I/A Series® Intelligent Vortex Model 84
Flanged (Styles A and B), Wafer, and MNPT Flowmeters with HART Communication

Installation, Operation, Troubleshooting, and Maintenance
Setup Mode..67
Setting Fluid Parameters..68
Setting Flow Parameters..71
Setting Tuning Parameters..72
Setting Totals Parameters..73
Setting Output Parameters..74
Setting Piping Parameters...75
Setting Tag Parameters..77
Setting Flowtube Parameters...77
Changing the Password..77
Setup Menu Tree ..78
Calibration/Test Mode ..80
Calibration ...81
Test..81
Error Messages ..83
Operation Error Messages ...83
Configuration Error Messages ..83

4. Operation Via HART Communicator ...85
Online Menu ...85
Explanation of Parameters ...89

5. Troubleshooting ...95
Flowmeter Output Indicates Flow When There Is No Flow ..95
Flowmeter Has No Output (No mA Output and the Display [If So Equipped] Is Blank)96
Flowmeter Has No Output With Flow, But Has a 4 mA Signal and a Lighted Display (If So Equipped)..96
Flowmeter Output Increases With Flow, However When It Approaches Full Scale, the Output Suddenly Goes To 4 mA ...97
Flowmeter with Remote Mounted Electronics Has No Output or Low Output With Flowing Conditions ...97
Electronics Module Test ...98
Flowmeter Has Incorrect Output ...99

6. Maintenance...101
Introduction ...101
Vortex Generation and Shedding ...101
Vortex Sensing ..101
Electronic Module ...102
Electronic Module Removal ..102
Electronic Module Replacement ..103
Figures

1. ANSI Flange Ratings; per ASME B16.5; Group 2.2 Materials; Standard Pressure Options:
 Style A: Cast Tubes (3/4 to 4 Inch, CF8M) and Flanges (CF8M, 4-inch Class 150 with
 Welded Slip-On Flanges); Style B: Cast Tubes (3/4 to 4 Inch, CF8M) and Welded
 Weld-Neck Flanges (316 SS) ..16

2. ANSI Flange Ratings; per ASME B16.5; Group 2.2 Materials; High Pressure Options: Style B
 Only: Cast Tubes (3/4 to 4 Inch, CF8M) and Welded Weld-Neck Flanges (316 SS)17

3. ANSI Flange Ratings; per ASME B16.5; Group 2.1 Materials; Standard Pressure Options:
 Style A: Fabricated Tubes (6 to 12 Inch, 304 SS) and Welded Flanges (304 SS); Style B:
 Cast Tubes (6 to 12 Inch, CF8M) and Welded Weld-Neck Flanges (304 SS)17

4. ANSI Flange Ratings; per ASME B16.5; Group 1.1 Materials; Standard Pressure Options:
 Style A: Fabricated Tubes (3/4 to 12 Inch, 304 SS) and Welded Flanges (Carbon Steel);
 Style B: Cast Tubes (3/4 to 12 Inch, CF8M) and Welded Weld-Neck Flanges (Carbon
 Steel)...17

5. ANSI Flange Ratings; per ASME B16.5; Group 1.1 Materials; High Pressure Options:
 Style B Only: Cast Tubes (3/4 to 8 Inch, CF8M), and Welded Weld-Neck Flanges
 (Carbon Steel)..18

6. ANSI Flange Ratings; per ASME B16.5; Group 2.8 Materials; Standard Pressure Options:
 Style B Only: Cast Tubes (3/4 to 12 Inch, CD3MN Duplex SS), and Welded Weld-Neck
 Flanges (ASTM A182 Gr. F51 Duplex SS) ...19

7. ANSI Flange Ratings; per ASME B16.5; Group 2.8 Materials; High Pressure Options: Style B
 Only: Cast Tubes (3/4 to 8 Inch, CD3MN Duplex SS) and Welded Weld-Neck Flanges
 (ASTM A182 Gr. F51 Duplex SS) ..19

8. ANSI Flange Ratings; per ASME B16.5; Group 3.8 Materials; Standard Pressure Options:
 Style B Only: Cast Tubes (3/4 to 12 Inch, CX2MW Nickel Alloy [equivalent to
 Hastelloy® C-22]) and Welded Weld-Neck Flanges (N06022 [equivalent to Hastelloy®
 C-22]) ..20

9. ANSI Flange Ratings; per ASME B16.5; Group 3.8 Materials; High Pressure Options: Style B
 Only: Cast Tubes (3/4 to 8 Inch, CX2MW Nickel Alloy [equivalent to Hastelloy®
 C-22]), and Welded Weld-Neck Flanges (N06022 [equivalent to Hastelloy® C-22])20

10. Metric Flange Ratings; per EN 1092-1; Material Group 14E0 Materials: Style A: Cast Tubes
 (DN15 to DN100, CF8M) and Flanges (CF8M, 4-inch Class 150 with Welded Slip-On
 Flanges); Style B: Cast Tubes (DN15 to DN100, CF8M) and Welded Weld-Neck Flanges
 (316 SS) ...21

11. Metric Flange Ratings; per EN 1092-1; Material Group 10E0s: Style A: Fabricated Tubes
 (DN150 to DN300, 304 SS) and Welded Weld-Neck Flanges (304 SS); Style B: Cast
 Tubes (DN150 to DN300, CF8M) and Welded Weld-Neck Flanges (304 SS)..............21

12. Metric Flange Ratings; per EN 1092-1; Material Group 3E0:
 Style A: Fabricated Tubes, (DN150 to DN300, 304 SS) and Welded Weld-Neck Flanges
 (Carbon Steel); Style B: Cast Tubes (DN15 to DN300, CF8M) and Welded Weld-Neck
 Flanges (Carbon Steel) ...22

13. Metric Flange Ratings; per EN 1092-1; Material Group 16E0; Standard Pressure Options:
 Style B Only: Cast Tubes, DN150 to DN300 Duplex Materials, and Welded Weld-Neck
 Flanges ...22
14 Pressure -Temperature Limits with Isolation Valves ...24
15 Sample Flowmeter Data Plate..32
16 Sample Junction Box Data Plate..32
17 Piping Arrangements..35
18 Piping for Gas Applications..36
19 Piping for Saturated Steam Applications..37
20 Insulation...38
21 Sensor Mounting to Minimize Effect of Vibration...38
22 Typical Piping Configuration..40
23 Pressure and Temperature Tap Locations ...41
24 84F Flowmeter Installation..42
25 84W Flowmeter Centering (using Spacers)..44
26 Mounting the Remote Electronics Housing...45
27 Cover Locks..45
28 Write Protect Jumper..46
29 Housing Screw or Clip Location ..47
30 Connection of Remote Signal Cable (Junction Box End) ...49
31 Accessing Field Terminals..51
32 Identification of Field Terminals..51
33 Supply Voltage and Loop Load..52
34 Loop Wiring 4 to 20 mA Output Flowmeters..54
35 Typical Multidrop Network..55
36 Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output Transistor
 Switch (Sinking) Counter Input with Receiver Supplied Power......................................56
37 Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output
 Transistor Switch (Sinking) Counter Input with External Power Supply and Pull-Up
 Resistor..57
38 Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output
 Transistor Switch (Sourcing) Counter Input with External Power Supply and Pull-Up
 Resistor..57
39 Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output
 Using a 3-Wire Hookup...58
40 Local Display..59
41 Top Level Modes and Their Basic Functions..64
42 Status Mode Structure Diagram...66
43 View Mode Structure Diagram...67
44 Piping Configurations...76
45 Setup Menu Tree (1 of 3)...78
46 Setup Menu Tree (2 of 3)...79
47 Setup Menu Tree (3 of 3)...80
48 Calibration/Test Menu Tree..82
49 84 Vortex Flowmeter Online Menu Tree (1 of 4)..85
50 84 Vortex Flowmeter Online Menu Tree (2 of 4)..86
51 84 Vortex Flowmeter Online Menu Tree (3 of 4)..87
52 84 Vortex Flowmeter Online Menu Tree (4 of 4)..88
53 Electronic Module Connections...103
54 Display Connection..104
55 Preamplifier Assembly - Integ rally Mounted...106
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Preamplifier Assembly - Remotely Mounted</td>
<td>108</td>
</tr>
<tr>
<td>57</td>
<td>Connections for Post-Assembly Dielectric Test</td>
<td>110</td>
</tr>
<tr>
<td>58</td>
<td>Sensor Replacement - Integrally Mounted Flowmeter</td>
<td>113</td>
</tr>
<tr>
<td>59</td>
<td>Bonnet Bolt Torquing Sequence</td>
<td>114</td>
</tr>
<tr>
<td>60</td>
<td>Sensor Replacement - Remotely Mounted Flowmeter</td>
<td>117</td>
</tr>
<tr>
<td>61</td>
<td>Bonnet Bolt Torquing Sequence</td>
<td>120</td>
</tr>
<tr>
<td>62</td>
<td>Single Isolation Valve (Style A)</td>
<td>121</td>
</tr>
<tr>
<td>63</td>
<td>Dual Isolation Manifold (Style A)</td>
<td>122</td>
</tr>
<tr>
<td>64</td>
<td>Bonnet Bolt Torquing Sequence</td>
<td>123</td>
</tr>
<tr>
<td>65</td>
<td>Single Isolation Valve (Style B)</td>
<td>124</td>
</tr>
<tr>
<td>66</td>
<td>Bonnet Bolt Torquing Sequence</td>
<td>125</td>
</tr>
<tr>
<td>67</td>
<td>Dual Isolation Manifold (Style B)</td>
<td>126</td>
</tr>
</tbody>
</table>
Tables

1 Nominal Flow Velocity Limits...15
2 Electrical Safety Specifications..25
3 Configurable Parameters ...27
4 Mounting Arrangements ..29
5 Preparation of Remote Signal Cable (Junction Box End)48
6 Operation of Function Keys ..60
7 Default Database When User Information Not Supplied62
8 Default Database for Liquid ..62
9 Default Database for Gas ...62
10 Default Database for Steam ...63
11 Available Engineering Units ...69
12 All Flow EGU Descriptions (Volume, Mass, Base Volume, and Velocity)69
13 Viscosity, K-Factor, Density, and Temperature EGU Descriptions70
14 Available Totalizer Units ...73
15 Totalizer EGU Descriptions ...74
16 Operation Error Messages ...83
17 Configuration Error Messages ...83
18 Electronic Module Terminal Block Connections102
19 Maximum Test Pressure ..115
1. Introduction

Overview

The 84F-T (Styles A and B), 84F-U (Styles A and B), 84W-T, and 84W-U Vortex Flowmeters measure fluid (liquid, gas, or steam) flow rates using the principle of vortex shedding. The flowmeters produce a digital signal (HART protocol) and a 4-20 mA analog signal. The 84F-T (Styles A and B) and 84W-T also produce a pulse signal proportional to the volumetric flow rate.

Fluid flowing through the flowmeter body passes a specially shaped vortex shedder that causes vortices to form and shed alternately from the sides of the shedder at a rate proportional to the flow rate of the fluid. These shedding vortices create an alternating differential pressure that is sensed by a detector located above the shedder. A pulsed voltage is generated by the detector with a frequency that is synchronous with the vortex shedding frequency. This signal is then conditioned by an Electronic Module and processed by the microcontroller to produce a digital signal, an analog (4-20 mA dc) signal, and in the 84F-T (Styles A and B) and 84W-T a pulse signal.

The flowmeter allows direct analog connection to common receivers while still providing full digital communications using a HART Communicator or a PC-Based configurator.

Style A Vortex meters have flanges cast for 3/4 through 4 inch line sizes. For 6 to 12 inch line sizes, Style A Vortex meters have a modular design with pipe centerbody and welded flanges. This style will be replaced by Style B incrementally as new castings become available, starting in 2011.

The Style B Vortex meter has a modular design with cast centerbody and welded flanges. The standard face-to-face of Style B is different from Style A for some models and backward compatible face-to-face are available as an option. Style B offers new materials such as Duplex SS, and nickel alloy CX2MW (equivalent to Hastelloy® C-22(1)) and high-pressure options to Class 1500 and PN160. The Style B Vortex is also offered with a MNPT (Male National Pipe Thread) end connection in 3/4 inch through 2 inch line sizes.

1. Hastelloy® is a registered trademark of Haynes International Inc.
Reference Documents

In addition to this instruction, there is other user documentation supporting the 84F-T (Styles A and B), 84F-U (Styles A and B), 84W-T, and 84W-U Vortex Flowmeters, as listed below.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Document Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 019-120</td>
<td>84F Style A Flanged Body — Single Measurement Configuration</td>
</tr>
<tr>
<td>DP 019-121</td>
<td>84F Style A Flanged Body — Dual Measurement Configuration</td>
</tr>
<tr>
<td>DP 019-125</td>
<td>84F Style B Flanged Body — Single Measurement Configuration</td>
</tr>
<tr>
<td>DP 019-126</td>
<td>84F Style B Flanged Body — Dual Measurement Configuration</td>
</tr>
<tr>
<td>DP 019-122</td>
<td>84W Wafer Body</td>
</tr>
<tr>
<td>PL 008-714</td>
<td>84F Style A Flanged and 84W Wafer Body Flowmeters</td>
</tr>
<tr>
<td>PL 008-753</td>
<td>84F Style B Flanged Body Flowmeters</td>
</tr>
<tr>
<td>B0800AJ</td>
<td>Ensuring Premium Performance with Foxboro 84 Series Vortex Flowmeters</td>
</tr>
<tr>
<td>MI 019-146</td>
<td>83 and 84 I/A Series Intelligent Vortex Flowmeter Universal Instruction Manual</td>
</tr>
<tr>
<td>MI 019-177</td>
<td>84 Vortex Flowmeter FM and CSA Connection Diagrams</td>
</tr>
<tr>
<td>MI 019-179</td>
<td>Flow Products Safety Information</td>
</tr>
</tbody>
</table>

1. Hastelloy® is a registered trademark of Haynes International Inc.
Nominal Flow Velocity Limits: Can be calculated per Table 1.

Table 1. Nominal Flow Velocity Limits

<table>
<thead>
<tr>
<th>Range Limit</th>
<th>Std. Temp. Range</th>
<th>High Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft/s m/s</td>
<td>ft/s m/s</td>
</tr>
<tr>
<td>Lower</td>
<td>2.5/3.0/5.0</td>
<td>250/300/250</td>
</tr>
<tr>
<td>Upper</td>
<td>3.0/3.0/6.0</td>
<td>300/300/300</td>
</tr>
</tbody>
</table>

--- NOTE ---

The calculations in Table 1 apply for many applications, but they provide only nominal limits. We recommend using the FlowExpert Pro™ sizing program for your specific application.

Static Pressure Limits:

- Minimum: Pressure sufficient to prevent flashing and meet the pressure drop requirements to attain maximum flow rate. Refer to the FlowExpertPro sizing program.
- Maximum: Determined by flange rating.

Flowmeter Output:

- Analog: 4 to 20 mA dc into a maximum 1350 ohm load depending on power supply (see Figure 33).
- Digital (HART): Digital signal conveyed at 1200 Baud transmission rates via Frequency Shift Keying (FSK) tones superimposed on power supply leads.
- Pulse Output in 84F-T (Styles A and B) and 84W-T only: Isolated 2 wire transistor switch. Pulse rate (0 to 10, 100, or 1000 Hz) proportional to volumetric flow rate or total flow.

--- NOTE ---

Accuracy of 0 to 10 Hz pulse rate is ±0.1% from 3 to 10 Hz and ±0.3% from 0 to 3 Hz.

Pulse Output Specifications

- Isolated 2-wire transistor switch
- Applied voltage: 5 to 30 V dc
- Maximum ‘ON’ state voltage drop: 1.0 V dc
- Maximum ‘ON’ state current: 20 mA dc
- Reverse polarity protected
- Short Circuit protected
- Connectable to pull-up and pull-down counters

Maximum Working Pressure:

- 84F Flanged Body Flowmeters

 The maximum working pressure (MWP) of the flowtube at 100°F is shown on the data label.
The MWP at other temperatures for the 84F Flanged Body Flowmeter without isolation valve is given in Figure 1 through Figure 12. The nominal line size, body and flange material, and flange rating required to use these figures is found within the model number on the data label as follows:

Figure 1. ANSI Flange Ratings; per ASME B16.5; Group 2.2 Materials; Standard Pressure Options:
Style A: Cast Tubes (3/4 to 4 Inch, CF8M) and Flanges (CF8M, 4-inch Class 150 with Welded Slip-On Flanges); Style B: Cast Tubes (3/4 to 4 Inch, CF8M) and Welded Weld-Neck Flanges (316 SS)
Figure 2. ANSI Flange Ratings; per ASME B16.5; Group 2.2 Materials; High Pressure Options: Style B Only: Cast Tubes (3/4 to 4 Inch, CF8M) and Welded Weld-Neck Flanges (316 SS)

Figure 3. ANSI Flange Ratings; per ASME B16.5; Group 2.1 Materials; Standard Pressure Options: Style A: Fabricated Tubes (6 to 12 Inch, 304 SS) and Welded Flanges (304 SS); Style B: Cast Tubes (6 to 12 Inch, CF8M) and Welded Weld-Neck Flanges (304 SS)
Figure 4. ANSI Flange Ratings; per ASME B16.5; Group 1.1 Materials; Standard Pressure Options: Style A: Fabricated Tubes (3/4 to 12 Inch, 304 SS) and Welded Flanges (Carbon Steel); Style B: Cast Tubes (3/4 to 12 Inch, CF8M) and Welded Weld-Neck Flanges (Carbon Steel)

Figure 5. ANSI Flange Ratings; per ASME B16.5; Group 1.1 Materials; High Pressure Options: Style B Only: Cast Tubes (3/4 to 8 Inch, CF8M), and Welded Weld-Neck Flanges (Carbon Steel)
Figure 6. ANSI Flange Ratings; per ASME B16.5; Group 2.8 Materials; Standard Pressure Options: Style B Only: Cast Tubes (3/4 to 12 Inch, CD3MN Duplex SS), and Welded Weld-Neck Flanges (ASTM A182 Gr. F51 Duplex SS)

Figure 7. ANSI Flange Ratings; per ASME B16.5; Group 2.8 Materials; High Pressure Options: Style B Only: Cast Tubes (3/4 to 8 Inch, CD3MN Duplex SS) and Welded Weld-Neck Flanges (ASTM A182 Gr. F51 Duplex SS)
Figure 8. ANSI Flange Ratings; per ASME B16.5; Group 3.8 Materials; Standard Pressure Options: Style B Only: Cast Tubes (3/4 to 12 Inch, CX2MW Nickel Alloy [equivalent to Hastelloy® C-22]) and Welded Weld-Neck Flanges (N06022 [equivalent to Hastelloy® C-22])

Figure 9. ANSI Flange Ratings; per ASME B16.5; Group 3.8 Materials; High Pressure Options: Style B Only: Cast Tubes (3/4 to 8 Inch, CX2MW Nickel Alloy [equivalent to Hastelloy® C-22]), and Welded Weld-Neck Flanges (N06022 [equivalent to Hastelloy® C-22])
1. Introduction

Figure 10. Metric Flange Ratings; per EN 1092-1; Material Group 14E0 Materials: Style A: Cast Tubes (DN15 to DN100, CF8M) and Flanges (CF8M, 4-inch Class 150 with Welded Slip-On Flanges); Style B: Cast Tubes (DN15 to DN100, CF8M) and Welded Weld-Neck Flanges (316 SS)

Figure 11. Metric Flange Ratings; per EN 1092-1; Material Group 10E0s: Style A: Fabricated Tubes (DN150 to DN300, 304 SS) and Welded Weld-Neck Flanges (304 SS); Style B: Cast Tubes (DN150 to DN300, CF8M) and Welded Weld-Neck Flanges (304 SS)
Figure 12. Metric Flange Ratings; per EN 1092-1; Material Group 3E0:
Style A: Fabricated Tubes, (DN150 to DN300, 304 SS) and Welded Weld-Neck Flanges (Carbon Steel);
Style B: Cast Tubes (DN15 to DN300, CF8M) and Welded Weld-Neck Flanges (Carbon Steel)

Figure 13. Metric Flange Ratings; per EN 1092-1; Material Group 16E0; Standard Pressure Options:
Style B Only: Cast Tubes, DN150 to DN300 Duplex Materials, and Welded Weld-Neck Flanges
Isolation Valves

Flowmeters equipped with an isolation valve have Pressure-Temperature limits as shown in Figure 14. The temperature range of your flowmeter is found within the model number on the data label as follows:

84F-T02S2KDJK

TEMPERATURE RANGE ---- STD TEMP = D, F, R, or S

ISOLATION VALVE (K or L) ---- EXT TEMP = C or T
Figure 14. Pressure -Temperature Limits with Isolation Valves
84W Wafer Body Flowmeters

The maximum working pressure (MWP) of the flowtube at 100°F is shown on the data label. The wafers are designed for a maximum Class 600 working pressure.

Threaded (MNPT) Vortex Meters

The maximum working pressure (MWP) for 3/4” to 1.5” flowmeters is equivalent to ASME Class 1500. For 2” schedule 80 (end connection “-V”) flowmeters the pressure rating is comparable to ASME Class 900 whereas for 2” schedule 160 (end connection “-W”) flowmeters the pressure rating is comparable to ASME Class 1500.

Electrical Safety Specifications

--- NOTE ---
1. These flowmeters have been designed to meet the electrical safety descriptions listed in Table 2. For detailed information or status of testing laboratory approvals/certifications, contact Global Customer Support.
2. See MI 019-179 for additional ATEX and IECEx safety information.
3. With intrinsically safe approvals and certifications with a 24 V dc supply, an active barrier is required.

