This document describes the programming interface for the Automation Controller. The software programming interface is embedded in the Automation Controller and requires a web browser. Pre-programming and configuration cannot be performed without an Automation Controller product.
Legal information

The Schneider Electric brand and all registered trademarks of Schneider Electric Industries SAS referred to in this manual are the sole property of Schneider Electric SA and its subsidiaries. They may not be used without the written approval of the owner. This manual and all its content are protected in accordance with the laws on copyright for texts, drawings and models, as well as in accordance with the law on trademarks. You agree not to duplicate the manual, in whole or in part, on media of any kind, without the written approval of Schneider Electric, other than for personal, non-commercial use as defined by the code of law. Furthermore, you agree not to create any hyperlinks to this manual or its contents. Schneider Electric does not grant the right or permission to use the manual or its content for personal and non-commercial use, with the sole exception of the non-exclusive right to view the current version of the manual and its content, at the viewer’s own risk. All other rights reserved. Electrical equipment must be installed, operated, maintained and repaired by qualified personnel only. Schneider Electric accepts no liability for the consequences of using this material.

This Schneider Electric product is provided with certain open source software components (collectively, “OSS”) developed by third parties. The OSS is licensed in accordance with the OSS license terms set forth on page 148.

Trademarks

- Linux® is the registered trademark of the Linus Torvalds in the U.S. and other countries.
- iTunes™ is a registered or unregistered trademark of the Apple Inc. in the USA and/or other countries.
- Google Chrome™ and Google Play™ are trademarks or registered or unregistered trademarks of the Google Inc. in the USA and/or other countries.
- Firefox® is a trademark or registered trademark of the Mozilla Corporation in the USA and/or other countries.
- Microsoft Windows® is a trademark or registered trademark of the Microsoft Corporation in the USA and/or other countries.
- Mac OS X® are trademarks or registered trademarks of Apple Corporation in the USA and/or other countries.
Warnings

Read through the following instructions carefully and familiarise yourself with the device prior to installation, operation and maintenance. The warnings listed below can be found throughout the documentation and indicate potential risks and dangers, or specific information that clarifies or simplifies a procedure.

The addition of a symbol to “Danger” or “Warning” safety instructions indicates an electrical danger that could result in serious injuries if the instructions are not followed.

This symbol represents a safety warning. It indicates the potential risk of personal injury. Follow all safety instructions with this symbol to avoid serious injuries or death.

[DANGER]

DANGER indicates an imminently hazardous situation that will inevitably result in serious or fatal injury if the instructions are not observed.

[WARNING]

WARNING indicates a possible danger that could result in death or serious injuries if it is not avoided.

[CAUTION]

CAUTION indicates a possible danger that could result in minor injuries if it is not avoided.

[NOTICE]

NOTICE provides information about procedures that do not present any risk of physical injury.

Further information

The information provided must be complied with, otherwise program or data errors may occur.

Additional information is provided here to make your work easier.
Depictions in this document

Style and text features used

<table>
<thead>
<tr>
<th>Text feature</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F6]</td>
<td>Keys on the keyboard</td>
</tr>
<tr>
<td>[Ctrl] + [N]</td>
<td>Press both keyboard keys at the same time</td>
</tr>
<tr>
<td>Configurator</td>
<td>Software module (Start page)</td>
</tr>
<tr>
<td></td>
<td>Click the button to open the software module.</td>
</tr>
<tr>
<td>Objects tab</td>
<td>Tab</td>
</tr>
<tr>
<td></td>
<td>Click the tab to open its window. The window contains elements like lists, buttons, editors. Some windows are divided into several parts.</td>
</tr>
<tr>
<td>Objects list</td>
<td>List</td>
</tr>
<tr>
<td></td>
<td>Click the tab (Objects) to display the list.</td>
</tr>
<tr>
<td>Event column</td>
<td>Column</td>
</tr>
<tr>
<td>Add new object button</td>
<td>Button</td>
</tr>
<tr>
<td></td>
<td>Click the button to open a window, activate/deactivate a function or to display parameters and values.</td>
</tr>
</tbody>
</table>

- **Configurator** → **Objects** tab → **Add new objects** button
- **Edit object**
- **Application (Decimal Format)**
 - 56 - Lighting
 - 228 - Measurement
 - 250 - User parameters

<table>
<thead>
<tr>
<th>System notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you sure you want to delete all entries?</td>
</tr>
<tr>
<td>Choice: 0 s(instantaneous)/4 s</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>URL address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Floor/lighting/room 1</td>
</tr>
<tr>
<td>0/56/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation chapter</td>
</tr>
<tr>
<td>www.lua.org</td>
</tr>
<tr>
<td>SetRelayState(true)</td>
</tr>
<tr>
<td>Project-Hostname_yyyy_mm_dd.hh.mm.tar.gz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LUA script</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetRelayState(true)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project-Hostname_yyyy_mm_dd.hh.mm.tar.gz</td>
</tr>
</tbody>
</table>
C-Bus operation

Requirements for safe operation

Knowledge of the basic rules for operating a computer and a browser such as Google Chrome or Firefox is a prerequisite for operation.

Knowledge of C-Bus operation is required. This includes using the C-Bus Toolkit software to select and commission C-Bus applications for export to a CGL file.

To use client-server communication with Modbus or BACnet, knowledge of these systems is required.

Special features of the C-Bus Toolkit

With the C-Bus Toolkit software it enables configuration, exporting and importing of a C-Bus project.

Appropriate C-Bus Toolkit version

Use the current version of C-Bus Toolkit (1.15.x or higher). The included drivers to access the Automation Controller via USB-B are also required.

Firmware

It is recommended to update the firmware to install the latest features, security updates and bug fixes.

Use the QR code or browse the URL address.

- Scan the QR code using the Facility Hero App for information specific to your device. Download the Facility hero App from Google Play or iTunes.
- URL applicable for the Network Automation Controller:
- URL applicable for the Wiser™ for C-Bus Automation Controller:
Table of contents

1 For your safety
1.1 Qualified personnel ... 15

2 General overview .. 16
2.1 Getting started .. 16
2.2 Modules of the web server
 2.2.1 Modules for the end user 17
 2.2.2 Configurator ... 18
 C-Bus objects ... 18
 Tag map ... 19
 Scheduler and trends ... 19
 Scenes .. 19
 Visualization .. 20
 User access .. 20
 Scripting ... 21
 CNI Functionality ... 21
 Inputs and Outputs ... 21
 USB-A .. 22
 Ethernet .. 22
 RS-232 .. 23
 RS-485 .. 23
 BACnet ... 24
 Advanced network functions 25
2.3 Limitations of the Automation Controller 25

3 Getting started .. 26
3.1 Access to the Controller ... 26
 3.1.1 Access via Ethernet and IP address 27
 3.1.2 Access via USB Type B front connection and IP address 27
 3.1.3 Access via hostname ... 27
 3.1.4 Change password ... 28
 3.1.5 Direct access to a module 28
 3.1.6 Change IP settings of the Ethernet interface 28
3.2 Reset and save data ... 29
 3.2.1 Save data during configuration 29
 3.2.2 Backup and Restore ... 29
 Default file name .. 29
 Backup .. 30
 Restore .. 30
 3.2.3 Reboot or hardware reset 30
 3.2.4 Reset/Clean-up ... 31
 3.2.5 Factory reset .. 31
3.3 Set date and time .. 31
 3.3.1 NTP client/server ... 31
 3.3.2 Date and time .. 32
3.4 Updates and Firmware upgrade 33
 3.4.1 Updates ... 33
 3.4.2 Upgrade firmware .. 33
 Firmware version .. 33
 Installation ... 34
3.5 Status of the Controller .. 34
Configuration of the Automation Controller

3.5.1 Processor load ... 34
3.5.2 Memory .. 35
3.5.3 Partitions ... 35
3.5.4 Bus Status ... 35
3.5.5 Error logs .. 36
 Error log .. 36
 Example Modbus slave configuration 36
 Example script ... 36
3.5.6 Alerts .. 36
 Example .. 37

4 C-Bus objects .. 38
4.1 Overview .. 38
 4.1.1 Properties of C-Bus objects 38
 Edit objects ... 39
 4.1.2 C-Bus settings .. 39
 4.1.3 Automation Controller as network interface 40
 4.1.4 Three ways to fill the objects list 40
 Import .. 40
 Sniffer function .. 40
 Add new objects ... 40
4.2 Export from Toolkit and import into the Automation Controller 40
 4.2.1 CGL export in Toolkit .. 40
 4.2.2 Import Toolkit CGL file into the Automation Controller 41
 Update object list .. 42
4.3 Add new objects .. 42
 4.3.1 Address new lighting applications 43
 Add a new application ... 43
 Add new group address .. 43
 4.3.2 Add new trigger group 43
 Select the trigger application 44
 Add trigger group .. 44
 4.3.3 Add new enable group ... 44
 Select the Enable application 44
 Add network variable .. 44
 4.3.4 Add new measurement device and channel 44
 Select the measurement application 45
 Add a new device ID ... 45
 Add a channel number .. 45
 4.3.5 Add unit parameters .. 45
 Select the unit parameter application 46
 Add unit address .. 46
 Unit parameters .. 46
 4.3.6 Add user parameters .. 46
 Select the user parameter application 46
 Add a new device ID ... 46
 Select a data type ... 47
 4.3.7 Additional parameters for all applications 47
4.4 Edit and test objects .. 47
 4.4.1 Preparation for visualization 48
 4.4.2 Control values ... 48
 4.4.3 Additional options for editing 48
4.5 Sniffer function ... 48
 4.5.1 Communication with C-Bus 49
 Set and send values .. 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2</td>
<td>Discover new objects</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Object logs</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Filter functions</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Clear</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>High priority log</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Log size</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Export from Application Controller to Toolkit</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Tag map</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>Structure</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Example of a tag map</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Edit tag names</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>What cannot be edited</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Editing a name</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Add new tags</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Add application group level</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Schedulers</td>
<td>54</td>
</tr>
<tr>
<td>6.1</td>
<td>Access to the Scheduler</td>
<td>54</td>
</tr>
<tr>
<td>6.1.1</td>
<td>From the main menu</td>
<td>54</td>
</tr>
<tr>
<td>6.1.2</td>
<td>From the visualization view</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Link to all schedulers</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Link to a specific scheduler</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Configuring from the visualization view of the scheduler</td>
<td>55</td>
</tr>
<tr>
<td>6.2</td>
<td>Schedulers and events</td>
<td>55</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Add a scheduler</td>
<td>56</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Add an event</td>
<td>56</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Add holidays</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Settings for day of week (visualization view)</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Settings for specific date (visualization view)</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Trend logs</td>
<td>58</td>
</tr>
<tr>
<td>7.1</td>
<td>Access to trend logs</td>
<td>58</td>
</tr>
<tr>
<td>7.1.1</td>
<td>From the main menu</td>
<td>58</td>
</tr>
<tr>
<td>7.1.2</td>
<td>From the visualization view</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Link to all trend logs</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Link to a specific trend log</td>
<td>58</td>
</tr>
<tr>
<td>7.2</td>
<td>Views of trend logs</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Available trend log views</td>
<td>59</td>
</tr>
<tr>
<td>7.3</td>
<td>Configure trend logs</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Add new trend log</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Scenes</td>
<td>62</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview</td>
<td>62</td>
</tr>
<tr>
<td>8.2</td>
<td>Configuration</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Add objects to a scene</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Set values to the objects of a scene</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Run scene</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Save live values</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Duplicate</td>
<td>63</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Local and remote scene control</td>
<td>63</td>
</tr>
</tbody>
</table>
9 Visualization .. 65

9.1 Overview .. 65

9.1.1 Steps of a visualization .. 67

9.2 Visualization configuration 68

 Visualization configuration parameters 68
 PC/Tablet sidebar .. 69
 PC/Tablet view .. 69
 Information about auto-sizing 69
 PC/Tablet page transition 69
 PC/Tablet auto/size upscaling 69
 PC/Tablet background colour 69
 PC/Tablet background image 69
 Custom font .. 69
 Use dark theme .. 69
 Enable swipe gesture .. 69
 Disable object click animation 70
 Dim inactive visualization after 70
 Dimming level .. 70
 Show alerts in PC/Tablet 70

