Altivar Process ATV990 MultiDrive Systems

Handbook

English

02/2018

EElectric

Altivar Process MultiDrive Systems

The customized solution for your drive

MultiDrive systems are suitable for your applications which require a common DC bus. It is advantageous when the load of several motors leads to the simultaneous operation of both motor and generator.

Compact dimensions

+ Low space required in the control room
+ Generous connecting area for the power cables
+ Easy accessibility of all components
+ Control panel for numerous options

Sophisticated motor control system

+ High overload capability
+ Especially good motor efficiency
+ Impressive robustness against load impacts
+ Excellent performance for all common motor types
+ Significant speed and torque accuracy with and without encoder feedback

> Asynchronous motors
> PM motors
> Torque motors
> Reluctance motors
> Special motors like submersible pumps, sliding rotor motors,...

DC-Bus Architecture

+ Simple common DC-Bus architecture with modular design
+ Efficient multi-motor applications with load sharing

Extended connectivity

+ Embedded Dual Ethernet for simple wiring and increased availability
+ Dynamic drive-to-drive communication for multi-motor operation
+ Easy integration thanks to standardized FDT/DTM and ODVA technology
+ Easy access via PC, tablet or smartphone

Sophisticated service concept with QR code

+ Modular design allows easy logistics of spare parts
+ Optimized costs of maintenance due to dynamic maintenance schedule with integrated monitoring of the individual components
+ Simple exchange of power modules and fans
+ Quick assistance with dynamic QR codes and Customer Care App

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2018 Schneider Electric. All rights reserved.

Table of Contents

Safety Information 5
About the Book 6
Chapter 1 Drive Systems 9
Overview 10
ATV990 - MultiDrive Systems 11
Expandability 15
Chapter 2 General Specification 17
Quality 18
Mains Conditions 23
Protection of the Plant 26
Chapter 3 MultiDrive Systems ATV99•-400 V 31
Description 32
Chapter 4 ATV991••••4X1 39
Description 41
Specification 42
Circuit Diagram 50
Mains Connection 51
Chapter 5 ATV992•••••4X1 53
Description 55
Specification 56
Circuit Diagram 78
Mains Connection 79
Chapter 6 ATV993•••••4X1 81
Description 83
Specification 84
Circuit Diagram 112
Motor Connection 113
Chapter 7 Wiring of the Control Terminals 121
Design/Position of the Individual Terminals 122
Control block ATV991 \& ATV992 123
Control block ATV993 128
Option "Logic and Analog I/O Card" 138
Option "Relay Output Card" 141
Option Terminals 142
Chapter 8 Customizations 145
Enclosure Options 146
Control Options 150
I/O Expansion Cards 151
Communication Cards 152
Encoder Interface Modules 154
Functional Safety 155
Display Options 156
Motor Options 157
Mains Supply 159
Braking Option 163
Monitoring Options 171
Documentation / Packaging 172

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

4 DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed to Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

Qualification Of Personnel

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. In addition, these persons must have received safety training to recognize and avoid hazards involved. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by changing the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used. All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

About the Book

At a Glance

Document Scope

This document gives you an overview of the available Altivar Process Drive Systems. Furthermore, you can select from the options described in detail in order to adapt the Altivar Process Drive System to the actual requirements of your system.

Validity Note

Original instructions and information given in this manual have been written in English (before optional translation).

This documentation is valid for the Altivar Process Drive Systems.
The technical characteristics of the devices described in this document also appear online. To access this information online:

Step	Action
1	o to the Schneider Electric home page www.schneider-electric.com.
2	In the Search box type the reference of a product or the name of a product range. - Do not include blank spaces in the reference or product range. - To get information on grouping similar modules, use asterisks (*).
3	If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you. If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you.
4	If more than one reference appears in the Products search results, click on the reference that interests you.
5	Depending on the size of your screen, you may need to scroll down to see the data sheet.
6	To save or print a data sheet as a .pdf file, click Download XXX product datasheet.

The characteristics that are presented in this manual should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the manual and online information, use the online information as your reference.

Use your tablet or your PC to quickly access detailed and comprehensive information on all our products on www.schneider-electric.com

The internet site provides the information you need for products and solutions:

- The whole catalog for detailed characteristics and selection guides
- The CAD files to help design your installation, available in over 20 different file formats
- Software and firmware to maintain your drive up to date
- A large quantity of White Papers, Environment documents, Application solutions, Specifications... to gain a better understanding of our electrical systems and equipment or automation
- And finally the User Guides related to your drive, listed below:

Title of Documentation	Reference number
ATV990 Handbook	NHA37143 (German), NHA37145 (English)
Drive Systems - Installation manual	NHA37118 (German), NHA37119 (English), NHA37121 (French), NHA37122 (Spanish), NHA37123 (Italian), NHA37124 (Dutch), NHA37126 (Polish), NHA37127 (Portuguese), NHA37129 (Turkish), NHA37130 (Chinese)
ATV9•• Programming manual	NHA80757 (English), NHA80758 (French), NHA80759 (German), NHA80760 (Spanish), NHA80761 (Italian), NHA80762 (Chinese)
ATV991, ATV992 Programming manual	OGH33275 (English)
ATV9•• Modbus serial link manual (embedded)	NHA80939 (English)
ATV9•• Ethernet manual (embedded)	NHA80940 (English)
ATV9•• PROFIBUS DP manual (VW3A3607)	NHA80941 (English)
ATV9•• DeviceNet manual (VW3A3609)	NHA80942 (English)
ATV9•• PROFINET manual (VW3A3627)	NHA80943 (English)
ATV9•• CANopen serial link manual (VW3A3608, 618, 628)	NHA80945 (English)
ATV9•• EtherCAT manual (VW3A3601)	NHA80946 (English)
ATV9•• Communication parameters	NHA80944 (English)
ATV9•• Safety function manual	NHA80947 (English)
ATV6•• \& ATV9•• ATEX manual	NVE42416 (English)
SoMove: FDT	SoMove FDT (English, French, German, Spanish, Italian, Chinese)
Altivar Process ATV9•• DTM	ATV9xx DTM Library EN (English), ATV9xx DTM Library FR (French), ATV9xx DTM Library DE (German), ATV9xx DTM Library SP (Spanish), ATV9xx DTM Library IT (Italian), ATV9xx DTM Library CN (Chinese),

You can download these technical publications and other technical information from our website at www.schneider-electric.com.

The technical terms, terminology and the corresponding descriptions in this manual are inspired by the terms or definitions in the relevant standards.

In the area of drive systems this includes, but is not limited to, terms such as error, error message, failure, fault, fault reset, protection, safe state, safety function, warning, warning message and so on.

Among others, these standards include:

- IEC 61800 series: Adjustable speed electrical power drive systems
- EN 61439 series: Low-voltage switchgear and controlgear assemblies
- IEC 61508, Ed. 2 series: Functional safety of electrical/electronic/programmable electronic safetyrelated
- EN 954-1 Safety of machinery - Safety related parts of control systems
- EN ISO 13849-1 and 2 Safety of machinery - Safety related parts of control systems
- IEC 61158 series: Industrial communication networks - Fieldbus specifications
- IEC 61784 series: Industrial communication networks - Profiles
- IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements

In addition, the term zone of operation is used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the EC Machinery Directive (2006/42/EC) and in ISO 12100-1.

Contact us

Select your country on:
www.schneider-electric.com/contact

Schneider Electric Industries SAS

Head Office
35, rue Joseph Monier
92500 Rueil-Malmaison
France

Chapter 1

Drive Systems

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Overview	10
ATV990 - MultiDrive Systems	11
Expandability	15

Overview

Market segment	Water and waste water Oil \& gas Mining, minerals \& metals Food \& beverage

Drive Systems
Brief description

Special features
Protection degree
Power range
Voltage ranges
Mains frequency
Output frequency
Control method

Interfaces

References

Further reading

MultiDrive consisting of several frequency inverter coupled via the DC link for energyefficient speed control of several asynchronous synchronous motors.

MultiDrive enclosure unit, alternatively in the standard design, with predefined customizations or as individual customer solution

One or several frequency inverters, alternatively with rectifier supply unit or AFE supply unit.
IP23 standard design of the enclosure IP54 optional design of the enclosure

DC bus: 175... 2100 kW
Motor outputs: $\quad 0.75 \ldots 1000 \mathrm{~kW}$

- 3 AC 380 V -10 \% ... 415 V +6 \%
- 3 AC $440 \mathrm{~V} \pm 10$ \%
- 3 AC 400 V -10 \% ... 415 V +10 \%
- 3 AC $480 \mathrm{~V} \pm 10$ \%

$50 / 60 \mathrm{~Hz}+/-5 \%$

$0.1 \ldots 599 \mathrm{~Hz}$

$$
\begin{array}{ll}
\text { Asynchronous motor: } & \begin{array}{l}
\text { Constant load torque (open/closed loop), variable load torque } \\
\text { (open/closed loop), energy saving }
\end{array} \\
\text { Synchronous motor: } & \text { PM (permanent magnet) motor (open/closed loop) }
\end{array}
$$

Operating panels in the enclosure door, control terminals inside the enclosure, control terminals can be extended,
fieldbus connection via Ethernet or Modbus,
saving the parameters via USB interface at the keypad

ATV990••••०X1

You will find detailed information in this document.

ATV990 - MultiDrive Systems

MultiDrive with several frequency inverters as enclosure unit for energy-efficient speed control of several asynchronous and synchronous motors.

Concept

The ATV990 MultiDrive Systems are the optimal solution for drive units where several motors balance their loads. This can be, for example, a simple test bench for testing the life cycle of a belt. Another example is a group of drives for a metal coating line with re- and unwinder, conveyor rollers, grinding wheels and much more.

Basic equipment

The basic equipment consists of a supply unit and one or several inverter units. The energy is distributed via a DC bus. Additionally, a braking unit can be connected. The design is based on the standard enclosure system Spacial SF with graphical operating panels integrated into the enclosure door.

The control is located on spacious control panels. They provide compact dimensions, nevertheless it is enough space for additional extensions and accessibility in case of maintenance.

Device features

Enclosure system

The enclosure system Spacial SF with additional internal reinforcement elements and clearly specified cooling air channel provides optimal cooling of the built-in frequency inverter modules and maximum compactness at the same time.

DC bus

Efficient balance of energy via the DC bus especially for applications with several motors.

Connection

The power cables are connected on the mains side and motor side to spaciously dimensioned bars. The strain relief of the cables is realized via an own bar with solid metal clamps. Each device is equipped with an EMC screen bar for correct shield connection. At the standard design, the cables are to be connected at the bottom.

ATV99• - General technical data	
Mains voltage	- 3 AC $380 \mathrm{~V}-10 \%$... $415 \mathrm{~V}+6 \%$ - 3 AC $400 \mathrm{~V}-10 \% \ldots 415 \mathrm{~V}+10 \%$ - 3 AC $440 \mathrm{~V} \pm 10 \%$ - 3 AC $480 \mathrm{~V} \pm 10 \%$ $50 / 60 \mathrm{~Hz} \pm 5 \%$ for TT, TN-C or TN-S Other voltages and mains topologies on request.
Maximum current	Normal duty (ND): 120% for 60 s per 10 minutes Heavy duty (HD): $\quad 150 \%$ for 60 s per 10 minutes
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$ (below $0^{\circ} \mathrm{C}$ with additional enclosure heating, above $+40^{\circ} \mathrm{C}$ with derating) You will find further information at chapter "Maximum Ambient Temperature", page 37.
Standard equipment	Enclosure system Spacial SF in RAL 7035, protection degree IP23, graphical operating panels in the enclosure door, rectifier supply unit or AFE supply unit including main switch coupled via the DC bus with one or several frequency inverters, mains and motor terminals, cable entry from bottom
Interfaces	Pluggable control terminals, fieldbus connection via Ethernet or Modbus
Possible customizations	- Increased protection degree IP54 - Design without main switch - Enclosure plinth for basic device - Increased short-circuit strength - Connection enclosure cable from $(100 \mathrm{kA})$ - top/bottom - Indicator lamps on front door - Enclosure lighting - Motor temperature monitoring - Enclosure heating - Bearing temperature monitoring - Key switch "local/remote" - Motor heating - Ethernet port on front door - Circuit breaker - Digital and analog I/O card - Undervoltage coil for circuit - Relay output card breaker 230 V - Communication cards for various - Motor for circuit breaker 230 V fieldbus systems - Safety labels in local language - Encoder interface modules - Air intake from back - STO - SIL 3 Stop category 0 or 1 - Differing enclosure colors - Front display module (FDM) - Customized documentation - Modified wiring colors - Customized labeling - Remote monitoring - Design for IT mains - Differing mains voltages - Motor contactor - Multipulse supply (12-pulse) - ... le
Standards	CE, ATEX, IEEE 519 (THDi < 5\%) (ATV992), RFI filter for second "industrial environment" C3 integrated

Supply unit ATV991 - Rectifier

Type	Size	Nom. DC power	Pmax $^{l\|l\| l \mid}$			
				Dimensions		
ATV991C16•4	$1 \mathrm{mr}^{(3)}$	175 kW	210 kW	800 mm	600 mm	2150 mm
ATV991C31•4	2 mr	350 kW	420 kW	800 mm	600 mm	2150 mm
ATV991C63•4	4 mr	700 kW	840 kW	1400 mm	600 mm	2150 mm
ATV991M10•4	6 mr	1050 kW	1260 kW	1800 mm	600 mm	2150 mm

12-pulse-supply and power extension up to 2100 kW DC on request
(1) Width including supply field ($1 \mathrm{mr}, 2 \mathrm{mr}: 400 \mathrm{~mm}, 3 \mathrm{mr}, 4 \mathrm{mr}: 600 \mathrm{~mm}$)
(2) Total depth including door handle and switch handle: 664 mm
(3) Size 1 mr is not available in 12-pulse design

Supply unit ATV992 - AFE unit

Type	Size	Nom. DC power	Pmax $^{\text {a }}$	Dimensions		
				Width ${ }^{(1)}$	Depth ${ }^{(2)}$	Height
ATV992C11•4	1ma	120 kW	144 kW	600 mm	600 mm	2150 mm
ATV992C13•4		145 kW	174 kW	600 mm	600 mm	2150 mm
ATV992C16•4		175 kW	210 kW	600 mm	600 mm	2150 mm
ATV992C20•4	2 ma	240 kW	288 kW	1000 mm	600 mm	2150 mm
ATV992C25•4		290 kW	348 kW	1000 mm	600 mm	2150 mm
ATV992C31•4		350 kW	420 kW	1000 mm	600 mm	2150 mm
ATV992C40•4	3ma	435 kW	522 kW	1600 mm	600 mm	2150 mm
ATV992C50•4		525 kW	630 kW	1600 mm	600 mm	2150 mm
ATV992C63•4	4ma	700 kW	840 kW	2000 mm	600 mm	2150 mm
ATV992C80•4	5 ma	875 kW	1050 kW	2600 mm	600 mm	2150 mm
ATV992M10•4	6ma	1020 kW	1260 kW	3000 mm	600 mm	2150 mm

Power extension up to 1750 kW DC on request
(1) Maybe additional supply field required
(2) Total depth including door handle and switch handle: 664 mm

BUO Braking unit option

Type	Size	Power ${ }^{(1)}$	Braking power ${ }^{(2)}$	Dimensions		
				Width	Depth ${ }^{(3)}$	Height
ModBuoC16•4	1 mc	120 kW	170 kW	400 mm	600 mm	2150 mm
ModBuoC31•4		240 kW	340 kW	400 mm	600 mm	2150 mm
ModBuoC50•4		360 kW	510 kW	400 mm	600 mm	2150 mm
ModBuoC63•4	2 mc	480 kW	680 kW	800 mm	600 mm	2150 mm
ModBuoC80•4		600 kW	850 kW	800 mm	600 mm	2150 mm
ModBuoM10•4		720 kW	1020 kW	800 mm	600 mm	2150 mm

(1) Power at 50% duty cycle
(2) Braking power at maximum 5% duty cycle
(3) Total depth including door handle and switch handle: 664 mm

Inverter unit ATV930

Type	Size	Motor rating (ND / HD)	Output current (ND / HD)
ATV930U07N4	1	0.75 kW / 0.37 kW	2.6 A / 2.2 A
ATV930U15N4		$1.5 \mathrm{~kW} / 0.75 \mathrm{~kW}$	4.8 A/4 A
ATV930U22N4		$2.2 \mathrm{~kW} / 1.5 \mathrm{~kW}$	6.7 A/5.6 A
ATV930U30N4		3.0 kW / 2.2 kW	8.6 A/7.2 A
ATV930U40N4		4.0 kW / 3.0 kW	$11.2 \mathrm{~A} / 9.3 \mathrm{~A}$
ATV930U55N4		5.5 kW / 4.0 kW	15.2 A / 12.7 A
ATV930U75N4	2	7.5 kW / 5.5 kW	19.8 A / 16.5 A
ATV930D11N4		$11 \mathrm{~kW} / 7.5 \mathrm{~kW}$	28.2 A / 23.5 A
ATV930D15N4	3	$15 \mathrm{~kW} / 11 \mathrm{~kW}$	38.0 A / 31.7 A
ATV930D18N4		18.5 kW / 15 kW	47.0 A / 39.2 A
ATV930D22N4		$22 \mathrm{~kW} / 18 \mathrm{~kW}$	55.6 A / 46.3 A
ATV930D30N4	4	$30 \mathrm{~kW} / 22 \mathrm{~kW}$	73.8 A / 61.5 A
ATV930D37N4		$37 \mathrm{~kW} / 30 \mathrm{~kW}$	89.4 A / 74.5 A
ATV930D45N4		$45 \mathrm{~kW} / 37 \mathrm{~kW}$	105.6 A / 88 A
ATV930D55N4	5	$55 \mathrm{~kW} / 45 \mathrm{~kW}$	127.2 A / 106 A
ATV930D75N4		$75 \mathrm{~kW} / 55 \mathrm{~kW}$	174.0 A / 145 A
ATV930D90N4		90 kW / 75 kW	207.6 A / 173 A

NOTE: The real dimensions of the enclosure with built-in ATV930 inverter units are available on request.

Inverter unit ATV993

Type	Size	Motor rating (ND / HD)	Output current (ND / HD)	Dimensions		
				Width	Depth ${ }^{(1)}$	Height
ATV993C11•4	1mp	$110 \mathrm{~kW} / 90 \mathrm{~kW}$	211 A / 173 A	400 mm	600 mm	2150 mm
ATV993C13•4		132 kW / 110 kW	$250 \mathrm{~A} / 211 \mathrm{~A}$	400 mm	600 mm	2150 mm
ATV993C16•4		160 kW / 132 kW	$302 \mathrm{~A} / 250 \mathrm{~A}$	400 mm	600 mm	2150 mm
ATV993C20•4	2 mp	200 kW / 160 kW	370 A / 302 A	600 mm	600 mm	2150 mm
ATV993C25•4		250 kW / 200 kW	477 A / 370 A	600 mm	600 mm	2150 mm
ATV993C31•4		315 kW / 250 kW	$590 \mathrm{~A} / 477 \mathrm{~A}$	600 mm	600 mm	2150 mm
ATV993C35•4	3 mp	355 kW / 280 kW	$660 \mathrm{~A} / 520 \mathrm{~A}$	800 mm	600 mm	2150 mm
ATV993C40•4		400 kW / 315 kW	$730 \mathrm{~A} / 590 \mathrm{~A}$	800 mm	600 mm	2150 mm
ATV993C45•4		450 kW / 355 kW	$830 \mathrm{~A} / 660 \mathrm{~A}$	800 mm	600 mm	2150 mm
ATV993C50•4		$500 \mathrm{~kW} / 400 \mathrm{~kW}$	$900 \mathrm{~A} / 730 \mathrm{~A}$	800 mm	600 mm	2150 mm
ATV993C56•4	4mp	560 kW / 450 kW	1020 A / 830 A	1200 mm	600 mm	2150 mm
ATV993C63•4		630 kW / 500 kW	1140 A / 900 A	1200 mm	600 mm	2150 mm
ATV993C71•4	5mp	710 kW / 560 kW	1260 A / 1020 A	1400 mm	600 mm	2150 mm
ATV993C80•4		$800 \mathrm{~kW} / 630 \mathrm{~kW}$	1420 A / 1140 A	1400 mm	600 mm	2150 mm

Power extension up to $1000 / 800 \mathrm{~kW}$ motor rating on request
(1) Total depth including door handle and switch handle: 664 mm

Expandability

The new Altivar Process Drive Systems are the result of our many years of experience in the field of electronic drives. Moreover we provide especially designed expansion options for a various range of applications. Our worldwide, certified manufacturing sites and the local engineering teams allow a global offer.