<table>
<thead>
<tr>
<th>Agency Certification, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX intrinsically safe:</td>
<td>Sira 06ATEX2067X Integrally mounted or remote mounted (electronics and junction box). Temperature Class T4; Ta = -40° to +80°C</td>
<td>E</td>
</tr>
<tr>
<td>II 1G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex ia IIC T4 Ga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex tb IIC T103°C Db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATEX flameproof:</td>
<td>Sira 06ATEX2067X Integrally mounted electronics. Temperature Class T4; Ta = -20° to +80°C</td>
<td>H</td>
</tr>
<tr>
<td>II 2/1 (1) G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex d [ia Ga] ia IIC T4 Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex tb IIIIC T85°C Db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATEX flameproof:</td>
<td>Sira 06ATEX2067X Electronics housing of remote mounted version. Temperature Class T4; Ta = -20° to +80°C</td>
<td></td>
</tr>
<tr>
<td>II 2/1 (1) G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex d [ia Ga] IIC T4 Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex tb IIIIC T85°C Db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSA intrinsically safe for Class I, II, III, Div. 1, Groups A, B, C, D, E, F, and G. Also, Zone certified intrinsically safe Ex ia IIC</td>
<td>Temperature Class T4; Ta = -40° to +80°C</td>
<td>C</td>
</tr>
<tr>
<td>CSA explosionproof with IS sensor connection for Class I, Div. 1, Groups B, C, and D; dust-ignitionproof for Class II, Div. 1, Groups E, F, and G; Class III, Div. 1</td>
<td>Temperature Class T5; Ta = 60°C</td>
<td>D</td>
</tr>
<tr>
<td>Also Zone certified Ex d [ia] IIC.</td>
<td>Temperature Class T5; Ta = -40° to +80°C</td>
<td></td>
</tr>
<tr>
<td>CSA for Class I, Div. 2, Groups A, B, C, and D; Class II, Div. 2, Groups F and G; Class III, Div. 2.</td>
<td>Temperature Class T4; T = 80°C</td>
<td>M</td>
</tr>
</tbody>
</table>
Table 2. Electrical Safety Specifications (Continued)

<table>
<thead>
<tr>
<th>Agency Certification, Types of Protection, and Area Classification</th>
<th>Application Conditions</th>
<th>Electrical Safety Design Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM intrinsically safe for Class I, II, III, Div. 1, Groups A, B, C, D, E, F, G; Also, Zone approved AEx ia IIC</td>
<td>Connect per MI 019-177. Temperature Class T4; Ta = 80°C</td>
<td>F</td>
</tr>
<tr>
<td>FM explosionproof with IS sensor connection for Class I, Div. 1, Groups B, C, and D; dust-ignitionproof for Class II, Div. 1, Groups E, F, and G; Class III, Div. 1</td>
<td>Connect per MI 019-177. Temperature Class T5; Ta = 85°C</td>
<td>G</td>
</tr>
<tr>
<td>FM nonincendive for Class I, Div. 2, Groups A, B, C, and D; Class II, Div. 2, Groups F and G; Class III, Div. 2</td>
<td>Connect per MI 019-177. Temperature Class T4; Ta = 80°C</td>
<td>K</td>
</tr>
<tr>
<td>IECEEx intrinsically safe: Ex ia IIC T4 Ga Ex tb IIC T103°C Db</td>
<td>IECEx SIR 06.0020X Temperature Class T4; Ta = -40° to +80°C</td>
<td>L</td>
</tr>
<tr>
<td>IECEEx flameproof: Ex d [ia Ga] ia IIC T4 Gb Ex tb IIC T85°C Db</td>
<td>IECEx SIR 06.0020X Integrially mounted electronics. Temperature Class T4; Ta = -20° to +80°C</td>
<td>B</td>
</tr>
<tr>
<td>IECEEx flameproof: Ex d [ia Ga] IIC T4 Gb Ex tb IIC T85°C Db</td>
<td>IECEx SIR 06.0020X Electronic housing of remote mounted version. Temperature Class T4; Ta = -20° to +80°C</td>
<td>B</td>
</tr>
<tr>
<td>NEPSI intrinsically safe, Zone 0, Ex ia IIC</td>
<td>Temperature Class T4; Ta = -40° to +80°C</td>
<td>R</td>
</tr>
<tr>
<td>NEPSI flameproof, Zone 1, Ex d IIC (except acetylene)</td>
<td>Temperature Class T5; Ta = -40° to +85°C</td>
<td>S</td>
</tr>
<tr>
<td>Unit with CE mark and PED controls and records</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Unit does not have CE mark; not to be installed in European Union (EU) countries</td>
<td></td>
<td>Z</td>
</tr>
</tbody>
</table>

ATEX and IECEx Warnings

Ensure area is known to be nonhazardous before removing cover.

To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing.

Explosion Hazard - Do not disconnect equipment unless poser has been turned off or the area is known to be nonhazardous.

Explosion Hazard - Substitution of components may impair safety.

Do not open while circuits are alive.

ATEX Compliance Documents

EN 60079-1:2007
EN 60079-26:2007
EN 60079-31:2008
IEC 60079-0:2011
IEC 60079-11:2011
IECEx Compliance Documents

IEC 60079-0:2011 Ed 6
IEC 60079-1:2007 Ed 6
IEC 60079-11:2011 Ed 6
IEC 60079-26:2007 Ed 2
IEC 60079-31:2008 Ed 1

Configurable Parameters

Table 3 lists all of the configurable parameters and the factory default for the 84 Vortex Flowmeter.

Table 3. Configurable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Capability</th>
<th>Factory Default</th>
<th>Configurable with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral Indicator</td>
</tr>
<tr>
<td>Fluid</td>
<td>2 Fluid</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Fluid Type</td>
<td>3 New</td>
<td>Gas, Liquid, Steam</td>
<td>Liquid</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluid Name</td>
<td>3 Name</td>
<td></td>
<td>Water</td>
<td>Yes</td>
</tr>
<tr>
<td>Temperature Unit</td>
<td>3 TmpEGU</td>
<td>degK, degF, degC, degR</td>
<td>deg F</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Temperature</td>
<td>3 FlwTmp</td>
<td></td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>Density Unit</td>
<td>3 DenEGU</td>
<td>Pick list of density units</td>
<td>lb/ft3</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Density</td>
<td>3 FlwDen</td>
<td></td>
<td>62.315</td>
<td>Yes</td>
</tr>
<tr>
<td>Base Density</td>
<td>3 BasDen</td>
<td></td>
<td>62.378</td>
<td>Yes</td>
</tr>
<tr>
<td>Viscosity Unit</td>
<td>3 VisEGU</td>
<td>cPoise or cStoke</td>
<td>cP</td>
<td>Yes</td>
</tr>
<tr>
<td>Viscosity</td>
<td>3 Visc</td>
<td></td>
<td>0.98</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>2 Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Type</td>
<td>3 FlwMap</td>
<td>VolFlow, BVolFlow, MassFlow, Velocity</td>
<td>VolFlow</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Units</td>
<td>3 FlwEGU</td>
<td>Picklist</td>
<td>gal/min</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Upper Range Value</td>
<td>3 FlwURV</td>
<td></td>
<td>232.73</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Damping Factor</td>
<td>3 FlwDmp</td>
<td>Pick list of 8 choices from 0 to 32 s</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow Velocity Unit</td>
<td>3 VelEGU</td>
<td>Picklist</td>
<td>ft/s</td>
<td>Yes</td>
</tr>
<tr>
<td>Tuning</td>
<td>2 Tuning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Conditioning</td>
<td>3AddDrop</td>
<td>On WHL, Off WHL, On FHL, Off FHL</td>
<td>On FHL</td>
<td>Yes</td>
</tr>
<tr>
<td>Reynolds Number Correction</td>
<td>3 ReyCor</td>
<td>On or Off</td>
<td>Off</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Flow Cut-In Level</td>
<td>3 LFCI</td>
<td>1 through 8</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>Total</td>
<td>2 Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Total</td>
<td>3 TotNet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map</td>
<td>4 Map</td>
<td>Volume, Mass, BVolume</td>
<td>Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>EGU</td>
<td>4 EGU</td>
<td>Pick list dependent on Mapping</td>
<td>m3</td>
<td>Yes</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3 TotGrd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map</td>
<td>4 Map</td>
<td>Volume, Mass, BVolume</td>
<td>Volume</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3. Configurable Parameters (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Capability</th>
<th>Factory Default</th>
<th>Configurable with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral Indicator</td>
</tr>
<tr>
<td>EGU</td>
<td>4 EGU</td>
<td>Pick list dependent on Mapping</td>
<td>m³</td>
<td>Yes</td>
</tr>
<tr>
<td>Output</td>
<td>2 Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coms</td>
<td>3 Coms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poll Address</td>
<td>4 PolAddr</td>
<td>0 through 15</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Preambles</td>
<td>4 Preambl</td>
<td>2 to 20</td>
<td>5</td>
<td>Yes</td>
</tr>
<tr>
<td>Fail</td>
<td>3 Fail</td>
<td>Downscale or Upscale</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Pulse</td>
<td>3 Pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>4 Pulse</td>
<td>Raw, Rate, Total</td>
<td>Rate</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(If Raw) Pul=Raw</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(If Rate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Freq End Point</td>
<td>4 Freq</td>
<td>10, 100, 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(If Total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width</td>
<td>4 Pwidth</td>
<td>50 ms</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Units</td>
<td>4 EGU</td>
<td>ft³</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Units per Pulse</td>
<td>4 U/Pulse</td>
<td>1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Display</td>
<td>3 Display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show</td>
<td>4 Show</td>
<td>FlwVol, TotNet, TotGrd (measurements to be displayed and their format)</td>
<td>FlwVol</td>
<td>Yes</td>
</tr>
<tr>
<td>First Measurement</td>
<td>Show1st</td>
<td>FlwVol, Velcty, FlwBVo, FlwMas, Raw</td>
<td>FlwVol</td>
<td>Yes</td>
</tr>
<tr>
<td>Cycle</td>
<td>4 Cycle</td>
<td>Automatic or Manual</td>
<td>Auto</td>
<td>Yes</td>
</tr>
<tr>
<td>Pipe</td>
<td>2 Pipe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping</td>
<td>3 Piping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>4 Config</td>
<td>Picklist of 8 configurations</td>
<td>Straight</td>
<td>Yes</td>
</tr>
<tr>
<td>Upstream Distance</td>
<td>UpDist</td>
<td>(in pipe diameters)</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Bore Size</td>
<td>3 BorSch</td>
<td>Picklist of 8 choices</td>
<td>Sched 40</td>
<td>Yes</td>
</tr>
<tr>
<td>Tags</td>
<td>2 Tags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART Description</td>
<td>3 HrtDes</td>
<td>(16 characters maximum)</td>
<td>HART Description</td>
<td>Yes</td>
</tr>
<tr>
<td>HART Tag</td>
<td>3 HrtTag</td>
<td>(8 characters maximum)</td>
<td>HART Tag</td>
<td>Yes</td>
</tr>
<tr>
<td>HART Message</td>
<td>3 23characters maximum</td>
<td>HART Message</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Flowtube</td>
<td>2 NewTube</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>3 Model</td>
<td>(16 characters maximum)</td>
<td>84F-T02 S1SSTJF</td>
<td>Yes</td>
</tr>
<tr>
<td>Custom Design</td>
<td>3 Special</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowtube Diameter</td>
<td>4 TubDia</td>
<td>Flowtube diameter in meters</td>
<td>0.0491998</td>
<td>Yes</td>
</tr>
<tr>
<td>Coef of Expansion</td>
<td>4 TubAlp</td>
<td>(in mm/mm/degK)</td>
<td>1.7262e⁻⁵</td>
<td>Yes</td>
</tr>
<tr>
<td>LFCI User Factor</td>
<td>4 LlUFac</td>
<td>1.0</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Reference Number</td>
<td>3 Ref No</td>
<td>(16 characters maximum)</td>
<td>123456789 abcddefg</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3. Configurable Parameters (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Capability</th>
<th>Factory Default</th>
<th>Configurable with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral Indicator</td>
</tr>
<tr>
<td>K-Reference</td>
<td>3 K Ref</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>K-Factor Unit</td>
<td>4 K EGU</td>
<td>p/l, p/ft³</td>
<td>p/ft³</td>
<td>Yes</td>
</tr>
<tr>
<td>Reference K-Factor</td>
<td>4 K Ref</td>
<td>(from flowmeter tag)</td>
<td>258</td>
<td>Yes</td>
</tr>
<tr>
<td>Password</td>
<td>2 Passwd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password to reset Net and Pulse Totalizer</td>
<td>3 LoPwd</td>
<td>(4 characters)</td>
<td>(4 spaces)</td>
<td>Yes</td>
</tr>
<tr>
<td>Password for all functions</td>
<td>3 HiPwd</td>
<td>(4 characters)</td>
<td>(4 spaces)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
2. Installation

Fundamental Installation Requirements

These flowmeters must be installed by trained personnel to meet all applicable local installation regulations, such as hazardous location requirements, electrical wiring codes, and mechanical piping codes. The transmitter housing must be grounded to insure proper operation and peak performance.

This chapter outlines recommendations that provide the highest level of flowmeter performance for your process.

Unpacking

Your 84 Series Vortex Flowmeter is built to be durable, but it is part of a calibrated precision system and should be handled as such.

--- NOTE ---

84W Flowmeters may (depending on pressure rating of flanges with which they are used) have a set of centering spacers included. Do not discard these centering spacers. They must be used to install the flowmeter properly.

Flowmeters with remote-mounted electronics have a cable connecting the flowmeter junction box and electronics housing. Do not allow the weight of either the flowmeter body or electronics housing to be supported by the remote cable.

Remove the flowmeter body from the shipping carton using care to avoid dropping or otherwise subjecting it to impact, particularly at the flange or wafer faces. Never put anything through the flowmeter body for lifting purposes as damage to the shedder bar may occur.

After removing the flowmeter body from its shipping carton, inspect it for visible damage. If any damage is observed, notify the carrier immediately and request an inspection report. Obtain a signed copy of the report from the carrier. The calibration certificate and any other documentation shipped with the meter should be separated from the packing material and held for future reference. Re-install any flange covers or protective material to safeguard the meter until it is installed.

Packing material should be disposed of in accordance with local regulations. All packing material is nonhazardous and is generally acceptable to landfills.
Flowmeter Identification

Before installing your flowmeter, check its data plate to assure that it is correct for your application. Specifications such as maximum ambient temperature, process temperature, and working pressure are given on the data plate. The model code is also stamped on the data plate as shown in Figure 15 and is digitally readable from the configuration menu. On flowmeters with remotely mounted electronics, an additional data plate on the flowtube junction box (see Figure 16) shows the Model Code and electrical safety data. For interpretation of the Model Code, refer to PL 008-714 for Style A and PL 008-753 for Style B.

Electrical certification information is located on the right end of the data plate.

The software version of your device can be found in View mode as 2 Sw Rev.

Figure 15. Sample Flowmeter Data Plate

Figure 16. Sample Junction Box Data Plate
Mechanical Installation

Both the flanged and wafer body flowmeters are offered in two mounting arrangements: (1) integral, and (2) remote (electronics housing separate from the flowmeter body). The following sections deal with both the integrally and remotely mounted electronics flowmeter arrangements. The installation guidelines given below are also summarized for your convenience in B0800AJ, Ensuring Premium Performance with Foxboro 84 Series Intelligent Vortex Flowmeters.

Dimensions

For overall dimensions of the flowmeter, refer to the appropriate dimensional print listed in “Reference Documents” on page 14.

Hydrostatic Piping Testing

The 84F Series Vortex Flowmeter is designed to meet the pressure limits of the flange rating specified in the model code.

84F#### X END CONNECTION AND FLANGE RATING

If your flowmeter is being installed in an application where hydrostatic testing will be performed, do not remove the sensor from the flowmeter.
Piping Considerations

Effects of Piping on Flowmeter Performance

Flanges
The flange of the adjoining pipe must be the same nominal size and pressure rating as the flowmeter. Flanges with a smooth bore, similar to weld neck flanges, are preferred.

Mating Pipe
Your flowmeter was calibrated at the factory with Schedule 40 piping upstream and downstream of the meter. If your application does not have Schedule 40 pipe, enter the appropriate pipe size during configuration. This assures that the calibration factor and flowmeter accuracy are maintained.

High-pressure meters (Class 900 and PN160 for 6- and 8-inch line sizes and Class 1500 for line sizes greater than 2 inches) were calibrated using Schedule 160 because the meter bore is also Schedule 160.

Upstream and Downstream Disturbances
The flowmeter should normally be mounted in a straight, unobstructed pipe with a minimum of 30 pipe diameters upstream of the meter and five pipe diameters downstream. For those installations where this upstream requirement is not met, the type of disturbance must be selected from a picklist during configuration and the distance to the disturbance in pipe diameters entered. This assures that the flowmeter accuracy is maintained.

Piping Alignment
The bore of the pipe (flange) and flowmeter must be aligned (see “Mechanically Installing the Flowmeter Body” on page 42), and the flange gaskets installed such that they do not protrude into the flow stream.

If the adjoining piping cannot be properly aligned, it is preferable to make the best possible alignment with the upstream flange. This minimizes the flow disturbance in the flowmeter.

NOTE

1. Flowmeters mounted near pump discharge or suction lines may be exposed to oscillatory flow that may affect vortex shedding or product pipe vibration. Also, flowmeters mounted near the discharge of a liquid positive displacement pump or near oscillating control valves may experience severe flow fluctuations that could damage the sensor. To avoid these adverse situations, install the meter at least 20 feet or 40 pipe diameters, whichever is larger, from the disturbance in question.

2. Good piping practice requires that the internal surface of the pipe shall be free from mill scale, pits, holes, reaming scores, rifling, bumps, or other irregularities for at least four pipe diameters upstream and two pipe diameters downstream of the meter.
Process Temperature

Your flowmeter was calibrated at 70°F (21°C). If your process temperature is different, enter the appropriate process operating temperature during configuration. Your flowmeter automatically adjusts the calibration factor to account for thermal expansion of the metals due to process temperatures that are different than the reference calibration temperature.

Pipe Position

Piping should be planned to maintain full pipe conditions at the flowmeter. When flow is moving with gravity, elevate the downstream pipe length above the meter installation level to maintain a full pipeline.

Mounting Position

For optimal performance, the mounting locations of the sensor and integral electronics relative to the piping must be considered. Factors that influence this decision include process fluid type, ambient temperature, and vibration. Mount the meter in accordance with the installation guidelines for various process fluids described below. Also see Table 4.

Liquid Installations

For liquid flow installations, it is recommended that the meter be mounted upstream at least 5 pipe diameters from the control valve. In vertical installations, the meter should be mounted in the upward flowing leg. This helps to maintain a full pipe and ensures that there is sufficient back pressure to prevent flashing or cavitation.

For liquid installations with occasional gas pockets or bubble formation, install piping as recommended in Figure 17 so as to not trap the gas pockets or bubbles inside the flowmeter.

Figure 17. Piping Arrangements
For a clean liquid, the electronics housing can be mounted above or below the flowmeter body. Care should be taken so that entrapped air does not accumulate in the sensor cavity. A meter used on liquid should be mounted upstream from a control valve. Flowmeters can also be mounted with the electronics housing positioned to the side. This ensures escape of entrapped air.

Gas Installations

For gas flow installations, several choices for flowmeter location should be considered. For maximum rangeability, locate the flowmeter 30 or more pipe diameters downstream from a control valve. This ensures maximum velocity at the flowmeter and produces the most efficient signal from the sensor. This is especially recommended when several flowmeters/control valves are coming off a common header or pipe.

When the flow is more stable, the flowmeter can be mounted a minimum of 5 pipe diameters upstream of the control valve. Pressure fluctuations often are lower on the upstream side of a control valve flow than on the downstream side. This is recommended when a pressure sensor is used with a flowmeter to provide inputs to a flow computer.

On gas flow installations, avoid piping conditions that create standing pockets of liquids inside the meter. The best approach is to install the meter in a vertical line with flow in the upwards direction.

CAUTION

For condensate gas applications, take precautions to avoid any trapped condensate that can cause a “water hammer” during startup. If condensate cannot be drained, open the valve slowly, allowing any trapped condensate to travel downstream through the flowmeter at low velocity so that no damage occurs.

Figure 18. Piping for Gas Applications

When the process fluid is gas, the electronics housing can be above or below the flowmeter body. The normal recommended position of the electronics housing is above the flowmeter body.
Steam Installations

For steam control installations, it is recommended that the flowmeter be mounted 30 pipe diameters or more downstream of the control valve. This is particularly useful when measuring saturated steam to ensure that a minimum amount of condensate is present at the flowmeter.

⚠️ CAUTION ⚠️

Take precautions to avoid any trapped condensate that can cause a “water hammer” during startup. If condensate cannot be drained, open the valve slowly, allowing any trapped condensate to travel downstream through the flowmeter at low velocity so that no damage occurs.

Saturated Steam

When the process fluid is saturated steam, the electronics housing should be below the flowmeter body, so that the sensor cavity remains filled when condensate is present. Filling the sensor cavity with condensate results in a less noisy measurement caused by any flashing occurring in the flowmeter due to pressure drop.

Figure 19. Piping for Saturated Steam Applications

Superheated Steam

When the process fluid is superheated steam, the electronics housing may be above or below the flowmeter body. The flowmeter should be insulated to maintain superheat conditions inside the flowmeter as well as insulating the electronics from heat. Assure that the electronics temperature does not exceed 80°C (176°F) under all flow and environmental conditions.

Insulation

The flowtube may be insulated up to the interface between the bonnet pad and the bonnet. No insulation is allowed beyond the bonnet pad. It is particularly important to insulate the flowtube on applications for superheated steam.
Vibration

The vortex shedding axis should be oriented to reduce or, in some cases, virtually eliminate vibration influence. Position the flowmeter so that the sensor axis is perpendicular to the direction of the vibration. See Figure 21.
Ambient Temperature Limitations/Considerations

The temperature limits of the electronics housing is -40 to +80°C (-40°F to +176°F). When installing the flowmeter, ambient temperature and proximity to other heat sources must be considered. For extended high temperature applications, this may require positioning the electronics housing to the side or bottom and/or piping insulation to assure the temperature limit is not exceeded. The maximum temperature rating of 80°C is an electrical safety agency requirement for all FM, CSA, IECEx, and ATEX certifications.

In installations where these agency certifications do not apply and ambient temperature limitations are not achievable, remotely mounting the electronics away from the process piping (to a lower temperature area) is recommended. In this configuration, only the preamplifier is in close proximity to the flowmeter and the preamplifier is rated for a maximum temperature of 105°C (221°F).

Table 4. Mounting Arrangements

<table>
<thead>
<tr>
<th>Flowmeter Orientation for Single (Shown) or Dual Measurement Flowmeter</th>
<th>Liquid</th>
<th>Gas</th>
<th>Saturated Steam</th>
<th>Superheated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing above and isolation valve is not used</td>
<td>Yes (a)</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
<tr>
<td>Housing above and isolation valve is used</td>
<td>No (c)</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
<tr>
<td>Housing below pipe</td>
<td>Yes (d) (e) (f)</td>
<td>Yes (e)</td>
<td>Yes</td>
<td>Yes (b)</td>
</tr>
<tr>
<td>Housing to side of pipe</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
<tr>
<td>Housing to side and below pipe</td>
<td>Yes (f)</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
<tr>
<td>Vertical pipe, flow upward</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
</tbody>
</table>

Table 4. Mounting Arrangements

<table>
<thead>
<tr>
<th>Flowmeter Orientation for Single (Shown) or Dual Measurement Flowmeter</th>
<th>Liquid</th>
<th>Gas</th>
<th>Saturated Steam</th>
<th>Superheated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical pipe, flow downward</td>
<td>Yes (g)</td>
<td>Yes</td>
<td>No</td>
<td>Yes (b)</td>
</tr>
</tbody>
</table>

a. Possibility of temporary startup error due to trapped air.
b. Requires adequate insulation.
c. Not recommended for liquids with isolation valve.
d. Best choice when errors due to startup can not be tolerated.
e. Recommended only for clean fluids.
f. Preferred for liquids with isolation valve.
g. Not preferred; must maintain full pipe with no voids in fluid.

Meter Servicing

When you install the meter, consider meter repair. The meter should be accessible for servicing. For installations where the flow cannot be interrupted, depressurized, or drained, a flowmeter with an isolation valve is required.

Common practice is to install bypass piping so that the entire meter can be removed for servicing (see Figure 22).

Figure 22. Typical Piping Configuration
Location of Pressure and Temperature Taps

For pressure and/or temperature compensated flow measurement applications, locate the pressure and temperature taps as follows:

--- NOTE ---
The inside of the pipe at the pressure and temperature taps must be free of burrs and obstructions.

Pressure Taps -- For density measurement (when required), locate the tap 3-1/2 to 4-1/2 pipe diameters downstream of the flowmeter. See Figure 23.

--- NOTE ---
1. On a gas flow installation, the pressure tap should be located on the top of the pipe.
2. On a liquid installation, the pressure tap (if required) should be located on the side of the pipe.
3. On a steam installation, the pressure tap should be located on the top when the pressure measuring device (typically a pressure transmitter) is above the pipeline, and on the side when the measuring device is below the pipeline.
4. With vertical piping, the pressure tap can be located anywhere around the circumference of the pipeline.

