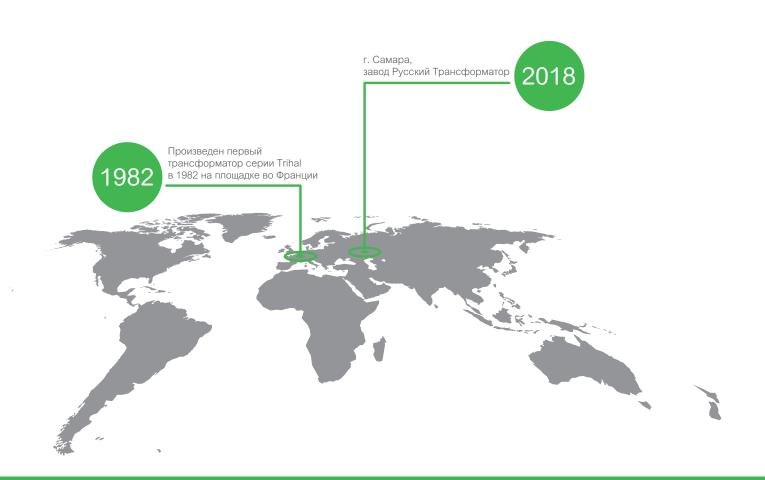


Сухой трансформатор с литой


Опыт мирового лидера и производство в России!

Trihal Easy – новый сухой трансформатор с литой изоляцией на номинальные напряжение 6, 10 кВ и номинальные мощности 250-2500 кВА со сниженными потерями холостого хода и короткого замыкания.

Trihal Easy являются отличным решением для многих отраслей применения: объектов электросетевого комплекса, нефтегазовой отрасли, промышленности и инфраструктуры.

Основные параметры

- Номинальное напряжение 6, 10 кВ
- Номинальные мощности 250, 400, 630, 1000, 1250, 1600, 2000, 2500 кВА
- IP00, IP21 или IP31
- Без вентиляции, AF25 или AF40
- E1C3F1 с уровнем частичных разрядов <10 рс

изоляцией серии Trihal EASY

Когда выгода очевидна!

Развитие серии Trihal

1982 – Инновации

Произведен первый трансформатор серии Trihal

2000 - Опыт

В мире установлено более 50000 трансформаторов серии Trihal

2015 – Опыт мирового лидера

В мире установлено более 150000 трансформаторов

2018 - Trihal connected

Беспроводные датчики для большей эффективности и надежности!

2018 - Trihal EASY

Сделано в России на площадке Самара Электрощит

Качество

- Применение высококачественных материалов и комплектующих
- Применение электротехнической стали с низкими удельными потерями для изготовление магнитного сердечника
- Модернизированная конструкции основной линейки Trihal!

Надежность

- Полный контроль производственных процессов
- Соответствие стандарту ГОСТ Р
- Техническая и коммерческая поддержка

Эффективность

- Сниженные потери холостого хода и короткого замыкания благодаря модернизированной конструкции
- Пониженный уровень шума
- Различные варианты исполнения
- Экономия расходов

Производственный процесс

Сниженные потери холостого хода и короткого замыкания.

Магнитный сердечник в сборе

Обмотка НН, изготавливаемая из метаппической фольги

Обмотка ВН, изготавливаемая из металлической ленты

Магнитный сердечник

Для снижения потерь холостого хода и короткого замыкания модернизирована конструкция магнитного седечника благодаря:

- применению электротехнической стали со сниженными удельными потерями:
- оптимизации производственного процесса (применяются линии поперечного раскроя с автоматическими раскладчиками);
- индивидуальному расчету каждого типоисполнения.