Predefined Customizations

Due to the predefined customizations the Altivar Process Drive System can be adapted easily and quick to the customer requirements. Besides, this allows minimal delivery time for an individually adapted enclosure ready to connect.
Certainly the Altivar Process Drive Systems can be ordered also in the basic design, which is already extensive equipped, without any customization.
Predefined customizations are:

- Braking unit BUO
- Increased protection degree IP54
- Enclosure plinth for basic device
- Connection enclosure cable from top/bottom
- Enclosure lighting
- Enclosure heating
- Key switch "local/remote"
- Ethernet port on front door
- Digital and analog I/O card
- Relay output card
- Communication cards for various fieldbus systems
- Encoder interface modules
- STO - SIL 3 Stop category 0 or 1
- Front display module (FDM)
- Indicator lamps on front door
- Motor temperature monitoring
- Bearing temperature monitoring
- dv/dt filter choke
- Motor heating
- Circuit breaker
- Undervoltage coil for circuit breaker
- Motor for circuit breaker 230 V
- Safety labels in local language
- Modified wiring colors
- Remote monitoring
- Differing mains voltages
- Design without main switch
- Increased short-circuit strength (100 kA)
- Air intake from back
- Differing enclosure colors
- Customized documentation
- Customized labeling
- Design for IT mains
- Motor contactor
- Integrated control functions
- ...

Individual Customizations

Due to our substantial know-how and the high flexibility in performing projects, it is possible to realize unique system solutions. They are individually adapted to the customers demands.

Typical customizations:

- Multi drives (several frequency inverters in an enclosure composition)
- Differing cooling system
- Different enclosure system
- Differing dimensions
- ...

Each subunit (ATV991, ATV992, ATV993 or ATV930 enclosure installation) gets an own rating plate to indicate the specific nominal values and serial numbers.

The type designation of the Altivar Process MultiDrive systems consists of several points of signs (characters and figures). The meaning of each point is illustrated in the following example.

		ATV	990	C11	Q4	X1
Product ATV	Description Altivar					
Segments						
990	MultiDrive systems complete unit					
991	Multidrive - Rectifier unit					
992	MultiDrive - AFE unit					
993	MultiDrive - Inverter unit					
930	MultiDrive - Inverter unit					
Drive power						
U07...D90	0.75 / 0.37 kW ... 90 / 75 kW					
C11...C80	110 / 90 kW ... 1000 / 800 kW					
Mains voltage						
Q4	3 AC $380 \mathrm{~V}-10 \% . . .415 \mathrm{~V}+6$ \% (+10 \%)					
R4	3 AC $440 \mathrm{~V} \pm 10 \%$					
T4	3 AC $480 \mathrm{~V} \pm 10 \%$					
N4	$3 \mathrm{AC} 380 . .448 \mathrm{~V} \pm 10 \%$					
Design variant X1	Europe CE					

Examples:

- MultiDrive system complete unit:
- MultiDrive - Rectifier unit:
- MultiDrive - AFE unit:
- MultiDrive - inverter unit:

ATV990C22Q4X1 (C22: 220 kW total motor power) ATV991C31Q4X1 (C31: 340 kW available DC power) ATV992C31Q4X1 (C31: 350 kW available DC power) ATV993C11Q4X1 (C11: 110 kW motor power)

Chapter 2

General Specification

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Quality	18
Mains Conditions	23
Protection of the Plant	26

Quality

Altivar frequency inverters use modern components and solutions for the control of asynchronous threephase motors and synchronous three-phase motors. This enables an extremely compact design and user-friendly device features.
Our high degree of quality awareness ranges from the basic requests in the product specification over the development of the cooling system, of the mechanical design, of the electrical circuit diagram and the individual functions up to the production of the device. This process quality level is also long-term guaranteed by means of the corresponding quality assurance systems in the individual business processes and is certified every year by independent authorities according to DIN EN ISO 9001.

The Altivar Process Drive Systems fulfil the relevant international standards and regulations.

System concept ATV99•

The ATV990 MultiDrive Systems are the optimal solution for drive units where several motors balance their loads. The delivered unit includes a supply unit and several inverter units, whereby all units are connected with each other at the DC bus for energy supply and load sharing. Additionally, a braking unit can be integrated.

* Optionally selectable

Available supply units:

- ATV991 MultiDrive - Rectifier unit or
- ATV992 MultiDrive - AFE unit

Available inverter units:

- ATV993 MultiDrive - Inverter unit $\geq 110 \mathrm{~kW}$ and/or
- ATV930 Frequency inverter products < 110 kW

Additional units:

- Option BUO MultiDrive - Braking unit
- Connection enclosure cable from top
- Connection enclosure cable from bottom

Depending on the requests on the individual units the basic design can be supplemented by options. Options for the power path, options for control and operation as well as mechanical options are available. They are all integrated into the enclosure unit but they may cause a change of dimensions.

CE Marking

The frequency inverters have a CE marking on the rating plate. However, to achieve the corresponding limits it is necessary to observe the installation regulations, superior and regional standards and directives as well as the directives listed below.
All devices and drives of the electric drive engineering may cause electromagnetic interferences and otherwise they may be influenced by such interferences. Therefore, they are subject to the EMC directive 2004/108/EC.

The frequency inverters have an operating voltage which is clearly in the range of $50 \ldots 1000$ V AC or $75 . . .1500$ V DC. Therefore, they are also subject to the Low Voltage Directive 2006/95/EC.

Because of the EMC filters which are built into the frequency inverters they are in conformity with EN 61800-3 and EN 61800-5-1.

Frequency inverters are not considered as stand-alone machines according to the Machinery Directive 2006/42/EC. They have to be accounted as component of the closed functional safety system.

This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual are implemented during installation.

If the selected composition (product itself, mains filter, other accessories and measures) does not meet the requirements of category C1, the following information applies as it appears in IEC 61800-3:

A WARNING

RADIO INTERFERENCE

In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Installation Regulations

- The frequency inverters have a RFI filter for grounded mains built-in.
- Take care of good HF connection between motor cable screen and filter.
- Use of shielded motor cables, proper connection of the motor cables on both ends or proper laying in a metallic, closed and interconnected cable conduit
- In case of high motor cable lengths a corresponding dv/dt filter choke is required.
- Use shielded control cables and connect them correctly.
- Ground the frequency inverter for human protection.
- Consider the protective separation (PELV) when preparing signal wires and coupling relays.
- Lay the motor cables separate from other cables, especially from the signal wires.

NOTE: Further information is given in the installation manual.

Safety of Machinery

For the functional safety and stop categories the function "Safe Torque Off (STO)" has been integrated. So an optimal adaptation of the drive to the required safety category for the machine is possible.

NOTE: You will find further information about this function in .

For all selectable safety options the implementation of external safety-relevant contacts is provided. So the Altivar Process does not act as a closed functional safety system in terms of the Machine directive and safety standards EN/IEC 61508, ISO 13849-1 and NF EN 62061. It has to be accounted as component in any case.

EMC Product Standard for PDS (Power Drive Systems) EN 61800-3
For frequency inverter drives the product standard EN/IEC 61800-3 edition 1 and 2 appeared. It has first priority over the existing general standards (generic standards). If a drive is installed into another device for which a separate EMC product standard exists, then this standard applies.

The aim of the EMC directive 2004/108/EEC is the ability of electric and electronic installations to operate satisfactorily in their electromagnetic environment without influencing the environment or other loads therein.

Therefore, the PDS product standard contains both limits for admissible interferences and requirements for the necessary interference resistance.

The power drive standard EN 61800-3 covers the complete drive from the mains supply to the motor shaft.

BDM: Base-Drive-Module Basic drive consisting of the power part and the control electronics (e.g. frequency inverter - built-in unit)

CDM: Complete-Drive-Module Drive modules consisting of BDM (basic drive) and extensions, if existing (e.g. enclosure including main switch, circuit breaker, line contactor, filter components, power terminals, ...)
PDS: Power-Drive-System Drive system consisting of CDM (drive module) and motor, motor cable, local control, power transformer, ... (e.g. the complete electric drive of a machine)

The differentiation in respect of the sales method and the range of use is essential for the handling of frequency inverters.

Use In Industrial Environment
The standard refers to these application areas as "second environment". These are areas which are separated from the public mains by means of an own transformer.

The user has to take care that the suppression components recommended by the manufacturer are used and that the introductions of the manufacturer are observed. Moreover, the user has to take care that strong interferences do not couple into neighboring low-voltage mains.

If the neighboring mains is a public mains with residential areas, the limits $66-56 / 56 / 60 \mathrm{~dB}(\mu \mathrm{~V})$ quasi-peak apply. In case of industrial mains the higher limits $79 / 73 / 73 \mathrm{~dB}(\mu \mathrm{~V})$ quasi-peak can be used.
Furthermore, it is necessary to enhance the suppression of interferences if other devices are influenced. The operator of the plant is responsible for this improvement.

The limits for immunity are much stricter because they are based on a generally higher level of interferences.

Category C3

Use in industrial environments

Limits for interferences	Line-conducted interferences	Radiation
For drives with a size ≤ 100 A the admissible limits for interferences are 100/86/90-70 $\mathrm{dB}(\mu \mathrm{V})$ quasipeak and $50 / 60 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$ at a distance of 10 m (class A group 2).		
For drives with a size > 100 A the admissible limits for interferences are $130 / 125 / 115 \mathrm{~dB}(\mu \mathrm{~V})$ quasipeak and $50 / 60 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$ at a distance of 10 m (class A group 2).		$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}(\mathrm{QP})$ 50 $\sqrt{60}$ 30 230 1000 MHz

Category C4

Use in industrial environments for drives > 1000 V or $>400 \mathrm{~A}$
For these drives are no limits defined. An EMC concept has to be compiled within project planning.

IT mains

In case of non-grounded mains it is usually not possible to keep the limits. Filter capacitors make detection of insulation faults difficult and thus they interfere with the concept of a floating power supply. However, filters that are developed especially for IT mains can be used because they also cause a high reduction of the conducted interferences in non-grounded mains.

NOTE: The basic requirements for compliance with the relevant limits are the observance and compliance of the installation requirements and a correct customization of the Drive System.

Mains Conditions

Mains Voltage

The Altivar Process Drive Systems are designed for standard industrial mains TT and TN with following mains voltage:

- 3 AC $380 \mathrm{~V}-10 \%$... $415 \mathrm{~V}+6 \%$
- 3 AC $400 \mathrm{~V}-10 \%$... $415 \mathrm{~V}+10 \%$
- 3 AC $440 \mathrm{~V} \pm 10 \%$
- 3 AC $480 \mathrm{~V} \pm 10 \%$

NOTE: Other voltages and the use in IT mains or "Corner grounded networks" are available on request.

The mains voltage must comply with the requirements according to IEC 60038 and EN 50160 :

- Unbalance between phases: < 2%
- Total harmonic factor THD(v): < 10%
- Maximum single harmonic: < 5%

NOT/CE
DESTRUCTION DUE TO INCORRECT MAINS VOLTAGE
Before switching on and configuring the product, verify that it is approved for the mains voltage.
Failure to follow these instructions can result in equipment damage.

Undervoltage behavior

In case of short-time mains voltage drops outside the specified tolerance, operation is still possible.
If the mains voltage does not return within the specified time, an undervoltage shut-down occurs.

Mains undervoltage	Restriction
-10% of nominal voltage	Starting the drive and continuous operation possible ${ }^{(1)}$
-15% of nominal voltage	Starting the drive and operation ${ }^{(1)}$ for 10 s per 100 s possible
-20% of nominal voltage	Operation $^{(1)}$ for less than 1 s possible
-30% of nominal voltage	Operation $^{(1)}$ for less than 0.5 s possible
$\mathbf{(1)}$ With nominal current	

Non-grounded Mains

The Altivar Process Drive Systems can be prepared for the use in non-grounded mains (IT mains or "Corner grounded networks").

Radio Interferences
The Altivar Process Drive Systems include a radio frequency interference filter as standard. This filter fulfils the requirements for category "C3 - industrial environments" according to EN/IEC 61800-3 (in the past: EN 55011 class A group 2).

This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual are implemented during installation.

If the selected composition (product itself, mains filter, other accessories and measures) does not meet the requirements of category C1, the following information applies as it appears in IEC 61800-3:

WARNING
RADIO INTERFERENCE
In a domestic environment this product may cause radio interference in which case supplementary
mitigation measures may be required.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Mains Impedance / Short-circuit Current

The Altivar Process Drive Systems are designed considering a maximal and minimal permitted mains short-circuit current of the supply (values see "Technical data" of the respective frequency inverter).

These frequency inverters can be designed for higher mains short-circuit currents on request. You will find information about the short-circuit protection at chapter "Mains Connection ", page 51.

Reactive Current Compensation Systems

Frequency inverters cause harmonics in the supplying mains (see chapter "Mains Current Harmonics / Mains Voltage Distortion", page 52). If a reactive current compensation system is used upstream of the drive, the harmonics can cause overload of the capacitors of the reactive current compensation system.

Switched reactive current compensation systems can cause overvoltage in the mains supply. Such overvoltages can adversely affect the frequency inverter.

NOTICE

MAINS OVERVOLTAGE AND OVERLOAD OF THE REACTIVE CURRENT COMPENSATION SYSTEM
Install properly rated chokes upstream of the reactive current compensation system.
Failure to follow these instructions can result in equipment damage.

12-/24-pulse Supply

All Altivar Process Drive Systems can be designed with 12-pulse supply. For some types also the design with 24-pulse supply is possible.
NOTE: You will find information about the design variations from page 161.

Altivar Process Drive Systems are equipped with a main switch for disconnecting the applied mains voltage.

In case of frequent start/stop requests it is recommended to realize them by means of the digital control inputs (or via a serial bus) directly to the electronics of the inverter.
Optionally the mains separation can be realized by a circuit breaker with motor.

NOTE: By means of the certificated control inputs $\overline{\text { STOA }}$ and STOB a "Safe Torque Off" of the drive is considering the safety category according to ISO 13849-1 (and IEC/EN 61800-5-2). Disconnecting the mains supply or the motor is therefore not required.

Rectifier control	Switching rate ATV991
Mains voltage switched external	Max. 60 switching operations per hour
Mains voltage switched internal:	Max. 10 switching operations per hour
- Main switch (standard)	Max. 10,000 switching operations total
- Circuit breaker (option)	
- Circuit breaker with motor (option)	Max. 60 switching operations per hour
Start / Stop requests via digital inputs	

AFE control	Switching rate ATV992
Mains voltage switched external	Max. 60 switching operations per hour
Mains voltage switched internal:	Max. 10 switching operations per hour
- Main switch (standard)	Max. 10,000 switching operations total
- Circuit breaker (option)	Max. 60 switching operations per hour
Start / Stop requests via digital inputs	

NOTE: The device fans are automatically controlled depending on the start/stop request.

If the power stage is disabled unintentionally, for example, as a result of power outage, errors or functions, there is a possibility that the motor is no longer decelerated in a controlled way.

A WARNING

UNANTICIPATED EQUIPMENT OPERATION
Verify that movements without braking effect does not result in unsafe conditions.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Protection of the Plant

Responsibility

All stated connection recommendations and planning remarks are to be taken merely as suggestions which must be adapted to the local conditions and regulations concerning installation and usage.
This applies especially to the functional safety regulations for machines, the EMC regulations and the general regulations for human protection.

Installation Site
Altivar Process Drive Systems are qualified for vertical installation in electrical operating rooms as well as in the area of production facilities.

- Observe the specified minimum distances. Mounting the Drive Systems side by side or back to back is allowed.
- Install the Altivar Process Drive System vertically on a noncombustible, solid and vibration-free ground.
- Take care of compliance with the ambient conditions.
- Take care that the air exchange is sufficient for dissipation of the lost heat during operation.
(1) Air inflow temperature: -10... $+50^{\circ} \mathrm{C}\left(14 \ldots . .122^{\circ} \mathrm{F}\right)$ (below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ with additional enclosure heating, above $+40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ with derating $)$

NOTE: At enclosure design IP54 the ATV99• frequency inverter is qualified for pollution degree 3 according to EN 61800-5-1.

NOTE: Further information is given in the installation manual.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of hazardous atmosphere.

4 DANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only. Failure to follow these instructions will result in death or serious injury.

Increased Motor Speed
With the Altivar Process Drive Systems it is possible to control the rotational speed of motors from 0.1... 599 Hz .

Overvoltage Protective Circuit

The AC and DC control circuits must be protected against overvoltage.
Use flyback diodes for DC control circuits.
For AC control circuits, RC circuits are advisable because they can reduce the peak overvoltage and the rise time while varistors only reduce the peak voltage.

NOTICE

INOPERATIVE CONTROL CIRCUITS
Verify that all inductances such as relays, contactors, external brakes, etc. are equipped with appropriate overvoltage protection circuits.

Failure to follow these instructions can result in equipment damage.

Residual Current Circuit Breaker

Frequency inverters, especially those with additional EMC filters and shielded motor cables, lead an increased leakage current against ground.

The leakage current depends on:

- The length of the motor cable
- The type of laying and whether the motor cable is shielded or not
- The set pulse frequency
- The use of an additional radio frequency interference filter
- The grounding of the motor at its installation place (grounded or non-grounded)

Depending on the conditions, the leakage current of plants with high cable lengths can be absolutely higher than 100 mA !

The built-in residual current detection has no current-limiting effect. It only helps to protect the drive and is no human protection

Particularly because of the capacitors of the radio frequency interference filter, an unintentional triggering of a residual current circuit breaker may occur at the moment of switching on. As well, the ground capacitances may cause an incorrect triggering during operation. On the other hand, it is possible that the triggering is blocked by means of DC components which are caused by the mains rectification at the input of the inverter.

Direct current can be introduced in the protective ground conductor of this drive. If a residual current device ($\mathrm{RCD} / \mathrm{GFCI}$) or a residual current monitor (RCM) is used for additional protection against direct or indirect contact, the following specific types must be used:

A WARNING

DIRECT CURRENT CAN BE INTRODUCED INTO THE PROTECTIVE GROUND CONDUCTOR
Use a Type B Residual Current Device (RCD / GFCI) or a Residual Current Monitor (RCM) that has approval for use with frequency inverters and is sensitive to all types of current.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Further conditions for use of a residual current device:

- The drive has an increased leakage current at the moment power is applied. Use a residual current device (RCD / GFCI) or a residual current monitor (RCM) with a response delay.
- High-frequency currents must be filtered.

NOTE: Protect the other loads by means of a separate residual current circuit breaker

Automatic Restarting
This function increases the availability, especially for drives that are not integrated into the plant control via a fieldbus system. Depending on the parameterization, the frequency inverter can automatically startup again after each mains switch-on or mains recurrence.

Locking of the Frequency Inverter

Altivar Process Drive Systems include the standard protective function "Safe Torque Off (STO)", which helps to prevent any unintended start-up of the motor. This function fulfills, when correctly wired, the machine standard ISO 13849-1 Performance level PL e, the IEC/EN 61508 Safety integrity level SIL 3 standard for functional safety and the power drive system standard IEC/EN 61800-5-2.

NOTE: You will find further information in the Safety Function Manual (NHA80947).

The safety function STO (Safe Torque Off) does not remove power from the DC bus. The safety function STO only removes power to the motor. The DC bus voltage and the mains voltage to the drive are still present.

A. 1 DANGER

HAZARD OF ELECTRIC SHOCK

- Do not use the safety function STO for any other purposes than its intended function.
- Use an appropriate switch, that is not part of the circuit of the safety function STO, to disconnect the drive from the mains power.

Failure to follow these instructions will result in death or serious injury.

When the safety function STO is triggered, the power stage is immediately disabled. In the case of vertical applications or external forces acting on the motor shaft, you may have to take additional measures to bring the motor to a standstill and to keep it at a standstill when the safety function STO is used, for example, by using a service brake.

A WARNING

INSUFFICIENT DECELERATION OR UNINTENDED EQUIPMENT OPERATION

- Verify that using the safety function STO does not result in unsafe conditions.
- If standstill is required in your application, ensure that the motor comes to a secure standstill when the safety function STO is used.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Stop and Go Function

All Altivar Process Drive Systems include the energy saving function "Stop and Go". When the frequency inverter gets a stop or lock request, the own consumption is clearly decreased by reducing the DC link voltage. With the next start request the DC link is charged and the motor can start-up again.

NOTE: For applications where a start delay of $1 \ldots .2 \mathrm{~s}$ is undesired, this energy saving function can be also deactivated.

Connecting and Disconnecting the Motor

Alternatively to the use of the control terminal STO "Safe Torque Off" a safety switch or a motor contactor can be installed to connect and disconnect the motor - Design on request.

After connection the motor restarts by means of the function "Catch on the fly".

Multi-motor Operation

With Altivar Process Drive Systems it is possible to operate several motors at one output.
For multi-motor applications (e.g. roller conveyors), however, observe the following:

- The sum of the nominal currents has to be less than the nominal current of the inverter.
- A different speed control is not possible.
- The total motor cable length has to be taken into consideration.
- No high starting torque is available.
- The inverter does not provide individual motor overload protection.
- Autotuning is not possible (but also not necessary).
- Activation of individual motors is only permitted when the starting current remains less than the maximum inverter current.

If you want to operate an explosion-protected motor (ATEX) with this drive system, you must use the option "Motor monitoring PTC with ATEX certificate".

NOTE: You will find further information about the operation of ATEX motors in the ATEX manual (NVE42416).

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of hazardous atmosphere.

$!$ DANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.
Failure to follow these instructions will result in death or serious injury.

Chapter 3

MultiDrive Systems ATV99•-400 V

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Description	32

Description

ATV990 - MultiDrive Systems

The ATV990 MultiDrive Systems are the optimal solution for drive units where several motors balance their loads. This can be, for example, a simple test bench for testing the life cycle of a belt. Another example is a group of drives for a metal coating line with re- and unwinder, conveyor rollers, grinding wheels and much more.