Temperature Taps -- For temperature measurement (when required), locate the tap 5 to 6 pipe diameters downstream of the flowmeter. To reduce flow disturbance, use the smallest possible probe. See Figure 23.
Mechanically Installing the Flowmeter Body

NOTE
If the electronics are mounted remotely, mount the flowmeter body so that the junction box is serviceable.

84F – Flanged Body

1. Gaskets are required and must be supplied by the user. Select a gasket material suitable for the process.
2. Insert gaskets between the body of the flowmeter and adjacent flanges. See Figure 24. Position the gaskets so that the ID of each gasket is centered on the ID of the flowmeter and adjacent piping.

CAUTION
Verify that the ID of the gaskets is larger than that of the flowtube bore and pipe and that the gaskets do not protrude into the flowtube entrance or exit. Protrusion into the flowstream has an adverse effect on performance.

CAUTION
Gaskets do not prevent flanges from being wetted by process fluids.

NOTE
When you install new flanges in the process piping and use the meter as a gauge to set the flanges, protect the inside diameter of the flowmeter from weld splatter. Install a solid sheet of gasketing at each end of the meter during welding. Remove this sheet and install the flange gaskets after welding. Remove any splatter in either the pipe or the meter as it could affect flowmeter accuracy.

3. Visually inspect for concentricity (centering and alignment) of mating flanges.
4. Tighten bolts in accordance with conventional flange bolt tightening practice (that is, incremental and alternate tightening of bolts).
84W – Wafer Body

For optimal performance, the wafer body flowmeter should be centered with respect to the adjoining pipe. Normally, this requires the use of centering fixtures that are supplied with the meter.

--- NOTE ---
Centering fixtures are not required for meters with ANSI Class 150 flanges.

1. See Figure 25. Insert the first stud through the downstream flange at one of the lower holes, through the two hex-nut spacers, and then through the upstream flange. Place the nuts on both ends of the stud, but do not tighten.

2. Using the remaining hex-nut spacers, repeat Step 1 at the lower hole adjacent to the first.

3. Set the flowmeter between the flanges. Then, rotate spacers to the thickness that centers the meter.

--- NOTE ---
By rotating the hex-nut spacers to the correct thickness, you can center the meter to any type of flange.

4. Gaskets are required and must be supplied by the user. Select a gasket material suitable for the process fluid.

5. Insert gaskets between the body of the flowmeter and adjacent flanges. Position the gaskets so that the ID of each gasket is centered on the ID of the flowmeter and adjacent piping.

--- CAUTION ---
Verify that the ID of the gaskets is larger than that of the flowtube bore and pipe and that the gaskets do not protrude into the meter entrance or exit. Protrusion into the flowstream has an adverse effect on performance.

--- NOTE ---
If welding the flanges to the process piping is required, protect the flowmeter from weld splatter, which could affect flowmeter accuracy. A solid sheet of gasketing should be installed at each end of the meter during welding. Remove this sheet and install the flange gaskets after welding.

6. Visually inspect for concentricity (centering and alignment) of mating flanges.

7. Install the rest of the studs and nuts and tighten the nuts in accordance with conventional flange bolt tightening practice (that is, incremental and alternate tightening of bolts).

--- NOTE ---
If the adjoining flanges are misaligned, align the wafer body flowmeter with the **upstream** flange.
Threaded (MNPT)

1. Apply process compatible thread sealant to the threaded flowtube end connection.
2. Secure the threaded pipe adapter to the flowtube threaded end connection.
3. Secure the pipeline end of adapter to the pipeline.

Mounting the Remote Electronics Housing

The purpose of the remote electronics housing is to allow for separation of the flowmeter body and the electronics.

A flowmeter with remote electronics consists of:

- An electronics housing mounted to a pipe or wall mounting bracket with up to 15 m (50 ft) of interconnecting cable attached.
- A flowmeter body with junction box.

1/2 NPT or M20 conduit connections are provided on both the housing and the junction box.

The remote electronics housing can be mounted to a vertical or horizontal DN 50 or 2-in pipe using the mounting bracket and U-bolt supplied. To mount the housing to a horizontal pipe, turn the U-bolt 90 degrees from the position shown in Figure 26.

The housing can be surface mounted by securing the mounting bracket to a wall using the bracket mounting holes. It may be easier to secure the mounting bracket to the wall without the housing attached. To do this, use the following procedure:

1. Remove the jam nut under the bracket.
2. Raise the housing until you can slide the cable through the cutout in the bracket.
3. Lay the housing aside and secure the mounting bracket to the wall.

Figure 26. Mounting the Remote Electronics Housing

Cover Locks

Electronic housing cover locks, shown in Figure 27, are provided as standard with certain agency certifications. To lock the covers, unscrew the locking pin until approximately 6 mm (0.25 in) shows, lining up the hole in the pin with the hole in the housing. Insert the seal wire through the two holes, slide the seal onto the wire ends and crimp the seal.

Figure 27. Cover Locks
Positioning the Display

The display (optional in some models) can be rotated within the housing to any of four positions at 90° increments. To do this, loosen the two captive screws, turn the display to the desired position, and retighten the screws.

CAUTION

1. Do not turn the display more than 180° in any direction. Doing so could damage its connecting cable.
2. Carefully fold the ribbon cable in the space between display and the electronic module so that it is not pinched. The display molding should rest firmly against the module molding before tightening the screws.

Setting the Write Protect Jumper

Your transmitter has write protection capability which meets the security requirements of ISA-S84.01-1986 for use in safety shutdown systems. This means that the local display and remote electronics can be prevented from writing to the electronics. Write protection is set by moving a jumper that is located in the electronics compartment behind the display. To activate write protection, remove the display and remove the jumper or place it in the ‘protect’ position. In the ‘write’ position, writing to certain functions can be limited by password protection. See “Password” on page 60.
Positioning the Housing

The flowmeter housing (topworks) can be rotated up to one full turn in the counterclockwise direction when viewed from above for optimum access to adjustments, display, or conduit connections. Housings have either an anti-rotation screw or a retention clip that prevent the housing from being rotated beyond a safe depth of housing/sensor thread engagement.

Electrical Installation

This section describes procedures for installing wiring, conduit, and ground connections for both integral and remote mounted flowmeters and for preparing remote signal cables for interconnection.

— NOTE —

The transmitter housing must be grounded to insure proper operation and peak performance.

— NOTE —

The wiring installation must be in accordance with local or national regulations applicable to the specific site and classification of the area.

Integrally Mounted Electronics

A flowmeter with an integrally mounted electronics requires only power and output signal wiring. To complete installation, refer to “Field Termination Wiring” on page 50.
Remotely Mounted Electronics

To use the flowmeter as shipped with the cable attached at both ends, mount the electronics housing and flowmeter body within the limits of the cable length.

If the cable must be disconnected (to shorten the cable, run the cable through conduit, or for some other reason), you must disconnect the cable at the flowmeter (junction box) end. You cannot disconnect the cable at the electronics housing end because it has been epoxied into the metal connector. It is labeled “Factory Sealed / Electronics End / Do Not Remove.”

Preparing the Remote Signal Cable

If the cable must be shortened or reterminated, the flowmeter (junction box) end of the cable must be prepared per the instructions in Table 5.

<table>
<thead>
<tr>
<th>Table 5. Preparation of Remote Signal Cable (Junction Box End)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert the cable into the knurled nut and rubber grommet. Then remove the outer insulation to the dimension shown. Do not damage the copper braid.</td>
</tr>
<tr>
<td>2. Cut the copper braid 1 inch from the end of the outer insulation.</td>
</tr>
<tr>
<td>3. Insert the cable into the fitting until the cable is bottomed out inside the fitting. Rotate the fitting one or two turns to pack the braid into place. Remove the cable and examine the packed braid. If there are still strands of braid that have not packed, push them back by hand and reinsert the cable into the fitting. Remove the cable and examine the braid. It should be compressed to a length of approximately 3/8 to 1/2 inch.</td>
</tr>
<tr>
<td>4. Remove the outer clear wrapping and the metalized mylar film to the end of the packed braid. This exposes the inner drain wire. The inner clear wrapping and filler material are still in place.</td>
</tr>
<tr>
<td>5. Make sure that the drain wire is not in contact with the outer braid. Then use an ohm meter to verify that there is no electrical connection between the drain wire and the braid over the entire length of the cable. This step also verifies that the other end (electronics end) of the cable has been properly dressed and that there is no damage or defects in the cable.</td>
</tr>
</tbody>
</table>

Connecting the Remote Signal Cable

After the cable end has been prepared, connect the cable to the junction box. See Figure 30.

1. Insert the cable into the fitting, making sure that the cable has bottomed out in the fitting.
2. Slide the rubber grommet into the fitting.
3. Screw the knurled nut into place, clamping the rubber grommet against the assembly. Hand tighten with moderate force to assure a watertight connection.
4. Dress the wires in the junction box as shown.

Figure 30. Connection of Remote Signal Cable (Junction Box End)
Installation with Conduit

The remote signal cable is shipped with the cable attached at both ends. To run the cable through conduit, the -T option must have been purchased. This option facilitates a standard 1/2 NPT conduit connection at both the housing end and the flowmeter end.

1. Disconnect the cable at the flowmeter (junction box) end.
2. Slide the remote conduit adapter (part number K0149LE), longer end first, up the cable and attach it at the housing end.
3. Slide the conduit and fittings over the cable.
4. Slide a second remote conduit adapter, shorter end first, onto the cable and attach it at the junction box end.

Explosionproof / Flameproof Certifications

The remote cable provides an explosionproof / flameproof connection at the electronics end. Explosionproof connections beyond this point are not required.

Field Termination Wiring

The installation and wiring of your flowmeter must conform to local code requirements. Also, for FM installations, refer to MI 019-177; for ATEX and IECEx installations, refer to MI 019-179.

— NOTE —
Use of transient/surge protection is recommended in installations prone to high levels of electrical transients and surges.

Conduit / Cable Gland Connections

The electronics housing has two conduit/cable gland connections to allow access from either side of the housing. These connections are 1/2 NPT or M20 threads per your order. Make sure to use the correct threaded devices when making these connections. The type of thread can be verified by viewing the eighth character after the dash in the model code on the data plate. The letters T or R indicate a 1/2 NPT thread; V or W, an M20 thread.

The housing comes with a safety-agency approved threaded metal plug in one of the conduit holes and a plastic plug in the other. After the conduit or cable gland is connected, plug the unused hole with the metal plug. To maintain specified explosionproof and dust-ignitionproof protection, plug must be engaged a minimum of five full threads for 1/2 NPT connections; seven full threads for M20 connections.
Accessing Flowmeter Field Terminals

For access to the field terminals, remove the cover from the field terminals compartment as shown in Figure 31. Note that the embossed letters FIELD TERMINALS identify the proper compartment.

Figure 31. Accessing Field Terminals

1/2 NPT or M20 CONDUIT CONNECTION for CUSTOMER WIRING. ONE ON OPPOSITE SIDE ALSO. PLUG UNUSED OPENING WITH THE METAL PLUG PROVIDED (or EQUIVALENT).

Figure 32. Identification of Field Terminals

INTERNAL GROUND SCREW

4 to 20 mA SIGNAL CONNECTIONS

PULSE SIGNAL CONNECTIONS (84F-T and 84W-T only)

PHYSICAL EARTH GROUND REQ'D FOR EXPLOSIONPROOF (FLAMEPROOF) CERTIFICATIONS
Wiring the Flowmeter to a Control Loop

--- NOTE ---
To use a 4-20 mA output signal, your flowmeter must be configured for 4-20 mA.

When wiring a flowmeter with 4 to 20 mA output signal, the supply voltage and loop load must be within specified limits. The supply output load vs. voltage relationship is shown in Figure 33.

Any combination of supply voltage and loop load resistance in the shaded area can be used. To determine the loop load resistance (flowmeter output load), add the series resistance of each component in the loop, excluding the flowmeter. The power supply must be capable of supplying 22 mA of loop current.

![Figure 33. Supply Voltage and Loop Load](image)

Examples:
1. For a loop load resistance of 300 Ω, the supply voltage can be any value from 19.1 to 30 V dc.
2. For a supply voltage of 24 V dc, the loop load resistance can be any value from 250 to 520 Ω (zero to 520 Ω without a HART Communicator or PC-Based Configurator connected to the flowmeter).

To wire one or more flowmeters to a power supply, proceed with the following steps.
1. Remove the cover from the field terminals compartment.
2. Run signal wires (0.50 mm² or 20 AWG, typical) through one of the flowmeter conduit connections. Use twisted pair to protect the 4 to 20 mA output and/or remote communications from electrical noise. Maximum recommended length for signal wires is 1800 m (6000 ft)

--- NOTE ---
Do not run flowmeter wires in same conduit as mains (ac power) wires.
3. If shielded cable is used, ground the shield at the negative terminal of the power supply. Do not ground the shield at the flowmeter.

4. Plug the unused conduit opening with the 1/2 NPT or M20 metal plug provided (or equivalent). To maintain specified explosionproof and dust-ignitionproof protection, plug must be engaged a minimum of five full threads for 1/2 NPT connections; seven full threads for M20 connections.

5. The flowmeter is equipped with an internal and external ground connection. Connect a ground wire to either terminal in accordance with local practice.

CAUTION

If the loop is grounded, it is preferable to do so at the negative terminal of the dc power supply. To avoid errors resulting from earth loops or the possibility of short-circuiting groups of instruments in a loop, there should be only one earth in a loop.

6. Connect the power supply and receiver loop wires to the “+” and “−” terminal connections.

7. Connect receivers (such as controllers, recorders, indicators) in series with power supply and flowmeter as shown in Figure 34.

8. Install the cover onto the flowmeter. Turn the cover to seat the O-ring into the housing and continue to hand tighten until the cover contacts the housing metal-to-metal. If cover locks are present, refer to “Cover Locks” on page 45.

9. If wiring additional flowmeters to the same power supply, repeat Steps 1 through 8 for each additional flowmeter.

10. A HART Communicator or PC-based Configurator can be connected in the loop between the flowmeter and the power supply as shown in Figure 34. Note that a minimum of 250 \(\Omega \) must separate the power supply from the HART Communicator or PC-Based Configurator.
Figure 34. Loop Wiring 4 to 20 mA Output Flowmeters

(a) GROUNDING THE LOOP AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY IS RECOMMENDED BUT NOT REQUIRED.
(b) IF SHIELDED WIRE IS USED, TERMINATE THE SHIELD AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY.
(c) THE TRANSMITTER IS EQUIPPED WITH AN INTERNAL AND EXTERNAL GROUND CONNECTION.
 CONNECT A GROUND WIRE TO EITHER TERMINAL IN ACCORDANCE WITH LOCAL PRACTICE.
(d) THERE MUST BE AT LEAST 250 OHMS TOTAL RESISTANCE BETWEEN THE PC-BASED CONFIGURATOR
 OR THE HART COMMUNICATOR AND THE POWER SUPPLY.
(e) REQUIRED FOR EXPLOSIONPROOF (FLAMEPROOF) APPLICATIONS.
Multidrop Communication

“Multidropping” refers to the connection of several flowmeters to a single communications transmission line. Communications between the host computer and the flowmeters takes place digitally with the analog output of the flowmeter deactivated. With the HART communications protocol, up to 15 flowmeters can be connected on a single twisted pair of wires or over leased telephone lines.

The application of a multidrop installation requires consideration of the update rate necessary from each flowmeter, the combination of flowmeter models, and the length of the transmission line. Multidrop installations are not recommended where Intrinsic Safety is a requirement. Communication with the flowmeters can be accomplished with any HART compatible modem and a host implementing the HART protocol. Each flowmeter is identified by a unique address (1-15) and responds to the commands defined in the HART protocol.

Figure 35 shows a typical multidrop network. Do not use this figure as an installation diagram. Contact the HART Communications Foundation, (512) 794-0369, with specific requirements for multidrop applications.

The HART Communicator can operate, configure, and calibrate 84 Series Flowmeters with HART communication protocol in the same way as it can in a standard point-to-point installation.

NOTE

84 Series Flowmeters with HART communication protocol are set to poll address 0 (POLLADR 0) at the factory, allowing them to operate in the standard point-to-point manner with a 4 to 20 mA output signal. To activate multidrop communication, the flowmeter address must be changed to a number from 1 to 15. Each flowmeter must be assigned a unique number on each multidrop network. This change deactivates the 4 to 20 mA analog output.
Wiring a Flowmeter With a Pulse Output

Two separate loops are required when using the pulse output on an 84F-T (Styles A and B) or 84W-T Flowmeter with the 4 to 20 mA or digital signal. Each loop requires its own power supply. Figure 36 shows the connections with a transistor switch (sinking) counter input with receiver supplied power; Figure 37, with a transistor switch (sinking) counter input and external power supply and pull-up resistor; and Figure 38 with a transistor switch (sourcing) counter input and external power supply and pull-up resistor.

Figure 36. Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output Transistor Switch (Sinking) Counter Input with Receiver Supplied Power

(a) GROUNDING THE LOOP AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY IS RECOMMENDED BUT NOT REQUIRED.
(b) IF SHIELDED WIRE IS USED, TERMINATE THE SHIELD AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY.
(c) THE TRANSMITTER IS EQUIPPED WITH AN INTERNAL AND EXTERNAL GROUND CONNECTION.
 CONNECT A GROUND WIRE TO EITHER TERMINAL IN ACCORDANCE WITH LOCAL PRACTICE.
(d) THER MUST BE AT LEAST 250 OHMS TOTAL RESISTANCE BETWEEN THE PC-BASED CONFIGURATOR OR THE HART COMMUNICATOR AND THE POWER SUPPLY.
(e) IF SHIELDED WIRE IS USED, TERMINATE THE SHIELD AT THE NEGATIVE TERMINAL OF THE RECEIVER.
(f) REQUIRED FOR EXPLOSIONPROOF (FLAMEPROOF) APPLICATIONS.
(g) MAXIMUM PULSE CURRENT OUTPUT IS 20 mA. SEE THE FOLLOWING FIGURES FOR CONNECTION DETAILS.
Figure 37. Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output Transistor Switch (Sinking) Counter Input with External Power Supply and Pull-Up Resistor

(a) GROUNDING THE LOOP AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY IS RECOMMENDED BUT NOT REQUIRED.
(b) IF SHIELDED WIRE IS USED, TERMINATE THE SHIELD AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY.
(c) THE TRANSMITTER IS EQUIPPED WITH AN INTERNAL AND EXTERNAL GROUND CONNECTION.
 CONNECT A GROUND WIRE TO EITHER TERMINAL IN ACCORDANCE WITH LOCAL PRACTICE.
(d) THERE MUST BE AT LEAST 250 OHMS TOTAL RESISTANCE BETWEEN THE PC-BASED CONFIGURATOR
 OR THE HART COMMUNICATOR AND THE POWER SUPPLY.
(e) MAXIMUM PULSE OUTPUT CURRENT IS 20 mA. LOAD RESISTOR MUST BE SIZED ACCORDINGLY.
(f) REQUIRED FOR EXPLOSIONPROOF (FLAMEPROOF) APPLICATIONS.
(g) MAXIMUM PULSE CURRENT OUTPUT IS 20 mA. SIZE RESISTANCE APPROPRIATELY.
(h) SOME COUNTERS MAY NOT WORK RELIABLY IF CONNECTED ACROSS THE SWITCH CONTACTS DUE TO VOLTAGE DROPS
 ACROSS THE SWITCH. CONNECT ACROSS THE RESISTOR IF THIS IS AN ISSUE.

Figure 38. Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output Transistor Switch (Sourcing) Counter Input with External Power Supply and Pull-Up Resistor

(a) GROUNDING THE LOOP AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY IS RECOMMENDED BUT NOT REQUIRED.
(b) IF SHIELDED WIRE IS USED, TERMINATE THE SHIELD AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY.
(c) THE TRANSMITTER IS EQUIPPED WITH AN INTERNAL AND EXTERNAL GROUND CONNECTION.
 CONNECT A GROUND WIRE TO EITHER TERMINAL IN ACCORDANCE WITH LOCAL PRACTICE.
(d) THERE MUST BE AT LEAST 250 OHMS TOTAL RESISTANCE BETWEEN THE PC-BASED CONFIGURATOR
 OR THE HART COMMUNICATOR AND THE POWER SUPPLY.
(e) MAXIMUM PULSE OUTPUT CURRENT IS 20 mA. LOAD RESISTOR MUST BE SIZED ACCORDINGLY.
(f) REQUIRED FOR EXPLOSIONPROOF (FLAMEPROOF) APPLICATIONS.
Wiring a Flowmeter with a Pulse Output (3-Wire)

This wiring method is primarily used when using a Model 84 Transmitter to replace an E83FA, E83WA, or Model 83 Transmitter that was wired using a 3-wire hookup.

For new installations, a 4-wire hookup is recommended because the 3-wire hookup method can interfere with HART communications at certain pulse output frequencies.

Figure 39. Wiring an 84F-T (Styles A and B) or 84W-T Flowmeter with a Pulse Output Using a 3-Wire Hookup

(a) PLACE JUMPER BETWEEN THE TWO NEGATIVE TERMINALS AS SHOWN.
(b) ADD A 1200 OHM MINIMUM (1-2 WATT) RESISTOR BETWEEN POWER SUPPLY (+) AND COUNTER (+). MAXIMUM PULSE CURRENT OUTPUT IS 20 mA. SIZE RESISTANCE APPROPRIATELY.
(c) GROUNDING THE LOOP AT THE NEGATIVE TERMINAL OF THE POWER SUPPLY IS RECOMMENDED BUT NOT REQUIRED.
(d) THE TRANSMITTER IS EQUIPPED WITH AN INTERNAL AND EXTERNAL GROUND CONNECTION.
 CONNECT A GROUND WIRE TO EITHER TERMINAL IN ACCORDANCE WITH LOCAL PRACTICE.
(e) THERE MUST BE AT LEAST 250 OHMS TOTAL RESISTANCE BETWEEN THE PC-BASED CONFIGURATOR OR THE HART COMMUNICATOR AND THE POWER SUPPLY.
(f) REQUIRED FOR EXPLOSIONPROOF (FLAMPROOF) APPLICATIONS.
(g) SOME COUNTERS MAY NOT WORK RELIABLY IF CONNECTED ACROSS THE SWITCH CONTACTS DUE TO VOLTAGE DROPS ACROSS THE SWITCH. CONNECT ACROSS THE RESISTOR IF THIS IS AN ISSUE.
3. Operation Via Local Display

Communication with the 84F-T (Styles A and B), 84F-U (Styles A and B), 84W-T, and 84W-U Vortex Flowmeters is carried out using the HART Communicator, a PC-Based configurator, or the optional Local Keypad/Display. General instructions for using the HART Communicator can be found in MAN 4250, HART Communicator Product Manual. Instructions for using the HART Communicator with an 84 Series flowmeter is located in Section 4 of this document. Instructions for using the PC-Based configurator are included with the configurator software. Instructions for using the Local Keypad/Display is found in this section.

--- NOTE ---
For proper communication with a HART Communicator, the communicator must contain the proper DD for the 84 Vortex Flowmeter. This DD is available from our website or any other authorized HART Foundation source.

Local Keypad/Display

A local display, as shown in Figure 40 provides local indication of the measurement information, function status, and reference information. The display also provides a means of performing totalizer reset, and full configuration, calibration, and self-test. Operation is accomplished via four multi-function keys.