9.3 Visualization graphics ... 70

 List of Icons ... 70

9.3.1 Icons and images ... 71

 Icons .. 71
 Image formats .. 71
 Name (optional) .. 71
 Add/Delete new images .. 71

9.3.2 Fonts ... 71

9.3.3 Edit custom CSS (Cascading Style Sheets) 71

9.4 Visualization structure ... 71

9.4.1 Layouts and Widgets .. 72

 Add new Layout/Widget 73
 Actions with levels including all plans or individual plans 73
 Plan Size .. 73
 Background images .. 73
 Repeat background image 74
 Plan size ... 74
 Widget position .. 74
 Background images .. 74
 Repeat background image 74

9.4.2 Levels and Plans .. 75

 Add new level .. 75
 Add a second level or plan 75
 Actions with levels including all plans or individual plans 75
 Plan size in pixels ... 76
 Layout (optional) ... 76
 PC/Tablet visualization and Smartphone visualization 77
 Background images (optional) 77
 Repeat background image 77

9.5 Create visualization content 77

9.5.1 Overview ... 77

9.5.2 Structure panel ... 78

9.5.3 Additional tools and functions 78

 Reorder Smart phone objects 78
 Access to PC/Tablet visualization 78
 Access to Smartphone Visualization 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.4 Visualization map</td>
<td>78</td>
</tr>
<tr>
<td>9.5.5 Plan editor</td>
<td>79</td>
</tr>
<tr>
<td>9.6 General functions in the plan editor</td>
<td>80</td>
</tr>
<tr>
<td>9.7 Link</td>
<td>81</td>
</tr>
<tr>
<td>9.8 Text label</td>
<td>83</td>
</tr>
<tr>
<td>9.9 Image</td>
<td>84</td>
</tr>
<tr>
<td>9.10 Objects</td>
<td>84</td>
</tr>
<tr>
<td>10 User access</td>
<td>96</td>
</tr>
<tr>
<td>11 Scripting</td>
<td>100</td>
</tr>
</tbody>
</table>
Table of contents

Configuration of the Automation Controller

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.3 Parameters for resident scripts</td>
<td>101</td>
</tr>
<tr>
<td>11.1.4 Parameters for scheduled scripts</td>
<td>102</td>
</tr>
<tr>
<td>11.1.5 Start up script</td>
<td>102</td>
</tr>
<tr>
<td>Backup and restore</td>
<td>102</td>
</tr>
<tr>
<td>11.2 Script editor</td>
<td>102</td>
</tr>
<tr>
<td>11.2.1 Editor</td>
<td>103</td>
</tr>
<tr>
<td>11.2.2 Lists</td>
<td>105</td>
</tr>
<tr>
<td>11.2.3 Find and replace</td>
<td>105</td>
</tr>
<tr>
<td>11.2.4 Logs for testing</td>
<td>105</td>
</tr>
<tr>
<td>Function</td>
<td>105</td>
</tr>
<tr>
<td>Options</td>
<td>106</td>
</tr>
<tr>
<td>11.2.5 Error logs</td>
<td>106</td>
</tr>
<tr>
<td>11.2.6 Finish the script</td>
<td>107</td>
</tr>
<tr>
<td>11.3 Common functions</td>
<td>107</td>
</tr>
<tr>
<td>11.3.1 E-mail</td>
<td>107</td>
</tr>
<tr>
<td>11.3.2 Sending an e-mail using a script</td>
<td>108</td>
</tr>
<tr>
<td>11.3.3 Backup and restore common functions</td>
<td>109</td>
</tr>
<tr>
<td>11.4 User libraries</td>
<td>109</td>
</tr>
<tr>
<td>11.4.1 Add and edit a library</td>
<td>109</td>
</tr>
<tr>
<td>11.4.2 Backup and restore libraries</td>
<td>109</td>
</tr>
<tr>
<td>11.5 Tools</td>
<td>110</td>
</tr>
<tr>
<td>11.5.1 Backup and restore scripts</td>
<td>110</td>
</tr>
<tr>
<td>11.5.2 Print script listing</td>
<td>110</td>
</tr>
<tr>
<td>11.5.3 Edit custom Java script</td>
<td>110</td>
</tr>
<tr>
<td>11.5.4 Show logs window</td>
<td>110</td>
</tr>
<tr>
<td>11.6 Alerts</td>
<td>110</td>
</tr>
<tr>
<td>11.6.1 Alert command in a script</td>
<td>110</td>
</tr>
<tr>
<td>Show alerts in PC/Tablet</td>
<td>111</td>
</tr>
<tr>
<td>Show an alert as a message in PC/Tablet</td>
<td>111</td>
</tr>
</tbody>
</table>

12 Inputs and Outputs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Overview</td>
<td>112</td>
</tr>
<tr>
<td>12.1.1 Technical data</td>
<td>112</td>
</tr>
<tr>
<td>12.2 Configuration of relay output</td>
<td>112</td>
</tr>
<tr>
<td>12.2.1 Commands in the Helpers tab</td>
<td>113</td>
</tr>
<tr>
<td>Set relay state</td>
<td>113</td>
</tr>
<tr>
<td>Get relay state</td>
<td>113</td>
</tr>
<tr>
<td>12.3 Configuration of LED output</td>
<td>113</td>
</tr>
<tr>
<td>12.3.1 Example with on and off</td>
<td>113</td>
</tr>
<tr>
<td>12.3.2 On command</td>
<td>113</td>
</tr>
<tr>
<td>12.3.3 Off command</td>
<td>114</td>
</tr>
<tr>
<td>12.3.4 Example with LED flashing on/off</td>
<td>114</td>
</tr>
<tr>
<td>12.3.5 Commands in the Helpers tab</td>
<td>114</td>
</tr>
<tr>
<td>Set LED state</td>
<td>114</td>
</tr>
<tr>
<td>Get LED state</td>
<td>114</td>
</tr>
<tr>
<td>Toggle LED state</td>
<td>114</td>
</tr>
<tr>
<td>Set LED mode</td>
<td>115</td>
</tr>
<tr>
<td>12.4 Configuration of digital input</td>
<td>115</td>
</tr>
<tr>
<td>12.4.1 States of potential free contact</td>
<td>115</td>
</tr>
<tr>
<td>12.4.2 States of monitored input</td>
<td>115</td>
</tr>
<tr>
<td>12.4.3 Example</td>
<td>115</td>
</tr>
<tr>
<td>Read digital input</td>
<td>116</td>
</tr>
<tr>
<td>Read digital input range</td>
<td>116</td>
</tr>
<tr>
<td>Read digital input text representation</td>
<td>116</td>
</tr>
</tbody>
</table>
Table of contents

13 USB-A

13.1 Overview ... 117
13.2 USB flash drive configuration commands 117
 13.2.1 Mounting .. 117
 Read .. 118
 Write .. 118
 Open .. 118

14 RS-232

14.1 Overview ... 120
14.2 Configuration commands ... 120
 Open connection .. 120
 Blocking read .. 121
 Timeout read ... 121
 Close serial port .. 121

15 RS-485

15.1 Overview ... 122
15.1.1 Modbus over serial line 122
15.2 Configuration commands for two devices 123
 15.2.1 Open connection .. 123
 Write to port ... 123
 Blocking read .. 123
 Timeout read ... 123
 Close serial port .. 123

16 Modbus overview

16.1 Access via RS-485 ... 124
 16.1.1 Slaves .. 124
 16.1.2 Easy configuration with profiles 125
 16.1.3 Configuration with scripts 125
16.2 Access via Ethernet ... 125
16.3 Configure preinstalled profiles 126
 16.3.1 Steps .. 126
 16.3.2 List of preinstalled Modbus profiles 126
 16.3.3 Modbus RTU Settings 127
 RTU (serial) enabled .. 127
 Port .. 127
 Baud rate .. 127
 Parity .. 127
 Duplex .. 127
 Reset to defaults .. 128
 16.3.4 Modbus RTU scan .. 128
 16.3.5 Add Modbus device 128
 16.3.6 Modbus Mapping ... 128
 16.3.7 Add Objects .. 129
 16.3.8 RTU read test .. 129
16.4 Add and edit profiles .. 129
 16.4.1 Structure of a profile 130
 16.4.2 Mapping parameters 130
 16.4.3 Export profiles .. 131
 16.4.4 Import profiles .. 131
 16.4.5 Delete profiles .. 131
16.5 Modbus settings using scripts 132
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.5.1 Function Codes and corresponding Master Functions</td>
<td>132</td>
</tr>
<tr>
<td>16.5.2 Modbus RTU configuration commands</td>
<td>135</td>
</tr>
<tr>
<td>16.5.3 Modbus master functions</td>
<td>136</td>
</tr>
<tr>
<td>16.5.4 Modbus slave functions</td>
<td>137</td>
</tr>
<tr>
<td>17 BACnet</td>
<td>139</td>
</tr>
<tr>
<td>17.1 Overview</td>
<td>139</td>
</tr>
<tr>
<td>17.2 List of all BACnet Interoperability Building Blocks (BIBBs) supported</td>
<td>139</td>
</tr>
<tr>
<td>BACnet Object Types Supported</td>
<td>139</td>
</tr>
<tr>
<td>Data Link Layer Options</td>
<td>140</td>
</tr>
<tr>
<td>17.3 Schneider Electric Building Management System</td>
<td>140</td>
</tr>
<tr>
<td>17.4 Object export</td>
<td>140</td>
</tr>
<tr>
<td>17.5 BACnet configuration</td>
<td>141</td>
</tr>
<tr>
<td>17.5.1 BACnet settings</td>
<td>141</td>
</tr>
<tr>
<td>17.5.2 BACnet objects</td>
<td>142</td>
</tr>
<tr>
<td>17.5.3 BACnet COV setting</td>
<td>142</td>
</tr>
<tr>
<td>18 Advanced network functions</td>
<td>143</td>
</tr>
<tr>
<td>18.1 Network Settings</td>
<td>143</td>
</tr>
<tr>
<td>18.1.1 Interfaces</td>
<td>143</td>
</tr>
<tr>
<td>18.1.2 Routes</td>
<td>143</td>
</tr>
<tr>
<td>eth0 network adapter</td>
<td>143</td>
</tr>
<tr>
<td>usb0 network adapter</td>
<td>143</td>
</tr>
<tr>
<td>18.2 Network utilities</td>
<td>144</td>
</tr>
<tr>
<td>18.3 Access via HTTP, HTTPS or VPN</td>
<td>144</td>
</tr>
<tr>
<td>18.3.1 HTTP Server</td>
<td>145</td>
</tr>
<tr>
<td>18.4 Remote services</td>
<td>145</td>
</tr>
<tr>
<td>18.4.1 Parameters</td>
<td>145</td>
</tr>
<tr>
<td>Service status</td>
<td>145</td>
</tr>
<tr>
<td>Username</td>
<td>145</td>
</tr>
<tr>
<td>Password</td>
<td>145</td>
</tr>
<tr>
<td>Allow only exported objects</td>
<td>145</td>
</tr>
<tr>
<td>18.4.2 Examples</td>
<td>145</td>
</tr>
<tr>
<td>Show alerts</td>
<td>145</td>
</tr>
<tr>
<td>Set value</td>
<td>146</td>
</tr>
<tr>
<td>18.5 FTP server</td>
<td>146</td>
</tr>
<tr>
<td>18.5.1 Parameters</td>
<td>146</td>
</tr>
<tr>
<td>Server status</td>
<td>146</td>
</tr>
<tr>
<td>Port</td>
<td>146</td>
</tr>
<tr>
<td>Username</td>
<td>146</td>
</tr>
<tr>
<td>Passive mode min port</td>
<td>146</td>
</tr>
<tr>
<td>Passive mode max port</td>
<td>146</td>
</tr>
<tr>
<td>18.6 Remote diagnostic</td>
<td>147</td>
</tr>
</tbody>
</table>

19 Open source license information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Preamble</td>
<td>150</td>
</tr>
<tr>
<td>19.2 GNU GENERAL PUBLIC LICENSE.</td>
<td>151</td>
</tr>
<tr>
<td>19.3 NO WARRANTY</td>
<td>152</td>
</tr>
<tr>
<td>19.4 END OF TERMS AND CONDITIONS.</td>
<td>154</td>
</tr>
<tr>
<td>Appendix: How to Apply These Terms to Your New Programs</td>
<td>155</td>
</tr>
<tr>
<td>19.5 Preamble</td>
<td>156</td>
</tr>
</tbody>
</table>
| 19.6 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFICATION</td>
<td>158</td>
</tr>
<tr>
<td>19.6.1 NO WARRANTY</td>
<td>162</td>
</tr>
<tr>
<td>19.7 END OF TERMS AND CONDITIONS</td>
<td>162</td>
</tr>
</tbody>
</table>
1 For your safety

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- It is illegal for persons other than an appropriately licensed electrical contractors or other persons authorised by legislation to work on the fixed wiring of any electrical installation.
- To comply with all safety standards, the product must be used only for the purpose described in this instruction and must be installed in accordance with the wiring rules and regulation in the location where it is installed.
- There are no user serviceable parts inside the product.

