda: 0,2 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d D 0...C d I D</td>
<td>[G/Ç profil] i d konfigürasyonunda CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d I 1...C d I 5</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C I 0 I...C I 1 D</td>
<td>[G/Ç profil] i d konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C I I I...C I 1 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 I...C 2 1 D</td>
<td>[G/Ç profil] i d konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 I...C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 I...C 3 1 D</td>
<td>[G/Ç profil] i d konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 I...C 3 1 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C S 0 I...C S 1 D</td>
<td>[G/Ç profil] i d konfigürasyonunda entegre Ethernet ‘si olan CMD5.01...CMD5.10 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahrkilerinde erişilebilir.</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>L $ I I ... I S I S</td>
<td>Konfigürelerde bağımız olarak entegre Ethernet ‘ı’ olunan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[D11 (Düşük seviye)]...[D18 (Düşük seviye)]</td>
<td>L I L ... L B L</td>
<td>Düşük seviyede kullanılan dijital giriş D11...D18</td>
</tr>
<tr>
<td>[D111 (Düşük seviye)]...[D116 (Düşük seviye)]</td>
<td>L I I L ... I B L</td>
<td>WW3A3203 G/C uzatma modülü takılmışsa düşük seviyede kullanılan dijital giriş D11...D16</td>
</tr>
</tbody>
</table>

[Rampa Bölme Sabiti] d E F ★

Hızlı Duruş yavaşlama rampası düşürme katsayısı.

0 değeri, minimum rampa süresine eşit olur.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...10</td>
<td></td>
<td>Ayar aralığı: Fabrika ayarı: 4</td>
</tr>
</tbody>
</table>

[DC Enjeksiyon Ataması] d E ,

DC enjeksiyon fren ataması.

UYARI

İSTENMEYEN HAREKET

- Motor sabit durumda tutma torku oluşturmak için DC enjeksiyonu kullanmayın.
- Motoru sabit durumda tutmak için tutma freni kullanın.

Bu talimatlar uygulaması ölümle, ağır yaralanmalar veya ekipmanda maddi hasara yol açabilir.

DC enjeksiyon frenlemesi, atanmış giriş veya bit 1 durumuna geçtiğinde başlatılır.

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılmaz.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmaşı]</td>
<td></td>
<td>Atanmaşı</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>L I I L ... B</td>
<td>Dijital giriş D11...D18</td>
</tr>
<tr>
<td>[D111]...[D116]</td>
<td>L I I L ... I B</td>
<td>WW3A3203 G/C uzatma modülü takılmışsa dijital giriş D11...D16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>CD 00 ... CD 10</td>
<td>G/C profil , konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>CD 11 ... CD 15</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 10 I I ... C 10</td>
<td>G/C profil , konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C I I I ... C I S</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 20 I I ... C 20</td>
<td>G/C profil , konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 I I ... C 2 1</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 I I ... C 3 I</td>
<td>G/C profil , konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
</tbody>
</table>
DC enjeks. seviyesi 1 \(d C \) ★

DC enjeksiyon akımı.

BİLDİRİM

MOTORDA AŞIRI İSINMA VE HASAR

Motorda aşırı isınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.

Dijital girisle aktif hale getirilen veya durdurma modu olarak seçilen DC enjeksiyonu frenleme akımının seviyesi.

Bu parametreye, şu şekilde erişilebilir:
- [Duruş türü] \(S t t \), [DC enjeksiyonu] \(d C \) olarak ayarlanırsa veya
- [DC.Fren DI] \(d C \), [Hayır] \(n O \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar ((d C))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,1...1,41 In (1) | Ayar aralığı
| Bu ayar, [Oto DC Enjeksiyonu] \(R d C \) - fonksiyonundan bağımsızdır.
| Fabrika ayarı: 0,7 In (1) |

(1) In, Kurulum Kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

BİLDİRİM

MOTORDA AŞIRI İSINMA VE HASAR

Motorda aşırı isınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.

Maksimum akım Enjeksiyon süresi [DC eneks. seviyesi 1] \(d C \). Bu süreden sonra enjeksiyon akımı [DC eneks. seviyesi 2] \(d C \) olur.

Bu parametreye, şu şekilde erişilebilir:
- [Duruş türü] \(S t t \), [DC enjeksiyonu] \(d C \) olarak ayarlanır veya
- [DC.Fren DI] \(d C \), [Hayır] \(n O \) olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar ((d C))</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,1...30 sn | Ayar aralığı
| Bu ayar, [Oto DC Enjeksiyonu] \(R d C \) - fonksiyonundan bağımsızdır.
| Fabrika ayarı: 0,5 sn |
[DC enjeks. seviyesi 2] \[d \leq 2 \star \]
DC enjeksiyon akımı 2.

BİLDİRİM

MOTORDA AŞIRI ISINMA VE HASAR
Motorda aşırı ısınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.
Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.

[DC enjeksiyon süresi 1] \[t \leq d \]
geçtikten sonra enjeksiyon akımı dijital giriş olarak aktif hale getirilir veya durdurma modu olarak seçilir.
Bu parametreyle, şu şekilde erişilebilir:
- [Durum türü] \[5 \leq t \], [DC enjeksiyonu] \[d \leq t \], olarak ayarlanır veya
- [DC Enjeksiyon Ataması] \[d \leq t \], [Hayır] \[n \leq t \] olarak ayarlanmazsa.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,1 In (1)...[DC enjeks. seviyesi 1] \[d \leq t \] | Ayar aralığı
Bu ayar, [Oto DC Enjeksiyonu] \[R a \] fonksiyonundan bağımsızdır.
Fabrika ayarı: 0,5 In (1) |

(1) In, Kurulum Kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

[DC Enj Süresi 2] \[t \leq d \star \]
2. DC enjeksiyon süresi.

BİLDİRİM

MOTORDA AŞIRI ISINMA VE HASAR
Motorda aşırı ısınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.
Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.

Maksimum enjeksiyon süresi [DC enjeks. seviyesi 2] \[d \leq t \], sadece enjeksiyon, durdurma modu olarak seçildiğinde.
Bu parametreyle [Durum türü] \[5 \leq t \], [DC enjeksiyonu] \[d \leq t \], olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,1...30 sn | Ayar aralığı
Bu ayar, [Oto DC Enjeksiyonu] \[R a \] fonksiyonundan bağımsızdır.
Fabrika ayarı: 0,5 sn |

[GüçAçmaDevreDışı Dm] \[d \leq t \]
Çalışma durdurma modunu devre dışı bırakın.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Serbest Duruş] [n \leq t]</td>
<td>Tahrik fonksiyonunun devre dışı bırakılması</td>
<td></td>
</tr>
<tr>
<td>[Rampa Duruşu] [r \leq P]</td>
<td>Rampa dururma, ardından tahrik fonksiyonunu devre dışı bırakma</td>
<td></td>
</tr>
<tr>
<td>Fabrika ayarı</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alt bölüm 8.12
[Jenerik fonksiyonlar] - [Oto DC Enjeksiyonu]

[Oto DC Enjeksiyonu] $R_d \ L$ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Oto DC Enjeksiyonu]

Bu Menü Hakkında

Bu menü, motor akımı fonksiyonunun otomatik enjeksiyonunu sunar. Yavaşlama rampasının sonunda motorun rotorunu tutmak için kullanılır.

[Oto DC Enjeksiyonu] $R_d \ L$

Otomatik DC Enjeksiyon.

⚠️ TEHLİKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK PARLAMASI CİDDİ TEHLİKESİ

[Oto. DC Enjeksiyonu] $R_d \ L$ parametresi [Sürekli] $L \ t$ olarak ayarlanırsa motor çalışmaya bile DC enjeksiyonu her zaman aktiftir.

- Bu ayarın kullanımını emnıyetsiz bir durum doğurmadığını doğrulayın.

Bu talimatıla uyulmaması, ölüm veya ağır yaralanmalara yol açacaktır.

⚠️ UYARI

İSTENMEYEN HAREKET

- Motor sabit durumdaki tutma torku oluşturmak için DC enjeksiyonu kullanmayın.
- Motoru sabit durumda tutmak için tutma freni kullanın.

Bu talimatıla uyulmaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Durdurma sırasında otomatik akım enjeksiyonu (rampanın sonunda).

[Fren ataması] $b \ L$, [Hayır] $n \ o$ olarak ayarlanmadığında [Oto DC Enjeksiyonu] $R_d \ L$, [Hayır] $n \ o$ değerine zorlanır. Bu parametre, bir çalıştırma komutu gönderilmiş olsa bile akımın enjeksiyonunu hızlandırır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>$n \ o$</td>
<td>Enjeksiyon yok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ariy</td>
</tr>
<tr>
<td>[Evet]</td>
<td>$y \ E \ 5$</td>
<td>Ayarlanabilir enjeksiyon süresi</td>
</tr>
<tr>
<td>[Sürekli]</td>
<td>$L \ t$</td>
<td>Sürekli enjeksiyonu duruş</td>
</tr>
</tbody>
</table>
[OtoDC Enj.Seviyesi1] $5 \, d \, \frac{L}{E}$

Otomatik DC enjeksiyon seviyesi 1.

<table>
<thead>
<tr>
<th>Ayar α</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,1 In $^{(1)}$</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayar: 0,7 In $^{(1)}$</td>
<td></td>
</tr>
</tbody>
</table>

$^{(1)}$ In, Kurulum Kilavuzunda ve tahrik isim plakasında belirtilen nominal tahrik akımına eşittir.

Bildirim

MOTORDA AŞIRI ISINMA VE HASAR

Motorda aşırı isınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatılara uymaması, ekipmanda maddi hasara yol açabilir.

Duruş DC enjeksiyon akımı düzeyi.

Bu parametre şu şekilde erişilebilir:

- [Oto DC Enjeksiyonu] $R \, d \, \frac{L}{E}$ öğesi [Hayır] α olarak ayarlanmazsa ve

[OtoDC Enj.Süresi1] $5 \, d \, \frac{L}{E}$

Otomatik DC enjeksiyon süresi 1.

<table>
<thead>
<tr>
<th>Ayar β</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...30,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayar: 0,5 sn</td>
<td></td>
</tr>
</tbody>
</table>

Bildirim

MOTORDA AŞIRI ISINMA VE HASAR

Motorda aşırı isınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatılara uymaması, ekipmanda maddi hasara yol açabilir.

Bu parametre [Oto DC Enjeksiyonu] $R \, d \, \frac{L}{E}$, [Hayır] α olarak ayarlanmamışsa erişilebilir.

[Motor kontrol türü] $C \, k \, \frac{L}{E}$ aşağıdaki şekilde ayarlanırsa bu süre sıfır hız bakım süresine karşılık gelir:

- [Senkr. mot.] $5 \, y \, n$ veya
- [Senkr.CL] $F \, v \, L$
- [SYN_U VC] $5 \, y \, n$ ve
- [Rel. Mot] $5 \, r \, V \, L$

[OtoDC Enj.Seviyesi2] $5 \, d \, \frac{L}{E}$

Otomatik DC enjeksiyon seviyesi 2.

Bildirim

MOTORDA AŞIRI ISINMA VE HASAR

Motorda aşırı isınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatılara uymaması, ekipmanda maddi hasara yol açabilir.

İkinci durma DC enjeksiyon akımı seviyesi.
Bu parametre şu şekilde erişilebilir:
- [Oto DC Enjeksiyonu] $R \in C$ öğesi [Hayır] n olarak ayarlanmazsa ve
- Motor kontrol türü $C \in \theta$ öğesi [FVC] $F' \in \epsilon$ veya [Senkr.CL] olarak ayarlanmazsa $F \leq Y$

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,1 In $^{(1)}$</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,5 In $^{(1)}$</td>
</tr>
</tbody>
</table>

(1) In. Kurulum Kilavuzunda ve tahrık isim plakasında belirtilen nominal tahrık akımına eşittir.

Otomatik DC enjeksiyon süresi 2.

BİLDİRİM

MOTORDA AŞIRI ISINMA VE HASAR

Motorda aşırı ısınma ve hasarı önlemek için bağlı motor anma değerinin, miktar ve zaman açısından uygulanacak DC enjeksiyon akımına uygun olduğunu doğrulayın.

Bu talimatlara uymaması, ekipmanda maddi hasara yol açabilir.

İkinci durma enjeksiyon süresi.

Bu parametre şu şekilde erişilebilir:
- [Oto DC Enjeksiyonu] $R \in C$ öğesi [Evet] E olarak ayarlanırsa ve
- [Motor kontrol türü] $C \in \theta$ öğesi [FVC] $F' \in \epsilon$ veya [Senkr.CL] $F \leq Y$ olarak ayarlanmazsa.

AdC SdC2 Çalışma

<table>
<thead>
<tr>
<th>AdC</th>
<th>SdC2</th>
<th>Çalışma</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVET</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ct</td>
<td>$\neq 0$</td>
<td>$Ct = 0$</td>
</tr>
</tbody>
</table>

Çalıştırma komutu

Hız

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...30,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 sn</td>
</tr>
</tbody>
</table>
Alt bölüm 8.13
[Jenerik fonksiyonlar] - [Ref işlemleri]

[Ref işlemleri] o R , - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Ref işlemleri]

Bu Menü Hakkında

Toplama girişi / çıkarma girişi / çarpan

\[A = (F_{r1} \text{ veya } F_{r1b} + S_{A2} + S_{A3} - d_{A2} - d_{A3}) \times M_{A2} \times M_{A3} \]

NOT:

- \(S_{R2}, S_{R3}, d_{R2}, d_{R3} \) atanmasa 0 olarak ayarlanırlar.
- \(P_{R2}, P_{R3} \) atanmasa 1 olarak ayarlanırlar.
- \(A, \) minimum \(L_{SP} \) ve maksimum \(H_{SP} \) parametreleriyle sınırlanır.
- Çarpım için \(P_{R2} \) veya \(P_{R3} \)’teki sinyal, % olarak yorumlanır. %100, karşılık gelen girişin maksimum değerine eşittir. \(P_{R2} \) veya \(P_{R3} \), bir iletişim veriyolu veya Ekran Terminali aracılığıyla gönderilirse bir \(P_{R} \) çarpım değeri veriyolu ya da Ekran Terminali aracılığıyla gönderilir.
- Negatif bir sonuç durumunda işlem yönünün tersine çevrilmesi bloke edilebilir (bkz. [Geri Devre Dışıır]).

[Özet giris 2] 5 R 2

Toplama giriş 2.

[Ref Frek 1 Konfig] \(F _r _I \) veya [Ref. kanalı 1B] \(F _r _I _b \) için eklenecak bir referansın seçilmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>r a</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[AI1]</td>
<td>R , I</td>
<td>Analog giriş AI1 Fabrika Ayarı</td>
</tr>
<tr>
<td>[AI2]...[AI3]</td>
<td>R , 2...R , 3</td>
<td>Analog giriş AI2...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>R , 4...R , 5</td>
<td>VW3A3203 I/O uzatma modülü takılmasa analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[DI aracılığıyla Ref Frekansı]</td>
<td>p d b</td>
<td>Yukarı/Aşağı fonksiyonu Dlx tarafından atanmıştır</td>
</tr>
<tr>
<td>[Ref. Frek- Uzk. Term]</td>
<td>L C C</td>
<td>Uzaktan terminal üzerinden Referans Frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>n d b</td>
<td>Modbus üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>C R n</td>
<td>CANopen modülü takılması CANopen üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-İlet. Modülü]</td>
<td>n E k</td>
<td>Haberleşme modülü takılması haberleşme modülü üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Dahili Ethernet]</td>
<td>E H</td>
<td>Dahili Ethernet</td>
</tr>
<tr>
<td>[AI Sanal 1]</td>
<td>R , V I</td>
<td>Sanal analojik giriş 1</td>
</tr>
<tr>
<td>[D17 Darbe Giriş]...[D18 Darbe Giriş]</td>
<td>P , 7...P , 8</td>
<td>Dijital giriş D17...D18 darbe girişi olarak kullanılır NOT: Bu seçime 22kW’tan büyük güçü olan tahriklerde erişilebilir.</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.
<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[RP]</td>
<td>P</td>
<td>Darbe girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 30 kW'tan küçük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>P L</td>
<td>Bir kodlayıcı modülü takılıysa veya katıştırılmış kodlayıcı kullanılyorsa kodlayıcı referansı.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Katıştırılmış kodlayıcı yalnızca güc 22 kW'ye kadar olan sürücülerde kullanılabilir.</td>
</tr>
</tbody>
</table>

[Özet giriş 3] 5 A 3

Toplama girişi 3.

[Ref Frek 1 Konfig] F r 1 veya [Ref. kanalı 1B] F r 1b içine eklenmek bir referansın seçilmesi.

[ToplamaGirişi2] ile aynı 5 A 2

[Ref Frek 2'yi Çıkar] d A 2

Referans frekansı 2'yi çıkar.

[Ref Frek 1 Konfig] F r 1 veya [Ref. kanalı 1B] F r 1b değerindenden çıkarılacak bir referansın seçilmesi.

[ToplamaGirişi2] ile aynı 5 A 2

[Ref Frek 3'yi Çıkar] d A 3

Referans frekansı 3'yi çıkar.

[Ref Frek 1 Konfig] F r 1 veya [Ref. kanalı 1B] F r 1b değerindenden çıkarılacak bir referansın seçilmesi.

[ToplamaGirişi2] 5 A 2 ile aynı.

[Ref Frek 2 Çarpanı] n A 2

Referans frekansı 2 çarpanı (kaynak aralığının % değeri olarak).

Çarpan referansı [Ref Frek 1 Konfig] F r 1 veya [Ref. kanalı 1B] F r 1b seçilmesi.

[ToplamaGirişi2] 5 A 2 ile aynı.

[Ref Frek 3 Çarpanı] n A 3

Referans frekansı 3 çarpanı (kaynak aralığının % değeri olarak).

Çarpan referansı [Ref Frek 1 Konfig] F r 1 veya [Ref. kanalı 1B] F r 1b seçilmesi.

[ToplamaGirişi2] 5 A 2 ile aynı.
Alt bölüm 8.14
[Jenerik fonksiyonlar] - [Önayar hızları]

[Önayar hızları] P 5 5 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Önayar hızları]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Önceden Ayarlanmış Hız Girişleri için Birleşim Tablosu

Sırasıyla 1, 2, 3 veya 4 dijital girişlerini kullanarak 2, 4, 8 veya 16 hız önceden ayarlanabilir.

Konfigüre etmek gereklidir:
- 4 hızını elde etmek için 2 ve 4 hızları.
- 8 hızını elde etmek için 2, 4 ve 8 hızları.
- 16 hızını elde etmek için 2, 4, 8 ve 16 hızları.

<table>
<thead>
<tr>
<th>16 Önayar Frekans (PS16)</th>
<th>8 Önayar Frekans (PS8)</th>
<th>4 Önayar Frekans (PS4)</th>
<th>2 Önayar Frekans (PS2)</th>
<th>Hız Referansı</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Referans 1 (1)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>SP2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SP3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SP4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SP5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SP6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SP7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SP8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SP9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>SP10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SP11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SP12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SP13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SP14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SP15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SP16</td>
</tr>
</tbody>
</table>

NOT: 1 Referans = 5 P 1, şemaya başvurun (bkz. sayfa 219)

[2 Önayar Frekans] P 5 2
2 önayari frekans ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>r o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[D1]...[D8]</td>
<td>L , L ... L , B</td>
<td>Dijital giriş D1...D8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: D18 seçimi, 22kW'tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td>L , L ... L , I B</td>
<td>VW3A3203 G/C uzatma modülü takılrsa dijital giriş D11...D16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d 0 d ... C d 1 0</td>
<td>[G/C profil] : konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d l ... C d l 5</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>
Ayarlar Kod / Değer Açıklama

[C101]...[C110] 10...110 [G/C profil] konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişi
[C111]...[C115] 111...115 Entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi
[C201]...[C210] 20...210 [G/C profil] konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi
[C211]...[C215] 211...215 Konfigürasyonda bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişi
[C301]...[C310] 30...310 [G/C profil] kanal gücebağışı ve CANopen® fieldbus modülü ile sanal dijital giriş CMD3.01...CMD3.10 sanal dijital girişi
[C311]...[C315] 311...315 Entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi
[C501]...[C510] 50...510 [G/C profil] konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital girişi
[C511]...[C515] 511...515 Entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital girişi

[4 Önayar Frekans] P 5 4

4 önayarlı frekans ataması.

[2 Önayar Frek] ile aynı P 5 2

4 hızlarını elde etmek için ayrıca 2 hızını da konfigüre etmeniz gerekmektedir.

[8 Önayar Frekans] P 5 8

8 önayarlı frekans ataması.

[2 Önayar Frek] ile aynı P 5 2

8 hızlarını elde etmek için ayrıca 2 ve 4 hızını da konfigüre etmeniz gerekmektedir.

[16 Önayar Frekans] P 5 16

16 önayarlı frekans ataması.

[2 Önayar Frek] ile aynı P 5 2

16 hız elde etmek için ayrıca 2, 4 ve 8 hızlarını da konfigüre etmeniz gerekmektedir.

[Ön ayarlı hız 2] P 5 2

Ön ayarlı hız 2. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 10,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 3] P 5 3

Ön ayarlı hız 3. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 15,0 Hz</td>
</tr>
<tr>
<td>Ayar</td>
<td>Açıklama</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 20,0 Hz</td>
</tr>
</tbody>
</table>
| Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 25,0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 30,0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 35,0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 40,0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 45,0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 50,0 Hz</td>
</tr>
</tbody>
</table>

| Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.
[Ön ayarlı hız 11] $5P / 1$ ★
Ön ayarlı hız 11. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 55,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 12] $5P / 2$ ★
Ön ayarlı hız 12. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 60,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 13] $5P / 3$ ★
Ön ayarlı hız 13. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 70,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 14] $5P / 4$ ★
Ön ayarlı hız 14. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 80,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 15] $5P / 5$ ★
Ön ayarlı hız 15 Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 90,0 Hz</td>
</tr>
</tbody>
</table>

[Ön ayarlı hız 16] $5P / 6$ ★
Ön ayarlı hız 16. Önceden ayarlanmış hız girişleri için birleşim tablosuna (bkz. sayfa 333) bakın.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 100,0 Hz</td>
</tr>
</tbody>
</table>
Alt bölüm 8.15
[Jenerik fonksiyonlar] - [+/- hız]

[+/- hız] u P d - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [+/- hız]

Bu Menü Hakkında

Bu fonksiyona referans kanalı, [Ref Frek 2 konfig] F r 2, [DI üzerinden Ref Frekansı] olarak ayarlanırsa erişilebilir u P d t

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

2 tip işlem mümkündür:
- **Tek işlemli tuşların kullanılması:** Çalışma yönlerine ek olarak 2 dijital giriş gerekli.
 - "+ hız" komutuna atanmış olan giriş, hızı artırır ve "– hız" komutuna atanmış giriş hızı düşürür.
- **Çift işlemli tuşların kullanılması:** "+ hız" için atanmış tek bir dijital grişi gerekmektedir.

İki kez basılan butonlarla +/- hız:

Açıklama: Yönün değiştirilmesi için 1 butona iki kez (2 kademe) basin. Butona her basıldığında bir kontak kapatılır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Bırakılmış (– Hız)</th>
<th>Birinci Basma (Hız Korunur)</th>
<th>İkinci Basma (Daha Hızlı)</th>
</tr>
</thead>
<tbody>
<tr>
<td>İleri buton</td>
<td>–</td>
<td>a</td>
<td>a ve b</td>
</tr>
<tr>
<td>Geri buton</td>
<td>–</td>
<td>c</td>
<td>c ve d</td>
</tr>
</tbody>
</table>

![Diagram](image)

DI1 İleri
DIx Geri
Dly + hız
Bu +/- hız tipini, 3 kablolu kontrolle kullanmayın.

Hangi işlem tipi seçilirse seçilsin maksimum hız, [Yüksek Hız] HSP ile ayarlanır.

Bu, değiştirirme sırasında hızın yanlislıkla sıfır olarak ayarlanmasını önlemeye yardımcı eder.

[+ Hız Ataması] l S P

Hız girişini atama yükseltme.

Atanan giriş veya bit 1 ise fonksiyon aktiftir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n O</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar</td>
<td></td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L l l...L l</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L l l...L l 16</td>
<td></td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d O o...C d 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[G/C profil] k konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d l l...C d 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C l 0 1...C l l 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[G/C profil] k konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C I l l...C I I 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 1...C 2 I O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[G/C profil] k konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 l l...C 2 I 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girisi CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 1...C 3 I O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[G/C profil] k konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 l l...C 3 I 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 l...C 5 I O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[G/C profil] k konfigürasyonunda entegre Ethernet'i olan CMD6.01...CMD6.10 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340...N4E tahriklerinde erişilebilir.</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 l l...C 5 I 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340...N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>
[- Hız Ataması] \(d \ 5 \ P \)
Hız giriş ataması düşürme. Bkz. atama koşulları.
Atanan giriş veya bit 1 ise fonksiyon aktifdir.

[Ref Frekans Kaydı] 5 \(\pm \) r ★
"+/− hız" fonksiyonuyla ilişkili olarak bu parametre referansı kaydetmek için kullanılabilir:
● Çalıştırma komutu kaybolduğunda (RAM'a kaydedilir).
● Besleme şebekesi veya çalıştırma komutları kaybolduğunda (EEPROM'a kaydedilir).
Dolayısıyla, sürücü bir daha volverildiğinde hız referansı, en son kaydedilen referans frekansıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kaydetme]</td>
<td>n o</td>
<td>Kaydedilmedi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[RAM'e Kaydet]</td>
<td>r R P</td>
<td>Referans frekansının RAM'de kaydedilmesiyle +/- hızı</td>
</tr>
<tr>
<td>[EEPROM'a Kaydet]</td>
<td>E E P</td>
<td>Referans frekansının EEPROM'da kaydedilmesiyle +/- hızı</td>
</tr>
</tbody>
</table>
Alt bölüm 8.16
[Genel fonksiyonlar] - [Ref etrafında +/- hız]

[Ref etrafında +/- hız] 5 r E - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Ref etrafında +/- hız]

Bu Menü Hakkında

Fonksiyona [Ref Frek 1 Konfig] F r I referans kanalı için erişilebilir.

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Toplama/çıkarma/çarpma fonksiyonları ile ve ilgiliye ön ayarlı hızlarla (aşağıdaki şemaya bakın) [Ref Frek 1 Konfig] F r I veya [Ref. kanalı 1B] F r I b referansi tarafından verilir.

İyileştirilmiş netlik için bu referans A'yı çağırın. + hızı ve – hızı anahtarlarının eylemi bu referans A'nın bir %'si olarak ayarlanabilir. Durdurulduğunda, referans (A +/- hızı) kaydedilmez, bu yüzden sürücü yalnızca referans A+ ile yeniden başlar.

![Şemalar](image-url)
Üst sınır ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L , 1...L , B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L , 1...L , 16</td>
<td>VW3A3203 G/C uzatma modülü takımlaması dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>d d 0 O...d d 1 O</td>
<td>[G/C profil] : I konfigürasyonunda CMD.0...CMD.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>d d 1 1...d d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>c I O I...c I O 1 0</td>
<td>[G/C profil] : I konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>c I I I...c I I 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>c 2 O 1...c 2 I O</td>
<td>[G/C profil] : I konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>c 2 I 1...c 2 I 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girisi CMD2.11...CMD2.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>c 3 O I...c 3 I O</td>
<td>[G/C profil] : I konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>c 3 I I...c 3 I 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>c 5 O I...c 5 I O</td>
<td>[G/C profil] : I konfigürasyonunda entegre Etherneti olan CMD5.01...CMD5.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>c 5 I I...c 5 I 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Etherneti olan CMD5.11...CMD5.15 sanal dijital girisi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[- Hız Ataması] d 5 ,

Alt sınır ataması. Bkz. atama koşulları.

Atanan giriş veya bit 1 ise fonksiyon aktiftr.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L , 1...L , B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L , 1...L , 16</td>
<td>VW3A3203 G/C uzatma modülü takımlaması dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>d d 0 O...d d 1 O</td>
<td>[G/C profil] : I konfigürasyonunda CMD.0...CMD.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>d d 1 1...d d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>c I O I...c I O 1 0</td>
<td>[G/C profil] : I konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>c I I I...c I I 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>c 2 O 1...c 2 I O</td>
<td>[G/C profil] : I konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>c 2 I 1...c 2 I 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girisi CMD2.11...CMD2.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>c 3 O I...c 3 I O</td>
<td>[G/C profil] : I konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>c 3 I I...c 3 I 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>c 5 O I...c 5 I O</td>
<td>[G/C profil] : I konfigürasyonunda entegre Etherneti olan CMD5.01...CMD5.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>c 5 I I...c 5 I 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Etherneti olan CMD5.11...CMD5.15 sanal dijital girisi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>
Üst/Alt hız sınır.
Bu parametre, referansın bir %’si olarak +/- hızıyla değişken aralığını sınırlar. Bu fonksiyonda kullanılan rampalar [Hzlanma 2] \(AC2 \) ve [Hzlanma 2] \(dE2 \).

Hzlanma 2 \(AC2 \)
Hzlanma 2 rampası süresi.
0’dan [Nominal Motor Frek] \(FRS \) değerine hızlanma süresi. Rampalarda tekrarlanabilirlik sağlamak için parametrenin değeri, uygulamanın olabildiğiine göre ayarlanmalıdır.

Yavaşlama 2 \(dE2 \)
Yavaşlama 2.
[Nominal Motor Frek] \(FR5 \) değerinden 0’a yavaşlamak için geçen süre. Rampalarda tekrarlanabilirlik sağlamak için parametrenin değeri, uygulamanın olabildiğiine göre ayarlanmalıdır.
Alt bölüm 8.17
[Jenerik fonksiyonlar] - [Atlama frekansı]

[Atlama frekansı] J u F - Menü Hakkı

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Atlama frekansı]

Bu Menü Hakkında

Bu fonksiyon, kontrol edilen frekans cıvırdaki ayarlanabilir bir aralık dahilinde uzun çalışmayı engellemeye yardımcı olur.

Bu fonksiyon, rezonansa neden olabilecek kritik bir hızı ulaşılmasını engellemeye yardımcı olmak için kullanılabılır. Fonksiyon 0 olarak ayarlandığında devre dışı kalır.

[Atlama Frekansı] JPF

Atlama frekansı.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Atlama frekansı 2] JF2

Atlama frekansı 2.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[3. Atlama Frekansı] JF3

Atlama frekansı 3.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Atlama frekans Hys.] JFH ★

Atlama frekansı bant genişliği.

Bu parametreye en azından bir JPF, JF2 veya JF3 atlama frekansı 0'dan farklı olduğunda erişilebilir.

Atlama frekansı aralığı: örneğin JPF - JFH ve JPF + JFH arasında.

Bu ayar 3 JPF, JF2, JF3 frekansı için ortaktır.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...10,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1,0 Hz</td>
</tr>
</tbody>
</table>
Alt bölüm 8.18

[Binerik fonksiyonlar] - [PID kontrolörü]

Bu bölümde neler yer alıyor?

Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PID kontrolörü] $P_i d$ - Genel Bakış</td>
<td>345</td>
</tr>
<tr>
<td>[PID Geri Besleme] $F_d b$ - Menüsü</td>
<td>349</td>
</tr>
<tr>
<td>[PID Referans] $r F$ - Menüsü</td>
<td>355</td>
</tr>
<tr>
<td>[PID önayar referansları] $P r I$ - Menüsü</td>
<td>358</td>
</tr>
<tr>
<td>[PID Referans] $r F$ - Menüsü</td>
<td>360</td>
</tr>
<tr>
<td>[Ayarlar] $S t$ - Menüsü</td>
<td>361</td>
</tr>
</tbody>
</table>
[PID kontrolörü] \(P , d \) - Genel Bakış

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Blok Şeması

Bu fonksiyon, PID geri beslesmesine bir analog giriş atanarak aktif hale getirilir (ölçüm).

PID geri beslemesi, herhangi bir I/O uzatma modülünün takılması olup olmadığını bağlı olarak AI1 - AI5 arasındaki analog girişlerinden birine ya da bir darbe girişine atanmalıdır.

PID referansının aşağıdaki parametrele ataması gereklidir:

- Dijital girişler üzerinden önceden ayarlanmış referanslar ([Ref PID ÖnAyar 2] \(r \ P \ 2 \), [Ref PID ÖnAyar 3] \(r \ P \ 3 \), [Ref PID ÖnAyar 4] \(r \ P \ 4 \)).

- [Dahili PID Ref] \(P \ r \) konfigürasyonuna göre:
 - [Dahili PID ref.] \(r \ P \ r \), veya
 - Referans A [Ref Frek 1 Konfig] \(F \ r \) veya [Ref. kanalı 1B] \(F \ r \) lı veya [Ref. kanalı 1B] \(F \ r \) lı b.

Önceden Ayarlanmış PID Referansları için Birleşim Tablosu:

<table>
<thead>
<tr>
<th>DI ((P \ r \ 4))</th>
<th>DI ((P \ r \ 2))</th>
<th>(P \ r \ 2 = n \ a)</th>
<th>Referans</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(r \ P \ 2), veya (F \ r) lı b</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(r \ P \ 2)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(r \ P \ 3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(r \ P \ 4)</td>
<td></td>
</tr>
</tbody>
</table>

İşlem tekrar çalıştırıldığında hızı başlatmak için tahmini bir hız referansı kullanabilirılır.
Geri besleme ve referansların ölçeklenmesi:
- [Min PID geribes.] $P_1, F_1, [Maks PID geribes.] P_2, F_2$ parametreleri, PID geri beslemesini (sensör aralığı) ölçeklemek için kullanılabilir. Bu ölçek, diğer tüm parametreler için MUTLAKA korunmalıdır.
- [Min PID İşlem] $P_1, I_1, [Maks PID İşlem] P_2, I_2$ parametreleri, ayar aralığını, örneğin referans ölçeklemek için kullanılabilir. Ayarlama aralığının sensör aralığı içerisinde kaldığını kontrol edin.

Örnek

Bir depo içerisindeki hacmin ayarlanması, 6...15 m³.
- Kullanılan prob 4-20 mA, 4 mA için 4,5 m³ ve 20 mA için 20 m³, $P_1, F_1 = 4.500$ ve $P_2, F_2 = 20.000$ sonucuyla.
- 6 - 15 m³ arası ayarlama aralığında sonuç olarak $P_1, I_1 = 6.000$ (min. referans) ve $P_2, I_2 = 15.000$ (maks. referans).
- Örnek referanslar:
 - rP_1 (dahili referans) = 9.500
 - rP_2 (öyn ayarlı referans) = 6.500
 - rP_3 (öyn ayarlı referans) = 8.000
 - rP_4 (öyn ayarlı referans) = 11.200

Diğer parametreler:
- Integral kazanç bir dijital giriş ile kısa devre yapabilir.
- [PID geri besleme] P_1, F üzerinde bir uyarı konfigüre edilebilir.
- [PID Hatası] $rP E$ üzerinde bir uyarı konfigüre edilebilir.

PID ile "Manuel - Otomatik" Çalışma

Bu fonksiyon, PID kontrolörü, önceden ayarlanmış hızları ve bir manuel referansı birleştirir. Dijital girişinin durumuna bağlı olarak hız referansı, PID fonksiyonu üzerinden önceden ayarlanmış hızlar veya bir manuel referans girisyle verilir.

Manuel PID referansları [Manuel PID referansı] P_1, Π:
- A11 - A15 arası analog girişler
- Darbe girişleri

Tahmini hız referansları [Tahmini hız refr.] F_1, Π:
- [A11] R_1, I_1: analog giriş
- [A12] R_2, Z_1: analog giriş
- [A13] R_3, Z_1: analog giriş
- [A14] R_4, I_4: VW3A3203 I/O uzatma modülü takılmışa analog giriş
- [A15] R_5, S_5: VW3A3203 I/O uzatma modülü takılmışa analog giriş
- [Ref.Frek-Uzk.Term.] L, C, L: Ekran Terminali
PID Kontrolörünün Ayarlanması

1. PID modunda konfigürasyon.
Blok Şemasına (bkz. sayfa 345) başvurun.

2. Fabrika ayarları modunda bir test gerçekleştirin.
Sürçüyü optimum hale getirmek için [PID Oransal kazanç] \(r{PG} \) veya [PID Integ. Kazanç] \(r{IG} \) değerlerini kademeli ve bağımsız olarak ayarlayın ve referansla ilişkili etkisi içinde PID geri beslemesi üzerindeki etkisini izleyin.

3. Fabrika ayarları kararlı değilse veya referans hatalıysa.

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
</table>
| 1 | Manuel modda bir hız referansıyla (PID kontrolörü olmadan) ve sistemin hız aralığında sürücü yüklüyen bir test gerçekleştirin:
 - Sabit durumda hız sabit ve referansa uygun olmalıdır ve PID geri besleme sinyali sabit olmalıdır.
 - Geçici durumda hız, rampayla iletilen ve hız bir şekilde sabitlenmelidir ve PID geri besleme hız izlenmelidir. Aksi durumda, sürücü ve/veya sensör sinyali ve kablo bağlantısı ayarlarına bakın. |
| 2 | PID moduna geçin. |
| 3 | [PID rampası] \(r{PrP} \) 'yi, bir [DC Bara Aşırı Ger.] \(o{b}F \) tetiklenmeden mekanizma tarafından izin verilen minimum değere ayarlayın. |
| 4 | Dahili kazancı [PID Integ. Kazanç] \(r{IG} \) minimum olarak ayarlayın. |
| 5 | [PID türevsel kazanç] \(r{dG} \) türevsel kazancı 0'ıda bırakın. |
| 6 | PID geri beslemesini ve referansı takip edin. |
| 7 | Sürücüyü birkaç kez açıp kapatın veya birkaç kez yük veya referans hızı bir şekilde değiştirin. |
| 8 | Geçici fazlarda yanıt süresi ve kararlılık arasında bir denge sağlamak için oransal kazancı [PID Oransal kazanç] \(r{PG} \) olarak ayarlayın (sabitlenmeden önce hafifçe değeri aşın ve 1 - 2 salınım gerçekleştirin). |
| 9 | Referansın, sabit durumdaki önceden ayarlanmış değerden farklılaşması durumunda dahili kazanımı [PID Integ. Kazanç] \(r{IG} \) kademeli olarak düşürüün, kararlılık durumunda oransal kazanımı [PID Oransal kazanç] \(r{PG} \) düşürün (pompa uygulamaları) ve yanıt süresi ve statik doğruluk arasında bir denge bulun (bkz. şema). |
| 10 | Son olarak, türevsel kazanç değer aşımının azaltılmasını ve yanıt süresinin geliştirilmesini sağlayabilir; ancak bu 3 kazanca dayandığından, kararlılık açısından bir denge bulunması daha zor olacaktır. |
| 11 | Tüm referans aralığında üretim testleri gerçekleştirin. |
Salınım frekansı sistem kinematiğine göre değişir:

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Yükseliş süresi</th>
<th>Değer aşımı</th>
<th>Sabitlenme süresi</th>
<th>Statik hata</th>
</tr>
</thead>
<tbody>
<tr>
<td>rPG +</td>
<td>-</td>
<td>+</td>
<td>=</td>
<td>-</td>
</tr>
<tr>
<td>rIG +</td>
<td>-</td>
<td>+ +</td>
<td>+</td>
<td>- -</td>
</tr>
<tr>
<td>rdG +</td>
<td>=</td>
<td>-</td>
<td>-</td>
<td>=</td>
</tr>
</tbody>
</table>
[**PID Geri Besleme**] \(F \, d \, b \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Genel fonksiyonlar] \(\rightarrow \) [PID kontrolörü] \(\rightarrow \) [Geri besleme]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

[Kontrol Türü] \(t \rightarrow \mathbb{C} \rightarrow \mathbb{t} \)

PID için kontrol türü = ünite seçimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[nA]</td>
<td>(n , R)</td>
<td>Birim yok</td>
</tr>
<tr>
<td>[Diğer]</td>
<td>(a , t , h , e , r)</td>
<td>Diğer kontroller ve ünite (%)</td>
</tr>
</tbody>
</table>

[PID Geri besleme] \(P \, F \)

PID kontrolörü geri beslemesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n , o)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>(R , l , R , i)</td>
<td>Analog giriş AI1...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>(R , l , R , i)</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[AI Sanal 1]</td>
<td>(R , V , l)</td>
<td>Sanal analojik giriş 1</td>
</tr>
<tr>
<td>[RP]</td>
<td>(P ,)</td>
<td>Darbe girişi</td>
</tr>
</tbody>
</table>

NOT: Bu seçime 30 kW'tan küçük güç olan sürücülerde erişilebilir.

| Kodlayıcı | \(P \, G \) | Bir kodlayıcı modülü takıldıysa veya katıştırılmış kodlayıcı kullanılıyorrsa kodlayıcı referansı. |

NOT: Katıştırılmış kodlayıcı yalnızca gücü 22 kW'ye kadar olan sürücülerde kullanılabılır.

[AI1 Tipi] \(R \, l \, \mathbb{t} \)

Analog giriş AI1'in konfigürasyonu.

Bu parametreye, [**PID geri besleme**] \(P \, F \), [AI1] \(R \, l \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(I , D , u)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(D , R)</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[AI1 min. değeri] \(u \, l \, \mathbb{t} \)

AI1 %0 gerilim öcekleme parametresi.

Bu parametreyle şu şekilde erişilebilir:

- [**PID geri besleme**] \(P \, F \), [AI1] \(R \, l \) olarak ayarlanırsa ve
- [AI1 Türü] \(R \, l \, \mathbb{t} \), [Gerilim] \(I \, D \, u \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Vdc</td>
</tr>
</tbody>
</table>
[AI1 maks. değeri] C \(H \) I ★
AI1 %100 gerilim ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
• [PID geri besleme] \(P, F, [AI1] \) \(R, I \) olarak ayarlanırsa ve
• [AI1 Türü] \(R, I \) \([Gerilim] \) \(10U \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0…10,0 Vdc</td>
<td>Ayar aralığı: 10,0 Vdc</td>
</tr>
</tbody>
</table>

[AI1 min. değeri] \(C \ L \) I ★
AI1 %0 akım ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
• [PID geri besleme] \(P, F, [AI1] \) \(R, I \) olarak ayarlanırsa ve
• [AI1 Türü] \(R, I \) \([Akım] \) \(0A \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0…20,0 mA</td>
<td>Ayar aralığı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AI1 maks. değeri] \(C \ R \) H I ★
AI1 %100 akım ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
• [PID geri besleme] \(P, F, [AI1] \) \(R, I \) olarak ayarlanırsa ve
• [AI1 Türü] \(R, I \) \([Akım] \) \(0A \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0…20,0 mA</td>
<td>Ayar aralığı: 20,0 mA</td>
</tr>
</tbody>
</table>

[AI1 aralığı] \(A, I \) L ★
AI1 ölç克莱me seçimi.
Bu parametreye şu şekilde erişilebilir:
• [PID geri besleme] \(P, F, [AI1] \) \(R, I \) olarak ayarlanırsa ve
• [AI1 Türü] \(R, I \) \([Akım] \) \(0A \) olarak ayarlanırsa.
Bu parametre [%0-100] \(P \circ 5 \) değerine zorlanır:
• [AI1 Türü] \(R, I \) \([Akım] \) \(0A \) olarak ayarlanmazsa veya
• [AI1 min. değer] \(C \ L \) \(3,0 \) mA'dan düşükse.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[%0-100]</td>
<td>P (\circ 5)</td>
<td>Tek yönlü: AI1 akım ölç克莱dirmeye %100'e kadar %0'dır. Fabrika ayarı</td>
</tr>
<tr>
<td>[%/-+100]</td>
<td>P (\circ 5 \circ \theta)</td>
<td>Çift yönlü: AI1 akım ölç克莱dirmeye %100'e kadar %100'dür. [AI1 min. değer] (C \ L) %-%100'e karşılık gelir. [AI1 maks. değer] (C \ R) %100'e karşılık gelir.</td>
</tr>
</tbody>
</table>

[AI2 Tipi] \(A, I \) Z L ★
Analog giriş AI2’nin konfigürasyonu.
Bu parametreye [PID Geri Besleme] \(P, F \) \([AI2] \) \(R, Z \) olarak ayarlanırsa erişilebilir \(R, Z \)

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>IDU</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>IDU</td>
<td>-10/+10 Vdc: Fabrika ayarı</td>
</tr>
</tbody>
</table>
[AI2 min. değeri] U_L L_2

AI2 %0 gerilim ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI2] A_2 olarak ayarlanırsa ve

[AI1 min. değeri] U_L, L_1 (bkz. sayfa 349) ile aynı.

[AI2 maks. değeri] U_H L_2

AI2 %100 gerilim ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI2] A_2 olarak ayarlanırsa ve

[AI1 maks. değeri] U_H, L_1 (bkz. sayfa 350) ile aynı.

[AI3 Tipi] R, 3L

Analog giriş AI3’ın konfigürasyonu.
Aşağıdaki fabrika ayarıyla [AI2 Tipi] R, 2L (bkz. sayfa 350).

[AI3 min. değeri] U_L L_3

AI3 %0 gerilim ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI3] A_3 olarak ayarlanırsa ve

[AI1 min. değeri] U_L, L_1 (bkz. sayfa 349) ile aynı.

[AI3 maks. değeri] U_H L_3

AI3 %100 gerilim ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI3] A_3 olarak ayarlanırsa ve

[AI1 maks. değeri] U_H, L_1 (bkz. sayfa 350) ile aynı.

[AI3 min. değeri] C_r, L_3

AI3 %0 akım ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI3] A_3 olarak ayarlanırsa ve

[AI1 min. değeri] C_r, L_1 (bkz. sayfa 350) ile aynı.

[AI3 maks. değeri] C_r H_3

AI3 %100 akım ölç克莱me parametresi.
Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] P_F, [AI3] A_3 olarak ayarlanırsa ve

[AI1 maks. değeri] C_r, H_1 (bkz. sayfa 350) ile aynı.
[AI3 aralığı] \(R \), L

AI3 ölçekleme seçimi.

Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] \(P \), F, [AI3] \(R \), L olarak ayarlanırsa ve
- [AI3 Türü] \(R \), L öğesi [Akım] olarak ayarlanmışdır.

[AI1 aralığı] \(R \), L (bkz. sayfa 350) ile aynı.

[AI3 Tipi] \(R \), L

Analog giriş AI3'ın konfigürasyonu.

Bu parametreye şu şekilde erişilebilir:
- VW3A3203 I/O uzatma modülü takılmış ve
- [PID geri besleme] \(P \), F, [AI3] \(R \), L olarak ayarlanır.

Ayar Kod / Değer Açıklama

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>ID (\omega)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>O (R)</td>
<td>0-20 mA Fabrika ayar</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>n ID (\omega)</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[AI4 min. değeri] \(R \), H

AI4 %0 gerilim ölçekleme parametresi.

Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] \(P \), F, [AI4] \(R \), H olarak ayarlanır ve
- [AI4 Türü] \(R \), H öğesi [Gerilim] \(ID \omega \) olarak ayarlanır.

[AI1 min. değeri] \(R \), L (bkz. sayfa 349) ile aynı.

[AI4 maks. değeri] \(R \), H

AI4 %100 gerilim ölçekleme parametresi.

Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] \(P \), F, [AI4] \(R \), H olarak ayarlanır ve
- [AI4 Türü] \(R \), H öğesi [Gerilim] \(ID \omega \) olarak ayarlanır.

[AI1 maks. değeri] \(R \), L (bkz. sayfa 350) ile aynı.

[AI4 min. değeri] \(C \), L

AI4 %0 akım ölçekleme parametresi.

Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] \(P \), F, [AI4] \(R \), L olarak ayarlanır ve
- [AI4 Türü] \(R \), L öğesi [Akım] \(OR \) olarak ayarlanır.

[AI1 min. değeri] \(C \), L (bkz. sayfa 350) ile aynı.

[AI4 maks. değeri] \(C \), H

AI4 %100 akım ölçekleme parametresi.

Bu parametreye şu şekilde erişilebilir:
- [PID geri besleme] \(P \), F, [AI4] \(R \), H olarak ayarlanır ve
- [AI4 Türü] \(R \), H öğesi [Akım] \(OR \) olarak ayarlanır.

[AI1 maks. değeri] \(C \), H (bkz. sayfa 350) ile aynı.
[AI4 aralığı] $\lambda : 4 \ L$

AI4 ölçkeleme seçimi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI4}] \lambda : 4 \ \text{olarak ayarlanır ve}$
- [AI4 Türü] $\lambda : 4 \ \text{ögesi [Akım]} \ R \ R$

[AI1 aralığı] $\lambda : 1 \ L \ \text{(bkz. sayfa 350) ile aynı.}$

[AI5 Tipi] $\lambda : 5 \ L$

Analog giriş AI5'in konfigürasyonu.

Bu parametre şu şekilde erişilebilir:
- VW3A3203 I/O uzatma modülü takılmışsa ve
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır.}$

[AI4 Tipi] $\lambda : 4 \ L \ \text{ile aynı.}$

[AI5 min. değeri] $\omega : 1 \ L$

AI5 %0 gerilim ölçkeleme parametresi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır ve}$
- [AI4 Türü] $\lambda : 5 \ L, [\text{Gerilim}] \ I \ \text{olarak ayarlanır.}$

[AI1 min. değeri] $\omega : 1 \ L \ \text{(bkz. sayfa 349) ile aynı.}$

[AI5 maks. değeri] $\omega : 1 \ H$

AI5 %100 gerilim ölçkeleme parametresi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır ve}$
- [AI4 Türü] $\lambda : 5 \ L, [\text{Gerilim}] \ I \ \text{olarak ayarlanır.}$

[AI1 maks. değeri] $\omega : 1 \ H \ \text{(bkz. sayfa 350) ile aynı.}$

[AI5 min. değeri] $\lambda : 1 \ L$

AI5 %0 akım ölçkeleme parametresi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır ve}$
- [AI5 Türü] $\lambda : 5 \ L, [\text{Akım}] \ D \ \text{olarak ayarlanır.}$

[AI1 min. değeri] $\lambda : 1 \ L \ \text{(bkz. sayfa 350) ile aynı.}$

[AI5 maks. değeri] $\lambda : 1 \ H$

AI5 %100 akım ölçkeleme parametresi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır ve}$
- [AI5 Türü] $\lambda : 5 \ L, [\text{Akım}] \ D \ \text{olarak ayarlanır.}$

[AI1 maks. değeri] $\lambda : 1 \ H \ \text{(bkz. sayfa 350) ile aynı.}$

[AI5 aralığı] $\lambda : 5 \ L$

AI5 ölçkeleme seçimi.

Bu parametre şu şekilde erişilebilir:
- [PID geri besleme] $P, F, [\text{AI5}] \lambda : 5 \ \text{olarak ayarlanır ve}$
- [AI5 Türü] $\lambda : 5 \ L, [\text{Ögesi [Akım]}] \ D \ \text{olarak ayarlanır.}$

[AI1 aralığı] $\lambda : 1 \ L \ \text{(bkz. sayfa 350) ile aynı.}$
[Min PID geri besleme] \(P \cdot F \) ★

Minimum PID geri besleme.

[PID Geribesleme] \(P \cdot F \) öğesi [Konfigüre Edilmemiş] \(n \) \(o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...[Maks PID geribesleme] (P \cdot F) 2</td>
<td>Ayar aralığı: 100</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 100</td>
</tr>
</tbody>
</table>

[Maks PID geri besleme] \(P \cdot F \) 2 ★

Maksimum PID geri besleme.

[PID Geribesleme] \(P \cdot F \) öğesi [Konfigüre Edilmemiş] \(n \) \(o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Min PID geribesleme] (P \cdot F) 1...32.767</td>
<td>Ayar aralığı: 1.000</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1.000</td>
</tr>
</tbody>
</table>

[PID geri besleme] \(r P F \) ★

PID geri beslemesi değeri, sadece ekran için.

[PID Geribesleme] \(P \cdot F \) öğesi [Konfigüre Edilmemiş] \(n \) \(o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı: 0</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[Min g.bes Uyarısı] \(P A L \) ★

[PID Geribesleme] \(P \cdot F \) öğesi [Konfigüre Edilmemiş] \(n \) \(o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı: 100</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 100</td>
</tr>
</tbody>
</table>

[Maks g.bes Uyarısı] \(P A H \) ★

[PID Geribesleme] \(P \cdot F \) öğesi [Konfigüre Edilmemiş] \(n \) \(o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı: 1000</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1000</td>
</tr>
</tbody>
</table>
[PID Referansı] \(r \) \(F \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Genel fonksiyonlar] \(\rightarrow \) [PID kontrolörü] \(\rightarrow \) [PID Referansı]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılmaz.

[Dahili PID Ref] \(r \) \(P \), \(\star \)

Dahili PID referansı.

[PID Geri besleme] \(P \) \(F \) öğesi [Konfigüre Edilmiş] \(n o \) olarak ayarlanmazsa bu parametreyle erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n o)</td>
<td>PID kontrolörü referansı, toplama/çıkarma/çarpma fonksiyonları ile [Ref Frek 1 Konfig] (F r) 1 veya [Ref. kanalı 1B] (F r) 1b ile verilir. Bkz. blok şeması. Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(Y E 5)</td>
<td>PID kontrolörü referansı, [Dahili PID ref.] (r P), aracılığıyla dahilidir.</td>
</tr>
</tbody>
</table>

[Ref Frek 1 Konfig] \(F r \) 1 \(\star \)

Konfigürasyon referans frekansı 1.

Bu parametreyle şu şekilde erişilebilir:
- [PID geri besleme] \(P \) \(F \), [Konfigüre Edilmiş] \(n o \) olarak ayarlanmazsa ve
- [Dahili PID Ref] \(P \) \(r \), [Hayır] \(n o \) olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>(n o)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[AI1]</td>
<td>(R , I)</td>
<td>Analog giriş AI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayarı</td>
</tr>
<tr>
<td>[AI2]...[AI3]</td>
<td>(R , 2 \ldots R , 3)</td>
<td>Analog giriş AI2...AI3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Aşağıdaki parametreler için geçerli: AI3 seçimi, 22 kW’tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[AI Sanal 1]</td>
<td>(R , V 1)</td>
<td>Sanal analogik giriş 1</td>
</tr>
<tr>
<td>[AI4]...[AI6]</td>
<td>(R , 4 \ldots R , 5)</td>
<td>Analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[DI aracılığıyla Ref Frekans]</td>
<td>(P d t)</td>
<td>Yükler/Aşağıdaki fonksiyonun Dtx tarafından atandığı durumlar için geçerli: AI3 seçimi, 22 kW’tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[Ref.Frek-Uzk.Term]</td>
<td>(L C C)</td>
<td>Uzaktan terminal üzerinden Referans Frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>(n d b)</td>
<td>Modbus üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>(C A n)</td>
<td>CANopen modülü takılmışsa CANopen üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-İlet. Modül]</td>
<td>(n E t)</td>
<td>Fieldbus modülü takılmışsa fieldbus modülü üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>(E t H)</td>
<td>Gömülü Ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.</td>
</tr>
<tr>
<td>[RP]</td>
<td>(P)</td>
<td>Darbe girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 30 kW’tan küçük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>(P G)</td>
<td>Bir kodlayıcı modülü takılıysa veya katıştırmış kodlayıcı kullanılıyor ve kodlayıcı referansı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Katıştırmış kodlayıcı yalnızca güç 22 kW’ye kadar olan türkülerde kullanılıabilir.</td>
</tr>
</tbody>
</table>
[Min. PID referansı] P_1, P_2

Minimum PID referansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Min PID geri beslemesi] P_1, P_2</td>
<td>Ayar alanı: Fabrika ayardı: 150</td>
</tr>
</tbody>
</table>

[Maks. PID ref.] P_1, P_2

Maksimum PID referansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Min PID referansı] P_1, P_2</td>
<td>Ayar alanı: Fabrika ayardı: 900</td>
</tr>
</tbody>
</table>

[Dahili PID ref.] P_1, P_2

Dahili PID referansı.

Bu parametreye şu şekilde erişilebilir:
- [PID geri beslemesi] P_1, P_2, [Konfügür Edilmiş] değil olarak ayarlanmaz ve
- [Dahili PID Ref] P_1, P_2, [Evet] Y E 5 olarak ayarlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Min PID referansı] P_1, P_2</td>
<td>Ayar alanı: Fabrika ayardı: 150</td>
</tr>
</tbody>
</table>

[Oto/Manuel atama] P_1, P_2

Oto/Manuel seçim girisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>L , l...L , B</td>
<td>Dijital giriş Di1...Di8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Di8 seçimi, 22kWtan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td>L , l...L , B</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa dijital giriş Di1...Di16</td>
</tr>
<tr>
<td>[C000]...[C10]</td>
<td>C d 0 0...C d 1 0</td>
<td>[G/C profil] i, o konfigürasyonunda CMD.0...CMD.10 sanal dijital girişı</td>
</tr>
<tr>
<td>[C011]...[C15]</td>
<td>C d 1 1...C d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girişı</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>L 1 0...C 1 0</td>
<td>[G/C profil] i, o konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişı</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>L 1 1...C 1 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişı</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 1...C 2 1 0</td>
<td>[G/C profil] i, o konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişı</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 1...C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişı</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 1...C 3 1 0</td>
<td>[G/C profil] i, o konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişı</td>
</tr>
<tr>
<td>[C311]...[C316]</td>
<td>C 3 1 1...C 3 1 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişı</td>
</tr>
</tbody>
</table>
Manuel PID referansı

Manuel PID referansı.

Manuel modda referans girisi.

Bu parametreye şu şekilde erişilebilir:

- [PID geri besleme] \(P, I, D \) konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş
- [Oto/Manuel atama] \(P_A, S \) öğesi [Hayır] olarak ayarlanmazsa erişilebilir.

Konfigüre edilmişlerse önceden ayarlanmış hızlar manuel referansta aktiftirler.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Atanmamış Fabrika ayarları</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>R, I...R, 3</td>
<td>Analog giriş AI1...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>R, 4...R, 5</td>
<td>VW3A3203 G/Ç uzatma modülü takılmışsa analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[RP]</td>
<td>P I</td>
<td>Darbe giriş</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>P G</td>
<td>Bir kodlayıcı modülü takıldıysa veya katıştırılmış kodlayıcı kullanıyorsa kodlayıcı referansı. NOT: Katıştırılmış kodlayıcı yalnızca AVC olacak 22 kW'ye kadar olan sürücülerde kullanılabilir.</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.
[PID önayar referansları] \(Pr \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Genel fonksiyonlar] \(\rightarrow \) [PID kontrolörü] \(\rightarrow \) [Referans frekansı] \(\rightarrow \) [PID önayar referansları]

Bu Menü Hakkında

Fonksiyona, [PID geri besleme Atama] \(P , F \) atanmışsa erişilebilir.

[2 PID ÖnAyar Ataması] \(Pr \) 2

2 PID Önayar ataması.

Atanan giriş veya bit 0'da ise fonksiyon devre dışıdır.

Atanan giriş veya bit 1'de ise fonksiyon aktifdir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L , l ...L , B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d 0 0 ...C d 1 0</td>
<td>[G/Ç profili]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d 1 1 ...C d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 1 0 ...C 1 0</td>
<td>[G/Ç profili]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.1.01...CMD.1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 1 1 ...C 1 5</td>
<td>entegr Seri Modbusu olan CMD.1.11...CMD.1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 ...C 2 0</td>
<td>[G/Ç profili]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.2.01...CMD.2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 ...C 2 1</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girişi CMD.2.11...CMD.2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 ...C 3 0</td>
<td>[G/Ç profili]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.3.01...CMD.3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 ...C 3 1</td>
<td>entegr fieldbus modülü olan CMD.3.11...CMD.3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 ...C 5 0</td>
<td>[G/Ç profili]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMD.5.01...CMD.5.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 ...C 5 1</td>
<td>Konfigürasyondan bağımsız olarak entegr Etherneti olan CMD.5.11...CMD.5.15 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[C501]...[C515]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>entegr Etherneti olan CMD.5.11...CMD.5.15 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[4 PID ÖnAyar Ataması] \(Pr \) 4

4 PID Önayar ataması.

[2 PID ÖnAyar Ataması] \(Pr \) 2 (bkz. sayfa 358) ile aynı.

Bu fonksiyonu atamadan önce, [2 PID ÖnAyar Ataması] \(Pr \) 2'nin andığıni doğrulayın.

[Ref PID ÖnAyar 2] \(Pr \) 2 ⭐

İkincisi PID ön ayar referansı.

Bu parametreye yalnızca [2 PID ÖnAyar Ataması] \(Pr \) 2 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Min PID referans] (P) ... [Maks PID referans] (P)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 300</td>
</tr>
</tbody>
</table>
[Ref PID ÖnAyar 3] - P 3 ★

Üçüncü PID ön ayar referansı.
Bu parametre yalnızca [4 PID ÖnAyar Ataması] P r 4 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>

[Ref PID ÖnAyar 4] - P 4 ★

Dördüncü PID ön ayar referansı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
[PID Referansı] \(F \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [PID kontrolörü] ➔ [PID Referansı]

[Tahmini Hız Refr.] \(F \, P \) , ★

Tahmini hız referansı.
Bu parametreye [Erişim Seviyesi] \(L \, R \, L \) öğesi [Uzman] \(E \, P \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r , o)</td>
<td>Alanamamış</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>(R , 4 , R , 3)</td>
<td>Analog giriş AI1...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>(R , 4 , R , 5)</td>
<td>VW3A3203 G/C uzatma modülü takılısa analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[Ref.Frek-Uzk.Term]</td>
<td>(L , C , C)</td>
<td>Uzaktan terminal üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>(N , d , b)</td>
<td>Modbus üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>(L , R , n)</td>
<td>CANopen üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-Ilet. Modülü]</td>
<td>(n , E , k)</td>
<td>İletişim modülü üzerinden referans frekansı</td>
</tr>
<tr>
<td>[RP]</td>
<td>(P)</td>
<td>Darbe girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 30 kW'lık güç de olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>(E , H)</td>
<td>Gömülü Ethernet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340•••N4E sürücülerinde erişilebilir.</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>(P , G)</td>
<td>Bir kodlayıcı modülü takılıysa veya katınlamış kodlayıcı kullanılıyor veya kodlayıcı referansı.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Katınlamış kodlayıcı yalnızca güç 22 kW'ye kadar olan sürücülerde kullanılabilir.</td>
</tr>
</tbody>
</table>

[Hız girişi %] \(P \, S \) , ★

PID hız girişi % referansı.
Bu parametreye [Erişim Seviyesi] \(L \, R \, L \) öğesi [Uzman] \(E \, P \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (())</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>
[Ayarlar] 5.5 - Menüsü

Erişim

[Tüm ayarlar] ➞ [Genel fonksiyonlar] ➞ [PID kontrolörü] ➞ [Ayarlar]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

[PID Oransal Kazanç] r P G ★

PID oransal kazanç.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...100,00</td>
<td>Ayar aralığı Fabrika ayarı: 1.00</td>
</tr>
</tbody>
</table>

[PI Enteg. Kazancı] r G ★

Integral kazanç.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...100,00</td>
<td>Ayar aralığı Fabrika ayarı: 1.00</td>
</tr>
</tbody>
</table>

[PID türevsel kazanç] r d G ★

Türev kazanç.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...100,00</td>
<td>Ayar aralığı Fabrika ayarı: 0.00</td>
</tr>
</tbody>
</table>

[PID rampası] P r P ★

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...99,9 sn</td>
<td>Ayar aralığı Fabrika ayarı: 0,0 sn</td>
</tr>
</tbody>
</table>

[PID'yi Evirme] P r C ★

PID'yi evirme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>
[PID Min. Çıkışı] PαL ✩
Hz cinsinden PID kontrolörü minimum çıkışı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-599,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[PID Maks. Çıkışı] PαH ✩
Hz cinsinden PID kontrolörü maksimum çıkışı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ayar aralığı: 60,0 Hz</td>
</tr>
</tbody>
</table>

[PID Hatası Uyarısı] PEr ✩
PID hatası uyanışı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı: 100</td>
</tr>
</tbody>
</table>

[PID Entegralı Kpalı] P , S ✩
İntegral şöntü.
Atanan giriş veya bit 0’da ise fonksiyon devre dışıdır (PID entegralı aktif hale getirilmiştir).
Atanan giriş veya bit 1’de ise fonksiyon aktifdir (PID entegralı devre dışı bırakılmıştır).