Figure 40. Local Display
Display Bar Indicator

The bar indicator at the top of the display indicates the flow measurement, as a percentage of the upper range value.

--- NOTE ---
If the flow measurement is out-of-range, the bar indicator blinks.
If the flowmeter is off-line, the middle four bars of the bar indicator blink.

Password

Display of information requires no password. However, the ability to access certain functions, (for purposes other than Read Only), such as totalizer, setup, and calibration/testing, may require a user-definable password. The LoPwd allows you to reset the Net Totalizer and Pulse Totalizer. The HiPwd gives you access to all flowmeter functions. In addition, the write protect jumper must be in the ‘write’ position. See “Setting the Write Protect Jumper” on page 46.

--- NOTE ---
The flowmeter is shipped from the factory with a blank password. This allows access to all flowmeter functions. If password protection is required, enter a LoPwd and/or HiPwd in Setup mode.

Entering the Password

The totalizer, setup, and calibration/test functions may require a password (a 4-character alphanumeric string). Select the TotPul, TotNet, TotGrd, Setup or Cal/Tst top level menu and press Enter at the password prompt. Two brackets surrounding four spaces (\[- - - - \]) then appear on the second line of the display. The cursor, a flashing icon, appears at the first character.

To enter the password, use the Up/Down arrow keys to scroll through the list of acceptable characters. After selecting the desired character, press the Right arrow key to move to the next character. Continue this process until the password is complete. Pressing Enter now completes the process.
Prior to pressing Enter, you can use the Left/Right arrow keys to move back and forth to modify an incorrect selection.

If you enter an incorrect password, the display indicates Sorry for one second, then goes to Read Only.

You can change a password in the Passwd parameter in the Setup menu.

Activating an Edit, Pick-List, or User Menu Block

To open a menu block that allows you to edit or select data or to perform a function, move to the menu block and press the Right arrow (Enter) key.

Editing Numbers and Strings

Editing any number or string in the menu system is done in the same way as entering the password. The Up/Down arrow keys scroll through a list of acceptable characters for the current position. The Right arrow key moves the cursor to the right. It also accepts the change at the end. The Left arrow key moves the cursor to the left. It also cancels the change at the beginning.

There are three kinds of edit items: signed numbers, unsigned numbers, and strings.

Signed Numbers

Signed numbers always have a + or - sign at the beginning. The + can only be changed to –, and vice versa.

Unsigned Numbers

For unsigned numbers, cycle through the digits 0-9, and the decimal point, with the Up/Down arrow keys. When you enter a decimal point in any position, and there is already a decimal point to the left of the cursor, the new decimal point overrides the old one.

Strings

Characters in strings can be changed to any valid character. You can sequence through the list of characters by pressing the Up/Down arrow keys. To enter the change, you must still press Enter from the right side of the data field, after scrolling to the right side with the Right arrow key.

Picking from a List

Picklist items allow you to choose a selection from a flowmeter-supplied list of alternatives. Go to the applicable parameter, and press Enter. The entire bottom line of the display flashes. If you press the Up/Down arrow keys, the display shows the previous or next choice respectively from its list. Pressing Enter accepts the change; pressing Esc returns the previous selection.
Configuration Database

Each flowmeter is shipped from the factory with an operating configuration database. However, the flowmeter will not provide an accurate measurement if the configuration does not fit your application. Be sure to check the configuration of our flowmeter prior to start-up.

If the user information is not supplied with the purchase order, the flowmeter is shipped with the following defaults:

Table 7. Default Database When User Information Not Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Type</td>
<td>Liquid (water)</td>
<td>Liquid (water)</td>
</tr>
<tr>
<td>Type of Flow</td>
<td>Volume</td>
<td>Volume</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>m³/s</td>
<td>gal/min</td>
</tr>
<tr>
<td>Flowing Temperature</td>
<td>20°C</td>
<td>68°F</td>
</tr>
<tr>
<td>Flowing Density</td>
<td>998.21 kg/m³</td>
<td>62.316 lb/ft³</td>
</tr>
<tr>
<td>Absolute Viscosity</td>
<td>1.002 cP</td>
<td>1.002 cP</td>
</tr>
<tr>
<td>Upper Range Value</td>
<td>Upper Range Limit for Flowmeter Size</td>
<td>Upper Range Limit for Flowmeter Size</td>
</tr>
</tbody>
</table>

These defaults are not recommended for general operation. If no other process information is available, entering Liquid, Gas, or Steam as fluid type in Setup > Fluid > New establishes default data bases as shown in Table 8, 9, or 10 respectively.

Table 8. Default Database for Liquid

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Type</td>
<td>Liquid (water)</td>
<td>Liquid (water)</td>
</tr>
<tr>
<td>Type of Flow</td>
<td>Same as present configuration</td>
<td>Same as present configuration</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>Same as present configuration</td>
<td>Same as present configuration</td>
</tr>
<tr>
<td>Flowing Temperature</td>
<td>20°C</td>
<td>68°F</td>
</tr>
<tr>
<td>Flowing Density</td>
<td>998.21 kg/m³</td>
<td>62.316 lb/ft³</td>
</tr>
<tr>
<td>Absolute Viscosity</td>
<td>1.002 cP</td>
<td>1.002 cP</td>
</tr>
<tr>
<td>Upper Range Value</td>
<td>Upper Range Limit for Flowmeter Size</td>
<td>Upper Range Limit for Flowmeter Size</td>
</tr>
</tbody>
</table>

Table 9. Default Database for Gas

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Type</td>
<td>Gas (air)</td>
<td>Gas (air)</td>
</tr>
<tr>
<td>Type of Flow</td>
<td>Same as present configuration</td>
<td>Same as present configuration (a)</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>Same as present configuration (a)</td>
<td>Same as present configuration (a)</td>
</tr>
<tr>
<td>Flowing Temperature</td>
<td>20°C</td>
<td>68°F</td>
</tr>
<tr>
<td>Flowing Density</td>
<td>9.546 kg/m³</td>
<td>0.596 lb/ft³</td>
</tr>
<tr>
<td>Absolute Viscosity</td>
<td>0.0185 cP</td>
<td>0.0185 cP</td>
</tr>
<tr>
<td>Upper Range Value</td>
<td>Upper Range Limit for Flowmeter Size</td>
<td>Upper Range Limit for Flowmeter Size</td>
</tr>
</tbody>
</table>

a. Liquid units of gallons, liters, imperial gallons, or barrels per unit time are not transferable to gas.
Using the Menu Tree

Moving Inside the Menu System
Pressing the Enter key stops the display of measurements and shows the first top level Totalizer menu item, 1 TotPu1. Use the Down arrow key to go to 1 TotNet and 1 Tot Grd. At any one of these choices, press Enter to edit your selection. Use the Down arrow key to select Off (turn the totalizer off), On (turn the totalizer on), or Clear (reset the totalizer) and then press Enter. Press the ESC key to return to Measure mode.

Pressing the Esc key stops the display of measurements, and shows the first item in the rest of the top level menu, 1 Measure. From here, the four keys allow you to move around the menu tree, as indicated by the arrows. Press the Down arrow key to cycle through each of the current menu level items. Press the Right arrow key to move from the current level to its submenu level. Press the Left arrow key to move from the current level to the next higher level.

--- NOTE ---
Each menu item has its level (1 - 5) displayed at the beginning of the top line.

Top Level Menu
The three totalizer items in the main menu were discussed immediately above. The remainder of the Top Level menu displays six modes – Measure, Status, View, Setup, and Calibration/Test. You can switch from one to another in sequence by using the Up/Down arrow keys. To enter the second level menu from a particular top level display, press the Right arrow key. To return to the top level from a second level menu item, press the Left arrow key. The level of the first, second, third, fourth, and fifth level menus is indicated by the digit appearing as the first character in Line 1 of the display; a 1 indicates Level 1 (Top Level), a 2 indicates Level 2, and a 3 indicates Level 3, and so forth.

The top level menu is shown in Figure 41.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Type</td>
<td>Steam</td>
<td>Steam</td>
</tr>
<tr>
<td>Type of Flow</td>
<td>Same as present configuration</td>
<td></td>
</tr>
<tr>
<td>Measurement Units</td>
<td>Same as present configuration (a)</td>
<td></td>
</tr>
<tr>
<td>Flowing Temperature</td>
<td>178.3 °C</td>
<td>352.9°F</td>
</tr>
<tr>
<td>Flowing Density</td>
<td>4.966 kg/m³</td>
<td>0.310 lb/ft³</td>
</tr>
<tr>
<td>Absolute Viscosity</td>
<td>0.015 cP</td>
<td>0.015 cP</td>
</tr>
<tr>
<td>Upper Range Value</td>
<td>Upper Range Limit for Flowmeter Size</td>
<td>Upper Range Limit for Flowmeter Size</td>
</tr>
</tbody>
</table>

a. Liquid units of gallons, liters, imperial gallons, or barrels per unit time are not transferable to steam.
Figure 41. Top Level Modes and Their Basic Functions

- **Measure Values**
 - FOR DETAILS SEE “MEASURE MODE” ON PAGE 65.

- **Totals Reset**
 - FOR DETAILS SEE “TOTALS MODE” ON PAGE 65.

- **Measurement**
 - PRESSING EITHER THE ENTER OR ESC KEY MOVES YOU TO THE MEASURE MODE.

- **Status Parameters**
 - FOR DETAILS SEE “STATUS MODE” ON PAGE 66.

- **View Parameters**
 - FOR DETAILS SEE “VIEW MODE” ON PAGE 67.

- **Setup Parameters**
 - FOR DETAILS SEE “SETUP MODE” ON PAGE 67 AND “SETUP MENU TREE” ON PAGE 78.

- **Calibration/Test Parameters**
 - FOR DETAILS SEE “CALIBRATION/TEST MODE” ON PAGE 80

NOTE

Certain parameters may be missing as you step through the menus described in this chapter depending on the configuration of your instrument.

a. Not shown for option “U.”
Measure Mode

In normal operation, the flowmeter displays those measurements specified in Setup mode. If configured for Manual cycle, you can cycle through the measurements manually by using the Up/Down arrow keys. If configured for Auto cycle, the display cycles through the measurements specified. If, while in Auto cycle, you want to see a specific measurement momentarily, advance to that measurement with the Down arrow key. Use the Up arrow key to go to a specific measurement and stay there. You can then resume scanning by pressing the Down arrow key.

Totals Mode

TotPul, TotNet, or TotGrd is used to turn a totalizer on, pause the totalizer, or to clear (reset) the total. This is done by pressing the Enter key and selecting On, Paused, or Clear and pressing the Enter key again. Before doing this you may be asked for a password. If so, enter the LoPwd or HiPwd for TotPul and TotNet; enter the HiPwd for TotGrd.

--- NOTE ---

Clearing TotGrd also clears TotPul and TotNet.
Status Mode

The **MeaStat** sublevel of this mode enables you to view the units, value, and status of system parameters and thus assess the performance of the loop. You can not edit them in this mode. To step through the displays of the parameters, use the Up/Down arrow keys. The Status mode structure diagram is shown in Figure 42.

The **WrProt** sublevel of this mode shows whether write protection is enabled (Prot) or is disabled (NotProt).

The **DiagEr** sublevel of this mode shows any diagnostic errors. The display 0000 means no diagnostic errors.

--- NOTE

A new diagnostic condition only appears after a diagnostic is detected while in Measure mode.

Figure 42. Status Mode Structure Diagram

1. **Status**
 - 2. **MeaStat**
 - 3. **Velcty**
 - 3. **Raw Hz**
 - 3. **KRef**
 - 3. **KCor**
 - 3. **KFlow**
 - 3. **mA Out (a)**
 - 3. **Pulse (b)**
 - 3. **Reynld**
 - 2. **WrProt**
 - 2. **DiagEr**
 - 2. **Reason**

a. Not available for “Low Power” vortex flowmeters.
b. Only available for options “T” and “L”
View Mode

The View mode enables you to view the identity parameters. You can not edit them in this mode. To step through the list of the following parameters, use the Up and Down arrow keys.

Figure 43. View Mode Structure Diagram

Setup Mode

The Setup mode enables you to configure your flowmeter fluid, flow, tuning, totalizer, output, pipe, tag, flowtube, and password parameters. You can also establish and change your passwords in this mode.

Setup mode can be a passcode protected mode. So after the initial configuration, you may need to enter the HiPwd to make changes in this mode. See “Password” on page 60.

NOTE
If you lose your password, call our Global Customer Support for assistance.

If your transmitter is write protected, the display reads Rd Only if you try to enter Setup mode. In this case, you cannot enter Setup mode to make changes. You can, however, view but not edit the setup.

Upon attempts to enter this mode, you are asked, Loop in Manual? After placing the loop in manual, indicate ’yes’ with the Enter key. This is also an off-line mode. Analog output is driven to 4 mA, pulse to 0.

The structural diagrams for the Setup mode begin on page 78.

Setting Fluid Parameters

The Fluid section of the Setup mode allows you to configure parameters for fluid type, fluid name (optional), temperature unit, flow temperature, density unit, flow density, base density, viscosity unit, and viscosity.

NOTE

If you are satisfied with the existing fluid parameters, do not enter the New parameter; doing so will reset all the other fluid parameters.

- In New, select the fluid as Liquid, Gas, or Steam to get the default data base for that medium. Refer to Table 8, Table 9, and Table 10.
- 3 Edit enables you to edit the present fluid configuration.
- FldTyp shows the type of fluid presently configured.
- In Name, name the particular fluid (optional).
- In TempEGU, select your choice of temperature unit (degF, degC, degR, or degK).
- In FlwTmp, enter the flow temperature in the temperature unit specified.
- In DenEGU select the density unit from the following picklist: kg/m3, lb/Yd3, lb/gal, oz/in3, lb/ft3, g/cm3, ST/Yd3, LT/Yd3, Custom. If you pick Custom, you must define your custom unit. First, enter a Label for your custom unit using up to eight alphanumeric characters. Then, enter any Offset and a conversion factor (Slope) from kilograms per cubic meter to the custom unit.
- In FlwDen, enter the flow density in the density unit specified.
- In BasDen, enter the base density in the density unit specified.
- LfciEGU shows the units of the low flow cut-in.
- Lfci shows the Lfci presently configured.
- In VisEGU, select the viscosity unit (cPoise, Poise, cStoke, or PaSec).
- In Visc, enter the viscosity in the viscosity unit specified.

The following table lists the engineering units (EGUs) available. The available EGU options depend on the FlwMap selection (VolFlow, BVolFlow, MassFlow, or Velocity), and the actual EGUs are entered in the Setup > Flow > FlwEGU menu.
Table 11. Available Engineering Units

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>FiwMap Selected</th>
<th>Available EGUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Volume (VolFlow)</td>
<td>m³/s, m³/m, m³/h, m³/d, gal/s, gal/m, gal/h, gal/d, l/s, l/m, l/h, l/d, M³/h, Ml/d, ft³/s, ft³/m, ft³/h, ft³/d, bbl³/s, bbl³/m, bbl³/h, bbl³/d, bbl³/s, bbl³/m, bbl³/h, bbl³/d, lgal/s, lgal/m, lgal/h, lgal/d, mcf/d, mmcf/d, Custom</td>
</tr>
<tr>
<td>Base Volume, Standard (BVolFlow > StdVol)</td>
<td>Sm³/s, Sm³/m, Sm³/h, Sm³/d, St³/s, St³/m, St³/h, St³/d, Mgal/s, Mgal/m, Mgal/h, Mgal/d, Ngal/s, Ngal/m, Ngal/h, Ngal/d, Nl/s, Nl/m, Nl/h, Nl/d, Nm³/s, Nm³/m, Nm³/h, Nm³/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Base Volume, Normal (BVolFlow > NormVol)</td>
<td>Ngal/s, Ngal/m, Ngal/h, Ngal/d, Nl/s, Nl/m, Nl/h, Nl/d, Nm³/s, Nm³/m, Nm³/h, Nm³/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Mass (MassFlow)</td>
<td>kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, lb/s, lb/m, lb/h, lb/d, mTon/h, mTon/d, STon/s, STon/m, STon/h, STon/d, oz/s, oz/m, oz/h, oz/d, mTon/s, mTon/m, LTon/m, LTon/h, LTon/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>m/s, m/m, m/h, m/d, ft/s, ft/m, ft/h, ft/d</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>Volume (VolFlow)</td>
<td>ft³/s, ft³/m, ft³/h, ft³/d, m³/s, m³/m, m³/h, m³/d, mcf/d, mmcf/d, Custom</td>
</tr>
<tr>
<td>Base Volume, Standard (BVolFlow > StdVol)</td>
<td>St³/s, St³/m, St³/h, St³/d, mcf/d, mmcf/d, Sm³/s, Sm³/m, Sm³/h, Sm³/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Base Volume, Normal (BVolFlow > NormVol)</td>
<td>Nm³/s, Nm³/m, Nm³/h, Nm³/d, Nl/s, Nl/m, Nl/h, Nl/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Mass (MassFlow)</td>
<td>lb/s, lb/m, lb/h, lb/d, kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, mTon/s, mTon/m, mTon/h, mTon/d, STon/s, STon/m, STon/h, STon/d, oz/s, oz/m, oz/h, oz/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>ft/s, ft/m, ft/h, ft/d, m/s, m/m, m/h, m/d</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>Volume (VolFlow)</td>
<td>ft³/s, ft³/m, ft³/h, ft³/d, m³/s, m³/m, m³/h, m³/d, mcf/d, mmcf/d, Custom</td>
</tr>
<tr>
<td>Mass (MassFlow)</td>
<td>lb/s, lb/m, lb/h, lb/d, kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, mTon/s, mTon/m, mTon/h, mTon/d, STon/s, STon/m, STon/h, STon/d, LTon/m, LTon/h, LTon/d, oz/s, oz/m, oz/h, oz/d, Custom</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>ft/s, ft/m, ft/h, ft/d, m/s, m/m, m/h, m/d</td>
<td></td>
</tr>
</tbody>
</table>

Table 12. All Flow EGU Descriptions (Volume, Mass, Base Volume, and Velocity)

<table>
<thead>
<tr>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/ft³</td>
<td>pounds per cubic foot</td>
<td>Lton/d</td>
<td>long tons per day (2240 lbs)</td>
<td>Sm³/m</td>
<td>Standard cubic meters per minute</td>
</tr>
<tr>
<td>lb/gal</td>
<td>pounds per US gallon</td>
<td>m³/s</td>
<td>cubic meters per second</td>
<td>Sm³/h</td>
<td>Standard cubic meters per hour</td>
</tr>
<tr>
<td>oz/in³</td>
<td>ounces per cubic in</td>
<td>m³/m</td>
<td>cubic meters per minute</td>
<td>Sm³/d</td>
<td>Standard cubic meters per day</td>
</tr>
<tr>
<td>kg/m³</td>
<td>kilograms per cubic meter</td>
<td>m³/h</td>
<td>cubic meter per hour</td>
<td>Sft³/s</td>
<td>Standard cubic feet per second, US System</td>
</tr>
<tr>
<td>kg/l</td>
<td>kilograms per liter</td>
<td>m³/d</td>
<td>cubic meters per day</td>
<td>Sft³/m</td>
<td>Standard cubic feet per minute, US System</td>
</tr>
<tr>
<td>g/cm³</td>
<td>grams per cubic centimeter</td>
<td>ft³/s</td>
<td>cubic feet per second</td>
<td>Sft³/h</td>
<td>Standard cubic feet per hour, US System</td>
</tr>
<tr>
<td>lb/Yd³</td>
<td>pounds per cubic yard</td>
<td>ft³/m</td>
<td>cubic feet per minute</td>
<td>Sft³/d</td>
<td>Standard cubic feet per day, US System</td>
</tr>
<tr>
<td>LT/Yd³</td>
<td>long tons per cubic yard</td>
<td>ft³/h</td>
<td>cubic feet per hour</td>
<td>Sgal/s</td>
<td>Standard US gallon per second</td>
</tr>
<tr>
<td>ST/Yd³</td>
<td>short tons per cubic yard</td>
<td>ft³/d</td>
<td>cubic feet per day</td>
<td>Sgal/m</td>
<td>Standard US gallon per minute</td>
</tr>
<tr>
<td>kg/s</td>
<td>kilograms per second</td>
<td>gal/s</td>
<td>US gallons per second</td>
<td>Sgal/h</td>
<td>Standard US gallon per hour</td>
</tr>
<tr>
<td>kg/m</td>
<td>kilograms per minute</td>
<td>gal/m</td>
<td>US gallons per minute</td>
<td>Sgal/d</td>
<td>Standard US gallon per day</td>
</tr>
<tr>
<td>kg/h</td>
<td>kilograms per hour</td>
<td>gal/h</td>
<td>US gallons per hour</td>
<td>Sbl³/s</td>
<td>Standard barrel per second (31.5 US gallons per barrel)</td>
</tr>
<tr>
<td>kg/d</td>
<td>kilograms per day</td>
<td>gal/d</td>
<td>US gallons per day</td>
<td>Sbl³/m</td>
<td>Standard barrel per minute (31.5 US gallons per barrel)</td>
</tr>
<tr>
<td>lb/s</td>
<td>pounds per second</td>
<td>lgal/s</td>
<td>imperial gallons per second</td>
<td>Sbl³/h</td>
<td>Standard barrel per day (31.5 US gallons per barrel)</td>
</tr>
<tr>
<td>lb/m</td>
<td>pounds per minute</td>
<td>lgal/m</td>
<td>imperial gallons per minute</td>
<td>Sbl³/d</td>
<td>Standard barrel per day (31.5 US gallons per barrel)</td>
</tr>
</tbody>
</table>
Table 12. All Flow EGU Descriptions (Volume, Mass, Base Volume, and Velocity) (Continued)