The ATV990 MultiDrive System consists of a supply unit and one or several inverter units. The energy is distributed via a DC bus. Additionally, a braking unit can be connected.

Available supply units:

- ATV991 MultiDrive - Rectifier unit
- ATV992 MultiDrive - AFE unit

Available inverter units:

- ATV993 MultiDrive - Inverter unit ≥ 110 kW
- ATV930 Frequency inverter products < 110 kW

Additional units:

- Option BUO MultiDrive - Braking unit
- Connection enclosure cable from top
- Connection enclosure cable from bottom

Typical Combination of a MultiDrive System
MultiDrive System ATV990

The picture shows a typical combination, where the required power is supplied by a rectifier unit to the common DC link. The individual motors operate often or sporadically in generator operation and so they feed energy back to the DC bar which is required from other motors at the same time.

If the condition is reached that more energy is returned than energy can be consumed at the moment, the generator power is transferred through the installed braking unit to the braking resistors.

Alternatively to the rectifier unit and the braking unit, supply can also realized by an AFE unit. It controls the DC voltage independent of the energy direction.

Overview of the Available Units

One supply unit (or two in parallel) supplies a common DC bar on which several inverter units are connected. This concept is very advantageous if there is an energy distribution between the motors and motor operation and generator operation can occur at the same time.

Based on the required powers and the desired dynamic at the motor shafts you can select the proper inverter units. The total power of motor power and generator power appearing at the same time defines the selection of the proper supply unit - either a pure rectifier supply, maybe with additional braking unit or an AFE supply unit with full 4Q capability.

Input	
Rated voltage $U_{\text {n }}$	for TT, TN-C or TN-S: - 3 AC $380 \mathrm{~V}-10 \%$... $415 \mathrm{~V}+6 \%$ - 3 AC $400 \mathrm{~V}-10 \%$... $415 \mathrm{~V}+10 \%$, - 3 AC $440 \mathrm{~V} \pm 10 \%$ - 3 AC $480 \mathrm{~V} \pm 10 \%$ Other voltages and mains topologies on request.
Rated frequency f_{n}	50 / $60 \mathrm{~Hz} \pm 5$ \%
Total harmonic distortion	at nominal load and sinusoidal mains voltage; depending on the supply unit: - With ATV991 rectifier unit: $\leq 38 \%$ - With ATV992 AFE unit: $\leq 5 \%$
Power factor	Depending on the supply unit: - With ATV991 rectifier unit: Fundamental mode $\cos \varphi$: > 0.98 Total (λ) at full load: 0.93...0.95 Total (λ) at no-load operation: approx. 0.7 - With ATV992 AFE unit: Fundamental mode $\cos \varphi$: > 0.99 (at $30 \ldots . .120 \%$ load and power regeneration)
Overvoltage category	Category III according to EN 50178
DC link	
DC voltage	- With ATV991 rectifier unit: Motor operation: 1.35...1.40 Un Generator operation: max. 800 V at braking operation in case of 400... 480 V mains - At Q4 (315... 400 VAC): 540 VDC -10 \%... 640 VDC +0 \% - At R4 (440 VAC): 595 VDC -10 \%... 680 VDC +0 \% - At T4 (480 VAC): 650 VDC -10 \%... 740 VDC +0 \% - With ATV992 AFE unit: In motor and generator operation - At Q4 (315... 400 VAC): 570 VDC - 10 \%... 670 VDC +0 \% - At R4 (440 VAC): 640 VDC -10 \%... 710 VDC +0 \% - At T4 (480 VAC): 700 VDC - $10 \% \ldots . .770$ VDC $+0 \%$ - ATV993 input: - At Q4 (315... 400 VAC): 540 VDC -10 \%... 670 VDC +0 \% (800 VDC at braking operation) - At R4 (440 VAC): 595 VDC -10 \%... 720 VDC +0 \% (800 VDC at braking operation) - At T4 (480 VAC): 650 VDC -10 \%... 790 VDC +0 \% (800 VDC at braking operation)
Output of the inverter units	
Control method	Asynchronous motor: Constant load torque (open/closed loop), variable load torque (open/closed loop), energy saving Synchronous motor: PM (permanent magnet) motor (open/closed loop)
Voltage	3 AC 0... 100 \% mains voltage
Overload	Normal Duty (ND): 120% for 60 s per 10 minutes Heavy Duty (HD): $\quad 150 \%$ for 60 s per 10 minutes
Pulse frequency	2.5 kHz , adjustable from $2 . . .8 \mathrm{kHz}$
Frequency	0.1... 599 Hz
Short-circuit protection	Short-circuits and ground faults are handled by overcurrent function and switch-off the output.
Speed accuracy	V/f mode: slip frequency VC without feedback: $0.3 \times$ slip frequency

Mechanical strength	
Mechanical vibrations	According to IEC/EN 60068-2-6 1.5 mm at $3 . . .10 \mathrm{~Hz}, 0.6 \mathrm{~g}$ at $10 . . .200 \mathrm{~Hz}$ (3M3 according to IEC/EN 60721-3-3)
Mechanical shock	According to IEC/EN 60068-2-27 4 g for 11 ms (3M2 according to IEC/EN 60721-3-3)
Ambient conditions	
Ambient temperature	$-10 \ldots+50^{\circ} \mathrm{C}$ (below $0^{\circ} \mathrm{C}$ with additional enclosure heating, above $+40^{\circ} \mathrm{C}$ with derating) 3K3 according to IEC/EN 60721-3-3
Storage / Transport temperature	$-25 . . .+70{ }^{\circ} \mathrm{C}$
Protection degree	Door closed: IP23 (optionally enclosure design IP54) Door open: IP2x
Environmental class / Humidity	Class 3K3 in accordance with IEC/EN 60721-3-3 / no condensation inside the enclosure, max. 95% relative humidity
Altitude	Up to 1000 m no derating necessary 1000... 2000 m derating of $1 \% / 100 \mathrm{~m}$ (for all types of mains) 2000... 3800 m derating of $1 \% / 100 \mathrm{~m}$ (only TT/TN, IT) $3800 . . .4800 \mathrm{~m}$ derating of $1 \% / 100 \mathrm{~m}$ (only TT/TN)
Allowed pollution	Pollution degree IP23: 2 according to EN 61800-5-1 Pollution degree IP54 (optional): 3 according to EN 61800-5-1 Chemical / mechanical classification: 3C3 and 3S3 according to EN 60721-3-3
Protection class	Class 1 according to EN 61800-5-1
Functional safety	
Functional safety of the drive	The function "Safe Torque Off" (STO) allows a controlled shut-down and switch-off of the power supply to the motor. It also helps to prevent any unintended start of the motor according to ISO 13849-1, performance level PL e, according to IEC/EN 61508 safety integrity level SIL 3 and IEC/EN 61800-5-2.
Response time	$\leq 100 \mathrm{~ms}$ at STO (Safe Torque Off)
Standards	
Basic standard	The devices are designed, built and tested on the basis of EN 618002, EN 61800-3, EN 61800-5-1 and EN 60204-1.
EMC immunity	According to EN 61800-3, second environment (EN 61000-4-2; EN 61000-4-3; EN 61000-4-4; EN 61000-4-5; EN 61000-4-6)
EMC emission	In accordance with product standard EN 61800-3, second environment, category C3
Insulation	Galvanic insulation of the control circuit in accordance with EN 61800-51 PELV (Protective Extra Low Voltage)
Standards	CE, ATEX, IEEE 519 (THDi < 5\%) (ATV992), RFI filter for second "industrial environment" C3 integrated

Protection Degree

The standard design of the Altivar Process Drive Systems complies with protection degree IP23. It provides optimal cooling of the built-in frequency inverter modules and all power components as well as maximum compactness at the same time.

Standard enclosure design IP23

For optimized cooling of the MultiDrive System, all power part
components are arranged in the main cooling air channel.
The input of the cooling air takes place by a grid in the lower
area of the enclosure door.
The internal fan, which is in a separated air channel, provides
the cooling of the power part. The air outlet takes place
through the top of the enclosure.
The heat losses of the control part are exhausted by a fan in
the enclosure door.

Cooling concept

Control/monitoring of fans

The power part fans as well as the fans in the enclosure door are controlled energy optimized depending on the operation. Switching the fans on and off is derived from the start/stop request.
The fans in the power part are equipped with speed monitoring and the fans in the enclosure doors include a temperature monitoring and that helps to protect the Altivar Process Drive Systems. If one of these monitoring units triggers, a warning message is generated.

Furthermore, the operating hours of all fans can be monitored and a warning message can be triggered when the set limit is exceeded.

Overtemperature protection

The temperature of the power part is monitored all the time. In case of overtemperature the pulse frequency or the power is automatically reduced.
The temperature of the control part is monitored with a thermostat. When the set temperature is exceeded, a warning message is generated. Only in case of insufficient cooling the drive is necessarily shut down.

Supply units

Depending on the ambient temperature a derating is necessary.

Ambient temperature	Power adaptation
$30 \ldots 39^{\circ} \mathrm{C}$	Increase of power by 0.5% per ${ }^{\circ} \mathrm{C}$ possible
$40^{\circ} \mathrm{C}$	No reduction of power required
$41 \ldots 50^{\circ} \mathrm{C}$	Reduction of power by 1.5% per ${ }^{\circ} \mathrm{C}$ required

Inverter units

Depending on the chosen pulse frequency, the maximum ambient temperature and the desired output frequency a derating is necessary. This can be determined by means of the following diagrams.

Observe the following guidelines:

- In case of output frequencies higher than 125 Hz the pulse frequency is increased automatically. So the pulse frequency is increased to 4 kHz at 200 Hz output frequency, for example. Consequently, a derating of 8% at max. $40^{\circ} \mathrm{C}$ has to be considered.
- Due to the reduction of the output current also the overload capability of the Altivar Process Drive System is reduced.
- At higher pulse frequencies the allowed motor cable length is reduced (see page 115).
- For full shaft power the motor size should not be more than one power rating bigger than the drive

NOTE: If the ambient temperature is too high, the pulse frequency is automatically reduced which helps to prevent an overload of the inverter (except in case of operation with sinus-motor-filter).

Continuous Current and Overload at $<2 \mathrm{~Hz}$

Inverter units

In order to avoid thermal overload of the power semiconductors (IGBTs), the pulse frequency will be reduced automatically near 0 Hz operation. If the overload takes too long the drive will change to trip condition.

NOTE: If the frequency inverter is operated with output frequencies $<2 \mathrm{~Hz}$ the overload time at high overload up to 150% is lower than 60 s . This restriction needs to be observed only for drives which continuously operate around 0 Hz and require overloads up to 150%.

There are practically no effects on the start of a drive because even big motors have a nominal slip greater than 0.25 Hz .

Chapter 4

ATV991••••4X1

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Description	41
Specification	42
Circuit Diagram	50
Mains Connection	51

Description

ATV991 - MultiDrive Rectifier Unit

Power components:

- Mains connection terminals
- Main switch or circuit breaker
- Semiconductor fuses
- EMC filter
- Line reactor(s)
- Rectifier module(s)
- Energy distribution via DC bus

Design:

- Floor-standing enclosure
- Integrated control panel
- Protection degree IP23
- Forced cooling
- - $10 \ldots+50^{\circ} \mathrm{C}$
(below $0^{\circ} \mathrm{C}$ with option enclosure heating, above $+40^{\circ} \mathrm{C}$ with derating)
- Graphical operating panel in the enclosure door

Specification

Technical Data ATV991C16•4X1

Dimensions IP23 for Size 1mr

Interior View IP23 for Size 1mr

Technical Data ATV991C31•4X1

Dimensions IP23 for Size 2mr

Interior View IP23 for Size 2mr

Technical Data ATV991C63•4X1

Type		ATV991C63•4X1
Nominal data		
DC output power PnDC	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~kW} \\ & 750 \mathrm{~kW} \\ & 800 \mathrm{~kW} \end{aligned}$
DC output current InDC		1300 A
Maximum current $\mathrm{Imax}^{\text {max }}$	for 60 s per 10 minutes	1560 A
Input		
Rated input current lin (at $\mathrm{I}_{\mathrm{scc}}=50 \mathrm{kA}$)	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1090 \mathrm{~A} \\ & 1064 \mathrm{~A} \\ & 1060 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 740 \mathrm{kVA} \\ & 810 \mathrm{kVA} \\ & 885 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 38% at $\mathrm{Iscc}=50 \mathrm{kA}$
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 1250 \mathrm{~A} \text { gG } \\ & 1250 \mathrm{~A} / 12 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		4x 400 A aR
Characteristics		
Efficiency at $\mathrm{In}^{\text {n }}$		0.99
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 4900 \mathrm{~W} \\ & 800 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 700 \mathrm{~kg} \\ & 750 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 420 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Iscc	Minimum ${ }^{(2)}$ Maximum (3)	$\begin{aligned} & \hline 17 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	Typical cable	$\begin{aligned} & \hline 4 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ & 5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 6 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$
	lax. cable cross section	6x (3x $240 \mathrm{~mm}^{2}$)
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 52. (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 51.		

Dimensions IP23 for Size 4mr

Interior View IP23 for Size 4mr

Technical Data ATV991M10•4X1

Dimensions IP23 for Size 6mr

Interior View IP23 for Size 6mr

Circuit Diagram

The following presentation shows a typical wiring of a MultiDrive system starting with the supply unit.

ATV991	Altivar Process MultiDrive Systems - Rectifier unit
FUSE/CB	External pre-fuse or circuit breaker to protect the mains cable
MS	Built-in main switch, lockable in open position
T01	Control transformer $400 / 230 \mathrm{~V}$ AC for supplying the whole system aR fuses for short-circuit shut-down if the electronic protective devices do not work MF
properly	
DF	DC fuses for short-circuit shut-down if the electronic protective devices do not work properly
RFI	Radio frequency interference filter
LC	Line reactor to reduce the current harmonics on the mains caused by the DC link.
REC	Rectifier module(s)
DC	Common DC link
ATV993IATV930	Inverter unit(s)
CTRL	Control panel with control block and further control components
A01	Control terminals at the control block
X200 I X205	Control terminals at the control panel
M11	Fan in enclosure door

Mains Connection

Dimensioning of the Power Cables

The Altivar Process MultiDrive Systems include semiconductor fuses as standard. These fuses are for the case that the electronic protective mechanisms of the system do not work. So they are a secondary protection of the system.

The Altivar Process Drive Systems help to protect themselves as well as the mains cables and the motor cables against thermal overload. The specified pre-fuses or circuit breakers (with magnetic release) must be installed upstream to protect the mains cables against short-circuit.

The recommended values for dimensioning the cable cross sections given in chapter "Technical data" are reference values for multi-core copper power cables layed in air at a maximum ambient temperature of $40^{\circ} \mathrm{C}$. Observe different ambient conditions and local regulations.
Three-phase cable with sector-shaped conductors and reduced protective conductor
NOTE: Check whether the protective conductor complies with the requirements of
IEC 61439-1.

NOTE: The recommended cable cross sections are given at the technical data of the respective supply unit.

A WARNING

OVERLOAD DUE TO INCORRECT RATING OF MAINS SUPPLY

- Install properly rated upstream mains fuses or circuit breakers.
- When rating the upstream mains fuses and the cross sections as well as the length of the mains cables, take into account the available specified short circuit current.
- If the required short circuit is not available, increase the power of the transformer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Overcurrent- and Short-circuit Protection
The following picture illustrates the overcurrent protection and short-circuit protection at the input side.

ATV	Altivar Process MultiDrive System ATV991 - Rectifier unit
FUSE	External pre-fuse to protect the mains cable
CB	External circuit breaker to protect the mains cable (alternatively to FUSE)
MS	Built-in main switch, lockable in open position
MF	aR mains fuses for short-circuit shut-down if the electronic protective devices do not work properly
RFI	Built-in radio frequency interference filter
LC	Line reactor to reduce the current harmonics on the mains caused by the DC link.
REC	Rectifier module(s)

The Die Altivar Process supply unit includes semiconductor fuses as standard. These fuses are for the case that the electronic protective mechanisms of the system do not work. So they are a secondary protection of the inverter.
NOTE: If the mains fuses blow, the system already has a primary damage. Therefore, exchanging the blown fuses and switching the system on again without any check is not effective.
NOTE: The overcurrent protection is given at the technical data of the respective supply unit.

Mains Current Harmonics / Mains Voltage Distortion

Because of using a diode rectifier on the input of a conventional inverter, harmonics occur in the mains current which lead to a voltage distortion of the supplying mains.

All ATV991 MultiDrive rectifier units are equipped with line reactors to reduce the current harmonics. They are dimensioned in such a way that a THD(i) < 38% is kept. Details see table below.

Power [kW]	$\begin{array}{\|c} I_{\mathrm{scc}} \\ {[\mathrm{kA}]} \end{array}$	$\begin{gathered} \mathrm{In}_{\mathrm{n}} \\ {[\mathrm{~A}]} \end{gathered}$	$\begin{aligned} & \mathrm{H} 1 \\ & {[\mathrm{~A}]} \end{aligned}$	H5	H7	H11	H13	Harmonics at nominal load [\%]									H43	H47	H49	THDi
								H17	H19	H23	H25	H29	H31	H35	H37	H41				
170	35	280	261	33.1	10.9	6.30	3.07	2.55	1.79	1.22	1.12	0.68	0.68	0.48	0.43	0.38	0.32	0.30	0.26	38.4
340	50	550	515	32.6	10.4	6.23	3.07	2.49	1.79	1.17	1.09	0.66	0.65	0.48	0.42	0.38	0.32	0.29	0.26	37.6
680	50	1090	1032	30.0	8.56	5.78	3.10	2.11	1.73	0.96	0.95	0.63	0.54	0.48	0.39	0.34	0.31	0.24	0.24	33.9
1020	50	1640	1536	28.7	7.95	5.50	3.13	1.91	1.67	0.90	0.86	0.64	0.51	0.46	0.39	0.31	0.30	0.23	0.22	32.3

NOTE: The actual values for the respective mains situation can be calculated on request.

Chapter 5

ATV992••••4X1

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Description	55
Specification	56
Circuit Diagram	78
Mains Connection	79

Description

ATV992 - MultiDrive Active Front End Unit

Power components:

- Mains connection terminals
- Main switch
- Semiconductor fuses
- Clean power filter with EMC filter
- Active Front End module(s)
- DC fuses
- Energy distribution via DC bus

Design:

- Floor-standing enclosure
- Integrated control panel
- Protection degree IP23
- Forced cooling
- - $10 \ldots+50^{\circ} \mathrm{C}$
(below $0^{\circ} \mathrm{C}$ with additional enclosure heating, above $+40^{\circ} \mathrm{C}$ with derating)
- Graphical operating panel in the enclosure door

Specification

Technical Data ATV992C11•4X1

Dimensions IP23 for Size 1ma

Interior View IP23 for Size 1ma

Technical Data ATV992C13•4X1

Type		ATV992C13•4X1
Nominal data		
DC output power PnDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 145 \mathrm{~kW} \\ & 155 \mathrm{~kW} \\ & 165 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 245 \mathrm{~A} \\ & 235 \mathrm{~A} \\ & 235 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 294 \mathrm{~A} \\ & 282 \mathrm{~A} \\ & 282 \mathrm{~A} \end{aligned}$
Input		
Rated input current lin	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 217 \mathrm{~A} \\ & 211 \mathrm{~A} \\ & 206 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 150 \mathrm{kVA} \\ & 160 \mathrm{kVA} \\ & 170 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 300 \mathrm{~A} \mathrm{gG} \\ & 280 \mathrm{~A} / 3 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		315 A aR
DC fuse		400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 3300 \mathrm{~W} \\ & 500 \mathrm{~W} \end{aligned}$
Weight		$\begin{aligned} & 350 \mathrm{~kg} \\ & 400 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$70 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum (3)	$\begin{aligned} & \hline 3.5 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable ross section	$\begin{aligned} & \begin{array}{l} 1 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ 2 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \end{array} \\ & \hline 2 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \end{aligned}$
(1) For details see table und page 80. (2) Minimum mains short-cir (3) Permitted short-circuit cu (4) You will find further inform	Mains Curre the specifie hapter "Main	t Harmonics / Mains Voltage Distortion", pre-fuse or circuit breaker is installed Connection ", page 79.

Dimensions IP23 for Size 1ma

Interior View IP23 for Size 1ma

Technical Data ATV992C16•4X1

Type		ATV992C16•4X1
Nominal data		
DC output power PndC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 175 \mathrm{~kW} \\ & 185 \mathrm{~kW} \\ & 200 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 295 \mathrm{~A} \\ & 285 \mathrm{~A} \\ & 285 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 354 \mathrm{~A} \\ & 342 \mathrm{~A} \\ & 342 \mathrm{~A} \end{aligned}$
Input		
Rated input current lin	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 262 \mathrm{~A} \\ & 252 \mathrm{~A} \\ & 250 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 181 \mathrm{kVA} \\ & 191 \mathrm{kVA} \\ & 206 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 315 \mathrm{~A} \text { gG } \\ & 315 \mathrm{~A} / 3 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		400 A aR
DC fuse		400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{array}{\|l} \hline 3900 \mathrm{~W} \\ 600 \mathrm{~W} \end{array}$
Weight		$\begin{aligned} & 350 \mathrm{~kg} \\ & 400 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$70 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum	4 kA $50 \mathrm{kA}(100 \mathrm{~ms})$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable	$\begin{array}{\|l} \hline 1 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ 2 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$
	ross section	$2 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$
(1) For details see table und page 80. (2) Minimum mains short-circ (3) Permitted short-circuit cu (4) You will find further inform	Mains Curr the specifie hapter "Main	nt Harmonics / Mains Voltage Distortion" pre-fuse or circuit breaker is installed Connection ", page 79.