<table>
<thead>
<tr>
<th>Ayar / Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>L, l...L, b</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td>L, l...L, b</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C01]...[C10]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C11]...[C15]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C01]...[C10]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C11]...[C15]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>L, l, l, l</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>L, l, l, l</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.
[PID hızlanma süresi] ACCP

PID: çalıştırma esnasında hızlanma.

PID kazanımlarını yükseltmeden PID referansına hızlı şekilde erişilmesine olanak vermek için PID kontrolörünün çalıştırılmasından önce PID çalıştırma rampası uygulanabilir.

[PID Başlat.Ref.Frek.] SFS

PID başlatma referans frekansı.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...99,99 sn</td>
<td>Ayar aralığı Fabrika ayar: 5,00 sn</td>
</tr>
</tbody>
</table>

(1) Aralık, [Rampa adımı]na göre 0,01 - 99,99 sn veya 0,1 - 999,9 sn veya 1 - 6.000 arasında olabilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı [PID Başlat.Ref.Frek.] SFS, [Düşük Hız] LSP değerinden daha düşükse bu fonksiyonun herhangi bir etkisi yoktur. Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>
Alt bölüm 8.19
[Jenerik fonksiyonlar] - [Eşişe ulaşıldı]

[Eşişe ulaşıldı] £ H r E - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Eşişe ulaşıldı]

[Düşük Akım Eşiği] £ t d L
Akım düşük eşik değeri ([Düşük Akıma Ulaşıldı] £ t R L uyarısi için).

<table>
<thead>
<tr>
<th>Ayar (A)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 A</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 A</td>
</tr>
</tbody>
</table>

[Yüksek Akım Eşiği] £ t d
Akım yüksek eşik değeri ([Akım Eşiğine Ulşldı] £ t R uyarısi için).

<table>
<thead>
<tr>
<th>Ayar (A)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535 A</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: Tahrik nominal akımı</td>
</tr>
</tbody>
</table>

[Düşük frek. Eşiği] F t d L

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Motor Frek Eşiği] F t d

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 50,0 Hz</td>
</tr>
</tbody>
</table>

[2 Frek Eşiği] F 2 d L

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Frek. eşği 2] F 2 d

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 50,0 Hz</td>
</tr>
</tbody>
</table>
[Motor Termal Eşiği] \(\text{ttd} \)
Motor termal durumu eşiği ([Motor Termal Eşiğine ulaşıldı] \(\leq 5 \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Motor termal düzeyi 2] \(\text{ttd2} \)
Motor 2 termal durum eşiği ([Mot2 Termal Eşiğine ulaşıldı] \(\leq 5 \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Motor 3 term svyesi] \(\text{ttd3} \)
Motor 3 termal durum eşiği ([Mot3 Termal Eşiğine ulaşıldı] \(\leq 5 \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Motor 4 term svyesi] \(\text{ttd4} \)
Motor 4 termal durum eşiği ([Mot4 Termal Eşiğine ulaşıldı] \(\leq 5 \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Referans Yük.Eşik] \(\text{rtd} \)
Referans frekans yüksek eşiği ([Ref Frek Yüksek Eşğ ulaşıldı] \(\leq R H \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Referans Düş.Eşik] \(\text{rtdL} \)
Referans frekans düşük eşiği ([Ref Frek Düşük Eşğ ulaşıldı] \(\leq R L \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>

[Yüksek Tork eşiği] \(\text{ttH} \)
Yüksek tork eşiği ([Yüksek Tork Uyansı] \(\leq H H \) uyarı için).

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-300...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
<tr>
<td>Ayar</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>%-300..300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %.50</td>
</tr>
</tbody>
</table>
Alt bölüm 8.20
[Jenerik fonksiyonlar] - [Anaşbk kontk. Komut]

[Anaşbk kontk. Komut] L L C - Menüsü

Erişim

[Tüm ayarlar] ➞ [Jenerik fonksiyonlar] ➞ [Şebeke kontaktör komutu]

Bu Menü Hakkında

Tahrik kilitlendiğinde, hat kontaktörü gönderilen her çalıştırma komutu (ileri veya geri) ile kapanır ve her bir durdurma sonrasında açılır. Örneğin, durdurma modu rampa üzerinde durdurursa motor sıfır hıza ulaştığında kontaktör açılır.

NOT: Tahrik kontrol güç kaynağı harici bir 24 Vdc kaynağından sağlanmalıdır.

SÜRÜCÜDE HASAR

Bu işlevi 60 sn'den az aralıklarda kullanmayın.
Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.

Örnek devre (24 Vdc güç kaynağı):

![Diagram](image)

- R•A/R•C = [Şebeke Kontaktörül] L L C
- Din = [Tahrik Kiliti] L E 5

NOT: Acil stop tuşu bırakıldığında "Çalıştır/Sıfırla" tuşuna bir kez basılmalıdır.
[Şebeke Kontaktörü] L L Ė

Ana şebeke kontaktör kontrolü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Atanmamış Fabrika ayarı</td>
</tr>
<tr>
<td>[R2]...[R3]</td>
<td>r 2...r 3</td>
<td>Röle kişi R2...R3 NOT: R3 seçimi, 22 kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[R4]...[R6]</td>
<td>r 4...r 6</td>
<td>VW3A3204 röle kiş opsiyon modülü takılmasa röle kişi R4...R6</td>
</tr>
</tbody>
</table>

[DQ11 Dijital Çıkışı]...[DQ12 Dijital Çıkışı] | d a l...d a l 2 | VW3A3203 G/C uzatma modülü takılırsa dijital çıkış DQ11...DQ12 |

[DQ1 Dijital Çıkışı]...[DQ2 Dijital Çıkışı] | d a l...d a 2 | VW3A3203 G/C uzatma modülü takılırsa dijital çıkış DQ1...DQ2 NOT: DQ2 seçime 30 kW'tan küçük gücü olan tahriklerde erişilebilir. |

[Tahrik Kiliti] L E 5 ★

Tahrik kiliti ataması.

Bu parametre [Şebeke Kontaktörü] L L Ė [Hayır] n o olarak ayarlanmazsa erişilebilir.

Atanan giriş veya bit 0’a değiştiğinde tahrik kilinten.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış Fabrika ayarı</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>Ć d 0 0...Ć d 1 0</td>
<td>[G/C profil] i o konfigürasyonunda CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>Ć d 1 1...Ć d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>Ć l 0 l...Ć l 1 0</td>
<td>[G/C profil] i o konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>Ć l l l...Ć l l 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>Ć 2 0 l...Ć 2 1 0</td>
<td>[G/C profil] i o konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>Ć 2 1 l...Ć 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modül ile sanal dijital çıkış CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>Ć 3 0 l...Ć 3 1 0</td>
<td>[G/C profil] i o konfigürasyonunda entegre fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>Ć 3 l l...Ć 3 l 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>Ć 5 0 l...Ć 5 1 0</td>
<td>[G/C profil] i o konfigürasyonunda entegre Ethernet ‘si olan CMD5.01...CMD5.10 sanal dijital girişi NOT: Bu seçime ATV340•••N4E tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>Ć 5 1 l...Ć 5 1 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet ‘si olan CMD5.11...CMD5.15 sanal dijital girişi NOT: Bu seçime ATV340•••N4E tahriklerde erişilebilir.</td>
</tr>
</tbody>
</table>

[D11 (Düşük seviye)]...[D16 (Düşük seviye)] | L l l...L B L | Düşük seviyede kullanılan dijital giriş D11...D16 NOT: D16 düşük seviye seçilmişin 22kW'tan büyük gücü olan tahriklerde erişilebilir. |

[D11 (Düşük seviye)]...[D16 (Düşük seviye)] | L l l...L 1 6 L | VW3A3203 G/C uzatma modülü takılırsa düşük seviyede kullanılan dijital giriş D111...D116 |

[Şebeke V. zmnaşımı] L Ė Ė

Hat kontak勘查ünü kapatılması için izleme süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...999 sn</td>
<td>Ayar aralığı: 5 sn</td>
</tr>
</tbody>
</table>

368 NVE61643TR 01/2019
Alt bölüm 8.21
[Genel fonksiyonlar] - [Çıkış kontaktörü komutu]

[Çıkış kontaktörü komutu] a C e - Menüsü

Erişim

[Tüm ayarlar] [Genel fonksiyonlar] [Çıkış kontaktörü komutu]

Bu Menü Hakkında

Bu fonksiyon sürücünün sürücü ve motor arasına takılı bir kontaktörü kontrol etmesini ve/veya izlemesini sağlar.

Geri bildirim [Çıkış kontaktörü Geri besleme] r e a öğesine atanarak sürücünün tarafından çıkış kontaktörünün izlenmesi etkinleştirildi. Bir tutarsızlık durumunda sürücünün tetiklenir:

NOT:
- [Çıkış Kontaktörü Açıldı Hatası] F C F 2 hatası çalıştırma komutu 1’den 0’a bir geçişle temizlenebilir.
- DC enjeksiyonu frenleme fonksiyonu kullanılırsa DC enjeksiyonu frenlemesi etkin olduğu sürece çıkış kontaktörü kapanmaz.
1 Atanan OCC ve RCA
2 Atanan RCA
3 Atanan OCC
4 Zaman
5 Çalıştırma komutu
6 OCC Çıkış kontaktörü
7 RCA Çıkış kontaktörü geri beslemesi
8 Yok Atanmamış
9 MF Motor frekansı

[Çıkış Kontaktör Ataması] o C C
Çıkış kontaktörü kontrolü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n0</td>
<td>Fonksiyon atanmadı. Fabrika ayar</td>
</tr>
<tr>
<td>[R2]...[R3]</td>
<td>r2...r3</td>
<td>Röle çıkışı R2...R3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: R3 seçime 22 kW'tan büyük gücü olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[R4]...[R6]</td>
<td>r4...r6</td>
<td>VW3A3204 röle çıkışı opsiyon modülü takılmışsa röle çıkışı R2...R6.</td>
</tr>
<tr>
<td>[DQ1 Dijital Çıkış]...[DQ1 Dijital Çıkış]</td>
<td>d0 l...d0 2</td>
<td>Dijital çıkış DQ1...DQ2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DQ2 seçime 30 kW'tan küçük gücü olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[DQ1 Dijital Çıkış]...[DQ1 Dijital Çıkış]</td>
<td>d0 1...d0 2</td>
<td>VW3A3203 G/Ç uzatma modülü takılmışsa dijital çıkış DQ11...DQ12.</td>
</tr>
</tbody>
</table>

[Çıkış kontaktörü geri beslemesi] r C R
Çıkış kontaktörü geri beslemesi.
Atanın dijital giriş veya bit 0'a geçtiğinde motor çalışmaya başlar.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n0</td>
<td>Atanmamış Fabrika ayar</td>
</tr>
<tr>
<td>[D11 (Düşük seviye)]...[D18 (Düşük seviye)]</td>
<td>L L L...L B L</td>
<td>Düşük seviyede kullanılan dijital giriş D11...D18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: D18 düşük seviye seçime 22kW'tan yüksek gücü olan sürücülerde erişilebilir</td>
</tr>
</tbody>
</table>
[Motor çalışmasında gecekmе] \(db5\)

Çıkış kontaktörünü kapatmadan gecekmе.

Bu parametre şu tanımları içerir:
- Sürücü yalnızca çıkış kontaktörünü izlerken bir çalıştır komutun ardından motor kontrolü.
- **Çıkış kontaktörü geri besleme** \(\text{C} \) \(\text{A} \) atandıysa [Çıkış Kontaktörü Açılış Hatası] \(\text{FF}1\) hatası izlenir.

Gecikme süresi çıkış kontaktörünün kapanma süresinden büyük olmalıdır.

Bu parametre [Çıkış kontaktör Ataması] \(\text{C} \) \(\text{A} \) veya [Çıkış kontaktörü geri besleme] \(\text{C} \) \(\text{A} \) atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...60,00 sn</td>
<td>Ayar aralığı Fabrika ayarı: 0,15 sn</td>
</tr>
</tbody>
</table>

[Kontaktör açmadan gecekmе] \(dA5\)

Kontaktör açmadan gecekmе

Bu gecekmе çıkış kontaktörünün açılış süresinden büyük olmalıdır.

Bu gecekmenin sonunda [Çıkış kontaktörü geri besleme] \(\text{C} \) \(\text{A} \) atandıysa 0 değilsе [Çıkış Kontaktörü Kapandı Hatası] \(\text{FF}1\) hatası tetiklenir.

Bu parametre 0'a ayarlanırsa [Çıkış Kontaktörü Kapandı Hatası] \(\text{FF}1\) hatası izlenmez.

Bu parametre [Çıkış kontaktörü geri besleme] \(\text{C} \) \(\text{A} \) atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...5,00 sn</td>
<td>Ayar aralığı Fabrika ayarı: 0,10 sn</td>
</tr>
</tbody>
</table>
Alt bölüm 8.22
[Jenerik fonksiyonlar] - [Geri devre dışı]

[Geri devre dışı] \(r \ E \ n \) - Menü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Jenerik fonksiyonlar] \(\rightarrow \) [Geri devre dışı]

[Geri Devre Dışı] \(r \ E \ n \)

Ters yön devre dışı bırakma.

Dijital girişler tarafından gönderilen ters yön istekleri dikkate alınır.

Ekran Terminali ya da satır tarafından gönderilen ters yön istekleri dikkate alınmaz.

PID, toplama girişi ve benzeri kaynaklı herhangi bir ters hız referansı, sıfır referans (0 Hz) olarak yorumlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(^n \ o)</td>
<td>Hayır Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(^y \ E \ 5)</td>
<td>Evet</td>
</tr>
</tbody>
</table>
Alt bölüm 8.23

[Jenerik fonksiyonlar] - [Tork sınırlırma]

[Tork sınırlırma] L O L - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Tork sınırlırma]

Bu Menü Hakkında

2 tür tork sınırlaması bulunmaktadır:
- Bir parametre tarafından sabitlenen bir değerle (tork veya güç)
- Bir analog girişle sabitlenen bir değerle (AI veya darbe)

Her iki tip de aktif hale getirilmişse en düşük değer dikkate alınır.

Bu 2 tür, dijital giriş kullanarak ya da iletişim veriyolu üzerinden konfigüre edilebilir veya uzaktan anahtatlanabilir.

1 Parametre üzerinden tork sınırlaması
2 Dikkate alınan en düşük değer
3 Analog giriş, RP üzerinden tork sınırlama
4 Sınırlama değeri
5 Güçte parametre üzerinden tork sınırlaması

[Tork sınır. aktivas] L R

Kalıcı tork sınırlaması aktivasyonu.
Atanan giriş veya bit 0'da ise fonksiyon devre dışıdır.
Atanan giriş veya bit 1'de ise fonksiyon aktiftir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>☑</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 373
PMaks Motoru

Motor modunda maksimum güç.

Bu parametreye [Karakteristics] \(\mathbf{L} \) [Atanmamış] \(\mathbf{R} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%10...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %300</td>
</tr>
</tbody>
</table>

PMaks Jeneratörü

Jeneratör modunda kabul edilebilir maksimum güç.

Bu parametreye [Karakteristics] \(\mathbf{L} \) [Atanmamış] \(\mathbf{R} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%10...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %300</td>
</tr>
</tbody>
</table>

Tork artı

Tork sınırlaması artışı.

Bu parametreye [Karakteristics] \(\mathbf{L} \) [Hayır] \(\mathbf{R} \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,1</td>
<td>(Q) (I)</td>
<td>Ünite %0,1</td>
</tr>
<tr>
<td>%1</td>
<td>(I)</td>
<td>Birim %1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>
[Motor tork sınır] \(t_L \wedge n \star \)

Motor tork sınırlandırma.

Bu parametreye [Tork sınır. aktivas.] \(t_L R \) [Hayır] \(n \\& \) olarak ayarlanmazsa erişilebilir.

[Tork artış] \(n \in P \) parametrese uygun olarak anma torkunun \%‘si veya \%0,1 artışları olarak, motor modunda tork sınırlaması.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Jen. tork sınır] \(t_L \wedge G \star \)

Jeneratif tork sınırlandırma.

Bu parametreye [Tork sınır. aktivas.] \(t_L R \) [Hayır] \(n \\& \) olarak ayarlanmazsa erişilebilir.

[Tork artış] \(n \in P \) parametrese uygun olarak anma torkunun \%‘si veya \%0,1 artışları olarak, jeneratör modunda tork sınırlaması.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...300</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Analog sınır. aktív] \(t_L C \star \)

Dijital giriş tarzından aktivasyon (analog giriş).

Bu parametre [Ref Tork Ataması] \(t_R R \) veya [Ref Tork 2 Ataması] \(t_R R \) yapılandırılırsa erişilemez.

[Tork sınır. aktivas.] ile aynı. \(t_L R \).

Atanan giriş veya bit 0 ise:

- Sınırlama \([Motor tork sınır]\wedge L \wedge n \) ve [Jen. tork sınır] \(t_L \wedge G \) parametreleri tarafından belirlenir; [Tork sınır. aktivas.] \(t_L R \) öğesi [Hayır] \(n \\& \) olarak ayarlanmazsa.
- [Tork sınır. aktivas.] \(t_L R \) [Hayır] \(n \\& \) olarak ayarlanırsa sınırlama yoktur.

Atanan giriş veya bit 1 ise: sınırlama [Ref Tork Ataması] \(t_R R \) veya [Ref Tork 2 Ataması] \(t_R R \) tarafından atanan girişe bağlıdır.

NOT: Her iki sınırlama da (atanan giriş ve parametre ile) aynı zamanda etkinleştirilirse en düşük değer hesaba katılır.

[Ref Tork Ataması] \(t_R R \)

Analog değer tarafından aktivasyon.

Bu fonksiyon atandırsa atanan girişe uygulanan %0 ila %100 sinyal temelinde sınırlama, anma torkunun %0 ile %300’ü arasında değişir.

Örnekler: 4-20 mA giriş üzerinde 12 mA, anma torkunun %150’sine sınırı verir; 10 Vdc giriş üzerinde 2.5 Vdc, anma torkunun %75’line sınırı verir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n &</td>
<td>Analog giriş atanmadı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
<tr>
<td>[AI1]…[AI3]</td>
<td>R , i…R , 3</td>
<td>Analog giriş, AI1…AI3</td>
</tr>
<tr>
<td>[AI4]…[AI5]</td>
<td>R , 4…R , 5</td>
<td>VW3A3203 G/C uzatma modülü takımışsa analog giriş, AI4…AI5</td>
</tr>
<tr>
<td>[AI Sanal 1]</td>
<td>R , i * 1</td>
<td>Sanal analogič giriş 1</td>
</tr>
<tr>
<td>[DI7 Darbe Giriş]…[DI8 Darbe Giriş]</td>
<td>P , 7…P , B</td>
<td>Dijital giriş DI7…DI8 darbe giriş olarak kullanılır</td>
</tr>
<tr>
<td>[RP]</td>
<td>P ,</td>
<td>Darbe giriş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 22kW’tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 30 kW’tan küçük güç olan tahriklerde erişilebilir.</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kodlayıcı]</td>
<td>P G</td>
<td>Bir kodlayıcı modülü takıldığı veya katıştırılmış kodlayıcı kullanılıyorsa kodlayıcı referans.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Katıştırılmış kodlayıcı yalnızca gücü 22 kW'ye kadar olan sürücülerde kullanılabilir.</td>
</tr>
</tbody>
</table>

[Ref Tork Anah Atması] € R 5 ü

Referans tork anahtarı ataması.

[Tork sınır. aktivas] ile aynı. € L A.

[Ref Tork 2 Ataması] € R A 2

Başka bir analog değer tarafından aktivasyon.

[Trk/I Limit. Stop] S S b

Tork akım sınırlaması: davranış konfigürasyon.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E S</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>S € t</td>
<td>[Duruş türü] S € t parametreşine uygun ancak duruştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettikçe ve çalıştırma komutu kalkındırıldığını süreçe korunur (1)</td>
</tr>
<tr>
<td>[Hz korunuyor]</td>
<td>r L S</td>
<td>Hız, algılanan hata devam ettikçe ve çalıştırma komutu kalkındırıldığını süreçe korunur (1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r N P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S t</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d C 1</td>
<td>DC enjeksiyonu</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir durdurma tetiklemediğinden, bu gösterge için bir röle veya mantık çıkış atanmasını tavsıye edilir.

[Trk/I lim.zam.aşım] S S a

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...9.999 ms</td>
<td>Ayar aralığı
Fabrika ayarı: 1.000 ms</td>
</tr>
</tbody>
</table>
[2. akım sınırl.] L, L+ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [2. akım sınırl.] [Akım Sınırlaması2] L, L+

Akım sınırlaması anahtar ataması

Atanan giriş veya bit 0'sa, ilk akım sınırlaması aktiftir.
Atanan giriş veya bit 1'se, ikinci akım sınırlaması aktiftir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>nO</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L, I...L+</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td>L, I...L+</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d d C d 10</td>
<td>[GÇ profili]</td>
</tr>
<tr>
<td></td>
<td>L, I...L+</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C I 1 C I 10</td>
<td>[GÇ profili]</td>
</tr>
<tr>
<td></td>
<td>C 1 I 1 C I 15</td>
<td>entegre Seri Modbusu olan CMD1.1...CMD1.1 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 O C 2 10</td>
<td>[GÇ profili]</td>
</tr>
<tr>
<td></td>
<td>C 2 I 1 C 2 15</td>
<td>Konfigürasyondan bağımsız olarak CANOpen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 O C 3 10</td>
<td>[GÇ profili]</td>
</tr>
<tr>
<td></td>
<td>C 3 I 1 C 3 15</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 O C 5 10</td>
<td>[GÇ profili]</td>
</tr>
<tr>
<td></td>
<td>C 5 I 1 C 5 15</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

[2. akım Değeri] L, L+ ★

Akım sınırlaması 2 değerleri.

BİLDİRİM

AŞIRI ISINMA

- Motor anma değerinin, motora uygulanacak maksimum akıma uygun olduğunu doğrulayın.
- Akım sınırını belirlerken azaltma gerekliliğini dahil motorun görev dönüştürülmüş ve uygulamanın tüm faktörlerini göz önünde bulundurun.

Bu talimatlara uyulmaması, ekipmanda maddi hasara yol açabilir.
Ayarlama aralığı 1,8 inç olarak sınırlanır.

NOT: Ayar 0,25 inçten küçükse bu etkinleştirilmiş sürücü [Çıkış Faz Kaybı] o PL öğesinde kilitlenebilir. Yüküz motor akımından daha az olduğunda, motor çalıştırılamaz.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,8 inç (1)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 1,8 inç (1)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına karşılık gelir.

**BİLDİRİM

AŞIRI ISINMA

- Motor anma değerinin, motora uygulanacak maksimum akıma uygun olduğunu doğrulayın.
- [Akım Sınırlaması] CL parametresinin bu tabloda gösterilen değerden küçük eşit bir değere ayarlandığını doğrulayın.
- Akım sınırını belirlerken azaltma gereklilikleri dahil motorun görev döngüsünü ve uygulamanızın tüm faktörlerini göz önünde bulundurun.

Bu talimatıara uygulaması, ekipmanda maddi hasara yol açabilir.

Ayarlama aralığı 1,8 inç olarak sınırlanır.

NOT: Ayar 0,25 inçten küçükse bu etkinleştirilmiş sürücü [Çıkış Faz Kaybı] o PL öğesinde kilitlenebilir. Yüküz motor akımından daha az olduğunda, motor çalıştırılamaz.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1,8 inç (1)</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 1,8 inç (1)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına karşılık gelir.
Alt bölüm 8.25
[Genel fonksiyonlar] - [Sarsma]

[Sarsma] \(J \alpha G \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Sarsma]

[Sarsma Ataması] \(J \alpha G \)

Sarsma ataması,
SARSMA fonksiyonu yalnızca komut kanalı ve referans kanalları terminalerde etkindir.
Bu fonksiyon şu durumlarda kullanılabilir:
- [PID Geri Besleme] \(P \), \(F \) öğesi [Konfigüre Edilmemiş] \(n \alpha \) olarak ayarlanırsa ve
- [Fren lojik kontrolü] \(b \), \(L \), \(C \) öğesi [Hayır] \(n \alpha \) olarak ayarlanırsa ve
- [Yüksek hızda kaldırma] \(H \), \(5 \) öğesi [Hayır] \(n \alpha \) olarak ayarlanırsa ve
- [+ Hız Ataması] \(d \), \(5 \) ve [- Hız Ataması] \(d \), \(5 \) öğesi [Atanmamış] \(n \alpha \) olarak ayarlanırsa ve
- [Ref Frek 2 Konfig] \(F \), \(r \), \(2 \) öğesi [DI aracılığıyla Ref Frekansi] \(u \), \(P \), \(d \) \(\ell \) olarak ayarlanırsa.

Atanan giriş veya 1'deysse fonksiyon etkindir.

Örnek: 2 telli kontrol işlemi (\([2/3- \text{ Tel Kumanda}] \, b \, C \, 2 \, [2 \text{ Kablo Kontrol}] \, b \, 2 \, \ell \).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>(n \alpha)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>(L , 1 , ... , L , B)</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük güçlü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>(L , 1 , ... , L , 1 , B)</td>
<td>VW3A3203 G/Ç uzatma modülü takılırsa dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>(C , 0 , 0 , ... , C , 0 , 0)</td>
<td>G/Ç Profil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş.</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d l l...C d l 5</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C l 0 l...C l 1 0</td>
<td>[G/Ç profili] 1 D, konfigürasyonunda entegre Seri Modbus'u olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C l l l...C l l 5</td>
<td>entegre Seri Modbus'u olan CMD1.11...CMD1.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 l...C 2 1 0</td>
<td>[G/Ç profili] 1 D, konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 l l...C 2 l 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 l...C 3 1 0</td>
<td>[G/Ç profili] 1 D, konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 l l...C 3 l 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 l...C 5 1 0</td>
<td>[G/Ç profili] 1 D, konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 l l...C 5 l 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340****N4E tahrirlerinde erişilebilir.

[Sarsma frekansı] JGF ⭐

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Hz</td>
<td>Ayar aralığı: 10,0 Hz</td>
</tr>
</tbody>
</table>

[Sarsma Geçikmesi] JGl ⭐
Bu parametre [Sarsma Atama] (J D G) öğesi [Hayır] (n D) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...2,0 sn</td>
<td>Ayar aralığı: 0,5 sn</td>
</tr>
</tbody>
</table>
Alt bölüm 8.26
[Genel fonksiyonlar] - [Yüksek Hız Değiştirme]

[Genel fonksiyonlar] C H S - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Yüksek Hız Değiştirme]

[2 Yüksek hız] 5 H 2

2 Yüksek hız ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Mot Frek Yüksek Eşiği]</td>
<td>F t A</td>
<td>Motor frekansı yüksek eşikine ulaşıldı</td>
</tr>
<tr>
<td>[2. Frekans Eşiğine Ulaşıldı]</td>
<td>F 2 A</td>
<td>İkinci frekans eşikine ulaşıldı</td>
</tr>
<tr>
<td>[DI1]..[DI8]</td>
<td>L l l...L l B</td>
<td>Dijital giriş Di1...Di8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Dij8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]..[DI16]</td>
<td>L l l l...L l l l</td>
<td>VW3A3203 G/C uzatma modülü takılırsa dijital giriş Di11...Di16</td>
</tr>
<tr>
<td>[CD00]..[CD10]</td>
<td>C d d d...C d d d</td>
<td>[G/C profili] 1' in konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]..[CD15]</td>
<td>C d l l...C d l l</td>
<td>Konfigürasyondan bağımsız olarak sanal dijital girisi CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]..[C110]</td>
<td>C 1 d 1...C 1 d 1</td>
<td>[G/C profili] 1' in konfigürasyonunda entegre Seri Modbus'u CMD1.01...CMD1.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]..[C115]</td>
<td>C l l l...C l l l</td>
<td>Konfigürasyondan bağımsız olarak entegre Modbus Seri ile sanal dijital girisi CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C201]..[C210]</td>
<td>C 2 d 1...C 2 d 1</td>
<td>[G/C profili] 1' in konfigürasyonunda CANopen® fieldbus modülü CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]..[C215]</td>
<td>C 2 l l...C 2 l l</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girisi CMD.11...CMD.15 anal dijital girişi</td>
</tr>
<tr>
<td>[C301]..[C310]</td>
<td>C 3 d 1...C 3 d 1</td>
<td>[G/C profili] 1' in konfigürasyonunda fieldbus modülü CMD.01...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]..[C315]</td>
<td>C 3 l l...C 3 l l</td>
<td>Konfigürasyondan bağımsız olarak bir field bus modülü CMD.01...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]..[C510]</td>
<td>C 5 d 1...C 5 d 1</td>
<td>[G/C profili] 1' in konfigürasyonunda entegre Ethernet'i CMD.01...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C511]..[C515]</td>
<td>C 5 l l...C 5 l l</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.

[4 Yüksek hız] 5 H 4

4 Yüksek hız ataması.

[Yüksek hız] **HSP**
Maksimum referansta motor frekansı, [Düşük hız] **LSP** ve [Maks frekans] **F'r** arasında ayarlanabilir.
Fabrika ayarı, [Motor Standardı] **bFr** ögesi [60 Hz NEMA 60] olarak ayarlanırsa 60 Hz değerine değiştirir.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...599 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 50 Hz</td>
</tr>
</tbody>
</table>

[Yüksek hız 2] **HSP2**
[2 Yüksek hız] **S H2** ögesi [Hayır] **nO** olarak ayarlanmazsa görülebilir.
[Yüksek hız] **HSP** ile aynı.

[Yüksek hız 3] **HSP3**
[4 Yüksek hız] **S H4** ögesi [Hayır] **nO** olarak ayarlanmazsa görülebilir.
[Yüksek hız] **HSP** ile aynı.

[Yüksek hız 4] **HSP4**
[4 Yüksek hız] **S H4** ögesi [Hayır] **nO** olarak ayarlanmazsa görülebilir.
[Yüksek hız] **HSP** ile aynı.
Alt bölüm 8.27
[Genel fonksiyonlar] - [Hafıza referans frekansı]

[Hafıza referans frekansı] 5 P N - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Hafıza referansı frekansı]

Bu Menü Hakkında

0,1 sn’den uzun süren dijital bir giriş komutu kullanarak bir hız referans değerini kaydetme.
- Bu fonksiyon alternatif olarak tek bir analog referans ve her sürüş için bir dijital giriş yoluyla birçok sürüşün hızını kontrol etmek için kullanılır.
- Dijital bir giriş yoluyla birçok sürüşte bir hat referansını (iletisim barası veya ağ) onaylamak için de kullanılır. Bu, referans ayarlandığından varyasyonlardan kurtularak hareketlerin eşitlenmesini sağlar.
- İsteğin yükselen ucundan sonra referans 100 ms’de alınır. Yeni bir istek yapılırana kadar yeni bir referans alınmaz.

![Diagram](image)

- Fr Motor frekansı
- FrH Rampadan önce referans frekansı
- rUn Çalıştırma komutu
- Dlx (SPM) [Ref Frekansı Hafıza ataması] 5 P N

[Ref Frekansı Hafıza ataması] 5 P N

Referans frekansı hafıza ataması
Atanan giriş aktif durumdaysa fonksiyon aktiftir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>≠ 0</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L, L,...,L, B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW’tan büyük güc olan tahrklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L, L,...,L, IE</td>
<td>VW3A3203 GiÇ uzatma modülü takılışı dijital giriş DI11...DI16</td>
</tr>
</tbody>
</table>
Alt bölüm 8.28
[Genel fonksiyonlar] - [Fren lojiği kontrolü]

[Fren lojiği kontrolü] b L C - Menüsü

Erişim
[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Fren lojiği kontrolü]

Bu Menü Hakkında
[Fren lojiği kontrolü] b L C - menüsü (bkz. sayfa 274) ile aynı.
Alt bölüm 8.29
[Genel fonksiyonlar] - [Sınır anahtarları]

[Sınır anahtarları] L 5 $ t - Menüsü

Erişim
[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Sınır anahtarları]

Bu Menü Hakkında
Bu fonksiyon sınır anahtarları kullanılarak yörunge sınırlarını yönetmek için kullanılabilir
Durma modu konfigüre edilebilir. Durma kontağı etkinleştirildiğinde, diğer yönde başlatma yetkilendirilir.
Örnek:

![Resim]

R Geri
R1 Geri durma
F İleri
F1 İleri durma
Giriş 0’da (kontak açık) olduğunda durma etkinleştirilir.

[Durdurma İL ataması] L $ A $ F
Durdurma ileri sınır ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>$ $</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d 0 0...C d 1 0</td>
<td>[G/Ç profili] konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d 1 1...C d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 1 1 0...C 1 1 0</td>
<td>[G/Ç profili] konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 1 1 1...C 1 1 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 1...C 2 1 0</td>
<td>[G/Ç profili] konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 1...C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 1...C 3 1 0</td>
<td>[G/Ç profili] konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 1...C 3 1 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 1...C 5 1 0</td>
<td>[G/Ç profili] konfigürasyonunda entegre Ethernet ’si olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 1...C 5 1 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet ’si olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340****N4E tahrirlerinde erişilebilir.
Tüm ayarlar CST-

<table>
<thead>
<tr>
<th>Arayüz Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [D11 (Düşük seviye)]..[D18 (Düşük seviye)] | L I L ...L B L | Düşük seviyede kullanılan dijital giriş DI1...DI8
| NOT: DI8 düşük seviye seçimine 22kW'tan büyük güçü olan tahrıklere erişilebilir. |
| [D11 (Düşük seviye)]..[D16 (Düşük seviye)] | L I I L ...L I L L | VW3A3203 G/C uzatma modülü takılmışsa düşük seviyede kullanılan dijital giriş DI11...DI16 |

[Durdurma GR ataması] L Ar

Durdurma geri sınır ataması.

[Durdurma İL ataması] L Ar ile aynı.

[Durma türü] L Ar 5

Sınır anahtarında durma türü.

Bu parametre [Durdurma İL ataması] L Ar veya [Durdurma GR ataması] L Ar öğesi atanırsa erişilebilir.

Atanan giriş 0'a değiştiğinde, durma seçili türe göre kontrol edilir. Yeniden başlatma yalnızca motor durdurulduğunda diğer çalışma yönü için yetkilendirilir. [Durdurma İL ataması] L Ar ve [Durdurma GR ataması] L Ar iki giriş arandıysa ve 0 durumunda, yeniden başlatma mümkün olmayacaktır.

<table>
<thead>
<tr>
<th>Arayüz Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rampada]</td>
<td>r N P</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S t</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>n S t</td>
</tr>
</tbody>
</table>
Alt bölüm 8.30
[Genel fonksiyonlar] - [Sensörlere göre konumlandırma]

[Sensörlere göre konumlandırma] L P α

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Sensörlere göre konumlandırma]

Bu Menü Hakkında

Bu fonksiyon konumlandırmayı yönetmek için konum sensörleri veya sınır anahtarları kullanılarak dijital girişlere bağlı olarak veya kontrol word bitleri kullanılarak kullanılabilir:
- Yavaşlama
- Durdurma

Giriş ve bitler için dijital eylem yükselen bir kenarda (0'dan 1'e değişim) veya alçalan bir kenarda (1'den 0'a değişim) konfigüre edilebilir. Aşağıdaki örnek yükselen kenarda konfigüre edilmiştir:

Fc İleri yön çalıştırma komutu
Rc Geri yön çalıştırma komutu
S Hız
Yavaşlama modu ve durdurma modu konfigüre edilebilir. İşlemen her iki yön için de işlem aynıdır. Yavaşlama ve durdurma aşağda açıklanan aynı mantıga göre çalışır.

Örnek: İleri yavaşlama, yükselen kenarda
- İleri yavaşlama girişin yükselen kenarlarında (0'dan 1'e değişim) veya bu yükselen kenar ileri işlemde gerçekleşiyorsa ileri yavaşlamaya atanan biten gerçekleşir. Yavaşlama komutu güç kesintisi durumunda bile depolanır. Zıt yönde çalışma yüksek hızda yetkilendirilir. Yavaşlama komutu girişin alçalan kenarında (1'den 0'a değişim) silinir veya bu alçalan kenar ters işlemde gerçekleşiyorsa ileri yavaşlamaya atanan biten silinir.
- Bir bit veya bir dijital giriş bu fonksiyonu devre dışı bırakmak için atanabilir.
- İleri yavaşlama devre dışı bırakılrsa da giriş devre dışı bırakılırken veya bit 1'deyken, sensör değişiklikleri izlemeye ve kaydetmeye devam edecektir.

Örnek: Yükseleken kenarda bir sınır anahtarını konumlandırma

Kısa kamlarla çalıştırma:

UYARI

KONTROL KAYBI
- Sınır anahtarlarının doğru bağlandığını doğrulayın.
- Sınır anahtarlarının doğru takıldığını doğrulayın. Yeterli durma uzaklığına imkan sağlamak için, sınır anahtarları mekanik durdurmadan yeterince uzak bir konuma takılmalıdır.
- Sınır anahtarlarını kullanabilmeniz için önce bunları serbest bırakmalısınız.
- Sınır anahtarlarının doğru çalıştığını doğrulayın.
Bu talimatlar uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

UYARI

KONTROL KAYBI
- Ürün ilk defa çalıştırılınca veya fabrika ayarları sıfırlanktan sonra motor her zaman Yavaşlama ve Durma aralıklarını dışında çalıştırılmalıdır.
Bu talimatlar uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

UYARI

KONTROL KAYBI
- Tahrikin gücü kapatıldığında geçerli durumda içinde olduğu aralığı saklar.
- Tahrik kapalıken sistem manuel olarak hareket ettirilirse gücünü yeniden açmadan önce orijinal konumuna döndürmeniz gerekliktir.
Bu talimatlar uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu örnek, ilk kez çalıştırırken veya fabrika ayarlarına geri yüklediğinde sonra fonksiyonu başlatmak için sürücü başlangıta yavaşlatma ve durdurma bölgeleri dışında başlatmalıdır.
F1 İleri yavaşlama
F1z İleri yavaşlama bölgesi
F2 İleri durma
F2z İleri durma bölgesi

Uzun kamlayla çalıştırma:
Bu örnekte, hiç kısıtlama yoktur, yani fonksiyon tüm yördede başlatılır.

F1 İleri yavaşlama
F1z İleri yavaşlama bölgesi
F2 İleri durma
F2z İleri durma bölgesi

Yavaşlatma sınırı anahtarından sonra hesaplanan mesafede dur

[Yavaşlama türü] dSF parametresi aşağıda açıklanan fonksiyonlardan birini elde etmek için konfigür edilebilir:
Tüm ayarlar CST-

A-Yavaşlama sınır anahtarına ulaşıldı
B-Bir mesafede otomatik durdurma
D-Mesafe
F-Frekans
SF-Yavaşlama frekansı

Not:
- Devam eden bir mesafede dururken yavaşlama rampası değiştirilirse bu mesafe gözlemlenmeyecektir.
- Devam eden bir mesafede dururken yön değiştirilirse bu mesafe gözlemlenmeyecektir.

UYARI

KONTROL KAYBI

Yapilandırılan uzaklığın gerçekte mümkün olduğunu doğrulayın.
Bu işlev, sınır anahtarının yerini tutmaz.
Bu talimatı uygulaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

[Dururma İL sınır an.] $ SF$

Durma anahtarı ileri.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td></td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[D11]...[D18]</td>
<td>$L \cdot L \cdot L \cdot B$</td>
<td>Dijital giriş Di1...Di8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Di8 seçimi, 22kW'tan büyük gücünün tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[D11]...[D16]</td>
<td>$L \cdot L \cdot L \cdot L \cdot B$</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa dijital giriş D11...D16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>$C d d d \ldots C d d d$</td>
<td>[GÇ profili] o konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>$C d d d \ldots C d d d$</td>
<td>Konfigürasyondan bağımsız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>$C I I I \ldots C I I I$</td>
<td>[GÇ profili] o konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>$C I I I \ldots C I I I$</td>
<td>Konfigürasyondan bağımsız olarak entegre Modbus Seri ile sanal dijital giriş CMD1.11...CMD1.15</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>$C 2 0 1 \ldots C 2 1 0$</td>
<td>[GÇ profili] o konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>$C 2 1 1 \ldots C 2 1 5$</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>$C 3 0 1 \ldots C 3 1 0$</td>
<td>[GÇ profili] o konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
</tbody>
</table>
UYARI

KONTROL KAYBI

[Sınır anah. devre dışı] C L 5 öğesi bir girişe ayarlanıp etkinleştirilirse sınır anahtarını yönetimi devre dışı bırakılır.

- Bu işlevin etkinleştirilmesinin emniyetiz bir durum doğurduğuunu doğrulayın.

Bu talimatla uyuşmaması ölüme, ağır yaralanmalar veya ekipmanda maddi hasara yol açabilir.

Atanan bit veya giriş 1’deyken sınır anahtarlarının eylemi devre dışı bırakılır. Bu sürede, sürücü durdurulursa veya sınır anahtarlarıyla yavaşlatırsa hız referansına kadar yeniden başlatılacaktır. Bu parametreyle en az bir sınır anahtarını veya bir sensör atandığında eylemi devre dışı bırakılabilir.

Ayar	**Kod / Değer**	**Açıklama**
[C311]...[C315] | C 3 1 1...C 3 1 5 | Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş.
[C501]...[C510] | C 5 0 1...C 5 1 0 | [G/C profil] konfigürasyonunda entegre Ethernet’i olan CMD5.01...CMD5.10 sanal dijital giriş.
NOT: Bu seçime ATV340....N4E tahriklerinde erişilebilir.
[C511]...[C515] | C 5 1 1...C 5 1 5 | Konfigürasyondan bağımsız olarak entegre Ethernet’i olan CMD5.11...CMD5.15 sanal dijital giriş.
NOT: Bu seçime ATV340....N4E tahrirlerinde erişilebilir.

[Durdurma GR sınır an.] S A r

Durma anahtarı geri.

[Durdurma İL sınır an.] ile aynı S A F.

[İleri Yavaşlama] d A F

Yavaşlamaya ileri doğru ulaşıldı.

[Durdurma İL sınır an.] ile aynı S A F.

[Geri Yavaşlama] d r r

Yavaşlamaya geri doğru ulaşıldı.

[Durdurma İL sınır an.] ile aynı S A F.

[Sınır anah. devre dışı] C L 5 ★

Sınır aksanalarını temizleme.

UYARI

KONTROL KAYBI

[Sınır anah. devre dışı] C L 5 öğesi bir girişe ayarlanıp etkinleştirilirse sınır anahtarını yönetimi devre dışı bırakılır.

- Bu işlevin etkinleştirilmesinin emniyetiz bir durum doğurduğuunu doğrulayın.

Bu talimatla uyuşmaması ölüme, ağır yaralanmalar veya ekipmanda maddi hasara yol açabilir.

Ayar	**Kod / Değer**	**Açıklama**
[Atanmamış] | n o | Atanmamış
Fabrika ayan

[D1]...[D8] | L 1...L 8 | Dijital giriş Di1...Di8
NOT: Di8 seçim, 22kW’tan büyük gücünde tahriklerde erişilebilir.

[D11]...[D16] | L 1...L 1 6 | VW3A3203 G/C uzatma modülü takılmasına dijital giriş Di11...Di16

[CD00]...[CD10] | C d 0 0...C d 1 0 | [G/C profil] konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş.

[CD11]...[CD15] | C d 1 1...C d 1 5 | Konfigürasyondan bağımsız olarak sanal dijital giriş CMD.11...CMD.15.

[C101]...[C110] | C 1 0 1...C 1 1 0 | [G/C profil] konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital giriş.

[C111]...[C115] | C 1 1 1...C 1 1 5 | Konfigürasyondan bağımsız olarak Modbus Seri ile sanal dijital giriş CMD1.11...CMD1.15.

[C201]...[C210] | C 2 0 1...C 2 1 0 | [G/C profil] konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital giriş.

[C211]...[C215] | C 2 1 1...C 2 1 5 | Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital giriş.
Tüm ayarlar CST-

[Durma türü] P A S

Sınır aktivasyonunda durma türü.
Bu parametreye en az bir sınırlık anahtarı veya bir sensör atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 I...C 3 I 0</td>
<td>[G/Ç profil] konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 I...C 3 I 5</td>
<td>Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 I...C 5 I 0</td>
<td>[G/Ç profil] konfigürasyonunda entegre Ethernet 'si olan CMD5.01...CMD5.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 I...C 5 I 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet 'si olan CMD5.11...CMD5.15 sanal dijital girisi</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340•••N4E tahriklerinde erişilebilir.

[Yavaşlama türü] d S F

Sınır anahtarı yavaşlatma adaptasyonu.
Bu parametreye en az bir sınırlık anahtarı veya bir sensör atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rampada]</td>
<td>r M P</td>
<td>Rampaya izle</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S t</td>
<td>Hızlı duruşa ([Rampa Bölme Sabiti] ile azaltılan rampa süresi d C F)</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>n S t</td>
<td>Serbest duruş</td>
</tr>
</tbody>
</table>

[Durma mesafesi] S t: d

Durma mesafesi.
Bu parametreye en az bir sınırlık anahtarı veya bir sensör atandıysa erişilebilir. "Yavaşlama sınırlığı anahtarından sonra hesaplanan mesafe BURUN aktiveasyonunun ayarlaması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>S t d</td>
<td>[Yavaşlama] d E C veya [Yavaşlama 2] d E 2 rampasını kullanır (hangisinin etkinleştirildiğiine bağlı)</td>
</tr>
<tr>
<td>[Optimize Edilmiş]</td>
<td>a P t</td>
<td>Düşük hızda çalışma süresini sınırlamak için yavaşlama kontağı değişikirken rampa süresi gerçek hız göre hesaplanır (döngü süresi optimizasyonu: ilk hızla bakımaksızın yavaşlama süresi sabitir)</td>
</tr>
</tbody>
</table>

[Nom lineer hız] n L 5

Nominal lineer hız.
Bu parametreye en az bir sınırlık anahtarı veya bir sensör atandıysa ve [Durma mesafesi] S t: d öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20...5,00 m/sn</td>
<td>Fabrika ayarı: 1,00 m/sn</td>
</tr>
</tbody>
</table>
[Durma düzeltici] $S F d$ ★

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%50...200</td>
<td></td>
<td>Fabrika ayarı: %100</td>
</tr>
</tbody>
</table>

[Durdurmayı Hafıza] $/ S P$ ★
Durdurma anahtarını hafıza alma. Bu parametreye en bir sınır anahtarı veya bir sensör atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Sınır anahtarı hafıza alınmaz</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Sınır anahtarı hafıza alınır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[Yeniden başlatma önceliği] $P r S$ ★
Durdurma anahtarı etkinleştirile ile başlangıca verilen öncelik. Bu parametreye en bir sınır anahtarı veya bir sensör atandıysa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Durdurma anahtarı etkinleştirile ile hiç yeniden başlatma önceliği olmaz</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Durdurma anahtarı etkinleştirile ile yeniden başlatma önceliği</td>
</tr>
</tbody>
</table>
[Tork kontrolü] E a r - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Tork kontrolü]

Bu Menü Hakkında

NOT: Bu fonksiyon, diğer bazı fonksiyonlarla birlikte kullanılamaz.

Fonksiyon hız düzenleme modundaki işlem ve tork kontrol modundaki işlem arasında değiştirmek için kullanılabilir.

Tork kontrol modunda, hız konfigüre edilebilir "ölü bant" içinde değişebilir. Alt veya üst sınırı eriştiğinde sürüs otomatik olarak hız düzenleme moduna geri alınır ve bu sınır hızda kalar. Düzenlenen tork böylece artık korunmaz ve iki senaryo oluşabilir.
- Tork gerekli değere dönerse, sürüs tork kontrol moduna döner.
- Tork, konfigüre edilebilir bir dönemin sonunda gerekli değere dönmezse sürüs [Tork Düzenleme Uyarısı] r t R veya [Tork zaman aşımı] S t F değerine geçer.

UYARI

TAHMİN EDILEMEYEN EKİPMAN ÇALIŞMASI
Bu işlevin etkinleştirilmesinin emniyeti bir durum doğurmadığını doğrulayın.
Bu talimatlara uygulamması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
Torque limit

AB, CD Geri çekilme* hız düzenlenmesine
BC Tork kontrol bölgesinde
E İdeal çalışma noktası

Tork işaret ve değeri bir lojik çıkış ve bir analog çıkış yoluyla iletilabilir.

[Trk/hız değiştirme] 5 5

Lojik giriş ile tork / hız düzenleme anahtarı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td></td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L I L I L B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük güc olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d 0 d C d 10</td>
<td>[G/C profil] konfigürasyonunda CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d 1 1 C d 1 5</td>
<td>Konfigürasyondan bağımsız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 1 0 1 C 1 0</td>
<td>[G/C profil] konfigürasyonunda entegre Seri Modbus bir sanal dijital girişı</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 1 1 1 C 1 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Modbus Seri ile sanal dijital girişı CMD.1.11...CMD.1.15</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 1 C 2 1 0</td>
<td>konfigürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 1 C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.1.11...CMD2.1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 1 C 3 1 0</td>
<td>konfigürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 1 C 3 1 5</td>
<td>Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
</tbody>
</table>
[Tork referansı] \(r \)

Tork referansı için kanal.

Bu parametre [Trk/hız değiştirme] \(r \) ögesi [Hayır] \(r \) olarak ayarlanmazsa erişilebilir.

NOT: [Tork referansı] \(r \) ögesine [Ekran] menüsü, [Sürücü parametreleri] alt menüsünden erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>(n)</td>
<td>Atanmamış Fabrika ayarı</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>(1) ... (3)</td>
<td>Analog giriş AI1...AI3</td>
</tr>
<tr>
<td>[AI4]...[AI6]</td>
<td>(4) ... (6)</td>
<td>VW3A3203 GÇ uzatma modülü takılmışsa analog giriş AI4...AI6</td>
</tr>
<tr>
<td>[Ref.Frek-Uzk.Term]</td>
<td>(L) (C) (C)</td>
<td>Uzaktan terminal üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>(C) (R) (n)</td>
<td>CANopen üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-CanOpen]</td>
<td>(E) (n)</td>
<td>Iletişim modülü üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>(E) (H)</td>
<td>Gömülü Ethernet</td>
</tr>
<tr>
<td>[DI7 Darbe Girişi]...[DI8 Darbe Girişi]</td>
<td>(P) ... (B)</td>
<td>Dijital giriş Di7...Di8 darbe giriş olarak kullanılır</td>
</tr>
<tr>
<td>[RP]</td>
<td>(P)</td>
<td>Darbe giriş</td>
</tr>
<tr>
<td>[Kodlayıcı]</td>
<td>(P G)</td>
<td>Bir kodlayıcı modülü takıldıysa veya katıştırılmış kodlayıcı kullanılamaz kodlayıcı referansı.</td>
</tr>
</tbody>
</table>

NOT: Katıştırılmış kodlayıcı yalnızca gücü 22 kW’ye kadar olan sürücülerde kullanılabilir.

[Tork Ref Ataması] \(r \)

Tork referansı kanal ataması.

Bu parametre [Trk/hız değiştirme] \(r \) ögesi [Hayır] \(r \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DI1]...[DI8]</td>
<td>(L) ... (B)</td>
<td>Dijital giriş Di1...Di8</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>(L) ... (B)</td>
<td>VW3A3203 GÇ uzatma modülü takılmışsa dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>(I) (D) (I)</td>
<td>[I/O profili] (I) (D) (I) (D) konfigürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital ürünü</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>(I) (I) (I) (I) (I) (I) (I)</td>
<td>Konfigürasyondan bağımsız olarak entegre Modbus Seri ile sanal dijital ürünü CMD1.11...CMD1.15</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>(C) (2) (0) (I) (C) (2)</td>
<td>[I/O profili] (C) (2) (0) (I) (C) (2) (D) (I) konfigürasyonunda CANopen® haberleşme modülü olan CMD2.01...CMD2.10 sanal dijital ürünü</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>(C) (2) (1) (I) (C) (2)</td>
<td>Konfigürasyondan bağımsız olarak CANopen® haberleşme modülü ile sanal dijital ürünü CMD2.11...CMD2.15</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C301]...[C310]</td>
<td>C30 I...C31 D</td>
<td>[I/O profili] , o konfigürasyonunda haberleşme modülü olan CMD3.01...CMD3.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C31 I...C31 S</td>
<td>Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>S50 I...S51 D</td>
<td>[GÇ profili] , o konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>S51 I...S51 S</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet Modbus TCP'si olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E sürücülerinde erişilebilir.

[Tork ref. kanalı]
- Tork referansı kanal 1
- Tork referansı kanal 2

Tork referansı kanal 2.
Bu parametreye [Trk/hız değiştirme] t5 eşjesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

[Tork ref. kanalı]
- Tork referansı kanal 1 (bkz. sayfa 396) ile aynı.

[Tork ref. işaretli]
- Tork düzenleme fonksiyonu için referansın işaretinin tersine çevrilmesi için atama.
Bu parametreye [Trk/hız değiştirme] t5 eşjesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

[Tork/hız değiştirme]
- Tork düzenlemesi: tork oranı değeri seçimi
Bu parametreye [Trk/hız değiştirme] t5 eşjesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

Ayar ()
Açıklama
%0,0...1000,0
[Tork ref. kanalı]
- Tork referansı kanal 1 veya [Tork ref. 2 kanalı] değerine uygulanan katsayı
- Fabrika ayarı: %100,0

[Tork Oran Ataması]
- Tork düzenlemesi: tork oranı değeri seçimi.
Bu parametreye [Trk/hız değiştirme] t5 eşjesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

Ayar
Açıklama
[Hayır]
- Analog giriş atandı
- Fabrika ayarı

[AI1]...[AI3]
- Analog giriş AI1...AI3

[AI4]...[AI5]
- VW3A3203 G/C uzatma modülü takılmışsa analog giriş AI4...AI5

[Al Sanal 1]
- Sanal analogik giriş 1

[DI7 Darbe Giriş]...[DI8 Darbe Giriş]
- Dijital giriş DI7...DI8 darbe gibi olarak kullanılır
- NOT: Bu seçime 22kW'tan büyük gücü olan tahriklerde erişilebilir.

[RP]
- Darbe giriş
- NOT: Bu seçime 30 kW'tan küçük gücü olan tahriklerde erişilebilir.

[Kodlayıcı]
- Bir kodlayıcı modülü takımlıysa veya katlanmış kodlayıcı kullanılıyorrsa kodlayıcı referansı
- NOT: Katlanmış kodlayıcı yalnızca güc 22 kW'te kadar olan sürücülerde kullanılabilir.

NOT: Bu seçime ATV340***N4E sürücülerinde erişilebilir.
Tork Ref Ofseti

Tork referansı ofseti.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-1000,0...1000,0</td>
<td>Ayar aralığı: %0,0</td>
</tr>
</tbody>
</table>

Tork Ofset Ataması

Tork düzenlemesi: Tork ofseti değeri seçimi

Düşük Tork

Düşük tork eşiti.
Bu parametre [Yüksek Tork] H İletisi değerinden büyük olamaz.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-300,0...[Yüksek Tork] H İletisi</td>
<td>Ayar aralığı: -.300,0</td>
</tr>
</tbody>
</table>

Yüksek Tork

Yüksek tork eşiti.
Bu parametre [Düşük Tork] L İletisi değerinden küçük olamaz.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Düşük Tork] L İletisi...%300,0</td>
<td>Ayar aralığı: %300,0</td>
</tr>
</tbody>
</table>

Tork rampa zamanı

Tork rampa zamanı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...99,99 sn</td>
<td>Nominal torkun %100 değişimi için yükselme ve düşme zamanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 3,00 sn</td>
</tr>
</tbody>
</table>

Tork Filtresi

Tork filtresi aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n 0</td>
<td>Aktif değil.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar:</td>
<td></td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Etkinleştirildi</td>
</tr>
</tbody>
</table>
[Tork Filtresi Bant Genişliği] \(r \ W \)

Tork filtresi bant genişliği.
Bu parametreye [Tork Filtresi] \(r \ F \) öğesi [Evet] \(Y \) \(S \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 1...1000 Hz | Ayar aralığı
| | Fabrika ayağı: 20 Hz |

[Tork kontrol durma] \(s \ t \)

Tork düzenelemesi: durma komutu türü.
Bu parametreye [Trk/hız değişirme] \(s \ S \) öğesi [Hayır] \(n \) olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hz]</td>
<td>(S P d)</td>
<td>[Durdurma türü] (s \ t) konfigürasyonuna uygun şekilde hız düzenelemesi durma</td>
</tr>
</tbody>
</table>
| [Serbest Duruş] | \(n \ 5 \ t \) | Serbest duruma
| | Fabrika ayağı |
| [Dönme] | \(5 P n \) | Sıfır tork durması, ancak motorda aki korunuyor (yalnızca kapalı çevrimde) |

[Dönme süresi] \(5 P b \)

Tork düzenelemesi: dönme süresi.
Hızlı bir şekilde yeniden başlamak için hazırlık kalmak için dönme süresi ardından durma.
Bu parametreye şu şekilde erişilebilir:
- [Trk/hız değişirme] \(s \ S \) öğesi [Hayır] \(n \) olarak ayarlanmazsa ve
- [Tork kontrol durdurma] \(s \ s \) öğesi [Dönme] \(5 P n \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0...3600,0 sn | Ayar aralığı
| | Fabrika ayağı: 1,0 sn |

[Pozitif ölü bant] \(d b P \)

Tork düzeneleme pozitif ölü bandı.
Bu parametreye [Trk/hız deformasyon] \(d \ b \) öğesi [Hayır] \(n \) olarak ayarlanmazsa erişilebilir.
Değer hız referansına cebirsel olarak eklenir.
\(d b P \) = 10 için örnek:
- Referans = +50 Hz ise: +50 + 10 = 60 Hz
- Referans = -50 Hz ise: -50 + 10 = -40 Hz

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...2 x [Maks Frekans] \(t \ F r \) | Ayar aralığı
| | Fabrika ayağı: 10 Hz |

[Negatif ölü bant] \(d b n \)

Tork düzeneleme negatif ölü bandı.
Bu parametreye [Trk/hız deformasyon] \(d \ b \) öğesi [Hayır] \(n \) olarak ayarlanmazsa erişilebilir.
Değer hız referansından cebirsel olarak çıkartılır.
\(d b n \) = 10 için örnek:
- Referans = +50 Hz ise: +50 - 10 = 40 Hz
- Referans = -50 Hz ise: -50 - 10 = -60 Hz
Tüm ayarlar CST-

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...2 x [Maks Frekans] ≤ Fr</td>
<td>Ayar aralığı Fabrika ayarı: 10 Hz</td>
</tr>
</tbody>
</table>

[Tork kontrol zaman aşımı] r ≤ a ★

Tork kontrol zaman aşımı.

Hata durumunda tork kontrol modunun otomatik çıkışını izleyen veya bir uyarı tetiklendiğinde süre.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...999,9 s</td>
<td>Ayar aralığı Fabrika ayarı: 60 s</td>
</tr>
</tbody>
</table>

[Tork Kontrol HataYanıtı] ≤ a b ★

Tork kontrol hatasına yanıtı.

[Tork kontrol zaman aşımı] r ≤ a bir kez geçtiğinde sürücünün yanıtını.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Uyarı]</td>
<td>FL r f</td>
<td>Uyarı zaman aşımında tetiklenir Fabrika ayarı</td>
</tr>
<tr>
<td>[Hata]</td>
<td>FL ≤</td>
<td>Serbest durumda bir hata tetiklenir</td>
</tr>
</tbody>
</table>
Alt bölüm 8.32
[Jenerik fonksiyonlar] - [Parametre anahtarlamaşığı]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Parametre değiştirme] P L P - Menüsü</td>
<td>402</td>
</tr>
<tr>
<td>[Ayar 1] P S 1 - Menüsü</td>
<td>406</td>
</tr>
<tr>
<td>[Ayar 2] P S 2 - Menüsü</td>
<td>406</td>
</tr>
<tr>
<td>[Ayar 3] P S 3 - Menüsü</td>
<td>406</td>
</tr>
</tbody>
</table>
[Parametre değiştirme] \(\Pi \ L \ P \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Genel fonksiyonlar] \(\rightarrow \) [Parametre değiştirme]

Bu Menü Hakkında

[Parametre Seçimi] \(5 \ P \ 5 \) listesinden (bkz. sayfa 403) 1-15 parametreleri seçilebilir ve 2 veya 3 farklı değer atanabilir. Bu 2 veya 3 değer seti daha sonra 1 veya 2 dijital giriş ve kelime biti kullanılarak anahtarlanabilir. Bu anahtarlama işlemi, çalışma sırasında gerçekleşebilir (motor çalışır halde). Ayrıca, her eşeğin dijital bir giriş olarak işlev gördüğü, 1 veya 2 frekans eşği temelinde de kontrol edilebilir (0 = eşğe eşilmedi, 1 = eşğe eşildi).

NOT: [Parametre Seçimi] \(5 \ P \ 5 \) (bkz. sayfa 403) listesinde uygulanan tüm değişiklikler bir sonraki güç açılışında sileceğinden bu menüdeki parametreleri değiştirme ya da değiştirme [Parametre değiştirme] \(\Pi \ L \ P \) - menüsünden aktif konfigürasyonda çalıştırma sırasında ayarlanabilir.

[2 Parametre seti] \(C \ H \ R \ L \)

Parametre değiştirme ataması 1.
2 parametreli setlerin anahtarlanması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>(\varnothing)</td>
<td>Atanmamış Fabrika ayarı</td>
</tr>
<tr>
<td>[Mot Frek Yüksek Eşği]</td>
<td>(F \leq R)</td>
<td>Motor frekansı yüksek eşği uyanıldı</td>
</tr>
<tr>
<td>[2. Frekans Eşği Uyanıldı]</td>
<td>(F \geq R)</td>
<td>İkinci frekans eşği uyanıldı</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>(L \ i \ ... \ L \ i) (B)</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td>NOT: DI8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>(L \ i \ ... \ L \ i) (B)</td>
<td>Dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>(C \</td>
<td>d \ ... \ C \</td>
</tr>
<tr>
<td>NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[3 Parametre seti] C H R 2
Parametre değiştirme ataması 2.

3 parametreli setlerin anahtarlanması.

[Parametre Seçimi] S P 5
Bu parametrede bir giriş yapılmıştır, erişilebilen tüm ayar parametrelerini içeren bir pencerenin açılmasını sağlar. TAMAM tuşunu kullanarak 1 ile 15 arasındaki parametreler arasında seçim yapın. Parametreler(ler) üzerindeki seçimler ayrıca TAMAM tuşu kullanılarak da kaldırılabilir.