Failure to follow these instructions will result in death or serious injury.

CAUTION

EQUIPMENT DAMAGE HAZARD

Install the device according to instructions in the printed Quick Start Guide and in this document.
- Pay attention to the specifications and wiring diagrams related to the installation.
- Do not use this product for any other purpose than specified in the printed Quick Start Guide and in this instruction.

Failure to follow these instructions can result in minor injuries or equipment damage.

1.1 Qualified personnel

This document is aimed at personnel responsible for setting up, installing, commissioning and operating the device and the system in which it is installed. Personnel must possess basic knowledge in the following areas:
- Connection to installation networks.
- Connecting several electrical devices.
- Laying electric cables.
- Connecting and establishing C-Bus networks and other used Building Management System (BMS) like BACnet or Modbus.
- Commissioning C-Bus installations and other used BMS.

Detailed expertise gained by means of training in the C-Bus system and other used BMS is a prerequisite.
2 General overview

This document describes the programming interface for the Automation Controller. The software programming interface is embedded in the Automation Controller and requires a web browser. Pre-programming and configuration cannot be performed without an Automation Controller product.

2.1 Getting started

Access the embedded web server via the Ethernet or USB type B connections on the Automation Controller. The chapter Getting started on page 26 provides information about administrator access, saving data, setting date and time, firmware upgrade and monitoring the Automation Controller.

The default IP address for the ethernet connection is 192.168.0.10. The default IP address for the USB type B connection is 192.168.254.10. The administrator username is admin and the default password is admin.

2.2 Modules of the web server

The following modules of the web server can be accessed from the Start page:

- PC/Tablet Visualization: user module
- Smartphone Visualization: user module
- Scheduler: user module
- Trends: user module
- Configurator.

The following screenshot shows the buttons of the Start page:

![Start Page Buttons]

Administrators can configure the four user modules via the configurator. Once visualization pages, schedulers or trend logs have been configured, the result can easily be viewed. These four modules can be accessed by end users.
2.2.1 **Modules for the end user**

The following images show examples of pages for each user module.

Page in the PC/Tablet Visualization user module.

Page in the Smartphone Visualization user module

Page in the Scheduler user module
2.2.2 Configurator

Access the configurator from the Start page. Tabs on the configurator page provide access to different aspects of configuration. The configurator main page can:

- Access general and visualization configuration
- Open the System page to access network, update and reset functions, and status information.

Utilities tab on the Configurator page

C-Bus objects

Objects are the basis of all communication via the Automation Controller and represent different C-Bus applications for sending and receiving values. Objects can also be used for visualization, scripting, exchange with BACnet IP or Modbus and the control of outputs and inputs. The chapter C-Bus objects on page 38 describes different applications, how to add and edit objects and how to exchange applications configured with the C-Bus Toolkit.
Objects are used in the following steps of configuration.

Objects tab with **Object** list on with 2 C-Bus objects

<table>
<thead>
<tr>
<th>Name</th>
<th>Group address</th>
<th>Event sc...</th>
<th>Current value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Measurement Temperature</td>
<td>0/228/25/2</td>
<td></td>
<td>24 °C</td>
</tr>
<tr>
<td>Local Lighting/Room 2</td>
<td>0/56/2</td>
<td></td>
<td>255 - 100%</td>
</tr>
</tbody>
</table>

Tag map

In addition to the objects list, a tag map is available (see Tag map on page 52). In this map, object names (tags) can be edited and used in other steps of configuration.

Tag map with network, application, group and level

Scheduler and trends

Schedulers provide control of different building functions based on date and time (see Schedulers on page 54). Trend logs (data logging) store the selected data and compare that data over different time periods (see Trend logs on page 58).

Objects can be added in the configurator. Users can access schedulers or trends from the **Start page** or from a visualization. (Images of visualization pages are shown on page 16.)

Trend logs tab with two objects for logging

Scenes

Scenes allows changes to multiple room functions at the touch of a button. For example, use a scene to dim the room lighting to a specific value, move the blinds into the desired position and switch on the power outlets.

Scenes configured in the Automation Controller can be controlled from a visualization page, the scheduler, or from other C-Bus devices such as push buttons.

The basis of scene communication is a **trigger group** (see Add new trigger group on page 43). The chapter Scenes on page 62 describes the configuration of scenes and all components (objects) linked with those scenes.

When configuring scenes on a visualization page or schedulers, add a trigger group object (Objects on page 84 andSchedulers and events on page 55).

Scenes tab with one trigger group and three scenes
Visualization
The Automation Controller provides an embedded Smartphone and PC/Tablet visualization (see Modules of the web server on page 16).

The elements of a visualization, such as objects, can be configured on visualization plans (pages) that can be accessed on both visualization modules. The Smartphone Visualization provides a list with control objects and links. The PC/Tablet Visualization provides additional elements such as images and graphs.

The chapter Visualization on page 65 describes the main steps of configuration, how to create a structure, how to use the plan editor and how to configure different elements such as control types for C-Bus applications.

User access
The Network Automation Controller is designed for a maximum of 50 users for visualization. The Wiser™ for C-Bus® Automation Controller is limited to a maximum of 8 users.

The chapter User access on page 96 describes how to configure individual access rights. Access can be given without restriction for all users, with a common PIN code for all users, or with individual user logins. Different user access levels can be configured for visualization pages, schedulers and trends.

User window with selection of pages for a user (opened on the User Access tab)
Scripting

A script is a small, non-compiled program written in the scripting language LUA. Event-based scripts are commonly used. In this case, define conditions and actions to perform when the object values meet certain criteria.

The chapter Scripting on page 100 provides an introduction to different types of scripts, script editor usage, the script commands available in the helpers tab, common functions like sending emails, tools and alerts. Find script examples in Inputs and Outputs on page 112 and Modbus settings using scripts on page 132.

Script editor with a script example (opened from a list on the Scripting tab).

CNI Functionality

CNI is enabled by default on port 10001. When enabled, the Automation Controller can act as a C-Bus Network Interface for commissioning and maintenance.

The CNI functionality in the Automation Controller can be enabled/disabled and the port can be changed, if desired, through the Automation Controller’s configuration page.

In toolkit configure connection details for each C-Bus network are as follows:

- Type: CNI
- Address: IP address
- The default IP address of the Automation Controller is 192.168.0.10 (or 192.168.254.10 if connected using the USB-B interface)
- Port: 10001.

Inputs and Outputs

The Automation Controller is equipped with a LED driver output, a relay output and a digital input. The chapter Inputs and Outputs on page 112 describes how to control these interfaces via scripts.

The LED and relay output can be controlled via C-Bus applications. The digital input of the Automation Controller is compatible with either a potential-free contact or a monitored cable using End of Line Resistance.
LED driver output A, relay output B and digital input C

USB-A

A USB type A connector in the Automation Controller provides connection with USB expansion devices (see **USB-A on page 117**). FAT and FAT32 file system formatted flash drives can be attached. Data transmission is performed via script configuration commands.

Ethernet

The Automation Controller includes an RJ45 interface for 10/100 Base-T UTP Ethernet. Use the Ethernet connection to integrate IP devices (see **Camera on page 95**), web services (see **NTP client/server on page 31**) and additional building management functions (see **Modbus overview on page 124** and **BACnet on page 139**). C-bus networks configured with the C-Bus Toolkit software can be commissioned and maintained in online mode via the configured Ethernet connection of the Automation Controller (on page 40).
RS-232

The RS-232 serial interface is one of the most widely used communication standards for data transmission between two devices over short distances.

Interaction with other equipment is possible via the isolated RS-232 interface in the Automation Controller (see RS-232 on page 120). The script configuration commands are listed in the Helpers tab of the script editor.

RS-232 interface connections: Common, Receive, Transmit

RS-485

The Automation Controller has an isolated RS-485 interface, which can be used for serial data transmission similar to the RS-232 interface (see RS-485 on page 122).

Modbus is an open standard for client/server communication. The client sends a request message and the addressed device (the server) sends a response message. The values of a server are saved in registers which can be accessed by the client. In Modbus RTU mode, the client is usually referred to as the master and the server as the slave.

The Automation Controller supports Modbus RTU serial communication via the RS-485 interface and Modbus TCP communication via the RJ45 Ethernet interface. It has been tested to conform to Modbus over serial line standards at the Modbus-SL Interopability test lab in Marktheidenfeld.

By Modbus specification a serial line is limited to 31 slaves. The Network Automation Controller is not limited but designed for 31 slaves. The Wiser for C-Bus Automation Controller is limited to a maximum of 6 Modbus slaves.

Using the preinstalled profiles, Modbus devices can be easily configured (see Configure preinstalled profiles on page 126). The devices are displayed in a list, with links to Modbus registers with objects of the C-Bus application 250 - User Parameter.

Principle of Modbus RTU communication with the Automation Controller
BACnet

BACnet is designed to allow communication with building automation and control systems for applications such as heating, ventilation, air conditioning control, lighting control, access control, fire detection systems and their associated equipment. The BACnet protocol provides exchange information for building automation devices, regardless of the particular building service they perform.

The Automation Controller supports the BACnet IP format using the RJ45 Ethernet connector.

The Automation Controller can act only as a BACnet server (not as a client). The Automation Controller serves data which can be read by BACnet client devices (such as Buildings Management Systems) and BACnet client devices can write data to the server.

The Automation Controller has been certified by BACnet Testing Laboratories (BTL) as a BACnet Application Specific Controller (B – ASC).

The chapter see BACnet on page 139 describes how to configure the Automation Controller as a BACnet server. This is done by activating the object export function and configuring BACnet communication.

The Network Automation Controller is designed for a maximum of 500 BACnet data points. The Wiser™ for C-Bus® Automation Controller is limited to a maximum of 50 BACnet data points.

Objects tab with objects available for BACnet selected in the *Export* column.
Advanced network functions

The chapter Advanced network functions on page 143 describes network settings, utilities and remote functions.

Network utilities (opened in the Services tab of the System page)

--- Snippet of the network utilities section ---

PING 0.schneider.pool.ntp.org (176.9.41.109): 56 data bytes
64 bytes from 176.9.41.109: seq=0 ttl=55 time=26.826 ms
64 bytes from 176.9.41.109: seq=1 ttl=55 time=26.477 ms
64 bytes from 176.9.41.109: seq=2 ttl=55 time=26.890 ms
64 bytes from 176.9.41.109: seq=3 ttl=55 time=26.459 ms

--- 0.schneider.pool.net.org ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 26.447/26.459/26.897 ms

2.3 Limitations of the Automation Controller

The Network Automation Controller is designed for a maximum of:
- Objects (C-Bus and internal): 2000*
- Users for visualization: 50*
- Modbus devices: 31*
- BACnet data points: 500*.

* Limits not physical but dependent on maximum CPU load.

The Wiser for C-Bus Automation Controller is designed for a maximum of:
- Objects (C-Bus and internal): 2000*
- Users for visualization: 8
- Modbus devices: 6
- BACnet data points: 50

* Limits not physical but dependent on maximum CPU load.