Dimensions IP23 for Size 1ma

Interior View IP23 for Size 1ma

Technical Data ATV992C20•4X1

Type		ATV992C20•4X1
Nominal data		
DC output power PnDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~kW} \\ & 250 \mathrm{~kW} \\ & 270 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 410 \mathrm{~A} \\ & 390 \mathrm{~A} \\ & 390 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 492 \mathrm{~A} \\ & 468 \mathrm{~A} \\ & 468 \mathrm{~A} \end{aligned}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 359 \mathrm{~A} \\ & 340 \mathrm{~A} \\ & 337 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 248 \mathrm{kVA} \\ & 258 \mathrm{kVA} \\ & 278 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 400 \mathrm{AgG} \\ & 400 \mathrm{~A} / 4 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		2x 250 A aR
DC fuse		2x 400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 5400 \mathrm{~W} \\ & 800 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 580 \mathrm{~kg} \\ & 630 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 2320 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum	$\begin{aligned} & 5.5 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable	$\begin{array}{\|l} \hline 2 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ 3 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$
	ross section	$3 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$
(1) For details see table und page 80. (2) Minimum mains short-circ (3) Permitted short-circuit cu (4) You will find further inform	Mains Curre the specified hapter "Main	nt Harmonics / Mains Voltage Distortion", pre-fuse or circuit breaker is installed Connection ", page 79.

Dimensions IP23 for Size 2ma

Interior View IP23 for Size 2ma

Technical Data ATV992C25•4X1

Type		ATV992C25•4X1
Nominal data		
DC output power $\mathrm{P}_{\mathrm{nDC}}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 290 \mathrm{~kW} \\ & 310 \mathrm{~kW} \\ & 330 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 490 \mathrm{~A} \\ & 470 \mathrm{~A} \\ & 470 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 588 \mathrm{~A} \\ & 564 \mathrm{~A} \\ & 564 \mathrm{~A} \end{aligned}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 434 \mathrm{~A} \\ & 422 \mathrm{~A} \\ & 412 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 299 \mathrm{kVA} \\ & 320 \mathrm{kVA} \\ & 340 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 500 \mathrm{~A} \mathrm{gG} \\ & 500 \mathrm{~A} / 5 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		2×315 A aR
DC fuse		$2 \times 400 \mathrm{~A}$
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 6500 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 580 \mathrm{~kg} \\ & 630 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 2320 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum (3)	7 kA $50 \mathrm{kA}(100 \mathrm{~ms})$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable ross section	$\begin{aligned} & \begin{array}{l} 2 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ 3 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \end{array} \\ & \hline 3 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 80. (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 79.		

Dimensions IP23 for Size 2ma

Interior View IP23 for Size 2ma

Technical Data ATV992C31•4X1

Type		ATV992C31*4X1
Nominal data		
DC output power $\mathrm{P}_{\mathrm{nDC}}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~kW} \\ & 370 \mathrm{~kW} \\ & 400 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 590 \mathrm{~A} \\ & 570 \mathrm{~A} \\ & 570 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 708 \mathrm{~A} \\ & 684 \mathrm{~A} \\ & 684 \mathrm{~A} \end{aligned}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 524 \mathrm{~A} \\ & 503 \mathrm{~A} \\ & 499 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	361 kVA 382 kVA 412 kVA
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 630 \mathrm{~A} \mathrm{gG} \\ & 630 \mathrm{~A} / 6 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		2 x 400 A aR
DC fuse		$2 \times 400 \mathrm{~A}$
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 7900 \mathrm{~W} \\ & 1200 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 580 \mathrm{~kg} \\ & 630 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 2320 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum (3)	8 kA $50 \mathrm{kA}(100 \mathrm{~ms})$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable ross section	$\begin{array}{\|l} \hline 2 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ 3 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \\ \hline 3 x\left(3 \times 185 \mathrm{~mm}^{2}\right) \end{array}$
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 80. (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 79.		

Dimensions IP23 for Size 2ma

Interior View IP23 for Size 2ma

Technical Data ATV992C40•4X1

Type		ATV992C40•4X1
Nominal data		
DC output power PnDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 435 \mathrm{~kW} \\ & 465 \mathrm{~kW} \\ & 495 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 735 \mathrm{~A} \\ & 705 \mathrm{~A} \\ & 705 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 882 \mathrm{~A} \\ 846 \mathrm{~A} \\ 846 \mathrm{~A} \end{array}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 651 \mathrm{~A} \\ 633 \mathrm{~A} \\ 618 \mathrm{~A} \end{array}$
Rated apparent power S_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 449 \mathrm{kVA} \\ & 480 \mathrm{kVA} \\ & 510 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 800 \mathrm{~A} \mathrm{gG} \\ & 780 \mathrm{~A} / 8 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		3×315 A aR
DC fuse		$3 \times 400 \mathrm{~A}$
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 9800 \mathrm{~W} \\ & 1450 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 1000 \mathrm{~kg} \\ & 1050 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 3480 \mathrm{~m}^{3} / \mathrm{h} \\ & 420 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$75 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current $\mathrm{I}_{\text {cc }}$	Minimum (2) Maximum	$\begin{aligned} & \hline 11 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable	$\begin{aligned} & 3 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \end{aligned}$
	ross section	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$
(1) For details see table und page 80. (2) Minimum mains short-circ (3) Permitted short-circuit cu (4) You will find further inform	Mains Curre the specified hapter "Main	nt Harmonics / Mains Voltage Distortion", pre-fuse or circuit breaker is installed Connection ", page 79.

Dimensions IP23 for Size 3ma

Interior View IP23 for Size 3ma

Technical Data ATV992C50•4X1

Type		ATV992C50•4X1
Nominal data		
DC output power PndC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 525 \mathrm{~kW} \\ & 555 \mathrm{~kW} \\ & 600 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 885 \mathrm{~A} \\ & 855 \mathrm{~A} \\ & 855 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1062 \mathrm{~A} \\ & 1026 \mathrm{~A} \\ & 1026 \mathrm{~A} \end{aligned}$
Input		
Rated input current lin	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 786 \mathrm{~A} \\ & 755 \mathrm{~A} \\ & 749 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 542 \mathrm{kVA} \\ & 573 \mathrm{kVA} \\ & 618 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 1000 \mathrm{~A} \text { gG } \\ & 1000 \mathrm{~A} / 10 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		3 x 400 A aR
DC fuse		$3 \times 400 \mathrm{~A}$
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In	Total losses rol part only	$\begin{aligned} & \hline 11800 \mathrm{~W} \\ & 1750 \mathrm{~W} \\ & \hline \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 1000 \mathrm{~kg} \\ & 1050 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 3480 \mathrm{~m}^{3} / \mathrm{h} \\ & 420 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$75 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum	$\begin{aligned} & \hline 13 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable	$\begin{aligned} & \text { 4x (3x } \left.185 \mathrm{~mm}^{2}\right) \text { or } \\ & 5 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$
	ross section	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$
(1) For details see table und page 80. (2) Minimum mains short-circ (3) Permitted short-circuit cu (4) You will find further inform	Mains Curre the specified hapter "Main	nt Harmonics / Mains Voltage Distortion", pre-fuse or circuit breaker is installed Connection ", page 79.

Dimensions IP23 for Size 3ma

Interior View IP23 for Size 3ma

Technical Data ATV992C63•4X1

Type		ATV992C63•4X1
Nominal data		
DC output power $\mathrm{P}_{\mathrm{nDC}}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~kW} \\ & 740 \mathrm{~kW} \\ & 800 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1180 \mathrm{~A} \\ & 1140 \mathrm{~A} \\ & 1140 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1416 \mathrm{~A} \\ & 1368 \mathrm{~A} \\ & 1368 \mathrm{~A} \end{aligned}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1048 \mathrm{~A} \\ & 1007 \mathrm{~A} \\ & 1000 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 723 \mathrm{kVA} \\ & 764 \mathrm{kVA} \\ & 824 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 1250 \mathrm{~A} \text { gG } \\ & 1250 \mathrm{~A} / 12 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		4 x 400 A aR
DC fuse		4x 400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 15700 \mathrm{~W} \\ & 2400 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 1200 \mathrm{~kg} \\ & 1280 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 4640 \mathrm{~m}^{3} / \mathrm{h} \\ & 560 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$
Sound pressure level		$77 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum (3)	17 kA $50 \mathrm{kA}(100 \mathrm{~ms})$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable ross section	$\begin{array}{\|l} \hline 4 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ 5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ \hline 5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 80. (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 79.		

Dimensions IP23 for Size 4ma

Interior View IP23 for Size 4ma

Technical Data ATV992C80•4X1

Type		ATV992C80•4X1
Nominal data		
DC output power $\mathrm{P}_{\mathrm{nDC}}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 875 \mathrm{~kW} \\ & 925 \mathrm{~kW} \\ & 1000 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1475 \mathrm{~A} \\ & 1425 \mathrm{~A} \\ & 1425 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1770 \mathrm{~A} \\ & 1710 \mathrm{~A} \\ & 1710 \mathrm{~A} \end{aligned}$
Input		
Rated input current $\mathrm{lin}^{\text {n }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1310 \mathrm{~A} \\ & 1259 \mathrm{~A} \\ & 1248 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 904 \mathrm{kVA} \\ & 955 \mathrm{kVA} \\ & 1031 \mathrm{kVA} \end{aligned}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & \hline 1600 \mathrm{~A} \text { gG } \\ & 1600 \mathrm{~A} / 16 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		5 x 400 A aR
DC fuse		5x 400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at In_{n}	Total losses rol part only	$\begin{aligned} & 19700 \mathrm{~W} \\ & 3000 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & \hline 1650 \mathrm{~kg} \\ & 1750 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{aligned} & 5800 \mathrm{~m}^{3} / \mathrm{h} \\ & 700 \mathrm{~m}^{3} / \mathrm{h} \\ & \hline \end{aligned}$
Sound pressure level		$78 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Icc	Minimum (2) Maximum (3)	20 kA $50 \mathrm{kA}(100 \mathrm{~ms})$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable ross section	$\begin{array}{\|l} \hline 5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ 6 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ \hline 6 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 80. (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 79.		

Dimensions IP23 for Size 5ma

Interior View IP23 for Size 5ma

Technical Data ATV992M10•4X1

Type		ATV992M10•4X1
Nominal data		
DC output power PndC	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1050 \mathrm{~kW} \\ & 1110 \mathrm{~kW} \\ & 1200 \mathrm{~kW} \end{aligned}$
DC output current InDC	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1770 \mathrm{~A} \\ & 1710 \mathrm{~A} \\ & 1710 \mathrm{~A} \end{aligned}$
Maximum current $I_{\text {max }}$ for 60 s per 10 minutes	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 2124 \mathrm{~A} \\ & 2052 \mathrm{~A} \\ & 2052 \mathrm{~A} \end{aligned}$
Input		
Rated input current lin	$\begin{aligned} & U n=400 \mathrm{~V} \\ & \mathrm{Un}=440 \mathrm{~V} \\ & \mathrm{Un}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1572 \mathrm{~A} \\ & 1510 \mathrm{~A} \\ & 1498 \mathrm{~A} \end{aligned}$
Rated apparent power S_{n}	$\begin{aligned} & U n=400 \mathrm{~V} \\ & \mathrm{Un}=440 \mathrm{~V} \\ & \mathrm{Un}=480 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 1084 \mathrm{kVA} \\ 1146 \mathrm{kVA} \\ 1237 \mathrm{kVA} \end{array}$
Current harmonic THDi ${ }^{(1)}$		< 5 \%
Protection for upstream cables		
Pre-fuse Circuit breaker Itherm / Imagn		$\begin{aligned} & 2000 \mathrm{~A} \mathrm{gG} \\ & 2000 \mathrm{~A} / 20 \mathrm{kA} \end{aligned}$
Internal short-circuit protection		
Fuse		6x 400 A aR
DC fuse		6 x 400 A
Characteristics		
Efficiency at In_{n}		0.98
Heat losses at $\mathrm{In}^{\text {n }}$	Total losses trol part only	$\begin{aligned} & 23600 \mathrm{~W} \\ & 3500 \mathrm{~W} \end{aligned}$
Weight	$\begin{array}{r} \text { Net } \\ \text { Gros } \end{array}$	$\begin{aligned} & 1850 \mathrm{~kg} \\ & 1950 \mathrm{~kg} \end{aligned}$
Ambient conditions		
Air flow	Power part Control part	$\begin{array}{\|l\|} \hline 6960 \mathrm{~m}^{3} / \mathrm{h} \\ 840 \mathrm{~m}^{3} / \mathrm{h} \\ \hline \end{array}$
Sound pressure level		$78 \mathrm{~dB}(\mathrm{~A})$
Rated short-circuit current Iscc	Minimum ${ }^{(2)}$ Maximum	$\begin{aligned} & \hline 25 \mathrm{kA} \\ & 50 \mathrm{kA}(100 \mathrm{~ms}) \end{aligned}$
Cable cross section		
Mains connection ${ }^{(4)}$	ypical cable	$\begin{array}{\|l} \hline 6 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ 8 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$
Max. cable cross section		$8 \mathrm{x}\left(3 \times 240 \mathrm{~mm}^{2}\right)$
(1) For details see table under chapter "Mains Current Harmonics / Mains Voltage Distortion" page 80 (2) Minimum mains short-circuit current (3) Permitted short-circuit current when the specified pre-fuse or circuit breaker is installed (4) You will find further information at chapter "Mains Connection ", page 79.		

Dimensions IP23 for Size 6ma

Interior View IP23 for Size 6ma

Circuit Diagram

The following presentation shows a typical wiring of a MultiDrive system starting with the supply unit.

MF aR fuses for short-circuit shut-down if the electronic protective devices do not work

ATV992
FUSEICB
MS
T01

DF

Altivar Process MultiDrive Systems - AFE unit
External pre-fuse or circuit breaker to protect the mains cable
Built-in main switch, lockable in open position
01 Control transformer 400 / 230 V AC for supplying the whole system properly DC fuses for short-circuit shut-down if the electronic protective devices do not work properly
Clean Power Filter Clean Power Filter with integrated EMC filter
LC
Filter choke
AIC Active Infeed Converter module(s)
DC Common DC link
ATV993/ATV930
CTRL Control panel with control block and further control components
A01 Control terminals at the control block
Link Signal wire PTI/PTO or Modbus for transmitting the DC voltage value
X200 I X205
Control terminals at the control panel
Fan in enclosure door

Mains Connection

Dimensioning of the Power Cables

The Altivar Process MultiDrive Systems include semiconductor fuses as standard. These fuses are for the case that the electronic protective mechanisms of the system do not work. So they are a secondary protection of the system.

The Altivar Process Drive Systems help to protect themselves as well as the mains cables and the motor cables against thermal overload. The specified pre-fuses or circuit breakers (with magnetic release) must be installed upstream to protect the mains cables against short-circuit.

The recommended values for dimensioning the cable cross sections given in chapter "Technical data" are reference values for multi-core copper power cables layed in air at a maximum ambient temperature of $40^{\circ} \mathrm{C}$. Observe different ambient conditions and local regulations.
Three-phase cable with sector-shaped conductors and reduced protective conductor
NOTE: Check whether the protective conductor complies with the requirements of
IEC 61439-1.

NOTE: The recommended cable cross sections are given at the technical data of the respective supply unit.

A WARNING

OVERLOAD DUE TO INCORRECT RATING OF MAINS SUPPLY

- Install properly rated upstream mains fuses or circuit breakers.
- When rating the upstream mains fuses and the cross sections as well as the length of the mains cables, take into account the available specified short circuit current.
- If the required short circuit is not available, increase the power of the transformer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Overcurrent- and Short-circuit Protection
The following picture illustrates the overcurrent protection and short-circuit protection at the input side.

Mains supply	
ATV	Altivar Process MultiDrive Systems - AFE unit
FUSE	External pre-fuse to protect the mains cable
CB	External circuit breaker to protect the mains cable (alternatively to FUSE)
MS	Built-in main switch, lockable in open position
MF	aR mains fuses for short-circuit shut-down if the electronic protective devices do not work properly
Clean Power Filter	Clean Power Filter with integrated EMC filter
LC	Filter choke
AIC	Active Infeed Converter module(s)

The Die Altivar Process supply unit includes semiconductor fuses as standard. These fuses are for the case that the electronic protective mechanisms of the system do not work. So they are a secondary protection of the inverter.
NOTE: If the mains fuses blow, the system already has a primary damage. Therefore, exchanging the blown fuses and switching the system on again without any check is not effective.
NOTE: The overcurrent protection is given at the technical data of the respective supply unit.

Mains Current Harmonics / Mains Voltage Distortion

The ATV992 AFE units of the MultiDrive Systems are equipped with an active mains supply module. So the typical harmonic currents of diode rectifiers do not occur anymore.

The new 3-level technology inside the ATV992 MultiDrive System reaches a total harmonic distortion THD(i) of around 2% and thus fulfills the requirements according to IEEE 519 of THD(i) < 5% also in case of distorted mains. This low total harmonic distortion THD(i) is reached during mains supply operation as well as during regenerating operation.

Cos $\mathrm{Phi} \approx 1$ is reached in each load situation (from $30 \% \mathrm{P}_{\mathrm{n}}$) and additionally helps to reduce the load of the mains.

This table represents typical values of the individual current harmonics at operation with the ATV992 MultiDrive System.

Operating mode	Current harmonics in ${ }^{(\mathbf{1})}$																	
	H1	H5	H7	H11	H13	H17	H19	H23	H25	H29	H31	H35	H37	H41	H43	H47	H49	THD
Motor	$\mathbf{1 0 0}$	1.29	1.05	0.38	0.21	0.20	0.19	0.34	0.19	0.11	0.09	0.15	0.12	0.19	0.18	0.07	0.04	$\mathbf{2 . 2}$
Generator	100	1.26	0.78	0.39	0.33	0.69	0.60	0.28	0.40	0.22	0.22	0.16	0.20	0.18	0.09	0.04	0.04	$\mathbf{2 . 1}$

(1) Values are valid for operation at nominal load and sinusoidal mains voltage.

NOTE: The actual values for the respective mains situation can be calculated on request.