Parametre değiştirme fonksiyonu için mevcut parametreler şunlardır:

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rampa adım]</td>
<td>Inr</td>
<td></td>
</tr>
<tr>
<td>[Hızlanma]</td>
<td>ACC</td>
<td></td>
</tr>
<tr>
<td>[Yavaşlama]</td>
<td>dEC</td>
<td></td>
</tr>
<tr>
<td>[Hızlanma 2]</td>
<td>AEC 2</td>
<td></td>
</tr>
<tr>
<td>[Yavaşlama 2]</td>
<td>dEC 2</td>
<td></td>
</tr>
<tr>
<td>[Hız. başlı.yuvarlam]</td>
<td>tA 1</td>
<td></td>
</tr>
<tr>
<td>[Hız. sonu.yuvarlam]</td>
<td>tA 2</td>
<td></td>
</tr>
<tr>
<td>[Yav. başlı.yuvarlam]</td>
<td>tA 3</td>
<td></td>
</tr>
<tr>
<td>[Yav. sonu.yuvarlam]</td>
<td>tA 4</td>
<td></td>
</tr>
<tr>
<td>[Düşük Hız]</td>
<td>LSP</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Hız]</td>
<td>HSP</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Hız 2]</td>
<td>HSP 2</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Hız 3]</td>
<td>HSP 3</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Hız 4]</td>
<td>HSP 4</td>
<td></td>
</tr>
<tr>
<td>[Motor Termal Akımı]</td>
<td>tH</td>
<td></td>
</tr>
<tr>
<td>[IR telafisi]</td>
<td>uFr</td>
<td></td>
</tr>
<tr>
<td>[Kayma telafisi]</td>
<td>SL P</td>
<td></td>
</tr>
<tr>
<td>[K hızı çevr. filtr.]</td>
<td>SFC</td>
<td></td>
</tr>
<tr>
<td>[Hız zaman integral]</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>[Hız oransal kazanç]</td>
<td>SPC</td>
<td></td>
</tr>
<tr>
<td>[Eylemsizlik Faktörü]</td>
<td>SPC u</td>
<td></td>
</tr>
<tr>
<td>[Rampa Bölme Sabiti]</td>
<td>DC dF</td>
<td></td>
</tr>
<tr>
<td>[DC enjek. Seviyesi1]</td>
<td>dC</td>
<td></td>
</tr>
<tr>
<td>[DC Enj. Süresi 1]</td>
<td>t d 1</td>
<td></td>
</tr>
<tr>
<td>[DC enjek. Seviyesi2]</td>
<td>dC 2</td>
<td></td>
</tr>
<tr>
<td>[DC Enj. Süresi 2]</td>
<td>t dC</td>
<td></td>
</tr>
<tr>
<td>[OtoDC Enj. Seviyesi1]</td>
<td>dC 1</td>
<td></td>
</tr>
<tr>
<td>[OtoDC Enj. Süresi1]</td>
<td>t dC 1</td>
<td></td>
</tr>
<tr>
<td>[OtoDC Enj. Seviyesi2]</td>
<td>dC 2</td>
<td></td>
</tr>
<tr>
<td>[Oto DC Enj. Süresi2]</td>
<td>t dC 2</td>
<td></td>
</tr>
<tr>
<td>[Anahtar frekansı]</td>
<td>SF r</td>
<td></td>
</tr>
<tr>
<td>[Akım Sinirlaması]</td>
<td>LS</td>
<td></td>
</tr>
<tr>
<td>Parametre</td>
<td>Kod</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>[Akım Sınırı2 Değer]</td>
<td>CL2</td>
<td></td>
</tr>
<tr>
<td>[Motor aklama]</td>
<td>FLu</td>
<td></td>
</tr>
<tr>
<td>[Düş Hız Zaman Aşımı]</td>
<td>EL5</td>
<td></td>
</tr>
<tr>
<td>[Lyku Ofset Eşiği]</td>
<td>SL6</td>
<td></td>
</tr>
<tr>
<td>[Sarsma frekans]</td>
<td>JGF</td>
<td></td>
</tr>
<tr>
<td>[Sarsma Geçikmesi]</td>
<td>JG7</td>
<td></td>
</tr>
<tr>
<td>[Önayar hız 2]</td>
<td>SP2</td>
<td></td>
</tr>
<tr>
<td>[Önayar hız 16]</td>
<td>SP16</td>
<td></td>
</tr>
<tr>
<td>[+/- Hız sınırlaması]</td>
<td>SRP</td>
<td></td>
</tr>
<tr>
<td>[Çarpmakatsayıs]</td>
<td>NFR</td>
<td></td>
</tr>
<tr>
<td>[Fren Brakma Akımı]</td>
<td>IBR</td>
<td></td>
</tr>
<tr>
<td>[Fren birakma I Geri]</td>
<td>IRD</td>
<td></td>
</tr>
<tr>
<td>[Fren Brakma zamanı]</td>
<td>IRB</td>
<td></td>
</tr>
<tr>
<td>[Fren birakma frek]</td>
<td>IRF</td>
<td></td>
</tr>
<tr>
<td>[Fren kavrama frek]</td>
<td>IEN</td>
<td></td>
</tr>
<tr>
<td>[Fren kavrama geçikmesi]</td>
<td>ÝBE</td>
<td></td>
</tr>
<tr>
<td>[Fren kavrama zamanı]</td>
<td>ÝBE</td>
<td></td>
</tr>
<tr>
<td>[Geride atlama]</td>
<td>JD3</td>
<td></td>
</tr>
<tr>
<td>[Yen. Başl. zamanı]</td>
<td>ÝBR</td>
<td></td>
</tr>
<tr>
<td>[BRH b4 frek]</td>
<td>BD4</td>
<td></td>
</tr>
<tr>
<td>[Motor tork sınırı]</td>
<td>ÝL-P</td>
<td></td>
</tr>
<tr>
<td>[Jen. tork sınırı]</td>
<td>ÝL-G</td>
<td></td>
</tr>
<tr>
<td>[Tork oranı]</td>
<td>ÝT</td>
<td></td>
</tr>
<tr>
<td>[Düşük Tork]</td>
<td>LEl</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Tork]</td>
<td>HEl</td>
<td></td>
</tr>
<tr>
<td>[PID Oransal Kazanç]</td>
<td>rPG</td>
<td></td>
</tr>
<tr>
<td>[PID Integ. Kazancı]</td>
<td>rIG</td>
<td></td>
</tr>
<tr>
<td>[PID türevsel kazanç]</td>
<td>rID</td>
<td></td>
</tr>
<tr>
<td>[PID rampası]</td>
<td>PRP</td>
<td></td>
</tr>
<tr>
<td>[PID Min. Çıkışı]</td>
<td>PDL</td>
<td></td>
</tr>
<tr>
<td>[PID Maks. Çıkışı]</td>
<td>PDLH</td>
<td></td>
</tr>
<tr>
<td>[PID Başl.Ref.Frek.]</td>
<td>SFS</td>
<td></td>
</tr>
<tr>
<td>[PID hızlanma süresi]</td>
<td>ACCP</td>
<td></td>
</tr>
<tr>
<td>[Min g.bes Uyarısı]</td>
<td>PRL</td>
<td></td>
</tr>
<tr>
<td>[Maks g.bes Uyarısı]</td>
<td>PRH</td>
<td></td>
</tr>
<tr>
<td>[PID hatası: Uyarısı]</td>
<td>PER</td>
<td></td>
</tr>
<tr>
<td>[Hız giriş %]</td>
<td>P5P</td>
<td></td>
</tr>
<tr>
<td>[Ref PID ÖnAyar 2]</td>
<td>RPE</td>
<td></td>
</tr>
<tr>
<td>[Ref PID ÖnAyar 3]</td>
<td>RP3</td>
<td></td>
</tr>
<tr>
<td>[Ref PID ÖnAyar 4]</td>
<td>RP4</td>
<td></td>
</tr>
<tr>
<td>[PID GBes Aralığı]</td>
<td>PFPR</td>
<td></td>
</tr>
<tr>
<td>[PID GBes Hata Gckme]</td>
<td>PFND</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Akım Eşığı]</td>
<td>LdE</td>
<td></td>
</tr>
<tr>
<td>[Düşük Akım Eşığı]</td>
<td>LdL</td>
<td></td>
</tr>
<tr>
<td>[Yüksek Tork eşği]</td>
<td>LdH</td>
<td></td>
</tr>
<tr>
<td>[Düşük tork eşği]</td>
<td>LdL</td>
<td></td>
</tr>
<tr>
<td>[Motor Frek Eşği]</td>
<td>FdE</td>
<td></td>
</tr>
<tr>
<td>[Düşük frekans eşği]</td>
<td>FdL</td>
<td></td>
</tr>
<tr>
<td>[Frek. eşği 2]</td>
<td>F2d</td>
<td></td>
</tr>
<tr>
<td>[2 Frek Eşği]</td>
<td>F2dL</td>
<td></td>
</tr>
<tr>
<td>[Serbest durma Eşği]</td>
<td>FF7</td>
<td></td>
</tr>
<tr>
<td>Parametre</td>
<td>Kod</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>[Motor Termal Eşiği]</td>
<td>Lrd</td>
<td></td>
</tr>
<tr>
<td>[Referans Yük.Eşiği]</td>
<td>rld</td>
<td></td>
</tr>
<tr>
<td>[Referans Düş.Eşiği]</td>
<td>rldL</td>
<td></td>
</tr>
<tr>
<td>[Atlama Frekansı]</td>
<td>JPGF</td>
<td></td>
</tr>
<tr>
<td>[Atlama frekansı 2]</td>
<td>JF2</td>
<td></td>
</tr>
<tr>
<td>[3. Atlama Frekansı]</td>
<td>JF3</td>
<td></td>
</tr>
<tr>
<td>[Atlama Frek Gecikmesi]</td>
<td>JFH</td>
<td></td>
</tr>
<tr>
<td>[DüşYükEşiğiNom Hızı]</td>
<td>LrUL</td>
<td></td>
</tr>
<tr>
<td>[DüşYükEşiği.0.Hızı]</td>
<td>LUL</td>
<td></td>
</tr>
<tr>
<td>[DüşYük. FrekEşiği Tesp]</td>
<td>rNLd</td>
<td></td>
</tr>
<tr>
<td>[Gecikme Frek]</td>
<td>SrF</td>
<td></td>
</tr>
<tr>
<td>[DüşYük T.B.Rest.]</td>
<td>FtU</td>
<td></td>
</tr>
<tr>
<td>[Aşırı Yük Alçı Eşiği]</td>
<td>LcC</td>
<td></td>
</tr>
<tr>
<td>[YBş Ön. AşrYük Srsı]</td>
<td>Ftho</td>
<td></td>
</tr>
<tr>
<td>[Fan modu]</td>
<td>FFM</td>
<td></td>
</tr>
<tr>
<td>[Pmaks Motoru]</td>
<td>tPNP</td>
<td></td>
</tr>
<tr>
<td>[Pmaks Jeneratörü]</td>
<td>tPMG</td>
<td></td>
</tr>
<tr>
<td>[Durma Maks Süresi]</td>
<td>tP1</td>
<td></td>
</tr>
<tr>
<td>[Durma Akımı]</td>
<td>tP2</td>
<td></td>
</tr>
<tr>
<td>[Durma Frekansı]</td>
<td>tP3</td>
<td></td>
</tr>
<tr>
<td>[Aİ1 Tr Uyan Seviyesi]</td>
<td>tHA</td>
<td></td>
</tr>
<tr>
<td>[Aİ3 Tr Uyan Seviyesi]</td>
<td>tHR</td>
<td></td>
</tr>
<tr>
<td>[Aİ4 Tr Uyan Seviyesi]</td>
<td>tHA4</td>
<td></td>
</tr>
<tr>
<td>[Aİ5 Tr Uyan Seviyesi]</td>
<td>tHR5</td>
<td></td>
</tr>
<tr>
<td>[Aİ1 Trm Hata Seviyesi]</td>
<td>tHF</td>
<td></td>
</tr>
<tr>
<td>[Aİ3 Trm Hata Seviyesi]</td>
<td>tHF3</td>
<td></td>
</tr>
<tr>
<td>[Aİ4 Trm Hata Seviyesi]</td>
<td>tHF4</td>
<td></td>
</tr>
<tr>
<td>[Aİ5 Trm Hata Seviyesi]</td>
<td>tHF5</td>
<td></td>
</tr>
<tr>
<td>[Yük düzeltme]</td>
<td>Lbc</td>
<td></td>
</tr>
</tbody>
</table>
[Ayar 1] P 5 1 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Parametre anahtarı] ➔ [Ayar 1]

Bu Menü Hakkında

Bu menüde bir giriş yapılması, seçilmiş parametrelerin seçim sırasında göre gösterildiği bir ayarlar penceresinin açılmasını sağlar.

[Ayar 2] P 5 2 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Parametre anahtarı] ➔ [Ayar 2]

Bu Menü Hakkında

[Ayar 1] P 5 1 - (bkz. sayfa 406) ile aynı.

[Ayar 3] P 5 3 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [Parametre anahtarı] ➔ [Ayar 3]

Bu Menü Hakkında

[Ayar 1] P 5 1 - (bkz. sayfa 406) ile aynı.
Alt bölüm 8.33
[Jenerik fonksiyonlar] - [Hz zaman aşımından sonra durma]

[Hız zamanı snra dur] \(P \rightarrow SP \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik fonksiyonlar] ➔ [Hz zamanı snra dur]

Hız Kontrol Modunda Uyku/Uyanma

PID aktif değilken tahrik genellikle aşağıdaki durumlarda Hız kontrol modundadır:
- PID konfigüre edilmemiştir (örneğin, motor hızı ayar noktası, harici bir PLC tarafından kontrol edilmektedir).
- PID manuel moddadır (örneğin, manuel uygulama modu).
- Kanal 1 seçilmişdir (örneğin, zorlamalı lokal mod aktif)

Tahrik, Hız Kontrolünde kullanılan (PID kullanılmıyorken ya da aktif değilken), uygulamayı uyku moduna almak için bir hız koşulu kullanılır. Tahrik uyku modundayken, uyku durumu kaybolursa motor yeniden başlatılır.

Bu fonksiyon, sistem kısıtlamalarıyla kullanılabilir ya da uyumlu olmadığı zaman düşük hizlarda uzun süreli çalışmayı engeller. Düşük hızda bir süre çalıştırılsı sonra motor durdurur. Bu zaman ve hız ayarlanabilir.

Hız kontrol modunda, Uyku/Uyanma aşağıdaki kurallara göre yönetilir:
- [Rampa önce Ref Frek] \(FRH \) ve [Çıkış frekansı] \(rFr \), [Düşük hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) olduğundan ve bunun altında kaldığında motor durur \(SL E \) ([Düşük Hız Zaman Aşımı] \(tLS \) sırasında).
- [Rampa önce Ref Frek] \(FRH \) \(> \) [Düşük Hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) olduğu zaman motor yeniden başlatılır. \(SL E \).

Çalıştırma komutu

1 Nominal [Düşük Hız Zaman Aşımı] \(tLS \) fonksiyonu işlemi: [Düşük Hız Zaman Aşımı] \(tLS \) süresi sonrasi motor, akım yavaşlama rampasına göre durdurulur
2 [Rampa önce Ref Frek] \(FRH \), [Düşük hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) değerinden büyük hale gelir \(SL E \) ve çalışma sırası hala mevcut [Düşük Hz zaman aşımı] \(tLS \) süresi dolmadan önce
3 [Düşük Hız Zaman Aşımı] \(tLS \) fonksiyonu aktive edilmez çünkü [Rampa önce Ref Frek] \(FRH \), [Düşük Hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) değerinden daha yüksek hale gelir \(SL E \) ([Düşük Hız zaman aşımı] \(tLS \) süresi dolmadan önce)
4 [Düşük Hz zaman aşımı] \(tLS \) fonksiyonu aktive edilmez çünkü [Çıkış frekansı] \(rFr \), [Düşük hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) değerinden büyük hale gelir \(SL E \) ([Düşük Hz zaman aşımı] \(tLS \) süresi dolmadan önce)
5 [Düşük Hız Zaman Aşımı] \(tLS \) fonksiyonu aktive edilmez çünkü [Rampa önce Ref Frek] \(FRH \), [Düşük Hız] \(LSP \) ve [Uyku Ofset Eşiği] \(SLE \) değerlerinden yüksekte kalır \(SL E \)
[Düşük Hız Zaman Aşımı] L S
Düşük hız zaman aşımı

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...999,9 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika aya: 0,0 sn</td>
</tr>
</tbody>
</table>

[Uyku Ofset Eşiği] L E ★
Uyku ofset eşği.
Bu parametre [Düşük hız zaman aşımı] L S, 0 olarak ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (Hz)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...[Maks Frekans]</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika aya: 1,0 Hz</td>
</tr>
</tbody>
</table>
Alt bölüm 8.34
[Genel fonksiyonlar] - [DC barası beslemesi]

[DC barası beslemesi] d CO - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [DC barası beslemesi]

Bu Menü Hakkında

Bu menüye 22 kW’den yüksek güçlü 480 V Sürücülerde erişilebilir.

Besleme ünitesini kapatmadan ortak bir DC barası ile sağlanan sürücüleri kapatma/açma olasılığı verir. DC barası yoluya doğrudan güç kaynağı, yeterli güç ve gerileme sahip korumalı bir doğru akım kaynağı ve uygun bir boyutlu direnç ve kapasitör önceden şarj edilen kontaktör gerektirir. Bu bileşenleri belirtecek hakkında bilgi için Schneider Electric’e başvurun.

DC Barası yoluya Doğrudan Güç Kaynağı fonksiyonu sürücüde bir röle veya bir lojik giriş yoluyla önceden şarj edilen kontaktör kullanabilir.

R2 rölesi kullanılabileceği devre örneği:

![DC güç kaynağı](image)

1 DC güç kaynağı
2 +24 Vdc

[DC Şarj Ataması] d CO ★

DC Bara şarj ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>nO</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[R2]...[R3]</td>
<td>r2...r3</td>
<td>Röle çıkış R2...R3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: R3 seçimi, 22 kW tan büyük gücü olan tahrıklerde erişilebilir.</td>
</tr>
</tbody>
</table>
DC Bara Şarj Süresi

DC Bara şarj opsiyonu süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R4]...[R6]</td>
<td>r 4...r 6</td>
<td>VW3A3204 röle çıkış opsiyon modülü takılmasa röle çıkış R4...R6</td>
</tr>
<tr>
<td>[DQ11 Dijital Çıkış]:[DQ12 Dijital Çıkış]</td>
<td>d0 1...d0 2</td>
<td>VW3A3203 G/C uzatma modülü takılırsa dijital çıkış DQ11...DQ12</td>
</tr>
<tr>
<td>[DQ1 Dijital Çıkış]:[DQ2 Dijital Çıkış]</td>
<td>d0 1...d0 2</td>
<td>VW3A3203 G/C uzatma modülü takılırsa dijital çıkış DQ1...DQ2</td>
</tr>
</tbody>
</table>

NOT: DQ2 seçime 30 kW'tan küçük gücü olan tahriklerde erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...10,00 sn</td>
<td>Fabrika ayarı: 0,00 sn</td>
</tr>
</tbody>
</table>
Alt bölüm 8.35
[Genel fonksiyonlar] - [Çoklu monitör konfigürasyonu]

[Çoklu motor konfigürasyonu] \(\Pi \Pi \Pi \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Genel fonksiyonlar] \(\rightarrow \) [Çoklu motor konfigürasyonu]

Motor veya Konfigürasyon Değiştirme

Sürücü, [Konfig. Kaydet] \(\Sigma \Sigma \), parametresi kullanılarak kaydedilebilen en fazla 4 konfigürasyon içerebilir.

Bu konfigürasyonların her biri şuna adaptasyon etkinleştirilerek uzaktan etkinleştirilebilir:

- 2 - 4 farklı motor veya mekanizma (çoklu motor modu).
- Tek bir motor (çoklu konfigürasyon modu) için 2 - 4 farklı konfigürasyon.

İki değiştirme modları birleştirilebilir.

Not: Aşağıdaki koşulları izleyin:

- Durdurulduğunda (sürücü kilitli) değiştirme yapılamaz. Bir değişme isteği işlem sırasında gönderilirse sonraki durdurmada yürütülebilir.
- Motorlar arasından geç yaparken, ilgili güç ve kontrol terminalleri uygun şekilde değiştirilmelidir.
- Tüm konfigürasyonlar aynı donanım konfigürasyonunu paylaşmalıdır; aksi halde sürücü [Yanlış Konfigürasyon] \(\Sigma \Sigma \), işin içinde kilitlelenir.
- Var olmayan bir konfigürasyona geçme sürücünün [Boş Konfigürasyon] \(\Sigma \Sigma \), işin içinde kilitlemesine neden olmaz.

Çoklu Motor Modunda Değiştirilen Menüler ve Parametreler

Çoklu konfigürasyon modunda, iletişim parametreleri değiştirilmez.

- [Motor parametreleri] \(\Pi \Pi \Pi \) - menüsü.
- [Giriş/Çıkış] \(\Pi \Pi \Pi \) - menüsü.
- [Çoklu motor konfigürasyonu] \(\Pi \Pi \Pi \) - fonksiyonu (yalnızca bir kez konfigüre edilecek) hariç [Genel fonksiyonlar] \(\Pi \Pi \Pi \) - menüsü.
- [Genel izleme] \(\Pi \Pi \Pi \) - menüsü.
- [Menüm] \(\Pi \Pi \Pi \) - menüsü.

Sürücü [Çoklu motor konfigürasyonu] \(\Pi \Pi \Pi \) - Fonksiyonunu kullanıldığında Sürücü Konfigürasyonun Ekran Terminali ile Başka birine aktarma

![Diagram](image.png)
Değiştirme Komutu

Motor ve seçili konfigürasyon sayısına bağlı olarak (2 - 4), bir veya iki dijital giriş kullanılarak değiştirme komutu gönderilir. Aşağıdaki tabloda olası kombinasyonlar listelenmektedir.

<table>
<thead>
<tr>
<th>DI (C n F 1)</th>
<th>DI (C n F 2)</th>
<th>Konfigürasyon sayısı veya aktif motorlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Çoklu Motor Modu İçin Şematiğ Diyagramı

Çoklu Motor Modunda Otomatik İnce Ayar

Bu otomatik ince ayarlama gerçekleştirilir:
- Motor değiştığinde bir Dijital giriş kullanılarak manuel olarak.
- [Otomatik oto. İnce ayar] \(R \) \& \(E \) parametresi [Evet] \(Y \) \& \(E \) 5 olarak ayarlanırsa sürücü ilk defa açıldktan sonra motor her etkinleştirildiğinde otomatik olarak.

Çoklu motor modunda motor termal durumu:
Sürücü üç motoru tek tek korumaya yardımcı olur. Sürücü gücü kapatılmadıysa her termal durumu tüm durdurma sürelerini hesaba katar.
BİLDİRİM

MOTOR AŞIRI ISINMASI
Sürücünün gücü kapatıldığında her bir motorun motor termal durumu kaydedilmem.
Sürücünün gücü açıldığında bağlı motor ya da motorların termal durumunun farkında olmaz.
- Motorların sıcaklık izlemesinin doğru şekilde yapılabilmesi için her bir motor için harici bir sıcaklık sensörü takın.
Bu talimatla uyulmaması, ekipmanda maddi hasara yol açabilir.

Konfigürasyon Bilgileri Çıkışı

[Giriş/Çıkış] \(\mathcal{O} \) - menüsünde, uzak bilgi iletişimi için bir Dijital çıkış her konfigürasyona veya motora atanabilir (2 - 4).

NOT: [Giriş/Çıkış] \(\mathcal{O} \) - menüsü değiştirildiğinde bu çıkışlar bilginin gerektiği tüm konfigürasyonlarda atanmalıdır.

[Çoklu motorlar] **C H P**
Çoklu motorlar seçimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Çoklu konfigürasyon olasılığı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Çoklu motor mümkündür</td>
</tr>
</tbody>
</table>

[2 Konfigürasyon] C n F 1
İki motor veya 2 konfigürasyon geçişi.

[3 Konfigürasyon] C n F 2
Üç motor veya 3 konfigürasyon geçişi.

[2 Konfigürasyon] ile aynı C n F 1
Alt bölüm 8.36
[Genel fonksiyonlar] - [24 V Besleme Çıkışı]

[24 V Besleme Çıkışı] 5 2'ye V - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel fonksiyonlar] ➔ [24 V Besleme Çıkışı]
Bu menüye 30 kW'tan küçük gücü olan sürücülerde erişilebilir.

[24 V Besleme Çıkışı] 5 2'ye V

24 V Besleme Çıkışı

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Giriş beslemesi olarak 24 V pin kullanılır.</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y E 5</td>
<td>Çıkış beslemesi olarak 24 V pin kullanılır. Fabrika ayağın</td>
</tr>
</tbody>
</table>
Alt bölüm 8.37
[Genel Fonksiyonlar] [Harici Ağırlık Ölçümü]

[Harici ağırlık ölçümü] $E L \pi$ - Menü

Erişim

[Tüm ayarlar] ➔ [Genel Fonksiyonlar] ➔ [Harici ağırlık ölçümü]

Bu Menü Hakkında

UYARI

KONTROL KAYBI
Tüm çalıştırma ve hata durumlarında ağırlık sensörünün doğru çalıştığını doğrulamak için kapsamlı bir devreye alma testi gerçekleştirin.

Bu talimatlar uyulmaması olmaksızın, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu fonksiyon [Fren lojigi kontrolü] $b L \pi$, [Fren Bırakma Akımı] $b r$ (tork akımı) öğesine adapte olmak için bir ağırlık sensörüyle sağlanan bilgileri kullanır. Ayarlar bağı olarak, fren bırakma akımı pozitif veya negatif olabilir. Ağırlık sensörünün tipine göre ağırlık sensöründen sinyal analog bir girişe (genellikle bir 4 - 20 mA sinyali), darbe girişine girisine veya kodlayıcı girişine atanabilir.

Örneğin, ağırlık sensörü bir kaldırma vincinin toplam ağırlığını ve yükünü ölçebilir.

Fren bırakma akımı aşağıdaki eğriye uygun şekilde adapte edilir.

![Eğri](image)

CP1 Nokta 1 X
CP2 Nokta 2 X
LP1 Nokta 1 Y
LP2 Nokta 2 Y
ZL Sıfır Yük
WSS Ağırlık Sensörü Sinyali

Bu eğri, yük sıfır değilse motorda sıfır yükün oluştuğu bir ağırlık sensörünü temsil edebilir.

[Ağırlık Sensörü Ataması] $P E S$

Ağırlık sensörü ataması.

[Fren ataması] $b L \pi$ yapılandırılmadıysa bu parametre [Hayır] o,b değerine zorlanır.
Tüm ayarlar CST-

416 NVE61643TR 01/2019

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n.a</td>
<td>Konfigüre edilmemiş.</td>
</tr>
<tr>
<td>[AI1]...[AI3]</td>
<td>R, l, R, 3</td>
<td>Analog giriş AI1...AI3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: AI3 seçimi, 22kW'tan büyük güç olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[AI4]...[AI5]</td>
<td>R, 4...R, 5</td>
<td>VW3A3203 I/O uzatma modülü takılmışsa analog giriş AI4...AI5</td>
</tr>
<tr>
<td>[DI7 Darbe Giriş]...[DI8 Darbe Giriş]</td>
<td>P, 7...P, 8</td>
<td>Dijital giriş DI7...DI8 darbe giriş olarak kullanılır.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 22 kW'tan büyük güç olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[Rpong]</td>
<td>P, r</td>
<td>Darbe girişi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime 30 kW'tan küçük güç olan sürücülerde erişilebilir.</td>
</tr>
</tbody>
</table>

[Nokta 1 X] L P l

Har. ağırlık noktası 1 X.
Bu parametre yalnızca [Ağırlık sensörü Ataması] PE 5 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...99,99</td>
<td>Ayrar aralığı</td>
</tr>
<tr>
<td></td>
<td>Bu parametre [Nokta 2 X] L P 2 değerine büyük eşit olamaz. Fabrika ayarı: %0,00</td>
</tr>
</tbody>
</table>

[Nokta 1Y] L P l

Har. ağırlık noktası 1Y.
Bu parametre yalnızca [Ağırlık sensörü Ataması] PE 5 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,1...1,1 In(1)</td>
<td>A'da ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,7 * [Nom Motor Akımı] n C r</td>
</tr>
</tbody>
</table>

(1) Kurulum Kilavuzu’nda ve tahrik sürücü etiketinde belirtilen nominal tahrik akımına eşittir.

[Nokta 2 X] L P 2

Har. ağırlık noktası 2 X.
Bu parametre yalnızca [Ağırlık sensörü Ataması] PE 5 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,01...100,00</td>
<td>Ayrar aralığı</td>
</tr>
<tr>
<td></td>
<td>Bu parametre [Nokta 1 X] L P 1 değerine büyük eşit olamaz. Fabrika ayarı: %50,00</td>
</tr>
</tbody>
</table>

[Nokta 2Y] L P 2

Har. ağırlık noktası 2Y.
Bu parametre yalnızca [Ağırlık sensörü Ataması] PE 5 atanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,1...1,1 In(1)</td>
<td>A'da ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [Nom Motor Akımı] n C r</td>
</tr>
</tbody>
</table>

(1) Kurulum Kilavuzu’nda ve tahrik sürücü etiketinde belirtilen nominal tahrik akımına eşittir.
Ağırlık sensörü bilgilerinin kaybı durumunda fren bırakma akımı.
Bu parametreye ağırlık sensörü analog bir akım girişine (PES = Alx) bağlıysa ve 4-20 mA kayıp izleme fonksiyonu devre dışı bırakılırsa (LFLx = Hayır) erişilebilir.

[Aİx min. değeri] $C_r L X$ 4 mA’ye büyük eşit olmalı ve [İbr 4-20 mA kaybı] $b_r R$ uygulamaz veya tutarlı bir değere ayarlanmalıdır.
Bir kaldıma uygulaması için önerilebilir [Nom Motor Akımı] $n C_r$ değerdir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…1,1 In$^{(1)}$</td>
<td>A'da ayar aralığı.</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 A</td>
</tr>
</tbody>
</table>

(1) Kurulum Kılavuzu’nda ve tahrik sürücü etiketinde belirtilen nominal tahrik akımına eşittir.
Alt bölüm 8.38
[Jenerik izleme]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Proses düşük yükü] (Ld) - Menüsü</td>
<td>419</td>
</tr>
<tr>
<td>[Proses aşırı yükü] (Ld) - Menüsü</td>
<td>421</td>
</tr>
<tr>
<td>[Durma izleme] (StPr) - Menüsü</td>
<td>423</td>
</tr>
<tr>
<td>[Termal izleme] (tPP) - Menüsü</td>
<td>424</td>
</tr>
<tr>
<td>[Frekans ölçer] (FF) - Menüsü</td>
<td>425</td>
</tr>
</tbody>
</table>
[Proses düşük yükü] \(L_d \) - Menüsü

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Jenerik izleme] \(\Rightarrow \) [Proses düşük yükü]

Proses Düşük Yük Algılanan Hatası

Bir sonraki hata gerçekleştiğinde ve konfigüre edilebilir olan bir minimum süre [Düşük Yük Gec. Tspt.] \(L_t \) boyunca beklemeye kaldığında bir düşük yük işlemini algılanır:

- Frekans referansı ve motor frekansı arasındaki ofset konfigüre edilebilir eşik [Gecikme Frekansı] \(r_{b} \) altında düşük olduğunda motor sabit bir durumdadır.

Şifir frekansı ile anma frekansı arasında, eğri aşağıdaki eşitliği yansıtır: tork \(= L_u \) + \((L_{un} - L_u) \times \) (frekans)\(^2\) / (anma frekans)\(^2\). Düşük yük fonksiyonu aşağıdaki frekanslar için aktif değildir: \(r_{md} \).

![Graph]

1 Düşük yük bölgesi.

Bu algılanan hatanın bildirilmesi için [Giriş/Çıkış] \(\Rightarrow \) [I/O ataması] \(\Rightarrow \) [Nominal Motor Frek] \(F \) menülerine bir rol veya dijital çıkış atanabilir.

[Düşük Yük Eşik. Hızı] \(L_u \)

Düşük yük algılama zaman gecikmesi.

0 değeri fonksiyonu devre dışı bırakır ve diğer parametrelerere erişimi engeller.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...100 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 sn</td>
</tr>
</tbody>
</table>

[Düşük Yük Eşik. Nom. Hızı] \(L_{un} \)

Nominal motor hızında [Nominal Motor Frek] \(F \) düşük yük eşği, motor anma torku yüzdesi cinsinden. Bu parametre [Düşük Yük Gec. Tspt.] \(L_t \) 0'a ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%20...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %60</td>
</tr>
</tbody>
</table>
[Düşük Yük Eşikleri] $L \lor L$ ★
Sıfır frekansında düşük yük eşiği, nominal motor torkunun yüzdesi cinsinden.
Bu parametre [Düşük Yük Gec. Tspt.] $L \lor L$ 0'a ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...[Düşük Yük Eşikli Nom Hızı] $L \lor L$</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayardı: %0</td>
<td></td>
</tr>
</tbody>
</table>

[Düşük Yük Frek Eşikleri] $L \lor d$ ★
Minimum frekans düşük yük algılama eşiği.
Bu parametre [Düşük Yük Gec. Tspt.] $L \lor L$ 0'a ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayardı: 0,0 Hz</td>
<td></td>
</tr>
</tbody>
</table>

[Gecikme Frek] S_{rb} ★
Frekans referansı ve motor frekansı arasındaki kararlı durum çalışmasını tanımlayan maksimum sapma.
Bu parametre [Düşük Yük Gec. Tspt.] $L \lor L$ veya [Aşık Süresi Algılama.] $L \lor L$ 0'a ayarlanmamışsa.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayardı: 0,3 Hz</td>
<td></td>
</tr>
</tbody>
</table>

[Düşük Yük Yönetimi] $L \lor dL$ ★
Düşük yük yönetimi.
Düşük yük algılamağa geçişte davranış.
Bu parametre [Düşük Yük Gec. Tspt.] $L \lor L$ 0'a ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>$n\sigma$</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest durma]</td>
<td>$yE5$</td>
<td>Serbest durma</td>
</tr>
<tr>
<td>Fabrika ayardı</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>rNP</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>$F5\ell$</td>
<td>Hızlı duruş</td>
</tr>
</tbody>
</table>

[Düşük Yük T.B.Rest.] $F \lor u$ ★
Bir düşük yükün algılanması ve otomatik tekrar yolverme arasındaki izin verilen minimum süre.
Otomatik yeniden başlamaya izin vermek için [Hata Sürümlü Süresi] $L \lor R$ değerin herhangi bir parametre en az 1 dakika aşması gerekir.
Bu parametre [Düşük Yük Yönetimi] $L \lor dL$ [Yoksay] $n\sigma$ olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6 dk</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayardı: 0 dk</td>
<td></td>
</tr>
</tbody>
</table>
[Proses aşırı yükü] \(a L d \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik izleme] ➔ [Proses aşırı yükü]

Bu Menü Hakkında

Bir sonraki hata gerçekleştiğinde ve konfigüre edilebilir olan bir minimum süreç [Aşırı Yük Süresi Algılama] boyunca beklediğinde bir proses \(a L d \) aşırı yük hata işlemi algılanır:

- Hızlanma, yavaşlama veya aşağıdaki durumda tahrik [Akım sınırlaması] \(L L \), modunda
- Motor sabit durumdadır ve [Motor Akımı] \(L r \) ayarlanan [Aşırı yük Algılama Eşğiği] aşırı yük eşği üzerine indirgenir \(L o L \).

[Rampa önce Ref Frek] \(F r H \) ile [Motor Frekansı] \(r F r \) arasındaki ofset farkı, yapılandırılabilir [Gecikme Frekansı] \(5 r b \) değerinde az olduğunda motor sabit durumdadır.

![Diagram](image)

NOT: Proses aşırı yük izleme, [Akım sınırlaması] \(L L \) durumunda her zaman aktiftir.

![Diagram](image)

[Aşırı Yük Süresi Algılama] \(t a L \)

Aşırı yük tepki süresi.

0 değeri fonksiyonu devre dışı bırakır ve diğer parametrelerle erişimi engeller.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...100 sn</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 sn</td>
</tr>
</tbody>
</table>

[Aşırı Yük Algı Eşğiği] \(L a L \)

Aşırı yük eşğişi.

Aşırı yük algılama eşğişi, [Nom Motor Akımı] \(n L r \) nominal motor akımının yüzdesi cinsinden. Bu değer, fonksiyonun çalışabilmesi için sınır akımından daha düşük olmalıdır.

Bu parametre [Aşırı SüresiAlgılama Tspt.] \(t a L \) 0'a ayarlanmamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (L)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%70...150</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %110</td>
</tr>
</tbody>
</table>
[Gecikme Frek] $5 \, \text{e} \star$

Sabit durum için gecikme.
Frekans referansı ve motor frekansı arasındaki kararlı durum çalışmasını tanımlayan maksimum sapma.
Bu parametre [Aşırı Yük Süresi Algılama Tspt.] $L \, \text{tl}$ veya [Düşük Gec Tspt.] $L \, \text{ul}$ 0'a ayarlanmaması durumunda erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ((L))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,3 Hz</td>
</tr>
</tbody>
</table>

[Aşırı Yük Pros. Yönet.] $0 \, \text{d} \, \text{l} \star$

Aşırı yük algılama geçişte davranış.
Bu parametre [Aşırı Yük Süresi Algılama Tspt.] $L \, \text{tl}$ 0'a ayarlanmaması durumunda erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay] n , o</td>
<td>Algılanan hata göz ardı edildi</td>
<td></td>
</tr>
<tr>
<td>[Serbest durma] y , e , S</td>
<td>Serbest durma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı</td>
<td></td>
</tr>
<tr>
<td>[Rampa durusu] r , n , P</td>
<td>Rampada durma</td>
<td></td>
</tr>
<tr>
<td>[Hızlı duruş] F , S , t</td>
<td>Hızlı duruş</td>
<td></td>
</tr>
</tbody>
</table>

[YBş Ön. Aşırı Yük Srsi] $F \, \text{t} \, \text{o} \star$

Bir aşırı yükün algılanması ve otomatik tekrar yolverme arasındaki izin verilen minimum süre.
Otomatik yeniden başlamaya izin vermek için [Hata Sürüm Süresi] $L \, \text{r} \, \text{r}$ değerinin bu parametreyle en az 1 dakika aşması gerekir.
Bu parametre [Aşırı Yük Süresi Algılama Tspt.] $L \, \text{tl}$ veya [Aşırı Yük Proses Yönetimi] $L \, \text{d} \, \text{l}$ 0'a ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ((L))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...6 min</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 min</td>
</tr>
</tbody>
</table>
[Durma izleme] 5 £ P r - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik izleme] ➔ [Durma İzleme]

Bu Menü Hakkında

Bu fonksiyon, motor akımının ve hız yükseliş zamanının izlenmesiyle motorun aşırı yüklenmesinin önlenmesine yardımcı olur.

Aşağıdaki hallerde durma durumu gerçekleşir:

- Çıkış frekansı, [Durma Frekansı] durma frekansından daha düşükse 5 £ P 3
- Ve çıkış akımı, [Durma Akımı] durma akımından daha yüksekse 5 £ P 2
- [Maks Durma Süresi] durma süresinden daha uzun süreler sırasında 5 £ P 1

Bir durma durumu gerçekleştiğinde, bir [Motor Durma Hatası] 5 £ F hatası tetiklenir.

[Durma İzleme] 5 £ P c

Durma izleme aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>y £ 5</td>
<td>Fonksiyon devrede</td>
</tr>
</tbody>
</table>

[Durma Maks Süresi] 5 £ P 1 ★

Motor durma maksimum süresi.

Bu parametre [Durma İzlemesi] 5 £ P c , [Hayır] n o olarak ayarlanamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...200 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 60,0 sn</td>
</tr>
</tbody>
</table>

[Durma Akımı] 5 £ P 2 ★

Durma izlemesi akım seviyesi, [Nom Motor Akımı] n £ r nominal motor akımının yüzdesi cinsinden.

Bu parametre [Durma İzlemesi] 5 £ P c , [Hayır] n o olarak ayarlanamışsa erişilebilir.

Fabrika ayarı, [Çift Anma Değeri] d £ r , [Ağır Hizmet] H £ h olarak ayarlanışa %150,0 değerine değişir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...150,0</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %150,0</td>
</tr>
</tbody>
</table>

[Durma Frekansı] 5 £ P 3 ★

Oyalama izleme frekansı seviyesi.

Bu parametre [Durma İzlemesi] 5 £ P c , [Hayır] n o olarak ayarlanamışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...[Maks Frekans] £ F r</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 2,0 Hz</td>
</tr>
</tbody>
</table>
[Termal izleme]Ƞ P P - Menüsü

Erişim

[Tüm ayarlar] ➔ [Jenerik izleme] ➔ [Termal izleme]

Bu Menü Hakkında

[Termal izleme]Ƞ P P - Menüsü (bkz. sayfa 183) ile aynı.
[Frekans ölçer] F Salir - Menüsü

Erişim

[Tüm ayarlar] ➔ [Genel izleme] ➔ [Frekans ölçer]

Bu Menü Hakkında
Bu fonksiyon "Darbe girişi" girişini kullanır ve yalnızca "Darbe girişi" giriş başka bir fonksiyon için kullanılmıyorsa kullanılabilir.

Kullanım Örneği
Motor tarafından sürülen ve yakınlık sensörüne bağlı indekslenen bir disk motorun dönüşüne orantılı bir frekans sinyali üretmek için kullanılabilir.

"Darbe girişi" girişine uygulandığında, bu sinyal şu destekler:
- Aşırı hız algılama (ölçülen hız önceden ayarlanan bir eşik aşıyorsa sürücü bir hata tetikler).
- Fren lojik kontrolü konfigüre edildiğinde fren arızası algılama: Freni devreye sokmak için bir komuttan sonra hız yeterince hızlı düşmediyse sürücü bir hata tetikler. Aşınmış fren kaplamasını algılamak için bu fonksiyon kullanılabilir.
- Hız eşik algılama [Darbe uyansı eşik] kullanılarak ayarlanabilir F q L (bkz. sayfa 426) ve bir röleye veya dijital çıkışa atanabilir.

[Frekans ölçer] F Salir

Frekans Ölçer fonksiyonu aktive edin.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre Edilmemiş]</td>
<td>n o</td>
<td>Atanmamış Fabrika Ayarı</td>
</tr>
<tr>
<td>[DI7 Darbe Giriş]...[DI8 Darbe Giriş]</td>
<td></td>
<td>Dijital giriş DI7...DI8 darbe giriş olarak kullanılır NOT: Bu seçime 22kW'tan büyük gücü olan sürücülerde erişilebilir.</td>
</tr>
<tr>
<td>[RP]</td>
<td></td>
<td>Darbe giriş NOT: Bu seçime 30 kW'tan küçük gücü olan sürücülerde erişilebilir.</td>
</tr>
</tbody>
</table>

[Darbe ölçüğü bölücü] F Salir

Ölçüm için katsayı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...100,0</td>
<td>Ayar aralığı Fabrika ayarı: 1,0</td>
</tr>
</tbody>
</table>
[Aşırı hız darbe eşği] F qr A
Yetkilendirilen maksimum frekans.
Aşırı hız izleme aktivasyonu ve ayarlaması: [Motor Aşırı Hızı] 5 a F .

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Motor aşırı hızı izlenmiyor</td>
</tr>
<tr>
<td>0...30 kHz</td>
<td></td>
<td>"Darbe giriş" girişinde frekans artırma eşği ayarlamalar [Darbe ölçüge bölcü] F q c ile bölünen.</td>
</tr>
</tbody>
</table>

[Darbe aşırı hız gecikmesi] t d 5
Aşırı hızda tetiklemeden önceki süre.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 sn</td>
</tr>
</tbody>
</table>

[Düzey fr. darbe kontrolü] F d t
Geri besleme algılama eşği.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hız geri beslemesinin izlenmesi yok</td>
</tr>
<tr>
<td>0,0...599 Hz</td>
<td></td>
<td>Bir hız geri besleme algılama girişe göre motor frekans eşği ayarlaması. (tahmini frekans ve ölçülen hız arasındaki fark).</td>
</tr>
</tbody>
</table>

[Çalıştırma olmadan darbe eşği] F q t
Fren eşği fren aşınması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fren izleme yok</td>
</tr>
<tr>
<td>1...1.000 Hz</td>
<td></td>
<td>Bir [Fren Geri Beslemesi] b r F hatası (0'dan farklı hızların algılanması) tetiklemek için motor frekans eşği ayan.</td>
</tr>
</tbody>
</table>

[Çalışma gecikmesi olmadan darbe] t q b
Fren aşınması tetiklenmeden önceki süre.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 sn</td>
</tr>
</tbody>
</table>

[Darbe uyanış eşği] F q L
Frenks seviyesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...30.000 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 Hz</td>
</tr>
</tbody>
</table>
Alt bölüm 8.39
[Giriş/Çıkış] - [I/O ataması]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DI1 ataması] L 1 R - Menüsü</td>
<td>428</td>
</tr>
<tr>
<td>[DI2 ataması] L 2 R - Menüsü</td>
<td>428</td>
</tr>
<tr>
<td>[DI3 ataması] L 3 R - Menüsü</td>
<td>428</td>
</tr>
<tr>
<td>[DI4 ataması] L 4 R - Menüsü</td>
<td>429</td>
</tr>
<tr>
<td>[DI5 ataması] L 5 R - Menüsü</td>
<td>429</td>
</tr>
<tr>
<td>[DI6 ataması] L 6 R - Menüsü</td>
<td>429</td>
</tr>
<tr>
<td>[DI7 ataması] L 7 R - Menüsü</td>
<td>430</td>
</tr>
<tr>
<td>[DI8 ataması] L 8 R - Menüsü</td>
<td>430</td>
</tr>
<tr>
<td>[DI11 ataması] L 11 R - Menüsü</td>
<td>430</td>
</tr>
<tr>
<td>[DI12 ataması] L 12 R - Menüsü</td>
<td>431</td>
</tr>
<tr>
<td>[DI13 ataması] L 13 R - Menüsü</td>
<td>431</td>
</tr>
<tr>
<td>[DI14 ataması] L 14 R - Menüsü</td>
<td>431</td>
</tr>
<tr>
<td>[DI15 ataması] L 15 R - Menüsü</td>
<td>432</td>
</tr>
<tr>
<td>[DI16 ataması] L 16 R - Menüsü</td>
<td>432</td>
</tr>
<tr>
<td>[DI7 Darbe Giriş Ataması] P , 7 R - Menüsü</td>
<td>433</td>
</tr>
<tr>
<td>[DI8 Darbe Giriş Ataması] P , 8 R - Menüsü</td>
<td>434</td>
</tr>
<tr>
<td>[Kodlayıcı Darbe Ataması] P & G R - Menüsü</td>
<td>434</td>
</tr>
<tr>
<td>[RP ataması] P , R - Menüsü</td>
<td>434</td>
</tr>
<tr>
<td>[AI1 ataması] R , 1 R - Menüsü</td>
<td>435</td>
</tr>
<tr>
<td>[AI2 ataması] R , 2 R - Menüsü</td>
<td>435</td>
</tr>
<tr>
<td>[AI3 ataması] R , 3 R - Menüsü</td>
<td>435</td>
</tr>
<tr>
<td>[AI4 ataması] R , 4 R - Menüsü</td>
<td>435</td>
</tr>
<tr>
<td>[AI5 ataması] R , 5 R - Menüsü</td>
<td>436</td>
</tr>
<tr>
<td>[AIV1 ataması] R V I R - Menüsü</td>
<td>436</td>
</tr>
</tbody>
</table>
[DI1 ataması] L I R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI1 ataması]

[DI1 Düşük ataması] L I L

DI1 düşük ataması.
Salt okunur parametre konfigüre edilemez. Örneğin uyumluluk sorunlarını doğrulamak için DI1 dijital girişine ilgili tüm fonksiyonları göstermektedir.
Hiçbir fonksiyon atanmamışsa [Hayır] gösterilir.

[DI1 Yüksek Ataması] L I H

DI1 yüksek ataması.
Salt okunur parametre konfigüre edilemez. Örneğin uyumluluk sorunlarını doğrulamak için DI1 dijital girişine ilgili tüm fonksiyonları göstermektedir.
Hiçbir fonksiyon atanmamışsa [Hayır] gösterilir.

[DI2 ataması] L 2 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI2 ataması]

Bu Menü Hakkında

[DI1 ataması] L I R - menüsü (bkz. sayfa 426) ile aynı.

[DI2 Düşük ataması] L 2 L

DI2 düşük ataması.

[DI2 Yüksek Ataması] L 2 H

DI2 yüksek ataması.

[DI3 ataması] L 3 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI3 ataması]

Bu Menü Hakkında

[DI1 ataması] L I R - menüsü (bkz. sayfa 426) ile aynı.

[DI3 Düşük ataması] L 3 L

DI3 düşük ataması.

[DI3 Yüksek Ataması] L 3 H

DI3 yüksek ataması.
[DI4 ataması] L 4 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI4 ataması]

Bu Menü Hakkında

[DI4 ataması] L 4 R - menüsü (bkz. sayfa 428) ile aynı.

[DI4 Düşük ataması] L 4 L
DI4 düşük ataması.

[DI4 Yüksek Ataması] L 4 H
DI4 yüksek ataması.

[DI5 ataması] L 5 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI5 ataması]

Bu Menü Hakkında

[DI5 ataması] L 5 R - menüsü (bkz. sayfa 428) ile aynı.

[DI5 Düşük ataması] L 5 L
DI5 düşük ataması.

[DI5 Yüksek Ataması] L 5 H
DI5 yüksek ataması.

[DI6 ataması] L 6 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI6 ataması]

Bu Menü Hakkında

[DI6 ataması] L 6 R - menüsü (bkz. sayfa 428) ile aynı.

[DI6 Düşük ataması] L 6 L
DI6 düşük ataması.

[DI6 Yüksek Ataması] L 6 H
DI6 yüksek ataması.
[DI7 ataması] L 7R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [G/C ataması] ➔ [DI7 ataması]

Bu Menü Hakkında

[DI1 ataması] L I R - menüsü (bkz. sayfa 420) ile aynı.

[DI7 Düşük ataması] L 7L
DI7 düşük ataması.

[DI7 Yüksek Ataması] L 7H
DI7 yüksek ataması.

[DI8 ataması] L B R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [G/C ataması] ➔ [DI8 ataması]

Bu Menü Hakkında

Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[DI1 ataması] L I R - menüsü (bkz. sayfa 420) ile aynı.

[DI8 Düşük ataması] L 8L
DI8 düşük ataması.

[DI8 Yüksek Ataması] L 8H
DI8 yüksek ataması.

[DI11 ataması] L I I R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI11 ataması]

Bu Menü Hakkında

[DI1 ataması] L I R - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametreler, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI11 Düşük ataması] L I I L ★
DI11 düşük ataması.

[DI11 Yüksek Ataması] L I I H ★
DI11 yüksek ataması.
[DI12 ataması] L I 2 A - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [I/O ataması] [DI12 ataması]

Bu Menü Hakkında

[DI1 ataması] L I A - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametrere, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI12 Düşük ataması] L I 2 L ★
DI12 düşük ataması.

[DI12 Yüksek Ataması] L I 2 H ★
DI12 yüksek ataması.

[DI13 ataması] L I 3 A - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [I/O ataması] [DI13 ataması]

Bu Menü Hakkında

[DI1 ataması] L I A - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametrere, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI13 Düşük ataması] L I 3 L ★
DI13 düşük ataması.

[DI13 Yüksek Ataması] L I 3 H ★
DI13 yüksek ataması.

[DI14 ataması] L I 4 A - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [I/O ataması] [DI14 ataması]

Bu Menü Hakkında

[DI1 ataması] L I A - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametrere, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI14 Düşük ataması] L I 4 L ★
DI14 düşük ataması.

[DI14 Yüksek Ataması] L I 4 H ★
DI14 yüksek ataması.
[DI15 ataması] L 15 A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI15 ataması]

Bu Menü Hakkında

[DI11 ataması] L 11 R - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametreler, VW3A3203 I/O uzatma modülü takılırsa erişilebilir.

[DI15 Düşük ataması] L 15 L ★
DI15 düşük ataması.

[DI15 Yüksek Ataması] L 15 H ★
DI15 yüksek ataması.

[DI16 ataması] L 16 A - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [DI16 ataması]

Bu Menü Hakkında

[DI11 ataması] L 11 R - menüsü (bkz. sayfa 420) ile aynı.
Aşağıdaki parametreler, VW3A3203 I/O uzatma modülü takılırsa erişilebilir.

[DI16 Düşük ataması] L 16 L ★
DI16 düşük ataması.

[DI16 Yüksek Ataması] L 16 H ★
DI16 yüksek ataması.
[DI7 Darbe Giriş Ataması] $P, 7^R$ - Menüsü

Erişim

[Tüm ayarlar] \leftrightarrow [Giriş/Çıkış] \leftrightarrow [I/O ataması] \leftrightarrow [DI7 Darbe Giriş Atama]

Bu Menü Hakkında

[DI7 Ölçülen Frekansı] $PF, 7^P$ parametresinde OK tuşuna basıldığında aşağıdaki parametreler Ekran Terminali üzerinden erişilebilir.

Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[DI7 Darbe Giriş Atama] $P, 7^R$

DI7 darbe giriş ataması.

Örneğin uyumluluk sorunlarını doğrulamak için darbe girişine ilgili tüm fonksiyonları göstermektedir.

Hiçbir fonksiyon atanmamışsa [Hayır] $\n\text{\textasciitilde} \circ$ gösterilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>$\n\text{\textasciitilde} \circ$</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Tork Ref Ofseti]</td>
<td>$t q o$</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı]</td>
<td>$t q r$</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekansı 1]</td>
<td>$F r 1$</td>
<td>Referans frekansı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2]</td>
<td>$F r 2$</td>
<td>Referans frekansı 2</td>
</tr>
<tr>
<td>[Ref Frekansı 2 Toplama]</td>
<td>$S a 2$</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[Tork sınırlaması]</td>
<td>$e a a$</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>$e a a 2$</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2'yi Çıkar]</td>
<td>$d a 2$</td>
<td>Referans frekansı 2'yi çıkar</td>
</tr>
<tr>
<td>[Cebri lokal]</td>
<td>$F L o C$</td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı]</td>
<td>$n a 2$</td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı]</td>
<td>$n a 3$</td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork referansı]</td>
<td>$t r 1$</td>
<td>Tork düzenlenmesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork referansı 2]</td>
<td>$t r 2$</td>
<td>Tork düzenlenmesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Frekans Ölçer]</td>
<td>$F q F$</td>
<td>Frekans ölçer fonksiyonu aktivasyonu</td>
</tr>
<tr>
<td>[Harici Besleme İleri]</td>
<td>$t E F F$</td>
<td>Harici besleme İleri</td>
</tr>
</tbody>
</table>
[DI8 Darbe Giriş Ataması] \(P \), \(B \) \(R \) - Menüsü

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Giriş/Çıkış] \(\Rightarrow \) [I/O ataması] \(\Rightarrow \) [Darbe Giriş DI8 Ataması]

Bu Menü Hakkında

[D17 Darbe Giriş Ataması] \(P \), \(T \) \(R \) - ile aynı.

[D18 Ölçulen Frekansı] \(P F \), \(C \) \(B \) parametrelerinde OK tuşuna basıldığında aşağıdaki parametreleri Ekran Terminali üzerinden erişilebilir.

Bu menüye 22 kW'ten büyük güc olan sürücülerde erişilebilir.

[Darbe Giriş DI8 Ataması] \(P \), \(B \) \(R \)

Darbe Giriş DI8 Ataması.

[Darbe Giriş DI7 Ataması] ile aynı \(P \), \(T \) \(R \) (bkz. sayfa 433)

[Kodlayıcı Darbe Ataması] \(P \), \(C \) \(R \) - Menüsü

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Giriş/Çıkış] \(\Rightarrow \) [I/O Ataması] \(\Rightarrow \) [Kodlayıcı Darbe Ataması]

Bu Menü Hakkında

Aşağıdaki parametreler, Grafik Ekran Terminalinde [Kodlayıcı Konfigürasyonu] \(P C \) parametrelerinde Tamam tuşuna basıldığında erişilebilir.

Bu parametreye bir kodlayıcı modülü takıldıysa erişilebilir.

[Kodlayıcı Darbe Ataması] \(P \), \(C \) \(R \)

Kodlayıcı darbe ataması.

Örneğin uyumluluk sorunlarını doğrulamak için darbe girişyle ilgili tüm fonksiyonları göstermektedir. Hiçbir fonksiyon atanmamışsa [Hayır] \(n O \) görüntülenir.

[Darbe Giriş DI7 Ataması] \(P \), \(T \) \(R \)'ya Benzer (bkz. sayfa 433).

[RP ataması] \(P \), \(R \) - Menüsü

Erişim

[Tüm ayarlar] \(\Rightarrow \) [Giriş/Çıkış] \(\Rightarrow \) [I/O ataması] \(\Rightarrow \) [RP ataması]

Bu Menü Hakkında

Bu menüye 30 kW'tan küçük gücü olan sürücülerde erişilebilir.

[RP ataması] \(P \), \(R \) ★

Darbe giriş atama

[Darbe Giriş DI7 Ataması] ile aynı \(P \), \(T \) \(R \) (bkz. sayfa 433)
[AI1 ataması] R , I R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [AI1 ataması]

[AI1 Ataması] R , I R

Analog giriş AI1 fonksiyonları ataması.
Salt okunur parametre konfigüre edilemez. Örneğin uyumluluk sorunlarını doğrulamak için AI1 girişile ilgili tüm fonksiyonları göstermektedir.
Hiçbir fonksiyon atanmamışsa [Hayır] n o gösterilir.

[AI2 ataması] R , 2 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [AI2 ataması]

Bu Menü Hakkında

[AI1 ataması] R , 1 R - menüsü (bkz. sayfa 435) ile aynı.

[AI2 Ataması] R , 2 R

AI2 ataması.

[AI3 ataması] R , 3 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [G/Ç ataması] ➔ [AI3 ataması]

Bu Menü Hakkında

[AI1 ataması] R , 1 R - menüsü (bkz. sayfa 435) ile aynı.

[AI3 ataması] R , 3 R

AI3 ataması.

Bu parametre 22 kW’den büyük gücü olan sürücülerde erişilebilir.

[AI4 ataması] R , 4 R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [I/O ataması] ➔ [AI4 ataması]

Bu Menü Hakkında

[AI1 ataması] R , 1 R - menüsü (bkz. sayfa 435) ile aynı.

[AI4 Ataması] R , 4 R ★

AI4 ataması.

Bu parametre, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.
[AI5 ataması]

Erişim

Bu Menü Hakkında

[AI5 Ataması]

AI5 ataması.
Bu parametre, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[AIV1 ataması]

Erişim

[AIV1 Ataması]

Sanal analog giriş 1 fonksiyonu ataması.
Salt okunur parametre konfigür edilemez. Örneğin uyumluluk sorunlarını doğrulamak için sanal analog giriş 1 ile ilgili tüm fonksiyonları göstermektedir. Hiçbir fonksiyon atanmamışsa [Hayır] o gösterilir.
Alt bölüm 8.40
[Giriş/Çıkış] - [DI/DQ]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DI1 Yapılandırması] d. 1 - Menü</td>
<td>438</td>
</tr>
<tr>
<td>[DI2 Yapılandırması] d. 2 - Menü</td>
<td>438</td>
</tr>
<tr>
<td>[DI3 Yapılandırması] d. 3 - Menü</td>
<td>439</td>
</tr>
<tr>
<td>[DI4 Yapılandırması] d. 4 - Menü</td>
<td>439</td>
</tr>
<tr>
<td>[DI5 Yapılandırması] d. 5 - Menü</td>
<td>439</td>
</tr>
<tr>
<td>[DI6 Yapılandırması] d. 6 - Menü</td>
<td>440</td>
</tr>
<tr>
<td>[DI7 Konfigürasyonu] d. 7 - Menüsü</td>
<td>440</td>
</tr>
<tr>
<td>[DI8 Konfigürasyonu] d. 8 - Menüsü</td>
<td>441</td>
</tr>
<tr>
<td>[DI11 Yapılandırması] d. 11 - Menü</td>
<td>441</td>
</tr>
<tr>
<td>[DI12 Yapılandırması] d. 12 - Menü</td>
<td>442</td>
</tr>
<tr>
<td>[DI13 Yapılandırması] d. 13 - Menü</td>
<td>442</td>
</tr>
<tr>
<td>[DI14 Yapılandırması] d. 14 - Menü</td>
<td>443</td>
</tr>
<tr>
<td>[DI15 Yapılandırması] d. 15 - Menü</td>
<td>443</td>
</tr>
<tr>
<td>[DI16 Yapılandırması] d. 16 - Menü</td>
<td>444</td>
</tr>
<tr>
<td>[DI7 Darbe Konfig.] PR. 7 - Menüsü</td>
<td>445</td>
</tr>
<tr>
<td>[DI8 Darbe Konfig.] PR. 8 - Menüsü</td>
<td>447</td>
</tr>
<tr>
<td>[Darbe Giriş] PT. - Menüsü</td>
<td>448</td>
</tr>
<tr>
<td>[Kodlayıcı Konfig.] PG - Menüsü</td>
<td>450</td>
</tr>
<tr>
<td>[PTO konfigürasyonu] PT. o - Menüsü</td>
<td>451</td>
</tr>
<tr>
<td>[PTO konfigürasyonu] PT. o o - Menüsü</td>
<td>453</td>
</tr>
<tr>
<td>[DQ1 konfigürasyonu] d o 1 - Menüsü</td>
<td>455</td>
</tr>
<tr>
<td>[DQ2 konfigürasyonu] d o 2 - Menesi</td>
<td>456</td>
</tr>
<tr>
<td>[DQ11 konfigürasyonu] d o 11 - Menesi</td>
<td>457</td>
</tr>
<tr>
<td>[DQ12 konfigürasyonu] d o 11 - Menesi</td>
<td>458</td>
</tr>
</tbody>
</table>
[DI1 Yapılandırması] d₁, l₁ - Menü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI1 Konfigürasyonu]

[DI1 Düşük ataması] L₁L
DI1 düşük ataması.

[DI1 Yüksek Ataması] L₁H
DI1 yüksek ataması.

[DI1 Gecikmesi] L₁d
DI1 gecikmesi.
NOT: Bu dijital giriş aracılığıyla alınan komutlar, bu parametre aracılığıyla ayarlanan gecikme süresi geçtiğinde işlenir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...200 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 2 ms</td>
</tr>
</tbody>
</table>

[DI2 Yapılandırması] d₂, l₂ - Menü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI2 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d₁, l₁ - menüsü (bkz. sayfa 438) ile aynı.

[DI2 Düşük ataması] L₂L
DI2 düşük ataması.

[DI2 Yüksek Ataması] L₂H
DI2 yüksek ataması.

[DI2 Gecikmesi] L₂d
DI2 gecikmesi.
[DI3 Yapılandırması] d , 3 - Menü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DI3 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d , 1 - menüsü (bkz. sayfa 439) ile aynı.

[DI3 Düşük ataması] L 3 L
DI3 düşük ataması.

[DI3 Yüksek Ataması] L 3 H
DI3 yüksek ataması.

[DI3 Gecikmesi] L 3 d
DI3 gecikmesi.

[DI4 Yapılandırması] d , 4 - Menü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DI4 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d , 1 - menüsü (bkz. sayfa 439) ile aynı.

[DI4 Düşük ataması] L 4 L
DI4 düşük ataması.