The bottom bar of the Configurator page displays information about the processor load, the used memory and the status of C-Bus. For more detailed information about processor load, used memory and partitions, see Status of the Controller on page 34.
3 Getting started

The Automation Controller is programmed via its embedded web server. Access the web server using a Google Chrome or Firefox web browser. When accessing the web server, the start page is displayed. From the start page, access the configurator and the following user modules:

- PC/Tablet Visualization
- Smartphone Visualization
- Scheduler
- Trends.

As administrator, configure the modules via the configurator and control user access to these four modules (see User access on page 96).

The following screenshot shows the buttons of the Start page:

Tabs on the configurator page give access to the configuration options. From the main page of the configurator, allows access to general and visualization configuration as well as the system page. From the system page, access network, update and reset functions, and status information.

3.1 Access to the Controller

Access the embedded web server of the Automation Controller using a web browser.

Use either Google Chrome or Firefox. No other browser is supported.

Physical connection between the Automation Controller and the PC hosting the browser can be established via either:

A Ethernet connection, or
B USB Type B connection.
3.1.1 Access via Ethernet and IP address

Preconditions
- The Automation Controller should be externally supplied with a 24 V DC regulated power supply (10 W min.) or USB (5 V, 500 mA).
- The default IP address is: 192.168.0.10.

Steps
1. Connect an Ethernet cable to the PC.
2. Change the IP address of the computer to the same range, e.g. 192.168.0.9; subnet mask 255.255.255.0.
3. Start Google Chrome™ or Firefox® and go to 192.168.0.10.
4. Click the Configurator button.
5. Enter the username. The default username is: admin.
6. Enter the password. The default password is: admin.

3.1.2 Access via USB Type B front connection and IP address

Preconditions
- The Automation Controller should be externally supplied with a 24 V DC regulated power supply (10 W min.) or USB (5 V, 500 mA).
- The IP address is 192.168.254.10.
- USB drivers are included with the latest C-Bus Toolkit installation. Use the most recent version (1.15 or higher) and install the full package including USB drivers.

Prior to first install, accept installation of USB drivers for the Automation Controller.

Steps
1. Connect the USB-B port on the Automation Controller to a USB port on the PC. The PC is given a DHCP IP address in the range of 192.168.254.1 – 192.168.254.9.
2. Run Google Chrome or Firefox and go to 192.168.254.10.
3. Click the Configurator button.
4. Enter the user name. The default user name is: admin.
5. Enter the password. The default password is: admin.

The USB connection to the network adaptor is independent of the Ethernet connection and so both can be used concurrently.

3.1.3 Access via hostname

Access via hostname is possible when a network router is present and the Automation Controller is properly configured. See Change IP settings of the Ethernet interface on page 28.

The default hostname is the product part number:
- LSS5500NAC for the Network Automation Controller
- LSS5500SHAC for the Wiser™ for C-Bus® Automation Controller.

Access example: http://LSS5500NAC.local

The hostname is used for identification of Automation Controller in installation as well as in file names (e.g. backup).

Change the hostname on the System page.

Path: Configurator → Utility tab → System button → System tab → Hostname.
3.1.4 Change password
Change the default password on the System page.
Path: Configurator → Utility tab → System button → System tab → Admin Access

3.1.5 Direct access to a module
Access a module directly from the browser by using the module’s address.

<table>
<thead>
<tr>
<th>Page/Module</th>
<th>Address (with default IP address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/Tablet Visualization</td>
<td>http://192.168.0.10/scada-vis</td>
</tr>
<tr>
<td>Smartphone/Visualization</td>
<td>http://192.168.0.10/scada-vis/touch</td>
</tr>
<tr>
<td>Scheduler</td>
<td>http://192.168.0.10/scada-vis/schedulers</td>
</tr>
<tr>
<td>Trends</td>
<td>http://192.168.0.10/scada-vis/trends</td>
</tr>
<tr>
<td>Start page</td>
<td>http://192.168.0.10/home</td>
</tr>
<tr>
<td>Configurator</td>
<td>http://192.168.0.10/scada-main</td>
</tr>
</tbody>
</table>

When accessing a module in this way, provide the user name and password.
Settings for users are described in the chapter User access on page 96.

3.1.6 Change IP settings of the Ethernet interface
Change the IP settings on the System page.
Path: Configurator → Utility tab → System button → Network tab → Interfaces → IP address.
Click the IP address to open the window Interface eth0.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Static IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static IP address (default is 192.168.0.10).</td>
<td></td>
</tr>
<tr>
<td>DHCP</td>
<td>DHCP protocol used to get IP configuration, e.g. from a router or gateway with DHCP server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address</th>
<th>Enter a static IP address.</th>
</tr>
</thead>
</table>

Network mask	Network mask (default is 255.255.255.0).
Gateway IP	IP address of the router or gateway.
DNS server 1	Primary DNS server IP address (resolution of address names). In general set the IP address of the network router.
DNS server 2	Secondary DNS server IP address. Visit public-dns.info for a list of public DNS servers.

| MTU | Maximum transmission unit: The largest size of the packet which can be passed in the communication protocol (default is 1500). |

- Add new IP settings to personal documentation before applying the changes. When selecting the DHCP, note the MAC address of the network interface. This helps to identify the IP address set by the DHCP server. It is recommended to test the access via hostname (on page 27) before changing the IP settings.
- With USB-B, it provides independent local access to the Automation Controller. The linked IP address can not be changed from its default (192.168.254.10).
• When changes are made, the **Apply changes** button appears in the top-right corner of the window (see A in the next figure). Click this button to apply the changes—the Automation Controller will automatically reboot. Once the reboot process is complete, use the new IP address to access the Automation Controller.

![System Interfaces](image)

A **Apply changes** button
B MAC address
C IP address.

3.2 Reset and save data

3.2.1 Save data during configuration

To save data during configuration:

Path: **Configurator** → **Sync project data** button.

Click the **Sync project data** button on the bottom bar of the configurator:

![Version: 20170124, hv v0.0 CPU/ID: 0.24 0.09 0.02, Memory: 13%](image)

The project will be immediately synchronised to the microSD card. If power is removed from the Automation Controller without pressing this button, any configuration change may be lost.

3.2.2 Backup and Restore

All objects, trends, logs, scripts, icons, images, backgrounds and visualizations are backed up.

Path: **Configurator** → **Utility** tab.

Backup regularly and before the following functions are executed:

- Factory reset
- Clean-up selected functions
- Installation of updates
- Firmware update.

Default file name

Project-Hostname_ yyyy_mm_dd.-hh.mm.tar.gz

The filename includes the device time and date when the backup is made.

The file name can be changed as desired (*.tar.gz).*
Getting started

Configuration of the Automation Controller

Backup

Click the **Backup** button.

The following settings are not backed up:

- System configuration
- Network settings
- Passwords
- C-Bus settings.

Ensure that the **backup size is no greater than 32 MB** as this is the maximum restore size.

Restore

Click the **Restore** button.

Select the file and save.

- Do not switch off the Automation Controller during the restore procedure. The Automation Controller will automatically reboot.
- Clean the browser cache after a restore. Use the settings of the browser or the short cuts [Crtl] + [N] or [Crtl] + [F5].
- **Backup files >32 MB cannot be restored.**

3.2.3 Reboot or hardware reset

Perform a reboot or hardware reset via either the configurator or buttons on the Automation Controller.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboot</td>
<td>Forces running processes to stop and then reboots the Automation Controller.</td>
<td>Configurator → Utility tab → System button → System tab → Reboot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Forces running processes to stop and then reboots the Automation Controller.</td>
</tr>
<tr>
<td>Shutdown</td>
<td>System shuts down and data is saved. To run the system, power must be switched off and back on again or switching on via Hardware Reset is possible.</td>
<td>Configurator → Utility tab → System button → System tab → Shutdown</td>
</tr>
<tr>
<td>Hardware Reset</td>
<td>Power switches off and back again. Data is not saved. Use to restart an Automation Controller that has shut down.</td>
<td>Hardware Reset</td>
</tr>
</tbody>
</table>

- Use the **Shutdown** function to power off the Automation Controller. The database is saved.
- Use the **Sync project data** function **before** performing a Hardware Reset to avoid the loss of data (the database is not saved during a Hardware Reset). See **Reset/Clean-up on page 31**.
- If the Automation Controller has locked up and does not respond to the Software Reset Button, the Hardware Reset can be used. Unsaved data will be lost.
3.2.4 Reset/Clean-up

It is possible to delete the following items:

- Objects
- Object logs
- Object and high priority logs
- Alerts
- Logs
- Error logs
- Script storage.

If objects is selected, they will be deleted from the visualization part as well.

Perform a back up before using this function. See Backup on page 30.

Path: Configurator → Utility tab → Reset/clean-up button.

3.2.5 Factory reset

Perform a factory reset via either the configurator or the software reset button on the Automation Controller.

- Perform a back up before using the Factory reset function.
- IP settings and security credentials are set to defaults:
 - IP: 192.168.0.10
 - User name: admin
 - Password: admin

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory Reset</td>
<td>Deletes all configurations and resets to the factory default settings.</td>
<td>Configurator → Utility tab → Factory reset button</td>
</tr>
<tr>
<td>Factory Reset (Software Reset button)</td>
<td>Deletes all configurations and resets to the factory default settings.</td>
<td>![Software Reset Button] >30 s</td>
</tr>
</tbody>
</table>

3.3 Set date and time

3.3.1 NTP client/server

By default, the Automation Controller gets its date and time from remote network time protocol (NTP) servers. On the system page, configure the NTP client for the Automation Controller.

Path: Configurator → Utility tab → System button → Services tab → NTP client/server.

The following remote servers are selected by default:

- Server 1: 0.schneider.pool.ntp.org
- Server 2: 1.schneider.pool.ntp.org
- Server 3: 2.schneider.pool.ntp.org
- Server 4: 3.schneider.pool.ntp.org

Enable/disable the default servers and edit other servers.
Enable the sending of the local server status so that the Automation Controller can act as a local time server for other Automation Controllers.

To use this function, enter the IP address of the Automation Controller in the NTP server/client settings of other Automation Controllers.

- After enabling the local time server function on the Automation Controller, perform a reboot. See Reboot or hardware reset on page 30.
- Check if the time server can be accessed. Ping the NTP server via the Network utilities. (Configurator → Utility tab → System button → Status tab).

```
PING 0.schneider.pool.ntp.org (176.9.41.109): 56 data bytes
64 bytes from 176.9.41.109: seq=0 ttl=55 time=26.816 ms
64 bytes from 176.9.41.109: seq=1 ttl=55 time=26.447 ms
64 bytes from 176.9.41.109: seq=2 ttl=55 time=26.897 ms
64 bytes from 176.9.41.109: seq=3 ttl=55 time=26.459 ms

--- 0.schneider.pool.net.org ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 26.447/26.655/26.897 ms
```

3.3.2 Date and time

Path: Configurator → Utility tab → Date and time button.

Edit the following parameters. (See the next screenshot).

Get from system

Synchronise the Automation Controller to the date and time zone from the connected PC.

Time zone

Select the correct time zone. Even if the NTP client is enabled, check that the time zone is correct.

First day of week

This option changes the calendar views, e.g. calendars displayed in schedulers.

Latitude and Longitude

Sunrise and sunset are calculated from the selected time zone. Specify exact sunrise and sunset times for your location by entering the location latitude and longitude. Sunrise and sunset can be used for time functions.
3.4 Updates and Firmware upgrade

3.4.1 Updates

Updates provide a way to install improvements and new features to the Automation Controller. Updates may require a particular firmware version to be installed. See Upgrade firmware on page 33.

Path: Configurator → Utility tab → Install updates button.

Update files have the file extension *.lmup (LMUP).

Click the Install updates button and select the file. The Automation Controller reboots after a successful installation.

- Do not switch off the Automation Controller during the installation.
- Clean the browser cache after the installation. Use the settings in your browser or the short cuts [Crtl] + [R] or [Crtl] + [F5].