<table>
<thead>
<tr>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/h</td>
<td>pounds per hour</td>
<td>lgal/h</td>
<td>imperial gallons per hour</td>
<td>Sbbl/s</td>
<td>Standard barrel per year (42 US gallons per barrel)</td>
</tr>
<tr>
<td>lb/d</td>
<td>pounds per day</td>
<td>lgal/d</td>
<td>imperial gallons per day</td>
<td>Sbbl/m</td>
<td>Standard barrel per year (42 US gallons per barrel)</td>
</tr>
<tr>
<td>g/s</td>
<td>grams per second</td>
<td>bbl3/s</td>
<td>barrels per second (31.5 US gallons = barrel)</td>
<td>Sbbl/h</td>
<td>Standard barrel per year (42 US gallons per barrel)</td>
</tr>
<tr>
<td>g/m</td>
<td>grams per minute</td>
<td>bbl3/m</td>
<td>barrels per minute (31.5 US gallons = barrel)</td>
<td>Sbbl/d</td>
<td>Standard barrel per year (42 US gallons per barrel)</td>
</tr>
<tr>
<td>g/h</td>
<td>grams per hour</td>
<td>bbl3/h</td>
<td>barrels per hour (31.5 US gallons = barrel)</td>
<td>mScfd</td>
<td>thousand of Standard cubic feet per 24 hours</td>
</tr>
<tr>
<td>g/d</td>
<td>grams per day</td>
<td>bbl3/d</td>
<td>barrels per day (31.5 US gallons = barrel)</td>
<td>mmScfd</td>
<td>millions of Standard cubic feet per 24 hours</td>
</tr>
<tr>
<td>oz/s</td>
<td>ounces per second</td>
<td>bbl/s</td>
<td>barrels per second (42 US gallons = barrel)</td>
<td>Nm3/s</td>
<td>Normal cubic meter per second MKS System</td>
</tr>
<tr>
<td>oz/m</td>
<td>ounces per minute</td>
<td>bbl/m</td>
<td>barrels per minute (42 US gallons = barrel)</td>
<td>Nm3/m</td>
<td>Normal cubic meter per minute MKS System</td>
</tr>
<tr>
<td>oz/h</td>
<td>ounces per hour</td>
<td>bbl/h</td>
<td>barrels per hour (42 US gallons = barrel)</td>
<td>Nm3/h</td>
<td>Normal cubic meter per day MKS System</td>
</tr>
<tr>
<td>oz/d</td>
<td>ounces per day</td>
<td>bbl/d</td>
<td>barrels per day (42 US gallons = barrel)</td>
<td>Nm3/d</td>
<td>Normal cubic meter per day MKS System</td>
</tr>
<tr>
<td>mTon/s</td>
<td>metric tons per second</td>
<td>l/s</td>
<td>liters per second</td>
<td>Ngal/s</td>
<td>Normal US gallon per second</td>
</tr>
<tr>
<td>mTon/m</td>
<td>metric tons per minute</td>
<td>l/m</td>
<td>liters per minute</td>
<td>Ngal/m</td>
<td>Normal US gallon per minute</td>
</tr>
<tr>
<td>mTon/h</td>
<td>metric tons per hour</td>
<td>l/h</td>
<td>liters per hour</td>
<td>Ngal/h</td>
<td>Normal US gallon per hour</td>
</tr>
<tr>
<td>mTon/d</td>
<td>metric tons per day</td>
<td>l/d</td>
<td>liters per day</td>
<td>Ngal/d</td>
<td>Normal US gallon per day</td>
</tr>
<tr>
<td>STon/s</td>
<td>short tons per second</td>
<td>Ml/h</td>
<td>million liters per hour</td>
<td>Nl/s</td>
<td>Normal liter per second, MKS System</td>
</tr>
<tr>
<td>STon/m</td>
<td>short tons per minute</td>
<td>Ml/d</td>
<td>million liters per day</td>
<td>Nl/m</td>
<td>Normal liter per minute, MKS System</td>
</tr>
<tr>
<td>STon/h</td>
<td>short tons per hour</td>
<td>Mgal/d</td>
<td>million US gallons per day</td>
<td>Nl/h</td>
<td>Normal liter per hour, MKS System</td>
</tr>
<tr>
<td>STon/d</td>
<td>short tons per day</td>
<td>mcfd</td>
<td>thousand cubic ft per day</td>
<td>Nl/d</td>
<td>Normal liter per day, MKS System</td>
</tr>
<tr>
<td>LTon/m</td>
<td>long tons per minute</td>
<td>mmcf/d</td>
<td>million cubic ft per day</td>
<td>Custom</td>
<td>Custom VolumeNorm-Rate</td>
</tr>
<tr>
<td>LTon/h</td>
<td>long tons per hour</td>
<td>Sm3/s</td>
<td>Standard cubic meters per second</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Viscosity, K-Factor, Density, and Temperature EGU Descriptions

<table>
<thead>
<tr>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td></td>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>PaSec</td>
<td>Pa.s</td>
<td>lb/lft3</td>
<td>pounds per cubic foot</td>
</tr>
<tr>
<td>cPoise</td>
<td>centipoise</td>
<td>lb/gal</td>
<td>pounds per US gallon</td>
</tr>
<tr>
<td>p/l</td>
<td>pulses per liter</td>
<td>oz/in3</td>
<td>ounces per cubic inch</td>
</tr>
<tr>
<td>p/lft3</td>
<td>pulses per cubic foot</td>
<td>kg/m3</td>
<td>kilograms per cubic meter</td>
</tr>
<tr>
<td>K-Factor</td>
<td></td>
<td>kg/l</td>
<td>kilograms per liter</td>
</tr>
<tr>
<td>degF</td>
<td>degrees Fahrenheit</td>
<td>g/cm3</td>
<td>grams per cubic centimeter</td>
</tr>
<tr>
<td>degR</td>
<td>degrees Rankine</td>
<td>lb/Yd3</td>
<td>pounds per cubic yard</td>
</tr>
<tr>
<td>degC</td>
<td>degrees Celsius</td>
<td>LT/Yd3</td>
<td>long tons per cubic yard</td>
</tr>
<tr>
<td>degK</td>
<td>degrees Kelvin</td>
<td>ST/Yd3</td>
<td>short tons per cubic yard</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>Custom</td>
<td>Custom Density</td>
</tr>
</tbody>
</table>
Setting Flow Parameters

The Flow section of the Setup mode allows you to configure parameters for flow.

- In FlwMap, select VolFlow, BVolFlow, MassFlow, or Velocity.

NOTE
Before changing the totalizer mappings from VolFlow to BVolFlow, the totalizer must be at zero.
- If there is flow, turn the totalizer off and clear it.
- If there is no flow, clear the totalizer.
Refer to “Totals Mode” on page 65 for instructions.

- In FlwEGU, select the desired unit of flow from the picklist. If you pick Custom, you must define your custom unit. First, enter a Label for your custom units using up to eight alphanumeric characters. Then, enter any offset (Offset) and a conversion factor (Slope) from kilograms per second (kg/s) for mass flow units or cubic meters per second (m³/s) for volume or base volume flow units to the custom units.

Example: The slope for a custom unit of yd³/min would be 78.47704 because 78.47704 yd³/min = 1 m³/s.

- In FlwURV, enter the upper range value in the flow unit just specified.
- In FlwDmp, select the damping factor from the picklist.
- In VelEGU, select the desired velocity unit from the picklist.
Setting Tuning Parameters

The Tuning section of the Setup mode allows you to specify several flowmeter options.

- In AddDrop, configure the pulse compensation (signal conditioning) feature as On or Off.
- In AddDrop, configure the pulse compensation (signal conditioning) feature as On or Off.

The transmitter provides noise reduction methods which can be applied to the Raw Vortex frequency measurement in noisy environments:

- On FHL: When the measured VolumeFlow, MassFlow, or BaseVolumeFlow Rate exceeds its Hard Limit, flow damping is bypassed and the reported rate is set to the corresponding Hard Limit value. Totalization and Pulse Output then follow the Reported Rate value.

 This should be used if the user desires an immediate indication via a full scale rate value being reported, when an undamped rate measurement exceeds its Hard Limit, even momentarily.

- On WHL: If the Raw Vortex frequency exceeds its Soft Limit (Warned Hard Limit), the reported frequency is clamped when it reaches a value slightly above the Soft Limit value.

 The Raw Vortex frequency status is set to W: >SoftU, indicating that it has exceeded its Soft Limit. The VolumeFlow, MassFlow, and BaseVolumeFlow rates are calculated using the reported Raw Vortex frequency based on the flow damping setting.

- In RdCorr, configure the Reynolds number correction feature as On or Off.
- In LFCI, set the low flow cut-in parameter to the level above which the flowmeter begins to measure flow. Select an output that provides no output under no flow conditions. In EGU, note the flow units in which the setting selections are shown. In Setting, select a setting from the picklist presented.

--- NOTE ---

The LFCI can be automatically set by the flowmeter in the Calibration/Test mode.
Setting Totals Parameters

The 2 Total section of the Setup mode allows you to configure each of two totalizers. This is done in 3 TotNet and 3 TotGrd.

--- NOTE ---

Before changing the totalizer mappings from VolFlow to BVolFlow, the totalizer must be at zero.

– If there is flow, turn the totalizer off and clear it.
– If there is no flow, clear the totalizer.

Refer to “Totals Mode” on page 65 for instructions.

For each totalizer:

♦ In 4 Map, map the totalizer to Volume, Mass, or BVolume.

♦ In 4 EGU, select the desired unit from the picklist presented.

If you pick Custom, you must define your custom unit. First, enter a Label for your custom units using up to eight alphanumeric characters. Then, enter any offset (Offset) and a conversion factor (Slope) from kilograms (for mass units) or cubic meters (for volume or base volume units) to the custom units.

Example: The slope for a custom unit of a 42 gallon barrel would be 6.2898 because 6.2898 bbl = 1 m³.

Refer to the following tables for available EGU units for totalizers.

Table 14. Available Totalizer Units

<table>
<thead>
<tr>
<th>Totalizer</th>
<th>Available EGUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net and Grand Totals for Volume (Liquid, Gas, Steam); Pulse Totals for</td>
<td>m³, in³, ft³, L, MI, bbl, bbl, gal, Mgal, hl, bushel,</td>
</tr>
<tr>
<td>Volume and Velocity (Liquid, Gas, Steam)</td>
<td>yd³, lgal, mcft, mmcft, Custom</td>
</tr>
<tr>
<td>Net, Grand, and Pulse Totals for Base Volume - Standard (Liquid and Gas)</td>
<td>Sm³, Sft³, SBL³, SBBL, Sgal (b), mScft, mmScft, Custom</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>Net, Grand, and Pulse Totals for Base Volume - Normal (Liquid and Gas)</td>
<td>Nm³, Nft³, Nl, Ngal (b), Custom</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>Net, Grand, and Pulse Totals for Mass (Liquid, Gas, Steam)</td>
<td>kg, g, lb, oz, mTon, STon, LTon, Custom</td>
</tr>
</tbody>
</table>

| a. Base Volume is not available when fluid is steam. |
| b. Sgal and Ngal available only when fluid is liquid. |
Setting Output Parameters

The 2 Output section of the Setup mode allows you to configure the communications, mA output, pulse output, and display parameters.

Communications

There is no need to map the measurements to be displayed in the I/A Series system as they are already defined. The primary measurement is flow rate (volume, base volume, or mass); the secondary measurement is net total; the tertiary measurement is grand total.

In 3 Coms, configure the communications parameters:

- In 4Po1Addr, specify the poll address from the picklist of numbers from 0 through 15.
- In 4Preambl, set the number of preambles between 2 and 20.

mA Output

In 3 Fail, configure the mA output to go fully downscale or upscale upon a failure.

Pulse Output (If pulse output specified)

In 3 Pulse, go to 4 Pulse and select the type of pulse output as Rate, Total, Raw, or Off. If Rate, configure the following:

- In 4 Freq, select the upper frequency end point corresponding to the highest frequency generated as 10 Hz, 100 Hz, 1000 Hz, or Custom.

If Total, configure the following:

- In 4 Pwidth, select the pulse width as 0.5, 5, or 50 ms.

Table 15. Totalizer EGU Descriptions

<table>
<thead>
<tr>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbl</td>
<td>barrels (42 US gallons)</td>
<td>mmcf</td>
<td>million cubic feet</td>
</tr>
<tr>
<td>bbl3</td>
<td>barrels (31.5 US gallons)</td>
<td>mmScf</td>
<td>million standard cubic feet</td>
</tr>
<tr>
<td>bushl</td>
<td>bushels</td>
<td>mScf</td>
<td>thousand standard cubic feet</td>
</tr>
<tr>
<td>ft3</td>
<td>cubic feet</td>
<td>mT</td>
<td>metric tons</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>Nft3</td>
<td>normal cubic feet (MKS System)</td>
</tr>
<tr>
<td>gal</td>
<td>US gallons</td>
<td>Ngal</td>
<td>normal gallons (MKS System)</td>
</tr>
<tr>
<td>hl</td>
<td>hectoliters</td>
<td>ni</td>
<td>normal liters (MKS System)</td>
</tr>
<tr>
<td>Igal</td>
<td>imperial gallons</td>
<td>Nm3</td>
<td>normal cubic meters (MKS System)</td>
</tr>
<tr>
<td>in3</td>
<td>cubic inches</td>
<td>oz</td>
<td>ounces</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>SBBL</td>
<td>standard barrels (42 US gallons)</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>SBL3</td>
<td>standard barrels (31.5 US gallons)</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>Sft3</td>
<td>standard cubic feet</td>
</tr>
<tr>
<td>LTon</td>
<td>long tons (2240 pounds)</td>
<td>Sgal</td>
<td>standard gallon</td>
</tr>
<tr>
<td>m3</td>
<td>cubic meters</td>
<td>Sm3</td>
<td>standard cubic meters</td>
</tr>
<tr>
<td>mcft</td>
<td>thousand cubic feet</td>
<td>STo</td>
<td>short tons (2000 pounds)</td>
</tr>
<tr>
<td>Mgal</td>
<td>million US gallons</td>
<td>yd3</td>
<td>cubic yards</td>
</tr>
<tr>
<td>Mi</td>
<td>million liters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15. Totalizer EGU Descriptions

<table>
<thead>
<tr>
<th>EGU</th>
<th>Description</th>
<th>EGU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbl</td>
<td>barrels (42 US gallons)</td>
<td>mmcf</td>
<td>million cubic feet</td>
</tr>
<tr>
<td>bbl3</td>
<td>barrels (31.5 US gallons)</td>
<td>mmScf</td>
<td>million standard cubic feet</td>
</tr>
<tr>
<td>bushl</td>
<td>bushels</td>
<td>mScf</td>
<td>thousand standard cubic feet</td>
</tr>
<tr>
<td>ft3</td>
<td>cubic feet</td>
<td>mT</td>
<td>metric tons</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>Nft3</td>
<td>normal cubic feet (MKS System)</td>
</tr>
<tr>
<td>gal</td>
<td>US gallons</td>
<td>Ngal</td>
<td>normal gallons (MKS System)</td>
</tr>
<tr>
<td>hl</td>
<td>hectoliters</td>
<td>ni</td>
<td>normal liters (MKS System)</td>
</tr>
<tr>
<td>Igal</td>
<td>imperial gallons</td>
<td>Nm3</td>
<td>normal cubic meters (MKS System)</td>
</tr>
<tr>
<td>in3</td>
<td>cubic inches</td>
<td>oz</td>
<td>ounces</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>SBBL</td>
<td>standard barrels (42 US gallons)</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>SBL3</td>
<td>standard barrels (31.5 US gallons)</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>Sft3</td>
<td>standard cubic feet</td>
</tr>
<tr>
<td>LTon</td>
<td>long tons (2240 pounds)</td>
<td>Sgal</td>
<td>standard gallon</td>
</tr>
<tr>
<td>m3</td>
<td>cubic meters</td>
<td>Sm3</td>
<td>standard cubic meters</td>
</tr>
<tr>
<td>mcft</td>
<td>thousand cubic feet</td>
<td>STo</td>
<td>short tons (2000 pounds)</td>
</tr>
<tr>
<td>Mgal</td>
<td>million US gallons</td>
<td>yd3</td>
<td>cubic yards</td>
</tr>
<tr>
<td>Mi</td>
<td>million liters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Operation Via Local Display

- In 4 EGU, select the units from the picklist provided.
- In 4 U/Pulse, enter the units per pulse.

If Raw, no further action is required.

Display

Under Display, configure the display parameters

Under 4 Show, specify whether the reading is to be shown for each of the following measurements and, if shown, the Format (decimal point placement) of the displayed value:

- In 5 FlwVo1, the volume flow output display.
- In 5 TotNet, the net totalizer reading.
- In 5 TotGrd, the grand totalizer reading.

In 4 Show1st, select the first measurement to be shown as FlwVo1, Velcty, FlwBVo, FlwMas, or Raw.

In 4 Cycle, specify whether the list of measurements configured to be shown are scanned automatically (Auto) or manually (Manual).

Setting Piping Parameters

The 2 Pipe section of the Setup mode allows you to configure the parameters related to piping.

Piping

Under 3 Piping, configure the parameters used by the flowmeter to correct for the effects of upstream piping and disturbances on the Flowing K-Factor as follows:

- In 4 Config, select the upstream piping configuration from the following picklist (see Figure 44):
 - Straight
 - 1 EL PAR (1 elbow with shedder parallel to elbow plane)
 - 1 EL PER (1 elbow with shedder perpendicular to elbow plane)
 - 2L0PDPAR (2 elbows with shedder parallel to plane of closest elbow and distance between elbows is zero pipe diameters)
 - 2L0PDPER (2 elbows with shedder perpendicular to plane of closest elbow and distance between elbows is zero pipe diameters)
 - 2L5PDPAR (2 elbows with shedder parallel to plane of closest elbow and distance between elbows is 5 pipe diameters)
 - 2L5PDPER (2 elbows with shedder perpendicular to plane of closest elbow and distance between elbows is 5 pipe diameters)
 - Reducer

- In 4 UpDist, enter the distance to the first upstream flow disturbance in pipe diameters.
Pipe Bore

In 3 BorSch, select the pipe bore from the following picklist: Sched 10, Sched 40, Sched 80, PN16, PN40, PN64, PN100, or Sanitary.

In 3 Custom, input a Kref Bias in percent (%). For example: to change Kref by 2%, enter 2.000.
Setting Tag Parameters
The 2 Tags section of the Setup mode allows you to configure the following identification parameters:

- In 3 HrtDes, enter the device description.
- In 3 HrtTag, enter an alphanumeric description if desired.

Setting Flowtube Parameters
The 2 NewTube section of the Setup mode allows you to configure the following flowtube parameters:

Model
In 3 Model, enter the model number of the flowtube (16 characters maximum) as found on the flowmeter tag. It is already in the database if the flowtube and electronics were shipped as a unit.

Special Flowtube
If your flowtube was customized to be different from the model number entered, you can override certain descriptions in the model code in 3 Special as follows:

- In 4 TubDia, enter the custom flowtube diameter in meters
- In 4 TubAlp, enter the thermal coefficient of expansion (alpha) in mm/mm/degK
- In 4 LfUFac, enter the low flow cut-in user factor.

Reference Number
In 3 Ref No, enter the reference number (serial number) of the flowtube (16 characters maximum) as found on the flowmeter tag. It is already in the database if the flowtube and electronics were shipped as a unit.

K-Factor
In 3 K Ref, enter the K-factor as follows:

- In 4 K EGU, select p/l or p/ft³ as the unit of the K-factor.
- In 4 K Ref, enter the reference K-factor as found on the flowmeter tag.

Changing the Password
The 2 Passwd section of the Setup mode allows you to create or change the passwords.

In 4 LoPwd, enter the new password for access to clear (reset) the net and pulse totalizers.

In 4 HiPwd, enter the new password for access to all modes.

--- NOTE ---
1. Passwords contain four characters.
2. Use four spaces to configure ‘No Password’.
Setup Menu Tree

Figure 45. Setup Menu Tree (1 of 3)
Figure 46. Setup Menu Tree (2 of 3)

2 Total
 3 TotNet
 4 Map
 4 EGU*
 3 TotGrd
 4 Map
 4 EGU*

2 Output
 3 Coms
 4 PolAdr
 4 Preambl
 3 Pulse (a)
 4 Pulse
 If Raw
 Pul=Raw
 If Rate
 4 Freq
 4 Tot P/U
 4 Tot U/P
 4 P width
 4 EGU
 3 Fail
 4 Factor (b)

3 Display
 4 Show
 4 Show1st
 4 Cycle

2 Pipe
 3 Piping (c)
 4 Config
 4 Updist
 3 BoreSch (d)
 3 Custom
 3 Custom

To 2 Tags

a. Only applies to options “T” and “L”
b. Factor equals Pulse/Units or Units/Pulse.
c. Not available with special (customized) flowtubes.
d. Not available with special (customized) flowtubes, or with Schedule 160.
Calibration/Test Mode

The Calibration/Test mode enables you to:

- Set the Low Flow Cut In (LFCI)
- Calibrate the 4 and 20 mA output
- Self test the flowmeter
- Use the flowmeter to test the loop.

The Calibration/Test mode can be a passcode protected mode. So after the initial configuration, you may need to enter the HiPwd to perform the procedures in this mode. See “Password” on page 60.

— NOTE —
If you lose your password, call our Global Customer Support for assistance.

The structural diagram for the Calibration/Test mode is shown in Figure 48.
Calibration

In 2 Calib, go to 3 SetLFCI to have the flowmeter automatically set the Low Flow Cut-In. In doing this, the flowmeter chooses the lowest level at which no signal is detected over a 20-second time interval. It is important that the flow be zero during this procedure.

NOTE

This procedure may confirm your choice of LFCI setting in “Setting Tuning Parameters” on page 72. However, if it picks a different selection, it overwrites your selection.

In 2 Calib, go to 3 Cal mA to calibrate the 4 and 20 mA output.

- The 4Restore parameter restores the factory calibration.
- The 4Cal 4mA and 4Cal20mA parameters allow the 4 to 20 mA output of the flowmeter to be calibrated or matched to the calibration of the receiving device to an accuracy of 0.005 mA.

NOTE

The flowmeter has been accurately calibrated at the factory. Recalibration of the output is normally not required, unless it is being adjusted to match the calibration of the receiving device.

- In 4CalDate, enter the date of the last calibration if desired.
- In 4Initial, enter the initials of the last calibrator if desired.

Test

In 2 Test, you can self test the flowmeter and use the flowmeter to test the loop.

Testing the Loop

The flowmeter can be used as a signal source to check and/or calibrate other instruments in the control loop, such as indicators, controllers, and recorders. To do this, set the mA output (3 Set mA), rate pulse output (3 Set Hz), or digital output (3 SetDig) signals to any value within the range limits of the meter.

Testing the Flowmeter

The self test parameter (3SelfTst) checks the flowmeter operation by injecting, near the front end of the electronics, an internally generated periodic signal of known frequency. The frequency of this signal is in turn measured and checked against the injected signal.

NOTE

It is recommended that you clear the totalizer after a self test. Refer to “Totals Mode” on page 65 for instructions.
Figure 48. Calibration/Test Menu Tree

1 Cal/Tst
 2 Calib
 3 Cal LFCI
 3 Cal mA (a)
 4 Restore
 4 Cal4mA
 4 Cal20mA
 4 Cal Date
 3 Test
 3 Set Dig
 3 Set mA
 3 Set Hz (b)
 3 Self Tst
 <-CANCEL
 SAVE->

a. Not available with Option “U”.
b. Not available with special orders.
Error Messages

Operation Error Messages

This section defines error messages that may be displayed and actions that can be taken to correct the error. Some messages appear periodically while seeing a valid flow measurement. This typically occurs when “soft” limits have been exceeded and the flowmeter is warning that a hard limit is approaching.