Chapter 6

ATV993••••4X1

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Description	83
Specification	84
Circuit Diagram	112
Motor Connection	113

Description

ATV993 - MultiDrive Inverter Unit

Power components:

- Mains connection via DC bus
- DC fuses
- Inverter module(s)
- dv/dt filter choke(s)
- Terminals for motor connection

Design:

- Floor-standing enclosure
- Integrated control panel
- Protection degree IP23
- Forced cooling
- - $10 . . .+50^{\circ} \mathrm{C}$
(below $0^{\circ} \mathrm{C}$ with additional enclosure heating, above $+40^{\circ} \mathrm{C}$ with derating)
- Graphical operating panel in the enclosure door

Specification

Technical Data ATV993C11•4X1

Type		ATV993C11•4X1	
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 \mathrm{~kW} \\ & 110 \mathrm{~kW} \\ & 150 \mathrm{hp} \end{aligned}$	$\begin{aligned} & \hline 90 \mathrm{~kW} \\ & 90 \mathrm{~kW} \\ & 125 \mathrm{hp} \end{aligned}$
Rated output current $\mathrm{In}^{\text {n }}$		211 A	173 A
Maximum current $\mathrm{I}_{\text {max }}$	for 60 s per 10 minutes	253 A	260 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in Max }}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 201 \text { A / } 242 \text { A } \\ & 183 \text { A / } 220 \text { A } \\ & 171 \text { A / } 205 \text { A } \end{aligned}$	$\begin{aligned} & \hline 167 \mathrm{~A} / 250 \mathrm{~A} \\ & 151 \mathrm{~A} / 227 \mathrm{~A} \\ & 144 \mathrm{~A} / 216 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _\max }$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	120 kW / 144 kW 120 kW / 144 kW 122 kW / 146 kW	99 kW / 148 kW 99 kW / 148 kW 102 kW / 154 kW
Internal short-circuit protection			
DC fuse		400 A	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 2000 \mathrm{~W} \\ & 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1700 \mathrm{~W} \\ & 270 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 250 \mathrm{~kg} \\ & 280 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 580 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$69 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l} \hline 1 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ 2 x\left(3 \times 50 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	1x (3x $95 \mathrm{~mm}^{2}$)
	Max. cable cross section	2x (3x $185 \mathrm{~mm}^{2}$)	$2 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] $d^{\prime}-t$ has to be set to [High rating] $H i \sigma H$ (see programming manual NHA80757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 1mp

Interior View IP23 for Size 1mp

Technical Data ATV993C13•4X1

Type		ATV	C13•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 132 \mathrm{~kW} \\ & 132 \mathrm{~kW} \\ & 200 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 110 \mathrm{~kW} \\ & 110 \mathrm{~kW} \\ & 150 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		250 A	211 A
Maximum current Imax	for 60 s per 10 minutes	300 A	317 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 240 \text { A / } 289 \text { A } \\ & 218 \text { A / } 262 \text { A } \\ & 226 \text { A / } 272 \text { A } \end{aligned}$	$\begin{aligned} & 201 \mathrm{~A} / 302 \mathrm{~A} \\ & 183 \mathrm{~A} / 274 \mathrm{~A} \\ & 171 \mathrm{~A} / 256 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	143 kW / 171 kW 143 kW / 171 kW 161 kW / 193 kW	120 kW / 180 kW 120 kW / 180 kW 122 kW / 182 kW
Internal short-circuit p	ection		
DC fuse		400 A	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 2400 \mathrm{~W} \\ & 350 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~W} \\ & 300 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 250 \mathrm{~kg} \\ & 280 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 580 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$69 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l} \hline 1 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ 2 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$\begin{aligned} & 1 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ & 2 \times\left(3 \times 50 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	2x (3x $185 \mathrm{~mm}^{2}$)	$2 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 1mp

Interior View IP23 for Size 1mp

Technical Data ATV993C16•4X1

Type		ATV	C16•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \hline 160 \mathrm{~kW} \\ 160 \mathrm{~kW} \\ 250 \mathrm{hp} \end{array}$	$\begin{aligned} & 132 \mathrm{~kW} \\ & 132 \mathrm{~kW} \\ & 200 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		302 A	250 A
Maximum current Imax	for 60 s per 10 minutes	362 A	375 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 290 \mathrm{~A} / 348 \mathrm{~A} \\ & 263 \mathrm{~A} / 316 \mathrm{~A} \\ & 281 \mathrm{~A} / 338 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~A} / 361 \mathrm{~A} \\ & 218 \mathrm{~A} / 328 \mathrm{~A} \\ & 226 \mathrm{~A} / 339 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	172 kW / 207 kW 172 kW / 207 kW 200 kW / 240 kW	143 kW / 214 kW 143 kW / 214 kW 161 kW / 242 kW
Internal short-circuit p	ection		
DC fuse		400 A	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 2900 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2400 \mathrm{~W} \\ & 350 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 250 \mathrm{~kg} \\ & 280 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 580 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$69 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l} \hline 1 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ 2 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$\begin{aligned} & 1 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ & 2 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	2x (3x $185 \mathrm{~mm}^{2}$)	$2 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 1mp

Interior View IP23 for Size 1mp

Technical Data ATV993C20•4X1

Type		ATV	20•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \hline 200 \mathrm{~kW} \\ 200 \mathrm{~kW} \\ 300 \mathrm{hp} \end{array}$	$\begin{aligned} & 160 \mathrm{~kW} \\ & 160 \mathrm{~kW} \\ & 250 \mathrm{hp} \end{aligned}$
Rated output current $\mathrm{In}^{\text {n }}$		370 A	302 A
Maximum current Imax	for 60 s per 10 minutes	444 A	453 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 361 \mathrm{~A} / 433 \mathrm{~A} \\ & 327 \mathrm{~A} / 393 \mathrm{~A} \\ & 336 \mathrm{~A} / 403 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 290 \mathrm{~A} / 435 \mathrm{~A} \\ & 263 \mathrm{~A} / 395 \mathrm{~A} \\ & 281 \mathrm{~A} / 422 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	214 kW / 257 kW 214 kW / 257 kW 239 kW / 287 kW	172 kW / 258 kW 172 kW / 258 kW 200 kW / 301 kW
Internal short-circuit p	ection		
DC fuse		$2 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 3600 \mathrm{~W} \\ & 500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2900 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 300 \mathrm{~kg} \\ & 345 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$70 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{aligned} & \hline 2 x\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ & 3 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 2 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$4 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 2mp

Interior View IP23 for Size 2mp

Technical Data ATV993C25•4X1

Type		ATV	25•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \mathrm{~kW} \\ & 250 \mathrm{~kW} \\ & 400 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 200 \mathrm{~kW} \\ & 200 \mathrm{~kW} \\ & 300 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		477 A	370 A
Maximum current $\mathrm{Imax}^{\text {max }}$	for 60 s per 10 minutes	572 A	555 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in_MAX }}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 448 \mathrm{~A} / 538 \mathrm{~A} \\ & 407 \mathrm{~A} / 489 \mathrm{~A} \\ & 446 \mathrm{~A} / 535 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 361 \mathrm{~A} / 541 \mathrm{~A} \\ & 327 \mathrm{~A} / 491 \mathrm{~A} \\ & 336 \mathrm{~A} / 504 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	266 kW / 320 kW 266 kW / 320 kW 317 kW / 381 kW	214 kW / 321 kW 214 kW / 321 kW 239 kW / 359 kW
Internal short-circuit p	ction		
DC fuse		$2 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & \hline 4500 \mathrm{~W} \\ & 600 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 3600 \mathrm{~W} \\ & 450 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 300 \mathrm{~kg} \\ & 345 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$70 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{aligned} & 2 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ & 3 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ & 3 \times\left(3 \times 70 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$
	Max. cable cross section	$4 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$	4 x ($3 \times 185 \mathrm{~mm}^{2}$)

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 2mp

Interior View IP23 for Size 2mp

Technical Data ATV993C31•4X1

Type		ATV	C31•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 315 \mathrm{~kW} \\ & 315 \mathrm{~kW} \\ & 500 \mathrm{hp} \end{aligned}$	$\begin{aligned} & \hline 250 \mathrm{~kW} \\ & 250 \mathrm{~kW} \\ & 400 \mathrm{hp} \\ & \hline \end{aligned}$
Rated output current In_{n}		590 A	477 A
Maximum current Imax	for 60 s per 10 minutes	708 A	716 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 565 \mathrm{~A} / 678 \mathrm{~A} \\ & 513 \mathrm{~A} / 616 \mathrm{~A} \\ & 557 \mathrm{~A} / 668 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 448 \mathrm{~A} / 672 \mathrm{~A} \\ & 407 \mathrm{~A} / 611 \mathrm{~A} \\ & 446 \mathrm{~A} / 668 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	336 kW / 403 kW 336 kW / 403 kW 397 kW / 476 kW	266 kW / 399 kW 266 kW / 399 kW 317 kW / 476 kW
Internal short-circuit p	ection		
DC fuse		$2 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 5700 \mathrm{~W} \\ & 700 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 4500 \mathrm{~W} \\ & 550 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 300 \mathrm{~kg} \\ & 345 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$70 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l} \hline 2 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ 3 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$\begin{aligned} & 2 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ & 3 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] $\sigma^{\prime}-亡$ has to be set to [High rating] $\mathrm{Hi}_{\mathrm{G}} \mathrm{H}$ (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 2mp

Interior View IP23 for Size 2mp

Technical Data ATV993C35•4X1

Type		ATV	35•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 355 \mathrm{~kW} \\ & 355 \mathrm{~kW} \\ & 550 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 280 \mathrm{~kW} \\ & 280 \mathrm{~kW} \\ & 450 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		660 A	520 A
Maximum current Imax	for 60 s per 10 minutes	792 A	780 A
Input DC			
Rated input current DC $\mathrm{I}_{\text {in }} / \mathrm{I}_{\text {in_MAX }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 637 \text { A / } 764 \text { A } \\ & 578 \text { A / } 694 \text { A } \\ & 613 \text { A / } 735 \text { A } \end{aligned}$	$\begin{aligned} & 502 \mathrm{~A} / 753 \mathrm{~A} \\ & 456 \mathrm{~A} / 684 \mathrm{~A} \\ & 501 \mathrm{~A} / 752 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	378 kW / 454 kW 378 kW / 454 kW 436 kW / 523 kW	298 kW / 447 kW 298 kW / 447 kW 357 kW / 535 kW
Internal short-circuit p	ection		
DC fuse		$3 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In	Total losses Control part only	$\begin{aligned} & 6400 \mathrm{~W} \\ & 850 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 5100 \mathrm{~W} \\ & 600 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 500 \mathrm{~kg} \\ & 550 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1740 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$71 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{aligned} & 3 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 3 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 3mp

Interior View IP23 for Size 3mp

Technical Data ATV993C40•4X1

Type		ATV	C40•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~kW} \\ & 400 \mathrm{~kW} \\ & 600 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 315 \mathrm{~kW} \\ & 315 \mathrm{~kW} \\ & 500 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		730 A	590 A
Maximum current Imax	for 60 s per 10 minutes	876 A	885 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 714 \mathrm{~A} / 856 \mathrm{~A} \\ & 648 \mathrm{~A} / 778 \mathrm{~A} \\ & 665 \mathrm{~A} / 798 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 565 \text { A / } 847 \text { A } \\ & 513 \text { A / } 770 \text { A } \\ & 557 \text { A / } 835 \text { A } \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	424 kW / 509 kW 424 kW / 509 kW 473 kW / 568 kW	336 kW / 503 kW 336 kW / 503 kW 397 kW / 595 kW
Internal short-circuit p	ection		
DC fuse		$3 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 7200 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 5700 \mathrm{~W} \\ & 700 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 500 \mathrm{~kg} \\ & 550 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1740 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$71 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{aligned} & 3 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & 3 \times\left(3 \times 120 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 3mp

Interior View IP23 for Size 3mp

Technical Data ATV993C45•4X1

Type		ATV	C45•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~kW} \\ & 450 \mathrm{~kW} \\ & 650 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 355 \mathrm{~kW} \\ & 355 \mathrm{~kW} \\ & 550 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		830 A	660 A
Maximum current Imax	for 60 s per 10 minutes	996 A	990 A
Input DC			
Rated input current DC lin / lin_MAX	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 803 \mathrm{~A} / 963 \mathrm{~A} \\ & 729 \mathrm{~A} / 875 \mathrm{~A} \\ & 720 \mathrm{~A} / 864 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 637 \mathrm{~A} / 955 \mathrm{~A} \\ & 578 \mathrm{~A} / 867 \mathrm{~A} \\ & 613 \mathrm{~A} / 919 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	477 kW / 572 kW 477 kW / 572 kW 513 kW / 615 kW	378 kW / 567 kW 378 kW / 567 kW 436 kW / 654 kW
Internal short-circuit p	ection		
DC fuse		$3 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 8100 \mathrm{~W} \\ & 1100 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 6400 \mathrm{~W} \\ & 800 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 500 \mathrm{~kg} \\ & 550 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1740 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$71 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$4 \times\left(3 \times 150 \mathrm{~mm}^{2}\right)$ or $5 \times\left(3 \times 120 \mathrm{~mm}^{2}\right)$ $5 x\left(3 \times 120 \mathrm{~mm}^{2}\right)$	$\begin{aligned} & 3 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \times\left(3 \times 95 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 3mp

Interior View IP23 for Size 3mp

Technical Data ATV993C50•4X1

Type		ATV	50•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~kW} \\ & 500 \mathrm{~kW} \\ & 700 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~kW} \\ & 400 \mathrm{~kW} \\ & 600 \mathrm{hp} \end{aligned}$
Rated output current In_{n}		900 A	730 A
Maximum current $\mathrm{Imax}^{\text {max }}$	for 60 s per 10 minutes	1080 A	1095 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in_MAX }}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 892 \text { A / } 1070 \text { A } \\ & 810 \text { A / } 972 \text { A } \\ & 776 \text { A / } 931 \text { A } \end{aligned}$	$\begin{aligned} & \hline 714 \text { A / } 1070 \text { A } \\ & 648 \text { A / } 972 \text { A } \\ & 665 \text { A / } 997 \text { A } \end{aligned}$
Rated input power DC $P_{n} / P_{n _M A X}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	530 kW / 636 kW 530 kW / 636 kW 552 kW / 663 kW	424 kW / 636 kW 424 kW / 636 kW 473 kW / 710 kW
Internal short-circuit p	ction		
DC fuse		$3 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 9000 \mathrm{~W} \\ & 1200 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 7200 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 500 \mathrm{~kg} \\ & 550 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 1740 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$71 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$ or $5 \times\left(3 \times 120 \mathrm{~mm}^{2}\right)$ $5 x\left(3 \times 120 \mathrm{~mm}^{2}\right)$	$\begin{aligned} & 3 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 4 \mathrm{x}\left(3 \times 120 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$5 \mathrm{x}\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] $\sigma^{\prime}-亡$ has to be set to [High rating] $\mathrm{Hi}_{\mathrm{G}} \mathrm{H} H$ (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 3mp

Interior View IP23 for Size 3mp

Technical Data ATV993C56•4X1

Type		ATV	56•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 560 \mathrm{~kW} \\ & 560 \mathrm{~kW} \\ & 800 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~kW} \\ & 450 \mathrm{~kW} \\ & 650 \mathrm{hp} \end{aligned}$
Rated output current In		1020 A	830 A
Maximum current Imax	for 60 s per 10 minutes	1224 A	1245 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in Max }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 999 \mathrm{~A} / 1199 \mathrm{~A} \\ & 907 \mathrm{~A} / 1089 \mathrm{~A} \\ & 886 \mathrm{~A} / 1064 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 803 \mathrm{~A} / 1204 \mathrm{~A} \\ & 729 \mathrm{~A} / 1094 \mathrm{~A} \\ & 720 \mathrm{~A} / 1080 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _\max }$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	593 kW / 712 kW 593 kW / 712 kW 631 kW / 757 kW	477 kW / 715 kW 477 kW / 715 kW 513 kW / 769 kW
Internal short-circuit	ction		
DC fuse		4x 400 A	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & \hline 10100 \mathrm{~W} \\ & 1300 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 8100 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 650 \mathrm{~kg} \\ & 710 \mathrm{~kg} \\ & \hline \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 2320 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l} \hline 4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ 5 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$4 \times\left(3 \times 150 \mathrm{~mm}^{2}\right)$ or $5 x\left(3 \times 120 \mathrm{~mm}^{2}\right)$
		$5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right)$ or $6 x\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right)$ or $6 x\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] dirt has to be set to [High rating] $H i \square H$ (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 4mp

Interior View IP23 for Size 4mp

Technical Data ATV993C63•4X1

Type		AT	63•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 630 \mathrm{~kW} \\ & 630 \mathrm{~kW} \\ & 900 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~kW} \\ & 500 \mathrm{~kW} \\ & 700 \mathrm{hp} \end{aligned}$
Rated output current I_{n}		1140 A	900 A
Maximum current $\mathrm{Imax}^{\text {max }}$	for 60 s per 10 minutes	1368 A	1350 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in Max }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1118 \mathrm{~A} / 1342 \mathrm{~A} \\ & 1016 \mathrm{~A} / 1219 \mathrm{~A} \\ & 992 \mathrm{~A} / 1190 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 892 \mathrm{~A} / 1338 \mathrm{~A} \\ & 810 \mathrm{~A} / 1215 \mathrm{~A} \\ & 776 \mathrm{~A} / 1163 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _\max }$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	664 kW / 797 kW 664 kW / 797 kW 706 kW / 848 kW	530 kW / 795 kW 530 kW / 795 kW 552 kW / 828 kW
Internal short-circuit	ction		
DC fuse		4x 400 A	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & \hline 11300 \mathrm{~W} \\ & 1500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 9000 \mathrm{~W} \\ & 1200 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 650 \mathrm{~kg} \\ & 710 \mathrm{~kg} \\ & \hline \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 2320 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$73 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{array}{\|l\|} \hline 4 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ 5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right)$ or $5 x\left(3 \times 120 \mathrm{~mm}^{2}\right)$
		$\begin{array}{\|l} \hline 5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right) \text { or } \\ 6 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \\ \hline \end{array}$	$5 \times\left(3 \times 240 \mathrm{~mm}^{2}\right)$ or $6 x\left(3 \times 185 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] dirt has to be set to [High rating] $H i \square H$ (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 4mp

Interior View IP23 for Size 4mp

Technical Data ATV993C71•4X1

Type		ATV993C71•4X1	
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 710 \mathrm{~kW} \\ & 710 \mathrm{~kW} \\ & 1000 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 560 \mathrm{~kW} \\ & 560 \mathrm{~kW} \\ & 800 \mathrm{hp} \end{aligned}$
Rated output current $\mathrm{In}^{\text {n }}$		1260 A	1020 A
Maximum current $\mathrm{Imax}^{\text {a }}$	for 60 s per 10 minutes	1512 A	1530 A
Input DC			
Rated input current DC lin / lin_max	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1260 \mathrm{~A} / 1512 \mathrm{~A} \\ & 1144 \mathrm{~A} / 1373 \mathrm{~A} \\ & 1102 \mathrm{~A} / 1328 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline 999 \mathrm{~A} / 1499 \mathrm{~A} \\ 907 \mathrm{~A} / 1361 \mathrm{~A} \\ 886 \mathrm{~A} / 1330 \mathrm{~A} \end{array}$
Rated input power DC $P_{\mathrm{n}} / P_{\mathrm{n}_{1} \operatorname{MAX}}$	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	748 kW / 898 kW 748 kW / 898 kW 785 kW / 942 kW	593 kW / 890 kW 593 kW / 890 kW 631 kW / 947 kW
Internal short-circuit protection			
DC fuse		$5 \times 400 \mathrm{~A}$	
Characteristics			
Efficiency at $\mathrm{In}^{\text {n }}$		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & \hline 12700 \mathrm{~W} \\ & 1850 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 10100 \mathrm{~W} \\ 1200 \mathrm{~W} \end{array}$
Weight	Net Gross	$\begin{aligned} & 900 \mathrm{~kg} \\ & 965 \mathrm{~kg} \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 2900 \mathrm{~m}^{3} / \mathrm{h} \\ & 420 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$74 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$\begin{aligned} & \hline 5 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 6 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \times\left(3 \times 185 \mathrm{~mm}^{2}\right) \text { or } \\ & 5 \times\left(3 \times 150 \mathrm{~mm}^{2}\right) \end{aligned}$
	Max. cable cross section	$6 \mathrm{x}\left(3 \times 240 \mathrm{~mm}^{2}\right)$	$6 \times\left(3 \times 240 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] drt has to be set to [High rating] Hi G H (see programming manual NHA80757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 5mp

Interior View IP23 for Size 5mp

Technical Data ATV993C80•4X1

Type			80•4X1
Nominal data		Normal Duty ND	Heavy Duty HD ${ }^{(1)}$
Typical motor rating P_{n}	$\begin{aligned} & U_{n}=400 \mathrm{~V} \\ & U_{n}=440 \mathrm{~V} \\ & U_{n}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 800 \mathrm{~kW} \\ & 800 \mathrm{~kW} \\ & 1100 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 630 \mathrm{~kW} \\ & 630 \mathrm{~kW} \\ & 900 \mathrm{hp} \end{aligned}$
Rated output current I_{n}		1420 A	1140 A
Maximum current Imax	for 60 s per 10 minutes	1704 A	1710 A
Input DC			
Rated input current DC $\operatorname{lin} / \operatorname{lin}_{\text {in Max }}$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 1412 \mathrm{~A} / 1695 \mathrm{~A} \\ & 1283 \mathrm{~A} / 1540 \mathrm{~A} \\ & 1206 \mathrm{~A} / 1448 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1118 \mathrm{~A} / 1677 \mathrm{~A} \\ & 1016 \mathrm{~A} / 1523 \mathrm{~A} \\ & 992 \mathrm{~A} / 1488 \mathrm{~A} \end{aligned}$
Rated input power DC $P_{n} / P_{n _\max }$	$\begin{aligned} & \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=440 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{n}}=480 \mathrm{~V} \end{aligned}$	839 kW / 1007 kW 839 kW / 1007 kW 859 kW / 1031 kW	664 kW / 996 kW 664 kW / 996 kW 706 kW / 1060 kW
Internal short-circuit	ction		
DC fuse		5x 400 A	
Characteristics			
Efficiency at In_{n}		0.985	
Heat losses at In_{n}	Total losses Control part only	$\begin{aligned} & 14300 \mathrm{~W} \\ & 2000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 11300 \mathrm{~W} \\ & 1500 \mathrm{~W} \end{aligned}$
Weight	Net Gross	$\begin{aligned} & 900 \mathrm{~kg} \\ & 965 \mathrm{~kg} \\ & \hline \end{aligned}$	
Ambient conditions			
Air flow	Power part Control part	$\begin{aligned} & 2900 \mathrm{~m}^{3} / \mathrm{h} \\ & 420 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	
Sound pressure level		$74 \mathrm{~dB}(\mathrm{~A})$	
Cable cross section			
Motor connection ${ }^{(2)}$	Typical cable	$5 x\left(3 \times 240 \mathrm{~mm}^{2}\right)$ or $6 x\left(3 \times 185 \mathrm{~mm}^{2}\right)$	$4 \times\left(3 \times 240 \mathrm{~mm}^{2}\right)$ or $5 x\left(3 \times 185 \mathrm{~mm}^{2}\right)$ or $6 x\left(3 \times 120 \mathrm{~mm}^{2}\right)$
	Max. cable cross section	6x (3x $240 \mathrm{~mm}^{2}$)	$6 \mathrm{x}\left(3 \times 240 \mathrm{~mm}^{2}\right)$

(1) For Heavy Duty HD operation parameter [Dual Rating] dirt has to be set to [High rating] $H i \square H$ (see programming manual NHA8O757).
(2) You will find further information at chapter "Motor Connection", page 113.