3.4.2 Upgrade firmware

It is recommended to update the firmware to install the latest features, security updates and bug fixes. Scan the QR code on your Automation Controller using the Facility hero App to get information specific to your device. Download the Facility hero App from Google Play or from iTunes.

Firmware version

Check the firmware version installed in the Automation Controller before upgrading.
Getting started

Configuration of the Automation Controller

The firmware version is displayed in the left corner of the bottom bar of the Configurator page (e.g. v1.0).

![Firmware version displayed in the Configurator page](image)

Installation

Install a firmware upgrade via the System page.

Path: Configurator → Utility tab → System button → System tab → Upgrade firmware.

The file name is: *.img

Click Upgrade Firmware and select the file.

A firmware upgrade can take up to several minutes. During the upgrade, the device will not respond but will reboot several times.

- **Do not switch off** the Automation Controller during the installation.
- Clean the browser cache after the installation. Use the settings in your browser or the short cuts [Ctri] + [N] or [Ctri] + [F5].

3.5 Status of the Controller

Information about the processor load, the used memory and the status of C-Bus is displayed on the bottom bar of the Configurator page:

![System status displayed in the Configurator page](image)

Information about the processor load, memory, partitions and System log is shown on the System page.

Path: Configurator → Utility tab → System button → Status tab → System status.

System information is shown in the Error logs and the Alerts tab of the configurator.

3.5.1 Processor load

The power LED on the Automation Controller blinks at a rate proportional to the processor load (Green, blinking red).

The processor load is also displayed on the bottom bar of the Configurator page, under the heading CPU/IO. The processor load numbers (examples 0.28, 0.09, 0.02 shown in the previous screenshot) represent averages over progressively longer periods of time: 1 min, 5 min and 15 min. Lower numbers indicate better performance.
If the load exceeds 0.70 for the 5 min or 15 min average, check the possible reasons, which may include:

- Number of active users accessing the visualization
- Number and resolution of images used for visualization
- Number of objects in the Objects list
- Frequency of updating objects:
 - Delta for sending a new value
 - Delta for change on the client side (BACnet COV setting)
 - Cycle time for sending
 - Polling cycle of the master/client – slave/server communication (Modbus).
- Number of active scripts:
 - Sleep time interval (resident scripts with sleep interval 0 have high impact on CPU load)
 - Using resident scripts instead of scheduled scripts.
- Logging policy (e.g. log all new objects). Excessive object logging degrades performance.

3.5.2 Memory

The used system memory is displayed on the bottom bar of the Configurator page (see the previous screenshot).

View detailed memory usage on the System page (Memory usage tab).

![Memory Usage](image)

3.5.3 Partitions

View the values of total, used and free space for storage partitions on the System page Partitions tab. For example, check the free space for data on the MicroSD card (see: /data in the partition table).

3.5.4 Bus Status

The status of C-Bus is displayed in the bottom bar of the Configurator page. When C-Bus is connected and a clock is running, the status is Online. Otherwise, Offline is displayed. See Sniffer function on page 48.

C-Bus must be physically connected via one of the C-Bus RJ45 connectors.

<table>
<thead>
<tr>
<th>C-Bus</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Bus powered</td>
<td>Online</td>
</tr>
<tr>
<td>No C-Bus power</td>
<td>Offline</td>
</tr>
</tbody>
</table>

A C-Bus status button is located on the bottom bar of the Configurator page. Click this button to get detailed information about C-Bus status.
C-Bus status is also displayed by the C-Bus LED on the Automation Controller. The C-Bus LED indicates the following states.

<table>
<thead>
<tr>
<th>C-Bus</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Bus powered and clock running</td>
<td>Green</td>
</tr>
<tr>
<td>C-Bus voltage warning</td>
<td>Green flashing</td>
</tr>
<tr>
<td>No C-Bus power</td>
<td>Off</td>
</tr>
</tbody>
</table>

Test C-Bus online and offline status on the **Objects** tab. See *Edit and test objects on page 47*.

3.5.5 Error logs

Error logs are displayed in the **Error log** tab of the **Configurator** page. Errors messages come from the system. Errors in the configuration or in a running script can be detected.

Error log

![Error log example image]

Example Modbus slave configuration

In this example, a Modbus slave/server is configured but does not respond, e.g. the device is not connected to the Modbus line.

Click the line to get the message:

```
Error log 09.02.2017 00:31:21
SE8000 (RTU slave 80) read failed: Operation timed out
```

Example script

In this example, a lighting channel (local network/Lights 1/room 99) does not respond, e.g. the address *Room 99* does not exist in **Objects** list or **Tag map**.

![Example script error example image]

3.5.6 Alerts

System messages and alert information for user-edited scripts are displayed in the **Alerts** tab of the **Configurator** page. See *Alerts on page 110*.
Example

In this example, system start alerts and a user-edited temperature alert are shown.

<table>
<thead>
<tr>
<th>Alert time</th>
<th>Script name</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.02.2017 01:00:10</td>
<td>Event for 012255/1</td>
<td>Temperature too high, 36.0 °C</td>
</tr>
<tr>
<td>08.02.2017 08:35</td>
<td>system</td>
<td>System start</td>
</tr>
<tr>
<td>08.02.2017 06:55:39</td>
<td>system</td>
<td>System start</td>
</tr>
</tbody>
</table>
4 C-Bus objects

4.1 Overview

The objects in the **Objects** list are the basis of all communication via the Automation Controller. These objects represent different C-Bus applications for sending and receiving values. In the case of the **Lighting application**, the **Target level** and the **Ramp rate** are sent. The objects can also be used for visualization and scripting.

With the special application **250 - User Parameter**, values can be used for visualization or scripting. Note that user parameters are not exported to a C-Bus Toolkit project.

The application **User Parameter** must be used for the connection to Modbus register values (see **Modbus Mapping** on page 128). By default, the Automation Controller works as a Modbus client/master.

Objects can be exported for communication with BACnet (see **Object export** on page 140). The Automation Controller can share its BACnet information with a BACnet client (such as a BACnet IP-BMS client).

C-Bus objects can be imported, manually added or automatically detected and displayed.

In addition to the **Objects** list, a **Tag map** list is available. When importing or adding new objects, the corresponding entry is available in the tag map. In the tag map, change all names (tags) and add new applications, groups and levels. See **Tag map** on page 52.

4.1.1 Properties of C-Bus objects

All added or imported objects are visible in the **Objects** list. If activated, new objects are automatically displayed.

All objects in the list have a unique composed address with 3 or 4 entries. These addresses are visible in the **Group address** column. All objects in this column are addressed as (network address)/(application identifier)/ + object information. The network address for the local network of the Automation Controller is 0.

For the following examples, refer to the previous screenshot.

Example: Lighting (0/56/2)

<table>
<thead>
<tr>
<th>Local Network</th>
<th>Lighting application (default)</th>
<th>Group address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>56*</td>
<td>2</td>
</tr>
</tbody>
</table>

* 56 = default lighting application, 48-95 reserved for lighting applications (must be decimal format)
Example: Measurement (0/228/5/3)

<table>
<thead>
<tr>
<th>Local Network</th>
<th>Measurement application</th>
<th>Device ID</th>
<th>Channel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>228</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Example for Tags
The names added to the composed address are called *tags*. The tagged names for example are: Local/Lighting/Main office = (0/56/2).

Edit objects
Objects in the list can be edited by clicking the row. In this mode, undertake editing of the following functions and information:

- Keywords
- Log
- High priority log
- Export
- Object comment.

These functions are described in *Additional parameters for all applications on page 47*.

The network, application and group names are visible in the **Name** column of the object list.

The names can not be changed in the **Objects** list. To edit names, use the tag map. See *Tag map on page 52*.

4.1.2 C-Bus settings

Select the default network, application and device description in the C-Bus settings.

Path: **Configurator** → **Utilities** tab → **C-Bus settings** tab.

The following table shows the default C-Bus settings.

<table>
<thead>
<tr>
<th>Local network</th>
<th>Default lighting application</th>
<th>Device description</th>
<th>Enable CNI functionality</th>
<th>CNI port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Local</td>
<td>56 - Lighting</td>
<td>LSS5500NAC (Network Automation Controller)</td>
<td>If enabled, the Automation Controller can act as a C-Bus Network interface for commissioning and maintenance. In C-Bus Toolkit, the Automation Controller can be used as an interface to C-Bus networks. In Toolkit configure connection details for each C-Bus network: • Type: CNI • Address: IP address The default IP address of the Automation Controller is 192.168.0.10 (or 192.168.254.10 if connected using the USB-B interface) • Port: 10001 The default port of the Automation Controller CNI is 10001</td>
<td>10001 (default)</td>
</tr>
</tbody>
</table>
4.1.3 Automation Controller as network interface

In C-Bus Toolkit, the Automation Controller can be used as an interface to C-Bus networks. See C-Bus settings on page 39. C-bus networks configured with the C-Bus Toolkit software can be commissioned and maintained in online mode via the configured Ethernet connection of the Automation Controller.

4.1.4 Three ways to fill the objects list

Import
A project created with the Toolkit software can be imported as CGL file (Utilities tab → Import Toolkit CGL file button).

Sniffer function
The bus sniffer detects objects from the C-Bus network and automatically adds them to the list.

Add new objects
New objects can be added manually (Objects tab → Add new object button).

Use any of the three ways to find the objects for visualization and exchange with other systems, however the most typical way is to prepare a Toolkit project and import it:

1. Export the project in the Toolkit software.
2. Import the CGL file into the Automation Controller.
3. Edit the objects to be used.
4. Add new objects manually or via the bus sniffer function.

4.2 Export from Toolkit and import into the Automation Controller

4.2.1 CGL export in Toolkit

Export any network in one of the projects configured in the C-Bus Toolkit. When importing to the Automation Controller, all applications are added to the local network (0) of the Automation Controller.

Steps
1. Open Toolkit.
2. Select the Toolkit project and a network. 254 is the default number of the local network in the Toolkit. 0 is the number of the local network in the Automation Controller (C-Bus settings on page 39).
3. Click the Export CGL button of the main menu of Toolkit.
4. Select the applications to export. As a default, all application addresses are selected (checked).
5. Select the folder, where the file is saved (see icon on the left side of the path).
4.2.2 Import Toolkit CGL file into the Automation Controller

Import a network with applications using the Utilities tab.

Path: Configurator → Utilities tab → Import Toolkit CGL file button.

Once the Toolkit CGL file has been imported, the applications are listed in the Objects tab and are available in the Tag map tab.

Steps

In the Configurator page of the Automation Controller:

1. Click the Import Toolkit CGL file button.
2. Select the file (*.cgl).
3. Click the Save button.

An Import result message is displayed after import.
Existing object names of the same application and group address are overwritten with the imported values. To change the names (tags), open the Tag map list. See Tag map on page 52.

Update object list

To use additional objects, import an updated C-Bus Toolkit file. Alternatively, manually add new objects in the objects list. See Add new objects on page 42.

When the sniffer function is activated and C-Bus is online, new objects are automatically added to the objects list. See Sniffer function on page 48.

4.3 Add new objects

Manually add new objects to the Objects list. Once saved, the new composed addresses are visible in the Name and the Group Address columns of the Objects list.

The following applications are predefined.

<table>
<thead>
<tr>
<th>Number</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 (48-127)</td>
<td>Lighting</td>
</tr>
<tr>
<td>202</td>
<td>Trigger control</td>
</tr>
<tr>
<td>203</td>
<td>Enable</td>
</tr>
<tr>
<td>228</td>
<td>Measurement</td>
</tr>
<tr>
<td>250</td>
<td>User Parameter</td>
</tr>
<tr>
<td>255</td>
<td>Unit Parameter</td>
</tr>
</tbody>
</table>

Each application has specific parameters that must be set when editing the address elements of a new object. Some options are common for all applications.

Click on the Add new object button at the bottom of the objects tab to open the Edit object window.

The window is displayed with empty fields and the default application 56 - Lighting selected. Click the Application drop-down list to select from the currently defined applications.

Click on the Application Add button to create a new lighting application.
- Change names (tags) linked to the composed addresses in the **Tag map** tab.
- Activate/deactivate the **Log**, **High priority log** and the **Export** functions.
- Once a new application is saved, its application address cannot be edited. To change the address, first delete the existing address and then create a new one with the correct number.