[DI4 Yüksek Ataması] L 4 H
DI4 yüksek ataması.

[DI4 Gecikmesi] L 4 d
DI4 gecikmesi.

[DI5 Yapılandırması] d , 5 - Menü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DI5 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d , 1 - menüsü (bkz. sayfa 439) ile aynı.

[DI5 Düşük ataması] L 5 L
DI5 düşük ataması.

[DI5 Yüksek Ataması] L 5 H
DI5 yüksek ataması.

[DI5 Gecikmesi] L 5 d
DI5 gecikmesi.
[DI6 Yapılandırması] d İ 6 - Menü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI6 Konfigürasyonu]

Bu Menü Hakkında

[DI6 Konfigürasyonu] d İ 6 - menüsü (bkz. sayfa 438) ile aynı.

[DI6 Düşük ataması] L6 L
DI6 düşük ataması.

[DI6 Yüksek Ataması] L6 H
DI6 yüksek ataması.

[DI6 Gecikmesi] L6 d
DI6 gecikmesi.

[DI7 Konfigürasyonu] d İ 7 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI7 Konfigürasyonu]

Bu Menü Hakkında

[DI7 Konfigürasyonu] d İ 7 - menüsü (bkz. sayfa 438) ile aynı.

[DI7 Düşük ataması] L7 L
DI7 düşük ataması.

[DI7 Yüksek Ataması] L7 H
DI7 yüksek ataması.

[DI7 Gecikmesi] L7 d
DI7 gecikmesi.
[DI8 Konfigürasyonu] d , B - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI8 Konfigürasyonu]

Bu Menü Hakkında

Bu menüye 22 kW' tan büyük gücü olan sürücülerde erişilebilir.

[DI8 Düşük ataması] L B L

DI8 düşük ataması.

[DI8 Yüksek Ataması] L B H

DI8 yüksek ataması.

[DI8 Gecikmesi] L B d

DI8 gecikmesi.

[DI11 Yapılandırması] d , I / I - Menü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI11 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d , I - menüsü (bkz. sayfa 438) ile aynı.

Aşağıdaki parametrelerle, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI11 Düşük ataması] L / I L ★

DI11 düşük ataması.

[DI11 Yüksek Ataması] L / I H ★

DI11 yüksek ataması.

[DI11 Gecikmesi] L / I d ★

DI11 gecikmesi.
[DI12 Yapılandırması] d , l 2 - Menü

Erişim
[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI12 Konfigürasyonu]

Bu Menü Hakkında
[DI1 Konfigürasyonu] d , l - menüsü (bkz. sayfa 438) ile aynı.
Aşağıdaki parametrelerle, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI12 Düşük ataması] L l 2 L ★
DI12 düşük ataması.

[DI12 Yüksek Ataması] L l 2 H ★
DI12 yüksek ataması.

[DI12 Gecikmesi] L l 2 d ★
DI12 gecikmesi.

[DI13 Yapılandırması] d , l 3 - Menü

Erişim
[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI13 Konfigürasyonu]

Bu Menü Hakkında
[DI1 Konfigürasyonu] d , l - menüsü (bkz. sayfa 438) ile aynı.
Aşağıdaki parametrelerle, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI13 Düşük ataması] L l 3 L ★
DI13 düşük ataması.

[DI13 Yüksek Ataması] L l 3 H ★
DI13 yüksek ataması.

[DI13 Gecikmesi] L l 3 d ★
DI13 gecikmesi.
[DI14 Yapılandırması] d , 14 - Menü

Erişim

[Üm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI14 Konfigürasyonu]

Bu Menü Hakkında

[DI14 Düşük ataması] L 14 L ★
DI14 düşük ataması.

[DI14 Yüksek Ataması] L 14 H ★
DI14 yüksek ataması.

[DI14 Gecikmesi] L 14 d ★
DI14 gecikmesi.

[DI15 Yapılandırması] d , 15 - Menü

Erişim

[Üm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DI15 Konfigürasyonu]

Bu Menü Hakkında

[DI15 Düşük ataması] L 15 L ★
DI15 düşük ataması.

[DI15 Yüksek Ataması] L 15 H ★
DI15 yüksek ataması.

[DI15 Gecikmesi] L 15 d ★
DI15 gecikmesi.
[DI16 Yapılandırması] d , l6 - Menü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DI16 Konfigürasyonu]

Bu Menü Hakkında

[DI1 Konfigürasyonu] d , l - menüsü (bkz. sayfa 438) ile aynı.
Aşağıdaki parametrılere, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[DI16 Düşük ataması] l6 L
DI16 düşük ataması.

[DI16 Yüksek Ataması] l6 H
DI16 yüksek ataması.

[DI16 Gecikmesi] l6 d
DI16 gecikmesi.
[DI7 Darbe Konfig] \(P \, R \, 7 - \) Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DI7 Darbe Konfig]

Bu Menü Hakkında

[DI7 Ölçülen Frekansı] \(P \, F \, L \, 7 \) parametreinde OK tuşuna basıldığında aşağıdaki parametreler Ekran Terminali üzerinden erişilebilir.

Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[DI7 Darbe Grş Atama] \(P \, T \, A \)

DI7 darbe dışı ataması.

Örneğin uyumluluk sorunlarını doğrulamak için darbe girişine ilgili tüm fonksiyonları göstermektedir.

Hiçbir fonksiyon atanmamışsa [Hayır] \(n \, a \) gösterilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n , a)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Tork Ref Ofseti]</td>
<td>(k , q)</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı]</td>
<td>(k , r)</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekansı 1]</td>
<td>(F , r)</td>
<td>Referans frekansı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2]</td>
<td>(F , r)</td>
<td>Referans frekansı 2</td>
</tr>
<tr>
<td>[Ref Frekansı 2 Toplama]</td>
<td>(S , r)</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[PID Geri besleme]</td>
<td>(P , F)</td>
<td>PI kontrolörü geri beslemesi</td>
</tr>
<tr>
<td>[Tork sınırlaması]</td>
<td>(L , A)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>(L , A)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2'yi Çıkar]</td>
<td>(d , A)</td>
<td>Referans frekansı 2'yi çıkar</td>
</tr>
<tr>
<td>[Manuel PID Ref.]</td>
<td>(P , n)</td>
<td>PID kontrolörünün (oto-man) manuel hız referansı</td>
</tr>
<tr>
<td>[PID Ref Frekansı]</td>
<td>(F , P)</td>
<td>PID referans frekansı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 Toplama]</td>
<td>(S , A)</td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frekansı 1B]</td>
<td>(F , r)</td>
<td>Referans frekansı 1B</td>
</tr>
<tr>
<td>[Ref Frek 3'ü Çıkar]</td>
<td>(d , A)</td>
<td>Referans frekansı 3'ü çıkar</td>
</tr>
<tr>
<td>[Cebri lokal]</td>
<td>(F , L)</td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı]</td>
<td>(N , A)</td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı]</td>
<td>(N , A)</td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork referansı]</td>
<td>(L , r)</td>
<td>Tork düzenlemesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork referansı 2]</td>
<td>(L , r)</td>
<td>Tork düzenlemesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Frekans Ölçer]</td>
<td>(F , F)</td>
<td>Frekans ölçer fonksiyonu aktivasyonu</td>
</tr>
<tr>
<td>[Harici Besleme lieri]</td>
<td>(E , F)</td>
<td>Harici besleme ileyi</td>
</tr>
</tbody>
</table>

[DI7 DarbeGrş Düşük Frek] \(P \, L \, 7 \)

DI7 darbe giriş düşük frekansı.

Darbe giriş ölçektele parametreleri, Hz x 10 birimi olarak %0.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...30.000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,00 Hz</td>
</tr>
</tbody>
</table>
[DI7 Darbe Giriş Yüksek Frekansı] \(P \), \(H \) 7

DI7 darbe girişı yüksek frekansı. Darbe giriş ölçekte parametresi, Hz x 10 birimi olarak %100.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...30,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 30,00 kHz</td>
</tr>
</tbody>
</table>

[DI7 Frekns Filtresi] \(P \), \(F \) 7

Alt filtre parazit filtreleme darbeli giriş kesme süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1.000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 ms</td>
</tr>
</tbody>
</table>
[DI8 Darbe Konfig] \(P \ R \ : \ B \) - Menüsü

Erişim

[Tüm ayarlar] \(\leftrightarrow \) [Giriş/Çıkış] \(\leftrightarrow \) [DI/DQ] \(\leftrightarrow \) [DI8 Darbe Konfig]

Bu Menü Hakkında

[DI8 Ölçülen Frekans] \(P \ F \ C \ B \) parametreinde OK tuşuna basıldığında aşağıdaki parametrelere Ekran Terminali üzerinden erişilebilir.
Bu menüye 22 kW'tan büyük gücű olan sürücülerde erişilebilir.

[DI8 Darbe Giriş Atama] \(P \ : \ B \ A \)
DI8 Darbe Giriş ataması.

[DI7 Darbe Giriş Ataması] \(P \ : \ 7 \ A \) (bkz. sayfa 445) ile aynı.

[DI8 Darbe Giriş Düşük Frek] \(P \ : \ L \ B \)
DI8 darbe giriş düşük frekansı.

[DI7 Darbe Giriş Düşük Frek] \(P \ : \ 7 \ B \) (bkz. sayfa 445) ile aynı.

[DI8 Darbe Giriş Yüksek Frek] \(P \ : \ H \ B \)
DI8 darbe giriş yüksek frekansı.

[DI7 Darbe Giriş Yüksek Frek] \(P \ : \ 7 \ H \) (bkz. sayfa 446) ile aynı.

[DI8 Frekans Filtresi] \(P \ F \ : \ B \)
Alt filtre parazit filtreleme darbeli giriş kesme süresi.

[DI7 Frekans Filtresi] \(P \ F \ : \ 7 \) (bkz. sayfa 446) ile aynı.
[Darbe Giriş] \(P \ell \ i\) - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [Darbe Giriş]

Bu Menü Hakkında

Bu menüye 30 kW'tan küçük gücü olan sürücülerde erişilebilir.

[RP ataması] \(P \ell \ i\) ★
PTI Ataması

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayır</td>
<td>nO</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>Tork Ref Ofset</td>
<td>(t\ q_o)</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>Tork Ref Oranı</td>
<td>(t\ q_r)</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekansı 1]</td>
<td>(F\ r\ l)</td>
<td>Referans frekansı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2]</td>
<td>(F\ r\ 2)</td>
<td>Referans frekansı 2</td>
</tr>
<tr>
<td>[Ref Frekansı 2 Toplama]</td>
<td>(S\ A\ 2)</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[PID Geri besleme]</td>
<td>(P\ i\ F)</td>
<td>PI kontrolörü geri beslemesi</td>
</tr>
<tr>
<td>[Tork sınırlaması]</td>
<td>(t\ A\ A)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>(t\ A\ A\ 2)</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2’yi Çıkar]</td>
<td>(d\ A\ 2)</td>
<td>Referans frekansı 2’yi çıkar</td>
</tr>
<tr>
<td>[Manuel PID Ref.]</td>
<td>(P\ i\ N)</td>
<td>PID kontrolörünün (oto-man) manuel hız referansı</td>
</tr>
<tr>
<td>[PID Ref Frekansı]</td>
<td>(F\ P\ i)</td>
<td>PID referans frekansı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 Toplama]</td>
<td>(S\ A\ 3)</td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frekansı 1B]</td>
<td>(F\ r\ l\ b)</td>
<td>Referans frekansı 1B</td>
</tr>
<tr>
<td>[Ref Frek 3’ü Çıkar]</td>
<td>(d\ A\ 3)</td>
<td>Referans frekansı 3’ü çıkar</td>
</tr>
<tr>
<td>[Cebri lokal]</td>
<td>(F\ L\ a\ C)</td>
<td>Cebri lokal referans kaynağı 1</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpanı]</td>
<td>(P\ A\ 2)</td>
<td>Referans frekansı 2 çarpanı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpanı]</td>
<td>(P\ A\ 3)</td>
<td>Referans frekansı 3 çarpanı</td>
</tr>
<tr>
<td>[Tork referansı]</td>
<td>(t\ r\ 1)</td>
<td>Tork düzenelemesi: tork ayar noktası 1</td>
</tr>
<tr>
<td>[Tork referansı 2]</td>
<td>(t\ r\ 2)</td>
<td>Tork düzenelemesi: tork ayar noktası 2</td>
</tr>
<tr>
<td>[Frekans Ölçer]</td>
<td>(F\ q\ F)</td>
<td>Frekans ölçer fonksiyonu aktivasyonu</td>
</tr>
<tr>
<td>[Harici Beslemelier]</td>
<td>(t\ E\ F\ F)</td>
<td>Harici besleme ileri</td>
</tr>
</tbody>
</table>

[PTI Düşük Frekansı] \(P \ell \ l\) ★
Darbe Katları Giriş düşük frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1000000,00...1000000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 Hz</td>
</tr>
</tbody>
</table>

[PTI Yüksek Frekansı] \(P \ell \ h\) ★
Darbe Katları Giriş yüksek frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1000000,00...1000000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 Hz</td>
</tr>
</tbody>
</table>
[PTI Filtresi Süresi Analog] $P \uparrow \downarrow$

PTI filtresi süresi analog

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 ms</td>
</tr>
</tbody>
</table>

[PTI Modu] $P \uparrow \downarrow$

PTI modu

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A/B]</td>
<td>ab</td>
<td>A/B giriş sinyalleri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayarı</td>
</tr>
<tr>
<td>[Darbe/Yön]</td>
<td>pd</td>
<td>Darbe yönü giriş sinyalleri</td>
</tr>
<tr>
<td>[Saat Yönü/Saatin Tersi Yönü]</td>
<td>$cwccw$</td>
<td>Saat yönü/Saatin tersi yönü giriş sinyalleri</td>
</tr>
</tbody>
</table>

[PTI Filtresi Süresi Giriş] $P \uparrow \downarrow$

PTI Filtresi Süresi Giriş

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...13,00 µs</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,25 µs</td>
</tr>
</tbody>
</table>

[PTI Sayımı Yönü Ters] $P \uparrow \downarrow$

PTI yönü ters çevirme

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KAPALI]</td>
<td>FF</td>
<td>Sayım yönünün tersine çevirmesi yok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayarı</td>
</tr>
<tr>
<td>[AÇIK]</td>
<td>on</td>
<td>Sayım yönünün tersine çevirmesi</td>
</tr>
</tbody>
</table>
[Kodlayıcı Konfig.] \(PG \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Giriş/Çıkış] \(\rightarrow \) [DI/DQ] \(\rightarrow \) [Kodlayıcı Konfig.]

Bu Menü Hakkında

Aşağıdaki parametreler, Grafik Ekran Terminalinde [Kodlayıcı Konfigürasyonu] \(PG \) parametresinde Tamam tuşuna basıldığında erişilebilir.

Bu parametreye erişilebilmek için bir kodlayıcı modülü takılı olmalı ya da gömülü kodlayıcı kullanılamalıdır.

[Kodlayıcı Darbe Ataması] \(P \& G \, A \)

Kodlayıcı darbe ataması.

Örneğin uyumlu sorunları doğrulamak için darbe girişyle ilgili tüm fonksiyonları göstermektedir.

Hiçbir fonksiyon atanmamışsa [Hayır] görüntülenir.

[Kodlayıcı Darbe Ataması] \(P \& G \, R \)

Referans Türü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kodlayıcı]</td>
<td>ENC</td>
<td>Kodlayıcı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika Ayarı</td>
</tr>
<tr>
<td>[Frekans Oluşturu]</td>
<td>P & G</td>
<td>Darbe katarı oluşturucu kodlayıcı panosuna bağlanır.</td>
</tr>
</tbody>
</table>

[Frekans Min Değeri] \(PE \, L \)

Frekans min değeri.

Darbe giriş ölçekte parametresi, kHz x 10 birimi olarak %0.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-300,00..300,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,00 kHz</td>
</tr>
</tbody>
</table>

[Frekans Maks Değeri] \(PE \, F \, r \)

Frekans maks değeri.

Darbe giriş ölçekte parametresi, kHz x 10 birimi olarak %100.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-300,00..300,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 300 kHz</td>
</tr>
</tbody>
</table>

[Frekans Sinyali Filtresi] \(EF \, s \)

Frekans sinyali filtresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 ms</td>
</tr>
</tbody>
</table>
[PTO konfigürasyonu] \(P \in \mathcal{O} \) - Menüsü

Erişim

[Tüm ayarlar] \(\leftrightarrow \) [Giriş/Çıkış] \(\leftrightarrow \) [DI/DQ] \(\leftrightarrow \) [PTO konfigürasyonu]

Bu Menü Hakkında

Bu menüye 22 kW'tan büyük güclü olan sürücülerde erişilebilir.

[PTO Ataması] \(P \in \mathcal{O} \)

Darbe katarı çıkış ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemis]</td>
<td>(\varnothing)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>(\alpha \mathcal{E} \mathcal{r})</td>
<td>Motoraki 0'dan 2 In'ye (İn = Kurulum klavuzunda veya sürücünün isim plakasında gösterilen nominal sürücü akımı) Fabrika Ayarı</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>(\alpha \mathcal{F} \mathcal{r})</td>
<td>Çıkış frekansı, 0'dan (\text{Maks Frekans}) ile (\mathcal{F} \mathcal{r})</td>
</tr>
<tr>
<td>[Rampa çıkış]</td>
<td>(\alpha P)</td>
<td>0'dan (\text{Maks Frekans}) ile (\mathcal{F} \mathcal{r})</td>
</tr>
<tr>
<td>[Motor torku]</td>
<td>(\mathcal{E} \mathcal{r})</td>
<td>Motor torku, nominal motor torkunun 0'dan 3 katına kadardır</td>
</tr>
<tr>
<td>[İşaretlenmiş tork]</td>
<td>(\mathcal{S} \mathcal{L} \mathcal{r})</td>
<td>İşaretlenmiş motor torku, nominal motor torkunun -3 ile +3 katı araszıldadır. + işaretli, motor moduna ve – işaretli jeneratör moda (frenleme) karşılık gelir.</td>
</tr>
<tr>
<td>[İşaretlenmiş rampa]</td>
<td>(\alpha S)</td>
<td>İşaretlenmiş rampa çıkışı, –[Maks Frekans] ile +[Maks Frekans] arasında (\mathcal{F} \mathcal{r})</td>
</tr>
<tr>
<td>[PID ref.]</td>
<td>(\alpha \mathcal{P} \mathcal{S})</td>
<td>PID kontrolörü referansı [Min PID referansı] (P) ile [Maks PID referansı] arasında (P) ile (\mathcal{P} \mathcal{S})</td>
</tr>
<tr>
<td>[PID geri besleme]</td>
<td>(\alpha \mathcal{P} \mathcal{F})</td>
<td>PID kontrolörü geri beslemesi [Min PID geri beslemesi] (P) ile [Maks PID geri beslemesi] arasında (P) ile (\mathcal{P} \mathcal{F})</td>
</tr>
<tr>
<td>[PID hatası]</td>
<td>(\alpha \mathcal{P} \mathcal{E})</td>
<td>PID kontrolörü algılanan hatası, [Maks PID geri beslemesi] (P) ile [Maks PID geri beslemesi] arasında (P) ile (\mathcal{P} \mathcal{E})</td>
</tr>
<tr>
<td>[PID çıkış]</td>
<td>(\alpha \mathcal{P} \mathcal{F})</td>
<td>PID kontrolörü çıkışı [Düşük hız] (L \mathcal{S} \mathcal{P}) ile [Yüksek hız] (H \mathcal{S} \mathcal{P}) arasında (\mathcal{P} \mathcal{F})</td>
</tr>
<tr>
<td>[Motor gücü]</td>
<td>(\alpha \mathcal{P} \mathcal{r})</td>
<td>Motor gücü, [Nominal motor gücü] (n \mathcal{P} \mathcal{r}) ile 2,5 kat arasında (n \mathcal{P} \mathcal{r})</td>
</tr>
<tr>
<td>[Motor termal]</td>
<td>(\mathcal{E} \mathcal{H} \mathcal{r})</td>
<td>Motor termal durumu, nominal termal durunun 0'dan 200'e kadardır</td>
</tr>
<tr>
<td>[Sürücü termal]</td>
<td>(\mathcal{E} \mathcal{H} \mathcal{d})</td>
<td>Sürücü termal durumu, nominal termal durunun 0 ile 200'yi arasında</td>
</tr>
<tr>
<td>[Ölçülen Motor Frek]</td>
<td>(\alpha \mathcal{F} \mathcal{r} \mathcal{r})</td>
<td>Ölçülen motor frekansı</td>
</tr>
<tr>
<td>[İşaretlenmiş çik. frek]</td>
<td>(\alpha \mathcal{F} \mathcal{S})</td>
<td>İşaretlenmiş çıkış frekansı, –[Maks Frekans] ile +[Maks Frekans] arasında (\mathcal{F} \mathcal{r})</td>
</tr>
<tr>
<td>[Mot term2]</td>
<td>(\mathcal{E} \mathcal{H} \mathcal{r} \mathcal{2})</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>[Mot term3]</td>
<td>(\mathcal{E} \mathcal{H} \mathcal{r} \mathcal{3})</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>[Mot term4]</td>
<td>(\mathcal{E} \mathcal{H} \mathcal{r} \mathcal{4})</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>[İşaretlenmemiş Trk Ref]</td>
<td>(\mathcal{S} \mathcal{L} \mathcal{E} \mathcal{r})</td>
<td>İşaretlenmemiş tork referansı</td>
</tr>
<tr>
<td>[İşaretlenmiş Trk Ref]</td>
<td>(\mathcal{S} \mathcal{L} \mathcal{r})</td>
<td>İşaretlenmiş tork referansı</td>
</tr>
<tr>
<td>[Tork sınır]</td>
<td>(\mathcal{E} \mathcal{L} \mathcal{L})</td>
<td>Tork sınırı</td>
</tr>
<tr>
<td>[Motor ger.]</td>
<td>(\alpha \mathcal{P} \mathcal{S})</td>
<td>Motor gerilimi, 0 ile [Nom Motor Gerilimi] arasında (\mathcal{P} \mathcal{S})</td>
</tr>
<tr>
<td>[DC bara gerilimi]</td>
<td>(\mathcal{V} \mathcal{B} \mathcal{S} \mathcal{5})</td>
<td>DC bara gerilimi</td>
</tr>
<tr>
<td>[PI8 kopyalı]</td>
<td>(\mathcal{C} \mathcal{A} \mathcal{P} \mathcal{Y})</td>
<td>Darbe kopyalı</td>
</tr>
</tbody>
</table>
[PTO Maks Çıkış Frekansı] PTO H ★
Darbe karıncı çıkışını maksimum çıkışı frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00...30,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 4,00 kHz</td>
</tr>
</tbody>
</table>

[PTO Min Çıkış Frekansı] PTO L ★
Darbe karıncı çıkışını minimum çıkışı frekansı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00...30,00 kHz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1,00 kHz</td>
</tr>
</tbody>
</table>
[PTO konfigürasyonu] P ′ o a ′ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [PTO konfigürasyonu]

Bu Menü Hakkında

Bu menüye 30 kW'tan küçük güçü olan sürücülerde erişilebilir.

[PTO Mod Seçimi] P ′ o a ′

Darbe katarı çıkış ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[PTI Sinyali]</td>
<td>P ′ t ′</td>
<td>PTI sinyali.</td>
</tr>
<tr>
<td>[PTO Atanan Param]</td>
<td>C o n 5</td>
<td>PTO atanan parametresi.</td>
</tr>
</tbody>
</table>

[PTO Atamaşı] P ′ o E ★

PTO ataması.

Bu parametre [PTO Mod Seçimi] P ′ o a ′ öğesi [PTO Atanan Param] C o n 5 olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>o L r</td>
<td>Motor akımı 0'dan 2 In'ye (In = Kurulum klavuzunda veya sürücünün isim plakasında gösterilen nominal sürücü akımı) Fabrika Ayarı</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>o F r</td>
<td>Çıkış frekansı, 0'dan [Maks Frekans] ile F r</td>
</tr>
<tr>
<td>[Rampa çıkışı]</td>
<td>o r P</td>
<td>0'dan [Maks Frekans] ile F r</td>
</tr>
<tr>
<td>[Motor torku]</td>
<td>t r q</td>
<td>Motor torku, nominal motor torkunun 0'dan 3 katına kadardır</td>
</tr>
<tr>
<td>[İşaretlenmiş rampa]</td>
<td>o r 5</td>
<td>İşaretlenmiş rampa çıkış, -[Maks Frekans] ile +[Maks Frekans] arasında F r</td>
</tr>
<tr>
<td>[PID hatası]</td>
<td>o P E</td>
<td>PID kontrolörü algılanan hatasi, [Maks PID geri beslemesi] ile [Min PID geri beslemesi] arasında −%5 ile +%5'i arasında</td>
</tr>
<tr>
<td>[motor gücü]</td>
<td>a P r</td>
<td>Motor gücü, [Nominal motor gücü]nin 0 ile 2,5 katı arasında n P r</td>
</tr>
<tr>
<td>[Motor termal]</td>
<td>t H r</td>
<td>Motor termal durumu, nominal termal durumun %0'dan 200'e kadardır</td>
</tr>
<tr>
<td>[Sürücü termal]</td>
<td>t H d</td>
<td>Sürücü termal durumu, nominal termal durumun %0 ile %200'ü arasında</td>
</tr>
<tr>
<td>[Ölçülen Motor Frek]</td>
<td>a F r</td>
<td>Ölçülen motor frekansı</td>
</tr>
<tr>
<td>[İşaretlenmiş çıkış frek]</td>
<td>o F 5</td>
<td>İşaretlenmiş çıkış frekansı, -[Maks Frekans] ile +[Maks Frekans] arasında F r</td>
</tr>
<tr>
<td>[Mot term2]</td>
<td>t H r 2</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>[Mot term3]</td>
<td>t H r 3</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>[Mot term4]</td>
<td>t H r 4</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>İşaretlenmemiş Trk Ref</td>
<td>ütr</td>
<td>İşaretlenmemiş tork referansı</td>
</tr>
<tr>
<td>İşaretlenmiş Trk Ref</td>
<td>stç</td>
<td>İşaretlenmiş tork referansı</td>
</tr>
<tr>
<td>Tork sınırı</td>
<td>btçL</td>
<td>Tork sınırı</td>
</tr>
<tr>
<td>Motor ger.</td>
<td>upç</td>
<td>Motora uygulanmış gerilim, 0 ile [Nom Motor Gerilimi] arasında up5</td>
</tr>
<tr>
<td>DC bara gerilimi</td>
<td>vbçS</td>
<td>DC bara gerilimi</td>
</tr>
<tr>
<td>[PI8 kopyala]</td>
<td>LçççY</td>
<td>Darbe kopyala</td>
</tr>
</tbody>
</table>

[PTO Yüksek Frekansı] $P \triangleleft u$ ★

PTO yüksek frekansı.
Bu parametre [PTO Mod Seçimi] $P \triangleleft n$ öğesi [PTO Atanan Param] $C \triangleleft S$ olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.000.000,00…1.000.000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 1.000.000,00 Hz</td>
</tr>
</tbody>
</table>

[PTO Düşük Frekansı] $P \triangleleft b$ ★

PTO düşük frekansı.
Bu parametre [PTO Mod Seçimi] $P \triangleleft n$ öğesi [PTO Atanan Param] $C \triangleleft S$ olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.000.000,00…1.000.000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan: 0,00 Hz</td>
</tr>
</tbody>
</table>

[PTO Frekansı Değeri] $P \triangleleft F$ ★

PTO frekansı değeri.
Bu parametre [PTO Mod Seçimi] $P \triangleleft n$ öğesi [PTO Atanan Param] $C \triangleleft S$ olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.000.000,00…1.000.000,00 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayan:</td>
</tr>
</tbody>
</table>
[DQ1 konfigürasyonu] d o l - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DQ1 Konfigürasyonu]

[DQ1 Ataması] d o l
Dijital çıkış 1 ataması.
[R2 Ataması] r 2 (bkz. sayfa 478) ile aynı.

[DQ1 Gecikme süresi] d o l d
DQ1 aktifasyon gecikme süresi

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...60.000 ms</td>
<td>Ayar aralığı Ekran Terminali öğesinde 0...9999 ms ardından 10,00...60,00 sn</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 ms</td>
</tr>
</tbody>
</table>

[Şurada DQ1 aktif] d o l s
DQ1 durumu (çıkış aktif seviyesi)

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>P o 5</td>
<td>Bilgi doğru iken Durum 1 (Fabrika Ayar)</td>
</tr>
<tr>
<td>[0]</td>
<td>n E G</td>
<td>Bilgi doğru iken Durum 0</td>
</tr>
</tbody>
</table>

[DQ1 Tutma süresi] d o l h
DQ1 tutma gecikme süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...9.999 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0 ms</td>
</tr>
</tbody>
</table>
[DQ2 konfigürasyonu] d o 2 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DQ2 Konfigürasyonu]

Bu Menü Hakkında

Bu menüye 30 kW'tan küçük gücü olan sürücülerde erişilebilir.

[DQ2 Ataması] d o 2 ★

Dijital çıkış 1 ataması.

[DQ1 Ataması] do 1 (bkz. sayfa 455) ile aynı.

[DQ2 Gecikme süresi] d o 2 d ★

DQ2 aktivasyon gecikme süresi

[DQ1 Gecikme süresi] do 1 d (bkz. sayfa 455) ile aynı.

[Şurada DQ2 aktif] d o 2 s ★

DQ2 durumu (çıkış aktif seviyesi)

[DQ1 Aktif] do 1 s (bkz. sayfa 455) ile aynı.

[DQ2 Tutma süresi] d o 2 h ★

DQ2 tutma gecikme süresi.

[DQ1 Bekleme süresi] do 1 h (bkz. sayfa 455) ile aynı.
DQ11 konfigürasyonu d o l / - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [DI/DQ] [DQ11 Konfigürasyonu]

Bu Menü Hakkında

Aşağıdaki parametreler, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.

[DQ11 Ataması] d o l / ★

Dijital çıkış 11 ataması.

[R2 Ataması] ile aynı r 2 (bkz. sayfa 478)

[DQ11 aktif gecik.] d o l / d ★

DQ11 aktivasyon gecikme süresi.

Durumda yapılan değişiklik sadece konfigüre edilen süre geçtikten sonra, bilgi doğru haline geçince geçerli olur.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...60.000 ms | Ayar aralığı
Ekran Terminali gögesinde 0...9999 ms ardından 10,00...60,00 sn
Fabrika ayarı: 0 ms |

[DQ11 durumu] d o l / 5 ★

DQ11 durumu (çıkış aktif seviyesi).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [1] | P o S | Bilgi doğru iken Durum 1
Fabrika Ayarı |
| [0] | n E G | Bilgi doğru iken Durum 0 |

[1] P o S yapılandırılması aşağıdaki atamalar için değiştirilemez:
• [Çalışma Durumu “Hata”] F L E ,
• [Şebeke Kontaktörü] L L Ė ,
• [Frenleme İşlem Dizisi] b L Ė ,

[DQ11 bekle.gecik.] d o l / H ★

DQ11 bekleme gecikme süresi.

Bekleme süresi aşağıdaki atamalar için ayarlanamaz ve 0’da kalır:
• [“Çalışma Durumu “Hata”] F L E ,
• [Şebeke Kontaktörü] L L Ė ,
• [Frenleme İşlem Dizisi] b L Ė ,

Durumda yapılan değişiklik sadece konfigüre edilen süre geçtikten sonra, bilgi yanlış hale geçince geçerli olur.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...9.999 ms | Ayar aralığı
Fabrika ayarı: 0 ms |
[DQ12 konfigürasyonu] d o 1 2 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [DI/DQ] ➔ [DQ12 Konfigürasyonu]

Bu Menü Hakkında

[DQ11 Konfigürasyonu] d o 1 1 - menüsü (bkz. sayfa 457) ile aynı.
Aşağıdaki parametrelere, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.

[DQ12 Ataması] d o 1 2 ★
Dijital çıkış 12 ataması.

[DQ12 aktif gecik.] d 1 2 d ★
DQ12 aktif gecikme süresi.

[DQ12 durumu] d 1 2 5 ★
DQ12 durumu (çıkış aktif seviyesi).

[DQ12 tutma gecik.] d 1 2 h ★
DQ12 tutma gecikme süresi.
Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AI1 konfigürasyonu] R , 1 - Menüsü</td>
<td>460</td>
</tr>
<tr>
<td>[AI2 konfigürasyonu] R , 2 - Menüsü</td>
<td>462</td>
</tr>
<tr>
<td>[AI3 konfigürasyonu] R , 3 - Menüsü</td>
<td>463</td>
</tr>
<tr>
<td>[AI4 konfigürasyonu] R , 4 - Menüsü</td>
<td>464</td>
</tr>
<tr>
<td>[AI5 konfigürasyonu] R , 5 - Menüsü</td>
<td>465</td>
</tr>
<tr>
<td>[AQ1 konfigürasyonu] R o 1 - Menüsü</td>
<td>467</td>
</tr>
<tr>
<td>[AQ2 konfigürasyonu] R o 2 - Menüsü</td>
<td>471</td>
</tr>
<tr>
<td>[Sanal AI1] R ÷ 1 - Menüsü</td>
<td>473</td>
</tr>
</tbody>
</table>
[AI1 konfigürasyonu] R, I - Menüsü

Erişim

[Tüm ayarlar] \Rightarrow [Giriş/Çıkış] \Rightarrow [AI/AQ] \Rightarrow [AI1 konfigürasyonu]

Bu Menü Hakkında

Girişin doğrulunmasını, bu girişin giriş/çıkış eğrisinde ara bir nokta konfigüre ederek kaldırmaktır:

![Giriş eğrisi](image)

R Referans
C / VI Akım veya Gerilim Giriş
1 [Y Orta noktası]
2 [Min değer] (%0)
3 [X Orta noktası]
4 [Maks değer] (%100)

NOT: [X Orta noktası] için %0, [Min değer] değerine ve %100, [Maks değer] değerine karşılık gelir.

[AI1 Ataması] R, $I R$

Analog giriş AI1 fonksiyonları ataması.
Salt okunur parametre konfigüre edilemez. Örneğin uyumluluk sorunlarını doğrulamak için AI1 girişile ilgili tüm fonksiyonları göstermektedir.
Hiçbir fonksiyon atanmamışsa [Hayır] n o gösterilir.

[AI1 Tipi] R, $I t$

Analog giriş AI1’in konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Gerilim] | $I D u$ | 0-10 Vdc
| | | Fabrika ayarı |
| [Akım] | $D A$ | 0-20 mA |

[AI1 min. değeri] ω, $L \star$

AI1 %0 gerilim ölçekleme parametresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0…10,0 Vdc | Ayar aralığı
| | Fabrika ayarı: 0,0 Vdc |

[AI1 maks. değeri] ω, $H \star$

AI1 %100 gerilim ölçekleme parametresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0,0…10,0 Vdc | Ayar aralığı
| | Fabrika ayarı: 10,0 Vdc |
[AI1 min. değeri] $C \ r \ L \ I^*$

AI1 %0 akım ölçekleme parametresi.
Bu parametre, [AI1 Türü] $R \ r \ L \ I^*$, [Akım] $O R$ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AI1 maks. değeri] $C \ r \ H \ I^*$

AI1 %100 akım ölçekleme parametresi.
Bu parametre, [AI1 Türü] $R \ r \ L \ I^*$, [Akım] $O R$ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 20,0 mA</td>
</tr>
</tbody>
</table>

[AI1 filtresi] $R \ r \ F$

Alt filterin AI1 kesme süresi.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,00 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,00 sn</td>
</tr>
</tbody>
</table>

[AI1 Orta X noktası] $R \ r \ E$

Giriş doğrusallığının kaldınlmasında nota koordinatı. Fiziksel giriş sinyali yüzdesi.
%0, [AI1 min. değeri] ($u \ IL \ i^*$) değerine karşılık gelir
%100, [AI1 maks. değeri] ($u \ IH \ i^*$) değerine karşılık gelir

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0</td>
</tr>
</tbody>
</table>

[AI1 Orta Y noktası] $R \ r \ S$

Giriş doğrusallığının kaldınlmasında nota koordinatı (frekans referansı).
Fiziksel giriş sinyalinin [AI1 Orta X noktası] ($R \ r \ E$) yüzdesine karşılık gelen dahili frekans referansı yüzdesi.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: %0</td>
</tr>
</tbody>
</table>

[AI1 Aralığı] $R \ r \ L$

AI1 Ölçekleme seçimi.
Bu parametre, [AI1 Türü] $R \ r \ L \ I^*$ öğesi [Akım] $O R$ olarak ayarlanırsa erişilebilir.
Bu parametre [%0-100] $P \ a \ S$ değeri zorlanır:
- [AI1 Türü] $R \ r \ L \ I^*$ öğesi [Akım] $O R$ olarak ayarlanmazsa veya
- [AI1 min. değeri] $C \ r \ L \ I^*$ 3,0 mA'dan düşükses

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[%0-100]</td>
<td>$P \ a \ S$</td>
<td>Tek yönlü: AI1 akım ölçeklendirme %100'e kadar %0'dır. Fabrika Ayarı</td>
</tr>
<tr>
<td>[%+/100]</td>
<td>$P \ a \ S \ E \ G$</td>
<td>Çift yönlü: AI1 akım ölçeklendirme %100'e kadar %100'dür. [AI1 min. değeri] $C \ r \ L \ I^* %100'e karşılık gelir. [AI1 maks. değeri] $C \ r \ H \ I %100'e karşılık gelir.</td>
</tr>
</tbody>
</table>
[AI2 konfigürasyonu] \(R_{AI2} \) - Menüsü

Erişim

\[\text{Tüm ayarlar} \rightarrow [\text{Giriş/Çıkış}] \rightarrow [\text{AI/AQ}] \rightarrow [\text{AI2 konfigürasyonu}] \]

[AI2 Ataması] \(R_{AI2} \)
AI2 fonksiyonları atama.

[AI1 Ataması] \(R_{AI1} \) (bkz. sayfa 460) ile aynı.

[AI2 Tipi] \(R_{AI2} \)
Analog giriş AI2'nin konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(IO)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>(n IO)</td>
<td>-10/+10 Vdc</td>
</tr>
<tr>
<td>[AI2 min. değeri]</td>
<td>(L_{AI2})</td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[AI2 Maks. değeri] \(H_{AI2} \)
AI2 %100 gerilim ölç克莱me parametresi.
Bu parametreye [AI2 Türü] \(t_{AI2} \) , [Gerilim] \(IO \) olarak ayarlanmışsa erişilebilir.

[AI1 min. değeri] \(L_{AI1} \) (bkz. sayfa 460) ile aynı.

[AI1 maks. değeri] \(H_{AI1} \) (bkz. sayfa 460) ile aynı.

[AI2 filtresi] \(F_{AI2} \)
AI2 filtresi.

[AI1 Filtresi] \(F_{AI1} \) (bkz. sayfa 461) ile aynı.

[AI2 Xeks.orta.değeri] \(E_{AI2} \)
AI2 doğrusallığı giriş seviyesi.

[AI1 Orta X noktası] \(E_{AI1} \) (bkz. sayfa 461) ile aynı.

[AI2.Yeks.orta.değeri] \(S_{AI2} \)
AI2 doğrusallığı çıkış seviyesi.

[AI1 Orta Y noktası] \(S_{AI1} \) (bkz. sayfa 461) ile aynı.
[AI3 konfigürasyonu] \(R \), \(\mathbb{E} \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [AI/AQ] ➔ [AI3 konfigürasyonu]

Bu Menü Hakkında

Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[AI3 Ataması] \(R \), \(\mathbb{E} \)

AI3 fonksiyonları atama.

[AI1 Ataması] \(R \), \(I \) (bkz. sayfa 460) ile aynı.

[AI3 Tipi] \(R \), \(\mathbb{E} \)

Analog giriş AI3'ün konfigürasyonu.

Aşağıdaki fabrika ayarıyla [AI2 Tipi] \(R \), \(I \) (bkz. sayfa 462) ile aynı: [Akım] \(\mathbb{D} \).

[AI3 min. değeri] \(L \) \(\mathbb{E} \)

AI3 %0 gerilim ölçekleme parametresi.

[AI1 min. değeri] \(L \) \(\mathbb{E} \) (bkz. sayfa 460) ile aynı.

Bu parametre [AI3 Türü] \(R \), \(\mathbb{E} \), [Gerilim] \(\mathbb{D} \) olarak ayarlanmışsa erişilebilir.

[AI3 maks. değeri] \(H \) \(\mathbb{E} \)

AI3 %100 gerilim ölçekleme parametresi.

[AI1 maks. değeri] \(H \) \(\mathbb{E} \) (bkz. sayfa 460) ile aynı.

Bu parametre [AI3 Türü] \(R \), \(\mathbb{E} \), [Gerilim] \(\mathbb{D} \) olarak ayarlanmışsa erişilebilir.

[AI3 min. değeri] \(C \) \(R \), \(\mathbb{E} \)

AI3 %0 akım ölçekleme parametresi.

[AI1 min. değeri] \(C \) \(R \), \(I \) (bkz. sayfa 467) ile aynı.

Bu parametre [AI3 Türü] \(R \), \(\mathbb{E} \), [Akım] \(\mathbb{A} \) olarak ayarlanmışsa erişilebilir.

[AI3 maks. değeri] \(C \) \(R \), \(\mathbb{E} \)

AI3 %100 akım ölçekleme parametresi.

[AI1 maks. değeri] \(C \) \(R \), \(I \) (bkz. sayfa 467) ile aynı.

Bu parametre [AI3 Türü] \(R \), \(\mathbb{E} \), [Akım] \(\mathbb{A} \) olarak ayarlanmışsa erişilebilir.

[AI3 filtresi] \(R \), \(\mathbb{F} \)

Alt filtrein AI3 kesme süresi.

[AI1 Filtresi] \(R \), \(I \) (bkz. sayfa 467) ile aynı.

[AI3 X Ara noktası] \(R \), \(\mathbb{E} \)

AI3 doğrusallığı giriş seviyesi.

[AI1 Orta X noktası] \(R \), \(I \) (bkz. sayfa 467) ile aynı.

[AI3 Y Ara noktası] \(R \), \(\mathbb{S} \)

AI3 doğrusallığı çıkış seviyesi.

[AI1 Orta Y noktası] \(R \), \(I \) (bkz. sayfa 467) ile aynı.
[AI3 Aralığı] \(R \), \(\mathbb{D} L \)
- AI3 ölçekleme seçimi.
 Bu parametre, [AI3 Türü] \(R \), \(\mathbb{D} L \) öğesi [Akım] \(D A \) olarak ayarlanırsa erişilebilir.
 [AI1 Tipi] ile aynı \(R \), \(I L \) (bkz. sayfa 464)

[AI4 konfigürasyonu] \(R \), \(\mathbb{D} \) - Menüsü

Erişim
-Tüm ayarlar ➔ [Giriş/Çıkış] ➔ [AI/AQ] ➔ [AI4 konfigürasyonu]

[AI4 Ataması] \(R \), \(\mathbb{D} A \) ★
- AI4 fonksiyonları atama.
 Bu parametre, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
 [AI1 Ataması] \(R \), \(I A \) (bkz. sayfa 460) ile aynı.

[AI4 Tipi] \(R \), \(\mathbb{D} \) ★
- Analog giriş AI4’ün konfigürasyonu.
 Bu parametre, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(10 \mathbb{D})</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(0 \mathbb{D} A)</td>
<td>0-20 mA</td>
</tr>
<tr>
<td>[Gerilim +/-]</td>
<td>(\mathbb{D} 10 \mathbb{D})</td>
<td>-10/+10 Vdc</td>
</tr>
</tbody>
</table>

[AI4 min. değeri] \(L \), \(\mathbb{D} \) ★
- AI4 %0 gerilim ölçekleme parametresi.
 [AI1 min. değeri] \(L \), \(I \) (bkz. sayfa 460) ile aynı.

[AI4 maks. değeri] \(H \), \(\mathbb{D} \) ★
- AI4 %100 gerilim ölçekleme parametresi.
 [AI1 maks. değeri] \(H \), \(I \) (bkz. sayfa 460) ile aynı.

[AI4 min. değeri] \(C \), \(L \) ★
- AI4 %0 akım ölçekleme parametresi.
 [AI1 min. değeri] \(C \), \(L \) (bkz. sayfa 467) ile aynı.

[AI4 maks. değeri] \(C \), \(H \) ★
- AI4 %100 akım ölçekleme parametresi.
 [AI1 maks. değeri] \(C \), \(H \) (bkz. sayfa 467) ile aynı.

[AI4 filtresi] \(R \), \(\mathbb{D} F \) ★
- Altfiltrenin AI4 kesme süresi.
 Bu parametre, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
 [AI1 Filtresi] \(R \), \(F \) (bkz. sayfa 467) ile aynı.

[AI4 X Ara noktası] \(R \), \(\mathbb{D} E \) ★
- AI4 doğrusallığı giriş seviyesi.
 Bu parametre, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
 [AI1 Orta X noktası] \(R \), \(E \) (bkz. sayfa 467) ile aynı.
AI4 Y Ara noktası R , 4 S
AI4 doğruluğu çıkış seviyesi.
Bu parametreyle, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
[AI1 Orta Y noktası] R , 1 S (bkz. sayfa 467) ile aynı.

AI4 Aralığı R , 4 L
AI4 ölçekteleme seçimi.
[AI1 Türe] ile aynı R , 1 L (bkz. sayfa 465)

AI5 konfigürasyonu R , 5 S - Menüsü

Erişim
[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [AI/AQ] ➔ [AI5 konfigürasyonu]

AI5 Ataması R , 5 A
AI5 fonksiyonları atama.
Bu parametreyle, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
[AI1 Ataması] R , 1 A (bkz. sayfa 460) ile aynı.

AI5 Tipi R , 5 L
Analog giriş AI5’nin konfigürasyonu.
Bu parametreyle, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
[AI4 Tipi] R , 4 L ile aynı. (bkz. sayfa 464)

AI5 min. değeri U , L 5
AI5 %0 gerilim ölçekleme parametresi.
[AI1 min. değeri] U , L 1 (bkz. sayfa 460) ile aynı.

AI5 maks. değeri U , H 5
AI5 %100 gerilim ölçekleme parametresi.
[AI1 maks. değeri] U , H 1 (bkz. sayfa 460) ile aynı.

AI5 min. değeri C , L 5
AI5 %0 akım ölçekleme parametresi.
[AI1 min. değeri] C , L 1 (bkz. sayfa 467) ile aynı.

AI5 maks. değeri C , H 5
AI5 %100 akım ölçekleme parametresi.
[AI1 maks. değeri] C , H 1 (bkz. sayfa 467) ile aynı.

AI5 filtresi R , 5 F
Aalt filtrin AI5 kesme süresi.
Bu parametreyle, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
[AI1 Filtresi] R , 1 F (bkz. sayfa 467) ile aynı.

AI5 X Ara noktası R , 5 E
AI5 doğruluğu giriş seviyesi.
Bu parametreyle, VW3A3203 G/Ç uzatma modülü takılmışsa erişilebilir.
[AI1 Orta X noktası] \(A \), \(I_E \) (bkz. sayfa 467) ile aynı.

[AI5 Y Ara noktası] \(A \), \(S \) ★
AI5 doğrulallığı çıkış seviyesi.
Bu parametreye, VW3A3203 G/C uzatma modülü takılmışsa erişilebilir.

[AI1 Orta Y noktası] \(A \), \(I_S \) (bkz. sayfa 467) ile aynı.

[AI5 Aralığı] \(A \), \(S \) L
AI5 ölçekleme seçimi.
Bu parametreye, [AI5 Türü] \(A \), \(S \) L, [Akım] \(O \) \(R \) olarak ayarlanırsa erişilebilir.
[AI1 Tipli] ile aynı \(A \), \(I_S \) (bkz. sayfa 466)
[AQ1 konfigürasyonu] R_{a1} - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [Al/AQ] ➔ [AQ1 konfigürasyonu]

Minimum ve Maksimum Çıkış Değerleri

Volt cinsinden minimum çıkış değeri, atanmış parametrenin alt sınırına ve maksimum değeri üst sınırına karşılık gelir. Minimum değer maksimum değerin üstünde olabilir.

PA Atanan parametre
C/VO Akım veya gerilim çıkış
UL Üst sınır
LL Alt sınır
1 [Min Çıkış] R_{aLX} veya u_{aLX}
2 [Maks Çıkış] R_{aHX} veya u_{aHX}

Atanan Parametrenin Ölçeklenmesi

Atanan parametrenin ölçüğü, her analog çıkış için iki parametreyle alt ve üst sınır değerlerini değiştirek gereksinimlere uygun olarak uyarlanabilir.

Bu parametreler % cinsinden verilmiştir. %100, konfigüre edilen parametrenin toplam değişim aralığına karşılık gelir: %100 = üst sınır - alt sınır.

Nominal torkun –3 ve +3 katı arasında değişen [Yönlü tork] $S \leq 9$ örneğinde %100, nominal torkun 6 katına karşılık gelir.

- [Ölçekleme AQx min] R_{5LX} parametresi, alt sınırı değiştirir: yeni değer = alt sınır + (aralıkg x R_{5LX}).
 %0 değeri (fabrika ayarı) alt sınırı değiştirmez.
- [Ölçekleme AQx maks] R_{5HX} parametresi, üst sınırı değiştirir: yeni değer = alt sınır + (aralıkg x R_{5LX}). %100 değeri (fabrika ayarı) üst sınırı değiştirmez.
- [Ölçekleme AQx min] R_{5LX}, daima [Ölçekleme AQx maks] R_{5HX} dan daha düşük olmalıdır.
Uygulama Örneği

AQ1 çıkışındaki motor akım değeri, 0,8 In tahriğe eşdeğerde 0...20 mA, aralık 2 motorla aktarılacaktır.
- [Motor Akımı] \(αCr \) parametresi anma tahriğe akımının 0 ila 2 kat arasında değişir.
- [AQ1 min ölç.] \(ASLx \) %0 fabrika ayarında kalan alt sınırı değiştirilmemelidir.
- [AQ1 maks ölç.] \(ASHx \) üst sınırı, nominal motor torkunun 0,5 kat veya 100 - 100/5 = %80 oranında değiştirilmelidir (yeni değer = alt sınır + (aralık x [AQ1 maks ölç克莱me] \(ASHx \))).

[AQ1 Atama] \(RαI \)

AQ1 ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>(nα)</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>(αCr)</td>
<td>Motordaki akım 0'dan 2 In'ye (In = Kurulum kılavuzunda veya tahriğin isim plakasında gösterilen nominal tahrik akımı).</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>(αFr)</td>
<td>Çıkış frekansı, 0'dan [Maks Frekansı] (tFr) Fabrika Ayarı</td>
</tr>
<tr>
<td>[Rampa çıkışı]</td>
<td>(αrP)</td>
<td>0'dan [Maks Frekansı] (tFr)</td>
</tr>
<tr>
<td>[Motor torku]</td>
<td>(tFr)</td>
<td>Motor torku, nominal motor torkunun 0'dan 3 katına kadarıdır</td>
</tr>
<tr>
<td>[İşaretlenmiş tork]</td>
<td>(SFr)</td>
<td>İşaretlenmiş motor torku, nominal motor torkunun -3 ile +3 katı arasındaki.</td>
</tr>
<tr>
<td>[İşaretlenmiş rampa]</td>
<td>(FrS)</td>
<td>İşaretlenmiş rampa çıkışı, -[Maks Frekansı] (tFr) ile +[Maks Frekansı] arasında (tFr).</td>
</tr>
<tr>
<td>[PID ref.]</td>
<td>(αPS)</td>
<td>PID kontrolörü referansı [Min PID referansı] (P) ile [Maks PID referansı] arasında (P).</td>
</tr>
<tr>
<td>[PID geri besleme]</td>
<td>(αPF)</td>
<td>PID kontrolörü geri beslemesi [Min PID geri beslemesi] (P) ile [Maks PID geri beslemesi] arasında (P).</td>
</tr>
<tr>
<td>[PID çıkışı]</td>
<td>(αP0)</td>
<td>PID kontrolörü çıkışı [Düşük hız] (LSP) ile [Yüksek hız] (HSP) arasında (HSP).</td>
</tr>
<tr>
<td>[Motor gücü]</td>
<td>(Lhr)</td>
<td>Motor gücü, [Nominal motor gücü] (nPr).</td>
</tr>
<tr>
<td>[Motor termal]</td>
<td>(Lhd)</td>
<td>Motor termik durumu, nominal termik durumun %0'dan 200'e kadarıdır</td>
</tr>
<tr>
<td>[Tahrik termal]</td>
<td>(Lhd)</td>
<td>Tahrik termik durumu, nominal termik durumun %0 ile %200'ü arasında</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>[Tork 4Q]</td>
<td>a F 4 q</td>
<td>İşarelenmiş motor torku, nominal motor torkunun -3 ile +3 katı aralığında.</td>
</tr>
<tr>
<td>[Ölçülen Motor Frek]</td>
<td>a F r</td>
<td>Ölçülen motor frekansı</td>
</tr>
<tr>
<td>[İşarelenmiş çık. frek]</td>
<td>a F S</td>
<td>İşarelenmiş çıkış frekansı, -[Maks Frekans] t F r ile +[Maks Frekans] arasında t F r</td>
</tr>
<tr>
<td>[Mot term2]</td>
<td>b H r 2</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>[Mot term3]</td>
<td>b H r 3</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>[Mot term4]</td>
<td>b H r 4</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>[İşarelenmemiş Trk Ref]</td>
<td>5 b r</td>
<td>İşarelenmemiş tork referansı</td>
</tr>
<tr>
<td>[İşarelenmiş Trk Ref]</td>
<td>S 5 b r</td>
<td>İşarelenmiş tork referansı</td>
</tr>
<tr>
<td>[Tork sınırı]</td>
<td>tr</td>
<td>Tork sınırı</td>
</tr>
<tr>
<td>[Motor ger.]</td>
<td>u P</td>
<td>Motora uygulan gerilim, 0 ile [Nom Motor Gerilimi] arasında u 5</td>
</tr>
<tr>
<td>[M/S Çıkış Hız Ref]</td>
<td>N S S o</td>
<td>Master / bağlı çıkış hız referansı</td>
</tr>
<tr>
<td>[M/S Çıkış Tork Ref]</td>
<td>N S E o</td>
<td>Master / bağlı çıkış tork referansı</td>
</tr>
</tbody>
</table>

[AQ1 Tipi] a o l b

AQ1 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>l o u</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>l R</td>
<td>0-20 mA</td>
</tr>
</tbody>
</table>

[AQ1 min. çıkışı] a o l b / ★

AQ1 %0 akım ölç克莱me parametresi.
Bu parametre, [AQ1 Türü] a o l b , [Akım] l R olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı: 0,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 maks. çıkışı] a o H b / ★

AQ1 %100 akım ölç克莱me parametresi.
Bu parametre, [AQ1 Türü] a o l b , [Akım] l R olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...20,0 mA</td>
<td>Ayar aralığı: 20,0 mA</td>
</tr>
</tbody>
</table>

[AQ1 min Çıkışı] u o l b / ★

AQ1 %0 gerilim ölç克莱me parametresi.
Bu parametre, [AQ1 Türü] a o l b , [Gerilim] l o u olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 0,0 Vdc</td>
</tr>
</tbody>
</table>
[AQ1 maksi. Çıkışı] \(o \cdot H / \bigstar \)

AQ1 %100 gerilim ölçkeleme parametresi.
Bu parametreye, [AQ1 Türü] \(R \circ I \cdot L \cdot [Geriлим] \) \(I \o \cdot u \) olarak ayarlanmışsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...10,0 Vdc</td>
<td>Ayar aralığı: 10,0 Vdc</td>
</tr>
</tbody>
</table>

[AQ1 min ölçkeleme] \(R 5 L / \)

AQ1 %0 ölçkeleme parametresi.
Atanan parametrenin alt sınırının, maksimum olası değişimin %’si olarak ölçeklenmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...%100,0</td>
<td>Ayar aralığı: %0,0</td>
</tr>
</tbody>
</table>

[AQ1 maks ölçkeleme] \(R 5 H / \)

AQ1 %100 ölçkeleme parametresi.
Atanan parametrenin üst sınırının, maksimum olası değişimin %’si olarak ölçeklenmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0,0...%100,0</td>
<td>Ayar aralığı: %100,0</td>
</tr>
</tbody>
</table>

[AQ1 Filtresi] \(R \circ I F \)

AQ1 alt filtro kesme süresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...10,00 sn</td>
<td>Ayar aralığı: 0,00 sn</td>
</tr>
</tbody>
</table>
[AQ2 konfigürasyonu] R o 2 - Menüsü

Erişim

[Tüm ayarlar] ⇛ [Giriş/Çıkış] ⇛ [AI/AQ] ⇛ [AQ2 konfigürasyonu]

Bu Menü Hakkında

Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[AQ2 ataması] R o 2

AQ2 ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Motor Akımı]</td>
<td>o Cr</td>
<td>Motordaki akım 0'dan 2 In'ye (In = Kurulum kilavuzunda veya tahriğin isim plakasında gösterilen nominal tahrik akımı) Fabrika Ayarı</td>
</tr>
<tr>
<td>[Motor Frekansı]</td>
<td>o Fr</td>
<td>Çıktı frekansı, 0'dan [Maks Frekans] ile Fr</td>
</tr>
<tr>
<td>[Rampa çıkışı]</td>
<td>o r P</td>
<td>0'dan [Maks Frekans] ile Fr</td>
</tr>
<tr>
<td>[Motor torku]</td>
<td>t r q</td>
<td>Motor torku, nominal motor torkunun 0'dan 3 katına kadardır</td>
</tr>
<tr>
<td>[İşaretilenmiş tork]</td>
<td>S t q</td>
<td>İşaretilenmiş motor torku, nominal motor torkunun -3 ile +3 katı arasındadır. + işaretli, motor moduna ve – işaretli jeneratör moduna (frenleme) karşılık gelir.</td>
</tr>
<tr>
<td>[İşaretilenmiş rampa]</td>
<td>o r S</td>
<td>İşaretilenmiş rampa çıkış, –[Maks Frekans] ile +[Maks Frekans] arasında Fr</td>
</tr>
<tr>
<td>[Motor gücü]</td>
<td>o P r</td>
<td>Motor gücü, [Nominal motor gücü]nin 0 ile 2,5 katı arasında Pr</td>
</tr>
<tr>
<td>[Motor termal]</td>
<td>t H r</td>
<td>Motor termal durumu, nominal termal durumunun 0%dan 200’e kadardır</td>
</tr>
<tr>
<td>[Tahrik termal]</td>
<td>t H d</td>
<td>Tahrik termal durumu, nominal termal durumunun 0%dan 200’e kadardır</td>
</tr>
<tr>
<td>[Tork 4Q]</td>
<td>t r 4 q</td>
<td>İşaretilenmiş motor torku, nominal motor torkunun -3 ile +3 katı arasındadır. + ve - işaretleri moddan bağımsız olarak torkun fiziksel yönüne karşılık gelir (motor veya jeneratör)</td>
</tr>
<tr>
<td>[Ölçülen Motor Frek.]</td>
<td>a F r</td>
<td>Ölçülen motor frekansı</td>
</tr>
<tr>
<td>[İşaretilenmiş çıkış frek.]</td>
<td>o F 5</td>
<td>İşaretilenmiş çıkış frekansı, –[Maks Frekans] ile +[Maks Frekans] arasında Fr</td>
</tr>
<tr>
<td>[Mot term2]</td>
<td>t H r 2</td>
<td>Motor termal 2 durumu</td>
</tr>
<tr>
<td>[Mot term3]</td>
<td>t H r 3</td>
<td>Motor termal 3 durumu</td>
</tr>
<tr>
<td>[Mot term4]</td>
<td>t H r 4</td>
<td>Motor termal 4 durumu</td>
</tr>
<tr>
<td>[İşaretilenlenmiş Trk Ref]</td>
<td>o r</td>
<td>İşaretilenmiş tork referansı</td>
</tr>
<tr>
<td>[İşaretilenmiş Trk Ref]</td>
<td>S t r</td>
<td>İşaretilenmiş tork referansı</td>
</tr>
<tr>
<td>[Tork sınırı]</td>
<td>t q L</td>
<td>Tork sınırı</td>
</tr>
<tr>
<td>[Motor ger.]</td>
<td>u o P</td>
<td>Motora uygulanmış gerilim, 0 ile [Nom Motor Gerilimi] arasında u ile 5</td>
</tr>
</tbody>
</table>
[AQ2 Tipi] \(\text{AO2} \)

AQ2 tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gerilim]</td>
<td>(I_D)</td>
<td>0-10 Vdc</td>
</tr>
<tr>
<td>[Akım]</td>
<td>(O_A)</td>
<td>0-20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[AQ2 min. çıkışı] \(\text{AO2} \)

AQ2 %0 akım ölçekleme parametresi.
Bu parametre, [AQ2 Türü] \(\text{AO2} \) \(L \) \(L \) \(L \) olarak ayarlanmışsa erişilebilir.

[AQ1 min. çıkışı] \(\text{AO1} \) \(L \) \(L \) \(L \) (bkz. sayfa 469) ile aynı.

[AQ2 maks. çıkışı] \(\text{AO2} \)

AQ2 %100 akım ölçekleme parametresi.
Bu parametre, [AQ2 Türü] \(\text{AO2} \) \(L \) \(L \) \(L \) olarak ayarlanmışsa erişilebilir.

[AQ1 maks. çıkışı] \(\text{AO1} \) \(L \) \(L \) \(L \) (bkz. sayfa 469) ile aynı.

[AQ2 min Çıkışı] \(\text{AO2} \) \(L \) \(L \) \(L \)

AQ2 %0 gerilim ölçekleme parametresi.
Bu parametre, [AQ2 Türü] \(\text{AO2} \) \(L \) \(L \) \(L \) \(L \) olarak ayarlanmışsa erişilebilir.

[AQ1 min. çıkışı] \(\text{AO1} \) \(L \) \(L \) \(L \) \(L \) (bkz. sayfa 469) ile aynı.

[AQ2 maks Çıkışı] \(\text{AO2} \) \(L \) \(L \) \(L \) \(L \)

AQ2 %100 gerilim ölçekleme parametresi.
Bu parametre, [AQ2 Türü] \(\text{AO2} \) \(L \) \(L \) \(L \) \(L \) olarak ayarlanmışsa erişilebilir.

[AQ1 maks. çıkışı] \(\text{AO1} \) \(L \) \(L \) \(L \) \(L \) \(L \) \(L \) (bkz. sayfa 470) ile aynı.

[AQ2 min Ölçekleme] \(\text{AO2} \) \(S \) \(L \) \(L \)

AQ2 %0 ölçekleme parametresi.

[AQ1 min ölçek.] \(\text{AO1} \) \(S \) \(L \) \(L \) \(L \) (bkz. sayfa 470) ile aynı.

[AQ2 maks Ölçekleme] \(\text{AO2} \) \(S \) \(H \) \(L \)

AQ2 %100 ölçekleme parametresi.

[AQ1 maks ölçek.] \(\text{AO1} \) \(S \) \(H \) \(L \) \(L \) \(L \) \(L \) \(L \) (bkz. sayfa 470) ile aynı.

[AQ2 Filtresi] \(\text{AO2} \) \(F \)

AQ2 alt frite kesme süresi.