Table 16. Operation Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Override</td>
<td>The flowmeter is being overridden by an external host such as another configurator or control system.</td>
<td>None - This is an awareness message that the flowmeter is being overridden</td>
</tr>
<tr>
<td>W: Input xxxxxxxxxx</td>
<td>Warning: An input to a specific measurement or calculation has exceeded the normal limit and is in the 'soft limit' region. The measurement or calculation is defined on the second line of the message.</td>
<td>1. Check inputted temperature flowing temperature to make sure it is within the temperature limits of the sensor. 2. Check the raw frequency to determine if it is out of limits for the flowmeter size.</td>
</tr>
<tr>
<td>B: Input xxxxxxxxxx</td>
<td>Bad Input: Same as above except the inputs have now exceeded the 'soft' limit. This adversely affects all measurements.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>W: Input Total</td>
<td>Warning: The total (pulse, net, or grand) may not be correct due to a momentary loss of power.</td>
<td>Clear the total. Pulse and Net total can be cleared independently. Clearing the grand total clears pulse and net totals also.</td>
</tr>
<tr>
<td>FcErr E:0x####</td>
<td>An internal function did not execute successfully.</td>
<td>If this occurs at startup, an invalid configuration exists. Recheck the configuration. If this does not resolve the problem, re-enter the Model.</td>
</tr>
</tbody>
</table>

Configuration Error Messages

Table 17. Configuration Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>WrProtct</td>
<td>The write protect jumper is in the 'protect' position or is missing. The configuration cannot be changed unless the jumper is in the 'write' position.</td>
<td>Install or move the write protect jumper to the 'write' position. See “Setting the Write Protect Jumper” on page 46.</td>
</tr>
<tr>
<td>Cfg Err MsCode</td>
<td>An incorrect model code has been entered.</td>
<td>Enter the correct model code.</td>
</tr>
<tr>
<td>No Pulse Hardware</td>
<td>An incorrect model code has been entered. The model code entered was for a flowmeter with a pulse output. The electronics module does not have a pulse output PWB.</td>
<td>Enter the correct model code which begins with 84F-E, 84W-E, 84F-U (Styles A and B), or 84W-U.</td>
</tr>
<tr>
<td>Bad URV URV=URL</td>
<td>The entered URV has exceeded the URL (meter capacity) of the flowmeter.</td>
<td>Press Enter to change the URV to the value of the URL. Make sure that the entered value for Flowing Density is correct.</td>
</tr>
<tr>
<td>Bad URV URV=Min</td>
<td>The entered URV is less than the minimum value allowed for the URV.</td>
<td>Press Enter to change the URV to the minimum value allowed. Make sure that the LFCl setting and the value for Flowing Density is correct. See Note (a).</td>
</tr>
<tr>
<td>FcErr E:0x####</td>
<td>An internal function did not execute successfully.</td>
<td>Review the inputs associated with the last menu function. If this does not resolve the problem, re-enter the Model.</td>
</tr>
</tbody>
</table>

a. The minimum URV value is three times (3x) the LFCl flow rate. For applications where the URV is very low relative to the flowmeter capacity, this error message may appear when this constraint is violated. This could be the result of lowering the URV, increasing the LFCl setting, or decreasing the flowing density (increasing the corresponding LFCl flow rate values).
4. Operation Via HART Communicator

Online Menu

Figure 49. 84 Vortex Flowmeter Online Menu Tree (1 of 4)

*If PV Units = Custom, specify
- Custom PV Label
- Custom PV Offset
- Custom PV Slope
Figure 50. 84 Vortex Flowmeter Online Menu Tree (2 of 4)
Figure 51. 84 Vortex Flowmeter Online Menu Tree (3 of 4)

- **Q**
 1. Set Fluid Defaults
 2. Fluid Name
 3. Temperature Units
 4. Process Temp
 5. Density Units*
 6. Process Density
 7. Base Density
 8. Abs Viscosity Unit
 9. Process Viscosity

- **R**
 1. Mating Pipe
 2. Piping Config
 3. Upstream Distance
 4. Custom K Bias

- **S**
 1. AO/PV Map
 2. AO/PV URV
 3. AO/PV LRV
 4. Set Analog Out
 5. Calibration

- **C**

- **T**
 1. Pulse Mode
 2. PO/PV Map
 3. PO/PV URV
 4. PO/PV LRV
 5. Pulse Max Freq
 6. Set Pulse Out

*If Density Units = Custom, specify
- Custom Dens Label
- Custom Dens Offset
- Custom Dens Slope

*This menu branch is not available for special orders or with Schedule 160.

*If Density Units = Custom, specify
- Custom Dens Label
- Custom Dens Offset
- Custom Dens Slope

*This menu branch is not available for special orders or with Schedule 160.
Figure 52. 84 Vortex Flowmeter Online Menu Tree (4 of 4)

- **Model Code**
- **Serial Number**
- **K Factor**
- **PV USL**
- **PV Min Span**
- **LFCI**
- **LFCI Index**
- **PV Units**
- **Net Total Units**
- **Grand Total Units**
- **AO/PV Map**
- **AO/PV URV**
- **AO/PV LRV**
- **Pulse Mode**
- **PO/PV Map**
- **PO/PV URV**
- **PO/PV LRV**
- **Pulse Max Freq**
- **Pulse Map**
- **Pulse Width**
- **Pulse Total EGU**
- **Pulse Resolution**
- **O/P Alarm Code**
- **PV Damp**
- **Pulse Add/Drop**
- **Fluid Name**
- **Fluid Type**
- **Temperature Units**
- **Process Temperature**
- **Density Units**
- **Process Density**
- **Base Density**
- **Abs Viscosity Units**
- **Process Viscosity**
- **Mating Pipe**
- **Piping Config**
- **Upstream Distance**
- **Custom K Bias**
- **Manufacturer**
- **Dev ID**
- **Tag**
- **Descriptor**
- **Message**
- **Date**
- **Universal Rev**
- **Fld Dev Rev**
- **Software Rev**
- **Software Sub-Revision**
- **Hardware Rev**
- **Poll Addr**
- **Num Req Preams**

* If Pulse mode = Rate
** If Pulse Mode = Total
Explanation of Parameters

NOTE

The fast-key path shown is based on a frequently used configuration. If certain parameters are configured off or infrequently used parameters configured on, the fast-key path may be different.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fast-Key Path</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs Viscosity Unit</td>
<td>1,4,1,4,8</td>
<td>Select the viscosity unit from the picklist provided.</td>
</tr>
<tr>
<td>Abs Viscosity Units</td>
<td>1,5</td>
<td>Shows the absolute viscosity unit.</td>
</tr>
<tr>
<td>Analog Output</td>
<td>1,4,4,2</td>
<td>Path to configuring the analog output.</td>
</tr>
<tr>
<td>AO Status</td>
<td>1,2,6,6</td>
<td>Shows the AO status.</td>
</tr>
<tr>
<td>AO Value</td>
<td>1,2,6,7</td>
<td>Shows the AO value.</td>
</tr>
<tr>
<td>AO/PV LRV</td>
<td>1,4,4,2,3,1,5</td>
<td>Shows the AO/PV LRV.</td>
</tr>
<tr>
<td>AO/PV Map</td>
<td>1,4,4,2,1,1,5</td>
<td>Shows whether the PV is mapped to Volume Flow, Mass Flow, BVolFlow, or Velocity.</td>
</tr>
<tr>
<td>AO/PV URV</td>
<td>1,4,4,2,2,1,5</td>
<td>Shows the AO/PV URV.</td>
</tr>
<tr>
<td>Auto LFCI</td>
<td>1,2,2</td>
<td>Procedure for the flowmeter to automatically set the LFCI.</td>
</tr>
<tr>
<td>Base Density</td>
<td>1,4,1,4,7,1,5</td>
<td>In Detailed Setup, enter the base density in the density unit specified. This is only used to calculate the base volumes. In Review, shows the base density.</td>
</tr>
<tr>
<td>Basic Setup</td>
<td>1,3</td>
<td>Path to basic setup parameters.</td>
</tr>
<tr>
<td>Calibration</td>
<td>1,2,5</td>
<td>Path to performing a D/A trim or scaled D/A trim.</td>
</tr>
<tr>
<td>Custom K Bias</td>
<td>1,4,1,5,4,1,5</td>
<td>In Detailed Setup, enter the custom K-factor (with sign in percent). In Review, shows the custom K-Factor.</td>
</tr>
<tr>
<td>Custom Dens Label</td>
<td>1,4,1,4,5</td>
<td>Enter the label for your custom density unit.</td>
</tr>
<tr>
<td>Custom Dens Offset</td>
<td>1,4,1,4,5</td>
<td>Enter any offset.</td>
</tr>
<tr>
<td>Custom Dens Slope</td>
<td>1,4,1,4,5</td>
<td>Enter a conversion factor for the custom density unit.</td>
</tr>
<tr>
<td>Custom PV Label</td>
<td>1,3,6</td>
<td>Enter the label for your custom PV unit.</td>
</tr>
<tr>
<td>Custom PV Offset</td>
<td>1,3,6</td>
<td>Enter any offset.</td>
</tr>
<tr>
<td>Custom PV Slope</td>
<td>1,3,6</td>
<td>Enter a conversion factor for the custom PV unit.</td>
</tr>
<tr>
<td>D/A Trim</td>
<td>1,2,5,1</td>
<td>Procedure to trim the 4 and 20 mA output values of the flowmeter to match the output of a plant standard measurement device.</td>
</tr>
<tr>
<td>Date</td>
<td>1,2,5,3,1,4,5</td>
<td>In Detailed Setup, enter the date of the last calibration. In Review, shows the last calibration date.</td>
</tr>
<tr>
<td>Density Units</td>
<td>1,4,1,4,5,1,5</td>
<td>In Detailed Setup, select the density unit from the picklist provided. In Review, shows the density units.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1,4,5,3,1,5</td>
<td>In Detailed Setup, enter the descriptor (16 characters maximum). In Review shows the descriptor.</td>
</tr>
<tr>
<td>Detailed Setup</td>
<td>1,4</td>
<td>Path to detailed setup parameters.</td>
</tr>
<tr>
<td>Detail Status</td>
<td>1,2,7</td>
<td>Path to viewing the status of various device parameters.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Fast-Key Path</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Device Err Status</td>
<td>1,2,7,2</td>
<td>Shows the device error status.</td>
</tr>
<tr>
<td>Dev ID</td>
<td>1,5</td>
<td>Shows the device identification number.</td>
</tr>
<tr>
<td>Device Info</td>
<td>1,4,5</td>
<td>Path to configuring the device description parameters.</td>
</tr>
<tr>
<td>Device Setup</td>
<td></td>
<td>Path to all other parameters.</td>
</tr>
<tr>
<td>Device Warn Status</td>
<td>1,2,7,3</td>
<td>Shows the device warning status.</td>
</tr>
<tr>
<td>Diag/Service</td>
<td>1,2</td>
<td>Path to status, test, and calibration parameters.</td>
</tr>
<tr>
<td>Digital Output</td>
<td>1,4,4,1</td>
<td>Path to configuring the digital output.</td>
</tr>
<tr>
<td>Display Cycle</td>
<td>1,4,4,6,3</td>
<td>Specify whether the list of measurements configured to be displayed are scanned automatically or manually.</td>
</tr>
<tr>
<td>Error Reason</td>
<td>1,2,7,1</td>
<td>Shows the error reason code.</td>
</tr>
<tr>
<td>Fld Dev Rev</td>
<td>1,5</td>
<td>Shows the software version of the vortex flowmeter.</td>
</tr>
<tr>
<td>Flow Velocity</td>
<td>1,2,6,1</td>
<td>Shows the flow velocity value.</td>
</tr>
<tr>
<td>Flowtube Configuration</td>
<td>1,4,2</td>
<td>Path to configuring the flowtube parameters.</td>
</tr>
<tr>
<td>Fluid Name</td>
<td>1,4,1,4,2</td>
<td>In Detailed Setup, enter the name of the fluid.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the fluid name.</td>
</tr>
<tr>
<td>Fluid Type</td>
<td>1,5</td>
<td>Shows the fluid type.</td>
</tr>
<tr>
<td>Grand Operations</td>
<td>1,2,1,4</td>
<td>Procedure to start, pause or clear the grand total.</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1,1,5,1,1,1,3,2</td>
<td>In Process Variables, shows the grand total.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Detailed Setup, path to configuring the grand total mapping and units.</td>
</tr>
<tr>
<td>Grand Total Map</td>
<td>1,4,1,3,2,1,1</td>
<td>Map the Grand Total to Volume, Mass, or BVolume.</td>
</tr>
<tr>
<td>Grand Total Units</td>
<td>1,4,1,3,2,2,1</td>
<td>In Detailed Setup, select the grand total units from the picklist provided.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the grand total units.</td>
</tr>
<tr>
<td>Grand Total Value</td>
<td>1,2,1,3</td>
<td>Shows the grand total value.</td>
</tr>
<tr>
<td>Hardware Rev</td>
<td>1,5</td>
<td>Shows the vortex flowmeter hardware revision level.</td>
</tr>
<tr>
<td>HART Output</td>
<td>1,4,4,4</td>
<td>Path to configuring the HART output.</td>
</tr>
<tr>
<td>K Corrected</td>
<td>1,2,6,4</td>
<td>Shows the K Corrected value.</td>
</tr>
<tr>
<td>K Corrected Status</td>
<td>1,2,6,5</td>
<td>Shows the K Corrected status.</td>
</tr>
<tr>
<td>K Factor</td>
<td>1,2,6,3,1,3,4,1,4,2,3</td>
<td>In Diag/Service, shows the K-Factor value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Basic Setup, enter the K-Factor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Detailed Setup, enter the K-Factor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Review, shows the K-Factor.</td>
</tr>
<tr>
<td>K Factor Units</td>
<td>1,3,1,4,2,2,1</td>
<td>In Basic Setup, path to selecting the K-Factor unit.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Detailed Setup, path to selecting the K-Factor unit.</td>
</tr>
<tr>
<td>LFCI</td>
<td>5</td>
<td>In the Main Menu, shows the low flow cut-in value.</td>
</tr>
<tr>
<td></td>
<td>1,4,3,3,1,5</td>
<td>In Detailed Setup, confirm or change the LFCI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Review, shows the LFCI.</td>
</tr>
<tr>
<td>LFCI Index</td>
<td>6</td>
<td>Shows the low flow cut-in picklist number.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>LFCI Adjust Factor</td>
<td>1,4,2,5,3</td>
<td>Enter the low flow cut-in user factor.</td>
</tr>
<tr>
<td>Local Display</td>
<td>1,4,4,6</td>
<td>Path to configuring the local display.</td>
</tr>
<tr>
<td>Loop Test</td>
<td>1,2,4</td>
<td>Procedure to use the flowmeter as a calibration source to check other instruments in the loop.</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>1,4,5,1,5</td>
<td>Shows the manufacturer as Invensys.</td>
</tr>
<tr>
<td>Mating Pipe</td>
<td>1,4,1,5,1</td>
<td>In Detailed Setup, select the type of mating pipe from the picklist provided.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the type of mating pipe.</td>
</tr>
<tr>
<td>Measurement Status</td>
<td>1,2,6,6</td>
<td>Path to viewing the status of various measurement parameters.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Fast-Key Path</td>
<td>Explanation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Measuring Elements</td>
<td>1,4,1</td>
<td>Path to configuring the measuring element parameters.</td>
</tr>
<tr>
<td>Message</td>
<td>1,4,5,4,1,5</td>
<td>In Detailed Setup, enter the message (32 characters max). In Review shows the message.</td>
</tr>
<tr>
<td>Model Code</td>
<td>1,3,1,4,1,5</td>
<td>In Basic Setup, enter the model code. In Detailed Setup, enter the model code. In Review, shows the model code.</td>
</tr>
<tr>
<td>Net Operations</td>
<td>1,2,1,2</td>
<td>Procedure to start, pause or clear the net total.</td>
</tr>
<tr>
<td>Net Total</td>
<td>1,4,1,3,1,1</td>
<td>In Process Variables, shows the net total. In Detailed Setup, path to configuring the net total mapping and units.</td>
</tr>
<tr>
<td>Net Total Map</td>
<td>1,4,1,3,1,1,1</td>
<td>Map the Net Total to Volume, Mass, or BVolume.</td>
</tr>
<tr>
<td>Net Total Units</td>
<td>1,4,1,3,1,2,1</td>
<td>In Detailed Setup, select the net total units from the picklist provided. In Review, shows the net total units.</td>
</tr>
<tr>
<td>Net Total Value</td>
<td>1,2,1,1</td>
<td>Shows the net total value.</td>
</tr>
<tr>
<td>Num Req Preams</td>
<td>1,4,4,4,2,1,5</td>
<td>In Detailed Setup, configure the number of preambles to be sent in a response message from the flowmeter to the host. In Review, shows the number of preambles.</td>
</tr>
<tr>
<td>O/P Alarm Code</td>
<td>1,4,4,5,1,5</td>
<td>In Detailed Setup, configure the output to go fully upscale or downscale if a failure occurs. In Review, shows the O/P Alarm Code.</td>
</tr>
<tr>
<td>Output Configuration</td>
<td>1,4,4</td>
<td>Path to configuring the output parameters.</td>
</tr>
<tr>
<td>p/CuFt</td>
<td>1,3,3,2</td>
<td>Sets the K-Factor unit to pulses per cubic foot.</td>
</tr>
<tr>
<td>p/l</td>
<td>1,3,3,1</td>
<td>Sets the K-Factor unit to pulses per liter.</td>
</tr>
<tr>
<td>Piping</td>
<td>1,4,1,5,1,5</td>
<td>Path to configuring the piping parameters.</td>
</tr>
<tr>
<td>Piping Config</td>
<td>1,4,1,5,2,1,5</td>
<td>In Detailed Setup, select the type of piping configuration from the picklist provided. In Review shows the type of piping configuration.</td>
</tr>
<tr>
<td>PO/PV LRV</td>
<td>1,4,4,3,4,1,5</td>
<td>Shows the PO/PV LRV.</td>
</tr>
<tr>
<td>PO/PV Map</td>
<td>1,4,4,3,4,1,5</td>
<td>Shows whether the PV is mapped to Volume Flow, Mass Flow, BVolFlow, or Velocity.</td>
</tr>
<tr>
<td>PO/PV URV</td>
<td>1,4,4,3,3,1,5</td>
<td>Shows the PO/PV URV.</td>
</tr>
<tr>
<td>Poll Addr</td>
<td>1,4,4,4,1,5</td>
<td>In Detailed Setup, configure the poll address to a number from 0 through 15. A nonzero number applies to multidrop applications. In Review, shows the poll address.</td>
</tr>
<tr>
<td>Primary Display</td>
<td>1,4,4,6,2</td>
<td>Select the first measurement to be displayed.</td>
</tr>
<tr>
<td>Process Density</td>
<td>1,4,1,4,1,5</td>
<td>In Detailed Setup, enter the flow density in the density unit specified. In Review, shows the process density.</td>
</tr>
<tr>
<td>Process Parameters</td>
<td>1,4,1,4,1,5</td>
<td>Path to configuring the process parameters.</td>
</tr>
<tr>
<td>Process Temperature</td>
<td>1,4,1,4,4,1,5</td>
<td>In Detailed Setup, enter the flow temperature in the temperature unit specified. In Review, shows the process temperature.</td>
</tr>
<tr>
<td>Process Variables</td>
<td>1,1,4,1,1,1,5</td>
<td>Path to viewing the process variable values.</td>
</tr>
<tr>
<td>Process Viscosity</td>
<td>1,2,6,1,4,9,1,5</td>
<td>In Diag/Service, shows the process viscosity value. In Detailed Setup, enter the base viscosity in the viscosity unit specified. In Review, shows the process viscosity.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Fast-Key Path</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Pulse Add Drop</td>
<td>1,4,3,2</td>
<td>In Detailed Setup, configure the pulse compensation (signal conditioning) feature On or Off.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the pulse compensation as On or Off.</td>
</tr>
<tr>
<td>Pulse Map</td>
<td>1,4,4,3,2</td>
<td>Shows whether the pulse is mapped to Volume Flow, Mass Flow, BVolFlow, or Velocity.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the pulse compensation as On or Off.</td>
</tr>
<tr>
<td>Pulse Max Freq</td>
<td>1,4,4,3,5</td>
<td>In Detailed Setup, set the upper frequency end point corresponding to the highest frequency as 10, 100, or 1000 Hz.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the pulse maximum frequency.</td>
</tr>
<tr>
<td>Pulse Mode</td>
<td>1,4,4,3,1</td>
<td>In Detailed Setup, select the type of pulse output as Rate, Total, Raw, or Off.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the type of pulse output.</td>
</tr>
<tr>
<td>Pulse Operations</td>
<td>1,2,1,1</td>
<td>Procedure to start, pause or clear the pulse total.</td>
</tr>
<tr>
<td>Pulse Out</td>
<td>1,2,6,8</td>
<td>Shows the pulse value.</td>
</tr>
<tr>
<td>Pulse Output</td>
<td>1,4,4,3</td>
<td>Path to configuring the pulse output.</td>
</tr>
<tr>
<td>Pulse Resolution</td>
<td>1,4,4,3,5</td>
<td>Enter the units per pulse.</td>
</tr>
<tr>
<td>Pulse Status</td>
<td>1,2,6,9</td>
<td>Shows the pulse status.</td>
</tr>
<tr>
<td>Pulse Total EGU</td>
<td>1,4,4,3,4</td>
<td>Select the unit from the picklist provided.</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>1,4,4,3,3</td>
<td>Select the pulse width as 0.5, 5, or 50 ms.</td>
</tr>
<tr>
<td>PV</td>
<td>1</td>
<td>Shows the value of the process variable.</td>
</tr>
<tr>
<td></td>
<td>1,1,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4,1,1,1</td>
<td></td>
</tr>
<tr>
<td>PV % Range</td>
<td>1,1,2</td>
<td>Shows the process variable in percent of range.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,1,2</td>
<td></td>
</tr>
<tr>
<td>PV AO</td>
<td>3</td>
<td>Shows the analog output of the process variable.</td>
</tr>
<tr>
<td></td>
<td>1,1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4,1,1,3</td>
<td></td>
</tr>
<tr>
<td>PV Configuration</td>
<td>1,4,1,2</td>
<td>Path to configuring the PV parameters.</td>
</tr>
<tr>
<td>PV Damp</td>
<td>1,5</td>
<td>Shows the damping time.</td>
</tr>
<tr>
<td>PV Damping</td>
<td>1,3,8</td>
<td>Enter the damping time if different than the one shown.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,2,4</td>
<td></td>
</tr>
<tr>
<td>PV Map</td>
<td>1,3,5</td>
<td>Map the PV to Volume Flow, Mass Flow, BVolFlow, or Velocity.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,2,1</td>
<td></td>
</tr>
<tr>
<td>PV Min Span</td>
<td>1,5</td>
<td>Shows the minimum span.</td>
</tr>
<tr>
<td>PV Units</td>
<td>1,3,6</td>
<td>In Basic Setup, select the PV units from the picklist.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,2,2</td>
<td>In Detailed Setup, select the PV units from the picklist.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the PV units.</td>
</tr>
<tr>
<td>PV URV</td>
<td>4</td>
<td>In the Basic Menu, shows the process variable upper range value.</td>
</tr>
<tr>
<td></td>
<td>1,3,7</td>
<td>In Basic Setup, enter the PV URV.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,2,3</td>
<td>In Detailed Setup, enter the PV URV.</td>
</tr>
<tr>
<td>PV USL</td>
<td>7</td>
<td>In the Basic Menu, shows the upper sensor limit.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the upper sensor limit.</td>
</tr>
<tr>
<td>Review</td>
<td>1,5</td>
<td>Path to viewing flowmeter values and settings.</td>
</tr>
<tr>
<td>Revisions</td>
<td>1,4,5,6</td>
<td>Path to configuring the various revision levels.</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>1,4,3,1</td>
<td>Configure the Reynolds Number correction feature On or Off.</td>
</tr>
<tr>
<td>Scaled D/A Trim</td>
<td>1,2,5,2</td>
<td>Procedure to trim the low and high mA output values of the flowmeter to match the output of a plant standard measurement device.</td>
</tr>
<tr>
<td></td>
<td>1,4,4,2,5,2</td>
<td></td>
</tr>
<tr>
<td>Self Test</td>
<td>1,2,3</td>
<td>Procedure to self test the device.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>1,4,2,4</td>
<td>In Detailed Setup, enter the serial number.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the serial number.</td>
</tr>
<tr>
<td>Set Analog Out</td>
<td>1,2,4,2</td>
<td>Procedure to set the analog output to 4 mA, 20 mA, or another value.</td>
</tr>
<tr>
<td></td>
<td>1,4,4,2,4</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Fast-Key Path</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Set Digital Out</td>
<td>1,2,4,1,2</td>
<td>Procedure to set the digital output to override the PV, net total, grand total, or vortex frequency.</td>
</tr>
<tr>
<td>Set Fluid Defaults</td>
<td>1,3,2,1</td>
<td>Path to setting the default parameters for the type of fluid selected (liquid, gas, or steam).</td>
</tr>
<tr>
<td>Set Pulse Out</td>
<td>1,2,4,3,6</td>
<td>Procedure to set the pulse output to 0 Hz, the maximum frequency, or another value.</td>
</tr>
<tr>
<td>Show</td>
<td>1,4,4,6,1</td>
<td>Specify which measurements are to be displayed and their format (decimal point placement).</td>
</tr>
<tr>
<td>Software Rev</td>
<td>1,5</td>
<td>Shows the software revision level.</td>
</tr>
<tr>
<td>Software Sub-Revision</td>
<td>1,5</td>
<td>Shows the software sub-revision level.</td>
</tr>
<tr>
<td>Special</td>
<td>1,4,2,5</td>
<td>Path to configuring special flowtube parameters.</td>
</tr>
<tr>
<td>Tag</td>
<td>1,3,9,1</td>
<td>In Basic Setup, enter the tag (8 characters maximum).</td>
</tr>
<tr>
<td></td>
<td>1,4,5,2,1,5</td>
<td>In Detailed Setup, enter the tag (8 characters maximum).</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the tag.</td>
</tr>
<tr>
<td>Temperature Units</td>
<td>1,4,1,4,3,1</td>
<td>In Detailed Setup, select the temperature unit from the picklist provided.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the temperature units.</td>
</tr>
<tr>
<td>Total Units</td>
<td>1,4,1,3</td>
<td>Path to configuring the totals parameters.</td>
</tr>
<tr>
<td>Totals Operations</td>
<td>1,2,1</td>
<td>Path to viewing, starting, stopping, or clearing the totalizers.</td>
</tr>
<tr>
<td>Tube Alpha</td>
<td>1,4,2,5,2</td>
<td>Enter the thermal coefficient of expansion (alpha) in mm/mm/degK.</td>
</tr>
<tr>
<td>Tube Diameter</td>
<td>1,4,2,5,1</td>
<td>Enter the custom flowtube diameters in meters.</td>
</tr>
<tr>
<td>Tuning</td>
<td>1,4,3</td>
<td>Path to configuring the tuning parameters.</td>
</tr>
<tr>
<td>Universal Rev</td>
<td>1,5</td>
<td>Shows the universal command set revision level.</td>
</tr>
<tr>
<td>Upstream Distance</td>
<td>1,4,1,5,3,1</td>
<td>In Detailed Setup, enter the distance to the first upstream disturbance in pipe diameters.</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>In Review, shows the upstream distance.</td>
</tr>
<tr>
<td>Variable Map</td>
<td>1,4,4,1,1</td>
<td>Map the output as the primary, secondary, tertiary, or fourth output.</td>
</tr>
<tr>
<td>Velocity Status</td>
<td>1,2,6,2</td>
<td>Shows the flow velocity status.</td>
</tr>
<tr>
<td>Velocity Units</td>
<td>1,4,1,2,5</td>
<td>In Detailed Setup, select the unit from the picklist.</td>
</tr>
<tr>
<td>Viscosity Status</td>
<td>1,2,6</td>
<td>Shows the process viscosity status.</td>
</tr>
<tr>
<td>Vortex Freq</td>
<td>1,1,6</td>
<td>Shows the vortex frequency.</td>
</tr>
<tr>
<td></td>
<td>1,4,1,1,6</td>
<td>Shows the vortex frequency.</td>
</tr>
</tbody>
</table>
5. Troubleshooting