Dimensions IP23 for Size 5mp

Interior View IP23 for Size 5mp

Circuit Diagram

The following presentation shows a typical wiring of a MultiDrive system inverter unit.

ATV991/ATV992 Altivar Process MultiDrive Systems - Supply unit
ATV993
DF

INV
Inverter module(s)
FC dv/dt filter choke to reduce the voltage load of the motor
DC Common DC link
CTRL Control panel with control block and further control components
A01 Control terminals at the control block
Link Signal wire PTI/PTO or Modbus for transmitting the DC voltage value
X200 / X205
M11
Fan in enclosure door

Motor Connection

Assignment of the Motor

All Altivar Process Drive Systems include the function "Dual rating". It enables the use for drives with low overload "Normal duty" (typically pumps and fans) and, on the other hand, also the use with increased requirements regarding overload capability, starting torque, load impacts and control performance "Heavy duty" (e.g. compressors, mixers, rotary blowers,...).

You can select the desired power/overload capability with parameter [Dual rating] d'rt. When changing this parameter all relevant parameters are adapted to the selected property. For example, the parameters for motor power and motor current are modified accordingly.
In case of setting HD - Heavy Duty [High rating] HiGH the overload capability and the maximum overload current are increased. But at the same time the nominal motor power and the continuous output current of the frequency inverter are reduced. So you have to select a higher device type for the same motor power.

Example for ATV99•C13Q4X1:

Normal Duty ND:

132 kW with 250 A
continuous current and 300 A overload current for 60 s

- Nominal power
- Overload 20 \%

Power / Current

- Factory setting: [Normal rating] norMAL

Heavy Duty HD:

110 kW with 211 A
continuous current and 317 A overload current for 60 s

- Lower nominal power
- Overload 50 \%
- Selectable via parameter: [High rating] H / GH

The factory setting of the parameter [Dual Rating] $d r t$ is "Normal Duty". When the product is reset to the factory settings, this parameter is also reset to "Normal Duty".

Dimensioning of the Motor Cables

The recommended values for dimensioning the cable cross sections given in chapter "Technical data" are reference values for multi-core copper power cables layed in air at a maximum ambient temperature of $40^{\circ} \mathrm{C}$. Observe different ambient conditions and local regulations.

NOTE: The recommended cable cross sections are given at the technical data of the respective Altivar Process Drive System (from page 84).

The motor cables are dimensioned for the maximum continuous current. They apply to $0 . . .100 \mathrm{~Hz}$ (up to 300 Hz the cable losses increase about 25% because of the Skin-effect).

The IGBT modules cause high-frequent interferences which drain off more and more stronger to the ground potential with increasing motor cable length. As a result the line-conducted interferences to the mains increase. In case of too long motor cables the attenuation of the mains filters is not longer sufficient and the permitted interference limits are exceeded.

Recommended types of motor cables

Symmetrically shielded cable with three phase conductors, symmetrically
arranged PE conductor and a shield.
NOTE: Check that the PE conductor complies with the requirements according to
IEC 61439-1.
Example: 2YSLCY-JB

NOTE: Shielded single-conductor cables are not recommended due to increased currents in the shield.

A. DANGER

ELECTRIC SHOCK DUE TO OVERLOAD ON MOTOR CABLES

- Verify that the protective conductor complies with the requirements of the standard IEC 61439-1.
- Observe the recommendations for motor power cables described in the standard IEC 60034-25.

Failure to follow these instructions will result in death or serious injury.

Length of Motor Cables

Because of the permitted mains disturbances, the allowed overvoltages at the motor, the occurring bearing currents and the permitted heat losses the distance between inverter and motor(s) is limited. The maximum distance heavily depends on the used motors (insulation material), the type of motor cable used (shielded/unshielded), the cable laying (cable channel, underground installation, ...) as well as from the used options.

Dynamic voltage load of the motor

Overvoltages at the motor terminals result from reflection in the motor cable. Basically the motors are stressed with measurable higher voltage peaks from a motor cable length of 10 m . With the length of the motor cable also the value of overvoltage increases.
The steep edges of the switching impulses at the output side of the frequency inverter lead to a further load of the motors. The slew rate of the voltage is typically over $5 \mathrm{kV} / \mu \mathrm{s}$ but it decreases with the length of the motor cable.

The ATV993 inverter units are equipped with a dv/dt filter choke, which significantly reduces the load of the motors and so it is in accordance with the allowed limits.

Typical	l load of the mo		Description
5000 4000 3000 2000 1000			Load of the motor with overvoltage and slew rate when using conventional frequency inverters without integrated dv/dt filter chokes.
		400 Length of motor cables [m] 21	Reduced load of the motor by using Altivar Process Drive Systems with integrated dv/dt filter chokes 300 m . 1 When using a shielded motor cable 2 When using an unshielded motor cable
(1) The given values are related to the voltage load phase-to-phase. The voltage values phase to ground are approximately 300 V lower, du/dt is approximately $150 \mathrm{~V} / \mu \mathrm{s}$ lower.			

The motor standards for IEC and NEMA specify limits for the permitted load regarding slew rate and voltage peaks.

- IEC 60034-17 - Permitted values for standard power supply driven motors at the frequency inverter, up to 500 V
- IEC 60034-25 - Permitted values for "inverter motors" up to 500 V
- NEMA MG1 - Permitted values for "inverter motors"

Motors according IEC 60034-25 as well as motors according NEMA MG1 are dimensioned for operation with frequency inverters and thus they are well qualified for drives with ATV99• frequency inverters.

Motors according IEC 60034-17 are dimensioned for operation with pure sinusoidal voltage, but they can also be operated at ATV99• when observing the permitted cable lengths and correct customization.

Basically for all motors from frame size 315 (approximately 110 kW) an insulated bearing on the nondrive end is recommended. It helps to prevent internal current flow inside the motor which can result from unbalances. The insulated bearing is to be understood as supplement to the dv/dt filter choke inside the frequency inverter

NOTICE

OVERVOLTAGE AT THE MOTOR

Do not exceed the maximum length of the motor cables as specified in this document
Failure to follow these instructions can result in equipment damage.

EMC interferences

The IGBT modules cause high-frequent interferences which drain off more and more stronger to the ground potential with increasing motor cable length. As a result the line-conducted interferences to the mains increase. In case of too long motor cables the attenuation of the mains filters is not longer sufficient and the permitted interference limits are exceeded.
The IGBT modules cause high-frequency interference which increases with increasing motor cable lenght. If the motor cable length exceeds the maximum cable length, the internal mains filters are no longer sufficient.

A WARNING

UNEXPECTED EQUIPMENT OPERATION DUE TO HIGH-FREQUENCY INTERFERENCE
Do not exceed the maximum length of the motor cables as specified in this document.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

This product meets the EMC requirements according to the standard IEC 61800-3 if the measures described in this manual are implemented during installation.
If the selected composition (product itself, mains filter, other accessories and measures) does not meet the requirements of category C1, the following information applies as it appears in IEC 61800-3:

A WARNING

RADIO INTERFERENCE

In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Bearing currents

The dv/dt filter choke inside the ATV99• frequency inverter effects a significant reduction of the common mode bearing currents.

Especially in case of big motors with middle up to high motor cable lengths the filter chokes are considerable to increase the availability of the motor.

Multiplication factors

In case of conditions differing from the table the recommended cable lengths have to be converted by means of the following factors.

If several factors apply, please multiply them.

		Correction of the max. cable lengths
The pulse frequency does not correspond to factory setting:	at 4 kHz	multiply all values by 0.70
	at 8 kHz	multiply all values by 0.40
Output frequencies higher than 100 Hz .	up to 200 Hz	multiply all values by 0.80
	up to 300 Hz	multiply all values by 0.50
In case of 6-pole motor cabling (e.g. for star/delta starting circuit)		multiply all values by 0.75
In case of parallel motors with a dedicated cable to each motor the inverter values have to be converted in compliance with the number of motors. When a motor choke is used for each motor, the following values in brackets apply.	at 2 motors	multiply all values by 0.40 (0.80)
	at 3 motors	multiply all values by 0.25 (0.60)
	at 4 motors	multiply all values by 0.15 (0.40)
	at 5 motors	multiply all values by 0.10 (0.25)
In case of parallel motors with a common cable to all motors the inverter values have to be converted in compliance with the number of motors:	at 2 motors	multiply all values by 0.80
	at 3 motors	multiply all values by 0.60
	at 4 motors	multiply all values by 0.40
	at 5 motors	multiply all values by 0.25

Recommended maximum lengths of motor cables in second environment (industrial environment)

EMC category (EN 61800-3)	ATV99•	dv/dt filter choke	Type of cable	Max. cable length
C3	C11•4X1 ..C80•4X1	Built-in as standard	Shielded	150 m
C4	C11•4X1 $\ldots \mathrm{C} 80 \bullet 4 \mathrm{X} 1$	Built-in as standard	Shielded	300 m
	$\mathrm{C} 11 \bullet 4 \mathrm{X} 1 \ldots \mathrm{C} 80 \bullet 4 \mathrm{X} 1$	Built-in as standard	Unshielded	500 m

NOTE: The specified lengths of motor cables are recommended limits based on typical motor cables, laying in cable channels, default pulse frequency and maximal output frequency of 100 Hz . Longer cable lengths are possible on request.

Thermal Motor Monitoring

In the Altivar Process Drive System several possibilities for thermal motor monitoring are available:

- Standard sensor inputs Al2, Al3 at the control block Suitable temperature sensors: PTC, Pt100, Pt1000, KTY84
- Sensor inputs AI4, AI5 at expansion card "Logic and analog I/O card" Suitable temperature sensors: PTC, Pt100, Pt1000, KTY84

A $!$ DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Verify that the temperature sensors in the motor meet the PELV requirements.
- Verify that the motor encoder meets the PELV requirements.
- Verify that any other equipment connected via signal cables meets the PELV requirements.

Failure to follow these instructions will result in death or serious injury.

- On customer request the motor monitoring PTC, a PTC thermistor relay (alternatively with ATEX certificate), is installed and the sensor inputs are wired with the option terminals. The evaluation is performed via the diagnostics system in the Altivar Process Drive System.
- On customer request the motor/bearing monitoring Pt100/Pt1000/KTY is installed, which includes evaluation relays and the wiring of the sensor inputs to the option terminals. The evaluation is performed via the diagnostics system in the Altivar Process Drive System.

NOTE: When protective separation of the thermistor sensors in the motor cannot be guaranteed or in case of long motor cables, this option is highly recommended.

Chapter 7

Wiring of the Control Terminals

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Design/Position of the Individual Terminals	122
Control block ATV991 \& ATV992	123
Control block ATV993	128
Option "Logic and Analog I/O Card"	138
Option "Relay Output Card"	141
Option Terminals	142

Design/Position of the Individual Terminals

The Altivar Process Drive Systems are already equipped with extensive terminals on the control block as standard. The use and the function of all inputs and outputs can be parameterized.

In addition, there are the terminals X200 and X205, which are wired internally appropriate to the customizations.

For expansion the option cards Logic and analog I/O card and the relay output card are available. Both expansion cards can be installed, but the same card cannot be plugged twice.

Voltage Supply and Auxiliary Voltage

All Drive Systems are equipped with a control transformer matching with the mains voltage and the required power. It provides a 230 V AC control voltage for supplying the fans in the enclosure doors and the DC supply units.
The DC supply units generate 48 V DC for the internal power part fans and a 24 V DC auxiliary voltage. All control components are supplied by the internally provided voltages.
NOTE: For buffering the control block and with that keeping communication alive (e.g. fieldbus), the control block can be supplied via the terminals P24 and OV externally with 24 V DC.

Control block ATV991 \& ATV992

Structure of the Control Block

1 Control terminals of digital inputs
2 Control terminals STO (not supported) and analog outputs
3 Control terminals of analog inputs (not supported)
4 Control terminals of relay outputs
5 RJ45 port for the graphical keypad
6 Dual port RJ45 for Ethernet IP or Modbus TCP
7 Sink-Ext-Source selector switch and PTO/DQ selector switch
8 RJ45 port for serial Modbus
9 Slot B for I/O expansion card
10 Slot A for communication card or I/O expansion card

Control Terminals at the Control Block

Specification of the Control Terminals

Screw terminals

Maximum cable cross section for all terminals: $1.5 \mathrm{~mm}^{2}$ (AWG 16), 0.25 Nm Minimum cable cross section:

- For relay terminals $0.75 \mathrm{~mm}^{2}($ AWG 18)
- For all other terminals $0.5 \mathrm{~mm}^{2}($ AWG 20)

Strip length: 10 mm
Maximum cable length:

- Al•, AQ•• Dl•, DQ•: 50 m shielded
- $\overline{\text { STOA }}, \overline{\text { STOB }}: 30 \mathrm{~m}$

Terminal	Description	Specification
$\begin{aligned} & \text { R1A } \\ & \text { R1B } \\ & \text { R1C } \end{aligned}$	Relay output 1 (R1A NO contact, R1B NC contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive $\operatorname{load}(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
$\begin{aligned} & \text { R2A } \\ & \text { R2C } \end{aligned}$	Relay output 2 (NO contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive $\operatorname{load}(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
$\begin{aligned} & \text { R3A } \\ & \text { R3C } \end{aligned}$	Relay output 3 (NO contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive $\operatorname{load}(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity

Terminal	Description	Specification
STOA,	STO inputs	Not supported
$\overline{\text { STOB }}$		Sampling voltage for STO inputs
24 V	Not supported	
COM	Ground for analog I/O	0 V reference potential for analog outputs
AQ1	Analog output AQ1	Analog output configurable for voltage or current by software
- Analog voltage output $0 . . .10 \mathrm{~V}$ DC, min. load impedance		
AQ2	Analog output AQ2 Ω	

Signal interference can cause unexpected responses of the drive and of other equipment in the vicinity of the drive.

A WARNING

SIGNAL AND EQUIPMENT INTERFERENCE

- Install the wiring in accordance with the EMC requirements described in this document.
- Verify compliance with the EMC requirements described in this document.
- Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Control block ATV993

Structure of the Control Block

1 Control terminals of digital inputs
2 Control terminals STO (Safe Torque Off) and analog outputs
3 Control terminals of analog inputs
4 Control terminals of relay outputs
5 RJ45 port for the graphical keypad
6 Dual port RJ45 for Ethernet IP or Modbus TCP
7 Sink-Ext-Source selector switch and PTO/DQ selector switch
8 RJ45 port for serial Modbus
9 Slot B for I/O expansion card or encoder interface module
10 Slot A for communication card or I/O expansion card

Control Terminals at the Control Block

Specification of the Control Terminals

Screw terminals

Maximum cable cross section for all terminals: $1.5 \mathrm{~mm}^{2}$ (AWG 16), 0.25 Nm
Minimum cable cross section:

- For relay terminals $0.75 \mathrm{~mm}^{2}$ (AWG 18)
- For all other terminals $0.5 \mathrm{~mm}^{2}$ (AWG 20)

Strip length: 10 mm
Maximum cable length:

- Al•, AQ•, Dl•, DQ•: 50 m shielded
- $\overline{\text { STOA }}, \overline{\text { STOB }}: 30 \mathrm{~m}$

Terminal	Description	Specification
$\begin{aligned} & \text { R1A } \\ & \text { R1B } \\ & \text { R1C } \end{aligned}$	Relay output 1 (R1A NO contact, R1B NC contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive load $(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
$\begin{aligned} & \hline \text { R2A } \\ & \text { R2C } \end{aligned}$	Relay output 2 (NO contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive $\operatorname{load}(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
$\begin{aligned} & \text { R3A } \\ & \text { R3C } \end{aligned}$	Relay output 3 (NO contact)	- Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capacity on resistive load $(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capacity on inductive $\operatorname{load}(\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity

Terminal	Description	Specification
$\begin{aligned} & \overline{\mathrm{STOA}}, \\ & \overline{\mathrm{STOB}} \end{aligned}$	STO inputs	Inputs of the safety function STO See "Safety Function Manual (NHA80947)" available on www.schneider-electric.com.
24 V	Sampling voltage for STO inputs	+24 V DC for STO inputs $\overline{\text { STOA }}$ and $\overline{\text { STOB }}$
COM	Ground for analog I/O	0 V reference potential for analog outputs
AQ1	Analog output AQ1	Analog output configurable for voltage or current by software
AQ2	Analog output AQ2	- Analog voltage output 0... 10 V DC, min. load impedance 470Ω - Analog current output freely programmable from $0 . . .20 \mathrm{~mA}$, max. load impedance 500Ω - Max. sampling period: $10 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - Resolution 10 bits - Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ - Linearity $\pm 0.2 \%$
$\begin{array}{\|l} \hline \text { DQ+ } \\ \text { DQ- } \end{array}$	Digital output	Digital output configurable by switch PTO/DQ in position DQ - Insulated - Maximum voltage: 30 V DC - Maximum current: 100 mA - Frequency range: $0 . . .1 \mathrm{kHz}$ - Max. sampling period: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Positive/negative logic is realized by wiring
DQ+	Digital output	Pulse train output configurable by switch PTO/DQ in position PTO - Open collector not insulated - Maximum voltage: 30 V DC - Maximum current: 20 mA - Frequency range: $0 . . .30 \mathrm{kHz}$
P24	External input supply	External input supply +24 V DC - Tolerance: min. 19 V DC, max. 30 V DC - Current: max. 0.8 A
OV	Weight	0 V for external supply P24
DI1...DI8	Digital inputs	8 programmable digital inputs 24 V DC, comply with IEC/EN 61131-2 logic type 1 - Positive logic (Source): state 0 when $\leq 5 \mathrm{~V}$ DC or digital input not wired, state 1 when $\geq 11 \mathrm{~V}$ DC - Negative logic (Sink): state 0 when $\geq 16 \mathrm{~V}$ DC or digital input not wired, state 1 when $\leq 10 \mathrm{~V}$ DC - Impedance $3.5 \mathrm{k} \Omega$ - Maximum voltage: 30 V DC - Max. sampling period: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Multiple assignment makes it possible to configure several functions on one input (example: DI1 assigned to forward and preset speed 2, DI3 assigned to reverse and preset speed 3).

Terminal	Description	Specification
DI7...DI8	Pulse inputs	Programmable pulse inputs - Comply with level 1 PLC standard IEC 65A-68 - State 0 when $\leq 0.6 \mathrm{~V}$ DC, state 1 when $\geq 2.5 \mathrm{~V}$ DC - Pulse counter $0 . . .30 \mathrm{kHz}$ - Frequency range: $0 . . .30 \mathrm{kHz}$ - Duty cycle: $50 \% \pm 10 \%$ - Maximum input voltage: 30 V DC, $<10 \mathrm{~mA}$ - Max. sampling period: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$
24V	Sampling voltage for digital inputs	- +24 V DC - Tolerance: min. 20.4 V DC, max. 27 V DC - Current: max. 200 mA for both 24 V terminals - Terminal protected against overload and short-circuit - When the selector switch is in position "Ext", this supply is powered by an external PLC.
10V	Sampling voltage for analog inputs	Internal supply for reference potentiometer ($1 . . .10 \mathrm{k} \Omega$) - 10.5 V DC - Tolerance: $\pm 5 \%$ - Current: max. 10 mA - Short-circuit protected
Al1, Al3	Analog inputs and sensor inputs	Three analog input configurable for voltage or current by parameter - Analog voltage input $0 . .10 \mathrm{~V}$ DC, impedance $31.5 \mathrm{k} \Omega$ - Analog current input freely programmable from $0 . . .20 \mathrm{~mA}$, impedance 250Ω - Max. sampling period: $1 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - Resolution 12 bits - Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ - Linearity $\pm 0.15 \%$ of maximum value Pt100, Pt1000, KTY84 or PTC sensor configurable by software - Pt100 - 1 or 3 temperature sensors per analog input (configurable by software) - Sensor current: 5 mA - Range $-20 . . .200^{\circ} \mathrm{C}$ - Accuracy: $\pm 4 \mathrm{C}$ for a temperature variation of $60^{\circ} \mathrm{C}$ - Pt1000, KTY84 - 1 (Pt1000, KTY84) or 3 (Pt1000) temperature sensors in series per analog input (configurable by software) - Temperature sensor current: 1 mA - Range $-20 . . .200^{\circ} \mathrm{C}$ - Accuracy: $\pm 4 \mathrm{C}$ for a temperature variation of $60^{\circ} \mathrm{C}$ - PTC - 1 to 6 sensors in series - Sensor current: 1 mA - Nominal value: < $1.5 \mathrm{k} \Omega$ - Overheat trigger threshold: $2.9 \mathrm{k} \Omega \pm 0.2 \mathrm{k} \Omega$ - Overheat reset threshold: $1.575 \mathrm{k} \Omega \pm 0.75 \mathrm{k} \Omega$ - Threshold for low impedance detection: $50 \mathrm{k} \Omega$ $10 \Omega /+20 \Omega$ - Short-circuit detection threshold: <1 k Ω
COM	Ground for analog I/O	0 V reference potential for analog outputs

Terminal	Description	Specification
AI2	Analog input	Bipolar voltage input $-10 \ldots+10 \mathrm{~V} \mathrm{DC}$, impedance: $31.5 \mathrm{k} \Omega$
		- Max. sampling period: $1 \mathrm{~ms} \pm 1 \mathrm{~ms}$
		- Resolution 12 bits
		- Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$
		- Linearity $\pm 0.15 \%$ of maximum value

A. 1 DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Verify that the temperature sensors in the motor meet the PELV requirements.
- Verify that the motor encoder meets the PELV requirements.
- Verify that any other equipment connected via signal cables meets the PELV requirements.