4.3.1 Address new lighting applications

The **Lighting** application is used for lighting and lighting-related applications. This includes switching different loads such as fans, curtains and shutters. The numbers 48–127 are reserved for lighting and lighting-related applications.

Click the **Add new object** button at the bottom of the **objects** tab to open an **Edit object** window:

Add a new application

By default, the lighting application (56) is opened. Click the Application **Add** button to create a new lighting application.

<table>
<thead>
<tr>
<th>ID</th>
<th>For lighting applications, select one of following numbers: 48–127.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max. 32 characters, except <code>/</code>. The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

Add new group address

Click the Group address **Add** button to create a new group address.

This group address is linked with the new application.

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max. 32 characters, except <code>/</code>. The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

4.3.2 Add new trigger group

The **Trigger** application is similar to the lighting application and is used to trigger scenes. Different scenes are triggered with different values of the action selector. Configure scenes in the **Scenes** tab.

Click the **Add new object** button at the bottom of the **objects** tab to open an **Edit object** window.
Select the trigger application
In the Application list, select: 202 - Trigger.

Add trigger group
Click the Trigger group Add button (+) to create a new Trigger group (0–254). This Trigger group is linked with the Trigger application.

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max. 32 characters, except ".". The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

4.3.3 Add new enable group
The Enable application is similar to the lighting application and is used to enable/disable additional functions of a C-Bus device.

Click the Add new object button at the bottom of the objects tab to open an Edit object window.

Select the Enable application
In the Application list, select: 203 - Enable.

Add network variable
Click the Network variable Add button (+) to create a new Network variable (0–254).

This network variable is linked with the Enable application.

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max 32 characters, except ".". The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

4.3.4 Add new measurement device and channel
The Measurement application is used to send and receive measured values and units (e.g. temperature with °C). The measured value is transferred with a 24 bit floating point number and the unit is coded with 8 bit.

The measurement application is linked with a Device ID and a Channel number. Click the Add new object button at the bottom of the objects tab to open an Edit object window.
Select the measurement application

In the Application list, select: 228 - Measurement.

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The device ID is the group in the Tag map tab. Add a name (tag) in the Tag map tab.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel number</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The channel number has no tag and so is not visible in the Tag map tab.</td>
</tr>
</tbody>
</table>

In the Group address column of the Objects list, the composed address for a measurement object looks like this example:

0/228/1/3

<table>
<thead>
<tr>
<th>Local Network</th>
<th>Measurement application</th>
<th>Device ID</th>
<th>Channel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/</td>
<td>228/</td>
<td>1/</td>
<td>3</td>
</tr>
<tr>
<td>Groundfloor</td>
<td>Measurement</td>
<td>Temperature</td>
<td>3</td>
</tr>
</tbody>
</table>

Add a new device ID

Click the Device ID Add button to add a new Device ID (0–254).

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–254.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name Max 32 characters, except "/". The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

Add a channel number

Select a channel number (0–254) from the Channel number list.

4.3.5 Add unit parameters

The Unit parameter application is used to get preset information such as the C-Bus voltage. The Automation Controller polls C-Bus units to get these values. The measured value is transferred with a 24 bit floating point number and the unit is coded with 8 bit.

Click on the Add new object button at the bottom of the objects tab to open an Edit object window.
Select the unit parameter application
In the Application list, select: 255 - Unit Parameter.

Add unit address
Click the Unit address Add button to create a new Unit address (0–255).
Only select units that can deliver the requested value.

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–255.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max 32 characters, except "/". The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>

Unit parameters
- Voltage (C-Bus voltage measured by a C-Bus device with a unit address)
- Light level
- Temperature.

4.3.6 Add user parameters
User parameters are variables of different data types (e.g. signed integer or boolean). They can be used for visualization or for scripting. They are also used for mapping with values of Modbus Registers. They can also be exported to BACnet IP. User parameters are not exported to C-Bus Toolkit projects.

Click on the Add new object button at the bottom of the objects tab to open an Edit object window.

Select the user parameter application
In the Application list, select: 250 - User Parameter.

Add a new device ID
Click the Variable address Add button to create a new Device ID (0–65535).

<table>
<thead>
<tr>
<th>ID</th>
<th>Select: 0–65535.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Max 32 characters, except "/". The name is linked with the ID. Change the name in the Tag map tab.</td>
</tr>
</tbody>
</table>
Select a data type

- Boolean
- Unsigned integer (32 bit)
- Signed integer (32 bit)
- Floating point (32 bit)
- RGB colour
- Time/day
- Date
- String (255 Byte).

4.3.7 Additional parameters for all applications

The following parameters can be set for all applications when adding a new object or editing an existing one.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>Keywords are assigned to the object. Keywords can be used in scripts. For example, the Keyword “Light” can be used for a central function and the keyword “LED” for some LED lights.</td>
</tr>
<tr>
<td>Log</td>
<td>Activates logging for this object. Logs appear in the Object logs tab. This parameter can also be selected in the objects list.</td>
</tr>
<tr>
<td>High priority log</td>
<td>This option shifts high priority logs towards the top of the list in the Object logs tab. If the defined limit of logs is exceeded, low priority logs at the end of the list are deleted first.</td>
</tr>
<tr>
<td>Export</td>
<td>The Export parameter makes the object visible to remote XML requests, for example to make the object available in BACnet. This parameter can also be selected in the objects list.</td>
</tr>
<tr>
<td>Object comment</td>
<td>Optional additional information.</td>
</tr>
</tbody>
</table>

4.4 Edit and test objects

Edit all objects in the Objects list.

Click an object in the list to display the object properties. Edit the parameters Keywords, Logs, High priority Log and Export. See Additional parameters for all applications on page 47.
- Change the names (tags) linked to the composed addresses in the Tag map tab.
- The new composed addresses, which are visible in the Group Address column cannot be changed. If necessary, delete the object and then create a new one.

4.4.1 Preparation for visualization

Edit visualization parameters in the Vis. Parameters and via the Levels button in the Objects list.

<table>
<thead>
<tr>
<th>Vis. Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link levels with names (e.g. 0 = Off and 255 = On). Use levels and names in the visualization (see Overview of control types on page 85). Edit levels and names in the Tag map tab.</td>
<td></td>
</tr>
</tbody>
</table>

4.4.2 Control values

Set values

When C-Bus is connected, the information C-Bus Online appears at the bottom of the window. With this button open a window and select values for sending. In the case of a lighting application select a level and a ramp rate. If there is a prepared a temperature alarm, send the value that triggers the alarm. Set and save values. The new value is then visible in the Current value column. When the value is send, the background colour of row turns for same seconds to green and then to grey.

<table>
<thead>
<tr>
<th>Current value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This column displays the last send or received value.</td>
<td></td>
</tr>
</tbody>
</table>

Auto update enabled

Object values will automatically be updated when changed. They will highlight green for a few seconds. With a click on the Auto update enabled button this function can be disabled.

<table>
<thead>
<tr>
<th>Refresh button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click the Refresh button at the bottom of the list to manually refresh the list.</td>
<td></td>
</tr>
</tbody>
</table>

Bus sniffer

By default, the Bus sniffer function is enabled. When the sniffer function is disabled or C-Bus is offline, new objects will not be displayed. See Sniffer function on page 48.

4.4.3 Additional options for editing

Delete

Click a delete button in the list to delete the associated object.

Clear

Click the Clear button at the bottom of the list to delete all currently visible objects in the list. This is useful when used with the filter function. A warning is displayed when this button is clicked.

Mass delete

Click the Mass Delete button at the bottom of the list to delete objects from the current filter. A warning is displayed when this button is clicked.

Object filter

- **Name:** Any part of the object name.
- **Address:** The wild cards "*" and ";" can be used, e.g. 0/2/*
- **Application:** Select from a list.
- **Keywords:** Separate multiple keywords with ";", and select whether the filter should find matches for all keywords entered, or just one or more keywords. The object filter is located on the left side of the list and can be opened and closed with a button.

4.5 Sniffer function

When the sniffer function is enabled and C-Bus is online, new objects are automatically added to the objects list. Existing objects with the same composed address are not overwritten.
New objects are not automatically added to the Tag map list, they can be added manually and optionally change the names. See Tag map on page 52.

4.5.1 Communication with C-Bus

C-Bus must be physically connected via one of the C-Bus RJ45 connectors on the Automation Controller. See “3.5.4 Bus Status” on page 3529 to communication with C-Bus.

Set and send values

Set and save values. The value appears in the Current value column of the Objects list (click on the Objects tab of the configurator page). When the value is saved, the background colour of the row turns green for a few seconds.

4.5.2 Discover new objects

By default, the sniffer function is disabled. Enable the sniffer function in the General configuration tab.

Path: Utilities tab → General configuration tab.

When a new object is discovered, a new row appears and the background colour of the row is green for a few seconds. The row background colour also turns green for a few seconds when a new value for an object is received.

4.6 Object logs

An object’s event history is displayed in Object logs tab. Logging must be enabled for the object, after which all events are logged.

Filter functions

Start date	Enter date and time
End date	Enter date and time
Group address	Enter composed address (e.g. 0/56/3)
Network	Select network from list (e.g. 0-local)
Application	Select application from list.
Keywords	Enter one or more keywords. Keywords must be separated with a comma (e.g. floor1,left).
Value	Enter a value (e.g. 255).

Clear

Click the Clear button at the bottom of the Object logs tab to clear all logs.
High priority log
This option moves high priority logs closer to the top of the list. If the defined limit of logs is exceeded, low priority logs at the end of the list are deleted first.

Log size
By default, the log size is set to 200. The log size can be changed in the general configuration (path: Utilities tab → General configuration button).

Excessive object logging degrades the performance of the Automation Controller.

4.7 Export from Application Controller to Toolkit
When adding new applications to the Application Controller, export all applications to your original Toolkit project.

Use the most recent version of C-Bus Toolkit (1.15 or higher). Install the full package including USB drivers. The C-Gate software is required to export and import to the Automation Controller. C-Gate can also be used as part of a C-Bus control system.

The export of the applications of the Automation Controller is done in the Utilities tab.
Path: Configurator → Utilities tab → CGL export button.

Steps in the Configurator of the Automation Controller
1. Click the CGL export button.
2. The file will be downloaded to the computer, where your browser runs (e.g. CGL-AutomationController-2017.01.31-10.16.cgl).

Steps in the Toolkit
1. Open C-Bus Toolkit.
2. Create a new C-bus project or select an existing project to import the CGL file. If more than one Automation Controllers is in a site, they will each have their own unique CGL file.
3. Click the Import CGL button at the button of the project window.
4. Select file to import (e.g. CGL-AutomationController-2017.01.31-10.16.cgl).
5. By default, a backup project will be created before import.
6. Click the Import button.
7. Save the backup file (e.g. MY_PROJ_31_Jan_2017_1029_1.15.0.cbz).
8. A message about the import appears (see next screenshot).
C-Bus objects

Configuration of the Automation Controller

Import A Network

Import a network and associated objects that were exported from a C-Bus Network Application Controller or C-Bus Smart Home Automation Control unit to a file in the CGL format.

Import: C:\Users\SES\Downloads\CGL-5500NAC-201701312153.cgl
To: MY_PROJ

Backup project before importing

Import summary:
Created new group 254/1/2 ('Status')
Created new group 254/1/3 ('tmp')
Created new group 254/1/4 ('LvL_PoT')
Created new group 254/1/8 ('KeyWords')
Created new application 254/88 ('Modbus')
Created new group 254/88/0 ('0')
Created new group 254/88/1 ('1')
Created new group 254/88/2 ('2')
Created new group 254/88/4 ('4')
OK.

Saving project...SUCCESS.

Finished at 01-02-2017 08:40:21.433
5 Tag map

The Tag map tab provides a detailed view about all objects. Once new objects are imported or added, access them in the tag map. Use the tag map to change all names (tags) and add new applications, groups and levels. The tag map view is hierarchical, and can be expanded and collapsed in sections to focus on the required objects.