[AQ1 Filtresi] \(\text{AO1} \) \(F \) \(L \) \(L \) \(L \) \(L \) (bkz. sayfa 470) ile aynı.
[Sanal Al1] AV 1 - Menüsü

Erişim

[Tüm ayarlar] ↔ [Giriş/Çıkış] ↔ [AI/AQ] ↔ [Sanal AI1]

[AlV1 Ataması] AV 1 A

Sanal Al1 fonksiyonu ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n0</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Tork Ref Ofseti]</td>
<td>t9o</td>
<td>Tork ofset kaynağı</td>
</tr>
<tr>
<td>[Tork Ref Oranı]</td>
<td>t9r</td>
<td>Tork oranı kaynağı</td>
</tr>
<tr>
<td>[Ref Frekans 2 Toplama]</td>
<td>sR2</td>
<td>Referans frekansı 2 toplama</td>
</tr>
<tr>
<td>[Moment sınırlaması]</td>
<td>tRa</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Tork sınırlaması 2]</td>
<td>tR2</td>
<td>Tork sınırlaması: analog değerle aktivasyon</td>
</tr>
<tr>
<td>[Ref Frek 2'yi Çıkar]</td>
<td>dR2</td>
<td>Referans frekansı 2'yi çıkar</td>
</tr>
<tr>
<td>[Ref Frekans 3 Toplama]</td>
<td>sR3</td>
<td>Referans frekansı 3 toplama</td>
</tr>
<tr>
<td>[Ref Frek 3'yi Çıkar]</td>
<td>dR3</td>
<td>Referans frekansı 3'yi çıkar</td>
</tr>
<tr>
<td>[Ref Frekansı 2 çarpımı]</td>
<td>nR2</td>
<td>Referans frekansı 2 çarpımı</td>
</tr>
<tr>
<td>[Ref Frekansı 3 çarpımı]</td>
<td>nR3</td>
<td>Referans frekansı 3 çarpımı</td>
</tr>
</tbody>
</table>

[AlV1 Kanal Ataması] AV 1 C

Sanal analog giriş AIV1 için kanal ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n0</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Ref. Frek-Modbus]</td>
<td>n db</td>
<td>Modbus üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Ref. Frek-CANopen]</td>
<td>LAn</td>
<td>CANopen modülü takılmışsa CANopen üzerinden referans frekansı</td>
</tr>
<tr>
<td>[Gömülü Ethernet]</td>
<td>EtH</td>
<td>Gömülü Ethernet</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340++N4E tahriklerinde erişilebilir.

[AlV1 Tipi] AV 1 E

Sanal analog giriş AIV1’in konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+/-8192]</td>
<td>nEG</td>
<td>-8192/+8192</td>
</tr>
<tr>
<td>[%-100]</td>
<td>PnEG</td>
<td>%-100,00/+100,00</td>
</tr>
</tbody>
</table>
Alt bölüm 8.42
[Giriş/Çıkış] - [Röle]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R1 konfigürasyon] r 1 - Menüsü</td>
<td>475</td>
</tr>
<tr>
<td>[R2 konfigürasyon] r 2 - Menüsü</td>
<td>478</td>
</tr>
<tr>
<td>[R3 konfigürasyon] r 3 - Menüsü</td>
<td>479</td>
</tr>
<tr>
<td>[R4 konfigürasyon] r 4 - Menüsü</td>
<td>479</td>
</tr>
<tr>
<td>[R5 konfigürasyon] r 5 - Menüsü</td>
<td>480</td>
</tr>
<tr>
<td>[R6 konfigürasyon] r 6 - Menüsü</td>
<td>480</td>
</tr>
<tr>
<td>[Giriş/Çıkış] r 0 - Menüsü</td>
<td>481</td>
</tr>
</tbody>
</table>
[R1 konfigürasyonu] ➔ [Giriş/Çıkış] ➔ [Rôle] ➔ [R1 konfigürasyonu]

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [Rôle] ➔ [R1 konfigürasyonu]

[R1 Ataması] ➔ [Giriş/Çıkış] ➔ [Rôle] ➔ [R1 konfigürasyonu]

R1 ataması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Atanamamış</td>
</tr>
<tr>
<td>Çalışma Durumu Hatası</td>
<td>FL t</td>
<td>Çalışma durumu hatası</td>
</tr>
<tr>
<td>Sürücü çalışıyor</td>
<td>r u n</td>
<td>Sürücü çalışıyor</td>
</tr>
<tr>
<td>[Motor Frek Yükseği]</td>
<td>F R</td>
<td>Motor frekansı eşliğinde (Motor Frek Eşği) F R d ulaştırıldı</td>
</tr>
<tr>
<td>Yükse k Hızı ulaştırıldı</td>
<td>FL R</td>
<td>Yükse k hızı ulaştırıldı</td>
</tr>
<tr>
<td>[Akım Eşliğinde Üstüldi]</td>
<td>C t R</td>
<td>Motor akımı eşliğinde (Yükse k Eşği) C t R ulaştırıldı</td>
</tr>
<tr>
<td>[Ref Frek Ulaştırıldı]</td>
<td>S R</td>
<td>Frekans referansına ulaştırıldı</td>
</tr>
<tr>
<td>[Motor Termal Eşliğinde ulaştırıldı]</td>
<td>t R</td>
<td>Motor termal eşliğinde (Motor Termal Eşği) t R d ulaştırıldı</td>
</tr>
<tr>
<td>[PID Hatası Uyarısı]</td>
<td>P E R E</td>
<td>PID hatası uyanı</td>
</tr>
<tr>
<td>[PID Geri Besleme Uyarısı]</td>
<td>P R F R</td>
<td>PID geri besleme uyanı</td>
</tr>
<tr>
<td>[Mot Frek Yükseği 2]</td>
<td>F R</td>
<td>İkinci frekans eşliğinde (Motor Eşği 2) F R d ulaştırıldı</td>
</tr>
<tr>
<td>Sürücü Termal Eşliğinde ulaştırıldı</td>
<td>t R d</td>
<td>Sürücü termal eşينة ulaştırıldı</td>
</tr>
<tr>
<td>[Ref Frek Yükseği ulaştırıldı]</td>
<td>r e R H</td>
<td>Frekans referansı yükse k eşinde ulaştırıldı</td>
</tr>
<tr>
<td>[Ref Frek Düşük Eşği ulaştırıldı]</td>
<td>r e R L</td>
<td>Frekans referansı düşük eşinde ulaştırıldı</td>
</tr>
<tr>
<td>[Mot Frek Düşük Eşği]</td>
<td>F R L</td>
<td>Frekans düşük eşinde (Motor Düşük Eşği) F R L d ulaştırıldı</td>
</tr>
<tr>
<td>[Motor Frekans Düşük Eşği 2]</td>
<td>F2 R L</td>
<td>İkinci frekans düşük eşinde (Motor Eşği 2) F2 R L d ulaştırıldı</td>
</tr>
<tr>
<td>[Düşük Akım Üstüldi]</td>
<td>C t R L</td>
<td>Akım düşük eşinde (Akım Düşük Eşği) C t R L d ulaştırıldı</td>
</tr>
<tr>
<td>[Proses Düşük Uyanı]</td>
<td>u L R</td>
<td>Düşük yük uyanısı</td>
</tr>
<tr>
<td>[Proses Aşırı Yük Uyanı]</td>
<td>o L R</td>
<td>Aşırı yük uyanısı</td>
</tr>
<tr>
<td>[Çebri Çalışma]</td>
<td>E r n</td>
<td>Akıl Durum Çalışması</td>
</tr>
<tr>
<td>[Gevec Halat Uyanısı]</td>
<td>r S d R</td>
<td>Halat Gevec</td>
</tr>
<tr>
<td>[Yükse k Tork Uyanısı]</td>
<td>t t H R</td>
<td>Yükse k tork eşği</td>
</tr>
<tr>
<td>[İleri]</td>
<td>NF r d</td>
<td>İleri yön çalışır</td>
</tr>
<tr>
<td>[Geri]</td>
<td>Nd r S</td>
<td>Geri yön çalışır</td>
</tr>
<tr>
<td>[Kont. Panelli komutu]</td>
<td>b N P</td>
<td>Grafik Ekran Terminali aracılığıyla kontrol aktif. (yalınızca Yerel/Uzak düğmesiyle aktif)</td>
</tr>
<tr>
<td>[Rampa değiştirme]</td>
<td>r P 2</td>
<td>Rampa değiştirme durumu</td>
</tr>
<tr>
<td>[Mot 2 Termal Eşği ulaştırıldı]</td>
<td>t S 2</td>
<td>Motor 2 termal eşinde (TTD2) ulaştırıldı</td>
</tr>
<tr>
<td>[Mot 3 Termal Eşği ulaştırıldı]</td>
<td>t S 3</td>
<td>Motor 3 termal eşinde (TTD3) ulaştırıldı</td>
</tr>
<tr>
<td>[Mot 4 Termal Eşği ulaştırıldı]</td>
<td>t S 4</td>
<td>Motor 4 termal eşinde (TTD4) ulaştırıldı</td>
</tr>
<tr>
<td>[Negatif Tork]</td>
<td>R t S</td>
<td>Gerçek tork işareti</td>
</tr>
<tr>
<td>[Konfig 0 aktif]</td>
<td>C N F 0</td>
<td>Konfigürasyon 0 aktif</td>
</tr>
<tr>
<td>[Konfig 1 aktif]</td>
<td>C N F 1</td>
<td>Konfigürasyon 1 aktif</td>
</tr>
<tr>
<td>[Konfig 2 aktif]</td>
<td>C N F 2</td>
<td>Konfigürasyon 2 aktif</td>
</tr>
<tr>
<td>[Konfig 3 aktif]</td>
<td>C N F 3</td>
<td>Konfigürasyon 3 aktif</td>
</tr>
<tr>
<td>[ayar 1 aktif]</td>
<td>C F P 1</td>
<td>Parametre seti 1 aktif</td>
</tr>
<tr>
<td>[ayar 2 aktif]</td>
<td>C F P 2</td>
<td>Parametre seti 2 aktif</td>
</tr>
<tr>
<td>[ayar 3 aktif]</td>
<td>C F P 3</td>
<td>Parametre seti 3 aktif</td>
</tr>
<tr>
<td>[DC Barası Yüklenli]</td>
<td>d b L</td>
<td>DC barası yüklenli</td>
</tr>
<tr>
<td>[Frenleme]</td>
<td>b r S</td>
<td>Frenleme işlem dizisinde</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>[Darbe Uyanısı Eşğ Ulaşıldı]</td>
<td>F q L R</td>
<td>Darbe uyanışı eşğiine ulaşıldı</td>
</tr>
<tr>
<td>[Akım mevcut]</td>
<td>P C P</td>
<td>Motor akımı var</td>
</tr>
<tr>
<td>[Sınır Anahtarına Ulaşıldı]</td>
<td>L s R</td>
<td>Nihayet şalteri farklı sonucuuna aktif hale getirildi</td>
</tr>
<tr>
<td>[Dinamik Yük Uyanısı]</td>
<td>d L d R</td>
<td>Dinamik yük algılaması</td>
</tr>
<tr>
<td>[Uyan grubu 1]</td>
<td>a G I</td>
<td>Uyan grubu 1</td>
</tr>
<tr>
<td>[Uyan grubu 2]</td>
<td>a G 2</td>
<td>Uyan grubu 2</td>
</tr>
<tr>
<td>[Uyan grubu 3]</td>
<td>a G 3</td>
<td>Uyan grubu 3</td>
</tr>
<tr>
<td>[Uyan grubu 4]</td>
<td>a G 4</td>
<td>Uyan grubu 4</td>
</tr>
<tr>
<td>[Uyan grubu 5]</td>
<td>a G 5</td>
<td>Uyan grubu 5</td>
</tr>
<tr>
<td>[Harici Hata Uyanısı]</td>
<td>E F A</td>
<td>Harici hata uyanısı</td>
</tr>
<tr>
<td>[Düşük Gerilim Uyanısı]</td>
<td>u S R</td>
<td>Düşük gerilim uyanısı</td>
</tr>
<tr>
<td>[Önleyici Düşük Gerilim Aktif]</td>
<td>u P R</td>
<td>Düşük gerilim önleme uyanısı</td>
</tr>
<tr>
<td>[Kayma uyanısı]</td>
<td>R n R</td>
<td>Sapma önleme uyanısı</td>
</tr>
<tr>
<td>[Sürücü Termal Uyanısı]</td>
<td>t H R</td>
<td>Süreç termal durumu uyanısı</td>
</tr>
<tr>
<td>[Yük Hırtı Uyanısı]</td>
<td>b S R</td>
<td>Fren hızı uyanısı</td>
</tr>
<tr>
<td>[Fren kontak uyanısı]</td>
<td>b C R</td>
<td>Fren kontak uyanısı</td>
</tr>
<tr>
<td>[Lin T/A ulaşıldı]</td>
<td>s S A</td>
<td>Tork akımı sınırlaması uyanısı</td>
</tr>
<tr>
<td>[Trk ktl Uyanısı]</td>
<td>r t R</td>
<td>Tır kontakt zaman aşımı uyanısı</td>
</tr>
<tr>
<td>[IGBT Termal Uyanısı]</td>
<td>t J R</td>
<td>Termal kesme uyanısı</td>
</tr>
<tr>
<td>[BR Termal Uyanısı]</td>
<td>b a R</td>
<td>Frenleme direnci sıcaklık uyanısı</td>
</tr>
<tr>
<td>[DBR Aktif]</td>
<td>b r R 5</td>
<td>DBR Aktif</td>
</tr>
<tr>
<td>[Al3 4-20 Kaybı Uyanısı]</td>
<td>R P 3</td>
<td>Al3 4-20 mA kayıp uyanısı</td>
</tr>
<tr>
<td>[Al4 4-20 Kaybı Uyanısı]</td>
<td>R P 4</td>
<td>Al4 4-20 mA kayıp uyanısı</td>
</tr>
<tr>
<td>[Al5 4-20 Kaybı Uyanısı]</td>
<td>R P 5</td>
<td>Al5 4-20 mA kayıp uyanısı</td>
</tr>
<tr>
<td>[Hazır]</td>
<td>r d 7 Y</td>
<td>Başlatılamura hazır</td>
</tr>
<tr>
<td>[Al1 4-20 Kaybı Uyanısı]</td>
<td>R P I</td>
<td>Al1 4-20 mA kayıp uyanısı</td>
</tr>
<tr>
<td>[Al1 Ter Uyanısı]</td>
<td>t P I A</td>
<td>Termal 1 alarmı</td>
</tr>
<tr>
<td>[Geri çekilme hızı]</td>
<td>F r F</td>
<td>Durum / hata reaksiyonu hızı</td>
</tr>
<tr>
<td>[Hız Korunum]</td>
<td>r L 5</td>
<td>Durum reaksiyonu / hız koruma</td>
</tr>
<tr>
<td>[Dururum Türene Göre]</td>
<td>S k k</td>
<td>Dururum ardından hata tetiklenmeden STT’dede olayda / duruştan tepki.</td>
</tr>
<tr>
<td>[Al3 Ter Uyanısı]</td>
<td>t P 3 R</td>
<td>Termal 3 Uyanısı</td>
</tr>
<tr>
<td>[Al4 Ter Uyanısı]</td>
<td>t P 4 R</td>
<td>Termal 4 Uyanısı</td>
</tr>
<tr>
<td>[Al5 Ter Uyanısı]</td>
<td>t P 5 R</td>
<td>Termal 5 Uyanısı</td>
</tr>
<tr>
<td>[Al5 4-20 Kaybı Uyanısı]</td>
<td>R P 5</td>
<td>Al5 4-20 mA kayıp uyanısı</td>
</tr>
<tr>
<td>[Kon. Hedefine Ulaşıldı]</td>
<td>P P W 5</td>
<td>Konum hedefine ulaşıldı</td>
</tr>
<tr>
<td>[Sıc. Sens Al2 Uyanısı]</td>
<td>t 5 1 R</td>
<td>Sıcaklık sensörü Al1 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al3 Uyanısı]</td>
<td>t 5 3 R</td>
<td>Sıcaklık sensörü Al3 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al4 Uyanısı]</td>
<td>t 5 4 R</td>
<td>Sıcaklık sensörü Al4 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al5 Uyanısı]</td>
<td>t 5 5 R</td>
<td>Sıcaklık sensörü Al5 uyanısı (açık devre)</td>
</tr>
</tbody>
</table>
[R1 Geçikme süresi] \(r \) / \(d \)
R1 aktivasyon geçikme süresi.
Durumda yapılan değişiklik sadece konfigüre edilen süre geçtikten sonra, bilgi doğru haline geçince geçerli olur.
Gecikme, [Çalışma Durumu Hatası] \(F L \) ataması için ayarlanamaz ve 0'da kalır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...60.000 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 ms</td>
</tr>
</tbody>
</table>

[Şurada R1 aktif] \(r \) / \(s \)
R1 durumu (çıkış aktif seviyesi).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P) (a) (S)</td>
<td>Bilgi doğru iken Durum 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>0</td>
<td>(n) (E) (G)</td>
<td>Bilgi doğru iken Durum 0</td>
</tr>
</tbody>
</table>

[1] \(P \) \(a \) \(S \) konfigürasyonu, [Çalışma Durumu "Hatasi"] \(F L \) ataması için değiştirilemez.

[R1 Tutma süresi] \(r \) / \(H \)
R1 tutma geçikme süresi.
Durumda yapılan değişiklik sadece konfigüre edilen süre geçtikten sonra, bilgi yanlış haline geçince geçerli olur.
Tutma süresi, [Çalışma Durumu "Hatasi"] \(F L \) ataması için ayarlanamaz ve 0'da kalır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...9.999 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0 ms</td>
</tr>
</tbody>
</table>
[R2 konfigürasyonu] r² - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [Rôle] ➔ [R2 konfigürasyonu]

Bu Menü Hakkında

[R1 Konfigürasyonu] r₁ - menüsü (bkz. sayfa 472) ile aynı.

[R2 Ataması] r²

R2 ataması.
Aşağıdakine ek olarak, [R1 Ataması] r₁ (bkz. sayfa 475) ile aynı:

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>NO</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Frenleme İşlem Dizisi]</td>
<td>BLC</td>
<td>Frenleme işlem dizisi</td>
</tr>
<tr>
<td>[Şebeke Kontaktörü]</td>
<td>LLC</td>
<td>Ana şebeke kontaktör kontrolü</td>
</tr>
<tr>
<td>[DCşarj.kont]</td>
<td>DCO</td>
<td>DCşarj.kont</td>
</tr>
<tr>
<td>[Çıkış kont]</td>
<td>OCC</td>
<td>Çıkış kontaktörü kontrolü</td>
</tr>
</tbody>
</table>

[R2 Gecikme süresi] r² d
R2 aktivasyon gecikme süresi.

[Şurada R2 aktif] r² 5
R2 durumu (çıkış aktif seviyesi).

[R2 Tutma süresi] r² H
R2 bekletme gecikme süresi.
[R3 konfigürasyonu] r Ṣ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [Röle] ➔ [R3 konfigürasyonu]

Bu Menü Hakkında

[R1 konfigürasyonu] r l - Menüsü (bkz. sayfa 475) ile aynı.
Bu menüye 22 kW'tan büyük gücü olan sürücülerde erişilebilir.

[R3 Ataması] r Ṣ
R3 ataması.

[R2 Ataması] r 2 (bkz. sayfa 478) ile aynı.

[R3 Gecikme süresi] r Ṣ Ṣ
R3 aktivasyon gecikme süresi.

[Şurada R3 aktif] r Ṣ 5
R3 durumu (çıkış aktif seviyesi).

[R3 Tutma süresi] r Ṣ Ṣ
R3 tutma gecikme süresi.

[R4 konfigürasyonu] r 4 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Giriş/Çıkış] ➔ [Röle] ➔ [R4 konfigürasyonu]

Bu Menü Hakkında

[R1 konfigürasyonu] r l - Menüsü (bkz. sayfa 475) ile aynı.
Aşağıdaki parametreler, VW3A3204 I/O röle çıkış opsiyon modülü takılmışsa erişilebilir.

[R4 Ataması] r 4 ★
R4 ataması.

[R2 Ataması] r 2 (bkz. sayfa 478) ile aynı.

[R4 Gecikme süresi] r 4 Ṣ
R4 aktivasyon gecikme süresi.

[Şurada R4 aktif] r 4 5 ★
R4 durumu (çıkış aktif seviyesi).

[R4 Tutma süresi] r 4 Ṣ
R4 tutma gecikme süresi.
[R5 konfigürasyonu] 5 - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [Röle] [R5 konfigürasyonu]

Bu Menü Hakkında

[R1 konfigürasyonu] 1 - Menüsü (bkz. sayfa 475) ile aynı.
Aşağıdaki parametrelerle, VW3A3204 I/O röle çıkış opsiyon modülü takılmışsa erişilebilir.

[R5 Ataması] 5 ★
R5 ataması.

[R2 Ataması] 2 (bkz. sayfa 479) ile aynı.

[R5 Gecikme süresi] 5 d ★
R5 aktivasyon gecikme süresi.

[R6 konfigürasyonu] 6 - Menüsü

Erişim

[Tüm ayarlar] [Giriş/Çıkış] [Röle] [R6 konfigürasyonu]

Bu Menü Hakkında

[R1 konfigürasyonu] 1 - Menüsü (bkz. sayfa 475) ile aynı.
Aşağıdaki parametrelerle, VW3A3204 I/O röle çıkış opsiyon modülü takılmışsa erişilebilir.

[R6 Ataması] 6 ★
R6 ataması.

[R2 Ataması] 2 (bkz. sayfa 479) ile aynı.

[R6 Gecikme süresi] 6 d ★
R6 aktivasyon gecikme süresi.

[R6 Tutma süresi] 6 H ★
R6 tutma gecikme süresi.
[Giriş/Çıkış] → Menüsü

Erişim

[Tüm ayarlar] → [Giriş/Çıkış]

[Ref Frek Şablonu] \(b \ 5 \ P \)

Referans frekans şablonu seçimi.
Bu parametre hız referansının analog girişler ve darbe girişinde nasıl hesapla katılması gerektiğini tanımlamaktadır. PID kontrolörü durumunda bu PID çıkış referansıdır.

Sınırlar, [Düşük hız] \(L \ 5 \ P \) ve [Yüksek hız] \(H \ 5 \ P \) parametreleri tarafından ayarlanır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>(b \ 5 \ d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Referans = 0, frekans = [Düşük hız] (L \ 5 \ P)</td>
</tr>
<tr>
<td>[Sabit]</td>
<td>(b \ L \ 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Referans = 0, [Düşük hız] (L \ 5 \ P), frekans = [Düşük hız] (L \ 5 \ P)</td>
</tr>
<tr>
<td>[Ölü bant]</td>
<td>(b \ n \ 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Referans = 0, frekans = [Düşük hız] (L \ 5 \ P), frekans = 0</td>
</tr>
<tr>
<td>Ayar ()</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>[0'da ölü bant]</td>
<td>b ≠ 5 D</td>
<td></td>
</tr>
</tbody>
</table>

Alt bölümü 8.43
[Kodlayıcı konfigürasyonu]

[Kodlayıcı konfigürasyonu] E n - Menüsü

Erişim

[Tüm ayarlar] ➔ [Kodlayıcı konfigürasyonu]

Bu Menü Hakkında

Bu menüye bir kodlayıcı modülü (VW3A3420, VW3A3422, VW3A3423 veya VW3A3424) takılırsa erişilebilir ve kullanılabilir seçimler kullanılan kodlayıcı modülüne bağlıdır.

Kodlayıcı Kontrol Prosedürü

Bu prosedür tüm kodlayıcı türleri için geçerlidir.

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kullanılan kodlayıcının parametrelerini konfigüre edin</td>
</tr>
<tr>
<td>2</td>
<td>[Motor kontrol türü] (E \not\in) öğesi gerekli konfigürasyon olsa bile [FVC] (F \not\in \mathcal{L}) dışında bir değere ayarlayın. Örneğin, asenkronize motor için ([SVC V] \not\in \mathcal{L}) öğesi ve senkronize motor için ([Senkr. mot.] \mathcal{S} \not\in \mathcal{L}) öğesini kullanın.</td>
</tr>
</tbody>
</table>
| 3 | Motor parametrelerini isim plakasındaki özellikleri göreden configure edin.
| 4 | [Kodlayıcı kullanım] \(E nU \) öğesi [Hayır] olarak ayarlayın. |
| 5 | Otomatik incé ayar gerçekleştiren. |
| 6 | [Kodlayıcı kontrollü] \(E nL \) öğesi [Evet] olarak ayarlayın. |
| 7 | Motor döndürmeleri en az 3 saniye nominal hızın %15'i civarında stabil bir hızda ayarlayın ve davranışını izlemek için [Ölçülen çıkış fr.] \(nE \) parametresini kullanarak [Ekran] \(nE \) menüsünü kullanın. |
 - Parametre ayarlarının kontrol edin (bkz. yukarıdaki 1 - 5 adımları).
 - Kodlayıcıının mekanik ve elektrik işlemi, güç kaynağı ve bağlantılıların tümünün Tamam olduğunu kontrol edin.
 - Motorun dönüş yönünü ([Çıkış Fazı Dönüşü] \(PHr \) parametresi) veya kodlayıcı sinyallerini tersine çevirin |
| 9 | [Kodlayıcı kontrolü] \(E nL \) öğesi [Yapıldı] değerine değişene kadar Adım 6'dan itibaren işlemler tekrarlayın \(d \not\in \mathcal{E} \). |
| 10 | Gerekirse [Motor kontrol türü] \(E \not\in \mathcal{L} \) öğesi [FVC] \(F \not\in \mathcal{L} \) veya [Senkr.CL] \(F \not\in \mathcal{L} \) değerine değişin.
 - NOT: Bu durumda [Kodlayıcı kullanım] \(E nU \) otomatik olarak [Hz Düzleme] \(E \not\in \mathcal{L} \) değerine ayarlanır. |

[Kodlayıcı Türü] \(E \not\in \mathcal{L} \) Kodlayıcı türü.

Bu parametrede, VW3A3420 veya VW3A3422 ya da VW3A3424 takılırsa erişilebilir.

Seçim listesi takılı kodlayıcı modülüne bağlıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımsız]</td>
<td>und</td>
<td>Bilinmeyen / Hiç kodlayıcı türü seçili değil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Hiperface]</td>
<td>(S \in \mathcal{L}) H P</td>
<td>SinCos Hiperface kodlayıcı</td>
</tr>
<tr>
<td>[SinCos]</td>
<td>(S \in \mathcal{L})</td>
<td>SinCos kodlayıcı</td>
</tr>
</tbody>
</table>
AB Kodlayıcı Türü $E \ n \ 5$

AB Kodlayıcı türü konfigürasyonu
Bu parametre [Kodlayıcı Türü] $\omega \ E \ P$ öğesi [RS422] $R \ b$ veya [HTL] $H \ L$ olarak ayarlanırsa erişilebilir.

NOT: Kodlayıcı modülü HTL kodlayıcidan farklıysa bu parametre [AABB] $R\ A\ b\ b$ değeriine zorlanır.

UYARI

KONTROL KAYBI

Bir HTL kodlayıcı modülü (VW3A3424) kullanıyorsanız ve [Kodlayıcı kullanımı] $E \ n \ u$, [Hız Düzenlemesi] $r \ E \ L$ olarak ayarlanırsa [AB Kodlayıcı Türü] $E \ n \ 5$ parametresini [AABB] $R\ A\ b\ b$ olarak ayarlanmanız gerekir.

Bu talimatlı uygulaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Arayür Kullanım Listesi

[Kodlayıcı besleme ger.] $\omega \ E \ V$

Kodlayıcı besleme gerilimi.
Kullanılan kodlayıcının nominal gerilimi. Seçim listesi takılı kodlayıcı modülune bağlıdır.
Bu parametreye, [Kodlayıcı Türü] $\omega \ E \ P$ şu şekilde ayarlanamazsa erişilebilir:
- [Tanımsız] $\omega \ d$ veya
- [Çözümleyici] $r \ E \ 5$.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AABB]</td>
<td>$R\ A\ b\ b$</td>
<td>A, /A, /B sinyalleri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[AB]</td>
<td>$R\ b$</td>
<td>A, B sinyalleri</td>
</tr>
<tr>
<td>[A]</td>
<td>A</td>
<td>A sinyali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bir HTL kodlayıcı modülü durumunda, [Kodlayıcı kullanım] $E \ n \ u$ öğesi [Hız Düzenlemesi] $r \ E \ G$ değeriine ayarlanırsa bu parametre [A] R değeriine ayarlanamaz.</td>
</tr>
<tr>
<td>[5 Vdc]</td>
<td>$5\ V$</td>
<td>5 Volt</td>
</tr>
<tr>
<td>[12 Vdc]</td>
<td>$12\ V$</td>
<td>12 Volt</td>
</tr>
<tr>
<td>[15 Vdc]</td>
<td>$15\ V$</td>
<td>15 Volt</td>
</tr>
<tr>
<td>[24 Vdc]</td>
<td>$24\ V$</td>
<td>24 Volt</td>
</tr>
</tbody>
</table>

UYARI

KONTROL KAYBI

Bir HTL kodlayıcı modülü (VW3A3424) kullanıyorsanız ve [Kodlayıcı kullanımı] $E \ n \ u$, [Hız Düzenlemesi] $r \ E \ L$ olarak ayarlanırsa [AB Kodlayıcı Türü] $E \ n \ 5$ parametresini [AABB] $R\ A\ b\ b$ olarak ayarlanmanız gerekir.

Bu talimatlı uygulaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.
[Darbe sayısı] \(PG \), ★

Kodlayıcı dönüşüne göre darbe sayısı.

Parametreler şu şekilde erişilebilir:
- Kodlayıcı modülü VW3A3420 takıldıysa ve [Kodlayıcı Türü] \(E \) \(E \) \(P \) öğesi [RS422] \(R \) \(b \) olarak ayarlanırsa veya
- Kodlayıcı modülü VW3A3424 takıldıysa ve [Kodlayıcı Türü] \(E \) \(E \) \(P \) öğesi [HTL] \(H \) \(t \) \(L \) olarak ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...10.000</td>
<td>Fabrika ayarı: 1024</td>
</tr>
</tbody>
</table>

[Kodlayıcı kontrolü] \(E \) \(n \) \(C \)

Kodlayıcı kontrolü aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yapılmadi]</td>
<td>n ⇔</td>
<td>Kontrol gerçekleştirilmedi</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Kodlayıcının izlenmesini aktifleştirir.</td>
</tr>
</tbody>
</table>
| [Yapıldı] | d ⇔ n E | Kontrol başarıyla gerçekleştiril idi. Kontrol prosedürü sunları kontrol eder:
| | | - Kodlayıcının/motorun dönüş yönü
| | | - Sinyallerin varlığı (kablo sürekliliği)
| | | - Darbe sayısı/dönüş. Bir hata algılanırsa sürücü bir [Kodlayıcı] \(E \) \(n \) \(F \) tetikler. |

[Kodlayıcı kullanımı] \(E \) \(n \) \(U \)

Kodlayıcı yalnızca hız izleme için hız geri beslemesi sağlar.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n ⇔</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td>[Hz İzleme]</td>
<td>S E C</td>
<td>Kodlayıcı yalnızca hız izleme için hız geri beslemesi sağlar. Sürückcapevi çevrim işlemi için konfigüre edildi, bu konfigürasyon otomatik [Motor kontrol türü] (C) (t) (t) = [FVC] (F) (V) (C) veya [Senfr.CL] (F) (S) (y). [Motor kontrol türü] (C) (t) (t) = [SVC] (V) (V) (C) ise kodlayıcı hız geri besleme modunda çalışır ve gerçekleştirilen hızın statik düzeltmesini etkinleştirir. Diğer [Motor kontrol türü] (C) (t) (t) değerleri için bu konfigürasyona erişilemez. NOT: Bir HTL kodlayıcı modülü durumunda, [AB Kodlayıcı Türü] (E) (n) (S) öğesi [A] (R) olarak ayarlanırsa bu parametre [Hz Düzenlemesi] (r) (E) (G) olarak ayarlanamaz.</td>
</tr>
<tr>
<td>[Hz Referansı]</td>
<td>P G r</td>
<td>Kodlayıcı bir hız referansı sağlar. Yalnızca bir artışı kodlayıcı modülü ile seçilebilir.</td>
</tr>
</tbody>
</table>

[Kodlayıcı dönüşünü tersine çevirmesi] \(E \) \(n \) \(r \)

Kodlayıcı dönüş yönünü tersine çevirme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n ⇔</td>
<td>Devre dışı kodlayıcıyı tersine çevirmesi Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Aktif kodlayıcıyı tersine çevirmesi</td>
</tr>
</tbody>
</table>
[Çözümleyici Uyarrı Frek.] \(r \ E F \ q \)

Çözümleyici uyarrı frekansı.
Bu parametreye [Kodlayıcı Türü] \(\cup \ E \ C \ P \) öğesi [Çözümleyici] \(r \ E \ S \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3 kHz]</td>
<td>3K</td>
<td>3 kHz</td>
</tr>
<tr>
<td>[4 kHz]</td>
<td>4K</td>
<td>4 kHz</td>
</tr>
<tr>
<td>[5 kHz]</td>
<td>5K</td>
<td>5 kHz</td>
</tr>
<tr>
<td>[6 kHz]</td>
<td>6K</td>
<td>6 kHz</td>
</tr>
<tr>
<td>[7 kHz]</td>
<td>7K</td>
<td>7 kHz</td>
</tr>
<tr>
<td>[8 kHz]</td>
<td>8K</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[9 kHz]</td>
<td>9K</td>
<td>9 kHz</td>
</tr>
<tr>
<td>[10 kHz]</td>
<td>10K</td>
<td>10 kHz</td>
</tr>
<tr>
<td>[11 kHz]</td>
<td>11K</td>
<td>11 kHz</td>
</tr>
<tr>
<td>[12 kHz]</td>
<td>12K</td>
<td>12 kHz</td>
</tr>
</tbody>
</table>

[Dönüşım hızı] \(r \ E \ S \)

Çözümleyici dönüşüm hızı.
Bu parametreye [Kodlayıcı Türü] \(\cup \ E \ C \ P \) öğesi [Çözümleyici] \(r \ E \ S \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.3]</td>
<td>03</td>
<td>0.3</td>
</tr>
<tr>
<td>[0.5]</td>
<td>05</td>
<td>0.5</td>
</tr>
<tr>
<td>[0.8]</td>
<td>08</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[1.0]</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

[Çözümleyici kutbu sayısı] \(r \ P \ P \ n \)

Çözümleyici kutbu çift sayısı.
Bu parametreye [Kodlayıcı Türü] \(\cup \ E \ C \ P \) öğesi [Çözümleyici] \(r \ E \ S \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2 kutup]</td>
<td>2P</td>
<td>2 kutup</td>
</tr>
<tr>
<td>[4 kutup]</td>
<td>4P</td>
<td>4 kutup</td>
</tr>
<tr>
<td>[6 kutup]</td>
<td>6P</td>
<td>6 kutup</td>
</tr>
<tr>
<td>[8 kutup]</td>
<td>8P</td>
<td>8 kutup</td>
</tr>
</tbody>
</table>

[Sincos çizgileri sayısı] \(\cup \ E \ L \ E \)

SinCos çizgileri sayısı.
Bu parametreye [Kodlayıcı Türü] \(\cup \ E \ C \ P \) öğesi [SinCos] \(S \ E \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımsız]</td>
<td>Und</td>
<td>Tanımsız</td>
</tr>
<tr>
<td>[1...10000]</td>
<td></td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>
[SSI paritesi] 5 5 E P ★
SSI Paritesi
Bu parametreye [Kodlayıcı Türü] E E E P öğesi [SSI] olarak ayarlanırsa erişilebilir 5 5 ,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımsız]</td>
<td>und</td>
<td>Tanımsız</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Parite yok]</td>
<td>n o</td>
<td>Parite yok</td>
</tr>
<tr>
<td>[Çift parite]</td>
<td>E V E n</td>
<td>Çift parite</td>
</tr>
</tbody>
</table>

[SSI çerçeve boyutu] 5 5 F 5 ★
SSI çerçeve boyutu (bit sayısı olarak).
Parametreye [Kodlayıcı Türü] E E E P öğesi [SSI] olarak ayarlanırsa erişilebilir 5 5 ,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Oto.] R u E o ...31</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [Oto.] R u E o</td>
</tr>
</tbody>
</table>

[Dönüş sayısı] E n P r ★
Dönüş sayısı.
Dönüş sayısı biçimi (bit sayısı olarak).
Parametreye [Kodlayıcı Türü] E E E P öğesi [SSI] olarak ayarlanırsa erişilebilir 5 5 ,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımlı değil]</td>
<td>und ...25</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [Tanımsız] und</td>
</tr>
</tbody>
</table>

[Dönüş biti çözünürlüğü] E n E r ★
Dönüş biti çözünürlüğü.
Çözünürlük/Dönüş (bit sayısı olarak).
Parametreye [Kodlayıcı Türü] E E E P öğesi [SSI] olarak ayarlanırsa erişilebilir 5 5 ,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımlı değil]</td>
<td>und ...25</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: [Tanımsız] und</td>
</tr>
</tbody>
</table>

[SSI kodu türü] 5 5 E d ★
SSI kodu türü.
Parametreye [Kodlayıcı Türü] E E E P öğesi [SSI] olarak ayarlanırsa erişilebilir 5 5 ,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımsız]</td>
<td>und</td>
<td>Tanımsız</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[İkili kod]</td>
<td>b i n</td>
<td>İkili kod</td>
</tr>
<tr>
<td>[Gray kodu]</td>
<td>G r A y</td>
<td>Gray kodu</td>
</tr>
</tbody>
</table>
[Saat frekansı] $E\ n\ 5\ P$ ★

Saat frekansı.
Parametre [Kodlayıcı Türü] $E\ C\ P$ öğesi [SSI] olarak ayarlanırsa erişilebilir $5\ S$,

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[200 kHz]</td>
<td>200 K</td>
<td>200 kHz</td>
</tr>
<tr>
<td>[1 Mhz]</td>
<td>1 M</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

[AB Kodlayıcı Maks Frekansı] $A\ b\ n\ F$ ★

AB kodlayıcı maksimum frekansı.
Bu parametre [Kodlayıcı Türü] $E\ C\ P$ öğesi [RS422] $A\ b$ veya [HTL] $H\ L$ olarak ayarlanırsa ve [Erişim Seviyesi] $L\ R\ E$ öğesi [Uzman] $E\ P\ r$ olarak ayarlanırsa erişilebilir.
Bu parametre kodlayıcının filtresini ayarlamak için EMC kanşmalarında kullanılabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[150 kHz]</td>
<td>150 K</td>
<td>150 kHz</td>
</tr>
<tr>
<td>[300 kHz]</td>
<td>300 K</td>
<td>300 kHz</td>
</tr>
<tr>
<td>[500 kHz]</td>
<td>500 K</td>
<td>500 kHz</td>
</tr>
<tr>
<td>[1000 kHz]</td>
<td>1 M</td>
<td>1000 kHz</td>
</tr>
</tbody>
</table>

[Kodlayıcı filtresi aktivasyonu] $F\ F\ R$ ★
Kodlayıcı geri beslene filtresi aktivasyonu.
Bu parametre [Erişim Seviyesi] $L\ R\ E$ öğesi [Uzman] $E\ P\ r$ olarak ayarlanırsa ve:
- [Kodlayıcı kullanım] $E\ n\ u$ öğesi [Hayır] $n\ a$ ayarlanamaz veya
- [Göm Kod Kullanıcı] $E\ E\ n\ u$ öğesi [Hayır] $n\ a$ olarak ayarlanamazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n a</td>
<td>Filtre devre dışı bırakıldı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>4 E 5</td>
<td>Filtre etkinleştirildi</td>
</tr>
</tbody>
</table>

[Kodlayıcı filtresi değeri] $F\ F\ r$ ★
Kodlayıcı geri beslene filtresi değeri.
Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] $L\ R\ E$ öğesi [Uzman] $E\ P\ r$ olarak ayarlanırsa ve
- [Kodlayıcı filtresi aktivasyonu] $F\ F\ R$ [Evet] $Y\ E\ 5$ olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...40,0 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayan: kodlayıcı anma değerlerine göre</td>
<td></td>
</tr>
</tbody>
</table>
Sonraki üst Z'de durma algılaması.
Bu parametre hedef arama için kullanılabilir. Yaklaşım hızına ayarlanırsa bir [DC Bara Aşr.Ger.] a b F hatası tetiklenecektir.
Bu parametre şu şekilde erişilebilir:

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[D1]..[D8]</td>
<td>L l ... L l B</td>
<td>Dijital giriş D1...D8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: D8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[D11]..[D16]</td>
<td>L l l ... L l 1 6</td>
<td>VW3A3203 G/C uzatma modülü takılırsa dijital giriş D11...D16</td>
</tr>
<tr>
<td>[CD00]..[CD10]</td>
<td>C d 0 0 ... C d 1 0</td>
<td>[G/C profili] i ø kongürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]..[CD15]</td>
<td>C d 1 1 ... C d 1 5</td>
<td>CMD.11...CMD.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C101]..[C110]</td>
<td>C 1 0 1 ... C 1 0</td>
<td>[G/C profili] i ø kongürasyonunda entegre Seri Modbusu olan CMD1.01...CMD1.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C111]..[C115]</td>
<td>C 1 1 1 ... C 1 5</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C201]..[C210]</td>
<td>C 2 0 1 ... C 2 1 0</td>
<td>[G/C profili] i ø kongürasyonunda CANopen® fieldbus modülü olan CMD2.01...CMD2.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C211]..[C215]</td>
<td>C 2 1 1 ... C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girisi CMD2.11...CMD2.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C301]..[C310]</td>
<td>C 3 0 1 ... C 3 1 0</td>
<td>[G/C profili] i ø kongürasyonunda fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girisi</td>
</tr>
<tr>
<td>[C311]..[C315]</td>
<td>C 3 1 1 ... C 3 1 5</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girisi</td>
</tr>
<tr>
<td>[C501]..[C510]</td>
<td>C 5 0 1 ... C 5 1 0</td>
<td>[G/C profili] i ø kongürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital girisi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[Konum Atamasını Sıfırla] r P ø 5
Konum atamasını sıfırlayın.
Bu parametre [Erişim Seviyesi] L R E öğesi [Uzman] olarak ayarlanırsa erişilebilir E P r
[Üst Z'de durma] l ø 5 l ile aynı.
Alt bölüm 8.44
[Gömülü Kodlayıcı]

[Gömülü Kodlayıcı] E E - Menüsü

Erişim

[Tüm ayarlar] ➾ [Gömülü Kodlayıcı]

Bu Menü Hakkında
Bu menüye 22 kW'ye kadar gücü olan sürücülerden ve hiç kodlayıcı modülü (VW3A3420, VW3A3422, VW3A3423 veya VW3A3424) takılmadıysa erişilebilir.

[Gömülü Kodlayıcı Türü] E E Ĺ P
Kodlayıcı türü.
Seçim listesi takılı kodlayıcı modülüne bağlıdır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yok]</td>
<td>น о น E</td>
<td>Bağlı kodlayıcı yok</td>
</tr>
<tr>
<td></td>
<td>ฟ</td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[AB]</td>
<td>R b</td>
<td>AB kodlayıcı</td>
</tr>
<tr>
<td>[SinCos]</td>
<td>5 Ĺ</td>
<td>SinCos kodlayıcı</td>
</tr>
</tbody>
</table>

[Göm Kod Besleme Ger] E E Ĺ V ★
Gömülü kodlayıcı besleme gerilimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5 Vdc]</td>
<td>5 v</td>
<td>5 Volt</td>
</tr>
<tr>
<td>[12 Vdc]</td>
<td>12 v</td>
<td>12 Volt</td>
</tr>
<tr>
<td>[24 Vdc]</td>
<td>24 v</td>
<td>24 Volt</td>
</tr>
</tbody>
</table>

[Gömülü Kodlayıcı Darbe Sayısı] E P Ĺ G ★
Kodlayıcı dönüşüne göre darbe sayısı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...10.000</td>
<td>Fabrika ayarı: 1024</td>
</tr>
</tbody>
</table>

[Kodlayıcı kontrolü] E n Ĺ
Kodlayıcı kontrolü aktivasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yapılmadı]</td>
<td>น a</td>
<td>Kontrol gerçekleştirildi</td>
</tr>
<tr>
<td>[Yapıldı]</td>
<td>ด a น E</td>
<td>Kontrol başarıyla gerçekleştirildi. Kontrol prosedürünün sonlan kontrol eder:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Kodlayıcının/motorun dönüş yönü</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Sinyallerin varlığı (kablo sürekliği)</td>
</tr>
</tbody>
</table>
[Gömülü Kodlayıcı Kullanımı] E E n u

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı Fabrika ayarı</td>
</tr>
<tr>
<td>[Hız İzleme]</td>
<td>S E C</td>
<td>Kodlayıcı yalnızca hız ile geri beslemesini sağlar.</td>
</tr>
<tr>
<td>[Hız Referans]</td>
<td>P G r</td>
<td>Kodlayıcı bir hız referansı sağlar. Yalnızca bir ayrı standart kodlayıcı modülü ile seçilebilir.</td>
</tr>
</tbody>
</table>

[Gömülü Kodlayıcı Dönüşünü Tersine Çevirme] E E r

Kodlayıcı dönüş yönünü tersine çevirme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Devre dışı kodlayıcıyi tersine çevirme Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E S</td>
<td>Aktif kodlayıcıyi tersine çevirme</td>
</tr>
</tbody>
</table>

[Gömülü Kodlayıcı SinCos çizgileri] E E L ĵ *

SinCos çizgileri sayısıs.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımsız]</td>
<td>u d</td>
<td>Tanımsız Fabrika ayarı</td>
</tr>
<tr>
<td>[1...10000]</td>
<td></td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>

[Kodlayıcı Filtresi Aktivasyonu] F F R *

Kodlayıcı geri beslemesi filtresi aktivasyonu.

Bu parametre [Kodlayıcı kullanımı] E n u öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

Bu parametre şu şekilde erişilebilir:
- [Kodlayıcı kullanımı] E n u öğesi [Hayır] n o’a ayarlanmazsa veya

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Filtre devre dışı bırakıldı Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E S</td>
<td>Filtre etkinleştirildi</td>
</tr>
</tbody>
</table>

[Kodlayıcı Filtresi Değeri] F F r *

Kodlayıcı geri beslemesi filtresi değeri.

Bu parametre şu şekilde erişilebilir:
- [Erişim Seviyesi] L R ĵ öğesi [Uzman] E P r olarak ayarlanırsa ve

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...40,0 ms</td>
<td>Ayar aralığı Fabrika ayarı: kodlayıcı anma değerlerine göre</td>
</tr>
</tbody>
</table>
Sonraki üst Z'de durma algılaması.
Bu parametreye şu şekilde erişilebilir:

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n α</td>
<td>Atanmamış Fabrika ayarı</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L r l...L r B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kWtan büyük gücü olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L r l...L r L r B</td>
<td>VW3A3203 G/C uzatma modülü takılmışsa dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[CD00]...[CD10]</td>
<td>C d 00...C d 10</td>
<td>[G/C profil] CMD.0...CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[CD11]...[CD15]</td>
<td>C d 11...C d 15</td>
<td>CMD.11...CMD.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 10 1...C 10 1</td>
<td>[G/C profil] CMD.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 1 1...C 1 15</td>
<td>entegre Seri Modbusu olan CMD1.11...CMD1.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 1...C 2 10</td>
<td>[G/C profil] CMD.20...CMD.21 sanal dijital girişi</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 1...C 2 15</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 3 0 1...C 3 10</td>
<td>[G/C profil] CMD.30...CMD.31 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 3 1 1...C 3 15</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 1...C 5 10</td>
<td>[G/C profil] CMD.50...CMD.51 sanal dijital girişi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 1...C 5 15</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet’ı olan CMD5.11...CMD5.15 sanal dijital girişi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340 N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[Konum Atamasını Sıfırla] r P α 5
Konum atamasını sıfırlayın.
Bu parametre [Erişim Seviyesi] L A L öğesi [Uzman] olarak ayarlanırsa erişilebilir E P r
[Üst Z'de durma] t α 5 l ile aynı.
Bu Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otomatik hatasyıla CPE</td>
<td></td>
</tr>
<tr>
<td>Hata sıfırtama</td>
<td></td>
</tr>
<tr>
<td>Dönerken yakalama</td>
<td></td>
</tr>
<tr>
<td>Hata algıl. dvrdışı</td>
<td></td>
</tr>
<tr>
<td>Harici hataya Efl</td>
<td></td>
</tr>
<tr>
<td>Çıkış faz kaybıyla Pfl</td>
<td></td>
</tr>
<tr>
<td>Giriş faz kaybıyla Pfl</td>
<td></td>
</tr>
<tr>
<td>4-20 mA kaybıyla Lfl</td>
<td></td>
</tr>
<tr>
<td>Geri çekilme hızıyla Lfl</td>
<td></td>
</tr>
<tr>
<td>Haberleşme izleme Cll</td>
<td></td>
</tr>
<tr>
<td>Dahil modbus TCP</td>
<td></td>
</tr>
<tr>
<td>İletişim modülü Cfla</td>
<td></td>
</tr>
<tr>
<td>Düşk gerilim yönetimi Ubl</td>
<td></td>
</tr>
<tr>
<td>Toprak Arzasi</td>
<td></td>
</tr>
<tr>
<td>Motor termal izleme Hfl</td>
<td></td>
</tr>
<tr>
<td>Kodlayıcı izleme Sdl</td>
<td></td>
</tr>
<tr>
<td>Frenleme Direnci izlemesi brP</td>
<td></td>
</tr>
<tr>
<td>Tork veya sıfır. algılama bjd</td>
<td></td>
</tr>
<tr>
<td>Sürükçü aş. yükle izleme abr</td>
<td></td>
</tr>
<tr>
<td>Uyarı grubu 1 tanımı A1C</td>
<td></td>
</tr>
<tr>
<td>Uyarı grubu 2 tanımı A2C</td>
<td></td>
</tr>
<tr>
<td>Uyarı grubu 3 tanımı A3C</td>
<td></td>
</tr>
<tr>
<td>Uyarı grubu 4 tanımı A4C</td>
<td></td>
</tr>
<tr>
<td>Uyarı grubu 5 tanımı A5C</td>
<td></td>
</tr>
</tbody>
</table>
[Oto hata sıfırlama] \(R \leftrightarrow r \) - Menüsü

Erişim

[Tüm ayarlar] ☺ [Hata/Uyarı yönetimi] ☺ [Oto hata sıfırlama]

[Oto Hata Sıfırlama] \(R \leftrightarrow r \)

Otomatik hata sıfırlama.

UYARI

TEŞCİZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI

- Bu işlevin etkinleştirilmesinin emniyetiz bir durum doğurmadığı doğrulanmalıdır.
- Bu işlev etkin "Çalışma durumu Arıza" çıkış sinyalinin kullanılabildiği olduğu gerçekleşen emniyetiz bir durum doğurmadığıni doğrulanmalıdır.

Bu talimatla uyulaması olmazsa, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Bu fonksiyon aktifse sürücü hata rölesi aktif kalır. Hız referansı ve çalışma yönü korunmalıdır. 2 kablolu kontrol kullanımı tavsiye edilir ([2/3 Kumanda] \(t_{LC} \), [2 kablolu] \(t_{LE} \), [Sıvı] \(L \rightarrow L \) olarak ayarlanır, bkz. [23 kablolu kontrol] \(t_{LC} \)).

[Anza Sıfırma Süresi] \(t_{AR} \) - konfigüre edilbilir süresi geçtikten sonra yeniden yolverme gerçekleşmemişse prosedür iptal edilir ve kapatılıp yeniden başlatılana kadar hataya Sürücü yanıt kilitli kalır.

Bu fonksiyonaizin veren algılanan hata kodları, kılavuzun Tanımlama bölümüne listelenmiştir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>(n)</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayan</td>
</tr>
<tr>
<td>[Evet]</td>
<td>(Y)</td>
<td>Algılanan hata ortadan kalması</td>
</tr>
<tr>
<td></td>
<td>(E)</td>
<td>ve diğer çalışma koşullarını yeniden başlatmayı izin verir. Bir hata durumuna kilitlenen sonra otomatik olarak yeniden başlatılır. Yeniden yolverme, giderek artan beklemelerine gerekliyi bir dizi otomatik giriş ile gerçekleştirilir: Aşağıdaki denemeler için 1 s, 5 s, 10 s ve ardından 1 dakika.</td>
</tr>
</tbody>
</table>

[Anza Sıfırma Süresi] \(t_{AR} \) ★

Otomatik yeniden başlama fonksiyonu için maksimum sürede.

Bu parametre [Oto Hata Sıfırlama] \(R \leftrightarrow r \), [Evet] \(Y \leftrightarrow E \) olarak ayarlanmasına gösterilir. Tekrarlanan bir algılanan hatada art arda yeniden yolvermelerin sayısı sınırlandırılmak için kullanılabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5 dakika]</td>
<td>5</td>
<td>5 dakika Fabrika ayan</td>
</tr>
<tr>
<td>[10 dakika]</td>
<td>10</td>
<td>10 dakika</td>
</tr>
<tr>
<td>[30 dakika]</td>
<td>30</td>
<td>30 dakika</td>
</tr>
<tr>
<td>[1 saat]</td>
<td>1</td>
<td>1 saat</td>
</tr>
<tr>
<td>[2 saat]</td>
<td>2</td>
<td>2 saat</td>
</tr>
<tr>
<td>[3 saat]</td>
<td>3</td>
<td>3 saat</td>
</tr>
<tr>
<td>[Sınırsız]</td>
<td>(t_{\infty})</td>
<td>Sürekli</td>
</tr>
</tbody>
</table>
[Hata sıfırlama] ⇒ 5 ʰ - Menüsü

Erişim

[Tüm ayarlar] ➞ [Hata/Uyarı yönetimi] ➞ [Hata sıfırlama]

[Hata Sıfır. Atımsı] ⇒ 5 ʰ

Hata sıfırlama giriş ataması.

Atanmış giriş veya bit 1’e geçtiğinde hata nedeni ortadan kalktıysa algılanan hatalar manuel olarak silinebilir.

Ekran Terminali üzerindeki STOP/RESET tuşu aynı fonksiyonu görür.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI6]</td>
<td>L , L...L , 6</td>
<td>Dijital giriş DI1...DI6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: DI8 seçimi, 22kW'tan büyük güç olan tahriklerde erişilebilir.</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L , L...L , 16</td>
<td>VW3A3203 I/O uzatma modülü takılmışsa dijital giriş DI11...DI16</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 2 0 I...C 2 1 0</td>
<td>[I/O profili] r o konfigürasyonunda CANopen® haberleşme modülü olan CMD2.01...CMD2.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 2 1 I...C 2 1 5</td>
<td>Konfigürasyondan bağımsız olarak CANopen® haberleşme modülü ile sanal dijital giriş CMD2.11...CMD2.15</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 5 0 I...C 5 1 0</td>
<td>[I/O profili] r o konfigürasyonunda entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340****-N4E tahriklerinde erişilebilir.</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 5 1 I...C 5 1 5</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital giriş</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT: Bu seçime ATV340****-N4E tahriklerinde erişilebilir.</td>
</tr>
</tbody>
</table>

[Ürün YenBaş.] ⇒ P ★

UYARI

TEÇHİZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI

Yeniden Başlat işlevi bir Arıza Sıfırlaması gerçekleştirir ve tahrik yeniden başlatır.

● Bu işlevin etkinleştirilmesinin emniyetizsi bir durum doğurmadığını doğrulayın.

Bu talimatlara uyuşmaması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Ürün yeniden başlatma.

Bu parametre, tahrik bağlantısını güç kaynağından kesmek zorunda kalmadan algılanan bütün hataların sıfırlanmasında kullanılabileceğini gösterir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Fonksiyon devre dışı</td>
</tr>
</tbody>
</table>
Ürün yeniden başlatma ataması.

UYARI

TEÇHİZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI

Yeniden Başlat işlevi bir Arıza Sıfırlaması gerçekleştirir ve tahrik yeniden başlatılır.

- Bu işlevin etkinleştirilmesinin emniyetsiz bir durum doğurmadığını doğrulayın.

Bu talimatı uygulamaması ölüme, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n a</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L ... L ... B</td>
<td>Dijital giriş Di1...Di8</td>
</tr>
<tr>
<td>[DI11]...[DI16]</td>
<td>L ... L ... L ... I B</td>
<td>VW3A3203 G/C uzatma modülü takılmasa dijital giriş Di11...Di16</td>
</tr>
</tbody>
</table>

NOT: Di8 seçimi, 22kW'tan büyük gücü olan tahriklerde erişilebilir.
[Dönerken yakalama] F_Lr - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Dönerken yakalama]

[Dönerken Yakalama] F_Lr

Dönen yükü yakalama.
Çalıştırma komutunun aşağıdaki durumlar sonrasında korunması durumunda yumuşak yolverme sağlanarak için kullanılır:
- Hat beslemesi kaybı veya bağlantısı kesilmesi.
- Temizle Mevcut algılanan hatanın temizlenmesi veya otomatik tekrar yolverme.
- Serbest duruş.

Tahrik tarafından sağlanan hız, yeniden yolverme anında motorun tahmini veya ölçülen hızdan itibaren devam eder ve ardından referans hızı kadar rampayı izler.

Bu fonksiyon 2 telli seviye kontrolü gerektirir.

Fonksiyon kullanılır durumdayken, her çalıştırma komutunda aktif hale gelerek akımda küçük bir gecikmeye neden olur (maks. 0,5 saniye).

Aşağıdaki durumda, [Dönerken Yakalama] F_Lr [Hayır] nö değerine zorlanır:
- [Oto DC Enjeksiyonu] $R_{ll} [Sürekli]$ L olarak ayarlanırsa veya
- [Fren ataması] $b_{L}L$ [Hayır] nö olarak ayarlanamazsa veya
- [BL Modu] $b_{L}b$ [Hayır] nö olarak ayarlanamazsa.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>n o</td>
<td>Fonksiyon devre dışı.</td>
</tr>
<tr>
<td>[Serbest harekette Evet]</td>
<td>Y E S</td>
<td>Fonksiyon, yalnızca serbest durmadan sonra aktif.</td>
</tr>
<tr>
<td>[Her Zaman Evet]</td>
<td>R L L</td>
<td>Fonksiyon, tüm durma türlerinden sonra aktif</td>
</tr>
</tbody>
</table>

[Dönerken Yakala Hassasiy] $V \in b$

Dönerken yakalama hassasiyeti.
Bu parametreye yalnızca [Erişim Seviyesi] $L R_{L} [Uzman] E P_{r}$ olarak ayarlanırsa erişilebilir.

[Dönerken yakalama hassasiyeti.] $V \in b$ parametresinin çok düşük ayarlanması motor hızının yanlış tahminine neden olabilir.

UYARI

KONTROL KAYBI
- [Çalışırken Yakala Hassasiyeti] $V \in b$ parametresinin değeri yalnızca kademeli olarak azaltın.
- İşletmeye alma sırasında tahriğin ve sistemin kontrollü koşullar altında kontrollü bir ortamda testler ve simülasyonlar gerçekleştirek amaçlandığı şekilde doğrulanın

Bu talimatlar uygulaması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10...100,00 V</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,20 V</td>
</tr>
</tbody>
</table>
[Dönerken yakalama Modu] C o F n

Dönerken Yakalama fonksiyonu için hız algılama yöntemi.

[Dönerken Yakalama Modu] C o F n, senkronize motorlar için [Ölçüldü]** Hw C o F** değerine zorlanır

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ölçüldü]</td>
<td>Hw C o F</td>
<td>Donanım dönerken yakalama Hızın tahmin edilebilmesi için motor gerilim sinyali [Dönerken yakalama hassasiyeti] V C b değerinden büyük olmalıdır. Fabrika ayarı</td>
</tr>
<tr>
<td>[Hesaplandı]</td>
<td>Sw C o F</td>
<td>Yazılım dönerken yakalama Rotorun hızının ve konumunun tahmini için bir sinyal enjekte edilir. [Hesaplandı] Sw C o F yöntemi -HSP veya +HSP'yi aşan bir motor hız aralığı için etkin değildir.</td>
</tr>
</tbody>
</table>
[Hata algıl. dvrdışı] \(\in H \) - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Hata algıl. dvrdışı]

[HataAlgılama DevreDışı] \(\in H \)

Hata algılamayı devre dışı bırakma.

Cihazın otomatik hata tespiti ve otomatik hata yanıtlarını artık etkin olmaması için, bu gibi uygulamalarda belirli izleme işlemleri devre dışı bırakmak için bir parametre temin edilir. Operatörlerin ve/veya master kontrol sistemlerinin tespit edilen hatalara karşılık gelen koşulları uygulamasına izin verir, devre dışı kalmış izleme işlemleri yenilğen altıстве tahrir izleme işlemleri uygulanmazdır. Örneğin, tahrir aşırı sıcaklık izleme işlemleri devre dışı bırakılabilir. Bu aşırı sıcaklık durumunda ise, cihazın hasarı veya imhaşı ikincil hasar olarak kabul edilebilir.

TEHLIKE

IZLEME İŞLEVLERİ DEVRE DIŞI, HATA TESPİT EDİLMEDİ

- Bu parametreyi yalnızca cihaz ve uygulama için geçerli tüm yönetim melik ve standartlara uygun kapsamlı bir risk değerlendirmesinden sonra kullanın.
- Tahriğin otomatik hata yanıtlarını tetikleyen, ama uygulan tüm yönetim melik ve standartlar ile risk değerlendirmesine uygun diğer yönetimle yerleri, eğer yanıt verir ise, devre dışı izleme işlemleri yenilğen altıстве tahrir izleme işlemleri uygulayın.
- Sistemi, izleme işlemleri etkin şekilde işletmeye alın ve test edin.
- İşletmeye alma sırasında tahriğin ve sistem kontrolu koşullar altında kontrollü bir ortamda testler ve simulasyonlar gerçekleştirerek amaçlandığı şekilde doğrulayın.

Bu talimatlara uymaması, ölüme veya ağır yaralanmaları yol açacaktır.

Bu parametre [Erişim Sevyesi] L 0 E , [Uzman] E 0 olarak ayarlanırsa erişilebilir.

Atanan giriş ya da bit durum koşulları:
- 0: hata algılama etkinleştirilir.
- 1: hata algılama devre dışı bırakılır.

Mevcut hatalar, atanan giriş ya da bit durum koşulları dikkate alınarak, cihazın kullanımları için uygun olup olmadığını değerlendirir.