Failure to follow these instructions will result in death or serious injury.

Signal interference can cause unexpected responses of the drive and of other equipment in the vicinity of the drive.

A WARNING

SIGNAL AND EQUIPMENT INTERFERENCE

- Install the wiring in accordance with the EMC requirements described in this document.
- Verify compliance with the EMC requirements described in this document.
- Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

UNANTICIPATED EQUIPMENT OPERATION

- If the drive is set to "Sink Int" or "Sink Ext", do not connect the " 0 V " terminal to ground or to protective ground
- Verify that accidental grounding of digital inputs configured for sink logic, caused, for example, by damage to the signal cables, cannot occur.
- Follow all applicable standards and directives such as NFPA 79 and EN 60204 for proper control circuit grounding practices.

Failure to follow these instructions can result in death, serious injury or equipment damage.
The switch is used to adapt the operation of the digital inputs to the technology of the signal control. The switch is located below the control terminals (see picture at page 123).

- Set the selector switch to SRC (Source) when using PLC outputs with PNP transistors (factory setting).
- Set the switch to Ext (external) when using PLC outputs with NPN transistors.

Selector Switch in Position SRC (Source) and Internal Voltage Supply of the Digital Inputs

Selector Switch in Position SRC (Source) and External Voltage Supply of the Digital Inputs

Selector Switch in Position SK (Sink) and Internal Voltage Supply of the Digital Inputs

Selector Switch in Position EXT (external) and External Voltage Supply of the Digital Inputs

Configuration of the Selector Switch for Pulse Train Outputs / Digital Outputs

A WARNING

UNANTICIPATED EQUIPMENT OPERATION

- If the drive is set to "Sink Int" or "Sink Ext", do not connect the " 0 V " terminal to ground or to protective ground
- Verify that accidental grounding of digital inputs configured for sink logic, caused, for example, by damage to the signal cables, cannot occur.
- Follow all applicable standards and directives such as NFPA 79 and EN 60204 for proper control circuit grounding practices.

Failure to follow these instructions can result in death, serious injury or equipment damage.
The PTO/DQ switch is used to configure the digital outputs DQ+ and DQ-.

- Set the selector switch to PTO (Pulse Train Output) to configure the outputs DQ+ and DQ- as pulse train outputs. This may be used to chain pulse train inputs of another drive, using its pulse inputs DI7 or DI8.
- Set the selector switch to DQ (Digital Output) to configure the outputs DQ+ and DQ- as assignable logic outputs.

The switch is located below the control terminals (see picture at page 123).

Selector Switch in Position SRC (Source) and Internal Voltage Supply of the Digital Inputs

Selector Switch in Position SRC (Source) and External Voltage Supply of the Digital Inputs

Selector Switch in Position SK (Sink) and Internal Voltage Supply of the Digital Inputs

Selector Switch in Position EXT (external) and External Voltage Supply of the Digital Inputs

Option "Logic and Analog I/O Card"

Control terminals at the expansion card
Option to expand the control inputs and control outputs of the control block. The expansion card contains two analog inputs, six digital inputs and two digital outputs.

Specification of the Control Terminals

Spring terminals

Max. cable cross section: 1 mm² (AWG 16)
Strip length: 10 mm
Max. cable length $\mathrm{Al} \bullet, \mathrm{AQ} \bullet, \mathrm{Dl} \bullet, \mathrm{DQ} \bullet: 50 \mathrm{~m}$ shielded

Pin	Terminal	Description	Specification
1	SHLD	Shield connection for Al4	You can select between voltage, current, Pt100, Pt1000, KTY84 and PTC measurement by software configuration. Differential voltage at the input circuit: - Range: -10 V DC...+10 V DC
2	Al4+	Differential analog input 4 Depending on software configuration: - Measurement of differential voltage - PTx measurement - $0 . . .20 \mathrm{~mA}$ measurement - Reference potential AI4- for Al4+	- Impedance: $20 \mathrm{k} \Omega$ - Resolution: 11 bits +1 sign bit - Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ - Linearity $\pm 0.15 \%$ of maximum value
3	Al4-		Current measurements: - Range: freely programmable from 0... 20 mA - Impedance: 250Ω - Resolution: 12 bits - Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$
4	AI4+L	Compensating connection for one temperature sensor Pt100, Pt1000 or KTY84 in 3-wire-design	- Linearity $\pm 0.15 \%$ of maximum value - Sampling period: 1 ms PTx measurement: Pt100, Pt1000, PTC or KTY84 configurable by software
5	SHLD	Shield connection for AI5	- 1 or 3 temperature sensors in series per analog input (configurable by software) - Temperature sensor current: max. 7.5 mA - Range -20... $200^{\circ} \mathrm{C}$
6	AI5+	Differential analog input 5 Depending on software configuration: - Measurement of differential voltage - PTx measurement - 0... 20 mA measurement - Reference potential AI5- for AI5+	- Accuracy: $\pm 3^{\circ} \mathrm{C}$ for a temperature variation of $60^{\circ} \mathrm{C}$ - Pt1000, KTY84 - 1 (Pt1000, KTY84) or 3 (Pt1000) temperature sensors in series per analog input (configurable by software) - Temperature sensor current: max. 1 mA
7	AI5-		- Accuracy: $\pm 3 \mathrm{C}$ for a temperature variation of $60^{\circ} \mathrm{C}$ - PTC - 3 or 6 temperature sensors in series - Temperature sensor current: max. 1 mA
8	AI5+L	Compensating connection for one temperature sensor Pt100, Pt1000 or KTY84 in 3-wire-design	- Nominal value: $<1.5 \mathrm{k} \Omega$ - Overheat trigger threshold: $2.9 \mathrm{k} \Omega$ - Overheat reset threshold: $1.575 \mathrm{k} \Omega$ - Short-circuit detection threshold: <1 k Ω - Wire break detection: > $100 \mathrm{k} \Omega$

Pin	Terminal	Description	Specification
9	DQ12	Digital output 12	The 24 V DC digital outputs DQ comply with the standard IEC/EN 61131-2. - Logic type selected by DQCOM wiring - Output voltage: $\leq 30 \mathrm{~V}$ DC - Switching capability: $\leq 100 \mathrm{~mA}$ - Voltage drop at 100 mA load: ≤ 3 V DC - Response time: 1 ms
10	DICOM	Reference potential for the digital inputs	The 24 V DC digital inputs DI are galvanically isolated via optocoupler and comply with the standard IEC/EN 61131-2. - Logic type selected by DICOM wiring - Positive logic (Source): state 0 when $\leq 5 \mathrm{~V}$ DC, state 1 when \geq 11 V DC - Negative logic (Sink): state 0 when $\geq 16 \mathrm{~V}$ DC, state 1 when \leq 10 V DC - Maximum voltage: $\leq 30 \mathrm{~V}$ DC - Input current (typically): 2.5 mA - Sampling period: 1 ms
11	DI11	Digital input 11	
12	DI12	Digital input 12	
13	DI13	Digital input 13	
14	DI14	Digital input 14	
15	DI15	Digital input 15	
16	DI16	Digital input 16	
17	DQCOM	Reference potential for the digital outputs	The 24 V DC digital outputs DQ comply with the standard IEC/EN 61131-2. - Logic type selected by DQCOM wiring - Output voltage: $\leq 30 \mathrm{~V}$ DC
18	DQ11	Digital output 11	- Switching capability: $\leq 100 \mathrm{~mA}$ - Voltage drop at 100 mA load: ≤ 3 V DC - Response time: 1 ms

A. DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Verify that the temperature sensors in the motor meet the PELV requirements.
- Verify that the motor encoder meets the PELV requirements.
- Verify that any other equipment connected via signal cables meets the PELV requirements.

Failure to follow these instructions will result in death or serious injury.

Signal interference can cause unexpected responses of the drive and of other equipment in the vicinity of the drive.

A WARNING

SIGNAL AND EQUIPMENT INTERFERENCE

- Install the wiring in accordance with the EMC requirements described in this document.
- Verify compliance with the EMC requirements described in this document.
- Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Option "Relay Output Card"

Control terminals at the expansion card

Specification of the Control Terminals

Screw terminals

Maximum cable cross section: $1.5 \mathrm{~mm}^{2}$ (AWG 16)
Maximum tightening torque: 0.5 Nm ($4.4 \mathrm{lb} . \mathrm{in}$)
Minimum cable cross section: $0.75 \mathrm{~mm}^{2}$ (AWG 18)
Strip length: 10 mm

Pin	Terminal	Description	Specification
1	R4A	Relay output 4 (NO contact)	Programmable relay output 4: - Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capability on resistive load $(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capability on inductive $\operatorname{load}(\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for 250 V AC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
2	R4C		
3	R5A	Relay output 5 (NO contact)	Programmable relay output 5: - Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capability on resistive $\operatorname{load}(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capability on inductive $\operatorname{load}(\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for 250 VAC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
4	R5C		
5	R6A	Relay output 6 (NO contact)	Programmable relay output 6: - Minimum switching capacity: 5 mA for 24 V DC - Maximum switching capability on resistive load $(\cos \varphi=1)$: 3 A for 250 V AC and 30 V DC - Maximum switching capability on inductive $\operatorname{load}(\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for 250 V AC and 30 V DC - Response time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Life cycle: 100,000 switching cycles at max. switching capacity
6	R6C		

Option Terminals

Control Terminals at the Option Terminals

The option terminals X200 and X205 are built-in at each Altivar Process Drive System as standard. They are designed as pluggable terminals.

Spring terminals pluggable

Max. cable cross section: $2.5 \mathrm{~mm}^{2}$ [AWG 12]
Min. cable cross section: $0.25 \mathrm{~mm}^{2}$ [AWG 26]
Strip length: 10 mm

Specification of the Control Terminals

As shown in the following illustration, there are following connections available for the customer depending on the chosen options.

Optional: Extemal EMERGENCY STOP button

Chapter 8

Customizations

What Is in This Chapter?
This chapter contains the following topics:

Topic	Page
Enclosure Options	146
Control Options	150
I/O Expansion Cards	151
Communication Cards	152
Encoder Interface Modules	154
Functional Safety	155
Display Options	156
Motor Options	157
Mains Supply	159
Braking Option	163
Monitoring Options	171
Documentation / Packaging	172

Enclosure Options

During manufacturing of the Altivar Process Drive Systems already all customizations are considered. In addition, parameter adjustments are carried out and permanently stored as factory setting, if required.

This chapter contains customizations, which we have already predefined as a result of our many years of experience in order to cover the essential requirements of our customers. But in many cases a unique system solution is necessary due to the variety of applications and requirements.
Your Drive Systems Tendering Team is looking forward to your specific request.

Increased Protection Degree IP54

For operation with rough ambient conditions the enclosure can be designed in protection degree IP54. So when the doors are closed the Altivar Process Drive System is protected against:

- Touching live electrical parts
- Harmful dust accumulation inside
- Penetration of spray water from all directions

Typically, IP54 enclosure units are installed production halls and manufacturing sites, where heavy dirt accumulation is expected.

Our solution contains a clearly specified and tested cooling system with a separate cooling air channel which provides highest reliability.
Via this separated cooling air channel about 90% of the heat losses are exhausted. The interior of the enclosure is cooled via fans in the enclosure door.

NOTE: The additional enclosure plinth increases the enclosure by 200 mm to a total height of 2350 mm .

For adapting to the local conditions or for better protection of the enclosure against wet soil, the enclosure can be raised with a plinth (color: RAL 7022) by 200 mm .
So the enclosure height is increased to a total height of 2350 mm .

NOTE: At the customization "Increased protection degree IP54" the enclosure is already equipped with an enclosure plinth as standard.

Connection Enclosure Cable from Top

This separate connection enclosure makes it possible to insert and connect the mains cables and motor cables from the top of the enclosure.
The separated connecting enclosure contains all power terminals and the mains disconnection (e.g. main switch), which makes a voltage disconnection of the basic device during maintenance possible.
Furthermore, the connecting enclosure provides enough space for additional customizations.

NOTE: The additional connecting enclosure increases the total width of the enclosure.

Connection Enclosure Cable from Bottom

This separate connection enclosure makes it possible to insert and connect the mains cables and motor cables from the bottom of the enclosure.
The separated connecting enclosure contains all power terminals and the mains disconnection (e.g. main switch), which makes a voltage disconnection of the basic device during maintenance possible.
Furthermore, the connecting enclosure provides enough space for additional customizations.

NOTE: The additional connecting enclosure increases the total width of the enclosure.

In order to make maintenance easier, the enclosure can be equipped with a lighting, which is switched on when opening the enclosure door.
The lighting is externally supplied and so it is also available at switched off mains supply. Furthermore, a power socket according to VDE standard ($230 \mathrm{~V} / 50 \mathrm{~Hz}, 2 \mathrm{~A}$) is located on the lighting to operate smaller consumers on-site.

NOTE: The additional power supply at terminals X200 has to be provided by the user.
Rated voltage: 230 V
Rated frequency: $50 / 60 \mathrm{~Hz}$
Rated power: 500 VA

This option requires an additional external 230 V power supply with overvoltage category 1 or 2 (according to IEC/UL 61800-5-1) connected to terminals X200.

A. 1 DANGER

HAZARD OF ELECTRIC SHOCK

Verify that the external power supply complies with all national and local electrical code requirements. Failure to follow these instructions will result in death or serious injury.

Enclosure Heating

This customization is used to heat the enclosure in order to avoid frost and condensation at an ambient temperature up to $-10^{\circ} \mathrm{C}$. The enclosure heating is externally supplied, so the enclosure can be also heated when mains supply is switched off.

NOTE: The additional power supply at terminals X200 has to be provided by the user.
Rated voltage: 230 V
Rated frequency: $50 / 60 \mathrm{~Hz}$
Rated power: 400... 800 VA

This option requires an additional external 230 V power supply with overvoltage category 1 or 2 (according to IEC/UL 61800-5-1) connected to terminals X200.

A! DANGER

[^0]This option contains modified wiring colors as well as red, white and blue heat shrink tubes at the power cables.

Control Options

Key Switch "local / remote"

Ethernet Port on Front Door

The key switch "local / remote" allows to switch between local operation (via the graphical operating panel) or remote control (terminals or bus). The switch can be only operated with a key and so it can be only switched by authorized personnel.

The Ethernet port in the enclosure door allows access to the frequency inverter without opening the enclosure door. The plug can be closed with a dust protection cap.

I/O Expansion Cards

You will find detailed information in the respective documentation. See listing under chapter "Related Documents", page 7.

Expansion Card With Additional Inputs / Outputs

Expansion card for additional analog and digital inputs and outputs (6 digital inputs, 2 digital outputs, 2 analog inputs)

You will find further information at chapter "Option "Logic and Analog I/O Card"'", page 138.

Expansion Card With Relay Outputs

Expansion card with three additional relay outputs
You will find further information at chapter "Option "Relay Output Card'"', page 141.

Communication Cards

You will find detailed information in the respective documentation. See listing under chapter "Related Documents", page 7.

Communication Card Modbus TCP or EtherNet IP

Dual port option card for control of the inverter via Modbus TCP or EtherNet/IP

Communication Card CANopen Daisy Chain

Option card for control of the inverter via CANopen Daisy Chain

Communication Card CANopen SUB-D9

Option card for control of the inverter via CANopen with SUB-D port.

Communication Card CANopen With Screw Terminals

Option card for control of the inverter via CANopen with screw terminals

Communication Card DeviceNet

Option card for control of the inverter via DeviceNet

Communication Card Profibus DP

Option card for control of the inverter via Profibus DP V1

Communication Card PROFINET

Option card for control of the inverter via PROFINET

Communication Card EtherCAT Daisy Chain

Option card for control of the inverter via EtherCAT Daisy Chain

Encoder Interface Modules

You will find detailed information in the respective documentation. See listing under chapter "Related Documents", page 7.

Digital Encoder Interface Module 5/12 V

Interface module for connecting a digital encoder

Analog Encoder Interface Module

Interface module for connecting an analog encoder

Resolver Interface Module

Interface module for connecting a resolver

HTL Encoder Interface Module

Interface module for connecting an encoder with push-pull (HTL) output driver

Functional Safety

Safe Torque Off (STO)

The Altivar Process is equipped with the safety function "Safe Torque Off STO" according to ISO 138491, IEC/EN 61508, IEC/EN 60204-1, which helps to prevent any unintended start-up of the motor.

- Inputs $\overline{\mathrm{STOA}}$ and $\overline{\mathrm{STOB}}$ directly at the control terminals of the control block. This function fulfills, when correctly wired, the machine standard ISO 13849-1, Performance level PL e, the IEC/EN 61508 Safety integrity level SIL 3 standard for functional safety and the power drive system standard IEC/EN 61800-5-2.
- Customization SIL3, stop category 0 / PL e The triggering of the safety function leads to a coast down of the drive and helps to prevent an unintended restart.
- Customization SIL3, stop category 1 / PL e

The triggering of this function starts a controlled deceleration, shuts down the drive after the set time and helps to prevent an unintended restart.

NOTE: You will find further information in the Safety Function Manual (NHA80947).

Safe Torque Off STO - SIL 3 Stop Category 0 / Performance Level PL e

Via an EMERGENCY STOP button in the enclosure door or further implemented, external monitoring equipment, the torque at the motor can be switched off according SIL 3 stop category 0 / performance level PL e.
The triggering of the safety function leads to a coast down of the drive and helps to prevent an unintended restart.

Safe Torque Off STO - SIL 3 Stop Category 1 / Performance Level PL e

Via an EMERGENCY STOP button in the enclosure door or further implemented, external monitoring equipment, the torque at the motor can be switched off according SIL 3 stop category 1 / performance level PL e.
The triggering of this function starts a controlled deceleration, shuts down the drive after the set time and helps to prevent an unintended restart.

Display Options

Front Display Module (FDM)

A display element mounted in the enclosure door enables clear indication of real-time values like:

- Indication of mains currents (3x)
- Mains voltages (3x phase voltages, 3x phase-to-phase voltages)
- Mains power

These values can be indicated graphically or digital.

The display element is provided with backlight for increased readability.

Indicator Lamps on Front Door

For quick, optical diagnostics of the actual operating state from a greater distance, the enclosure can be equipped with indicator lamps.

The lamps show following operating states:

Operating state	Indicator lamp	Labeling
Ready	Yellow	READY
Operation	Green	RUN
Detected fault	Red	TRIP

Motor Options

Motor Monitoring PTC

If the motor is equipped with integrated thermistor sensors to help to protect against thermal overload, they can be directly connected to a thermistor relay inside the Altivar Process Drive System.

If the frequency inverter detects an overtemperature at the motor, the drive stops the motor and generates an error message at the display. This operating state is also forwarded to the status relays and to the fieldbus.

NOTE: When protective separation of the thermistor sensors in the motor cannot be guaranteed or in case of long motor cables, this option is highly recommended.

Motor Monitoring PTC with ATEX Certificate

The motor monitoring PTC with ATEX certificate is used to monitor the thermistor sensors of motors which are installed in hazardous area (explosive atmosphere).

If the frequency inverter detects the overtemperature at the motor, the drive stops the motor and generates an error message at the display. This operating state is also forwarded to the status relays and to the fieldbus. The monitoring relay additionally triggers a safe shut-down of the drive.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of hazardous atmosphere.

4 DANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.
Failure to follow these instructions will result in death or serious injury.

Motor monitoring Pt100/Pt1000/KTY

If the motor is equipped with integrated temperature sensors (Pt100, Pt1000, KTY 83/84) in the winding to help to protect against thermal overload, they can be directly connected to the relay inside the Altivar Process Drive System.

If the set temperature at the motor is exceeded, a warning message is generated. When the temperature is further rising over a set value, the drive is stopped and an error message is generated. The operating states are also forwarded to the status relays and to the fieldbus.

NOTE: When protective separation of the thermistor sensors in the motor cannot be guaranteed or in case of long motor cables, this option is highly recommended.

Bearing Monitoring Pt100/Pt1000/KTY

If the motor is equipped with integrated temperature sensors (Pt100, Pt1000, KTY 83/84) in the bearings to help to protect against thermal overload, they can be directly connected to the relay inside the Altivar Process Drive System.

If the set temperature at the motor is exceeded, a warning message is generated. When the temperature is further rising over a set value, the drive is stopped and an error message is generated. The operating states are also forwarded to the status relays and to the fieldbus.

NOTE: When protective separation of the thermistor sensors in the motor cannot be guaranteed or in case of long motor cables, this option is highly recommended

Motor Heating

The motor standstill heating is used to avoid condensate and frost damages at standstill of the motors in cold environment. It is activated when the motor is shut down.

Mains Supply

Circuit Breaker

The circuit breaker is used for mains disconnection instead of the main switch. It is operated by a handle in the enclosure door.
The circuit breaker can be optionally equipped with an undervoltage coil and motor.