NOTICE
Components in your flowmeter are ESD sensitive and thus are susceptible to damage resulting from electrostatic discharge. It is recommended that you be grounded via a conductive wrist strap or by standing on an ESD mat when performing maintenance in the electronics compartment or the remote junction box, and if the housing is removed.

NOTE
Before troubleshooting your vortex flowmeter, verify that the flowmeter has been correctly configured for the model, flow, and output parameters.

Flowmeter Output Indicates Flow When There Is No Flow

In some installations, the flowmeter can indicate flow when the line is shut down. This could be the effect of a leaking valve, sloshing fluid, or noise sources such as pump-induced pipe vibration.

1. Check the Low Flow Cut-In (LFCI) setting.
 The LFCI setting sets the sensitivity of the electronics to the sensor output signal. There are eight LFCI settings. The default setting leaving the factory is level 4 and is suitable for most applications. Should there be excessive vibration, resulting in false excitation of the vortex sensor, it may be necessary to increase the LFCI setting. To set the LFCI:
 a. Make sure there is a no-flow condition. Preferably block valves should be closed. Control valves can leak when closed, resulting in some flow through the flowmeter that it can detect.

 NOTE
 Setting the dampening to 0 seconds will show the magnitude of any false excitation.

 b. Increase the LFCI setting by one level and observe the signal output. The LFCI should be increased until there is no false signal. Alternately, the AUTO LFCI command can be used. When this command is executed, the flowmeter starts at the most sensitive LFCI setting. If false signal is detected within a 20 second period, the LFCI is increased to the next level and so on until a level is reached where there is no false signal after a 20 second time period.

 c. If dampening was changed to 0 seconds, change dampening to a desired level.

 d. If the LFCI level has changed, make sure controllers and receivers can accommodate the increased LFCI setting. Output remains at 4 mA from zero flow until this flow rate is reached.
2. If the LFCI is higher than desired, there are several possible causes:
 a. Check the flowmeter sizing. The flowmeter could be over-sized for the application, resulting in the need to provide a measurement at a very low flow velocity. Consult FlowExpertPro™ to validate the meter sizing.
 b. Check for excessive vibration in a plane that is parallel to the vortex sensor. The vortex sensor axis is perpendicular to the pipe diameter. See Figure 21. For most applications where the electronics are top mounted and the pipe is supported by horizontal pipe supports, this may result in false signal. In these cases, reposition the meter so the electronics are pointed to the side. The sensor axis will then be vertical.
 c. Examine peripheral equipment and vibration sources to assure they are not imparting vibration into the vortex flowmeter.

3. Other sources of false signal:
 a. Check for 60 Hz signal pickup. Check the output of the flowmeter against the expected value for a 60 Hz input signal. If 60 Hz interference is present, examine the flowmeter and interconnecting wiring for proper grounding and shielding.
 b. If the flowmeter is remote mounted, check to see that the remote cable is properly terminated. The cable was properly terminated at the factory, but in cases where the cable was shortened (only shorten the cable at the flowtube end), check the termination (see “Electrical Installation” on page 47).

Flowmeter Has No Output (No mA Output and the Display [If So Equipped] Is Blank)

1. Remove the field wiring cover and check the power supply voltage. The voltage across the + and - terminals must be between 15.5 and 42 volts dc.
2. Make sure there is no moisture in the termination compartment. Moisture could be a result of a loose cable/conduit connection or a cover that was not fully engaged.
3. If voltage at the terminals is 0, check for a blown fuse in power supply or for damaged wires.
4. If voltage is below minimum, check the loop load vs supply voltage per Figure 33.
5. If voltage is correct, check the voltage on the cable inside the housing to verify the protection circuit in the terminal block assembly has not been damaged. If no voltage is present on the cable inside the housing, replace the terminal block assembly.

Flowmeter Has No Output With Flow, But Has a 4 mA Signal and a Lighted Display (If So Equipped).

1. Check the LFCI setting. This sets the point where the mA output remains at 4 mA from zero flow to the LFCI flow rate. If flow is above this level, and there is still no change in output, proceed as follows:
2. Check the flowmeter status to see it has not “failed low”. The flowmeter is configurable to fail either “low” or “high”. The mA value in the fail-low mode is 3.6 mA. (The mA value in the fail-high mode is 22 mA.)

3. Check to see that the module can output the desired mA or pulse output frequency by going to the Test mode and setting the outputs as previously described.

Flowmeter Output Increases With Flow, However When It Approaches Full Scale, the Output Suddenly Goes To 4 mA

1. This is indicative of an intrinsically safe loop that is using a passive (unpowered) barrier. As the mA value increases, the voltage at the terminals has dropped below the minimum and the output has gone to 4 mA.

2. Install an active (externally powered) barrier such as a Pepperl+Fuchs model KFD0-SCS-Ex1.55

Flowmeter with Remote Mounted Electronics Has No Output or Low Output With Flowing Conditions

1. Perform a visual analysis of the preamplifier to observe any discoloration as a result of over heating the remote mounted pre-amplifier. Check the maximum ambient temperature specification per the electrical certification table and/or the product label.

2. Make sure there is no moisture in the termination compartment. Moisture could be a result of a loose cable/conduit connection or a cover that was not fully engaged.

3. Check the voltage levels at the junction box located on top of the flow meter body. The following values should be observed:
 a. Red to yellow: + 3.0 +/- 0.3 volts
 b. Orange to yellow: - 3.0 +/- 0.3 volts.

 If these values are not observed there is likely a break or cut in the cable between the flowmeter and the remote electronics. Or, the pre-amplifier may not be working.

4. Check to verify the sensor wires and cable wires are fully engaged in the clamp-type connectors. This can be done by lightly “tugging” on each wire, assuring it is securely held in place by the connector. Also check to make sure the connector is not clamping the wire insulation instead of the conductor. If any wires are not engaged, depress the lever in the connector, insert the bare conductor, and release the lever, re-checking the wire to assure it is firmly clamped.

5. Check for sensor output. This can be done with a small portable scope meter. There should be a sine-like wave form on the meter. This wave form does not have to be sinusoidal, but alternating output should be observed. The amplitude of the signal is dependant on sensor type and velocity. The frequency of the output should be in accordance with the expected flow rate.
6. Check the pre-amplifier:
 a. Disconnect the sensor leads
 b. For a standard temperature sensor, connect a 2200 pF +/- 5% 50V NPO ceramic capacitor to the + (brown) terminal of the sensor terminal block.
 c. Connect a portable frequency generator that can supply a sinusoidal 0.5 volt peak-to-peak signal to the sensor input terminals.
 d. Compute the expected sensor frequency for the flow rate going through the flowmeter. (Use FlowExpertPro for making this determination, or compute the frequency based on the meter K-factor (this is stamped on the flowmeter body).
 e. Re-check the output at the remote electronics. If there is output at the electronics, the sensor is likely not working and needs to be replaced.
 f. If there is no output at the remote electronics, proceed to check the pre-amplifier by disconnecting the blue and yellow wires from the remote cable. (Note: the orange and red wires need to stay connected to provide power to the pre-amplifier.) Connect the scope meter to the blue and yellow (+ and -) terminals on the output terminal block. The amplitude of the signal should be approximately the same amplitude (0.5 volts) of the input signal and the same frequency.
 g. For flowmeters with an extended temperature sensor, replace the 2200 pF capacitor with a 22pF capacitor. Set the frequency input amplitude to 0.5 volts peak to peak. The output from the preamplifier should be 1.5X the input value or 0.75 volts peak to peak, and be at the same frequency as the input.
 h. If the output from the pre-amplifier is correct, proceed to check out the cable for breaks or cuts, and verify the remote cable is correctly connected to the junction box at the flowmeter.
 i. The remote cable is factory-terminated and sealed at the electronics end. The cable cannot be removed or re-terminated at the electronics end. If the cable has been tampered with at the electronics end, this is likely the root cause of the improperly working flowmeter and requires replacement.
 j. If the flowmeter still has no output, proceed to the electronics module test.

Electronics Module Test

1. Remove the electronics compartment cover at the remote electronics.
2. Make sure there is no moisture in the electronics compartment. Moisture could be a result of a loose cable/conduit connection or a cover that was fully engaged. A build up of corrosive moisture in this compartment could affect the performance of the electronics. Also examine the electronics for exposure to excessive heat. The maximum temperature the electronics can withstand is 80°C (176°F). Make sure the installation is such that the electronics do not exceed this temperature.
3. Test the mA or pulse output by putting the flowmeter in the Test mode and setting either the mA or pulse output value. If the meter has no output in this test mode, replace the module. If there is output from the meter, proceed to the next step.
4. Remove the electronics from the compartment by loosening the two captured screws.
5. Check the inside for broken or pinched wires and/or connectors that are not engaged.

6. Check the voltage level at the cable end of the blue and red wires. The voltage should be the same as was measured on the field terminals. Should there be a difference, the terminal block electronics assembly may have been damaged in a severe transient (lightening strike).

7. Remove the 4-wire connector from the back of the electronics module. This is the signal input connector from the sensor to the electronics module. In place of this connector, connect a test connector (part number K0152KU).

8. Connect a frequency generator to the brown (+) and yellow (-) wires. Inject a sinusoidal 0.5 V peak to peak signal that is in the vortex shedding frequency range for the flowmeter. Observe there is a change in the 4-20 mA or rate pulse output signal. Change the input frequency over the expected vortex frequency range and verify the output changes accordingly.

9. If there is still no output, replace the electronics module.

Flowmeter Has Incorrect Output

1. Output is lower than expected at all flow rates
 a. Verify that the upper range value (URV) is correct.
 b. Verify that the zero and span of the mA output is correct.
 c. Check for vibration levels, that may influence the output signal. This is best accomplished by following the procedure for setting the low flow cut-in in “Flowmeter Output Indicates Flow When There Is No Flow” on page 95.
 d. Check the flowmeter configuration to verify that the fluid flowing density is entered correctly. An incorrect configuration could result in band pass filters being set to improper values, with in-band signals being adversely affected.
 e. Check the load resistance.
 f. In the test mode, verify that the mA output at the receivers is correct.

2. Output is lower than expected at low-flow rates.
 Check the steps in the above test, however if the problem only appears at low flow rates, the likelihood is that there is a pulsating flow condition, resulting in missed pulses when the fluid velocity is very low.

3. Output is constant when flow is increasing or decreasing.
 a. This condition is likely the result of an in-band noise source. Where the vortex signal is being over-ridden by the noise source.
 b. Check the LFCI setting procedure. Check the URV value to make sure that it is in line with the actual measurement range.

4. Output is greater than the expected value.
 a. Test the above.
 b. Verify that the flowmeter is not in a “fail safe” mode where full scale output has been configured as the fail safe output condition.
c. Verify the URV is correctly configured.

5. Incorrect pulse output value.
 a. Check the configuration of the pulse output to verify that it is correct.
 ♦ Raw Pulse: the raw vortex shedding frequency.
 ♦ Rate Pulse: verify that the rate pulse is configured to the correct full range value of 10 Hz, 100 Hz, or 1000 Hz.
 ♦ Total pulse: verify that the total pulse is properly defined.
 b. If rate pulse is configured, set the output frequency in the test mode and verify the correct value.
6. Maintenance

NOTICE

Components in your flowmeter are ESD sensitive and thus are susceptible to damage resulting from electrostatic discharge. It is recommended that you be grounded via a conductive wrist strap or by standing on an ESD mat when performing maintenance in the electronics compartment or the remote junction box, and if the housing is removed.

Introduction

The operation of the 84F-T (Styles A and B), 84F-U (Styles A and B), 84W-T, and 84W-U Vortex Flowmeters consists of three basic functions: (1) generation and shedding of vortices in the fluid stream, (2) sensing of vortices, and (3), amplification, conditioning, and processing of the signal from the vortex sensor. Should a malfunction of the flowmeter be suspected, the cause can normally be isolated to one of these three functions.

Personnel involved in maintenance of vortex meters should be trained and qualified in the use of the equipment required and in the removal and replacement of the meter in the piping. They should also be qualified for the routine maintenance of the meter components.

Vortex Generation and Shedding

The process of vortex generation and shedding can be degraded or destroyed by disturbances in the upstream flow, the nature of the flowing fluid, or by damage to the vortex shedding element (rare). Such flow disturbances may be created by gaskets protruding into the flowing stream, by some form of partial blockage in the upstream piping, by the piping configuration, or by the existence of two-phase flow. Should the vortex shedding element become heavily caked, coated, or physically damaged to the extent that its basic shape or dimensions are changed, the vortex shedding process may be impaired. Also, the length of straight, unobstructed run of upstream piping is important (refer to “Upstream and Downstream Disturbances” on page 34).

Vortex Sensing

There are two basic types of sensors employed by both the 84F and 84W Vortex Flowmeters - Standard Temperature and Extended Temperature Range. The Standard Temperature Range sensor may be filled with Fluorolube for applications with process temperature limits of –20 to +90°C (0 to 200°F) or with Silicone oil for applications with process temperature limits of –20 to +200°C (0 to 400°F). The Extended Temperature Range sensor is an unfilled sensor for applications to 430 °C (800 °F).

The Standard Temperature Range sensor consists of a piezoelectric bimorph crystal that is sealed inside a liquid-filled capsule having two diaphragms on opposing sides. The vortex shedding process creates an alternating differential pressure across the capsule that is transmitted via the diaphragms and fill-fluid to the crystal.
The Extended Temperature Range sensor consists of two piezoelectric crystals sealed inside a capsule having two process diaphragms, on opposing sides, connected internally by a mechanical shuttle. The vortex shedding process creates an alternating differential pressure across the capsule that is transmitted via the diaphragm-shuttle mechanism to the crystals.

The alternating force acting on the crystals causes them to develop a pulsed voltage with a frequency equal to the vortex shedding frequency. Damage to sealing diaphragms or other physical damage could cause the sensors to operate improperly.

Electronic Module

The electronic module is housed in the flowmeter housing opposite the side labeled FIELD TERMINALS. On the back of the module are three terminal blocks. See Table 18 for a summary of the terminal block connections.

Table 18. Electronic Module Terminal Block Connections

<table>
<thead>
<tr>
<th>No. of Connectors</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Red</td>
<td>Loop +</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Loop -</td>
</tr>
<tr>
<td>2</td>
<td>Yellow</td>
<td>Pulse Out +</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Pulse Out -</td>
</tr>
<tr>
<td>4</td>
<td>Blue (B)</td>
<td>Sensor + or Preamp Out +</td>
</tr>
<tr>
<td></td>
<td>Red (R)</td>
<td>Preamp Power +</td>
</tr>
<tr>
<td></td>
<td>Orange (O)</td>
<td>Preamp Power -</td>
</tr>
<tr>
<td></td>
<td>Yellow (Y)</td>
<td>Sensor - or Preamp Out -</td>
</tr>
</tbody>
</table>

NOTE

Integrally mounted flowmeters with standard temperature range do **not** have a preamplifier. Integrally mounted flowmeters with extended temperature range and all remotely mounted flowmeters **do** have a preamplifier.

Electronic Module Removal

Refer to Figure 53.

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

1. For flowmeters with housing cover locks, screw the electronic compartment cover lock screw into the housing to unlock the cover.
2. Remove electronic module compartment threaded cover.

NOTE

If the cover cannot be removed by hand, insert a flat bar in the cover slot.

3. If a display is mounted to the electronic module, remove the display by loosening the two mounting screws and unplugging the ribbon cable from the electronic module.
4. Unscrew the two captive screws, one on each side of the electronic module.
5. Pull the electronic module out of the housing far enough to be able to disconnect the wires from the terminal blocks on the back of the electronic module.

6. Disconnect the mA output (red - blue), pulse output (yellow - green), and preamplifier/sensor (blue - red - orange - yellow) cable connectors from the 2-, 3-, and 4-pin terminal blocks respectively.

7. Remove the electronic module from the housing.

Figure 53. Electronic Module Connections

Electronic Module Replacement

Refer to Figure 53.

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

CAUTION

The replacement electronic module is shipped in a protective antistatic plastic bag. Do **not** remove it from this bag **until** it is ready to be installed in a flowmeter. This minimizes the possibility of damage due to accidental electrostatic discharge.

2. Remove the new electronic module from its protective bag.

3. Connect the mA output (red - blue) and pulse output (yellow - green), and preamplifier/sensor (blue - red - orange - yellow) cable connectors to the 2-, 3-, and 4-pin terminal blocks respectively on the back of the electronic module.

4. Back the two electronic module captive screws out of the module until the screws are captured by the plastic housing.

5. Turning the electronic module one turn maximum to take up the slack in the wires, locate the module in the housing over the two mounting holes. Making sure that no wires are pinched under the module, tighten the captive mounting screws.
6. If the electronic module was equipped with a display, reinstall the display. Carefully fold the ribbon cable in the space between display and the electronic module so that it is not pinched. The display molding should rest firmly against the module molding before tightening the screws. See Figure 54.

Figure 54. Display Connection

7. The new electronic module must be configured to match the one just removed.
8. Perform the “Post-Assembly Dielectric Test” on page 110.
9. Replace the electronic compartment cover. On flowmeters with housing cover locks, relock the electronic compartment cover before operating the flowmeter.

Neck Board Replacement

All 84F and 84W Series Vortex Flowmeters have a printed wiring board located in the neck of the instrument. This board (henceforth referred to as a neck board) functions as a preamplifier, barrier and/or interface depending on the specific model.

- **Preamplifier Board:** In integrally mounted flowmeters with extended temperature range.
- **Barrier Board:** In flowmeters with explosionproof/flameproof electrical certification. These flowmeters also have a PE ground in the electronics housing which must be disconnected as part of the preamplifier replacement procedure.
- **Interface Board:** In all 84 Series flowmeters.
Removal Procedure

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

2. If your flowmeter has explosionproof/flameproof electrical certification, disconnect the two wires from the PE ground screw in the electronics housing.

3. If your housing has an anti-rotation screw, remove the red lacquer from the screw recess. Turn the screw three full turns counterclockwise (see Figure 31 for location). Remove the housing by rotating it counterclockwise (when viewed from the top).

4. If your housing has a retention clip, remove the red lacquer from the screw recess. Remove the screw completely, and slide the clip off the housing. Save the clip and screw for future use. Remove the housing by rotating it counterclockwise (when viewed from the top).

5. Disconnect the wires from the 4-position terminal block on the neck board.

6. Remove the two screws securing the neck board in its cup and remove the board from the cup. Save the screws (and barrier if applicable).
Figure 55. Preamplifier Assembly - Integrally Mounted
Installation Procedure

WARNING
Before proceeding, ensure that power is removed from the flowmeter.

NOTE
The replacement neck board is shipped in a protective antistatic plastic bag. Do not remove the preamplifier from this bag until it is ready to be installed in the flowmeter. This prevents damage due to accidental electrostatic discharge.

1. Remove the neck board. See “Removal Procedure” on page 105.
2. Feed the (2 or 4) wires from the cup through the hole in the center of the neck board and connect them to the 4-position terminal block on the board.
3. Install the neck board into its cup and secure it (and the barrier if applicable) with the two screws previously removed.
4. Feed the electronics cable (and the PE ground wire if applicable) through the housing neck and into the electronics compartment.
5. Inspect the cup O-ring for damage. If the O-ring is damaged, replace it with the appropriate O-ring (see parts list for your transmitter). Lubricate the O-ring with silicone lubricant (Part Number 0048130 or equivalent). Verify that the O-ring is situated in the groove of the neck.

WARNING
Failure to reuse or install the proper “Cup” O-ring for CSA labeled product violates ANSI / ISA 12.27.01.