Aşağıdaki hataların algılanması devre dışı bırakılabilir: AnF, bOF, CnF, COF, dLF, EnF, EPF1, EPF2, FCF2, EJHF, InFA, InFB, InFV, LFF1, LFF3, ObF, OHF, OLC, OLK, OPF1, OPF2, OSF, PHF, SLF1, SLF2, SLF3, SOF, SPF, SSF, Tfd, TJF, TrN, ULF, USF.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmış]</td>
<td>3</td>
<td>Atanmış</td>
</tr>
<tr>
<td>[Fabrika ayarı]</td>
<td>D1[1]...D8[16]</td>
<td>Dijital giriş D1...D8</td>
</tr>
<tr>
<td>[NOT: D18 seçimi, 22kW'tan büyük güç olan tahriklerde erişilebilir.]</td>
<td>1...1; L; B</td>
<td>Dijital giriş D1...D8</td>
</tr>
<tr>
<td>[VD32]</td>
<td>C d00...C d10</td>
<td>[G/C profil] , konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CMD11...CMD15</td>
<td>CMD.11...CMD.15 sanal dijital giriş</td>
<td></td>
</tr>
<tr>
<td>[CMD16...CMD15]</td>
<td>C I01...C I10</td>
<td>[G/C profil] , konfigürasyonunda entegr Seri Modbusu olan CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C101...C110]</td>
<td>C I01...C I10</td>
<td>entegr Seri Modbusu olan CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111...C115]</td>
<td>C I01...C I10</td>
<td>konfigürasyonunda CANopen® fieldbus modülü olan CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C211...C215</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital girişi CMD2.11...CMD2.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C301...C310</td>
<td>G/Ç profili fieldbus modülü olan CMD3.01...CMD3.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C311...C315</td>
<td>entegre fieldbus modülü olan CMD3.11...CMD3.15 sanal dijital girişi</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C501...C510</td>
<td>G/Ç profili entegre Ethernet'i olan CMD5.01...CMD5.10 sanal dijital girişi</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C511...C515</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet'i olan CMD5.11...CMD5.15 sanal dijital girişi</td>
</tr>
</tbody>
</table>

NOT: Bu seçime ATV340***N4E tahriklerinde erişilebilir.
[Harici hata] \(E \not\in F \) - Menüsü

Erişim

[Tüm ayarlar] ➦ [Hata/Uyarı yönetimi] ➦ [Harici hata]

[Harici Hata ataması] \(E \not\in F \)
Harici hata ataması.
Atanan bit durumu:
- 0 ise: harici hata yoktur.
- 1 ise: harici hata vardır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>nO</td>
<td>Atanmamış</td>
</tr>
<tr>
<td>[Fabrika ayar]</td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[DI1]...[DI8]</td>
<td>L, I...I, I, B</td>
<td>Dijital giriş DI1...DI8</td>
</tr>
<tr>
<td>[CW32/CD10]</td>
<td>CD 00...CD 10</td>
<td>[G/C profil] CI konfigürasyonunda CMD.0...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[CD11]...[CD16]</td>
<td>CD 01...CD 15</td>
<td>Konfigürasyondan bağımsız olarak sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C101]...[C110]</td>
<td>C 01...C 10</td>
<td>[G/C profil] CI konfigürasyonunda entegre Seri Modbus'u CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C111]...[C115]</td>
<td>C 11...C 15</td>
<td>Konfigürasyondan bağımsız olarak entegre Modbus Seri ile sanal dijital giriş CMD.11...CMD.15</td>
</tr>
<tr>
<td>[C201]...[C210]</td>
<td>C 22...C 25</td>
<td>[G/C profil] CI konfigürasyonunda CANopen® fieldbus modülü olan CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C211]...[C215]</td>
<td>C 21...C 25</td>
<td>Konfigürasyondan bağımsız olarak CANopen® fieldbus modülü ile sanal dijital giriş CMD.21...CMD.25 sanal dijital giriş</td>
</tr>
<tr>
<td>[C301]...[C310]</td>
<td>C 32...C 35</td>
<td>[G/C profil] CI konfigürasyonunda fieldbus modülü olan CMD.01...CMD.10 sanal dijital giriş</td>
</tr>
<tr>
<td>[C311]...[C315]</td>
<td>C 31...C 35</td>
<td>Konfigürasyondan bağımsız olarak bir fieldbus modülü olan CMD.31...CMD.35 sanal dijital giriş</td>
</tr>
<tr>
<td>[C501]...[C510]</td>
<td>C 50...C 55</td>
<td>[G/C profil] CI konfigürasyonunda entegre Ethernet 'i CMD.05.01...CMD.5.05 sanal dijital giriş</td>
</tr>
<tr>
<td>[C511]...[C515]</td>
<td>C 51...C 55</td>
<td>Konfigürasyondan bağımsız olarak entegre Ethernet 'i CMD.55.11...CMD.55.15 sanal dijital giriş</td>
</tr>
</tbody>
</table>

[Harici Hata Yanıtı] \(E P L \)
Harici hataya Sürücü tepkisi.
Harici algılanan hata durumunda durdurma türü.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>nO</td>
<td>Harici algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>YE S</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[Fabrika ayar]</td>
<td></td>
<td>Fabrika ayar</td>
</tr>
</tbody>
</table>
| [STT'ye göre] | S ≤ t | Hataya geçmeden, [Duruş türü] \(5 \leq t \) (bkz. sayfa 232) konfigürasyonuna göre durdurma. Bu durumda, algılanan hata rolüsi açılmaz ve sürücü, aktif komut kanalını yeniden yolverme koşullarına göre (örneğin; kontrol, terminaler üzerinden gerkeçkleştiriliyor) [2/3-Tel Kumanda] \(\leq t \) ve [2 tel türü] \(\leq t \) (bkz. sayfa 230) algılanan hata ortadan kalkan kalkmaz yeniden yolvermeye hazır olur. Durdurmanın nedenini belirlemek için bu algılanan hata için bir uygunun konfigür edilmişse tavsıye edilmektedir (örneğin bir dijital çıkışa atanmış).

(1) Çünkü bu durumda, algılanan hata bir dururma tetiklemediginden, bu gösterge için bir röle veya dijital çıkış atanması tavsie edilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Geri Çekilme hızı]</td>
<td>L FF</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiği ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hz korunuyor]</td>
<td>r LS</td>
<td>Sürtün, algılanan hata oluştüğunda uygulanmış hızı, algılanan hata aktif olduğu ve çalıştırma komutu kaldınladığı sürece korur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r NP</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızli duruş]</td>
<td>F SL</td>
<td>Hızlı duruş</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir durdurma tetiklememeyi gerektirir, bu gösterge için bir röle veya dijital çıkış atanması tavsiye edilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Çıkış faz kaybı] \(P_L \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Hata/Uyarı yönetimi] \(\rightarrow \) [Çıkış faz kaybı]

[ÇıkFazKaybı Ataması] \(P_L \) \(\text{Çıkış faz kaybı ataması.} \)

TEHLİKΕ

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK PARLAMASI CİDDİ TEHLİKESİ

Çıkış fazi izlenebilir değil ise faz kaybı ve çıkaran olarak kabloluların bağlantısının yanlışlıkla kesilmesi tespit edilmemektedir.

- Bu parametrenin ayarının emniyetsiz bir durum doğurmadığını doğrulayın.
- Bu talimatları uygulamak, ölümü veya ağır yaralanmaları yol açacaktır.

Bu parametre ayarının emniyeti olarak ayarlanması gereklidir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fonksiyon Aktf Değl]</td>
<td>(n _o)</td>
<td>Fonksiyon devre dışı</td>
</tr>
<tr>
<td>[OPFHatasiTetikle ndi]</td>
<td>(y _E _S)</td>
<td>Serbest duruşla [ÇıkFazKaybı Ataması] (P_L) değerinde açma Fabrika ayarı</td>
</tr>
<tr>
<td>[Tetiklenen Hata Yok]</td>
<td>(a _R _C)</td>
<td>Algılanan hata tetiklenmez ancak motorla bağlantı yeniden kurulduğunda ve dönerken yakalama gerçekleştiği (bu fonksiyon konfigürasyon edilmemis olsa da) aşırı akımı engellemek için çıkış gerilimi yönetimi. Tahrik, [Çık.FhL Süresi] (a _d _t) süresinden sonra [Çıkış kesme] (5 _a _C) değeriine geçer. Tahrik beklemek çıkış kesmesi [Çıkış kesme] (5 _a _C) durumunda olduğunda, dönerken yakalama mümkünür.</td>
</tr>
</tbody>
</table>

[Çık.FazKaybı Gecik.] \(a _d _t \)\n
Çıkış (motor) fazı kayıp algılama zamanı.

[ÇıkFazKaybı Ataması] \(P_L \) algılanan hataının dikkate alınması için zaman gecikmesi.

<table>
<thead>
<tr>
<th>Ayar ((t))</th>
<th>Açıklama</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5...10 sn</td>
<td>Ayar aralığı Fabrika ayarı: 0,5 sn</td>
<td></td>
</tr>
</tbody>
</table>
[Giriş faz kaybı] P L - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Giriş faz kaybı]

[GrşFazKaybı Ataması] P L ⭐

Giriş faz kaybı hata tepkisi.
Besleme şebeke fazlarından biri eksikse ve bu durum, performansta düşüşe yol açıyorsa bir [Giriş faz kaybı] P H F hatası tetiklenir.

2 veya 3 besleme şebeke fazı eksikse tahrik, [Besleme Şebekesi DüşükG] \(\omega \) 5 F hatası tetiklenene kadar çalışır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>(n) a</td>
<td>Tahrik, tek fazlı besleme aracılığıyla ya da DC barası tarafından beslendiğinde giriş faz kaybı izleme fonksiyonu devre dışı kalır</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>(y) E 5</td>
<td>Besleme şebekesi faz kaybı algılandığında tahrik, serbest durma yapar</td>
</tr>
</tbody>
</table>
[4-20 mA kaybı] L F L - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [4-20 mA kaybı]

[AI1 4-20mA kaybı] L F L I
AI1 üzerinde 4-20mA kaybı tepkisi.
AI1 4-20 olayında tahrık davranışı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>∞</td>
<td>Algılanan hata göz ardı edildi. [AI1 min değeri] CrL1, 3 mA'den daha büyük değerle bu konfigürasyon tek mümkün konfigürasyondur Fabrika ayarı</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>Y E S</td>
<td>Serbest durma</td>
</tr>
<tr>
<td>[Hata hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiği ve çalıştırma komutu kalsınmadığı sürece korur (1)</td>
</tr>
<tr>
<td>[Hızı koru]</td>
<td>r L S</td>
<td>Tahrık, algılanan hata oluştuğunda uygulanır hızı, algılanan hata akıtı olduğu ve çalıştırma komutu kalsınmadığı sürece korur (1)</td>
</tr>
<tr>
<td>[Rampa duruş]</td>
<td>r N P</td>
<td>Rampada duruş</td>
</tr>
<tr>
<td>[Üzü duruş]</td>
<td>F S t</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyon]</td>
<td>d E,</td>
<td>DC enjeksiyonlu duruş. Bu dururuma türü diğer bazı fonksiyonlarla birlikte kullanılmaz</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir dururuma tetiklendeğinden, bu göstergenin bir role veya digital çıkış atanması tavsiye edilir.

[AI3 4-20mA kaybı] L F L 3
AI3 üzerinde 4-20mA kaybı tepkisi.
AI3 4-20 olayında tahrık davranışı.

[AI4 4-20mA kaybı] L F L 4 ★
AI4 üzerinde 4-20mA kaybı tepkisi.
AI4 4-20 olayında tahrık davranışı.

[AI5 4-20mA kaybı] L F L 5 ★
AI5 üzerinde 4-20mA kaybı tepkisi.
AI5 4-20 olayında tahrık davranışı.

Bu parametreye, VW3A3203 I/O uzatma modülü takılmışsa erişilebilir.

[Gerçekleme Hızı] L F F ★
Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı Fabrika ayarı: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Geri çekilme hızı] L F F - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı idaresi] ➔ [Geri çekilme hızı]

[Geri Çekilme Hızı] L F F
Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>
Haberleşme izleme \(L L L \) - Menüsü

Erişim

[Haberleşme izleme] \(L L L \) ➞ [Hata/Uyarı yönetimi] ➞ [Haberleşme izleme]

Modbus Yanıtısı \(S L L \)
Modbus kesintisi yanıtı.

UYARI

KONTROL KAYBI
Bu parametre \(n \) olarak ayarlanırsa Modbus iletişim izlemesi devre dışı bırakılır.
- Bu ayarı yalnızca cihaz ve uygulama için geçerli tüm yönetmelik ve standartlara uygun kapsamlı bir risk değerlendirmesinden sonra kullanın.
- Bu ayarı yalnızca işletmeye alınmasında testler için kullanın.
- İşletmeye alma prosedürünü tamamlamadan ve nihai işletmeye alma testini gerçekleştirmeden önce iletişim izlemesinin yeniden etkinleştirildiğini doğrulayın.

Bu talimatlara uymaması ölümü, ağır yaralanmaları veya ekipmanda maddi hasara yol açabilir.

Entegre Modbus ile iletişim kesintisi olması durumunda tahriğin davranışı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>(n)</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>(Y E S)</td>
<td>Serbest durma</td>
</tr>
<tr>
<td>[Hata hızı]</td>
<td>(L F F)</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğçe ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hızı koru]</td>
<td>(r L S)</td>
<td>Tahrik, algılanan hata oluşduğunda uygulanan hızı, algılanan hata aktif olduğu ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>(r N P)</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>(F S L)</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>(d C)</td>
<td>DC enjeksiyonlu duruş. Bu durumda türür diğer bazı fonksiyonlarla birlikte kullanılamaz</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir durdurma tetiklemesidir, bu gösterge için bir rôle veya dijital çıkış atamaması tavsıye edilir.

Geri Çekilme Hızı \(L F F \)
Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>
UYARI

KONTROL KAYBI
Bu parametre **n o** olarak ayarlanırsa Ethernet iletişim izlemesi devre dışı bırakılır.

- Bu ayarı yalnızca cihaz ve uygulama için geçerli tüm yönetmelik ve standartlara uygunsuz bir risk değerlendirmesinden sonra kullanın.
- Bu ayarı yalnızca işletme alma sırasında testler için kullanın.
- İşletmeye alma prosedürünü tamamlamadan ve nihai işletme alma testini gerçekleştirmeden önce iletişim izlemesinin yeniden etkinleştirildiğini doğrulayın.

Bu talimatlar uygulamaması ölümü, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

iletisim kanalı, aktif komut kanalına dahilse bir iletişim kesintisine hata yanıtı etkendir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>Y E S</td>
<td>Serbest durma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Hata hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğine ve çalıştırma komutu kaldırılmadığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hızı koru]</td>
<td>r L S</td>
<td>Tahrik, algılanan hata oluştuğunda uygulanmış hızı, algılanan hata aktif olduğu ve çalıştırma komutu kaldırılmadığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r N P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S t</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d CI</td>
<td>DC enjeksiyonlu duruş. Bu durdurma türü diğer bazı fonksiyonlarla birlikte kullanılmaz</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir rol veya dijital çıkış atanması tavisye edilir.

[Geri Çekilme Hızı] L F F ★

Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0,0 Hz</td>
</tr>
</tbody>
</table>
[İletişim modülü] C L L - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [İletişim Modülü]

[Ağ S. Kesinti Yıntısı] C L L

UYARI

KONTROL KAYBI
Bu parametre olarak ayarlanırsa fieldbus iletişim izlemesi devre dışı bırakılır.

- Bu ayarı yalnızca cihaz ve uygulama için geçerli tüm yönetmelik ve standartlara uygun kapsamlı bir risk değerlendirmesinden sonra kullanın.
- Bu ayarı yalnızca işletmeye alınmadan ve nihai işletmeye alma testini gerçekleştirmeden önce kullanın.
- İşletmeye alma prosedürünü tamamlamadan ve nihai işletmeye alma testini gerçekleştirmeden önce iletişim izlemesinin yeniden etkinleştirildiğini doğrulayın.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

Haberleşme modülü iletişim kesintisi yanıtı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edilirdi</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>y E S</td>
<td>Serbest durma</td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>5 t E</td>
<td>Açma yapan [Durum türü] 5 t E configuration göre durdurur. Bu durumda, hata oluştuğunda uygulan hizi, algılanan hata aktif olduğu ve çalışma komutu kalınlanması sürece korunur(1)</td>
</tr>
<tr>
<td>[Hata hızı]</td>
<td>L F F</td>
<td>Geri çekilme hzna geçiş, algılanan hata devam ettiçe ve çalışma komutu kalınlanması sürece korunur(1)</td>
</tr>
<tr>
<td>[Hızı kuru]</td>
<td>r L S</td>
<td>Tahrik, algılanan hata oluştuğunda uygulan hizi, algılanan hata aktif olduğu ve çalışma komutu kalınlanması sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r P P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F 5 t</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d E</td>
<td>DC enjeksiyonlu duruş. Bu durumda, hata oluştuğunda uygulan hizi, algılanan hata aktif olduğu ve çalışma komutu kalınlanması sürece korunur(1)</td>
</tr>
</tbody>
</table>

(1) Çünkü bu durumda, algılanan hata bir durumda tetiklediğinden, bu gösterge için bir röle veya dijital çıkış atanması tavsıye edilir.

[CANopen Hata Yanıtısı] C L L

UYARI

KONTROL KAYBI
Bu parametre olarak ayarlanırsa CANopen iletişim izlemesi devre dışı bırakılır.

- Bu ayarı yalnızca cihaz ve uygulama için geçerli tüm yönetmelik ve standartlara uygun kapsamlı bir risk değerlendirmesinden sonra kullanın.
- Bu ayarı yalnızca işletmeye alınmadan ve nihai işletmeye alma testini gerçekleştirmeden önce kullanın.
- İşletmeye alma prosedürünü tamamlamadan ve nihai işletmeye alma testini gerçekleştirmeden önce iletişim izlemesinin yeniden etkinleştirildiğini doğrulayın.

Bu talimatlara uyulmaması ölüme, ağır yaralanmalarına veya ekipmanda maddi hasara yol açabilir.

CANopen hatasına tepki.
CANopen® ile iletişim kesintisi olması halinde tahriğin davranışı.
<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest]</td>
<td>Y E 5</td>
<td>Serbest durma</td>
</tr>
<tr>
<td>[STT’ye göre]</td>
<td>S ≤ t</td>
<td>Açırma yapmadan [Duruş türü] S ≤ t konfigürasyonuna göre durur. Bu dururda hata rolü açılmaz ve lüs tespit edilen hata kaybolur kaybolmaz aktif komut kanalının yeniden başlatma koşullarına göre (örneğin, kontrol, terminaller aracılığıyla yürütülüyor) [2/3-tel kumanda] L ≤ L ve [2-tel türü] L ≤ L tahnir yeniden başlatılmaya hazır.(1)</td>
</tr>
<tr>
<td>[Hata hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettikçe ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hız korunuyor]</td>
<td>r L 5</td>
<td>Tahrik, algılanan hata oluşturgunda uygulanın hızı, algılanan hata aktif olduğu ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r N P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S ≤</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d L ≤</td>
<td>DC enjeksiyonu duruş. Bu dururma türü diğer bazı fonksiyonlarla birlikte kullanılmaz</td>
</tr>
</tbody>
</table>

(1) Çünkü bu dururda, algılanan hata bir dururma tetiklediğinden, bu gösterge için bir röle veya dijital çıkış atanması tavsiye edilir.

[Eth Hatası Yanıtı] E ≤ H L

UYARI

KONTROL KAYBI
Bu parametre n o olarak ayarlanırsa Ethernet iletişim izlemesi devre dışı bırakılır.
- Bu ayarı yalnızca cihaz ve uygulama için geçerli tüm yönetmelik ve standartlara uygun kapsamlı bir risk değerlendirmesinden sonra kullanın.
- Bu ayarı yalnızca işletme anda testler için kullanın.
- İşletmeye alma prosedürünü tamamladandan ve nihai işletme alma testini gerçekleştirden önce iletişim izlemesinin yeniden etkinleştirildiğini doğrulayın.

Bu talimatlara uymulması ölümе, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>Y E 5</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT’ye göre]</td>
<td>S ≤ t</td>
<td>Açırma yapmadan [Duruş türü] S ≤ t parametresine uygun ancak dururadan sonra tetiklenen bir hatanın olduğu duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>L F F</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettikçe ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Hız korunuyor]</td>
<td>r L 5</td>
<td>Hız, algılanan hata devam ettikçe ve çalıştırma komutu kaldınladığı sürece korunur(1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r N P</td>
<td>Rampada durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>F S ≤</td>
<td>Hızlı duruş</td>
</tr>
</tbody>
</table>

Bu dururda, algılanan hata bir dururma tetiklediğinden, bu gösterge için bir röle veya mantık çıkış atanması tavsiye edilir.

[Gerçek Çekilme Hızı] L F F ★
Geri çekilme hızı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0...599,0 Hz</td>
<td>Ayar aralığı: 0,0 Hz</td>
</tr>
</tbody>
</table>
[Düşük gerilim yönetimi] 5 b - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Düşük gerilim yönetimi]

[Düşük Gerilim Yanıtı] 5 b

Düşük gerilim tepkisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hata Tetkilendi]</td>
<td>0</td>
<td>Tahrik bir hata tetikler ([Çalışma Durumu Hatasi] FL t öğesine atanan algılanan hata rölesi açılır)</td>
</tr>
<tr>
<td>[Hatarölsiz tetkilendi]</td>
<td>1</td>
<td>Tahrik bir hata tetikler ([Çalışma durumu Hatasi] FL e öğesine atanan algılanan hata rölesi kapalı kalır)</td>
</tr>
<tr>
<td>[Uyarı Tetkilendi]</td>
<td>2</td>
<td>Uyarı ve algılanan hata rölesi kapalı kalır. Uyarı, bir dijital çıkış veya röleye atanabilir</td>
</tr>
</tbody>
</table>

[Şebeke Gerilimi] 4 5

Vac cinsinden ana şebeke beslemesinin nominal gerilimi.
Bu parametrenin fabrika ayar değeri tahrik anma değerine bağlıdır.

<table>
<thead>
<tr>
<th>Ayarlar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[380 Vac]</td>
<td>3 8 0</td>
<td>380 Vac</td>
</tr>
<tr>
<td>[400 Vac]</td>
<td>4 0 0</td>
<td>400 Vac</td>
</tr>
<tr>
<td>[415 Vac]</td>
<td>4 1 5</td>
<td>415 Vac</td>
</tr>
<tr>
<td>[440 Vac]</td>
<td>4 4 0</td>
<td>440 Vac</td>
</tr>
<tr>
<td>[460 Vac]</td>
<td>4 6 0</td>
<td>460 Vac</td>
</tr>
<tr>
<td>[480 Vac]</td>
<td>4 8 0</td>
<td>480 Vac</td>
</tr>
</tbody>
</table>

[Düşük geri seviyesi] 5 L

Düşük gerilim seviyesi.
Fabrika aya tahriğin gerilim değeri ile belirlenir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...354 Vac</td>
<td>Tahrik anma değerine göre ayardığı aralığı</td>
</tr>
<tr>
<td>Fabrika aya: Tahrik değerlerine göre</td>
<td></td>
</tr>
</tbody>
</table>

[Düşük Gerilim zaman aşımı] 5 t

Düşük gerilim zaman aşımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2...999,9 sn</td>
<td>Ayardığı</td>
</tr>
<tr>
<td>Fabrika aya: 0,2 sn</td>
<td></td>
</tr>
</tbody>
</table>

[Duruş Türü GüçKaybi] 5 t P

Güç kaybinda kontrollü durma.
Düşük gerilim önlemse seviyesine ulaşılması durumundaki davranış.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>☐ ☐</td>
<td>İşlem yok</td>
</tr>
<tr>
<td>Fabrika aya:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[DCbarakoru]</td>
<td>☐ ☐ ☐</td>
<td>Bu dururma modu, çalıştırılan kontrol bloğunun korumak ve böylece I/O durumu ile haberleşme bağlıntısını mümkün olduğu kadar uzun süre çalışır</td>
</tr>
<tr>
<td>durumda tutmak için uygulamanın ataletini kullanır.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

[Düş.V. Yenidn Başlama Zamanı] $t \leq 5 \ \pi$

Düşük gerilim yeniden başlatma zamanı.
Bu parametre [KntrDiFcKayb] $5 \leq P$, [Rampa durusu] $r \leq P$ olarak ayarlanmasıyla erişilebilir.
Gerilim normale dönüştüse [KntrDiFcKayb] $5 \leq P$, [Rampa durusu] $r \leq P$ şeklinde ayarlandığı için tamamen durma işleminde sonra yeniden başlatmaya izin verilmesinden önceki zaman gecikmesi.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...999,9 sn</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>1,0</td>
<td>Fabrika ayarı: 1,0 sn</td>
</tr>
</tbody>
</table>

[Önlem seviyesi] $\omega \leq P \leq L$

Düşük gerilim önleme seviyesi.
Bu parametre [KntrDiFcKayb] $5 \leq P$, [Hayır] ω olarak ayarlanmasıyla erişilebilir.
Ayar alanı ve fabrika ayarları tahrik gerilim değeri ve [Ana Şebeke Gerilimi] $\omega \leq E \leq S$ değeri tarafından belirlenir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>141...414 V</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>Tahrik değerlerine göre</td>
<td>Fabrika ayarı: Tahrik değerlerine göre</td>
</tr>
</tbody>
</table>

[Maks. duruş zmnı] $5 \leq P \leq \pi$

Maksimum durma süresi.
Bu parametre [KntrDiFcKayb] $5 \leq P$, [Rampa durusu] $r \leq P$ olarak ayarlanmasıyla erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01...60,00 sn</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>1,00 sn</td>
<td>Fabrika ayarı: 1,00 sn</td>
</tr>
</tbody>
</table>

[DC bara bakım süresi] $t \leq 5$

DC bara bakım süresi.
Bu parametre [KntrDiFcKayb] $5 \leq P$, [DC Bakım] $\pi \leq S$ olarak ayarlanmasıyla erişilebilir.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...9999 sn</td>
<td>Ayar alanı</td>
</tr>
<tr>
<td>9999 sn</td>
<td>Fabrika ayarı: 9999 sn</td>
</tr>
</tbody>
</table>
[Toprak Arızası] \(G \leq F \leq L \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Hata/Uyarı yönetimi] \(\rightarrow \) [Toprak Arızası]

Bu Menü Hakkında

Bu Menüye [Erişim Seviyesi], [Uzman] olarak ayarlanırsa erişilebilir [E P r]. Dahili toprak arızası algılama [Toprak Arızası] \(G \leq F \leq L \) istenmeyen uygulamanızda sonuçlara neden olabilir, dahili toprak arızası algılamayı uygun bir harici toprak arızası izleme sistemiyle değiştirmek mümkündür. [Toprak Arızası] \(G \leq F \leq L \) parametresini [HataAlgılama DevreDışı] \(\in H \) veya sürücünün nominal akımının bir yüzde değerine ayarlayarak hataları sistemle belirleyebilir. [Toprak Arızası] \(G \leq F \leq L \) parametresini [HataAlgılama DevreDışı] \(\in H \) veya sürücünün nominal akımının bir yüzde değerine ayarlayarak hataları sistemle belirleyebilir. Bu yüzden, güvenilir şekilde toprak arızalarını algılayabilen harici bir toprak arızası algılama sistemi kurmanız gerekir.

![TEHLİKE](toprak_arizasi_izleme_devre_disi.png)

Toprak arızası izleme devre dışı

- Yalnızca aygıt ve uygulama için tüm düzenleme ve standartlara uygun bir risk değerlendirmesinden sonra [Toprak Arızası] \(G \leq F \leq L \) parametresini [HataAlgılama DevreDışı] \(\in H \) veya sürücünün nominal akımının bir yüzde değerine ayarlayın.
- Tüm uygulanabilir düzenleme ve standartlara ve risk değerlendirmesine uygun, sürücünün bir toprak arızasına yeterli, eşdeğer bir yanıtta izin veren alternatif, harici bir toprak arızası izleme fonksiyonu uygulayın.
- Sistemi, tüm izleme fonksiyonları etkin şekilde işletme ve test edin.
- İşletmeye alma sırasında, kontrolü koşullar altında kontrolü bir ortamda testler ve simülasyonlar gerçekleştirilerek alternatif, harici toprak arızası algılama sisteminin her türlü toprak arızasını düzgün şekilde algıladığını doğrulayın.

Bu talimatları uygulaması, ölüm veya ağır yaralanmalara yol açacaktır.

[Toprak Hata Aktivasyonu] \(G \leq F \leq L \)

Toprak arızası hata tepkisi.

NOT: Bu parametre ayan bir ürün yeniden başlatılduktan sonra dikkate alınır.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[HataAlgılama DevreDışı]</td>
<td>(y E 5)</td>
<td>Ürünün dahili değerini kullanın. 11 kW'den yüksek bir güçle sürücülerdeki sürücü nominal akımının yaklaşık %25%. 11 kW'ye küçük eşit bir güçle sürücülerdeki sürücü nominal akımının yaklaşık %50'si. Fabrika ayan</td>
</tr>
<tr>
<td>[Evet]</td>
<td></td>
<td>Ayar alanı, tahrik nominal akımının %'si olarak</td>
</tr>
</tbody>
</table>

| %0,0...%100,0 | | Ayar alanı, tahrik nominal akımının %'si olarak |
Motor termal izleme - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Motor termal izleme]

Bu Menü Hakkında

İ²t hesaplanarak motor termal koruması.

NOT: Sürücünün gücü kapatıldığında motor termal durumu ezberlenir. Sonraki çalıştırıldığında motor termal durumunu hesaplamak için güç kapalma zamanlayıcısı kullanılır.

- Kendinden soğutmalı motorlar: Tetik eğrisi, motor frekansına bağlıdır.
- Zorlamalı soğutmalı motorlar: Motor frekansına bakılmayarak yalnızca 50 Hz tetik eğrileri dikkate alınmalıdır.

50 Hz motor için bir eğrinin altında.

Saniye olarak açılma zamanı

[Diagram]

60 Hz motor için bir eğrinin altında.

Saniye olarak açılma zamanı

[Diagram]
[Motor Termal Akımı] \(i \leq H \)

Etiket plakasında belirtilen anma akımına ayarlanacak olan motor termal izleme akımı.

<table>
<thead>
<tr>
<th>Ayar ((i))</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2...1,8_inç(^{(1)})</td>
<td>Ayar aralığı</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Kurulum kılavuzunda ve sürücü isim plakasında belirtilen nominal sürücü akımına eşittir.

[Motor Termal Modu] \(L \leq H \)

Motor termal izleme modo.

NOT: Termal durum nominal durumun \%118\'ine ulaştığında bir hata algılanır ve durum tekrar \%100\'ün altında düştüğünde yeniden aktif hale gelir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Termal izleme yok</td>
</tr>
<tr>
<td>[Kendinden soğutmalı]</td>
<td>R L</td>
<td>Kendinden soğutmalı motor</td>
</tr>
<tr>
<td>[Zorla soğutma]</td>
<td>F L</td>
<td>Fan soğutmalı motor</td>
</tr>
</tbody>
</table>
[Kodlayıcı izleme] 5 d d - Menüsü

Erişim

[Tüm ayarlar] → [Hata/Uyarı yönetimi] → [Kodlayıcı izleme]

[Yük kayması algılama] 5 d d
Yük kayması izleme fonksiyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Tetiklenen hata yok. Uygun bir dijital çıkış veya röleye atanabilir</td>
</tr>
<tr>
<td></td>
<td>Y E S</td>
<td>Hata tetiklendi. [Yük kayması algılama] 5 d d öğesi [Evet] Y E S olarak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ayarlanırsa [Motor Kontrol Türü] C t t öğesi [FVC] F V t veya [Senkr.CL]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F S Y olarak ayarlanırsa. [Yük kayması] A n F hatası rampa çıkış ve hız</td>
</tr>
<tr>
<td></td>
<td></td>
<td>geri beslemesi karşılaştırılarak tetiklenir ve [Nominal Motor Frek] F r S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>değerinin %10’undan yüksek hızlar için etkendir. Hata tetiklenmesi durumunda, sürücü serbest durdurulabilir ve fren lojik kontrolü fonksiyonu configüre edilebilir, fren komutu 0 olarak ayarlanacaktır.</td>
</tr>
</tbody>
</table>

[Kodlayıcı Bağlantısı İzleme] E C C ♠
Kodlayıcı bağlantısını izlemek gerekir.
Bu parametre [Kodlayıcı kullanımı] E n u öğesi [Hayır] n o olarak ayarlanamazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hata izlenmedi. Fren lojğini kontrol fonksiyonu configüre edildiyse fabrika aya</td>
</tr>
<tr>
<td></td>
<td>Y E S</td>
<td>Hata izlendi. Fren lojğini kontrol fonksiyonu configüre edildiyse fabrika aya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- [Yük kayması algılama] 5 d d öğesi [Evet] Y E S olarak ayarlanırsa ve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- [Kodlayıcı kullanımlı] E n u öğesi [Hayır] n o olarak ayarlanırsa ve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- [Fren ataması] b t t öğesi [Hayır] olarak ayarlanırsa n o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>İzlenen hata kodlayıcının mekanik bağlantısındaki frendir. Hata olması durumunda, sürücü serbest durdurulabilir ve fren lojik kontrol fonksiyonu configüre edilebilir, fren komutu bırakılacaktır.</td>
</tr>
</tbody>
</table>

[Kodlayıcı kontrol süresi] E C t ♠
Kodlayıcı kontrol süresi.
Bu parametre şu şekilde erişilebilir:
- [Kodlayıcı kullanımlı] E n u öğesi [Hayır] n o olarak ayarlanırsa ve
- [Kodlayıcı Bağlantısı İzleme] E C C öğesi [Hayır] n o’a ayarlanırsa.

<table>
<thead>
<tr>
<th>Ayar (s)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0...10,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika aya: 2,0 sn</td>
</tr>
</tbody>
</table>
Frenleme Direnci İzlemesi

Menüsü
- Tüm ayarlar
- Hata/Uyarı yönetimi
- Frenleme Direnci İzlemesi

Ayarlar

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Frenleme direnci izleme yok (dolayısıyla diğer fonksiyon parametrelerine erişimi önleme). Fabrika ayarı</td>
</tr>
<tr>
<td>[Uyarı]</td>
<td>Y E S</td>
<td>Uyarı, bir lojik çıkış veya röleye atanabilir.</td>
</tr>
<tr>
<td>[Hata]</td>
<td>F L t</td>
<td>Sürcü kilitlenerek bir [Frenleme Direnci aşırı yüklemesi] b o F öğesini tetikleme (serbest dururma).</td>
</tr>
</tbody>
</table>

Frenleme Direnci Gücü

Kullanılan direncin nominal gücü. Yükülü tüm frenleme dirençlerinin toplam gücü girin.
Bu parametre [Frenleme Direnci İzlemesi] b o öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...3.000,0 kW</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,1 kW</td>
</tr>
</tbody>
</table>

Frenleme Direnci Değeri

Frenleme direncinin ohm cinsinden nominal değeri.
Bu parametre [Frenleme Direnci İzlemesi] b o öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1...200,0 Ohm</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0,1 Ohm</td>
</tr>
</tbody>
</table>

Frenleme Direnci T Sabiti

Frenleme direnci süre sabiti.
Bu parametre [Frenleme Direnci İzlemesi] b o öğesi [Hayır] n o olarak ayarlanmazsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...200 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 45 sn</td>
</tr>
</tbody>
</table>

Frenleme Direnci termal durumu

Frenleme Direnci termal durumu.

<table>
<thead>
<tr>
<th>Ayar (%)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: _</td>
</tr>
</tbody>
</table>
Tüm ayarlar CST-

[Tork veya i sınır. algılama] ☢ ☬ ☬ - Menüsü

Erişim

[Tüm ayarlar] ➔ [Hata/Uyarı yönetimi] ➔ [Tork veya I sınırı algılama]

[Trk/I Limit. Stop] 5 5 b

Tork akım sınırlaması: davranış konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>n o</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>y E s</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>[STT’ye göre]</td>
<td>s t t</td>
<td>[Duruş türü] s t t parametresine uygun ancak duruştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hız]</td>
<td>l f f</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğçe ve çalıştırma komutu kaldırılmadığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Hız korunuyor]</td>
<td>r l s</td>
<td>Hız, algılanan hata devam ettiğçe ve çalıştırma komutu kaldırılmadığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>r n p</td>
<td>Rampa durma</td>
</tr>
<tr>
<td>[Hızlı duruş]</td>
<td>f s t</td>
<td>Hızlı duruş</td>
</tr>
<tr>
<td>[DC enjeksiyonu]</td>
<td>d c t 1</td>
<td>DC enjeksiyonu</td>
</tr>
</tbody>
</table>

1 Bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir rôle veya mantık çıkış atanması tavsiye edilir.

[Trk/I lim.zam.aşım] 5 6 o

<table>
<thead>
<tr>
<th>Ayar (’)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...9.999 ms</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 1.000 ms</td>
</tr>
</tbody>
</table>
[Sürücü aş.yük.izleme] \(a \ b \ r \) - Menüsü

Erişim

[Tüm ayarlar] \(\rightarrow \) [Hata/Uyarı yönetimi] \(\rightarrow \) [Sürücü aş.yük.izleme]

Sürücü Aşırı Yüklenme İzleme

[Sürücü aş.yük.izleme] \(t \ l \ a \ L \), [I2t Akım Düşürme] \(, \ L \) olarak ayarlanırsa sürücü otomatik olarak aşırı yük kapasitesine uyum sağlar.

Mevcut sınırlama, makine döngülerine bağlı olarak otomatik olarak düşürülür.

[Çift Anma Değeri] \(d \ t \) . [Normal anma değeri] \(n \ a \ r \ n \ L \) olarak ayarlanırsa maksimum aşırı yük kapasiteleri aşağıdaki şekildedir:

- 60 saniye boyunca sürücü nominal akımının %110'u.
- 2 saniye boyunca sürücü nominal akımının %135'i.

[Çift Anma Değeri] \(d \ t \) öğesi [Ağır Hizmet] \(H \), \(G H \) olarak ayarlanırsa maksimum aşırı yük kapasiteleri şunlardır:

- 60 saniye boyunca sürücü nominal akımının %150'si.
- 2 saniye boyunca sürücü nominal akımının %180'i.

Sürücü akımları yukarıda verilen 2 veya 60 saniyelik sınırlardan büyükse sürücünün akım sınırlaması otomatik olarak düşürülebilir ve [Akım Düşürme] \(t \ L \ a \ w \) uyarısı aktive edilir.

Akım sınırlaması sürücü nominal akımına kadar düşürülebilir.

NOT: Ürünün gücü kapatıldığında aşırı yük durumu saklanır. Sonraki güç açılışında sürücü, [I2t Gerçek Yük Değeri] \(TLOA \) değeriye göre tepki verir.

[TahrikSıc. HataTpk.] \(a \ H \ L \)

Tahrik aşırı sıcaklık hata tepkisi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yoksay]</td>
<td>(n \ a)</td>
<td>Algılanan hata göz ardı edildi</td>
</tr>
<tr>
<td>[Serbest Duruş]</td>
<td>(y E S)</td>
<td>Serbest duruş</td>
</tr>
<tr>
<td>Fabrika ayarı</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[STT'ye göre]</td>
<td>(S \ L)</td>
<td>[Duruş türü] (S \ L) parametrelerine uygun ancak duruştan sonra tetiklenen bir hatanın olmadığı duruş</td>
</tr>
<tr>
<td>[Geri Çekilme Hızı]</td>
<td>(L F F)</td>
<td>Geri çekilme hızına geçiş, algılanan hata devam ettiğine ve çalışma komutu kaldırılmadığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Hz korunuyor]</td>
<td>(r L S)</td>
<td>Hız, algılanan hata devam ettiğine ve çalışma komutu kaldırılmadığı sürece korunur (1)</td>
</tr>
<tr>
<td>[Rampa duruşu]</td>
<td>(r N P)</td>
<td>Rampada duruma</td>
</tr>
<tr>
<td>[Hzlı duruş]</td>
<td>(F S E)</td>
<td>Hzlı duruş</td>
</tr>
<tr>
<td>1 Bu durumda, algılanan hata bir durdurma tetiklediğinden, bu gösterge için bir röle veya mantık çıkış atanması tavsiye edilir.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Sür.Termal Uyan] \(t \ H \ R \)

Sürücü termal durum uyarısı ([Sürücü Termal Eşişine ulaşıldı] \(t \ R d \) uyarısı için).

<table>
<thead>
<tr>
<th>Ayar (Ç)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...118</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: %100</td>
<td></td>
</tr>
</tbody>
</table>

NVE61643TR 01/2019 519
Sürücü Aşırı Yük İzleme t_{LOL}

Sürücü aşırı yük izleme aktifleştirme.

BİLDİRİM

TAHRIKTE AŞIRI ISINMA VE HASAR

[Tahrik Aşırı Yük İzleme] t_{LOL} [Devre dışı] d, s olarak ayarlanırsa tahrik aşırı ısımlma izlemesi devre dışı bırakılır.

- Bu parametre ayarının teçhizattı bir hasar doğurmadığıni doğrulayın.

Bu talimatlara uyulması, ekipmanda maddi hasara yol açabilir.

Fabrika ayarı gücü 22kW'a kadar olan sürücüler için [I^2t Akım Düşürme] d, s ve 22kW'tan yüksek olan sürücüler için [Devre Dışı] d, s şeklindedir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Devre dışı] d, s</td>
<td></td>
<td>Devre dışı</td>
</tr>
<tr>
<td>[I^2t Akım Düşürme]</td>
<td>d, s</td>
<td>I^2t Akım Düşürme</td>
</tr>
<tr>
<td>[Hata Tetkilendi]</td>
<td>d, s, P</td>
<td>Hata tetkilendi</td>
</tr>
<tr>
<td>[Sürücü I Nom Azalt]</td>
<td>L, n</td>
<td>Motor akımı sürücü nominal akımından sınırlıdır.</td>
</tr>
</tbody>
</table>

I^2t Gerçek Yük Değeri t_{LOA}

P_t gerçek integral yük değeri.

Bu parametre faktör %100'den büyükse akım sınırlama otomatik olarak düşürülür.

- Bu değer yalnızca gerçek akım sürücünün nominal akımından büyükse artır.

- Bu değer dahil hesaplamalara bağlı olarak otomatik olarak azalır.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-3276,7...3.276,7</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: -</td>
</tr>
</tbody>
</table>

I^2t Ortalama Yük Değeri t_{LOM}

P_t Ortalama yük değeri

Bu parametre sürücünün ortalama yük değerini gösterir.

<table>
<thead>
<tr>
<th>Ayar ($)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%-3276,7...3.276,7</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: -</td>
</tr>
</tbody>
</table>
[Uyarı grubu 1 tanıımı] A / E - Menüsü

Erişim

[Tüm ayarlar] ➞ [Hata/Uyarı idaresi] ➞ [Hata grupını konfig.] ➞ [Uyarı grup 1 açtırma]

Bu Menü Hakkında

Aşağıdaki alt menü grupları, her biri uzaktan sinyalleşme sağlamak için bir rol ve dijital çıkışa atanabilir. 1 ile 5 grup arasında değişecektir. Gruplar bir grupta seçilen bir veya daha fazla uyanı meydanda geldiğinde bu uyanı grupu aktif hale getirilir.

Uyarı Listesi

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saklanan Uyanı yok</td>
<td>n α A</td>
<td>Saklanan uyanı yok</td>
</tr>
<tr>
<td>Geri Çekilme Frekansı</td>
<td>F r F</td>
<td>Olayda Tepki: Geri çekilme frekansı</td>
</tr>
<tr>
<td>Hız Korunuyor</td>
<td>r L S</td>
<td>Olayda Tepki: Hız korunuyor</td>
</tr>
<tr>
<td>Durdurma türü</td>
<td>S ≤ k</td>
<td>Olayda Tepki: Hata tetiklenmeden [Durma Türü] S ≤ kardan durma</td>
</tr>
<tr>
<td>Ref Frekansı Uyanı</td>
<td>S r A</td>
<td>Frekans referansına ulaştı</td>
</tr>
<tr>
<td>[PID] Hatası Uyanı</td>
<td>P E E</td>
<td>PID hatası uyanısı (bkz. sayfa 362)</td>
</tr>
<tr>
<td>[PID] Geri Besleme Uyanı</td>
<td>P F R</td>
<td>PID geri besleme uyanısı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[PID] Yüksek Geri Besleme Uyanı</td>
<td>P F R H</td>
<td>PID geri besleme yüksek eşliğinde ulaştı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[PID] Düşük Geri Besleme Uyanı</td>
<td>P F R L</td>
<td>PID geri besleme düşük eşidine ulaştı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[Sınır Anahtara Ulaşıldı]</td>
<td>L S R</td>
<td>Sınır anahtara ulaştı (bkz. sayfa 389)</td>
</tr>
<tr>
<td>[Gevşek Halat Uyanı]</td>
<td>r S d R</td>
<td>Gevşek halat uyanısı (bkz. sayfa 269)</td>
</tr>
<tr>
<td>[Dinamik Yük Uyanı]</td>
<td>d L d R</td>
<td>Dinamik yük uyanısı (bkz. sayfa 300)</td>
</tr>
<tr>
<td>[AI3 Ter Uyanı]</td>
<td>t P 3 A</td>
<td>AI3 Termal uyanısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI4 Ter Uyanı]</td>
<td>t P 4 R</td>
<td>AI4 Termal uyanısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI1 Ter Uyanı]</td>
<td>t P 5 R</td>
<td>AI5 Termal uyanısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[AI1 4-20 Kaybi Uyanı]</td>
<td>R P 1</td>
<td>AI1 4-20 mA kayıp uyanısı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[AI3 4-20 Kaybi Uyanı]</td>
<td>R P 3</td>
<td>AI3 4-20 mA kayıp uyanısı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[AI4 4-20 Kaybi Uyanı]</td>
<td>R P 4</td>
<td>AI4 4-20 mA kayıp uyanısı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[AI5 4-20 Kaybi Uyanı]</td>
<td>R P 5</td>
<td>AI5 4-20 mA kayıp uyanısı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[Sürüşü Termal Uyanı]</td>
<td>f H R</td>
<td>Sürüşü aşırı ısıma uyanısı (bkz. sayfa 510)</td>
</tr>
<tr>
<td>[IGBT Termal Uyanı]</td>
<td>b J R</td>
<td>IGBT termal durumu uyanısı</td>
</tr>
<tr>
<td>[Fan Sayacı Uyanı]</td>
<td>F C R</td>
<td>Fan sayacı hız uyanısı (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[Fan Geri Besleme Uyanı]</td>
<td>F F d R</td>
<td>Fan geri besleme uyanısı (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[BR Termal Uyanı]</td>
<td>b α R</td>
<td>Frenele direnci termal uyanısı</td>
</tr>
<tr>
<td>[Har. Hata Uyanı]</td>
<td>E F R</td>
<td>Harici hata uyanısı (bkz. sayfa 501)</td>
</tr>
<tr>
<td>[Düşük Gerilim Uyanı]</td>
<td>u S R</td>
<td>Düşük gerilim uyanısı (bkz. sayfa 511)</td>
</tr>
<tr>
<td>[Önleyici Düşük Gerilim Aktif]</td>
<td>u P R</td>
<td>Kontrolü durma eşidine ulaştı (bkz. sayfa 511)</td>
</tr>
<tr>
<td>[Mot Frek Yüksek Eşği]</td>
<td>f H R</td>
<td>Motor frekans yüksek eşği 1’ye ulaştı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Mot Frek Düşük Eşği]</td>
<td>f H R L</td>
<td>Motor frekans düşük eşği 1’ye ulaştı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Darbe Uyanı Eşği Ulaşıldı]</td>
<td>F 9 L R</td>
<td>Darbe uyanı eşidine ulaştı (bkz. sayfa 429)</td>
</tr>
<tr>
<td>[Mot Frek Düşük Eşği 2]</td>
<td>F 2 A L</td>
<td>Motor frekans düşük eşği 2’ye ulaştı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yüksek Hıza Ulaşıldı]</td>
<td>F L R</td>
<td>Yüksek hıza ulaştı uyanısı</td>
</tr>
<tr>
<td>[Ref Frek Yüksek Eşği ulaşıldı]</td>
<td>r F R H</td>
<td>Referans frekans yüksek eşidine ulaştı (bkz. sayfa 363)</td>
</tr>
<tr>
<td>[Ref Frek Düşük Eşği ulaşıldı]</td>
<td>r F R L</td>
<td>Referans frekans düşük eşidine ulaştı (bkz. sayfa 363)</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod</td>
<td>Açıklama</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>[Akım Eşiğine Ulaşıldı]</td>
<td>C L A</td>
<td>Motor akımı yüksek eşiğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Düşük Akım Eşiğine Ulaşıldı]</td>
<td>C L A</td>
<td>Motor akımı düşük eşiğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yüksek Tork Uyarısı]</td>
<td>L H A</td>
<td>Yüksek tork eşiğine ulaşıldı (bkz. sayfa 369)</td>
</tr>
<tr>
<td>[Düşük Tork Uyarısı]</td>
<td>L L A</td>
<td>Düşük tork eşiğine ulaşıldı (bkz. sayfa 366)</td>
</tr>
<tr>
<td>[Proses Düşük Yük Uyarısı]</td>
<td>L L A</td>
<td>Düşük yük uyarısı (bkz. sayfa 419)</td>
</tr>
<tr>
<td>[Proses Asırı Yük Uyarısı]</td>
<td>L L A</td>
<td>Asırı yük uyarısı (bkz. sayfa 427)</td>
</tr>
<tr>
<td>[Tork Limitine Ulaşıldı]</td>
<td>S S A</td>
<td>Tork limitine ulaşıldı (bkz. sayfa 516)</td>
</tr>
<tr>
<td>[Tork Kontrol Uyarısı]</td>
<td>L R A</td>
<td>Tork kontrol uyanı (bkz. sayfa 394)</td>
</tr>
<tr>
<td>[Sürçü Termal Eşiğine ulaşıldı]</td>
<td>L R A</td>
<td>Sürücü termal eşiğine ulaşıldı</td>
</tr>
<tr>
<td>[Motor Termal Eşiğine ulaşıldı]</td>
<td>S S A</td>
<td>Motor termal eşiğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Mot2 Termal Eşiğine ulaşıldı]</td>
<td>S S A</td>
<td>Motor 2 termal eşiğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Mot3 Termal Eşiğine ulaşıldı]</td>
<td>S S A</td>
<td>Motor 3 termal eşiğine ulaşıldı (bkz. sayfa 366)</td>
</tr>
<tr>
<td>[Mot4 Termal Eşiğine ulaşıldı]</td>
<td>S S A</td>
<td>Motor 4 termal eşiğine ulaşıldı (bkz. sayfa 369)</td>
</tr>
<tr>
<td>[Gücü Yüksek Eşiği]</td>
<td>P H A</td>
<td>Güç yüksek eşiğine ulaşıldı</td>
</tr>
<tr>
<td>[Gücü Düşük Eşiği]</td>
<td>P H L</td>
<td>Güç düşük eşiğine ulaşıldı</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 1]</td>
<td>C S 1</td>
<td>Müşteri uyanısı 1 aktif (bkz. sayfa 526)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 2]</td>
<td>C S 2</td>
<td>Müşteri uyanısı 2 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 3]</td>
<td>C S 3</td>
<td>Müşteri uyanısı 3 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 4]</td>
<td>C S 4</td>
<td>Müşteri uyanısı 4 aktif (bkz. sayfa 528)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 5]</td>
<td>C S 5</td>
<td>Müşteri uyanısı 5 aktif (bkz. sayfa 529)</td>
</tr>
<tr>
<td>[Gücü Tüketim Uyarısı]</td>
<td>P A W</td>
<td>Güç tüketimi uyanı</td>
</tr>
<tr>
<td>[Kayma uyanı]</td>
<td>R A A</td>
<td>Kayma uyanı (bkz. sayfa 516)</td>
</tr>
<tr>
<td>[Yük Hırt Uyarısı]</td>
<td>B S A</td>
<td>Yük hareket uyanısı</td>
</tr>
<tr>
<td>[Fren Kont Uyarıısı]</td>
<td>B C A</td>
<td>Fren kontak uyanısı (bkz. sayfa 286)</td>
</tr>
<tr>
<td>[A11 Ter Uyarısı]</td>
<td>L P 1 A</td>
<td>A11 Termi uyanısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Akım Düş Uyarısı]</td>
<td>L L A</td>
<td>Akım düşürme uyanısı (bkz. sayfa 520)</td>
</tr>
<tr>
<td>[M/S Cihazı Uyarısı]</td>
<td>N S A</td>
<td>Master/Bağlı cihaz uyanısı (bkz. sayfa 233)</td>
</tr>
<tr>
<td>[Geri Tep Uyarısı]</td>
<td>B S 4 A</td>
<td>Geri tepme uyanısı (bkz. sayfa 304)</td>
</tr>
<tr>
<td>[Kodlayıcı Termal Uyarısı]</td>
<td>L P E A</td>
<td>Kodlayıcı modüli termal uyanısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Kon. İzleme Uyarısı]</td>
<td>P F E S</td>
<td>Konum izleme uyanıs</td>
</tr>
<tr>
<td>[Sıc. Sens AI1 Uyarısı]</td>
<td>L S 1 A</td>
<td>Sıcaklık sensörü AI1 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI3 Uyarısı]</td>
<td>L S 3 A</td>
<td>Sıcaklık sensörü AI3 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI4 Uyarısı]</td>
<td>L S 4 A</td>
<td>Sıcaklık sensörü AI4 uyanısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens AI5 Uyarısı]</td>
<td>L S 5 A</td>
<td>Sıcaklık sensörü AI5 uyanısı (açık devre)</td>
</tr>
</tbody>
</table>
[Uyarı grubu 2 tanıımı] \(R \ 2 \ C \) - Menüsü

Erişim

[Tüm ayarlar] \[\rightarrow\] [Hata/Uyarı idaresi] \[\rightarrow\] [Hata grupları konfg.] \[\rightarrow\] [Uyarı grup 2 açıklama]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(R \ 1 \ C \) (bkz. sayfa 521)

[Uyarı grubu 3 tanıımı] \(R \ 3 \ C \) - Menüsü

Erişim

[Tüm ayarlar] \[\rightarrow\] [Hata/Uyarı idaresi] \[\rightarrow\] [Hata grupları konfg.] \[\rightarrow\] [Uyarı grup 3 açıklama]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(R \ 1 \ C \) (bkz. sayfa 521)

[Uyarı grubu 4 tanıımı] \(R \ 4 \ C \) - Menüsü

Erişim

[Tüm ayarlar] \[\rightarrow\] [Hata/Uyarı idaresi] \[\rightarrow\] [Hata grupları konfg.] \[\rightarrow\] [Uyarı grup 4 açıklama]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(R \ 1 \ C \) (bkz. sayfa 521)

[Uyarı grubu 5 tanıımı] \(R \ 5 \ C \) - Menüsü

Erişim

[Tüm ayarlar] \[\rightarrow\] [Hata/Uyarı idaresi] \[\rightarrow\] [Hata grupları konfg.] \[\rightarrow\] [Uyarı grup 5 açıklama]

Bu Menü Hakkında

[Uyarı grubu 1 tanıımı] ile aynı \(R \ 1 \ C \) (bkz. sayfa 521)
Alt bölümü 8.46
[Bakım]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanılama dAU - Menüsü</td>
<td>525</td>
</tr>
<tr>
<td>Müşteri olayı 1 CE1 - Menüsü</td>
<td>526</td>
</tr>
<tr>
<td>Müşteri olayı 2 CE2 - Menüsü</td>
<td>527</td>
</tr>
<tr>
<td>Müşteri olayı 3 CE3 - Menüsü</td>
<td>527</td>
</tr>
<tr>
<td>Müşteri olayı 4 CE4 - Menüsü</td>
<td>528</td>
</tr>
<tr>
<td>Müşteri olayı 5 CE5 - Menüsü</td>
<td>528</td>
</tr>
<tr>
<td>Müşteri olayları CUEv - Menüsü</td>
<td>529</td>
</tr>
<tr>
<td>Fan yönetimi FARA - Menüsü</td>
<td>530</td>
</tr>
<tr>
<td>Bakım C5RA - Menüsü</td>
<td>531</td>
</tr>
</tbody>
</table>
[Tanılama] düğüm - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Tanılama]

Bu Menü Hakkında
Bu menü, tanılamalar için basit test sıraları oluşturulmasını sağlar.

[FAN Tanılamaları] F n b
Dahili fan(ler)ı tanılama.
Bu işlem, bir test sırası başlatır.

[LED Tanılamaları] H L b
Ürün LED(ler)inin tanılamaları.
Bu işlem, bir test sırası başlatır.

[IGBT Tanı. motorla] I W b
Dahili fan(ler)ı tanılama.
Bu işlem, motorla bir test sırası başlatacaktır (açık devre/kısa devre).

[IGBT Tanı. motorsuz] I W o b
Ürün IGBT'sinin/IGBT'lerinin tanılamaları.
Bu işlem, motor olmadan bir test sırası başlatacaktır (kısa devre).
Bu Menü Hakkında
Bu menü, özelleştirilmiş müşteri olaylarını zamana göre tanımlamanızı sağlar.

[Konfig Uyarısı 1] C C A 1
Müşteri uyarısı 1 konfigürasyonu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konfigüre edilmemiş]</td>
<td>C</td>
<td>Konfigüre Edilmemiş</td>
</tr>
<tr>
<td>[Sayaç]</td>
<td>P L</td>
<td>Sayaç</td>
</tr>
<tr>
<td>[Tarih ve Saat]</td>
<td>d L</td>
<td>Tarih ve saat</td>
</tr>
</tbody>
</table>

[Sayaç sınırı 1] C C L 1
Konfigürasyon sayaç sınırı 1.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4294967295 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 0 sn</td>
<td></td>
</tr>
</tbody>
</table>

[Sayaç kaynağı 1] C C L 1
Konfigürasyon sayaç kaynağı 1.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Şebeke/Kontrol AÇIK]</td>
<td>0</td>
<td>Şebeke ya da kontrol besleme açık</td>
</tr>
<tr>
<td>[Şebeke Beslemesi AÇIK]</td>
<td>1</td>
<td>Şebeke açık</td>
</tr>
<tr>
<td>[Sürücü, Çalışma Durumunda]</td>
<td>2</td>
<td>Sürücü çalışma durumunda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[Akım Sayacı 1] C C 1
Akım sayacı 1.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4294967295 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 0 sn</td>
<td></td>
</tr>
</tbody>
</table>

[Tarih Saat Uyanısı 1] C d L 1
Tarih saat uyanısı 1.
Bu parametre sadece Ekran Terminali öğesinden erişilebilir.

<table>
<thead>
<tr>
<th>Ayar (c)</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>ss:dd GG/AAVYYYY</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı: 00:00 01/01/2000</td>
<td></td>
</tr>
</tbody>
</table>
[Müşteri olayı 2] C E 2 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Müşteri olayları] ➔ [Müşteri olayı 2]

Bu Menü Hakkında

[Müşteri olayı 1] C E 1 - menüsü (bkz. sayfa 526) ile aynı.

[Konfig Uyarısı 2] C C A 2
Müşteri uyarıısı 2 konfigürasyonu.

[Sayaç sınırı 2] C C L 2
Konfigürasyon sayaç sınırı 2.

[Sayaç Kaynağı 2] C C S 2
Konfigürasyon sayaç kaynağı 2.

[Akim Sayacı 2] C C 2
Akım sayacı 2.

[Tarih Saat Uyarısı 2] C d L 2 ★
Tarih saat uyarıısı 2.
Bu parametreye sadece Ekran Terminali öğesinden erişilebilir.

[Müşteri olayı 3] C E 3 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Müşteri olayları] ➔ [Müşteri olayı 3]

Bu Menü Hakkında

[Müşteri olayı 1] C E 1 - menüsü (bkz. sayfa 526) ile aynı.

[Konfig Uyarısı 3] C C A 3
Müşteri uyarıısı 3 konfigürasyonu.

[Sayaç sınırı 3] C C L 3
Konfigürasyon sayaç sınırı 3.

[Sayaç Kaynağı 3] C C S 3
Konfigürasyon sayaç kaynağı 3.

[Akim Sayacı 3] C C 3
Akım sayacı 3.

[Tarih Saat Uyarısı 3] C d L 3 ★
Tarih saat uyarıısı 3.
Bu parametreye sadece Ekran TerminaliGrafik Ekran Terminalinden erişilebilir.
Tüm ayarlar CST

[Müşteri olayı 4] CE 4 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Müşteri olayları] ➔ [Müşteri olayı 4]

Bu Menü Hakkında

[Müşteri olayı 1] CE 1 - menüsü (bkz. sayfa 526) ile aynı.

[Konfig Uyarısı 4] CE R 4
Müşteri uyarıısı 4 konfigürasyonu.

[Sayaç sınırı 4] CE L 4
Konfigürasyon sayaç sınırı 4.

[Sayaç Kaynağı 4] CE 5 4
Konfigürasyon sayaç kaynağı 4.

[Akım Sayacı 4] CE 4
Akım sayacı 4.

[Tarih Saat Uyarısı 4] CE L 4
Tarih saat uyarıısı 4.
Bu parametreye sadece Ekran TerminaliGrafik Ekran Terminalinden erişilebilir.

[Müşteri olayı 5] CE 5 - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Müşteri olayları] ➔ [Müşteri olayı 5]

Bu Menü Hakkında

[Müşteri olayı 1] CE 1 - menüsü (bkz. sayfa 526) ile aynı.

[Konfig Uyarısı 5] CE R 5
Müşteri uyarıısı 5 konfigürasyonu.

[Sayaç sınırı 5] CE L 5
Konfigürasyon sayaç sınırı 5.

[Sayaç Kaynağı 5] CE 5 5
Konfigürasyon sayaç kaynağı 5.

[Akım Sayacı 5] CE 5
Akım sayacı 5.

[Tarih Saat Uyarısı 5] CE L 5
Tarih saat uyarıısı 5.
Bu parametreye sadece Ekran Terminali öğesinden erişilebilir.
Müşteri olayları [Uyarı Temizleme]

Müşteri uyarı temizleme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Uyarı Temizleme Yok]</td>
<td>(r^a)</td>
<td>Uyarı temizleme yok</td>
</tr>
<tr>
<td>[Olay 1 Uyarısını Temizle]</td>
<td>(r^A1)</td>
<td>Olay 1 uyanısını temizle</td>
</tr>
<tr>
<td>[Olay 2 Uyarısını Temizle]</td>
<td>(r^A2)</td>
<td>Olay 2 uyanısını temizle</td>
</tr>
<tr>
<td>[Olay 3 Uyarısını Temizle]</td>
<td>(r^A3)</td>
<td>Olay 3 uyanısını temizle</td>
</tr>
<tr>
<td>[Olay 4 Uyarısını Temizle]</td>
<td>(r^A4)</td>
<td>Olay 4 uyanısını temizle</td>
</tr>
<tr>
<td>[Olay 5 Uyarısını Temizle]</td>
<td>(r^A5)</td>
<td>Olay 5 uyanısını temizle</td>
</tr>
</tbody>
</table>
[Fan yönetimi] F P A R - Menüsü

Erişim

[Tüm ayarlar] ➔ [Bakım] ➔ [Fan yönetimi]

Bu Menü Hakkında

[Fan Çalışma Süresi] F P b t sayacı, [Sayacı Sıfırlı] r P r parametresi kullanılarak 0 olarak ayarlanabilir.

[Fan Modu] F F b

Fan aktivasyon modu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>S P d</td>
<td>Motor çalışırken fanın çalışması etkinleştirilir. Tahriğin değerine göre bu kullanılabılır Fabrika ayarı</td>
</tr>
<tr>
<td>[Her zaman]</td>
<td>r P n</td>
<td>Fan daima aktif durumdadır</td>
</tr>
</tbody>
</table>
| [Hiçbir zaman] | S P P | Yazılım sürümü:
| | | • en fazla V1.5 (hariç) ise tahrik fanı devre dışı kalır.
| | | • V1.5 veya üstü ise bu seçim etkisi yoktur. Motor çalışırken fanın çalışması etkinleştirilir |
| [Ekonomi] | E c o | Fan, tahriğin dahili termal durumuna göre sadece gerekli olduğunda aktif durumdadır |

BİLDİRİM

AŞIRI ISINMA

Ortam sıcaklığının 40 °C'yi (104° F) aşmadığını doğrulayın. Bu talimatlara uymaması, ekipmanda maddi hasara yol açabilir.

[Bakım] C ﾁ ﾄ - Menüsü

Erişim

[Tüm ayarlar] ➙ [Bakım]

[Saat Sayacı Sıfırlama] r P r
Saat sayacını sıfırlama.