Обмотка низкого напряжения

Обмотка низкого напряжения изготавливается из алюминиевой ленты, что гарантирует механическую прочность обмоток при температурных деформациях и аварийных токах короткого замыкания, многократно превышающих номинальный рабочий ток трансформатора. Эта технология позволяет на порядок снизить потери на вихревые токи по сравнению с обычными обмотками. При этом листовая форма обмотки улучшает теплопередачу и способствует снижению температуры наиболее нагретых точек. Слои обмотки изолированы материалом класса F и предварительно пропитаны расплавленной эпоксидной смолой.

Вся обмотка проходит полимеризацию путем обработки в автоклаве в течение 2 часов при температуре 130 °C, что обеспечивает:

- превосходную стойкость к суровым условиям промышленной среды;
- отличную электрическую прочность диэлектрика;
- очень хорошую устойчивость к осевым нагрузкам при коротком замыкании.

Концы обмотки НН покрыты соединениями из луженого алюминия или меди, поэтому при выполнении подключений контактный интерфейс не требуется.

Обмотка высокого напряжения

Обмотка высокого напряжения выполняется из изолированного алюминиевого провода по методу «линейный градиент напряжения».

Использование данного метода обеспечивает очень низкий уровень механического напряжения между соседними проводниками благодаря линейному градиенту напряжения, направленному сверху вниз по обмотке. Это увеличивает последовательную емкость в обмотке и, следовательно, улучшает распределение импульсной волны. Незначительная разность потенциалов между соседними проводниками позволяет исключить межслойную изоляцию и обеспечивает высокое качество литой изоляции, покрывающей все проводники.

Обмотка высокого напряжения заливается изоляцией класса F. Изоляция состоит из эпоксидной смолы с инертными и огнестойкими наполнителями, при этом процессы смешивания и заливки осуществляются в вакууме. Эта технология придает обмоткам очень высокие диэлектрические свойства с очень низким уровнем частичных разрядов.

Загрузка = тригидрат алюминия + кремнезем 50 % Предварительное смешивание Окончательное смешивание Окончательное смешивание

Схема процесса вакуумной заливки изоляции ВН

1-й противопожарный эффект: образование отражающего огнеупорного экрана из глинозема (окись алюминия)

2-й противопожарный эффект: образование преграды из водяного пара

3-й противопожарный эффект: поддержание температуры ниже точки воспламенения

Сочетание трех противопожарных эффектов

Немедленное самогашение

Литая изоляция обмотки ВН

Технология заливки изоляции обмотки ВН предполагает нанесение в вакууме смолы с огнестойким наполнителем по технологии, разработанной и запатентованной компанией Schneider Electric.

Литая изоляция класса F состоит из:

- эпоксидной смолы на основе бифенола необходимой вязкости, обеспечивающей превосходное качество пропитки обмоток;
- ангидридного отвердителя, который обеспечивает отличные термические и механические свойства. Присадка для придания гибкости служит основой эластичности изоляции и препятствует появлению трещин в процессе эксплуатации;
- активного порошкового наполнителя, состоящего из кремнезема и тригидрата алюминия, тщательно смешанных со смолой и отвердителем.

Кремнезем повышает механическую прочность изоляции и увеличивает рассеивание тепла. Тригидрат алюминия гарантирует высокие противопожарные свойства трансформатора Trihal. Тригидрат алюминия способствует проявлению 3 противопожарных эффектов, возникающих в случае обгорания литой изоляции (когда трансформатор подвергается воздействию пламени):

- 1-й противопожарный эффект: образование отражающего огнеупорного экрана из окиси алюминия;
- 2-й противопожарный эффект: образование преграды из водяного пара;
- 3-й противопожарный эффект: поддержание температуры ниже точки воспламенения

В результате сочетания этих 3 противопожарных эффектов происходит немедленное самогашение трансформатора Trihal.

Помимо диэлектрических качеств литая изоляция придает трансформатору Trihal превосходную огнестойкость в сочетании со способностью к самогашению, а также обеспечивает надежную защиту от неблагоприятных воздействий промышленной среды.