Path: Configurator → Tag map tab.

5.1 Structure

The tag map is a tree structure using the following hierarchy:

- Network
- Application
- Group
- Level.

Example of a tag map

![Example of a tag map](image)

<table>
<thead>
<tr>
<th></th>
<th>Network (e.g. 0 - Ground floor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Application (e.g. 56 - Lighting)</td>
</tr>
<tr>
<td>D</td>
<td>Group (e.g. 1 - Room 1)</td>
</tr>
<tr>
<td>L</td>
<td>Level (e.g. 255 - On)</td>
</tr>
<tr>
<td>+</td>
<td>Expand and show subordinate step</td>
</tr>
<tr>
<td>-</td>
<td>Collapse and show superordinate step</td>
</tr>
<tr>
<td></td>
<td>Add:</td>
</tr>
<tr>
<td></td>
<td>• Network</td>
</tr>
<tr>
<td></td>
<td>• Application</td>
</tr>
<tr>
<td></td>
<td>• Group</td>
</tr>
<tr>
<td></td>
<td>• Level</td>
</tr>
<tr>
<td></td>
<td>Delete step and all subordinated steps</td>
</tr>
</tbody>
</table>

5.2 Edit tag names

On each level, the number and the name (tag) are shown. In the Objects list, the numbers of network, application and group are composed and separated with a slash.

e.g. 0/58/1 = Local/Lighting Upper Floor/Room 1.
What cannot be edited

In the case of a measurement application, editing is possible for the tag names of network, application and device ID (group address), but **not** the channel number.

e.g. 0/228/1/1 = Local/Measurement/Temperature/1.

Editing a name

To edit a name, click the row in the map. Use the + and – buttons to expand and collapse the map.

5.3 **Add new tags**

Add new tags using the tag map, but it is recommended to add new applications and groups in the objects list or to import a CGL file from Toolkit. The new applications and groups are then displayed in the tag map.

An exception to this is for objects detected by the sniffer function. These objects appear in the **Objects** list but are not displayed in the tag map. In this case, use the tag map to add these applications and group addresses and optionally change the tag names.

Add application group level

Levels are used for the visualization ([see Overview of control types on page 85](#)).

Names can be defined for levels (e.g. 255 = On and 0 = Off). The levels defined in the tag map are also available in the **Objects** list.

Add a new tag via the **Add new tag** button or via an **Add** button in the **Tag map** list.
6 Schedulers

The Scheduler provides control of different building functions using date and time. Typical functions include lighting, shutter control, heating and cooling control, and scene control for multiple functions. Use the application 250 - User Parameter, to trigger an event-based script.

Use the configurator to add objects and edit their schedule times.

The end user can edit scheduled times but cannot add new objects.

6.1 Access to the Scheduler

The end user can access the scheduler from either the main menu or the visualization view.

6.1.1 From the main menu

Click the Scheduler button on the main menu.

6.1.2 From the visualization view

Link to all schedulers

- To open the main scheduler page from the visualization, configure the Schedulers link in the plan editor of the visualization. See Link on page 81.
- To display the scheduler as a frame within the visualization, configure a Frame in the plan editor of the visualization. See Frame on page 93.

Schedulers are not supported on a Smartphone Visualization page.

Link to a specific scheduler

1. In the configurator Schedulers tab (see page 55), click the Direct link button to display the Direct link dialog box.

2. In the Direct link dialog box, choose a scheduler. The link to the scheduler is displayed in the Link field.
To link a scheduler in the visualization of another Automation Controller, complete IP address. Tick *Include IP / host* to display the complete IP address in the Link field.

3. Copy the scheduler link displayed in the Link field.
4. Open the configurator Visualization tab. See *Link on page 81*.
5. Configure a Link in the Plan Editor, using the following settings:
 - **Link to:** Select "External link"
 - **External Link:** Paste the link copied from the Link field (see step 3)
 e.g. /scada-vis/schedulers?id=1

Configuring from the visualization view of the scheduler

- **Scheduler:** Schedulers are created in the configurator.
- **Status:** Displays as *active* or *inactive*.
- **Edit Scheduler button:** Set scheduler status with start and end dates, holiday behaviour.
- **Add event button:** Set name, run time (e.g. switching) and value.
- **Edit event button:** Change name, run time (e.g. switching) and value.
- **Event.**
- **Holidays:** Set special time periods for all schedulers.

When an *Object* of an application is linked to a scheduler the user can add, edit and delete *Events*. In addition the user can edit different Holidays.

6.2 Schedulers and events

Configure all scheduling functions using the configurator *Schedulers* tab. Each scheduler must be linked with an object.
6.2.1 Add a scheduler

Path: **Configurator** → **Schedulers** tab → **Schedulers** button → **Add Scheduler** button.

Object	Select an object to control.
Active	Set the scheduler to the active or inactive status. Can also be edited in a visualization—see ⑤.
Name	Select a name. Can also be edited in a visualization—see ⑥ on page 55.
Start/End date	Defines when the Scheduler should work. The default dates are: January 1 to December 31. Can also be edited from a visualization—see ⑥ on page 55.

6.2.2 Add an event

Add events in a visualization or in the configurator.

- In a visualization, click the **Add event** button—see ⑦ on page 55.
- In the configurator, click the **Add event** button in the **Events** list of the specific scheduler.

Path: **Scheduler** tab → **Schedulers** button → **Scheduler** List → **Events** icon.

Active	Set the event to the active or inactive status
Name	Select a name
Run at	
• Sunrise	
• Sunset	Sunrise and Sunset times are dependent on the time zone or the specific longitude and latitude of the location. See Set date and time on page 31.
• Specific time	
Start time offset (Sunrise or Sunset)	Select a time offset: –11 h 59 min to +11 h 59 min
Start time (Specific time)	Time when the event is triggered (switching time)
Day of the week (Specific time)	None ... All (Mo, Tu, ... Su) e.g. Tu-We, Fr Default: All
Weekday in month (Specific time)	None to All (1st, 2nd, 3rd, 4th, 5th, last) e.g. 1st, 3rd Default: All
Days of the month (Specific time)	None ... All (1, 2, ... 31) e.g. 1, 14, Default: All
Months (Specific time)	None ... All (Jan, Feb, ... Dec) e.g. Jan-Mar
Year	No entry, Year e.g. 2017 = only in 2017 Default: No entry = recurring every year
Holidays	Holiday periods can by defined can be applied for all schedulers. For each event select one of the following options:
• No effect	
• Do not run on holidays	
• Run only on holidays	
Default: No effect	
Value	Select values specific to the application of the object e.g. Lighting: Target level and Ramp rate

When all settings are selected, click the **Save** button.
Example with day of week
Every Friday, switch the light off at 10 pm.

Apply the following settings:

- **Start time**: 22:00
- **Day of the week**: Fr
- **Weekday in month**: All
- **Days of the month**: All
- **Months**: All
- **Year**: All
- **Holidays**: No effect
- **Value**: Target level: 0
 Ramp rate: 0 s

6.2.3 Add holidays
Define holiday periods and then apply them to any scheduler. Holidays can be applied differently to each event:

- Event is not affected.
- Event does not run on holidays.
- Event runs only on holidays.

Add holidays in the visualization view or in the configurator.

- In the **visualization**, click **Holidays** and then the **Add holiday** button.
- In the **configurator**, click the **Add holiday** button in the **Holidays** list.

 Path: **Schedulers** tab → **Holidays** button → **Holidays** List → **Events** icon.

Settings for day of week (visualization view)

<table>
<thead>
<tr>
<th>Holiday type</th>
<th>Day of the week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of the week</td>
<td>Select a week of the month:</td>
</tr>
<tr>
<td></td>
<td>1st, 2nd, 3rd, 4th, 5th, last</td>
</tr>
<tr>
<td></td>
<td>Select a day:</td>
</tr>
<tr>
<td></td>
<td>Monday, Tuesday, ... Sunday</td>
</tr>
<tr>
<td>Month</td>
<td>Select a month:</td>
</tr>
<tr>
<td></td>
<td>January, February, ... December</td>
</tr>
<tr>
<td>Duration (days)</td>
<td>Select 1 ... 90 days.</td>
</tr>
<tr>
<td>Recurring every year</td>
<td>Checked = yes</td>
</tr>
<tr>
<td></td>
<td>Unchecked = no</td>
</tr>
</tbody>
</table>

Settings for specific date (visualization view)

<table>
<thead>
<tr>
<th>Holiday type</th>
<th>Specific date</th>
</tr>
</thead>
<tbody>
<tr>
<td>From date</td>
<td>Select in calendar view:</td>
</tr>
<tr>
<td></td>
<td>• Year</td>
</tr>
<tr>
<td></td>
<td>• Month</td>
</tr>
<tr>
<td></td>
<td>• Day</td>
</tr>
<tr>
<td>To date</td>
<td>Select in calendar view:</td>
</tr>
<tr>
<td></td>
<td>• Year</td>
</tr>
<tr>
<td></td>
<td>• Month</td>
</tr>
<tr>
<td></td>
<td>• Day</td>
</tr>
<tr>
<td>Month</td>
<td>Select a month:</td>
</tr>
<tr>
<td></td>
<td>January, February, ... December</td>
</tr>
<tr>
<td>Recurring every year</td>
<td>Check to activate</td>
</tr>
<tr>
<td></td>
<td>Uncheck to deactivate</td>
</tr>
</tbody>
</table>
7 Trend logs

Trend logs, or data logging, allow the end user to store selected data and compare that data over time. Trends can be accessed via the main menu or via the visualization. Trend logs are stored on the Automation Controller’s internal microSD card.

Use the Configurator to add and edit objects.

The end user can select different trend views but cannot create new objects.

7.1 Access to trend logs

The end user can access the trend logs from either the main menu or the visualization view.

7.1.1 From the main menu

Click the Trends button on the main menu.

7.1.2 From the visualization view

Link to all trend logs

- To open the main trends page from the visualization, configure the Trend link in the plan editor of the visualization (see Link on page 81).
- To display the trends as a frame within the visualization, configure the Frame in the plan editor of the visualization (see Frame on page 93). Trends are not supported on a Smartphone Visualization page.

Link to a specific trend log

1. In the configurator Trend logs tab (see page 60), click the Direct link button to display the Direct link dialog box.

2. In the Direct link dialog box, choose a Trend log. The link to the trend log is displayed in the Link field.
To link a trend log in the visualization of another Automation Controller, complete the IP address. Tick *Include IP / host* to display the complete IP address in the Link field.

1. Copy the Link field to use it in the plan editor of the visualization.
2. Open the configurator Visualization tab. See *Link on page 81*.
3. Configure a link in the plan editor, using the following settings:
 - **Link to:** Select "External link"
 - **External Link:** Paste the link copied from the Link field (see step 1)
 e.g. /scada-vis/trends?id=1&mode=day

7.2 Views of trend logs

On the *Trends* page, select from different views.

Available trend log views

- **View period of trend:**
 - Day
 - Week
 - Month
 - Year.

- **View current and previous trend:**
 - **Current**: Click the *Current* button and select the *day/week/month/year* in the calendar that should be the *Current* view. The curve *Current* is always shown.
 - **Previous**: click the *Previous* band and select the *day/week/month/year* in the calendar that should be the *Previous* view. The curve *Previous* is not shown until also the *Show previous* button is clicked.

- **View single or multiple trends**:
 - *Single trend* button
 - *Multiple trend* button.

- **View graph or data**:
 - *Graph* button
 - *Data* button.
Example with current and previous trend and period day

Example with multiple trend and period day

7.3 Configure trend logs

Configure trend logs in the *Trend logs* tab.
Add new trend log

To add a new trend log, click the Add new trend log button at the bottom of the trend log tab (see previous screenshot). Configure the following trend log parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Select object to log.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the trend log.</td>
</tr>
</tbody>
</table>
| **Log type** | • **Counter**: Sums up the delta between the received value and the last received value (negative delta is not regarded).
 | • **Counter with negative delta**: (negative delta is also taken into account).
 | • **Absolute**: Saves the actual values. |
| **Trend resolution** | Average value of the counted samples for the specific time interval to be displayed on the trend (5, 10, 15, 20, 30 min, 1 hour). |
| **Decimal places** | If the object is a floating point type, it is mandatory to enter the number of decimal places. |
| **Resolution data** | Storage time for short time data (max. 5 years). |
| **Daily data** | Storage time for long term data (max. 10 years). |
| **Always show zero** | If checked, the Y-axis begins with 0. If unchecked, the Y-axis begins at lowest real value. Unchecking this option improves trend resolution if values are always far from 0. |
8 Scenes

8.1 Overview

The Scenes tab, allows easily configured scenes.