NOT: Muhtemel değerler listesi ürün boyutuna bağlıdır.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayaı</td>
</tr>
<tr>
<td>[Çalışma Zmnı Sıfırla]</td>
<td>r t H</td>
<td>Çalışma süresi sıfırlama</td>
</tr>
<tr>
<td>[Güç AÇIK Zmn Sıfırla]</td>
<td>P t H</td>
<td>Güç AÇIK süre sıfırlama</td>
</tr>
<tr>
<td>[Fan sayacı sıfırla]</td>
<td>F t H</td>
<td>Fan sayacını sıfırla</td>
</tr>
<tr>
<td>[NSM’yi Temizle]</td>
<td>n 5 ﾁ</td>
<td>Motor yolvermeleri sayısını temizle</td>
</tr>
</tbody>
</table>
Bölüm 9
[İletişim] C o P -

Giriş

[İletişim] C o P - menüsü, fieldbus alt menülerini sunar.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Modbus Haberleşme] Md1 - Menüsü</td>
<td>534</td>
</tr>
<tr>
<td>[İlet. Tara. geçir] Md1 - Menüsü</td>
<td>536</td>
</tr>
<tr>
<td>[İlet. Tara. çıkış] Md2 - Menüsü</td>
<td>537</td>
</tr>
<tr>
<td>[Modbus HMI] Md2 - Menüsü</td>
<td>538</td>
</tr>
<tr>
<td>[Dahil etl. Konfig] EtE - Menüsü</td>
<td>539</td>
</tr>
<tr>
<td>[Hızlı Aygıt Değiştirme] Fdr - Menüsü</td>
<td>540</td>
</tr>
<tr>
<td>[CANopen] CnC - Menüsü</td>
<td>542</td>
</tr>
<tr>
<td>[DeviceNet] dnc - Menüsü</td>
<td>542</td>
</tr>
<tr>
<td>[Profibus] PbC - Menüsü</td>
<td>542</td>
</tr>
<tr>
<td>[Profinet] Pnc - Menüsü</td>
<td>542</td>
</tr>
<tr>
<td>[Powerlink] EPL - Menüsü</td>
<td>542</td>
</tr>
<tr>
<td>[EtherCAT Modülü] EtC - Menüsü</td>
<td>543</td>
</tr>
</tbody>
</table>
İletişim COM-

[Modbus Haberleşme] \(\pi d \) I - Menüsü

Erişim

[İletişim] \(\Rightarrow \) [İlet. Parmtrleri] \(\Rightarrow \) [Modbus SL] \(\Rightarrow \) [Modbus Haberleşme]

Bu Menü Hakkında

Bu menü, kontrol bloğunun altındaki Modbus seri iletişim portuyla ilgilidir. Modbus seri kilavuzuna başvurun.

[Modbus Adresi] \(\pi d \ d \)

Tahrik Modbus adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KAPALI} \ a F F \ldots 247)</td>
<td>Ayar aralığı (\text{Fabrika ayarı: [KAPALI]} a F F)</td>
</tr>
</tbody>
</table>

[Modbus adr.ilet.kar.] \(R \ n \ a \ L \)

COM seçeneğin panosunun modbus adresi

Bu parametreye Ethernet IP haberleşme modülü takılmışsa erişilebilir

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KAPALI} \ a F F \ldots 247)</td>
<td>Ayar aralığı (\text{Fabrika ayarı: [KAPALI]} a F F)</td>
</tr>
</tbody>
</table>

[Baud Oranı Modbus] \(b \ b r \)

Baud hızı Modbus.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4800 \text{bps})</td>
<td>(\text{4k8})</td>
<td>4.800 Baud</td>
</tr>
<tr>
<td>(9600 \text{bps})</td>
<td>(\text{9k6})</td>
<td>9.600 Baud</td>
</tr>
<tr>
<td>(19200 \text{bps})</td>
<td>(\text{19k2})</td>
<td>19.200 Baud</td>
</tr>
<tr>
<td>(38,4 \text{Kbps})</td>
<td>(\text{38k4})</td>
<td>38.400 Baud</td>
</tr>
</tbody>
</table>

[Term Kelime Düzeni] \(b \ W a \)

Terminal Modbus: kelime düzeni.

Bu parametreye [Erişim Seviyesi] \(L \ R I \), [Uzman] \(E P R \) olarak ayarlanırsa erişilebilir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KAPALI})</td>
<td>(a F F)</td>
<td>Düşük kelime önce</td>
</tr>
<tr>
<td>(\text{AÇIK})</td>
<td>(a n)</td>
<td>Yüksek kelime önce (\text{Fabrika ayarı})</td>
</tr>
</tbody>
</table>

[ModbusFormatı] \(b \ F a \)

Modbus iletişim biçimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{8-O-1})</td>
<td>(B a 1)</td>
<td>8 bit tek parite 1 duruş biti</td>
</tr>
<tr>
<td>(\text{8-E-1})</td>
<td>(B E 1)</td>
<td>8 bit çift parite 1 duruş biti (\text{Fabrika ayarı})</td>
</tr>
<tr>
<td>(\text{8-N-1})</td>
<td>(B n 1)</td>
<td>8 bit parite yok 1 duruş biti</td>
</tr>
<tr>
<td>(\text{8-N-2})</td>
<td>(B n 2)</td>
<td>8 bit parite yok 2 duruş biti</td>
</tr>
</tbody>
</table>
[Modbus zaman aşımı]

Modbus zaman aşımı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 ... 30,0 sn</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 10,sn</td>
</tr>
</tbody>
</table>

[Modbus iletişim]

Modbus iletişim durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[r0t0]</td>
<td>r 0 t 0</td>
<td>Modbus alımı yok, aktarım yok</td>
</tr>
<tr>
<td>[r0t1]</td>
<td>r 0 t 1</td>
<td>Modbus alımı yok, aktarım var</td>
</tr>
<tr>
<td>[r1t0]</td>
<td>r 1 t 0</td>
<td>Modbus alımı var, aktarımı yok</td>
</tr>
<tr>
<td>[r1t1]</td>
<td>r 1 t 1</td>
<td>Modbus alımı ve aktarımı var</td>
</tr>
</tbody>
</table>
İletişim COM-

İlet. Tara. grş] E 5 - Menüsü

Erişim

[İletişim] ➔ [İlet. Parmtrleri] ➔ [Modbus SL] ➔ [Modbus Fieldbus] ➔ [İlet.Tara.Giriş]

[Tara. Gir1 adresi] n R 1
Birinci giriş kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 3201 (E k R)</td>
</tr>
</tbody>
</table>

[Tara. Gir2 adresi] n R 2
İkinci giriş kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 8604 (r F r d)</td>
</tr>
</tbody>
</table>

[Tara. Gir3 adresi] n R 3
Üçüncü giriş kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[Tara. Gir4 adresi] n R 4
Dördüncü giriş kelimesi adresi.

[Tara. Gir5 adresi] n R 5
Beşinci giriş kelimesi adresi.

[Tara. Gir6 adresi] n R 6
Altıncı giriş kelimesi adresi.

[Tara. Gir7 adresi] n R 7
Yedinci giriş kelimesi adresi.

[Tara. Gir8 adresi] n R 8
Sekizinci giriş kelimesi adresi.
İletişim COM-61643TR 01/2019 537

İlet. Tara. çıkış n C S - Menüsü

Erişim

İletşim i [İlet. Parmtrleri] i [Modbus SL] i [Modbus Fieldbus] i [İlet.Tara.Çıkış]

[Tara.Çık1 adresi] n C R 1

Birinci çıkış kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 8501(C m d)</td>
</tr>
</tbody>
</table>

[Tara.Çık2 adresi] n C R 2

İkinci çıkış kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 8602(L F r d)</td>
</tr>
</tbody>
</table>

[Tara.Çık3 adresi] n C R 3

Üçüncü çıkış kelimesi adresi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayarı: 0</td>
</tr>
</tbody>
</table>

[Tara.Çık4 adresi] n C R 4

Dördüncü çıkış kelimesi adresi.

[Tarama Çık3 adresi] n C R 3 ile aynı.

[Tara.Çık5 adresi] n C R 5

Beşinci çıkış kelimesi adresi.

[Tarama Çık3 adresi] n C R 3 ile aynı.

[Tara.Çık6 adresi] n C R 6

Altıncı çıkış kelimesi adresi.

[Tarama Çık3 adresi] n C R 3 ile aynı.

[Tara.Çık7 adresi] n C R 7

Yedinci çıkış kelimesi adresi.

[Tarama Çık3 adresi] n C R 3 ile aynı.

[Tara.Çık8 adresi] n C R 8

Sekizinci çıkış kelimesi adresi.

[Tarama Çık3 adresi] n C R 3 ile aynı.
İletişim COM-

[Modbus HMI] Menüleri - Menüleri

Erişim

[İletişim] ➔ [İlet. Parametri] ➔ [Modbus SL] ➔ [Modbus HMI]

Bu Menü Hakkında

[HMI baud oranı] eşittir

Baud hızı Modbus.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4800 bps]</td>
<td>4K8</td>
<td>4.800 Baud</td>
</tr>
<tr>
<td>[9600 bps]</td>
<td>9K6</td>
<td>9.600 Baud</td>
</tr>
<tr>
<td>[19200 bps]</td>
<td>19K2</td>
<td>19.200 Baud</td>
</tr>
<tr>
<td>[38,4 Kbps]</td>
<td>38K4</td>
<td>38.400 Baud</td>
</tr>
</tbody>
</table>

[Term 2 kelime düzene] eşittir

Terminal Modbus 2: Sözcük düzene.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DÜŞÜK]</td>
<td>OFF</td>
<td>Düşük kelime önce</td>
</tr>
<tr>
<td>[YÜKSEK]</td>
<td>ON</td>
<td>Yüksek kelime önce</td>
</tr>
</tbody>
</table>

[HMI formatı] eşittir

HMI biçimi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8-N-1]</td>
<td>8N1</td>
<td>8.n.1.</td>
</tr>
<tr>
<td>[8-N-2]</td>
<td>8N2</td>
<td>8.n.2.</td>
</tr>
</tbody>
</table>

[Mdb ilet. başlat] eşittir

Modbus iletişim durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[r00]</td>
<td>00</td>
<td>Modbus alımı yok, aktarım yok</td>
</tr>
<tr>
<td>[r01]</td>
<td>01</td>
<td>Modbus alımı yok, aktarımı var</td>
</tr>
<tr>
<td>[r10]</td>
<td>10</td>
<td>Modbus alımı var, aktarımı yok</td>
</tr>
<tr>
<td>[r11]</td>
<td>11</td>
<td>Modbus alımı ve aktarımı var</td>
</tr>
</tbody>
</table>
[Dahili eth. Konfig] E & E - Menüsü

Erişim

[İletişim] ➔ [İlet. Parmtrleri] ➔ [Dahili Eth Konfig]

Bu Menü Hakkında

Dahili Ethernet kılavuzuna bakın.

[Cihaz Adı] \textbf{PAn}

FDR (Hızlı Cihaz Değiştirme) hizmeti, "Cihaz Adı"na göre cihazın tanımlanmasına dayalıdır. Altivar sürücüyü durumunda, bu sınıflandırma, [Cihaz Adı] \textbf{PAn} parametresi tarafından temsil edilir. Bütün ağ cihazlarının farklı "Cihaz Adları"na sahip olduğundan emin olun.

[IP Modu Ethrn. Dahili] \textbf{, . . }

IP modu dahili Ethernet.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sabit]</td>
<td>\textbf{PAn}</td>
<td>Sabit adres</td>
</tr>
<tr>
<td>[BOOTP]</td>
<td>\textbf{boo} \textbf{tP}</td>
<td>BOOTP</td>
</tr>
<tr>
<td>[DHCP]</td>
<td>\textbf{dHCP}</td>
<td>DHCP Fabrika ayarı</td>
</tr>
</tbody>
</table>

[IP adresi] , . .

IP Adresi (, \textbf{. .} 1, , \textbf{. .} 2, , \textbf{. .} 3, , \textbf{. .} 4).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...255 | Ayar aralığı
| Fabrika ayarı: 0.0.0.0 |

[Maske] , . .

Altağ maskesi (, \textbf{. .} 1, , \textbf{. .} 2, , \textbf{. .} 3, , \textbf{. .} 4).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...255 | Ayar aralığı
| Fabrika ayarı: 0.0.0.0 |

[Ağ Geçidi] , . .

Ağ geçidi adresi (, \textbf{. .} 1, , \textbf{. .} 2, , \textbf{. .} 3, , \textbf{. .} 4).

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| 0...255 | Ayar aralığı
| Fabrika ayarı: 0.0.0.0 |
[Hızlı Aygıt Değiştirme] F d r - Menüsü

Erişim

İletişim ➙ [İletişim parametreleri] ➙ [Dahili Eth Konfig] ➙ [Hızlı Aygıt Değiştirme]

Bu Menü Hakkında

[FDR'yi etkinleştir] F d v 0

FDR fonksiyonunu etkinleştirin.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>no</td>
<td>FDR hizmeti devre dışı bırakıldı</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>YE S</td>
<td>FDR hizmeti etkinleştirildi</td>
</tr>
</tbody>
</table>

[FDR Eylemi] F d A 0

FDR eylemi.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Etkin değil]</td>
<td>i d L E</td>
<td>FDR eylemi yok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Kaydet]</td>
<td>SAVE</td>
<td>FDR kaydet komutu</td>
</tr>
<tr>
<td>[Yeniden başlat]</td>
<td>r E S E</td>
<td>FDR geri yükle komutu</td>
</tr>
</tbody>
</table>

[FDR Çalışma Durumu] F d S 0

FDR çalışma durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Başlatma]</td>
<td>init</td>
<td>Başlatma</td>
</tr>
<tr>
<td>[Etkin değil]</td>
<td>i d L E</td>
<td>Fonksiyon aktif değil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Çalışır durumda]</td>
<td>o PE</td>
<td>Çalışır durumda</td>
</tr>
<tr>
<td>[Hazır]</td>
<td>r E A d y</td>
<td>Hazır</td>
</tr>
<tr>
<td>[IP Konfigürasyonu]</td>
<td>i PC</td>
<td>IP konfigürasyonu</td>
</tr>
<tr>
<td>[Konfigüre edilememiş]</td>
<td>un CF</td>
<td>Fonksiyon konfigüre edilememiş</td>
</tr>
<tr>
<td>[Konfigürasyon Okunuyor]</td>
<td>E E</td>
<td>Geçerli konfigürasyonu indir</td>
</tr>
<tr>
<td>[Konfigürasyon Yazılıyor]</td>
<td>S E</td>
<td>Geçerli konfigürasyonu kaydet</td>
</tr>
<tr>
<td>[Konfigürasyon Uygulanıyor]</td>
<td>APP</td>
<td>Konfigürasyon sürücüye uygulanıyor</td>
</tr>
</tbody>
</table>

[FDR Hata Durumu] F d r 0

FDR hata durumu.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hata Yok]</td>
<td>no</td>
<td>Hata yok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Sunucu Zaman Aşımı]</td>
<td>tout</td>
<td>Sunucu zaman aşımı</td>
</tr>
<tr>
<td>[Sunucuda Dosya Yok]</td>
<td>S n F</td>
<td>Sunucuda hiç dosya yok</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>[Sunucuda Bozuk Dosya]</td>
<td>C r P t</td>
<td>Sunucuda geçersiz dosya</td>
</tr>
<tr>
<td>[Sunucuda Boş Dosya]</td>
<td>E P t y</td>
<td>Sunucuda boş dosya var</td>
</tr>
<tr>
<td>[Sürücüde Geçersiz Dosya]</td>
<td>H n v</td>
<td>sürücü öğesinde geçersiz dosya</td>
</tr>
<tr>
<td>[CRC Hatası]</td>
<td>C r c</td>
<td>CRC hatası</td>
</tr>
<tr>
<td>[Sürüm Uyumsuzluğu]</td>
<td>V r n</td>
<td>Sürücü ve dosya arasında sürüm uyumsuzluğu</td>
</tr>
<tr>
<td>[Sürücüde Dosya Yok]</td>
<td>H n f</td>
<td>Sürücü öğesinde dosya yok</td>
</tr>
<tr>
<td>[Sunucu Okuma Boyutu]</td>
<td>S i Z E</td>
<td>Sunucuda dosya boyutu okuma hatası</td>
</tr>
<tr>
<td>[Sürücüde Dosya Açma]</td>
<td>a P E n</td>
<td>Sürücü dosyayı açamıyor</td>
</tr>
<tr>
<td>[Sürücüde Dosya Okuma]</td>
<td>r E A d</td>
<td>Sürücü dosyayı okuyamıyor</td>
</tr>
<tr>
<td>[Uyumsuzluk]</td>
<td>S C n t</td>
<td>Dosya uyumsuzluğu</td>
</tr>
<tr>
<td>[Sürücü Geçersiz Adı]</td>
<td>n n v</td>
<td>Sürücü adı geçersiz</td>
</tr>
<tr>
<td>[Sunucu Yanlış Dosya Boyutu]</td>
<td>F S i Z</td>
<td>Sunucuda yanlış dosya boyutu</td>
</tr>
<tr>
<td>[Sürücüde Dosya Yazma]</td>
<td>H W F</td>
<td>Sürücü dosyaya yazamıyor</td>
</tr>
<tr>
<td>[Sunucu Dosya Yazma]</td>
<td>S W F</td>
<td>Sunucu dosyayı yazamıyor</td>
</tr>
</tbody>
</table>
İletişim COM-

[CANopen] CAN - Menüsü

Erişim

İletişim ➔ İlet. Parmıtrleri ➔ CANopen

Bu Menü Hakkında

CANopen fielbus modülü kılavuzuna başvurun.

[DeviceNet] dnc - Menüsü

Erişim

İletişim ➔ İlet. Parmıtrleri ➔ DeviceNet

Bu Menü Hakkında

DeviceNet fielbus modülü kılavuzuna başvurun.

[Profibus] Pbc - Menüsü

Erişim

İletişim ➔ İlet. Parmıtrleri ➔ Profibus

Bu Menü Hakkında

Profibus DP fielbus modülü kılavuzuna başvurun.

[Profinet] Pnc - Menüsü

Erişim

İletişim ➔ İlet. Parmıtrleri ➔ Profinet

Bu Menü Hakkında

PROFINET fielbus modülü kılavuzuna başvurun.

[Powerlink] EPL - Menüsü

Erişim

İletişim ➔ İlet. Parmıtrleri ➔ Powerlink

Bu Menü Hakkında

Powerlink modülü (VW3A3619) takıldıysa aşağıdaki parametrelerere erişilebilir. Powerlink iletişimi kılavuzuna bakın.
[EtherCAT Modülü] E ∏ C - Menüsü

Erişim

[İletişim] ➔ [EtherCAT Modülü]

Bu Menü Hakkında

EtherCAT modülü takıldıysa aşağıdaki parametreler erişilebilir.
EtherCAT kılavuzuna başvurun.

[EthCat bağlı durumu] E ∏ S S ♠
EtherCAT bağlı durumu

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bșlt]</td>
<td>in t</td>
<td>Bağlantı</td>
</tr>
<tr>
<td>[PrOP]</td>
<td>P r 0 P</td>
<td>Ön çalışmalı</td>
</tr>
<tr>
<td>[bOOt]</td>
<td>b o o t</td>
<td>Ön çalışmalı</td>
</tr>
<tr>
<td>[SFOP]</td>
<td>S F o P</td>
<td>Güvenli çalışma</td>
</tr>
<tr>
<td>[OP]</td>
<td>o P</td>
<td>Çalışır durumda</td>
</tr>
</tbody>
</table>

[EthCat 2. adresi] E ∏ S A ♠
EtherCAT ikinci adresi

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0</td>
</tr>
</tbody>
</table>

[EthCat adresi] E ∏ R A ♠
EtherCAT ikinci adresi gerçek değeri

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 0</td>
</tr>
</tbody>
</table>
Bölüm 10
[Dosya yönetimi] $\mathcal{F} \cap \mathcal{T}$ -

Giriş

[Dosya yönetimi] $\mathcal{F} \cap \mathcal{T}$ - menüsü, tahrir yapılandırına dosyalarının yönetimini sunar.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Konf. Dosyaları Aktarm] $\mathcal{I} \in \mathcal{F}$ - Menüsü</td>
<td>546</td>
</tr>
<tr>
<td>[Fabrika ayarları] $\mathcal{F} \subseteq \mathcal{S}$ - Menüsü</td>
<td>546</td>
</tr>
<tr>
<td>[Parmetre grup listesi] $\mathcal{F} \cap \mathcal{Y}$ - Menüsü</td>
<td>547</td>
</tr>
<tr>
<td>[Fabrika ayarları] $\mathcal{F} \subseteq \mathcal{S}$ - Menüsü</td>
<td>548</td>
</tr>
<tr>
<td>[Yazılım güncelleme tanımlama] $\mathcal{FWU} \subseteq \mathcal{P}$ - Menüsü</td>
<td>549</td>
</tr>
<tr>
<td>[Tanımlama] $\mathcal{O} \subset \mathcal{D}$ - Menüsü</td>
<td>551</td>
</tr>
<tr>
<td>[Paket sürümü] \mathcal{PFV} - Menüsü</td>
<td>551</td>
</tr>
<tr>
<td>[Yazılım güncelleme] \mathcal{FWUP} - Menüsü</td>
<td>552</td>
</tr>
</tbody>
</table>
[Konf. Dosyaları Aktarma]

Erişim

[Dosya yönetimi] ➔ [Konf. Dosyaları Aktarma]

[Tahriğe kopyala] Ø P F
Bu işlem, daha önce kaydedilmiş Tahrik yapılandırmasının Ekran Terminali belleğinden seçilmesini ve tahriğe aktarılmasını sağlar.

Yapilandırma dosyası aktarımından sonra tahrik yeniden başlatılmalıdır.

[Tahrikten kopyala] S A F
Bu sayede gerçek tahrik yapılandırması Ekran Terminali belleğine kaydedilebilir.

NOT: Grafik Ekran Terminali en fazla 16 yapılandırma dosyası saklayabilir.

[Fabrika ayarları]

Erişim

[Dosya yönetimi] ➔ [Fabrika ayarları]

Bu Menü Hakkında
Bu parametre, fabrika ayarı çalışması durumunda geri yüklenerek konfigürasyonun seçilmesini sağlar.

[Konfig. Source]

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Makro-Konf]</td>
<td></td>
<td>Fabrika ayar parametresi ayarlaması</td>
</tr>
<tr>
<td></td>
<td>C F G 1</td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Konfig 1]</td>
<td>C F G 2</td>
<td>Müşteri parametre seti 1</td>
</tr>
<tr>
<td>[Konfig 2]</td>
<td>C F G 3</td>
<td>Müşteri parametre seti 2</td>
</tr>
<tr>
<td>[Konfig 3]</td>
<td></td>
<td>Müşteri parametre seti 3</td>
</tr>
</tbody>
</table>
[Parmetre grubu list.] F r Y - Menüsü

Erişim

[Dosya yönetimi] ➔ [Fabrika ayarları] ➔ [Parmetre grubu list.]

Bu Menü Hakkında

Yüklenecek menülerin seçilmesi.
NOT: Fabrika konfigürasyonunda ve "fabrika ayarlarına" döndükten sonra [Parmetre grubu list.] F r Y boş olacaktır.

[Tümü] A L L

Tüm menülerdeki tüm parametreler.

[Tahrik Yapılandırması] d r P

[Tüm ayarlar] C S E - menüsünü yükle.

[Motor param] H o F

[İlet. Menüsü] C o N *

[İletişim] C o N - menüsünü yükle.

[Konfig. görüntüle] d x S *

[Fabrika ayarları] F C 5 - Menüsü

Erişim

[Dosya yönetimi] ➔ [Fabrika ayarları]

[Fabri. Ayarına git] G F 5

UYARI

TEÇHİZATIN UMULMAYAN ŞEKİLDE ÇALIŞMASI
Fabrika ayarlarının geri yüklenmesinin kullanılan elektrik tesisatı türüyle uyumlu olduğunu doğrulayın. Bu talimatlara uyulmaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Fabrika ayarlarına sadece önceden en az bir parametre grubu seçilmişse dönülebilir.

[Konfig. Kaydet] S C 5 , ★

Konfigürasyonu kaydet.
Kaydedilecek aktif konfigürasyon seçim için görüntülenmiyor. Örneğin, [Konfig 0] S k r 0 ise yalnızca [Konfig 1] S k r 1, [Konfig 2] S k r 2 ve [Konfig 3] S k r 3 görünür. İşlem tamamlanır tamamlanmaz parametre [Hayır] n o değerine döner.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayardır</td>
</tr>
<tr>
<td>[Konfig 0]</td>
<td>S k r 0</td>
<td>Müşteri parametre seti 0'ı sakla</td>
</tr>
<tr>
<td>[Konfig 1]</td>
<td>S k r 1</td>
<td>Müşteri parametre seti 1'ı sakla</td>
</tr>
<tr>
<td>[Konfig 2]</td>
<td>S k r 2</td>
<td>Müşteri parametre seti 2'yi sakla</td>
</tr>
<tr>
<td>[Konfig 3]</td>
<td>S k r 3</td>
<td>Müşteri parametre seti 3'ü sakla</td>
</tr>
</tbody>
</table>
[Yazılım güncelleme tanı] FWu d - Menüsü

Erişim

[Dosya yönetimi] ➔ [Yazılım güncelleme] ➔ [Yazılım güncelleme tanı]

Bu Menü Hakkında
Bu menüye uzman modunda erişilebilir ve yazılım güncelleme prosedürünü tamamlamak için mutlaka Grafik Ekran Terminali kullanımalıdır.

[Bel.Günc. durumu] FW 5 Ł

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Devre dışı]</td>
<td>CHECK</td>
<td>Yazılım güncelleme aktif değil</td>
</tr>
<tr>
<td>[Güç Güncelleme]</td>
<td>PÆWër</td>
<td>Güç güncelleme işletiliyor</td>
</tr>
<tr>
<td>[Güç Güncelm.beklem.]</td>
<td>PÆnd</td>
<td>Güç güncelleme bekletiliyor</td>
</tr>
<tr>
<td>[Hazır]</td>
<td>rdy</td>
<td>Yazılım güncelleme hazır</td>
</tr>
<tr>
<td>[Devre dışı]</td>
<td>nø</td>
<td>Yazılım güncelleme aktif değil</td>
</tr>
<tr>
<td>[Güncelleme Hatasi]</td>
<td>FÀLëd</td>
<td>Güncelleme hatası</td>
</tr>
<tr>
<td>[Devam Ediliyor]</td>
<td>ProG</td>
<td>Yazılım güncellemesi sürüyor</td>
</tr>
<tr>
<td>[Telap Edildi]</td>
<td>r 95 Łd</td>
<td>Yazılım güncelleme istedi</td>
</tr>
<tr>
<td>[Aktrım işlem hâinde]</td>
<td>brŁd</td>
<td>Aktrım devam ediyor</td>
</tr>
<tr>
<td>[Transfer Yapıldı]</td>
<td>brAk</td>
<td>Transfer yapıldı</td>
</tr>
<tr>
<td>[Paket temizlendi]</td>
<td>CLEAr</td>
<td>Paket temizlendi</td>
</tr>
<tr>
<td>[Uyarı]</td>
<td>SucWr</td>
<td>Yazılım güncelleme uyarlarla birlikte başarılı oldu</td>
</tr>
<tr>
<td>[Tahrik Durum Hatasi]</td>
<td>FL5ŁA</td>
<td>Tahrik durum hatası</td>
</tr>
<tr>
<td>[Paket Hatası]</td>
<td>FLPKG</td>
<td>Paket Hatası</td>
</tr>
<tr>
<td>[Kaydetme Konf.]</td>
<td>SAVE</td>
<td>Yazılım güncellemede geçerli yapılardırma kaydedildiyr</td>
</tr>
<tr>
<td>[Dipnot]</td>
<td>PøŁ</td>
<td>Yazılım güncellemede sonrası FWUPD işlemi yapıldıyr</td>
</tr>
</tbody>
</table>

[Yazılım Güncelleme Hatası] FW ë r

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hata Yok]</td>
<td>nø</td>
<td>Hata yok</td>
</tr>
<tr>
<td>[Kilit Hatasi]</td>
<td>LâCK</td>
<td>Kilit Hatasi</td>
</tr>
<tr>
<td>[Paket Hatasi]</td>
<td>Nøs</td>
<td>Paket Hatasi</td>
</tr>
<tr>
<td>[Paket uyum hata]</td>
<td>Ł0NP</td>
<td>Paket uyum hata</td>
</tr>
<tr>
<td>[Sorgu hatası]</td>
<td>ASk</td>
<td>Sorgu hatasi</td>
</tr>
<tr>
<td>[Tahrik Sıfırlama Hatasi]</td>
<td>rESE Ł</td>
<td>Tahrik hatası sıfırlama</td>
</tr>
<tr>
<td>[Konf kaydetme uyari]</td>
<td>SAVE</td>
<td>Konfigürasyon kaydetme uyarısı</td>
</tr>
<tr>
<td>[Konfır Ykileme Uyars]</td>
<td>Lød dù</td>
<td>Konfigürasyon yükleme uyarısı</td>
</tr>
<tr>
<td>[Dipnot Uyarı]</td>
<td>SCP</td>
<td>Dipnot uyarısı</td>
</tr>
<tr>
<td>[Paket Tanım hatasi]</td>
<td>deS</td>
<td>Paket tanımlı hatası</td>
</tr>
<tr>
<td>[Paket bulunamadi]</td>
<td>PKG</td>
<td>Paket bulunamadi</td>
</tr>
<tr>
<td>[Güç Kaynağı hatasi]</td>
<td>SPWr</td>
<td>Güç kaynağı hatası</td>
</tr>
<tr>
<td>[Boot M3 hatasi]</td>
<td>bÀn Ł3</td>
<td>Boot M3 hatasi</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod / Değer</td>
<td>Açıklama</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>[Boot C28 hatası]</td>
<td>blte28</td>
<td>Boot C28 hatası</td>
</tr>
<tr>
<td>[M3 Hata]</td>
<td>m3</td>
<td>M3 hata</td>
</tr>
<tr>
<td>[C28 hatası]</td>
<td>cle28</td>
<td>C28 hatası</td>
</tr>
<tr>
<td>[CPLD hatası]</td>
<td>cpld</td>
<td>CPLD hatası</td>
</tr>
<tr>
<td>[Boot Güç Hatası]</td>
<td>pwr</td>
<td>Boot Güç Hatası</td>
</tr>
<tr>
<td>[Göm. Eth Boot Hata]</td>
<td>enbkt</td>
<td>Dahili Ethernet boot hatası</td>
</tr>
<tr>
<td>[Göm. Eth Hata]</td>
<td>enil</td>
<td>Dahili ethernet hatası</td>
</tr>
<tr>
<td>[Eth Modül Boot Hata]</td>
<td>opbt</td>
<td>Ethernet modülü boot hatası</td>
</tr>
<tr>
<td>[Eth Modül Hata]</td>
<td>opbl</td>
<td>Ethernet modülü hatası</td>
</tr>
<tr>
<td>[Eth Modül Web Hata]</td>
<td>opwb</td>
<td>Ethernet modülü Web Sunucusu hatası</td>
</tr>
<tr>
<td>[Parola Etkinleştirildi]</td>
<td>pswd</td>
<td>Parola Etkinleştirildi</td>
</tr>
<tr>
<td>[Flash hatası]</td>
<td>nen</td>
<td>Flash hatası</td>
</tr>
<tr>
<td>[Paket Hatası]</td>
<td>fio</td>
<td>Paket bilgi hatası</td>
</tr>
</tbody>
</table>
[Tanımlama] Oid- Menüsü

Erişim

[Dosya yönetimi] ➔ [Yazılım güncelleme] ➔ [Tanımlama]

Bu Menü Hakkında
Bu, konfigüre edilemeyen salt okunur bir menüdür. Aşağıdaki bilgilerin görüntülenmesini sağlar:
- Tahrik referansı, güç değeri ve gerilimi
- Tahrik yazılım sürümü
- Tahrik seris numarası
- Mevcut seçeneğe modüllerinin tipleri ve bunların yazılım sürümleri
- Ekran Terminali türü ve sürümü

[Paket sürümü] PFV - Menüsü

Erişim

[Dosya yönetimi] ➔ [Yazılım güncelleme] ➔ [Paket sürümü]

Bu Menü Hakkında
Bu menüye uzman modunda erişilebilir.

[Paket Türü] PKbP

Yazılım Güncelleme Paket Türü

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ürün</td>
<td>Prd</td>
<td>Yazılım güncelleme ürün paketi</td>
</tr>
<tr>
<td>Modül</td>
<td>Opt</td>
<td>Yazılım güncelleme seçeneğe paketi</td>
</tr>
<tr>
<td>Yedek parça</td>
<td>Sp</td>
<td>Yazılım güncelleme yedek parça paketi</td>
</tr>
<tr>
<td>Özelleştirilmiş</td>
<td>CUS</td>
<td>Yazılım güncelleme özelleştirilmiş paketi</td>
</tr>
<tr>
<td>Endüst.</td>
<td>Ind</td>
<td>Yazılım güncelleme endüstriyelleştirme paketi</td>
</tr>
</tbody>
</table>

[Paket Sürümü] PKv5

Yazılım Güncelleme Paket Sürümü

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65.535</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td>Fabrika ayarı:</td>
<td>_</td>
</tr>
</tbody>
</table>
Dosya yönetimi FM]

[Yazılım güncelleme] $FWUP - [Menüsü]

Erişim

[Dosya yönetimi] ➤ [Yazılım güncelleme]

Bu Menü Hakkında

Bu menüye uzman modunda erişilebilir.

[Yazılımı güncelle] $FWUP

Yazılım Güncelleme Uygulaması.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[Yazılım Güncelleme Durdur] $FWCL

Yazılım Güncelleme Temizleme.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n o</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>
Bölüm 11
[Tercihlerim] N Y P -

Giriş

[Tercihlerim] N Y P - menüsü, kullanıcılardan tanımlanan HMI ve parametre erişimi için olası ayarları sunar.

Bu Bölümde Neler Yer Alıyor?
Bu bölüm, şu alt bölümleri içerir:

<table>
<thead>
<tr>
<th>Alt Bölüm</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>[Dil]</td>
<td>554</td>
</tr>
<tr>
<td>11.2</td>
<td>[Parola]</td>
<td>555</td>
</tr>
<tr>
<td>11.3</td>
<td>[Parametre erişimi]</td>
<td>557</td>
</tr>
<tr>
<td>11.4</td>
<td>[Özelleştirme]</td>
<td>560</td>
</tr>
<tr>
<td>11.5</td>
<td>[Tarih ve Zaman ayarları]</td>
<td>565</td>
</tr>
<tr>
<td>11.6</td>
<td>[Erişim seviyesi]</td>
<td>566</td>
</tr>
<tr>
<td>11.7</td>
<td>[Web sunucusu]</td>
<td>567</td>
</tr>
<tr>
<td>11.8</td>
<td>[Fonks. Tuş yntm.]</td>
<td>568</td>
</tr>
<tr>
<td>11.9</td>
<td>[LCD ayarları]</td>
<td>569</td>
</tr>
<tr>
<td>11.10</td>
<td>[QR kodu]</td>
<td>570</td>
</tr>
<tr>
<td>11.11</td>
<td>[QR kodu] - [Linkim 1]</td>
<td>571</td>
</tr>
<tr>
<td>11.13</td>
<td>[QR kodu] - [Linkim 3]</td>
<td>573</td>
</tr>
<tr>
<td>11.15</td>
<td>[Eşleme şifresi]</td>
<td>575</td>
</tr>
</tbody>
</table>
Alt bölüm 11.1

[Dil]

[Dil] L n G - Menüsü

Erişim

[Tercihlerim] ➔ [Dil]

Bu Menü Hakkında

Bu menü Ekran Terminali dil seçimini sağlar.
Alt bölüm 11.2
[Parola]

Erişim

[Tercihlerim] ➔ [Parola]

Bu Menü Hakkında

Korumalı bir konfigürasyona erişim için konfigürasyonun girilecek bir erişim kodu veya şifre ile korunmasını sağlar:
- Parola [Tanımlanan parola yok] n o olarak ayarlandığında veya doğru parola girdiğinde, tahrik kilidi açılır. Tüm menüleri erişilebilir.
- Konfigürasyonu bir parola ile korumadan önce aşağıdakileri gerçekleştirmeniz gerekliktedir:
 - [Karşıya yükleme hakları] u L r ve [İndirme hakları] d L r öğelerini tanımlayın.
 - Parolayı bir yere not edin ve bulabileceği bir yerde saklayın.

Sürücüyü kilitleme menü erişimini değiştirir. Parola kilitlenirse:
- Boş değilse [Menüm] Π y Π n - menüsü ([Hızlı Devreye Alma] σ y σ - menüsünde) görünür kalır,
- [Tüm Ayarlar] Π S Π - ve [İletişim] Π o Π - menüleri görünür değildir,
- [Tercihlerim] Π y P - menüsünde görünür kalır:
 - [Dil] L n G ,
 - [Parola] C α d - menüsü,
 - [Ekran Türünü görüntüle] Π S L - menüsü ([Özelleştirme] C Π S - menüsünde),
 - [Tarih ve Zaman ayarları] r L C ,
 - [Erişim Seviyesi] L A C ve
 - [LCD ayarları] C n L - menüsü.

[Parola durumu] P S S t
Parola durumu.
Salt okunur parametre.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tanımlanan parola yok]</td>
<td>n o</td>
<td>Tanımlanan parola yok</td>
</tr>
<tr>
<td>[Parolann kilidi açıldı]</td>
<td>u L</td>
<td>Parolanın kilidi açıldı</td>
</tr>
<tr>
<td>[Parola kilidi]</td>
<td>L o C</td>
<td>Parola kilidi</td>
</tr>
</tbody>
</table>

[Parola] P w d

Parolayı değiştirmek için sürücünün sona yeni parolayı girin. Yeni bir parola girme sürücüyü kilitler.
Hakları yükleme ULr

Karşıya yükleme hakları.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[İzinli]</td>
<td>$ULr0$</td>
<td>İşletmeye alma araçları veya Ekran Terminali, bütün konfigürasyonu kaydedebilir (parola, izleme, konfigürasyon) Fabrika ayar</td>
</tr>
<tr>
<td>[İzin verilmedi]</td>
<td>$ULr1$</td>
<td>Tahrik bir parolayla korunmazsa ya da hatalı parola girilirse işletmeye alma araçları ya da Ekran Terminali, konfigürasyonu kaydedemez.</td>
</tr>
</tbody>
</table>

İndirme hakları DLr

İndirme hakları.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kilitli tahrik]</td>
<td>$DLr0$</td>
<td>Tahrik kilitleme: konfigürasyon yalnızca tahrik, indirilecek konfigürasyonun parolasıyla aynı parolayla korunuyorsa tahriğe indirilebilir</td>
</tr>
<tr>
<td>[Tahrik kiliti açma]</td>
<td>$DLr1$</td>
<td>Tahrik kiliti açma: konfigürasyon, tahrik kiliti açıksa veya bir parolayla korunuyorsa tahriğe indirilebilir Fabrika ayar</td>
</tr>
<tr>
<td>[İzin verilmedi]</td>
<td>$DLr2$</td>
<td>Konfigürasyon indirilemez</td>
</tr>
<tr>
<td>[Kilitle/Kiliti aç]</td>
<td>$DLr3$</td>
<td>[Kilitli tahrik] $DLr0$ ve [Kilitli açık tahrik] kombinasyonu $DLr1$</td>
</tr>
</tbody>
</table>
Alt bölüm 11.3
[Parametre erişimi]

Bu Alt Bölümde Neler Yer Alıyor?

Bu alt bölüm, şu başlıklar içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kısıtlı kanallar] P E d - Menüsü</td>
<td>558</td>
</tr>
<tr>
<td>[Kısıtlı Param] P P R - Menüsü</td>
<td>559</td>
</tr>
<tr>
<td>[Görülebilirlik] V , S - Menüsü</td>
<td>559</td>
</tr>
</tbody>
</table>
[Kısıtlı kanallar] **PÇd - Menüsü**

Erişim

[Tercihlerim] ➞ [Parametre erişimi] ➞ [Kısıtlı erişim] ➞ [Kısıtlı kanallar]

Bu Menü Hakkında

Aşağıdaki kanallar, ilgili parametreleri erişilebilirliği devre dışı bırakmak için seçilabilir.

[HMI] **Çaın**

Ekran Terminali.

[PC Aracı] **PWS**

DTM tabanlı devreye alma yazılımı.

[Modbus] **_family**

Dahili Modbus serisi.

[CANopen] **ÇAın**

CANopen fieldbus modülü.

[Com. Modül] **nEt**

Fieldbus seçenek modülü.
[Kısıtlı Param] P P A - Menüsü

Erişim

[Tercihlerim] ➔ [Parametre erişimi] ➔ [Kısıtlı erişim] ➔ [Kısıtlı param]

Bu Menü Hakkında

Bu ekranlarda, Uzman parametreleri dışında [Tüm ayarlar] C 5 Ł - menüsündeki tüm parametreler korunabilir ve seçmek için görünülebilir.

Tüm parametreleri seçmek için Tümü tuşuna basın. Tüm parametreler üzerindeki seçimleri kaldırmak için tekrar Hiçbiri tuşuna basın.

[Görülebilirlik] V , S - Menüsü

Erişim

[Tercihlerim] ➔ [Parametre erişimi] ➔ [Görülebilirlik]

Bu Menü Hakkında

Tüm parametrelerin ya da sadece aktif parametrelerin görüntülenmesi seçimi.

[Parametreler] P V , S

Parametreler.

<table>
<thead>
<tr>
<th>Ayar()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Aktif]</td>
<td>R Ł Ł</td>
<td>Yalnızca aktif parametrelerine erişilebilir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Tümü]</td>
<td>R Ł Ł</td>
<td>Tüm parametrelerine erişilebilir</td>
</tr>
</tbody>
</table>
Alt bölüm 11.4
[Özelleştirme]

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Menü konfig.] Π Y E - Menü</td>
<td>561</td>
</tr>
<tr>
<td>[Görüntü ekranı türü] Π 5 E - Menüsü</td>
<td>561</td>
</tr>
<tr>
<td>[Param. Çubuk Seçimi] P & S - Menüsü</td>
<td>562</td>
</tr>
<tr>
<td>[Müşteri parametreleri] Σ Y P - Menüsü</td>
<td>563</td>
</tr>
<tr>
<td>[Hizmet mesajı] Σ E R - Menüsü</td>
<td>564</td>
</tr>
</tbody>
</table>
[Menü konfig.] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

Erişim

[Menü konfig.] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

Bu Menü Hakkında

Bu menü \(\mathbb{Y} \mathbb{E} \mathbb{C} \) menüsünün (bkz. sayfa 56) özelleştirmesine olanak verir.

[Parametre Seçimi] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

[Seçili Liste] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

Bu menü seçili parametrelerin sıralanmasına olanak verir.

[Menü] \(\mathbb{Y} \mathbb{E} \mathbb{C} \)

Özelleştirilmiş menünün adını tanımlamak için kullanılır.

[Görüntü ekranı türü] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

Erişim

[Menü konfig.] \(\mathbb{Y} \mathbb{E} \mathbb{C} \) - Menü

Bu Menü Hakkında

Bu parametre, varsayılan ekran için ekran türünün seçilmesini sağlar.

[Ekran değer türü] \(\mathbb{Y} \mathbb{E} \mathbb{C} \)

Ekran tipi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
</table>
| [Dijital] | \(\mathbb{E} \mathbb{C} \) | Dijital değerler Fabrika ayar
| [Çubuk grafik] | \(\mathbb{E} \mathbb{C} \) | Çubuk grafik
| [Liste] | \(\mathbb{E} \mathbb{C} \) | Değerler listesi
| [Vu Metre] | \(\mathbb{E} \mathbb{C} \) | Vu metre

[Parametre Seçimi] \(\mathbb{Y} \mathbb{E} \mathbb{C} \)

Özelleştirilmiş seçim.

Bu görüntü, varsayılan ekranda görüntülenecek parametrelerin seçilmesini sağlar.
[Param. Çubuk Seçimi] PbS - Menüsü

Erişim

[Tercihlerim] ➔ [Özelliştirme] ➔ [Param. Bar Seçimi]

Bu Menü Hakkında

Bu görünüm, Ekran Terminali ekranının üst satırında görüntülenecek parametrelerin seçilmesini sağlar.
[Müşteri parametreleri] › YP - Menüsü

Erişim

[Tercihlerim] ➔ [Özelleştirme] ➔ [Müşteri parametreleri]

Bu Menü Hakkında

Bu menü, 15'e kadar parametrenin yeniden adlandırılmasına olanak verir.

[Parametre Seçimi] SC

Parametre seçimi.
Bu görüntü, 15'e kadar parametrenin seçilmesine olanak verir.

[Özel seçim] CP/P

Özelleştirilmiş seçim.
Bu görüntü, seçilen her parametre için ayar yapılmasına olanak verir:
• Adı
• İlgiliye birim (özel bir birim mevcutsa)
• İlgiliye bir çarpan (1...1000)
• İlgiliye bir bölen (1...1000)
• İlgiliye bir ofset (-99,00...99,00)
[Hizmet mesaji] 5 E r - Menüsü

Erişim

[Tercihlerim] ➔ [Özelleştirme] ➔ [Servis mesaji]

Bu Menü Hakkında

Bu menü, kullanıcı tarafından tanımlanan bir servis mesajının (5 satır, satır başına 23 hane) tanımlanmasına olanak verir.

[SATIR 1] S N L D 1
Satır 1.

[SATIR 2] S N L D 2
Satır 2.

[SATIR 3] S N L D 3
Satır 3.

[SATIR 4] S N L D 4
Satır 4.

[SATIR 5] S N L D 5
Satır 5.
Alt bölüm 11.5
[Tarih ve Zaman ayarları]

[Tarih/zaman ayarları] ➤ [Tarih/zaman ayarları]

Bu Menü Hakkında

Bu görüntü, tarih ve saatin ayarlanmasına olanak verir. Bu bilgiler, bütün kaydedilen verilere saat damgası vurulması için kullanılır.

Bir zaman sunucusu, Ethernet üzerinden bağlanmışsa ve web sunucusunda konfigüre edilmişse tarih ve zaman konfigürasyona göre otomatik olarak güncellenir.

Tarih ve zaman bilgisi, kaydedilen verilerin zaman damgasını etkinleştirmek için tahriğin gücü açıldığında (zaman sunucusu mevcut ve konfigüre edilmiş olduğunda ya da Ekran Terminali takılı olduğunda) kullanılabilir olacaktır.

Bu ayarların değiştirilmesi, zamana bağlı ortalama veri halinde önceden kaydedilen verilerin değerini değiştirecektir.
Alt bölüm 11.6
[Erişim seviyesi]

[Erişim seviyesi] L A C - Menüsü

Erişim

[Tercihlerim] ➔ [Erişim seviyesi]

[Erişim Seviyesi] L A C
Erişim kontrolünün seviyesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Standart]</td>
<td>5 6 d</td>
<td>Tüm menüere erişim. Fabrika ayarı</td>
</tr>
<tr>
<td>[Uzman]</td>
<td>E P r</td>
<td>Tüm menü ve ek parametrelerere erişim.</td>
</tr>
</tbody>
</table>
Alt bölüm 11.7
[Web sunucusu]

[Web sunucusu] \(W \& 5 \) - Menüsü

Erişim

[Tercihlerim] \(\rightarrow \) [Web sunucusu]

Bu Menü Hakkında

Bu menü, Web hizmetlerinin yönetilmesine olanak verir.

[Webservıer Etklnş.] \(E W E E \)

Gömülü Ethernet adaptörü için Web hizmetlerinin etkinleştirilmesi.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n O</td>
<td>Web sunucusu devre dışı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Web sunucusu devrede</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
</tbody>
</table>

[GömWeb Ynd.Bşlt] \(r W P E \)

Gömülü Ethernet web sunucusunu varsayılan konfigürasyonuna sıfırlama.

<table>
<thead>
<tr>
<th>Ayar ()</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hayır]</td>
<td>n O</td>
<td>Hayır</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayarı</td>
</tr>
<tr>
<td>[Evet]</td>
<td>Y E 5</td>
<td>Evet</td>
</tr>
</tbody>
</table>

[Varsay. Websunc parolası] \(W d P \)

8 basamaklı parola. Yönetici hesabına erişebilmek için (kullanıcı adı = ADMIN) web sunucusuna ilk bağlanıldığında benzersiz bir parola verilmesi ve girilmelidir.

NOT: Web sunucusu varsayılan parolası ürün isim plakasında da yazılıdır.
Bu Menü Hakkında
Bu menü, Ekran Terminali fonksiyon tuşlarına fonksiyon atamalarını sağlar.

[F1 tuş ataması] Fₙ₁

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod / Değer</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Atanmamış]</td>
<td>n o</td>
<td>Atanmamış</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrika ayar</td>
</tr>
<tr>
<td>[Sarsma]</td>
<td>F J G o</td>
<td>Fonksiyon tuşu sarsma taklidi</td>
</tr>
<tr>
<td>[Önayar Hızı 1]</td>
<td>F P S 1</td>
<td>Fonksiyon tuşu ön ayar hızı 1 ataması</td>
</tr>
<tr>
<td>[Önayar Hızı 2]</td>
<td>F P S 2</td>
<td>Fonksiyon tuşu ön ayar hızı 2 ataması</td>
</tr>
<tr>
<td>[PID Ref Frekansı 1]</td>
<td>F P r 1</td>
<td>Fonksiyon tuşu ön ayar PID 1 ataması</td>
</tr>
<tr>
<td>[PID Ref Frekansı 2]</td>
<td>F P r 2</td>
<td>Fonksiyon tuşu ön ayar PID 2 ataması</td>
</tr>
<tr>
<td>[+Hız]</td>
<td>F u 5 P</td>
<td>Fonksiyon tuşu daha hızlı ataması</td>
</tr>
<tr>
<td>[-Hız]</td>
<td>F d 5 P</td>
<td>Fonksiyon tuşu daha yavaş ataması</td>
</tr>
</tbody>
</table>

[F2 tuş ataması] Fₙ₂
Fonksiyon tuşu 2.

[F3 tuş ataması] Fₙ₃
Fonksiyon tuşu 3.

[F4 tuş ataması] Fₙ₄
Fonksiyon tuşu 4.
Alt bölüm 11.9
[LCD ayarları]

[Erişim]
[Tercihlerim] ➞ [LCD ayarları]

Bu Menü Hakkında
Bu menü Ekran Terminali ile ilgili parametrelerin ayarlanmasına olanak verir.

[Ekran kontrasti] ksi
Ekran kontrastı ayarı.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>%0...100</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: %50</td>
</tr>
</tbody>
</table>

[Beklemede] 5 b y
Bekleme geçikmesi.

NOT: Ekran terminali arka aydınlatmasının otomatik bekleme fonksiyonunun devre dışı bırakılması, arka
aydınlatma servis süresini düşürecek.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>n o ...10 dk</td>
<td>Otomatik arka aydınlatmasının KAPALI süresi</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 10 dk</td>
</tr>
</tbody>
</table>

[Ekran Term. kilitli] K L C K
Ekran Terminali tuğ kilitli. Ekran Terminali tuşlarını manuel olarak kilitleyip kilidini açmak için ESC ve
Home tuşlarına basın. Ekran Terminali kilitli olduğu zaman Stop tuşu aktif haldedir.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>n o ...10 dk</td>
<td>Ayar aralığı</td>
</tr>
<tr>
<td></td>
<td>Fabrika ayar: 5 dk</td>
</tr>
</tbody>
</table>
Alt bölüm 11.10

Menüsü

Bu Menü Hakkında

Bu menü, Ekran Terminali öğesinde bir QR Koduna erişim sağlar.

[QR Kodu] 📌 - Bu QR kodunun taranması, aşağıdaki konulardaki bilgilerle Internet üzerindeki bir giriş sayfasına geçer:
- Teknik ürün veri tabloları,
- Hizmetler için mevcut Schneider Electric Uygulamaları bağlantısı.
Alt bölüm 11.11
[QR kodu] - [Linkim 1]

[Linkim 1] / Y L / - Menüsü

Erişim

[Linkim 1] / [QR kodu] / [Linkim 1]

Bu Menü Hakkında

Bu menü, işletmeye alma yazılımıyla özelleştirilmiş QR Koduna erişim sağlar.

[Linkim 1] / L /
Alt bölüm 11.12
[QR kodu] - [Linkim 2]

Menü Hakkında
Bu menu, işletme yazılmıyla özelleştirilmiş QR Koduna erişim sağlar.
Alt bölüm 11.13
[QR kodu] - [Linkim 3]

[Linkim 3] TİY ɬ - Menüsü

Erişim

[Linkim 3] ɬ [QR kodu] [Linkim 3]

Bu Menü Hakkında

Bu menü, işletmeye alma yazılımıyla özelleştirilmiş QR Koduna erişim sağlar.

[Linkim 3] ɬ ɬ ɬ
Alt bölüm 11.14
[QR kodu] - [Linkim 4]

[Linkim 4] .portal - Menüsü

Erişim

[Tercihlerim] ➔ [QR kodu] ➔ [Linkim 4]

Bu Menü Hakkında

Bu menü, işletmeye alma yazılımıyla özelleştirilmiş QR Koduna erişim sağlar.

[Linkim 4] portal
Alt bölüm 11.15
[Eşleme şifresi]

[Eşleme parolası] \(PP \),

Erişim

[Tercihlerim] \(\rightarrow \) [Eşleme parolası]

Bu Menü Hakkında

Aşağıdaki parametreler doğrulanır:
- Seçenek modüllerin türü.
- Tahriğin yazılım sürümü ve seçeneğin modülleri.
- Kontrol bloğu için seri numarası.

[Eşleme parolası] \(PP \),

Bir eşleşme parolası olarak işlem.

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KAPALI] (\alpha , F , F) 9.999</td>
<td>Ayar aralığı: (\alpha , F , F)</td>
</tr>
</tbody>
</table>

[KAPALI] \(\alpha \, F \, F \) değeri, parola eşleştirme fonksiyonunun devre dışı olduğunu belirter.

[AÇIK] \(\alpha \, n \) değeri, parolasının aktif olduğunu ve [Panel Uyumluğu] \(H \, C \, F \) hatasının algılanması halinde tahriği çalıştırılmak için bir parolanın gerekli olduğuna işaret eder.

Parola girilir girilmez tahriği kilidi açılır ve kod [AÇIK] \(\alpha \, n \) olarak değiştir.
Kısım III
Bakım ve tanılama

Bu Kısında Neler Yer Alıyor?
Bu kısımda şu bölümleri içerir:

<table>
<thead>
<tr>
<th>Bölüm</th>
<th>Bölümün Adı</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Bakım</td>
<td>579</td>
</tr>
<tr>
<td>13</td>
<td>Tanılama ve Sorun Giderme</td>
<td>581</td>
</tr>
</tbody>
</table>
Bölüm 12
Bakım

Bakım

Garanti Sınırları

Garanti, ürün Schneider Electric servisi dışında açıklılsa geçersiz olur.

Servis İşlemleri

⚠️ TEHLIKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK SİÇRAMASI TEHLİKESİ

Bu bölümde belirtilen herhangi bir prosedürü gerçekleştirmeden önce, Güvenlik Bilgileri bölümündeki talimatları okuyun ve anlayın.

Bu talimatları uygulaması, ölüm veya ağır yaralanmalara yol açacaktır.

Bu kilavuzda açıklanan ürünlerin sıcaklığı çalışma sırasında 80 °C'yi (176 °F) aşabilir.

⚠️ UYARI

SICAK YÜZEYLER

- Sıcak yüzeylerle temasından kaçınıldığından emin olun.
- Yanıcı ya da isıya hassas parçaları sıcak yüzeylerin yakınında bırakmayın.
- Ürünün her türlü işleminden önce yeterince soğudugundan emin olun.
- Maksimum yük koşulları altında bir test çalışması gerçekleştirerek ısı yayılımının yeterli olduğundan emin olun.

Bu talimatları uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

⚠️ UYARI

YETERSİZ BAKIM

Aşağıdaki açıklanan bakım faaliyetlerinin belirtilen aralıklarla yapıldığını doğrulayın.

Bu talimatları uygulaması ölüm, ağır yaralanmalara veya ekipmanda maddi hasara yol açabilir.

Sürücü çalışırken çevre koşullarını uygulaması temin edilmelidir. Ayrıca, bakım sırasında çevre koşullarını üzerinde etkisi olabilecek tüm faktörleri doğrulayın ve uygunsu düzeltin.

<table>
<thead>
<tr>
<th>İlgili parça</th>
<th>Aktivite</th>
<th>Aralik (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genel durum</td>
<td>Muhafaza, HMI, kontrol bloğu, bağlantılar vb. gibi tüm parçalar.</td>
<td>Görsel inceleme yapın Asgari olarak her sene</td>
</tr>
<tr>
<td>Korozyon</td>
<td>Terminaller, konektörler, vidalar, EMC plakası</td>
<td>Muayene edin ve gerekliyorsa temizleyin</td>
</tr>
<tr>
<td>Toz</td>
<td>Terminaller, fanlar, dolap hava girişleri ve hava çıkışları, dolap hava filtreleri</td>
<td>Muayene edin ve gerekliyorsa temizleyin</td>
</tr>
<tr>
<td>Dikili tip sürücülerin filtre keçeleri</td>
<td>İncele Asgari olarak her sene Değiştir Asgari olarak 4 senede bir</td>
<td></td>
</tr>
</tbody>
</table>

(1) İşletmeye alma tarihinden itibaren maksimum bakım aralıkları. Bakımı çevresel koşullara, sürücünün çalışma koşullarına ve sürücünün çalışma ve/veya bakım gereksinimlerini etkileyebilecek diğer faktörlerle uyaramak için bakım aralıklarını kısaltın.
Yedek Parçalar ve Onarımlar
Servis sağlanabilir ürün. Lütfen Müşteri Hizmetleri Merkezinize başvurun:
www.schneider-electric.com/CCC.

Uzun Süreli Depolama
Sürücünün sebekeye uzun süre bağlı olmadığı durumunda motor çalıştırılmadan önce kondansatörler tam performanslarına döndürülmelidir.

BİLDİRİM

AZALMIŞ KONDANSATÖR PERFORMANSI
- Sürcü sebekeye aşağıdaki süre boyunca bağlı değildir, motoru çalıştırmadan önce sebekeye şebekesine 1 saat boyunca şebekesi uygulayın:
 - +50°C'lik (+122°F) maksimum depolama sıcaklığında 12 ay
 - +45°C'lik (+113°F) maksimum depolama sıcaklığında 24 ay
 - +40°C'lik (+104°F) maksimum depolama sıcaklığında 36 ay
- Bir saatlik süre geçmeden hiçbir Çalıştır komutunu uygulamamadığını doğrulayın.
- Sürcü ilk defa işletmeye alınıyor ise üretim tarihini doğrulayın ve üretim tarihi 12 ayden daha önceki tarihi gösteriyorsa belirtilen prosedürü uygulayın.

Bu talimatı uyulmaması, ekipmanda maddi hasara yol açabilir.

Fan Değiştirme

Müşteri Hizmetleri Merkezi
İlave destek için aşağıdaki adresten Müşteri Hizmetleri Merkezine başvurabilirsiniz: www.schneider-electric.com/CCC.
Bölüm 13
Tanılama ve Sorun Giderme

Genel Bilgi

Bu bölümde, çeşitli tanılama çeşitleri açıklanmakta ve sorun giderme desteği verilmektedir.

⚠️ TEHLİKE

ELEKTRİK ÇARPMASI, PATLAMA VEYA ARK SIÇRAMASI TEHLİKESİ

Bu bölümdeki herhangi bir prosedürü gerçekleştirmeden önce, Güvenlik Bilgileri bölümündeki talimatları okuyun ve anlayın.

Bu talimatlar uygulaması, ölüm ve ağır yaralanmalara yol açacaktır.

Bu Bölümde Neler Yer Alıyor?