Процесс заливки изоляции обмотки ВН

Весь процесс, от дозирования до полимеризации, автоматизирован, что позволяет избежать каких-либо ошибок при ручном управлении. Тригидрат и окись алюминия высушиваются и дегазируются в вакууме с целью полного удаления влаги и воздуха, которые могут привести к снижению диэлектрических характеристик литой изоляции. Половина вышеуказанного состава смешивается в глубоком вакууме со смолой, а вторая половина – с отвердителем, в результате чего получаются две однородные смеси.

Перед окончательным перемешиванием снова производится дегазация с помощью тонкой пленки. Затем осуществляется заливка в предварительно высушенные и подогретые формы при оптимальной температуре пропитки.

Цикл полимеризации начинается с желеобразования при температуре 80 °C и заканчивается длительной полимеризацией при температуре 140 °C. Данные показатели температуры близки к эксплуатационным показателям трансформатора, за счет чего устраняется механическая нагрузка, вызывающая растрескивание покрытия.

Характеристики

Основные параметры трансформаторов Triha EASY

	Стандартное исполнение
Производственные стандарты	ГОСТ P 52719-2007
Сертификация	C3*, E2, F1, ≤ 10 pC
Обмотки ВН/НН	Обмотка ВН с литой изоляцией/обмотка НН с пропитанной изоляцией
Установка	Внутренняя установка: IP00 (без кожуха) / IP21 или IP31 (с кожухом)
Материал изготовления обмотки	Al/Al
Фазы	Три фазы
Система охлаждения	Стандартное исполнение: • AN (естественное охлаждение) • AF25 или AF40 (принудительное охлаждение)
Макс. температура °С/высота над уровнем моря	40°С/1000 м
Класс нагрева стойкости изоляции	F
Номинальная частота	50 Гц
Ном. мощность	250, 400, 630, 1000, 1250, 1600, 2000, 2500 κBA
Напряжение короткого замыкания Uk	6%
Группы соединений	Y/Yn-0, D/Yn-11
Номинальное напряжение ВН	6; 6,3; 10; 10,5 κB
Номинальное напряжение НН	0,4 кВ
Ном. напряжение, выдерживаемое изоляцией обмотки ВН	До 12 кВ (ГОСТ Р 52719-2007)
Переключение отпаек обмотки ВН	ПБВ; ±2×2,5%
Ном. напряжение, выдерживаемое изоляцией обмотки НН	1.1 кВ
Тепловая защита	3 датчика РТ100 и один блок контроля температуры ТР-100
Приемо-сдаточные испытания	Стандартные испытания: в соответствии с ГОСТ Р 52719-2007 Протокол ПСИ на русском языке

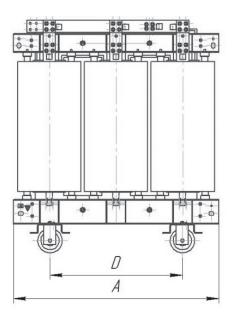
Нормальные условия эксплуатации

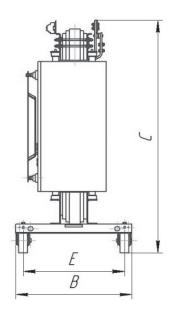
Трансформаторы Trihal EASY должны эксплуатироваться в районах с умеренным климатом.
Климатическое исполнение «У», категория размещения 3 по ГОСТ 15150

Температура окруж. воздуха

От -45 до +40 °C

Высота над уровнем моря
Меньше или равная 1000 м

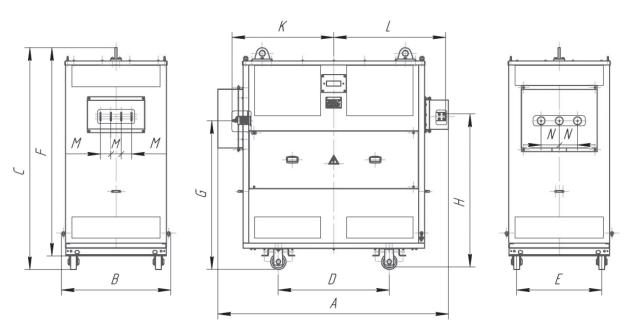

Относительная влажность воздуха (по ГОСТ 15543.1)
Не более 80% при 15 °C и 100% при 25 °C