6. Screw the housing onto the cup. Hand tighten until it bottoms. Do not over tighten.
7. If your housing has an anti-rotation screw, engage the anti-rotation screw until it touches the cup and back it off 1/8th turn. It is important that the screw is not touching the cup. Fill the screw recess with red lacquer (Part Number X0180GS or equivalent). The housing may then be rotated up to one full turn counterclockwise for optimum access.
8. If your housing has a retention clip, insert the clip over the boss in the housing neck so that the hole in the clip is aligned with the hole in the boss. Install the screw but do not tighten. Rotate the housing up to one full turn counterclockwise for optimum access. Tighten the retention clip screw and fill the screw recess with red lacquer (Part Number X0180GS or equivalent). The housing can still be rotated for optimum access.
9. If your flowmeter has explosionproof/flameproof electrical certification, reconnect the two (green) PE ground wires to the PE ground screw in the electronics housing.
10. Connect the mA output (red - blue) and pulse output (yellow - green), and electronics (blue - red - orange - yellow) cable connectors to the 2-, 3-, and 4-pin terminal blocks respectively on the back of the electronic module.
11. Back the two captive screws out of the module until the screws are captured by the plastic housing.
12. Rotate the module one-half to one full turn to slightly twist the wires together.
13. Locate the electronic module over the mounting holes, assure that no wires are pinched, and tighten the captive mounting screws.
14. Perform the “Post-Assembly Dielectric Test” on page 110.
15. Replace the electronic compartment cover. On flowmeters with housing cover locks, relock the electronic compartment cover before operating the flowmeter.

Preamplifier Replacement

With integrally mounted electronics, the preamplifier is located on the neck board. See “Neck Board Replacement” on page 104.

With remotely mounted electronics, use the following procedure referring to Figure 56.

Removal Procedure

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

1. On flowmeters with a junction box cover lock, remove the lock.
2. Remove the junction box threaded cover.

--- **NOTE**

If the cover cannot be removed by hand, insert a flat bar in the cover slot.

Figure 56. Preamplifier Assembly - Remotely Mounted
3. Disconnect the (blue-red-orange-yellow) preamplifier wires from the 4-position terminal block and the (yellow and brown) sensor wires from the 2-position terminal block.

CAUTION

Note the position of the wires because the placement of colored wires in the correct position on the new preamplifier board is important.

4. Remove the preamplifier by removing the two screws securing it. Save the screws.

Installation Procedure

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

NOTE

The replacement preamplifier is shipped in a protective antistatic plastic bag. Do not remove the preamplifier from this bag until it is ready to be installed in a flowmeter. This prevents damage due to accidental electrostatic discharge.

1. Remove the preamplifier. See “Removal Procedure” on page 108.

NOTE

There are two preamplifier boards - be sure to install the correct board.
- L0123HT for a standard temperature flowmeter and
- L0123HV for an extended temperature flowmeter.

2. Connect the (yellow and brown) sensor wires to the 2-position terminal block and the (blue-red-orange-yellow) preamplifier wires to the 4-position terminal block.

3. Mount the new preamplifier in the junction box using the two screws you saved when removing the old preamplifier.

4. Perform the “Post-Assembly Dielectric Test” below.

5. Replace the threaded junction box cover. On flowmeters with cover locks, relock the junction box cover before operating the flowmeter.
Post-Assembly Dielectric Test

To ensure there are no faults to ground in any of the internal wiring, apply 500 V ac or 707 V dc dielectric strength test for one minute between shorted input terminals and housing ground as shown in Figure 57.

![Figure 57. Connections for Post-Assembly Dielectric Test](image)

Sensor Replacement

The flowmeter does not need to be removed from the pipeline for sensor replacement. The pipeline must, however, be shut down and emptied before loosening the bonnet bolts.

Replacing the sensor does not cause a shift in the K-factor. Therefore, the flowmeter does not require recalibration.

⚠️ **CAUTION**

The placement of colored wires in the correct position in the terminal blocks is important. Verify correctness.

Integrally Mounted Flowmeter

Refer to Figure 58.
Sensor Assembly Removal

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

2. If your flowmeter has explosionproof/flameproof electrical certification, disconnect the two wires from the PE ground screw in the electronics housing.
3. Disconnect the conduit from the housing. Remove the terminal compartment cover and the wiring from the field wiring terminal block.
4. If your housing has an anti-rotation screw, remove the red lacquer from the screw recess. Turn the screw three full turns counterclockwise (see Figure 31 for location). Remove the housing by rotating it counterclockwise (when viewed from the top).
5. If your housing has a retention clip, remove the red lacquer from the screw recess. Remove the screw completely, and slide the clip off the housing. Save the clip and screw for future use. Remove the housing by rotating it counterclockwise (when viewed from the top).
6. Disconnect the (yellow and brown) sensor wires from the 4-position terminal block on the neck board. If your flowmeter has explosionproof/flameproof electrical certification, loosen the screw and rotate the metal barrier out of the way first.
7. Remove the bonnet bolts and lift off the electronic housing, bonnet, and sensor assembly as a unit.
8. Slide the sensor assembly out of the bonnet.

Sensor Assembly Installation

NOTE

Before beginning the assembly procedure, verify that you have the correct kit of parts. Kit part numbers can be found in PL 008-714 for Style A and PL 008-753 for Style B.

The sensor kits consist of:
- 1 Sensor assembly
- 1 Sensor seal kit (containing an O-ring, gasket, flow dam, and 4 bonnet bolts)
- 2 Tie wraps
- 1 Instruction

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

1. If the flow dam has remained in the flowmeter body, remove it before starting to reassemble. Also make sure that the O-ring chamfer in the bonnet is clean and doesn’t contain any pieces of the old O-ring.
2. Slide the **new** O-ring over the sensor wires and onto the neck of the sensor.
3. Place the **new** flat gasket over the sensor in contact with serrated sealing surface. Center the gasket. Slide the **new** flow dam into the groove of the sensor.

4. Feed the sensor wires through the hole in the bonnet until the sensor is touching the bonnet and the wires extend through the hole in the center of the neck board.

--- **NOTE**

It may be helpful to use a straw as a tool to do this. Slide a straw over the sensor wires and feed the straw through the bonnet and neck board. Then remove the straw.

5. Insert the sensor with the bonnet into the flowmeter body and secure with four **new** bonnet bolts finger tight.

--- **WARNING**

Style A bolts cannot be used for Style B Vortex meters. Check corresponding Parts List document, and contact Global Customer Support with any questions.

Do **not** use the bonnet bolts in the sensor replacement kits for 84F-xxxxL flowmeters (dual measurement with isolation valves). Use four X0173TF bolts as shown in the parts list.
WARNING

It is important that the gasket be sealed uniformly to provide a good seal. The following two steps assure a uniform seal. Failure to follow these steps could result in personal injury due to gasket leakage.
6. Tighten all bonnet bolts to 2.8 N•m (2 lb•ft) per the sequence shown in Figure 59.

Figure 59. Bonnet Bolt Torquing Sequence

7. Continue to tighten the bolts to 7 N•m (5 lb•ft) using the same sequence.

8. Continue to tighten as follows:
 a. For Model 84 Style A flowmeter, continue to tighten in steps of 7 N•m (5 lb•ft) using the same sequence. The maximum torque needed for safe operation is 34 N•m (25 lb•ft).
 b. For 84F Style B flowmeter, tighten to 40.7 N•m (30 lb•ft).

9. Connect the (yellow and brown) sensor wires to the 4-position terminal block on the neck board. If your flowmeter has explosionproof/flameproof electrical certification, rotate the metal barrier into place and tighten its mounting screw. Lightly tug on each sensor wire to assure that the wire is firmly clamped in the terminal block. Also check that it is clamped on the metal conductor and not on the insulation.

10. Feed the electronics cable (and the PE ground wire if applicable) through the housing neck and into the electronics compartment.

11. Inspect the cup O-ring for damage. If the O-ring is damaged, replace it with the appropriate O-ring (see parts list for your transmitter). Lubricate the O-ring with silicone lubricant (Part Number 0048130 or equivalent). Verify that the O-ring is situated in the groove of the neck.

 ![WARNING]

 Failure to reuse or install the proper “Cup” O-ring for CSA labeled product violates ANSI / ISA 12.27.01.

12. Screw the housing onto the cup. Hand tighten until it bottoms. Do not over tighten.

13. If your housing has an anti-rotation screw, engage the anti-rotation screw until it touches the cup and back it off 1/8th turn. It is important that the screw is not touching the cup. Fill the screw recess with red lacquer (Part Number X0180GS or equivalent). The housing may then be rotated up to one full turn counterclockwise for optimum access.

14. If your housing has a retention clip, insert the clip over the boss in the housing neck so that the hole in the clip is aligned with the hole in the boss. Install the screw but do not tighten. Rotate the housing up to one full turn counterclockwise for optimum access. Tighten the retention clip screw and fill the screw recess with red lacquer (Part Number X0180GS or equivalent). The housing can still be rotated for optimum access.
15. If your flowmeter has explosionproof/flameproof electrical certification, reconnect the two (green) PE ground wires to the PE ground screw in the electronics housing.

16. Connect the mA output (red - blue) and pulse output (yellow - green), and electronics (blue - red - orange - yellow) cable connectors to the 2-, 3-, and 4-pin terminal blocks respectively on the back of the electronics module. Apply tie wraps as required.

17. Back the two electronic module captive screws out of the module until the screws are captured by the plastic housing.

18. Turning the electronic module one turn maximum to take up the slack in the wires, locate the module over the mounting holes. Making sure that no wires are pinched under the module, tighten the captive mounting screws.

19. If the electronic module was equipped with a display, reinstall the display. Carefully fold the ribbon cable in the space between the display and the electronic module so that it is not pinched. The display molding should rest firmly against the module molding before tightening the screws.

20. Reconnect the conduit to the housing and the wiring to the field wiring terminal block.

21. Replace the electronic compartment cover. On flowmeters with housing cover locks, relock the electronic compartment cover before operating the flowmeter.

⚠️ WARNING

In order to maintain agency certification of this product and to prove the integrity of the parts and workmanship in containing process pressure, a hydrostatic pressure test must be performed. The meter must hold for one minute without leaking the appropriate pressure from Table 19.

Table 19. Maximum Test Pressure

<table>
<thead>
<tr>
<th>Model</th>
<th>End Connection</th>
<th>316 SS (1.5X MWP)</th>
<th>Duplex SS, Nickel alloy CX2MW (equivalent to Hastelloy® C-22 (a) (1.5X MWP))</th>
<th>Carbon Steel (MWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84F</td>
<td>ANSI Class 150</td>
<td>413 psi</td>
<td>435 psi</td>
<td>428 psi</td>
</tr>
<tr>
<td></td>
<td>ANSI Class 300</td>
<td>1080 psi</td>
<td>1125 psi</td>
<td>1110 psi</td>
</tr>
<tr>
<td></td>
<td>ANSI Class 600</td>
<td>2160 psi</td>
<td>2250 psi</td>
<td>2220 psi</td>
</tr>
<tr>
<td></td>
<td>ANSI Class 900</td>
<td>3240 psi</td>
<td>3375 psi</td>
<td>3330 psi</td>
</tr>
<tr>
<td></td>
<td>ANSI Class 1500</td>
<td>5400 psi</td>
<td>5625 psi</td>
<td>5558 psi</td>
</tr>
<tr>
<td>PN16</td>
<td></td>
<td>2.4 MPa</td>
<td>2.4 MPa</td>
<td>2.4 MPa</td>
</tr>
<tr>
<td>PN25</td>
<td></td>
<td>3.8 MPa</td>
<td>3.8 MPa</td>
<td>3.8 MPa</td>
</tr>
<tr>
<td>PN40</td>
<td></td>
<td>6.0 MPa</td>
<td>6.0 MPa</td>
<td>6.0 MPa</td>
</tr>
<tr>
<td>PN63</td>
<td></td>
<td>9.5 MPa</td>
<td>9.5 MPa</td>
<td>9.5 MPa</td>
</tr>
<tr>
<td>PN100</td>
<td></td>
<td>15.0 MPa</td>
<td>15.0 MPa</td>
<td>15.0 MPa</td>
</tr>
<tr>
<td>PN160</td>
<td></td>
<td>24.0 MPa</td>
<td>24.0 MPa</td>
<td>24.0 MPa</td>
</tr>
<tr>
<td>84W</td>
<td>All</td>
<td>15 MPa (2250 psi)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Hastelloy® is a registered trademark of Haynes International Inc.
Remotely Mounted Flowmeter

Refer to Figure 60.

Sensor Assembly Removal

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

1. On flowmeters with a junction box cover lock, remove the cover lock.
2. Remove the junction box threaded cover.

NOTE

If the cover cannot be removed by hand, insert a flat bar in the cover slot.

3. Disconnect the (yellow and brown) sensor wires from the 2-position terminal block on the preamplifier.
4. Remove the bonnet bolts.
5. Lift off the junction box, bonnet, and sensor assembly as a unit.
6. Slide the sensor assembly out of the bonnet.

Sensor Assembly Installation

NOTE

Before beginning the replacement procedure, verify that you have the correct kit of parts. Kit part numbers can be found in PL 008-714 for Style A and PL 008-753 for Style B.

The sensor kits consist of:

- 1 Sensor assembly
- 1 Sensor seal kit (containing an O-ring, gasket, flow dam, and 4 bonnet bolts)
- 2 Tie wraps
- 1 Instruction

WARNING

Before proceeding, ensure that power is removed from the flowmeter.

1. If the flow dam has remained in the flowmeter body, remove it before starting to reassemble. Also make sure that the O-ring chamber in the bonnet is clean and doesn’t contain any pieces of the old O-ring.
2. Slide the **new** O-ring over the sensor lead and onto the neck of the sensor.
3. Place the **new** flat gasket over the sensor in contact with the serrated sealing surface. Center the gasket. Slide the **new** flow dam into the groove of the sensor.
4. Feed the sensor wires through the hole in the bonnet until the sensor is touching the bonnet and the wires extend through the slot in the center of the preamplifier board.
NOTE
It may be helpful to use a straw as a tool to do this. Slide a straw over the sensor wires and feed the straw through the bonnet and preamplifier board. Then remove the straw.

5. Insert the sensor with the bonnet into the flowmeter body and secure with four new bonnet bolts finger tight. See Figure 60.

WARNING
Style A bolts cannot be used for Style B Vortex meters. Check the corresponding Parts List document, and contact Global Customer Support with any questions.

Do not use the bonnet bolts in the sensor replacement kits for 84F-xxxxxL flowmeters (dual measurement with isolation valves). Use four X0173TF bolts as shown in the parts list.

Figure 60. Sensor Replacement - Remotely Mounted Flowmeter
WARNING

It is important that the gasket be sealed uniformly to provide a good seal. The following two steps assure a uniform seal. Failure to follow these steps could result in personal injury due to gasket leakage.

6. Tighten all bonnet bolts to 2.8 N·m (2 lb·ft) per the sequence shown in Figure 59.

7. Continue to tighten the bolts to 7 N·m (5 lb·ft) using the same sequence.

8. Continue to tighten as follows:
 a. For Model 84 Style A flowmeter, continue to tighten in steps of 7 N·m (5 lb·ft) using the same sequence. The maximum torque needed for safe operation is 34 N·m (25 lb·ft).
 b. For 84F Style B flowmeter, tighten to 40.7 N·m (30 lb·ft).

9. Connect the (yellow and brown) sensor wires to the 2-position preamplifier terminal block.

10. Replace the threaded junction box cover. On flowmeters with cover locks, relock the junction box cover **before** operating the flowmeter.

WARNING

In order to maintain agency certification of this product and prove integrity of the parts and workmanship in containing process pressure, a hydrostatic pressure test must be performed. The meter must hold for one minute without leaking the appropriate pressure from Table 19.
Appendix A. Isolation Valves

Isolation valving is available in single and dual measurement versions for standard and extended range sensors. The following procedure applies to all versions. Replacing the sensor in this type of unit is essentially the same as replacing a sensor in units without isolation valving. However, particular care must be taken since the process does not need to be shut down.

WARNING

The isolation valve must be in the closed position prior to replacing the sensor. It must be gradually depressurized so that process fluid does not leak. Personal injury could result from such a leak. Follow normal lockout procedures. Remove power from the flowmeter.

Replacing the Sensor

1. Close the valve. This is a dual port, single ball 1/4-turn valve. Use a wrench on the flat on the valve stem to turn clockwise one quarter turn. See Figure 62.

 NOTE
 The right angle position indicator attached to the stem is not a valve handle. Use a wrench on the valve stem flats.

2. Allow the unit to cool down as required.

3. Remove power from the flowmeter.

4. Gradually loosen the four top bolts that connect the bonnet to the top surface of the valve body. Do not loosen the bottom bolts.

5. Allow trapped process fluid within valve body to depressurize.

6. Remove the bolts loosened in Step 4 and lift off the housing, bonnet, and sensor as a unit.

7. Replace the sensor following the instructions in “Sensor Replacement” on page 110. Be sure the O-ring is installed on the sensor and use a new flow dam and gasket.

 CAUTION
 Since it is not possible to leak test the valve-to-bonnet joint, it must be assembled carefully.

8. Open the valve counterclockwise. Use care and check for leaks.

 NOTE
 Replacing the sensor does not cause a shift in the K-factor. Therefore, the meter does not require recalibration.
Replacing or Installing an Isolation Valve

Style A Vortex Flowmeters

The flowmeter does not need to be removed from the pipeline to replace the isolation valve. However, the pipeline must be shut down and emptied before loosening the mounting bolts.

1. If the flowmeter is wired with rigid conduit, it may be necessary to disconnect the input wiring and conduit connections.
2. Remove the top bolts holding the bonnet and the bottom bolts holding the valve body.
3. Install a new gasket and flow dam on the lower section of the valve body and assemble the valve into the flowmeter body. Refer to Figure 62 or Figure 63. These are the same gaskets and flow dams used with sensors.
4. Install the four bolts on the bottom flange finger tight.

WARNING

It is important that the gasket be sealed uniformly to provide a good seal. The following two steps assure a uniform seal. Failure to follow these steps could result in personal injury due to gasket leakage.

5. Tighten all bonnet bolts to 2.8 N·m (2 lb·ft) per the sequence shown in Figure 61.

![Figure 61. Bonnet Bolt Torquing Sequence](image)

6. Continue to tighten the bolts to 6.8 N·m (5 lb·ft) using the same sequence.
7. Continue to tighten in steps of 7 N·m (5 lb·ft) using the same sequence. The maximum torque needed for safe operation is 34 N·m (25 lb·ft).
8. Install a new gasket and flow dam on the sensor. Hold the sensor, bonnet, and housing together and carefully slide the sensor into the top of the valve body.
9. Install the four bolts on the top flange and tighten, using the procedure explained in Steps 4 through 7.

WARNING

It is important that the gasket be sealed uniformly to provide a good seal. Failure to follow these steps could result in personal injury due to gasket leakage.

10. Reconnect the conduit and external wiring. Refer to “Electrical Installation” on page 47.
Figure 62. Single Isolation Valve (Style A)
Style B Vortex Flowmeters, Single Isolation Valve

The flowmeter does not need to be removed from the pipeline to replace the isolation valve. However, the pipeline must be shut down and emptied before loosening the mounting bolts.

1. If the flowmeter is wired with rigid conduit, it may be necessary to disconnect the input wiring and conduit connections.

2. Remove the top bolts holding the bonnet and the bottom bolts holding the valve body.

3. Prior to reassembling the single isolation valve and all related topworks components, place the adapter plate (K0153BE) on top of the flowtube and bolt using four screws (X0174FD). Torque to 30 lb-ft by tightening in increments of 6.8 N•m (5 lb-ft) using the torque sequence shown in Figure 64.

4. Install a new gasket and flow dam on the lower section of the isolation valve body, and push the isolation valve into the sensor pocket of the Vortex flowmeter. Refer to Figure 65. These are the same gaskets and flow dams used with sensors.

5. Install the four bolts on the bottom flange finger tight.
It is important that the gasket be sealed uniformly to provide a good seal. The following two steps assure a uniform seal. Failure to follow these steps could result in personal injury due to gasket leakage.

6. Tighten all bonnet bolts to 2.8 N·m (2 lb·ft) per the sequence shown in Figure 64.

7. Continue to tighten the bolts to 6.8 N·m (5 lb·ft) using the same sequence.

8. Continue to tighten in steps of 7 N·m (5 lb·ft) using the same sequence. The maximum torque needed for safe operation is 34 N·m (25 lb·ft).

9. Install a new gasket and flow dam on the sensor. Hold the sensor, bonnet, and housing together and carefully slide the sensor into the top of the valve body.

10. Install the four bolts on the top flange and tighten, using the procedure explained in Steps 6 through 8.

It is important that the gasket be sealed uniformly to provide a good seal. Failure to follow these steps could result in personal injury due to gasket leakage.

11. Reconnect the conduit and external wiring. Refer to “Electrical Installation” on page 47.
Figure 65. Single Isolation Valve (Style B)

- BONNET
- O-RING
- SENSOR
- GASKET
- FLOW DAM
- ISOLATION VALVE
- WRENCH FLAT
- GASKET
- FLOW DAM
- ADAPTER PLATE
Style B Vortex Flowmeters, Dual Isolation Valve

The flowmeter does not need to be removed from the pipeline to replace the isolation valve. However, the pipeline must be shut down and emptied before loosening the mounting bolts.

1. If the flowmeter is wired with rigid conduit, it may be necessary to disconnect the input wiring and conduit connections.
2. Remove the top bolts holding the bonnet and the bottom bolts holding the valve body.
3. Prior to reassembling the dual isolation manifold and all related topworks components, place the adapter plate (K0153BE) on top of the flowtube and bolt using four screws (X0174FD). Torque to 30 lb-ft by tightening in increments of 6.8 N·m (5 lb-ft) using the torque sequence shown in Figure 66.
4. Install a new gasket and flow dam for the end plate adapter (K0155JA), and install a new gasket and flow dam for the dual isolation manifold. These are the same gaskets and flow dams used with sensors. Refer to Figure 67.
5. Insert the dual isolation manifold “dummy sensor” to the end plate adapter, and push the complete assembly onto flowtube sensor pocket.
6. Secure the dual isolation manifold using four bolts. Torque each bolt to 25 lb-ft by tightening in increments of 6.8 N·m (5 lb-ft) using the torque sequence shown in Figure 66.
7. Install the four bolts on the bottom flange finger tight.

WARNING

It is important that the gasket be sealed uniformly to provide a good seal. The following two steps assure a uniform seal. Failure to follow these steps could result in personal injury due to gasket leakage.

8. Tighten all bonnet bolts to 2.8 N·m (2 lb-ft) per the sequence shown in Figure 66.

9. Continue to tighten the bolts to 6.8 N·m (5 lb-ft) using the same sequence.
10. Continue to tighten in steps of 7 N·m (5 lb-ft) using the same sequence. The maximum torque needed for safe operation is 34 N·m (25 lb-ft).
11. Install a new gasket and flow dam on the sensor. Hold the sensor, bonnet, and housing together and carefully slide the sensor into the top of the valve body.
12. Install the four bolts on the top flange and tighten, using the procedure explained in Steps 7 through 10.
WARNING
It is important that the gasket be sealed uniformly to provide a good seal. Failure to follow these steps could result in personal injury due to gasket leakage.

13. Reconnect the conduit and external wiring. Refer to “Electrical Installation” on page 47.

Figure 67. Dual Isolation Manifold (Style B)
ISSUE DATES

FEB 2007 APR 2010 JUN 2016
JUN 2008 NOV 2011
FEB 2009 JAN 2012
JAN 2010 AUG 2014

Vertical lines to the right of text or illustrations indicate areas changed at last issue date.