Bu bölüm, şu alt bölümleri içerir:

<table>
<thead>
<tr>
<th>Alt Bölüm</th>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Uyarı Kodları</td>
<td>582</td>
</tr>
<tr>
<td>13.2</td>
<td>Hata Kodları</td>
<td>584</td>
</tr>
<tr>
<td>13.3</td>
<td>SSS</td>
<td>640</td>
</tr>
</tbody>
</table>
Alt bölüm 13.1
Uyarı Kodları

Uyarı Kodları

Mevcut Uyarılar Listesi Mesajları

<table>
<thead>
<tr>
<th>Ayar</th>
<th>Kod</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Saklanan Uyarı yok]</td>
<td>n o A</td>
<td>Saklanan uyarı yok</td>
</tr>
<tr>
<td>[Geri Çekilme Frekansı]</td>
<td>F r F</td>
<td>Olaya Tepki: Geri çekilme frekansı</td>
</tr>
<tr>
<td>[Hız Korunuyor]</td>
<td>r L 5</td>
<td>Olaya Tepki: Hız korunuyor</td>
</tr>
<tr>
<td>[Durdurma türü]</td>
<td>S L k</td>
<td>Olaya Tepki: Hata tetikledi [Durma Türü] S L kardan durma</td>
</tr>
<tr>
<td>[Ref Frekansı Uyarısı]</td>
<td>S R A</td>
<td>Frekans referansına ulaşıldı</td>
</tr>
<tr>
<td>[PID hatası Uyarısı]</td>
<td>P E E</td>
<td>PID hatası uyardı (bkz. sayfa 362)</td>
</tr>
<tr>
<td>[PID Geri Besleme Uyarısı]</td>
<td>P F R</td>
<td>PID geri besleme uyardı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[PID Yüksek Geri Besleme Uyarısı]</td>
<td>P F R H</td>
<td>PID geri besleme yüksek eşğine ulaşıldı (bkz. sayfa 354)</td>
</tr>
<tr>
<td>[Sınır Anahtarına Ulaşıldı]</td>
<td>L S R</td>
<td>Sınır anahtarına ulaşıldı (bkz. sayfa 389)</td>
</tr>
<tr>
<td>[Gevşek Halat Uyarısı]</td>
<td>r S d R</td>
<td>Gevşek halat uyardı (bkz. sayfa 290)</td>
</tr>
<tr>
<td>[Dinamik Yüksek Uyarısı]</td>
<td>d L d R</td>
<td>Dinamik yüksek uyardı (bkz. sayfa 300)</td>
</tr>
<tr>
<td>[Al3 Ter Uyarısı]</td>
<td>L P 3 R</td>
<td>Al3 Termal uyardı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Al4 Termal Uyarısı]</td>
<td>L P 4 R</td>
<td>Al4 Termal uyardı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Al5 Termal Uyarısı]</td>
<td>L P 5 R</td>
<td>Al5 Termal uyardı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Al1 4-20 Kaybi Uyarısı]</td>
<td>R P 1</td>
<td>Al1 4-20 mA kayip uyardı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[Al3 4-20 Kaybi Uyarısı]</td>
<td>R P 3</td>
<td>Al3 4-20 mA kayip uyardı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[Al4 4-20 Kaybi Uyarısı]</td>
<td>R P 4</td>
<td>Al4 4-20 mA kayip uyardı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[Al5 4-20 Kaybi Uyarısı]</td>
<td>R P 5</td>
<td>Al5 4-20 mA kayip uyardı (bkz. sayfa 509)</td>
</tr>
<tr>
<td>[Sürücü Termal Uyarısı]</td>
<td>L H R</td>
<td>Sürücü aşırı isına uyardı (bkz. sayfa 519)</td>
</tr>
<tr>
<td>[IGBT Termal Uyarısı]</td>
<td>L J R</td>
<td>IGBT termal durumu uyardı</td>
</tr>
<tr>
<td>[Fan Sayacı Uyarısı]</td>
<td>F C E R</td>
<td>Fan sayacı hız uyardı (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[Fan Geri Besleme Uyarısı]</td>
<td>F F d R</td>
<td>Fan geri besleme uyardı (bkz. sayfa 530)</td>
</tr>
<tr>
<td>[FR Termal Uyarısı]</td>
<td>b o R</td>
<td>Frenleme direnci termal uyardı</td>
</tr>
<tr>
<td>[Har. Hata Uyarısı]</td>
<td>E F R</td>
<td>Harici hata uyardı (bkz. sayfa 507)</td>
</tr>
<tr>
<td>[Düşük Gerilim Uyarısı]</td>
<td>u S R</td>
<td>Düşük gerilim uyardı (bkz. sayfa 517)</td>
</tr>
<tr>
<td>[Önleyici Düşük Gerilim Aktif]</td>
<td>u P R</td>
<td>Kontrollü durma eşğine ulaşıldı (bkz. sayfa 517)</td>
</tr>
<tr>
<td>[Mot Frek Yüksek Esğ]</td>
<td>F L R</td>
<td>Motor frekansı yüksek eşğ 1'ye ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Mot Frek Düşük Esğ]</td>
<td>F L R L</td>
<td>Motor frekansı düşük eşğ 1'ye ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Darbe Uyarısı: Esğ Ulaşıldı]</td>
<td>F L R L</td>
<td>Darbe uyarısı eşğine ulaşıldı (bkz. sayfa 429)</td>
</tr>
<tr>
<td>[Mot Frek Düşük Esğ 2]</td>
<td>F L R L</td>
<td>Motor frekansı düşük eşğ 2'ye ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yüksek Hıza Ulaşıldı]</td>
<td>F L R</td>
<td>Yüksek hıza ulaşıldı uyardı</td>
</tr>
<tr>
<td>[Ref Frek Yüksek Esğ ulaşıldı]</td>
<td>r L R H</td>
<td>Referans frekansı yüksek eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Ref Frek Düşük Esğ ulaşıldı]</td>
<td>r L R L</td>
<td>Referans frekansı düşük eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Akım Eşğine Ulaşıldı]</td>
<td>L L R</td>
<td>Motor akımı yüksek eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>Ayar</td>
<td>Kod</td>
<td>Açıklama</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>[Düşük Akıma Ulaşıldı]</td>
<td>L</td>
<td>Motor akımı düşük eşğine ulaşıldı (bkz. sayfa 364)</td>
</tr>
<tr>
<td>[Yüksek Tork Uyarısı]</td>
<td>H</td>
<td>Yüksek tork eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Düşük Tork Uyarısı]</td>
<td>L</td>
<td>Düşük tork eşğine ulaşıldı (bkz. sayfa 366)</td>
</tr>
<tr>
<td>[Proses Dşkyk Uyarısı]</td>
<td>L</td>
<td>Düşük yük uyarı (bkz. sayfa 419)</td>
</tr>
<tr>
<td>[Proses Aşırı Yük Uyarısı]</td>
<td>A</td>
<td>Aşırı yük uyarı (bkz. sayfa 427)</td>
</tr>
<tr>
<td>[Tork Limitine Ulaşıldı]</td>
<td>S</td>
<td>Tork limitine ulaşıldı (bkz. sayfa 518)</td>
</tr>
<tr>
<td>[Tork Kontrol Uyarısı]</td>
<td>R</td>
<td>Tork kontrol uyarı (bkz. sayfa 394)</td>
</tr>
<tr>
<td>[Sürücü Termal Eşğine ulaşıldı]</td>
<td>A</td>
<td>Sürücü termal eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Motor Termal Eşğine ulaşıldı]</td>
<td>S</td>
<td>Motor termal eşğine ulaşıldı (bkz. sayfa 369)</td>
</tr>
<tr>
<td>[Mot2 Termal Eşğ ulaşıldı]</td>
<td>S</td>
<td>Motor 2 termal eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Mot3 Termal Eşğ ulaşıldı]</td>
<td>S</td>
<td>Motor 3 termal eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Mot4 Termal Eşğ ulaşıldı]</td>
<td>S</td>
<td>Motor 4 termal eşğine ulaşıldı (bkz. sayfa 365)</td>
</tr>
<tr>
<td>[Güç Yüksek Eşği]</td>
<td>H</td>
<td>Güç yüksek eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Güç Düşük Eşği]</td>
<td>L</td>
<td>Güç düşük eşğine ulaşıldı</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 1]</td>
<td>C</td>
<td>Müşteri uyarısı 1 aktif (bkz. sayfa 526)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 2]</td>
<td>C</td>
<td>Müşteri uyarısı 2 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 3]</td>
<td>C</td>
<td>Müşteri uyarısı 3 aktif (bkz. sayfa 527)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 4]</td>
<td>C</td>
<td>Müşteri uyarısı 4 aktif (bkz. sayfa 528)</td>
</tr>
<tr>
<td>[Müşteri Uyarısı 5]</td>
<td>C</td>
<td>Müşteri uyarısı 5 aktif (bkz. sayfa 528)</td>
</tr>
<tr>
<td>[Güç Tüketim Uyarısı]</td>
<td>A</td>
<td>Güç tüketimi uyarısı</td>
</tr>
<tr>
<td>[Kayma uyarısı]</td>
<td>N</td>
<td>Kayma uyarısı (bkz. sayfa 516)</td>
</tr>
<tr>
<td>[Yük Hrkt Uyarısı]</td>
<td>S</td>
<td>Yük hareket uyarısı</td>
</tr>
<tr>
<td>[Fren Kon Uyarısı]</td>
<td>C</td>
<td>Fren kontak uyarısı (bkz. sayfa 288)</td>
</tr>
<tr>
<td>[Al1 Ter Uyarısı]</td>
<td>P</td>
<td>Al1 Termal uyarısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Akım Düş Uyarısı]</td>
<td>L</td>
<td>Akım düşürme uyarısı (bkz. sayfa 520)</td>
</tr>
<tr>
<td>[M/S Cihazı Uyarısı]</td>
<td>S</td>
<td>Master/Bağlı cihaz uyarısı (bkz. sayfa 233)</td>
</tr>
<tr>
<td>[Geri Tep Uyarısı]</td>
<td>S</td>
<td>Geri tepme uyarısı (bkz. sayfa 304)</td>
</tr>
<tr>
<td>[Kodlayıcı Termal Uyarısı]</td>
<td>P</td>
<td>Kodlayıcı modülü termal uyarısı (bkz. sayfa 183)</td>
</tr>
<tr>
<td>[Kon. İzleme Uyarısı]</td>
<td>P</td>
<td>Konum izleme uyarısı</td>
</tr>
<tr>
<td>[Sıc. Sens Al1 Uyarısı]</td>
<td>S</td>
<td>Sıcaklık sensörü Al1 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al3 Uyarısı]</td>
<td>S</td>
<td>Sıcaklık sensörü Al3 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al4 Uyarısı]</td>
<td>S</td>
<td>Sıcaklık sensörü Al4 uyarısı (açık devre)</td>
</tr>
<tr>
<td>[Sıc. Sens Al5 Uyarısı]</td>
<td>S</td>
<td>Sıcaklık sensörü Al5 uyarısı (açık devre)</td>
</tr>
</tbody>
</table>
Alt bölüm 13.2
Hata Kodları

Bu Alt Bölümde Neler Yer Alıyor?
Bu alt bölüm, şu başlıkları içerir:

<table>
<thead>
<tr>
<th>Başlık</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genel Bilgi</td>
<td>587</td>
</tr>
<tr>
<td>[Yük kayması] A n F</td>
<td>588</td>
</tr>
<tr>
<td>[Açlı hatası] A n F</td>
<td>588</td>
</tr>
<tr>
<td>[Fren Kontrolü] b L F</td>
<td>589</td>
</tr>
<tr>
<td>[Frenleme Direnci aş. yük] b a F</td>
<td>589</td>
</tr>
<tr>
<td>[Fren Geri Beslemesi] b r F</td>
<td>590</td>
</tr>
<tr>
<td>[Geri Tepme Hatasi] b s q F</td>
<td>590</td>
</tr>
<tr>
<td>[DB ünitesi kısa devre] b u F</td>
<td>591</td>
</tr>
<tr>
<td>[DB ünitesi açık devre] b u F a</td>
<td>591</td>
</tr>
<tr>
<td>[Devre Kesici Hatasi] c b F</td>
<td>592</td>
</tr>
<tr>
<td>[Hatali Konfigürasyon] C F F</td>
<td>592</td>
</tr>
<tr>
<td>[Geçersiz Konfigürasyon] C F ,</td>
<td>593</td>
</tr>
<tr>
<td>[Konf Akm Aktif] C F , 2</td>
<td>593</td>
</tr>
<tr>
<td>[Ön Ayar Aktör hatası] C F , 3</td>
<td>594</td>
</tr>
<tr>
<td>[Boş Konfigürasyon] C F , 4</td>
<td>594</td>
</tr>
<tr>
<td>[Fieldbus İlet. Knt] c n F</td>
<td>595</td>
</tr>
<tr>
<td>[CANopen Hbr Kesnt] c a F</td>
<td>595</td>
</tr>
<tr>
<td>[Ön Şarj Kondansatörü] c r F</td>
<td>596</td>
</tr>
<tr>
<td>[Kanal Anahtar Hatasi] C S F</td>
<td>596</td>
</tr>
<tr>
<td>[Dinamik Yük Hatasi] d L F</td>
<td>597</td>
</tr>
<tr>
<td>[Kodlayıcı Bağlantısı] E C F</td>
<td>597</td>
</tr>
<tr>
<td>[EEPROM Kontrolü] E E F 1</td>
<td>598</td>
</tr>
<tr>
<td>[EEPROM Gücü] E E F 2</td>
<td>598</td>
</tr>
<tr>
<td>[Kodlayıcı] E n F</td>
<td>599</td>
</tr>
<tr>
<td>[Harici Hata] E P F 1</td>
<td>599</td>
</tr>
<tr>
<td>[Fieldbus Hatası] E P F 2</td>
<td>600</td>
</tr>
<tr>
<td>[Dahil Eth İlet. Kesintisi] E t H F</td>
<td>600</td>
</tr>
<tr>
<td>[Dış Kontaktör Kapandi Hatasi] F C F 1</td>
<td>601</td>
</tr>
<tr>
<td>[Dış Kontaktör Açılı Hatasi] F C F 2</td>
<td>601</td>
</tr>
<tr>
<td>[FDR 1 Hata] F d r 1</td>
<td>602</td>
</tr>
<tr>
<td>[Yazılım Güncellemesı Hata] F W E r</td>
<td>602</td>
</tr>
<tr>
<td>[Kart Uyumluğu] H C F</td>
<td>603</td>
</tr>
<tr>
<td>[Giriş Aşırı Isınma] i H F</td>
<td>603</td>
</tr>
<tr>
<td>[Dahili Link Hata] L F</td>
<td>604</td>
</tr>
<tr>
<td>[Dahili Hata 0] i n F 0</td>
<td>604</td>
</tr>
<tr>
<td>[Dahili Hata 1] i n F 1</td>
<td>605</td>
</tr>
<tr>
<td>[Dahili Hata 2] i n F 2</td>
<td>605</td>
</tr>
<tr>
<td>[Dahili Hata 3] i n F 3</td>
<td>606</td>
</tr>
<tr>
<td>[Dahili Hata 4] i n F 4</td>
<td>606</td>
</tr>
<tr>
<td>[Dahili Hata 6] i n F 6</td>
<td>607</td>
</tr>
<tr>
<td>Başlık</td>
<td>Sayfa</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Dahili Hata 7</td>
<td>607</td>
</tr>
<tr>
<td>Dahili Hata 8</td>
<td>608</td>
</tr>
<tr>
<td>Dahili Hata 9</td>
<td>608</td>
</tr>
<tr>
<td>Dahili Hata 10</td>
<td>609</td>
</tr>
<tr>
<td>Dahili Hata 11</td>
<td>609</td>
</tr>
<tr>
<td>Dahili Hata 12</td>
<td>610</td>
</tr>
<tr>
<td>Dahili Hata 13</td>
<td>610</td>
</tr>
<tr>
<td>Dahili Hata 14</td>
<td>611</td>
</tr>
<tr>
<td>Dahili Hata 15</td>
<td>611</td>
</tr>
<tr>
<td>Dahili Hata 16</td>
<td>612</td>
</tr>
<tr>
<td>Dahili Hata 17</td>
<td>612</td>
</tr>
<tr>
<td>Dahili Hata 18</td>
<td>613</td>
</tr>
<tr>
<td>Dahili Hata 19</td>
<td>613</td>
</tr>
<tr>
<td>Dahili Hata 20</td>
<td>614</td>
</tr>
<tr>
<td>Dahili Hata 21</td>
<td>614</td>
</tr>
<tr>
<td>Dahili Hata 22</td>
<td>615</td>
</tr>
<tr>
<td>Dahili Hata 25</td>
<td>615</td>
</tr>
<tr>
<td>Dahili Hata 27</td>
<td>616</td>
</tr>
<tr>
<td>Giriş Kontaktörü</td>
<td>616</td>
</tr>
<tr>
<td>AI1 4-20mA kayb.</td>
<td>617</td>
</tr>
<tr>
<td>AI3 4-20mA kayb.</td>
<td>617</td>
</tr>
<tr>
<td>AI4 4-20mA kayb.</td>
<td>618</td>
</tr>
<tr>
<td>AI5 4-20mA kayb.</td>
<td>618</td>
</tr>
<tr>
<td>Yük Hırt Hatası</td>
<td>619</td>
</tr>
<tr>
<td>M/B Aytı Hatasi</td>
<td>619</td>
</tr>
<tr>
<td>DC Bara Aşırı Ger.</td>
<td>620</td>
</tr>
<tr>
<td>Aşırı akım</td>
<td>620</td>
</tr>
<tr>
<td>Tahrikte Aşırı Isıma</td>
<td>620</td>
</tr>
<tr>
<td>Proses Aşırı Yükü</td>
<td>621</td>
</tr>
<tr>
<td>Motor Aşırı Yük</td>
<td>621</td>
</tr>
<tr>
<td>Tek Çıkış Faz Kayb.</td>
<td>622</td>
</tr>
<tr>
<td>Çıkış Faz Kayb.</td>
<td>622</td>
</tr>
<tr>
<td>Anaşık Bslme Aşırı</td>
<td>623</td>
</tr>
<tr>
<td>Prog Yükme Hatasi</td>
<td>624</td>
</tr>
<tr>
<td>Prog Çalışma Hatasi</td>
<td>624</td>
</tr>
<tr>
<td>Giriş faz kayb.</td>
<td>625</td>
</tr>
<tr>
<td>Dönüş Açısı İzleme</td>
<td>625</td>
</tr>
<tr>
<td>Güvnlk Fonk. Hatası</td>
<td>626</td>
</tr>
<tr>
<td>Motor kısa devre</td>
<td>626</td>
</tr>
<tr>
<td>Topraklama Kısa Devresi</td>
<td>627</td>
</tr>
<tr>
<td>IGBT Kısa Devresi</td>
<td>627</td>
</tr>
<tr>
<td>Motor Kısa Devre</td>
<td>628</td>
</tr>
<tr>
<td>Modbus İlet Kesint.</td>
<td>628</td>
</tr>
<tr>
<td>PC Hbr Kesintası</td>
<td>629</td>
</tr>
<tr>
<td>HMI Hbr Kesintası</td>
<td>629</td>
</tr>
<tr>
<td>Motor Aşırı Hizi</td>
<td>630</td>
</tr>
<tr>
<td>Başlık</td>
<td>Sayfa</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Kodlayıcı Geri Besleme Kaybı</td>
<td>630</td>
</tr>
<tr>
<td>Tork zaman aşımı</td>
<td>631</td>
</tr>
<tr>
<td>Tork Sınırlama Hatası</td>
<td>631</td>
</tr>
<tr>
<td>Motor Durma Hatası</td>
<td>632</td>
</tr>
<tr>
<td>AI1 Term Sens Hatasi</td>
<td>632</td>
</tr>
<tr>
<td>AI3 Term Sens Hatasi</td>
<td>633</td>
</tr>
<tr>
<td>AI4 Term Sens Hatasi</td>
<td>633</td>
</tr>
<tr>
<td>AI5 Term Sens Hatasi</td>
<td>634</td>
</tr>
<tr>
<td>Kodlayıcı Ter. Sensör Hatası</td>
<td>634</td>
</tr>
<tr>
<td>AI1 Termal Seviye Hatası</td>
<td>635</td>
</tr>
<tr>
<td>AI3 Termal Seviye Hatası</td>
<td>635</td>
</tr>
<tr>
<td>AI4 Termal Seviye Hatası</td>
<td>636</td>
</tr>
<tr>
<td>AI5 Termal Seviye Hatası</td>
<td>636</td>
</tr>
<tr>
<td>Kodlayıcı Ter. Algılanan Hatası</td>
<td>637</td>
</tr>
<tr>
<td>IGBT Aşırı Isınması</td>
<td>637</td>
</tr>
<tr>
<td>Sürücü Aşırı Yük</td>
<td>638</td>
</tr>
<tr>
<td>Oto İnce Ayar Hatası</td>
<td>638</td>
</tr>
<tr>
<td>Proses Düşük Yükü</td>
<td>639</td>
</tr>
<tr>
<td>Anaşık Bslme Dşkger</td>
<td>639</td>
</tr>
</tbody>
</table>
Genel Bilgi

Algılanan Hatanın Temizlenmesi

Bu tablo, sürücü sisteminde müdahalenin gerekli olması durumunda izlenecek adımları sunar:

<table>
<thead>
<tr>
<th>Adım</th>
<th>Eylem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harici kumanda gücü de dahil olmak üzere tüm güç bağlantılarını kesin.</td>
</tr>
<tr>
<td>2</td>
<td>Açık konumda bağlantısı kesilen tüm güçleri kilitleyin.</td>
</tr>
<tr>
<td>3</td>
<td>DC bara kapasitörlerinin yükünün boşalması için 15 dakika bekleyin (sürücü LED'leri DC bara geriliminin olmadığı gösterge de değildir).</td>
</tr>
<tr>
<td>4</td>
<td>DC bara geriliminin 42 Vdc değerinden daha düşük olduğundan emin olmak için PA/+ ve PC/- terminalleri arasındaki gerilimi ölçün.</td>
</tr>
<tr>
<td>5</td>
<td>DC bara kapasitörlerinin yük tamamen boşalmamışsa yerel Schneider Electric temsilcinizle iletişim kurun. Sürücüde onarım yapımayın veya sürücüyı çalıştırmayın.</td>
</tr>
<tr>
<td>6</td>
<td>Algılanan hatanın nedenini bulun ve düzeltin.</td>
</tr>
<tr>
<td>7</td>
<td>Algılanan hatanın düzeltildiğinden emin olmak için sürücü tekrar güç verin.</td>
</tr>
</tbody>
</table>

Algılanan hatanın nedenini bulun ve düzeltin.

Neden ortadan kaldırıldıktan sonra algılanan hata aşağıdaki yollarla giderilebilir:
- [Ürün Yen. Başlatma] \(r \) \(P \) parametresini kullanarak.
- [Oto Hata Sıfırlama] \(R \) \(r \) fonksiyonunu kullanarak.
- [Hata sıfırlama] \(r \) \(S \) fonksiyonuna ayarlanan bir dijital giriş ya da kontrol biti.
- Aktif komut kanalı. [Ref. Frek-Uzk.Term] \(L \) \(C \) \(C \) değerine ayarlanmışsa Ekran Terminali öğesinde STOP/RESET tuşuna basarak.
[Yük kayması] R n F

Olası Neden

Çıkış frekansı ve hız geri beslemesi arasındaki fark doğru değil.

Çözüm

- Uygulamaya (motor, yük vb.) göre sürücü sınıflandırmasını onaylayın.
- Motor, kazanç ve kararlılık parametrelerini doğrulayın.
- Bir frenleme direnci ekleyin.
- Kodlayıcının mekanik bağlantısını ve kablolarının doğru olduğunu doğrulayın.
- Tork kontrol fonksiyonu kullanılsın ve kodlayıcı hız geri beslemesine atandıysa,
 - [Yük kayması algılama] 5 d d = [Hayır] n a olarak ayarlayın.

Hata Kodunun Temizlenmesi

[Açı hatası] R S F

Olası Neden

Senkronize motorlarda, referans 0'dan geçtiğinde hız çevrimi hatalı ayarı.

Çözüm

- Hız döngüsü parametrelerini doğrulayın.
- Motor fazlarını ve tahriğin izin verdiği maksimum akımı doğrulayın.

Hata Kodunun Temizlenmesi

Tanılama ve Sorun Giderme

[Fren Kontrolü] b L F

Olası Neden

- Fren bırakma akımına erişilmedi.
- Tork ayar noktasına erişilmedi.
- Akılama akımı kararlı değil.

Çözüm

- Sürücü/motor bağlantısını doğrulayın.
- Motor sarımlarını doğrulayın.
- [Fren Birakma Akımı] \(b_r \) ve [Fren bırakma I Geri] \(r_d \) ayarlarını doğrulayın.

Hata Kodunun Temizlenmesi

[Frenleme Direnci aş. yük] b o F

Olası Neden

Frenleme direnci aşırı yüklendi

Çözüm

- Frenleme direncinin soğumasını bekleyin.
- Frenleme direncinin nominal gücünü doğrulayın.
- [Frenleme Direnci Gücü] \(b_r P \) ve [Frenleme Direnci Değeri] \(b_r v \) parametrelerini doğrulayın.

Hata Kodunun Temizlenmesi

[Fren Geri Beslemesi] \(b _F \)

Olası Neden

- Fren geri besleme kontağının veya fren rölesi geribesmesinin durumu fren lojik kontrolüyle karşılaştırıldığında doğru değil.
- Fren motoru yeterince hızlı durduruyor ("Darbe giriş" girişinde hız ölçülüdür).

Çözüm

- Fren geri besleme devresini doğrulayın.
- Fren lojik kontrol devresini doğrulayın.
- Fren davranışını doğrulayın.
- \([\text{Fren Brakma Zamanı}] b _E \) ve \([\text{Fren Kavrama Zamanı}] \) BET ayarlarının fren yanıtsüresini, \([\text{Fren Geri Besleme Filtresi}] F _E \) ve \([\text{Fren Rölesi Geri Besleme Filtresi}] F _b \), öğelerini hesaba kattığını doğrulayın.

Hata Kodunun Temizlenmesi

[Gerçek Tepme Hatası] \(b _9 _F \)

Olası Neden

Geri tepme fonksiyonu için kullanılan tork eşliğinde [BL İzleme Geçikmesi] \(b _9 _b \) sonrasında erişilemez.

Çözüm

- Ayarları doğrulayın
- Bağlamayı doğrulayın

Hata Kodunun Temizlenmesi

[DB ünitesi kısa devre] $b \cup F$

Olası Neden

- Frenleme ünitesinin kablolamasını doğrulayın.
- Frenleme ünitesi değerinin çok düşük olmadığını doğrulayın.

Çözüm

- Frenleme ünitesinin kablolamasını doğrulayın.
- Frenleme ünitesi değerinin çok düşük olmadığını doğrulayın.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[DB ünitesi açık devre] $b \cup F \circ$

Olası Neden

- Frenleme devresinden açık devre.
- Frenleme direnci bağlı değil.

Çözüm

- Frenleme direncinin kablolamasını doğrulayın.
- Frenleme direncinin ölçümünün çok yüksek olmadığını doğrulayın.
- $br \cup l$ parametresini doğrulayın.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Devre Kesici Hatası] \[C \& F \]

Olası Neden
[Şebeke G. zaman aşımı] \[L \& T \] yapılandırılan zaman aşımından sonra DC bara gerilim seviyesi, devre kesici lojik kontrolüyle (başlatma veya dururma darbesi) karşılaştırıldığında doğru değil.

Çözüm
- Devre kesici lojik kontrolünü (başlatma veya dururma darbesi) doğrulayın.
- Devre kesicinin mekanik durumunu doğrulayın.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Hatalı Konfigürasyon] \[C \& F \]

Olası Neden
- Seçenek modülü değiştirilmiş veya çıkarılmış.
- Kontrol bloğu yerine yerleştirilen kontrol bloğu, tahrik üzerinde farklı bir anma değeriyle konfigüre edilmiş.
- Geçerli konfigürasyon tutarsız.

Çözüm
- Opsiyon modülinde algılanan hata olmadığından emin olun.
- Kontrol bloğunun değiştirilmiş olması durumunda aşağıdaki kileri dikkate alın.
- Fabrika ayarlarına geri dönün veya geçerliyse yedek konfigürasyonu geri yükleyin.

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.
[Geçersiz Konfigürasyon] C F ,

Olası Neden
Geçersiz konfigürasyon. Sürücü işletmeeye alma aracı veya fieldbus üzerinden yüklenmiş konfigürasyon tutarsız.

Çözüm
- Önceden yüklenen konfigürasyonu onaylayın.
- Uyumlu bir konfigürasyon yükleyin.

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.

[Konf Aktrm Hatasi] C F , 2

Olası Neden
- Konfigürasyon uygun şekilde aktarılmadı.
- Yüklenen konfigürasyon, sürücü ile uyumlu değil.

Çözüm
- Daha önceden yüklenmiş olan konfigürasyonu doğrulayın.
- Uyumlu bir konfigürasyon yükleyin.
- Uyumlu bir konfigürasyonu aktarmak için bilgisayar yazılımı kullanın
- Fabrika ayarı gerçekleştirin

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.
[Ön Ayarlar Aktarım hatası] C F İ 3

Olası Neden
Ön ayar konfigürasyon uygun şekilde aktarılмadı.

Çözüm
Yerel Schneider Electric temsilcinizle iletişim kurun.

[Hata Kodunun Temizlenmesi]

Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.

[Boş Konfigürasyon] C F İ 4

Olası Neden
Çoklu motor konfigürasyonu için seçili konfigürasyon önceden oluşturulmadı.

Çözüm
- Konfigürasyonların kaydedildiğini doğrulayın.
- Uyumlu bir konfigürasyona geçin.

[Hata Kodunun Temizlenmesi]
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.
[Fieldbus Ilet. Ksnt] C \(\Leftrightarrow \) F

Olası Neden

Fieldbus modülündeki iletişim kesintisi.
Fieldbus modülü ile master (PLC) arasındaki iletişim kesildiğinde bu hata tetiklenir.

Çözüm

- Ortamı doğrulayın (elektromanyetik uyumluluk).
- Kablo bağlantısını onaylayın.
- Zaman aşımı onaylayın.
- Seçenek modülünü değiştirin.
- Yerel Schneider Electric temsilcinizle iletişim kurun

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R \leftarrow r \) yoluyla ya da manuel olarak [Anza Sıfır. Atmsı] \(r \leftarrow F \) parametresiyle giderilebilir.

[CANopen Hbr Kesnt] C \(\Leftrightarrow \) F

Olası Neden

CANopen® fieldbus'ındaki iletişim kesintisi

Çözüm

- İletişim fieldbus'ını doğrulayın.
- Zaman aşımı onaylayın.
- CANopen® kullanım kılavuzuna başvurun.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R \leftarrow r \) yoluyla ya da manuel olarak [Anza Sıfır. Atmsı] \(r \leftarrow F \) parametresiyle giderilebilir.
Ön Şarj Kondansatörü] \(E \neq F \)

Olası Neden
- Şarj devresi kontrol algılanan hatası veya şarj direncinde hasar.

Çözüm
- Sürücü öğesini kapatın ve tekrar açın.
- Dahili bağlantıları doğrulayın.
- Yerel Schneider Electric temsilcinizle iletişim kurun

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Kanal Anahtar Hatası] \(E \neq F \)

Olası Neden
- Geçerli olmayan bir kanala geçin.

Çözüm
- Fonksiyon parametrelerini doğrulayın.

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.
[Dinamik Yük Hatası] \(dLF \)

Olası Neden
Yük değişimi aralık dışında.

Çözüm
Yük kararsızlığının mekanik nedenini doğrulayın.

Hata Kodunun Temizlenmesi

[Kodlayıcı Bağlantısı] \(ECF \)

Olası Neden
Kodlayıcıının mekanik bağlaması kırıldı.

Çözüm
Kodlayıcıının mekanik bağlantısını doğrulayın.

[Hata Kodunun Temizlenmesi]
[EEPROM Kontrolü] E E F 1

Olası Neden

Kontrol bloğunun dahili hafızasında bir hata algıandi.

Çözüm

- Ortamı doğrulayın (elektromanyetik uyumluluk).
- Ürünü kapatin.
- Fabrika ayarlarına dünün.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırılması gerektirir.

[EEPROM Gücü] E E F 2

Olası Neden

Güç panelinin dahili hafızasında bir hata algıandi.

Çözüm

- Ortamı doğrulayın (elektromanyetik uyumluluk).
- Ürünü kapatin.
- Fabrika ayarlarına dünün.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırılması gerektirir.
[Kodlayıcı] $E \neq F$

Olası Neden
Kodlayıcı geri besleme hatası.

Çözüm
- Kullanılan kullanıcı için konfigürasyon parametrelerini doğrulayın.
- Kodlayıcının mekanik ve elektrik işlemini doğrulayın.
- Kodlayıcı sinyalleri ve motorun dönüş yönü arasındaki tutarlılığı doğrulayın.
- Gerekirse motorun dönüş yönünü tersine çevirin ([Çıkış Fazı Dönüşü] PHr parametresi)
- Kodlayıcı modülünü doğrulayın.
- Kodlayıcı türünü ve besleme gerilimini doğrulayın.

Hata Kodunun Temizlenmesi

[Harcı Hata] $E PF 1$

Olası Neden
- Event triggered by an external device, depending on user.
- An external error has been triggered via Embedded Ethernet.

Çözüm
Remove the cause of the external error.

Hata Kodunun Temizlenmesi
[Fieldbus Hatası] EPF 2

Olası Neden

An external error has been triggered via fieldbus.

Çözüm

Remove the cause of the external error.

Hata Kodunun Temizlenmesi

[Dahili Eth İlet.Kesintisi] ETH

Olası Neden

Ethernet IP ModbusTCP veriyolundaki iletişim kesintisi.

Çözüm

- İletişim veriyolunu doğrulayın.
- Ethernet kullanım kılavuzuna başvurun.

Hata Kodunun Temizlenmesi

[Dış Kontaktör Kapandı Hatası] F C F 1

Olası Neden
Açma koşulları karşılanmış olsa bile dış kontaktör kapalı kalır.

Çözüm
- Çıkış kontaktörü ve kablo bağlantılarını doğrulayın.
- Kontaktör geri besleme kablolamasını doğrulayın.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dış Kontaktör Açılıdı Hatası] F C F 2

Olası Neden
Kapama koşulları karşılanmış olsa bile dış kontaktör açık kalır.

Çözüm
Çıkış kontaktörü ve kablo bağlantlarını doğrulayın. Kontaktör geri besleme kablolamasını doğrulayın.

Hata Kodunun Temizlenmesi
[FDR 1 Hatasi] F d r 1

Olasi Neden

- Tahrik ile PLC arasında iletişim kesintisi
- Konfigürasyon dosyası uyumsuz, boş veya geçersiz.
- Sürücü anma değeri konfigürasyon dosyasıyla tutarlı değil

Çözüm

- Sürücü ve PLC bağlantısını doğrulayın
- İletişim iş yükünü doğrulayın
- Konfigürasyon dosyasının sürücü'nden PLC'ye aktarımını yeniden başlatın

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Yazılım Güncelleme Hatasi] F W E r

Olasi Neden

Yazılım güncelleme fonksiyonu bir hata algıldı.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kaldırılır kalırdırmaz onarılır.
[Kart Uyumluğu] \(HCF \)

Olası Neden

[Esleşme şifresi] \(PP \), parametresi aktif hale getirildi ve bir seçenek modülü değiştirildi.

Çözüm

- Orijinal opsiyon modülünü geri takın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kaldırılmaz onarılır.

[Giriş Aşırı Isınma] \(HF \)

Olası Neden

AFE tuğla sıcaklığı çok yüksek.

Çözüm

Tahrik havalandırmasını ve ortam sıcaklığını doğrulayın. Yeniden yolvermeden önce tahrik soğummasını bekleyin.

Hata Kodunun Temizlenmesi

Tanılama ve Sorun Giderme

[Dahili Link Hatasi] \(L \ F \)

Olası Neden

Seçenek modülü ve sürücü arasında iletişim kesintisi.

Çözüm

- Ortamı doğrulayın (elektromanyetik uyumluuk).
- Bağlantıları doğrulayın.
- Seçenek modülünü değiştirin.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 0] \(r \ F \)

Olası Neden

Kontrol devresinin mikro işlemcileri arasında haberleşme kesintisi.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 1] \(nF1 \)

Olası Neden
Güç paneli değeri geçerli değil.

Çözüm
Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 2] \(nF2 \)

Olası Neden
Güç paneli, kontrol bloğu yazılımıyla uyumsuz.

Çözüm
Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 3] \(iF3 \)

Olası Neden

Dahili haberleşme algılanan hatası.

Çözüm

- Verify the wiring on drive control terminals (internal 10V supply for analog inputs overloaded).
- Contact your local Schneider Electric representative.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 4] \(iF4 \)

Olası Neden

Dahili veriler tutarsız.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 6]

Olasi Neden
- Sürücü öğesine takılan seçenek modülü tanınmadı.
- Çıkarılabilir kontrol terminal modülleri (varsa) mevcut değil ya da tanınmadı.
- Dahili Ethernet adaptörü tanınmadı.

Çözüm
- Opsiyon modülünün katalog numarasını ve uyumluluğunu onaylayın.
- Sürücü gücü kapatıldıktan sonra çıkarılabilir kontrol terminal modüllernini takın.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 7]

Olasi Neden
Kontrol devresinin CPLD bileşeniyle haberleşme kesintisi.

Çözüm
Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 8] \(\text{InF8} \)

Olası Neden

Dahili güç anahtarlama beslemesi doğru değil.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 9] \(\text{InF9} \)

Olası Neden

Akım devresi ölçümünde bir hata algılandı.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 10] \(F \) \(R \)

Olası Neden

Giriş kısmını düzgün şekilde çalış给他们。

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 11] \(F \) \(b \)

Olası Neden

Dahili tahrik termal sensörü düzgün şekilde çalış给他们。

Çözüm

Contact your local Schneider Electric representative.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R \) \(E \) yoluya ya da manuel olarak [Arıza Sıfır. Atımsı] \(S \) \(F \) parametresiyle giderilebilir.
[Dahili Hata 12] \(\text{iF} \)

Olası Neden

Dahili akım besleme hatası.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 13] \(\text{iF} \ d \)

Olası Neden

Diferansiyel akım sapması.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 14] İn FE

Olası Neden
Dahili mikro işlemci algılanan hatası.

Çözüm
- Hata kodunun temizlenebildiğinden emin olun.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 15] İn FF

Olası Neden
Seri bellek flash formatı hatası.

Çözüm
Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 16] \(n F G \)

Olası Neden
Çıkış röleleri modülünün Uzantı modülüyle iletişim kesintisi veya çıkış rölelerinin Uzantı modülüün dahili hatası

Çözüm
- Seçenek modülünün yuvaya doğru bağlantığını doğrulayın
- Seçenek modülünü değiştirin.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 17] \(n F H \)

Olası Neden
Dijital ve analog I/O Uzantı modülüyle iletişim kesintisi veya dijital ve analog I/O Uzantı modülüünün dahili hatası.

Çözüm
- Seçenek modülünün yuvaya doğru bağlantığını doğrulayın
- Seçenek modülünü değiştirin.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 18] \(i_n F \)

Olası Neden

Güvenlik fonksiyonu modülüyle iletişim kesintisi veya Güvenlik fonksiyonu modülünün dahili hatası.

Çözüm

- Seçenek modülünün yuvaya doğru bağlandığını doğrulayın.
- Seçenek modülünü değiştirin.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 19] \(i_n F \)

Olası Neden

Kodlayıcı modülünde bir hata algılandı.

Çözüm

- Kodlayıcının uyumluluğunu doğrulayın.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 20] \(F K \)

Olası Neden

Seçenek modülü arayüz paneli hatası.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 21] \(F L \)

Olası Neden

Dahili Gerçek Zamanlı Saat hatası. Tuş takımı ve sürücü veya bir saat osilatör başlatma hatası arasında bir iletişim hatası olabilir.

Çözüm

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 22] \(F \) \(F \)

![Olası Neden]

Dahili Ethernet adaptöründe bir hata algılandı.

![Çözüm]

Ethernet portundaki bağlantıyı doğrulayın.
Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Dahili Hata 25] \(F \) \(P \)

![Olası Neden]

Kontrol Devresi donanım sürümü ile yazılım sürümü arasında uyumsuzluk.

![Çözüm]

- Yazılım paketini güncelleyin.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Dahili Hata 27] \(\text{F} \times \text{F} \)

- **Olası Neden**
 CPLD diagnostikleri bir hata algıladı.

- **Çözüm**
 Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Giriş Kontaktörü] \(\text{L} \times \text{F} \)

- **Olası Neden**
 [Şebeke Ger. zmn aşımı] \(\text{L} \times \text{F} \) süresinin dolmasına rağmen sürücü açılmadı.

- **Çözüm**
 - Giriş kontaktörü ve kablo bağlantılarını doğrulayın.
 - [Şebeke G. zmn aşımı] \(\text{L} \times \text{F} \) zaman aşımını doğrulayın.
 - Besleme şebekesi/kontaktör/sürücü kablo bağlantısını doğrulayın.

- **Hata Kodunun Temizlenmesi**
 Algılanan bu hata, nedeni ortadan kaldırıldıktan sonra [Oto Hata Sıfırlama] \(\text{R} \times \text{F} \) yoluya ya da manuel olarak [Anza Sıfır. Atmsı] \(\text{F} \times \text{F} \) parametresiyle giderilebilir.
[AI1 4-20mA kaybı] \(L \ F \ F \ I \)

Olası Neden

AI1 analog girişinde 4-20 mA kaybı.
Ölçülen akım 2 mA'ın altında düştüğünde bu hata tetiklenir.

Çözüm

- Analog girişlerdeki bağlantıyı doğrulayın.
- [AI1 4-20mA kaybı] \(L \ F \ L \ I \) parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R \ L \ F \) yoluyla ya da manuel olarak [Arıza Sıfır. Atmsı] \(F \) parametresiyle giderilebilir.

[AI3 4-20mA kaybı] \(L \ F \ F \ 3 \)

Olası Neden

AI3 analog girişinde 4-20 mA kaybı.
Ölçülen akım 2 mA'ın altında düştüğünde bu hata tetiklenir.

Çözüm

- Analog girişlerdeki bağlantıyı doğrulayın.
- [AI3 4-20mA kaybı] \(L \ F \ L \ 3 \) parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R \ L \ F \) yoluyla ya da manuel olarak [Arıza Sıfır. Atmsı] \(F \) parametresiyle giderilebilir.
[AI4 4-20mA kaybı] L F F 4

Olası Neden
AI4 analog girişinde 4-20 mA kaybı.
Ölçülen akım 2mA'ın altına düştüğünde bu hata tetiklenir.

Çözüm
● Analog girişlerdeki bağlantıyı doğrulayın.
● [AI4 4-20mA kaybı] L F L 4 parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi

[AI5 4-20mA kaybı] L F F 5

Olası Neden
AI5 analog girişinde 4-20 mA kaybı.
Ölçülen akım 2 mA'ın altına düştüğünde bu hata tetiklenir.

Çözüm
● Analog girişlerdeki bağlantıyı doğrulayın.
● [AI5 4-20mA kaybı] L F L 5 parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi
[Yük Hrkt Hatası] \(\text{N d C F} \)

Olası Neden

Hiç komutun verilmediği yük hareketi.

Çözüm

Fren komutu devresini doğrulayın. Freni doğrulayın.

Hata Kodunun Temizlenmesi

[MB Aygıt Hatası] \(\text{N s d F} \)

Olası Neden

- Master için bir veya daha fazla bağlı yok veya hazır değil.
- Bağlı için master yok.

Çözüm

- Sürcü durumunu doğrulayın.
- Master/bağlı mimarisinin ayarlarını doğrulayın.

Hata Kodunun Temizlenmesi

Tanılama ve Sorun Giderme

[DC Bara Aşr.Ger.] $a b F$

Olası Neden
- Yavaşlama süresi çok kısa ya da süren yük.
- Besleme şebekesi gerilimi çok yüksek.

Çözüm
- Yavaşlama süresini artırın.
- Uygulamaya uyumlu ise [Yav rampa adapt.] $b R$ fonksiyonunu yaplandırın.
- Sağlanan ana şebeke gerilimini doğrulayın.
- Varsa frenleme devresi kapasitesini doğrulayın.

Hata Kodunun Temizlenmesi

[Aşırı akım] $a C F$

Olası Neden
- [Motor verileri] $R n a R$ - menüsünde parametreler doğru değil.
- Eylemsizlik veya yük çok yüksektir.
- Mekanik kilitleme.

Çözüm
- Motor parametrelerini doğrulayın.
- Sürücü/yük boyutlarını doğrulayın.
- Mekanizma durumunu doğrulayın.
- [Akım sınırlaması] $L C L$, değerini azaltın.
- Anahtarlama frekansını artırın.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.
[Tahrikte Aşırı Isınma] \(H F \)

Olası Neden

Tahrik sıcaklığı çok yüksek.

Çözüm

Motor yükünü, tahrik havalandırmasını ve ortam sıcaklığını doğrulayın. Yeniden yolvermeden önce tahriğin soğumasını bekleyin.

Hata Kodunun Temizlenmesi

[Proses Aşırı Yükü] \(L C \)

Olası Neden

Proses aşın yükü.

Çözüm

1. Aşırı yükün nedenini doğrulayın ve düzeltin.
2. [Proses aşın yükü] \(L d \) fonksiyonunun parametrelerini doğrulayın.

Hata Kodunun Temizlenmesi

Tanılama ve Sorun Giderme

[Motor Aşırı Yük] $\text{M} F$

Olası Neden
Aşırı motor akımı tarafından tetiklenir.

Çözüm
- Motor termal izlemesinin ayarını onaylayın
- Motor yükünü doğrulayın. Yeniden yolvermeden önce motorun soğumasını bekleyin
- Aşağıdaki parametrelerin ayarını doğrulayın:
 - [Motor Termal Akımı] ITH
 - [Motor Termal Modu] THT
 - [Motor Termal Eşiği] TTD
 - [Motor Sıc Hata Yantı] OLL

Hata Kodunun Temizlenmesi

[Tek Çıkış Faz Kaybı] P F

Olası Neden
Tahrik çıkışındaki bir faz kaybı.

Çözüm
Tahrikten motora giden kablo bağlantılarını doğrulayın.

Hata Kodunun Temizlenmesi
Çıkış Faz Kaybı \(P F 2 \)

Olası Neden

- Motor bağlı değil veya motor gücü çok düşük.
- Çıkış kontakörü açık.
- Motor akımında ani kararsızlık.

Çözüm

- Tahrikten motora giden kablo bağlantılarını doğrulayın.
- Bir çıkış kontakörü kullanılıyor ise [Çıkış Faz Kaybı Ataması] \(P L \) parametresini [Tetiklenen Hata Yok] \(P L \) olarak ayarlayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R e \) yoluya ya da manuel olarak [Arıza Sıfır Atma] \(rSF \) parametresiyle giderilebilir.

Anaşbk Bslme Aşrger \(S F 5 \)

Olası Neden

- Besleme şebekesi gerilimi çok yüksek.
- Arzalı besleme şebekesi.

Çözüm

Sağlanan ana şebeke gerilimini doğrulayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(R e \) yoluya ya da manuel olarak [Arıza Sıfır Atma] \(rSF \) parametresiyle giderilebilir.
[Prog Yükleme Hatası] \textit{P G L F}

\begin{itemize}
\item \textbf{Olası Neden} \textit{Hata kodunun temizlenebildiğinden emin olun.}
\item \textbf{Çözüm} \textit{Yerel Schneider Electric temsilcinizle iletişim kurun.}
\end{itemize}

\begin{itemize}
\item \textbf{Hata Kodunun Temizlenmesi} \textit{Algılanan bu hata, nedeni ortadan kaldırılır kaldırılmaz onarılır.}
\end{itemize}

[Prog Çalışma Hatası] \textit{P G r F}

\begin{itemize}
\item \textbf{Olası Neden} \textit{Hata kodunun temizlenebildiğinden emin olun.}
\item \textbf{Çözüm} \textit{Yerel Schneider Electric temsilcinizle iletişim kurun.}
\end{itemize}

\begin{itemize}
\item \textbf{Hata Kodunun Temizlenmesi} \textit{Bu algılanan hata, güç sıfırmaması gerektirir.}
\end{itemize}
[Giriş faz kaybı] \(P H F \)

Olası Neden
- Sürücü hatalı besleniyor veya sigorta atmış.
- Tek bir faz kullanılabilir.
- Monofaze hat beslemesinde 3 fazlı sürücü kullanılıyor.
- Dengesiz yük.

Çözüm
- Güç bağlantısını ve sigortaları doğrulayın.
- 3 fazlı hat beslemesi kullanın.
- Monofaze hat beslemesinin veya DC barası beslemesinin kullanılması durumunda, [Giriş fazı kaybı] \(P L = \text{Hayır} \ \Delta \) ile algılanan hatayı devre dışı bırakın.

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.

[Dönüş Açıları İzleme] \(R d F \)

Olası Neden
Dönüş açısını izleme çok yüksek bir sapma algıladı.

Çözüm
- Sistemdeki mekanik sorunları kontrol edin.
- İzleme fonksiyonunun ayarlarını doğrulayın.

Hata Kodunun Temizlenmesi
[Güvnlk Fonk. Hatasi] 5 A F F

Olası Neden
- Sekme süresi aşındı.
- Dahili donanım hatası.
- STOA ve STOB 1 saniyeden uzun süre farklı duruma (yüksek/düşük) sahiptir.

Çözüm
- STOA ve STOB dijital girişlerinin kablo bağlantısını onaylayın.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırılması gerektirir.

[Motor kısa devre] 5 C F I

Olası Neden
Sürücü çıkışında kısa devre veya topraklama.

Çözüm
- Sürücüyü motora bağlayan kabloları ve motor yalıtımını doğrulayın.
- Anahtarlama frekansını ayarlayın.
- Şok bobinlerini motor ile seri olarak bağlayın.
- Hız döngüsü ve fren ayarını doğrulayın.
- [Yeniden başlatma süresi]’ni artırın. £ £ r

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırılması gerektirir.
[Topraklama Kısa Devresi] **S C F 3**

Olası Neden

Birden fazla motorun paralel bağlanması durumunda sürücü çıkışında önemli ölçüde topraklama kaçak akımı.

Çözüm

- Sürücüyü motora bağlayan kabloları ve motor yalıtımını doğrulayın.
- Anahtarlama frekansını ayarlayın.
- Şok bobinlerini motor ile seri olarak bağlayın.
- Hız döngüsü ve fren ayarını doğrulayın.
- **[Yeniden başlatma süresi]**ni artırın $t \leq r$

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[IGBT Kısa Devresi] **S C F 4**

Olası Neden

Güç bileşeni algılanan hatası.

Ürunünü güc açıldığında IGBT'lerde kısa devre testi yapılır. Bu şekilde en az bir IGBT'de bir hata (kısa devre ya da kesilme) algılanmıştır. Her bir transistörü kontrol etme süresi 1 ile 10 μs arasındadır.

Çözüm

[Çıkış Kısa Devre Testi] $S \leq t \leq r$ parametresi ayarını doğrulayın.

Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

[Motor Kısa Devre] 5 Ė F 5

Olası Neden
Tahrik çıkışında kısa devre.

Çözüm
- Tahriği motora bağlayan kabloları ve motorun yalıtımını doğrulayın.
- Yerel Schneider Electric temsilcinizle iletişim kurun.

Hata Kodunun Temizlenmesi

[Modbus İlet Kesinti] 5 Ė F Ė

Olası Neden
Modbus portundaki iletişim kesintisi.

Çözüm
- İletişim veriyoluunu doğrulayın.
- Zaman aşımını onaylayın.
- Modbus kullanım kilavuzuna başvurun.

Hata Kodunun Temizlenmesi
[PC Hbr Kesintisi] S L F 2

Olası Neden
Devreye alma yazılımıyla haberleşmede kesinti.

Çözüm
- Devreye alma yazılımı bağlantı kablosunu onaylayın.
- Zaman aşımını onaylayın.

Hata Kodunun Temizlenmesi

[HMI Hbr Kesintisi] S L F 3

Olası Neden
Grafik ekran terminaliyle iletişim kesintisi.
Komut veya referans değeri Grafik Ekran Terminali kullanılarak verildiğinde ya da iletişim 2 saniyeden uzun süre kesintiye uğradığında bu hata tetiklenir.

Çözüm
- Grafik ekran terminali bağlantısını doğrulayın.
- Zaman aşımını doğrulayın.

Hata Kodunun Temizlenmesi
Tanılama ve Sorun Giderme

[**Motor Aşırı Hızı**] \(S \circ F \)

Olası Neden
- Kararsızlık veya yolverme yükü çok yüksek.
- Yük tarafı bir kontaktör kullanılıyor ise motor ile tahrik arasındaki kontaklar, Çalıştır komutu uygulanmadan önce kapanmamıştır.

Çözüm
- Motor parametresi ayarlarını doğrulayın.
- Motor/tahrik/yük boyutlarını doğrulayın.
- Çalıştır komutunu uygulamanın önce motor ile tahrik arasındaki kontakları kontrol edin ve kapatın.

Hata Kodunun Temizlenmesi
Bu algılanan hata, güç sıfırlaması gerektirir.

[Kodlayıcı Geri Besleme Kaybı] \(S P F \)

Olası Neden
- Kodlayıcı geri besleme sinyali eksik.
- İki dönüş yapıldıktan sonra hiç üst Z sinyali yok.
- Giriş hız ölçümü için kullanılır sa darbe girişinde sinyal yoktur.

Çözüm
- [**Kodlayıcı Geri Besleme Hatası**] \(E \circ C E \) hata kodu değerini doğrulayın.
- Kodlayıcı ve sürücü arasındaki kablolamasını doğrulayın.
- Kodlayıcıyı doğrulayın.
- Kodlayıcı ayarlarını doğrulayın.
- Darbe giriş ve kullanılan sensörün kablolamasını doğrulayın.

Hata Kodunun Temizlenmesi
Algılanan bu hata, nedeni ortadan kalktıktan sonra [**Oto Hata Sıfırlama**] \(R \circ \) manuel olarak [**Arıza Sıfır. Atımsı**] \(R \circ F \) parametresiyle giderilebilir.
[Tork zaman aşımı] S r F

Olası Neden
Tork kontrol fonksiyonu konfigüre edilenölü bant içinde torku düzenlemeyemiyor. Sürücü [Tork kontrol zaman aşımı] r t o değerinden uzun süre için hız kontrolüne geçti.

Çözüm
- [Tork kontrolü] tOr fonksiyonunun ayarlarını doğrulayın.
- Hiç mekanik kısıtlamalar olmadığını doğrulayın.

Hata Kodunun Temizlenmesi

[Tork Sınırlama Hatası] S S F

Olası Neden
Sürücü [Tork/I Sınır Zaman Aşımı] S t o sırasında akım sınırı durumunda veya tork sınırandaydı.

Çözüm
- [Tork sınırlaması] t Ol işlevinin ayarlarını doğrulayın.
- Hiç mekanik kısıtlamalar olmadığını doğrulayın.

Hata Kodunun Temizlenmesi
Tanılama ve Sorun Giderme

[Motor Durma Hatasi] 5 F

Olası Neden

Ani durma izleme fonksiyonu, bir hata algıladı.

[Motor Durma Hatasi] 5 F aşağıdaki koşullarda tetiklenir:
- Çıkış frekansı, [Durma Frekansı] durma frekansından daha düşükse 5 F P 3
- Çıkış akımı, [Durma Akımı] durma akımından daha yüksekse 5 F P 2
- [Maks Durma Süresi] 5 F P 1 durma süresinden daha uzun süreler için.

Çözüm

- Motorun mekanik bloklamasını arayın.
- Motorun aşırı yüklenmesinin olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi

[AI1 Term Sens Hatasi] t I C F

Olası Neden

Termal sensör izleme fonksiyonu, AI1 analog girişinde bir termal sensör hatası algıladı:
- Açık devre veya
- Kısa devre

Çözüm

- Sensörü ve kablo bağlantılarını doğrulayın.
- Sensörü değiştirin.

Hata Kodunun Temizlenmesi

[AI3 Term Sens Hatasi] € 3 C F

Olası Neden
Termik sensör izleme fonksiyonu, AI3 analog girişinde bir termik sensör hatası algıladı:
- Açık devre veya
- Kısa devre.

Çözüm
- Sensörü ve kablo bağlantılılarını doğrulayın.
- Sensörü değiştirin.
- [AI3 Türü] R₁₃ parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi

[AI4 Term Sens Hatasi] € 4 C F

Olası Neden
Termik sensör izleme fonksiyonu, AI4 analog girişinde bir termik sensör hatası algıladı:
- Açık devre veya
- Kısa devre.

Çözüm
- Sensörü ve kablo bağlantılılarını doğrulayın.
- Sensörü değiştirin.
- [AI4 Türü] R₁₄ parametresi ayarını doğrulayın

Hata Kodunun Temizlenmesi
[AI5 Term Sens Hatasi] t S F

Olası Neden
Termik sensör izleme fonksiyonu, AI5 analog girişinde bir termik sensör hatası algıladı:
- Açık devre veya
- Kısa devre.

Çözüm
- Sensörü ve kablo bağlantılarını doğrulayın.
- Sensörü değiştirin.
- [AI5 Türü] R, S t parametresi ayarını doğrulayın.

Hata Kodunun Temizlenmesi

[Kodlayıcı Ter. Sensör Hatasi] t E F

Olası Neden
Termal sensör izleme fonksiyonu kodlayıcı modülü analog girişinde bir termal sensör hatası algıladı:
- Açık devre veya
- Kısa devre.

Çözüm
- Sensörü ve kablo bağlantılılarını doğrulayın.
- Sensörü değiştirin.

Hata Kodunun Temizlenmesi
[AI1 Termal Seviye Hatası] $tH1F$

Olası Neden

Termal sensör izleme fonksiyonu, AI1 analog girişinde bir yüksek sıcaklık hatası algıladı.

Çözüm

- Aşırı ısınmanın olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi

[AI3 Termal Seviye Hatası] $tH3F$

Olası Neden

Termik sensör izleme fonksiyonu, AI3 analog girişinde bir yüksek sıcaklık hatası algıladı.

Çözüm

- Aşırı ısınmanın olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi

[AI4 Termal Seviye Hatasi] € H 4 F

Olası Neden
Termik sensör izleme fonksiyonu, AI4 analog girişinde bir yüksek sıcaklık hatası algıladı.

Çözüm
- Aşırı ısınmanın olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi

[AI5 Termal Seviye Hatasi] € H 5 F

Olası Neden
Termik sensör izleme fonksiyonu, AI5 analog girişinde bir yüksek sıcaklık hatası algıladı.

Çözüm
- Aşırı ısınmanın olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi
[Kodlayıcı Ter. Algılanan Hatasi] \(\text{HEF} \)

Olası Neden

Termal sensör izleme fonksiyonu kodlayıcı modülü analog girişinde yüksek bir sıcaklık hatası algıladı.

Çözüm

- Aşırı ısınmanın olası nedenini arayın.
- İzleme fonksiyonunun ayarlarını onaylayın.

Hata Kodunun Temizlenmesi

Bu algılanan hata, güç sıfırlaması gerektirir.

[IGBT Aşırı Isınması] \(\text{JF} \)

Olası Neden

Sürücü güç katı aşırı ısınması.

Çözüm

- Yükün/motorun/sürücünün boyutunu çevre koşullarına göre kontrol edin.
- Anahtarlama frekansını düşürün.
- Rampa süresini artırın.
- Akım sınırlamasını düşürün.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] \(\text{HF} \) yoluyla ya da manuel olarak [Ariza Sıfır. Atmsı] \(\text{SF} \) parametresiyle giderilebilir.
Tanılama ve Sorun Giderme

[Sürücü Aşın Yük] $t \circ L \circ F$

Olası Neden

[Sürücü aş.yük izleme] $a \circ b \circ r$ – fonksiyonu bir hata algıladı.

Çözüm

- Yükün/motorun/sürücünün boyutunu çevre koşullarına göre kontrol edin.
- [Sürücü aş.yük izleme] $t \circ L \circ L$ parametresinin ayarlarını doğrulayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kalktıktan sonra [Oto Hata Sıfırlama] $R \circ t \circ r$ yoluyla ya da manuel olarak [Arıza Sıfır. Atmsı] $r \circ S \circ F$ parametresiyle giderilebilir.

[Oto İnce Ayar Hatası] $t \circ n \circ F$

Olası Neden

- Özel motor veya tahriğe uygun olmayan güçte motor.
- Motor, tahriğe bağlı değil.
- Motor durmadı.

Çözüm

- Motorun/tahriğin uyumlu olup olmadığını doğrulayın.
- Otomatik ince ayar esnasında motorun tahriğe bağlı olduğundan emin olun.
- Bir çıkış kontaktörü kullanılıyorsa otomatik ince ayar sırasında kapalı olduğundan emin olun.
- Otomatik ince ayar esnasında motorun olduğundan ve durduğundan emin olun.
- Manyetik dirençli motorlarda, [PSI HızalaMaksAkımı] $n \circ C \circ r$ değerini düşürün.

Hata Kodunun Temizlenmesi

Algılanan bu hata nedeni ortadan kalktıktan sonra [Arıza Sıfırl. Atması] $r \circ S \circ F$ parametresiyle manuel olarak temizlenebilir.
[Proses Düşük Yükü] \(\cup L F \)

Olası Neden

Proses düşük yükü.

Çözüm

- Düşük yükün nedenini doğrulayın ve düzeltin.
- [Proses düşük yükü] \(\cup L d \) - fonksiyonunun parametrelerini doğrulayın

Hata Kodunun Temizlenmesi

[Anaşbk Bslme Dşkger] \(\cup S F \)

Olası Neden

- Besleme şebekesi çok düşük.
- Geçici gerilim düşüşleri.

Çözüm

Gerilimi ve [Düşk gerilim yönetimi] \(SF b \) parametrelerini doğrulayın.

Hata Kodunun Temizlenmesi

Algılanan bu hata, nedeni ortadan kaldırılır kaldırmaz onarılır.
SSS

Giriş

Ekranın yanmaması halinde, tahrıge giden besleme şebekesini kontrol edin.

Hızlı duruş veya serbest duruş fonksiyonlarının atanması, ilgili dijital girişlere güç verilmiyorsa tahrığın başlatılmasını önlemeye yardımcı olur. Bu durumda terk, serbest duruşta [Serbest] $\n\leq 5$ ve hızlı durusta [Hızlı Duruş] ≤ 5 gösterir. Bu fonksiyonlar sıfır konumunda aktif olduğu için tel kopması durumunda tahrığın durması normaldir.

Çalıştırma komutu girisinin seçilen kontrol moduna uygun olarak aktif hale getirildiğini doğrulayın (2/3-tel kumanda) $\leq \leq \leq$ ve [2 kablolu tür] $\leq \leq$ parametreleri.

Bir fieldbus'a bir referans kanalı ya da komut kanalı atanmışsa besleme şebekesi bağlandığında tahrığın [Serbest] \leq değerini gösterir. Fieldbus bir komut verene kadar durma modunda kalır.

Blokaj durumunda sürücü kilidi

Bir Çalıştır komutu ileri yön çalışma, Geri yön çalışma, DC enjeksiyon şu sıraya hala etkinse sürücü blokaj durumunda kilitlenir ve [Serbest Duruş] $\leq \leq$ öğesini görüntüler:

- Bir ürünün fabrika ayarlarına sıfırlanması,
- [Arıza Sıfır. Atma] $\leq \leq$ kullanılan manuel bir "Arıza Sıfırlama",
- Bir ürünün kapalı yapı tekrar açılmasıyla manuel bir "Arıza Sıfırlama",
- Aktif kanal kumandası olmayan bir kanal tarafından verilen bir durma komutu (2/3 kablo kontrolünde ekran terminalinin Stop tuşu gibi),

Yeni bir Çalıştır komutunun yetkilendirilmesinden önce bütün aktif Çalıştırma komutlarının devre dışı bırakılması gerekir.

Seçenek Modülü Değiştirilmiş veya Çıkarılmış

Bir seçeneğin modülünün değiştirilmesi veya başka biriyle değiştirilmesi durumunda tahrığ açılısta, [Hatalı konfigürasyon] $\leq \leq$ hata modunda kilitlenir. Seçeneğin modülü bilerek değiştirilmiş veya çıkarılmasıyla algılanan hata, OK tuşuna iki kez basılarsa silinecektir ve böylelikle seçeneğin modülünün etkilediği parametre grupları için fabrika ayarları geri yüklenir.

Kontrol Bloğu Değiştirildi

Kontrol bloğu, farklı bir değere sahip bir tahrıktaki konfigüre edilmiş bir kontrol bloğuya değiştirilirse tahrığ, açılış sırasında [Hatalı konfigürasyon] $\leq \leq$ hata modunda kilitlenir. Kontrol bloğu bilerek değiştirildiğinde algılanan hata, tüm fabrika ayarlarının geri yüklenmesini sağlayan OK tuşuna iki kez basılarak silinebilir.
Sözlük

İzleme fonksiyonu
İzin verilen sınırlar içinde olup olmadığını kontrol etmek için izleme fonksiyonları sürekli veya dönüştür olarak (örneğin ölçerek) bir değer alır. İzleme fonksiyonları hata algılama için kullanılır.

Ekran terminali
Ekran terminali menüleri köşeli parantezler içinde görüntülenir.
Örneğin: [İletişim]
Kodlar parantezler içinde görüntülenir.
Örneğin: L a F -
Parametre adları ekran terminalinde köşeli parantezler içinde görüntülenir.
Örneğin: [Geri Çekilme Hızı]
Parametre kodları parantezler içinde görüntülenir.
Örneğin: L F F

Fabrika ayarı
Ürünün teslim edildiğinde sahip olduğu fabrika ayarları

Güç kademesi
Güç kademesi motora kumanda eder. Güç kademesi motoru denetleyen akımı üretir.

Hata
Algılanan (hesaplanan, ölçulen veya sinyalle aktarılan) bir değer veya durum ile belirtilen veya teorik olarak doğru değer veya durum arasındaki uygunsuzluk.
Hata
Hata Sıfırlama
Hatanın nedeni kaldırılduktan sonra, yanı hata artık etkini olmadığından algılanan bir hata temizlendiğinden sonra sürücü çalıştırılabilir bir duruma geri yüklemek için kullanılan bir fonksiyon.

Parametre
Kullanıcı tarafından okunabilen ve ayarlanabilen (belirli bir dereceye kadar) aygit verileri ve değerleri.
PELV
Koruyucu Ekstra Düşük Gerilim, yalıtımlı düşük gerilim. Daha fazla bilgi için: IEC 60364-4-41
PLC
Programlanabilir mantık denetleyicisi
U

Uyarı

Terim güvenlik talimatları bağlamı dışında kullanılıyorsa, uyarı bir izleme işlevi tarafından saptanmış olası bir hata konusunda uyarır. Uyarı, işletim durumunun değişmesine neden olmaz.