Основные технические данные сухих распределительных трансформаторов серии Trihal Easy класса напряжения 10 и 6 кВ

Обозначение	Ном.	Схема и группа соединения обмоток	Потери холостого хода, Вт	Потери ко	роткого зам	Напряжение	Ток холостого	
трансформатора	мощность, кВА			при 75 °C	при 115 °C	при 120 °C	короткого замыкания, %	хода, %
Trihal Easy-ТСЛ(3)-250	250		680	2510	2845	2887	6	1.9
Trihal Easy-TCЛ(3)-400	400	D/Үн-11	980	3750	4255	4313	6	1.8
Trihal Easy-ТСЛ(3)-630	630		1100	5912	6712	6799	6	1.6
Trihal Easy-TCЛ(3)-1000	1000		1550	8500	9654	9775	6	1.2
Trihal Easy-ТСЛ(3)-1250	1250	Ү/Үн-0	1900	10100	11475	11615	6	1.1
Trihal Easy-TCЛ(3)-1600	1600		2300	11850	13466	13628	6	1.0
Trihal Easy-ТСЛ(3)-2000	2000		2690	13637	15319	15683	6	0.9
Trihal Easy-TCΠ(3)-2500	2500		3200	16700	18984	19205	6	0.8

Габаритные и установочные размеры

Трансформаторы типа ТСЛ**



Номинальная		Размеры, мм							
мощность, кВА	А	В	С	D	E				
250	1195	620	1425	720	520	805			
400	1290	770	1460*	840	670	1300			
630	1450*	770	1510	840	670	2050			
1000	1570*	940	1787*	1070	820	2800			
1250	1660	940	1900	1070	820	3100			
1600	1716	940	2142	1070	820	3500			
2000	1820	1190	2250*	1070	1070	4480*			
2500	2000	1180	2225	1070	1070	5350*			

^{*} Указан максимальный параметр. Параметр изменяется в зависимости от исполнения трансформатора, точный размер указан на габаритном чертеже трансформатора.

^{**} По требованию заказчика может быть предоставлен подробный габаритный чертеж с указанием присоединительных и других необходимых размеров.

Трансформаторы типа ТСЗЛ**

Номинальная	Размеры, мм								Масса, кг				
мощность, кВА	A	В	С	D	E	F	G	Н	K	L	N	М	
250	1885	880	1750	720	520	1655	955	1120	780	820	175	100	965
400	1990	980	1770	840	670	1685	1240	1305	865	955	175	100	1530
630	2075	980	2000	840	670	1915	1355	1450	912	1005	175	100	2320
1000	2225	1055	2140	1070	820	2010	1435	1475	1000*	1080	175	100	3080
1250	2585	1080	2295	1070	820	2135	1505	1655	1040	1200	175	130	3415
1600	2635	1180	2660	1070	820	2500	1650	1855	1110	1255	175	130	3950
2000	2840	1270	2720*	1070	1070	2575*	1750	1855	1160	1350	175	130	4870*
2500	2980	1270	2800	1070	1070	2650	1790	1855	1220	1435	175	130	5780*

^{*} Указан максимальный параметр. Параметр изменяется в зависимости от исполнения трансформатора, точный размер указан на габаритном чертеже трансформатора.

^{**} По требованию заказчика может быть предоставлен подробный габаритный чертеж с указанием присоединительных и других необходимых размеров.

Для заметок

Schneider Electric

Центр поддержки клиентов 8 (800) 200 64 46 (звонок по России бесплатный) ru.ccc@schneider-electric.com www.schneider-electric.com