Undervoltage Coil for Circuit Breaker 230 V

When there is no voltage at the undervoltage coil, the circuit breaker switches off. The undervoltage coil is built into the circuit breaker and is wired to the option terminals.

Specification of the control terminals

X200: 6/14 External control voltage
220... 240 V AC $50 / 60 \mathrm{~Hz}$

NOTE: - Only when control voltage is applied, the circuit breaker can be switched on manually.

- You will find further information about the topic wiring under chapter "Option Terminals", page 142.

Motor for Circuit Breaker 230 V
Remote control of the circuit breaker via control commands is possible by means of this motor drive. The motor drive is built into the circuit breaker and is wired to the option terminals.

Specification of the motor drive:

Specification of the control terminals

X200: $7 / 15$	External control voltage
	$220 \ldots 240 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$
X200: 8	Start request
X200: 16	Stop request

Specification of the control terminals
x200:8 Star request
X200: 16 Stop request

External control circuit voltage:

- 230 V AC $\pm 5 \% 50 / 60 \mathrm{~Hz}$

Reaction time:

- < 80 ms when closing
- < 600 ms when opening

Power input:

- ≤ 500 VA when closing
- ≤ 500 VA when opening

NOTE: - At this customization no handle for the circuit breaker is possible.

- You will find further information about the topic wiring under chapter "Option Terminals", page 142.
- You will find further information about the topic switching rate under chapter "Switching Rate", page 25.

The ATV990 frequency inverters can be equipped with parallel input rectifiers for 12-pulse rectification on request.
The supply results from a separate transformer with two out-of-phase secondary windings (e.g. superimposing transformer Yy6 Yd5).
Due to the lower tolerances of superimposing transformer in zig-zag-connection you can assume that the output current is approximately 7% lower.
Example: For 90 kW instead of $2 \times 90 \mathrm{~A}$ at 400 V only $2 \times 84 \mathrm{~A}$.
If the existing mains distortion is mainly caused by frequency inverters with normal 6-pulse-circuit, we highly recommend a superimposing transformer in zig-zag-connection ($\pm 15^{\circ}$ phase shift at each secondary windings e.g. Yy1130 Yy0030).
On the main side of the transformer the 5th and 7th current harmonics are practically non-existent as they have been cancelled by the shifted transformer windings.
Due to the internal circuit structure it is possible to operate a single frequency inverter as well as several frequency inverters in parallel at one transformer.

The following specifications must be kept:
Transformer:

- Converter transformer for 12-pulse supply with half-controlled rectifier bridges in a common voltage DC link.
- Recommended design:
- Nominal voltage at the primary side:
- Voltage adaptation at the primary side:
- Nominal output current:
- Current harmonics at the secondary side:
- Nominal output voltage (= no-load voltage):

Superimposing

According to the application
+5 \% / + $2.5 \% / 0 /-2.5 \% /-5 \%$
See the following table
See the following table
See the following table

- Tolerance of the secondary voltages to each other:
- Short-circuit voltage:
- Tolerance of the relative short-circuit voltage:
- Tolerance of the relative short-circuit voltage between both secondary windings
- Further specifications:
- Tolerance for unbalance of phase-shift
< 0.3% (< 0.1%) of Unом
See the following table
$\pm 10 \%$ of usc-nom
$<5 \%$ (<2 \%) of usc-nom
According to the application
$\left(\pm 0.5^{\circ}\right)$

Mains:

- Allowed mains distortion: $\operatorname{THD}(\mathrm{u})<8 \%$
- Max. single harmonic (5.): < 5%
() Values in brackets for transformer in zig-zag-connection ($\pm 15^{\circ}$ phase shift at both secondary windings e.g. Yy1130 Yy0030)

Recommended values for dimensioning a "12-pulse transformer"

Inverte r power [kW]	Transformer			Inverter power [hp]	Transformer				
	Output current				Output current		Shortcircuit voltage	Harmonics	
	400 V	500 V	690 V		480 V	600 V		Secondary (THDi LV)	Primary (THDi HV)
90	$2 \times 90 \mathrm{~A}$	2×70 A	$2 \times 60 \mathrm{~A}$	125	2x 80 A	2 x 65 A	4 \%	< 40 \%	≤ 12 \%
110	2x 110 A	2 x 80 A	2 x 65 A	150	2x 95 A	2×75 A	4 \%	< 42 \%	≤ 12 \%
132	2x 130 A	2x 95 A	2x 75 A	200	2×125 A	2x 115 A	4 \%	< 42 \%	≤ 12 \%
160	2×155 A	$2 \times 120 \mathrm{~A}$	2×90 A	250	2×155 A	2×140 A	4 \%	< 42 \%	≤ 12 \%
200	2x 190 A	$2 \times 145 \mathrm{~A}$	2x 120 A	300	2×185 A	2x 160 A	4 \%	< 42 \%	≤ 12 \%
250	$2 \times 240 \mathrm{~A}$	$2 \times 180 \mathrm{~A}$	2×145 A	400	2×245 A	$2 \times 200 \mathrm{~A}$	4 \%	< 42 \%	≤ 12 \%
315	$2 \times 300 \mathrm{~A}$	$2 \times 230 \mathrm{~A}$	2x 180 A	500	2×305 A	2x 250 A	4 \%	< 42 \%	≤ 12 \%
355	2x 340 A	2x 250 A	2x 210 A	550	$2 \times 330 \mathrm{~A}$	2x 275 A	4 \%	< 42 \%	≤ 12 \%
400	$2 \times 380 \mathrm{~A}$	2×285 A	$2 \times 230 \mathrm{~A}$	600	2×365 A	$2 \times 290 \mathrm{~A}$	4 \%	< 40 \%	≤ 12 \%
450	2x 440 A	2x 340 A	$2 \times 260 \mathrm{~A}$	650	2 x 400 A	$2 \times 320 \mathrm{~A}$	4 \%	< 40 \%	≤ 12 \%
500	$2 \times 490 \mathrm{~A}$	2×385 A	2×285 A	700	$2 \times 420 \mathrm{~A}$	2x 340 A	6 \%	< 33 \%	≤ 10 \%
560	$2 \times 550 \mathrm{~A}$	2x 440 A	$2 \times 320 \mathrm{~A}$	800	$2 \times 480 \mathrm{~A}$	2×395 A	6 \%	< 33 \%	$\leq 10 \%$
630	2x 610 A	2x 490 A	2x 365 A	900	$2 \times 540 \mathrm{~A}$	2x 430 A	6 \%	< 33 \%	≤ 10 \%
710	2x 680 A	$2 \times 540 \mathrm{~A}$	2x 420 A	1000	$2 \times 600 \mathrm{~A}$	2x 480 A	6 \%	< 33 \%	≤ 10 \%
800	2×770 A	2×610 A	2x 465 A	1100	-	$2 \times 540 \mathrm{~A}$	6 \%	< 33 \%	≤ 10 \%
900	2x 860 A	2x 685 A	2×525 A	1250	-	2×590 A	6 \%	< 33 \%	≤ 10 \%
1000	2x 940 A	$2 \times 770 \mathrm{~A}$	$2 \times 570 \mathrm{~A}$	1400	-	2x 660 A	6 \%	< 33 \%	≤ 10 \%
1100	2x 1040 A	2x 840 A	2x 620 A	1600	-	2x 755 A	6 \%	< 33 \%	$\leq 10 \%$
1200	2x 1110 A	2x 900 A	2x 665 A	1700	-	2x 790 A	6 \%	< 33 \%	≤ 10 \%
1300	$2 \times 1200 \mathrm{~A}$	2x 980 A	2×725 A	1900	-	2 x 885 A	6 \%	< 33 \%	≤ 10 \%
1400	2x1300 A	$2 \times 1050 \mathrm{~A}$	$2 \times 780 \mathrm{~A}$	2000	-	2x 930 A	6 \%	< 33 \%	$\leq 10 \%$
1500	-	$2 \times 1120 \mathrm{~A}$	2×840 A	2100	-	2x 980 A	6 \%	< 33 \%	≤ 10 \%
1800	-	2x 1330 A	$2 \times 1000 \mathrm{~A}$	2200	-	2x 1020 A	6 \%	< 33 \%	≤ 10 \%
2000	-	-	$2 \times 1100 \mathrm{~A}$	2500	-	2x 1150 A	6 \%	< 33 \%	≤ 10 \%
2100	-	-	2x 1150 A	-	-	-	6 \%	< 33 \%	≤ 10 \%
2400	-	-	2x1300 A	-	-	-	6 \%	< 33 \%	≤ 10 \%

Recommended output voltage for the transformer

The nominal output voltage of a transformer is specified at no load operation. Therefore this value should be $3 . . .5 \%$ higher than the rated voltage of the drive.

Inverter	Transformer output voltage phase / phase (no load)						
	Nominal voltage						
	380 V	400 V	440 V	480 V	500 V	600 V	690 V
400 V range	400 V	425 V	460 V	500 V	-	-	-
690 V range	-	-	-	-	525 V	630 V	715 V

Braking Option

Braking Unit Option BUO

The use of a braking unit is required, if:

- More power is returned to the DC link during the braking procedure than the losses in the motor and the inverter amount to or
- The application requires very short braking times.

The braking unit option BUO is placed in an own enclosure and is equipped with a voltage regulation to control the braking transistors.

If the DC link voltage exceeds an adjustable value, the external braking resistor is switched into the DC link as a consumer. The braking resistor converts the power incurred during generator operation into heat. This helps to avoid a further rising of the DC link voltage and thus a shut-down with overvoltage.

The key benefits of the braking unit option BUO are:

- Significant reduction of capacitor load due to three-phase design
- Monitoring of the braking resistors for overload and interruption
- Shielded braking unit lines allow the compliance with the EMC limits
- Integrated protection against short-circuits and ground faults for the braking resistor and the wiring

The braking unit option BUO has following features and characteristics:

- The ModBuo••• braking option is 3-phase designed and so it requires three braking resistors (possibly in a housing with six terminals).
- The braking option ModBuo $\bullet \bullet$ controls itself. But for monitoring the function there is an additional internal bus connection to the frequency inverter. So all settings and displays can take place at the interface of the inverter.
- The braking resistor is monitored for short-circuit and interruption; provided that the nominal power of the resistor is correctly set. The protection against ground faults is realized via the integrated circuit breaker.
- For monitoring and diagnostics all braking resistors are subsumed to one group.
- For simple applications it is possible to assign a braking unit and braking resistors with less power.
- If the installed peak braking power is not sufficient, the inverter automatically extends the deceleration ramp in order to prevent a shut-down. However, if short braking times must be kept, select a braking resistor according to the maximum braking power.

Technical Data Braking Unit

Braking unit ModBuo	C16•4	C31•4	C50•4	C63•4	C80•4	M10•4
Nominal data						
$\begin{array}{lr}\text { Size } & \begin{array}{r}\text { Single Drive System } \\ \text { MultiDrive System }\end{array} \\ & \end{array}$	$\begin{array}{\|l\|} \hline 1 \mathrm{c} \\ 1 \mathrm{mc} \end{array}$			$\begin{aligned} & 2 \mathrm{c} \\ & 2 \mathrm{mc} \end{aligned}$		
Braking voltage max.	780 V dc					
Braking power Continuous operation (= 100\%)	200 kW 180 kW 170 kW 150 kW 120 kW 100 kW	400 kW 360 kW 340 kW 300 kW 240 kW 200 kW	600 kW 540 kW 510 kW 450 kW 360 kW 300 kW	$\begin{aligned} & 800 \mathrm{~kW} \\ & 720 \mathrm{~kW} \\ & 680 \mathrm{~kW} \\ & 600 \mathrm{~kW} \\ & 480 \mathrm{~kW} \\ & 400 \mathrm{~kW} \end{aligned}$	1000 kW 900 kW 850 kW 750 kW 600 kW 500 kW	1200 kW 1080 kW 1020 kW 900 kW 720 kW 600 kW
Braking resistor						
$\begin{array}{lr}\text { Braking resistor } & \text { Min. }{ }^{(1)} \\ & \text { Max. }{ }^{(2)}\end{array}$	$\begin{aligned} & 3 \times 4.0 \Omega \\ & 3 \times 8.0 \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \times 3.0 \Omega \\ 3 \times 4.0 \Omega \end{array}$	$\begin{array}{\|l\|} \hline 3 \times 2.2 \Omega \\ 3 \times 2.7 \Omega \end{array}$	$\begin{aligned} & 6 \times 3.0 \Omega \\ & 6 \times 4.0 \Omega \end{aligned}$	$\begin{aligned} & 6 \times 2.7 \Omega \\ & 6 \times 3.4 \Omega \end{aligned}$	$\begin{aligned} & 6 \times 2.2 \Omega \\ & 6 \times 2.7 \Omega \end{aligned}$
Characteristics						
Maximum current $I_{\text {max }}$	85	170	255	340	425	510
Heat losses at cont. operation Total losses Control part only	$\begin{aligned} & 1050 \mathrm{~W} \\ & 280 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1600 \mathrm{~W} \\ & 310 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2200 \mathrm{~W} \\ & 350 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3300 \mathrm{~W} \\ & 460 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3600 \mathrm{~W} \\ & 510 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3900 \mathrm{~W} \\ & 540 \mathrm{~W} \end{aligned}$
Auxiliary voltage $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	250 W	250 W	250 W	500 W	500 W	500 W
Enclosure width	400 mm			800 mm		
Weight Net Gross	$\begin{aligned} & 260 \mathrm{~kg} \\ & 270 \mathrm{~kg} \end{aligned}$			$\begin{aligned} & 510 \mathrm{~kg} \\ & 530 \mathrm{~kg} \end{aligned}$		
Arrangement Single Drive System MultiDrive System	Right Centered or right			Right Centered or right		
Ambient conditions						
$\begin{array}{lr}\text { Air flow } & \begin{array}{c}\text { Power part } \\ \text { Control part }\end{array} \\ & \end{array}$	$\begin{aligned} & 580 \mathrm{~m}^{3} / \mathrm{h} \\ & 140 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$			$\begin{aligned} & 1160 \mathrm{~m}^{3} / \mathrm{h} \\ & 280 \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$		
Cable cross section						
Number of terminals	6			12		
Cable cross section Per terminal Max. Cross section	$\begin{aligned} & \hline 2 \times \mathrm{M} 12 \\ & 4 \times 120 \mathrm{~mm}^{2} \end{aligned}$			$\begin{aligned} & 2 \times \mathrm{M} 12 \\ & 4 \times 120 \mathrm{~mm}^{2} \end{aligned}$		
(1) Nominal value of the braking resistance which may not fall short due to help to protect the braking transistor (-10 \% tolerance) (2) Nominal resistance value at which a peak braking power of $125 \ldots 150 \%$ of the nominal inverter power HD (Heavy Duty) can still be reached ($+25 \%$ tolerance including temperature rise)						

Maximum possible load cycle of the braking unit for crane drives

Dimensions Braking Unit Option IP23 Size 1c / 1mc

Interior View Braking Unit Option IP23 for Size 1c / 1mc

NOTE: At protection degree IP54 the enclosure height is increased by 200 mm .

Dimensions Braking Unit Option IP23 Size 2c / 2mc

Interior View Braking Unit Option IP23 for Size 2c / 2mc

NOTE: At protection degree IP54 the enclosure height is increased by 200 mm .

The braking resistor converts the power accumulating during generator operation into heat and thus helps to prevent a further rising of the DC link voltage.

Braking resistors can be only connected to Drive Systems which are equipped with an braking unit option BUO.

When allocating the braking resistors to the frequency inverters, observe the following points:

- Minimum braking resistance per inverter power
- Required peak braking power and cycle time
- Necessary continuous power depending on the application requirements
- Recommended assignment of braking resistors

Choose a suitable place for installing the braking resistors where the energy can dissipate unhindered via the ambient air.

Thereby the surface of the resistor may reach up to $250^{\circ} \mathrm{C}$. So the braking resistor must be mounted on non-combustible material.

The unhindered air flow may not be impaired by other devices or casing parts!

[^1]
Technical Data Braking Resistor

General technical data	
Nominal tolerance at $20^{\circ} \mathrm{C}$	$\pm 10 \%$; additionally $+15 \%$ resulting from the temperature rise during operation
Thermal protection	Software function in the Drive System (or by a thermal relay / motor protection relay)
Ambient conditions	
Ambient temperature	$-25 \ldots+40^{\circ} \mathrm{C}$; above $+40^{\circ} \mathrm{C}$ with derating of 4% per 10 K
Storage / Transport temperature	$-25 . . .+70^{\circ} \mathrm{C}$
Cooling	Natural convection
Thermal time constant	$140 \mathrm{~s}^{(1)}$
Protection degree	IP23
Altitude	Up to 1000 m , above with derating of 1% per 100 m
Standards	
Standards	$C E^{(2)}$
(1) Set this value via parameter [Braking Resist T Constant] brt[[. (2) For applications, which require a UL certification, you can choose resistors from the Schneider Electric standard program (e.g. 3x VW3 A7 755 instead of $1 \times$ VW3 A7 791).	

Braking resistor	BR 6,7-3 / 20	BR 6,7-3 / 60
Reference number	VW3 A7 790	VW3 A7 791
Nominal data		
Resistance	$3 \times 6.7 \Omega$	$3 \times 6.7 \Omega$
Continuous power total	20 kW	60 kW
Parameter bar (x number of resistors connected in parallel)	20	60
Peak braking power at 120 s cycle repetitive		
At 680 V dc	150 kW (max. 7 \% duty cycle)	150 kW (max. 24 \% duty cycle)
At 780 V dc	200 kW (max. 5 \% duty cycle)	200 kW (max. 18 \% duty cycle)
At 975 V dc	300 kW (max. 3 \% duty cycle)	300 kW (max. 11 \% duty cycle)
At 1075 V dc	380 kW (max. 2 \% duty cycle)	380 kW (max. 8 \% duty cycle)
Duty cycle ED and cycle time		
At 115 kW braking power	12% duty cycle at 120 s cycle $\text { (ton }=15 \mathrm{~s}, \text { toff }=105 \mathrm{~s} \text {; }$	50% duty cycle at 120 s cycle (ton $=60 \mathrm{~s}$, toff $=60 \mathrm{~s}$; max. 3 cycles, then at least 20 min . pause)
		40 \% duty cycle at 120 s cycle (ton $=48 \mathrm{~s}$, toff $=72 \mathrm{~s}$; repetitive)
		30% duty cycle at 200 s cycle $\text { (ton }=60 \mathrm{~s} \text {, toff }=140 \mathrm{~s} \text {; repetitive) }$
Characteristics		
Setting value thermal relay	35 A per phase	55 A per phase
WeightNet Gross	$\begin{array}{\|l} 50 \mathrm{~kg} \\ 70 \mathrm{~kg} \\ \hline \end{array}$	$\begin{aligned} & 120 \mathrm{~kg} \\ & 150 \mathrm{~kg} \end{aligned}$
Connection		
Connection	$\begin{array}{\|l\|} \hline 6 \times \text { M10 } \\ \text { 2x M10 for PE } \end{array}$	$\begin{array}{\|l\|} \hline 6 \times \text { M10 } \\ \text { 2x M10 for PE } \end{array}$

Dimensions BR 6,7-3 / 20

Dimensions BR 6,7-3 / 60

Monitoring Options

Remote Monitoring

With remote monitoring the Altivar Process Drive System can be monitored via Ethernet or Modbus using a PC, tablet or smart phone.

The delivered gateway records the data of the Drive System in regular intervals. The collected data are transmitted using an integrated GPRS modem via the mobile phone network to the Schneider Electric StruxureWare Energy Operation network.

You can easily access the provided date of your Altivar Process System using PC, tablet or smart phone in order to analyze them and to be up-todate:

- Notification per email or SMS when reaching warning or error states
- Preset reminders per email for maintenance purpose, inspection,...
- Cyclical sending of status reports

Via the predefined data model the following values are monitored 24/7 and logged:

Registered data	
- Mains voltage	- Energy consumption
- Mains frequency	- Energy saving by frequency inverter operation
- DC link voltage	- Saving of CO_{2} emission
- Input / output voltage	- Thermal state of motor and Drive System
- Motor current and voltage	- Operating state of Drive System
- Motor speed	- Event memory with detailed information
- Motor torque	- Application data (input / output pressure, flow,...)

The module contains additional inputs in order to record further measures:

- 2 temperature sensors (Pt100 or Pt1000)
- 6 digital inputs
- 2 analog inputs

NOTE: For this option a service contract is necessary which will imply additional costs.

Documentation / Packaging

Safety Labels in Local Language

All Altivar Process Drive Systems are delivered with safety labels in English and French.
Optionally the devices can be also ordered with labels in the local language.

ATV990_Handbook_EN_NHA37145_00

[^0]: HAZARD OF ELECTRIC SHOCK
 Verify that the external power supply complies with all national and local electrical code requirements. Failure to follow these instructions will result in death or serious injury.

[^1]: A WARNING

 ## HOT SURFACES

 - Ensure that it is not possible to make any contact with a hot braking resistor.
 - Do not allow flammable or heat-sensitive parts in the immediate vicinity of the braking resistor.
 - Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

 Failure to follow these instructions can result in death, serious injury or equipment damage.