Path: Configurator → Scenes tab → Scenes list.

Use a scene to change multiple room functions at the touch of a button. Setting a scene allows dimming of the room lighting to a specific value, move the blinds into the desired position and switch on the power supply to the socket outlets in a room. As an example of a pure lighting scene, control three channels of a dim actuator using the scenes day, night and video.

For a standard scene, the following is needed:

- A Trigger group to set different scenes. Use the application 202 - Trigger Control.
- One Action selector for each scene. The action selector is associated with the Trigger Control.
- Components for each scene. These components will be controlled via applications (e.g. 56 Lighting).
- Values (e.g. levels and ramp rates) of the components for each scene. The values can be edited or saved online via C-Bus.
- Buttons or functions to set scenes. These buttons can be physical C-Bus push buttons or elements on a screen (see Visualization on page 65). Alternatively, a scene can be set by a physical timer or a software function (see Schedulers on page 54).

8.2 Configuration

For each scene, configure a Trigger group in the Scenes list.

Add scene

Click the Add scene button to open the scene parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name of the scene.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene is active</td>
<td>Active: scene is ready for usage.</td>
</tr>
<tr>
<td>Group address</td>
<td>Select a trigger group (Application 202 Trigger Control).</td>
</tr>
<tr>
<td>Action Selector</td>
<td>For each value of the Action Selector, define the display text. The display text appears in a visualization (see Local and remote scene control on page 63). For example, if a night scene is triggered with value 3, edit a level with the object value 3 and the display text “Night”. Click the Levels button to configure levels.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Keywords can be used for scripts.</td>
</tr>
</tbody>
</table>

Click Save button when parameters are set.

Click a row in the Scene list to open the scene parameters for editing.
Add components
A list of objects for one scene is called Sequence. Click the symbol in the Sequence column (see page 62) to add an object for each component and select values. The following actions are available.

Add objects to a scene
Click the Add objects button to open the list of objects. Select the objects required to be controlled by the scene and then click the Save button.

Set values to the objects of a scene
Select one or more objects and click the Set value button. Select a value and click the Save button.

Run scene
When controlling a scene online via C-Bus, click the Run scene button.

Save live values
With this function, it allows changing of the values of the components independent of the Automation Controller. For example, prepare a lighting scene by physically setting each light to the brightness required. Then, select the corresponding objects and click the Save live values button. The actual values are displayed in the list.

Delete
Click the Delete button to remove objects from a scene, e.g. to delete unwanted objects from a scene that is duplicated as a starting point.

Duplicate
In many cases, the same trigger groups and components are used in scenes. Click the symbol in the Duplicate column (see page 62) to create a copy of a scene.

8.2.1 Local and remote scene control
Scenes can be controlled via a PC/Tablet or a Smartphone visualization.

<table>
<thead>
<tr>
<th>PC/Tablet</th>
<th>Smartphone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Action Selector
- Video
- Day
- Night
- Meeting
Remotely control local scenes configured in the Automation Controller by using a C-Bus push-button configured with a scene function:

1. Configure Automation Controller keys as scene keys.
2. Use the trigger group of the local scenes.
3. Use the values of the action selectors linked with local scenes.

Scenes configured in another C-Bus device can be controlled from the PC/Tablet or Smartphone visualization. The same trigger group can be used in the Automation Controller and the other C-Bus device.
9 Visualization

9.1 Overview

A visualization is a structured collection of pages called Plans. Each plan is linked with a Level, which normally represents one floor of a building. A plan can contain graphics, text and control elements. Communication with active elements is based on C-Bus Objects.

Each plan can be used as **PC/Tablet visualization**, **Smartphone visualization** or both.

Example of a visualization page for PC/Tablet

- **A** Text label: The name of the plan.
- **B** Object (switch): Touch the object icon for direct control and status indication.
- **C** Object (control): Touch the object to display a slider control to adjust a setting.
- **D** Gauge: Touch the selected control element to display a value, e.g. temperature.
- **E** Links: Provides access to other visualization pages in the plan. Touch a link to display that visualization page.
Example of a visualization page for Smartphones

A Navigation: Access to all pages (plans), next page, previous page.
B Shutter/blind - Display: Tags.
C Slider - Display: Percentage (0-100%).
D Cycle/Fan - Display: Tags.
E Read only - Display: Icon and value.
F Trigger select - Tags.
G Bell press - Display: Tags.

The Smartphone Visualization displays a list with the configured object and link elements. Text label, image, gauge and graph elements are only displayed in the PC/Tablet Visualization. Each object, link and frame element can optionally be hidden in the Smartphone Visualization.

The Smartphone Visualization adapts automatically to the screen size. For PC/Tablet Visualization, however, defining the plan size is mandatory. Templates are available for various resolutions and screen types (e.g. landscape WSVGA or portrait HD).

By default, start the PC/Tablet Visualization or the Smartphone Visualization via the Start page.

To create a visualization, click the Configurator button.

Configure user access to visualization pages (see User access on page 96). For each user, different levels of access can be given for visualization pages (plans), schedulers and trends.

The Network Automation Controller is designed for a maximum of 50 users for visualization. The Wiser for C-Bus Automation Controller is limited to a maximum of 8 users.
9.1.1 Steps of a visualization

1. (Optional) Start with a general configuration of the visualization pages in the **Vis. configuration** tab.
2. Upload any background and Plan images (e.g. icons) via the **Vis. graphics** tab.
3. Create at least 1 Level and 1 Plan in the **Vis. structure** tab (each visualization page is linked to a Level).
4. (Optional) Create other structure elements such as Layouts and Widgets.
5. Add the content to the Layouts, Widgets and Plans in the **Visualization** tab.
6. When adding objects to the plan, the objects must be available (see C-Bus objects on page 38). (An object is a C-Bus object in a network with an application and a group.)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Path</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualization configuration on page 68</td>
<td>Configurator → Utilities → Vis. configuration or Configurator → Visualization → Vis. configuration button</td>
<td>(Optional) Select general settings for the visualization. Default Settings: • PC/Tablet sidebar: Shows as overlay. • PC/Tablet view: Centres plans, enables auto-sizing. • PC/Tablet page transition: No transition.</td>
</tr>
<tr>
<td>Visualization graphics on page 70</td>
<td>Configurator → Vis. graphics</td>
<td>(Optional) Add graphical elements to include later via the Visualization → Image tab. • Icons: Add icons for new functions. • Images/Backgrounds: Add project-related images. • Fonts: Add fonts for Text labels. • Edit Custom CSS: If available, upload and edit new Cascading Style Sheets.</td>
</tr>
<tr>
<td>Layouts and Widgets on page 72</td>
<td>Configurator → Vis. structure → Layout/Widgets</td>
<td>(Optional) Add layouts and widgets to the structure. A Layout can be used as a template for one or more plans (visualization page). A Widget is a small visualization page which pops up when pressing the associated button (icon) on the plan. A widget is linked with an object. The elements for the layouts and widgets must be added in the Visualization tab.</td>
</tr>
<tr>
<td>Levels and Plans on page 75</td>
<td>Configurator → Vis. structure → Levels/Plans</td>
<td>Mandatory Add Levels and Plans to the structure. (Minimum = 1 level with 1 plan) A level is usually a part of a building (e.g. ground floor). A plan is a room or a functional overview. Default plan settings: • Plan size: 1024 x 768 • Layout: PC/Tablet visualization: show Smartphone visualization: show. The plan elements must be added in the Visualization tab.</td>
</tr>
</tbody>
</table>
9.2 Visualization configuration

Configure all pages of the visualization via the Vis. Configuration button:

Open the visualization configuration via one of the following paths:

- Configurator → Utilities tab → Vis. configuration button
- Configurator → Visualization tab → Vis. Configuration button.

Visualization configuration parameters

![Visualization configuration parameters](image-url)
PC/Tablet sidebar
Enables a sidebar containing a list of plans in the visualization. The sidebar is used to navigate between visualization pages (plans). Sidebar display options include:
- Show as overlay (auto-hide)
- Show docked
- Hide (fullscreen mode)
- Docked/with auto-hide option/hidden.

PC/Tablet view
Defines how plans should be displayed. Options include:
- Align plans to top left, no size limits
- Center plans, limit size
- Center plans, enable auto-sizing
- Center horizontally, auto size width.

Information about auto-sizing
If using Google Chrome or Mozilla Firefox, auto-sizing is supported.

PC/Tablet page transition
Enables different transition effects for page changes in the visualization.

PC/Tablet auto/size upscaling
Enables automatic rescaling for multiple screen resolutions.

PC/Tablet background colour
Applies a common background colour for all visualization pages. Alternatively, select a background colour per Layout or per Plan.

PC/Tablet background image
Applies a common background image for all visualization pages. Alternatively, select a background image per Layout or per Plan.

Custom font
Applies a common font for the visualization.

Use dark theme
Inverts colours, fonts, graphs and controls to match a dark styled visualization.

Enable swipe gesture
Enables swiping between plans on tablets and smartphones.
Disable object click animation
By default, objects change their size slightly when clicked on. Select this option to prevent this effect.

Dim inactive visualization after
An energy-saving feature for battery powered devices. Select the number of minutes before an inactive visualization is dimmed.

Dimming level
Adjusts the brightness level of dimmed screens as a percentage of full brightness.

Show alerts in PC/Tablet
By default, alerts are displayed in the **Alerts** tab within the configurator. When this parameter is enabled, alerts are also displayed as popup messages in the **PC/Tablet visualization**:

![Alert Popup](image)

9.3 Visualization graphics
Graphics must first be uploaded before they can be used in the visualization. In the **Vis. graphics** tab, the following sub-tabs are available:

- **Icons**
- **Images/Backgrounds**
- **Fonts**
- **Edit custom CSS**.

List of Icons

<table>
<thead>
<tr>
<th>Icons</th>
<th>Images / Backgrounds</th>
<th>Fonts</th>
<th>Edit custom CSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

blinds_up_3.svg blinds_up_4.svg brightness_se... brightness_se... bulb_1.svg bulb_100_1.svg bulb_100_2.svg bulb_100_3.svg
9.3.1 Icons and images

Icons
A basic package of icons is preinstalled. Additional icons can be downloaded.

Image formats
JPEG, GIF, PNG and SVG images are supported. The file name can contain letters, numbers, underscore and minus characters.

Name (optional)
Add a name for an image to appear in the list when adding a new object. An image name can contain letters, numbers, underscore and minus characters.

Add/Delete new images
• Use the Add/Delete buttons on the bottom of the Icons tab and Images/Backgrounds tabs to add or delete images.
• Upload individual files as-is, or multiple files in a ZIP archive.
• Max size of an individual graphic: 2 MB
• Max size of a whole ZIP archive: 32 MB.

9.3.2 Fonts
True Type (TTF) and Open Type (OTF) fonts are supported. In order to access new fonts in the visualization editor, firstly install the font(s) and then click the Save and reload plan button.

9.3.3 Edit custom CSS (Cascading Style Sheets)
Advanced function: The visualization style and design is controlled by a Cascading Style Sheet (CSS). The CSS determines the style of all control buttons, Smartphone visualization, Scheduler and Trend.

Install a modified CSS containing different style definitions for the visualization elements.

Any replacement CSS must contain all of the classes and definitions of the original CSS to avoid degrading the appearance and functionality of the visualization pages.

9.4 Visualization structure

Use the Vis. Structure tab to create all building Levels and Plans.

Additionally, it allows creation of Layouts and Widgets.

A Plan is a visualization page, which can contain graphics, text and control elements.

A Layout is an advanced background layer for plans. The layout can:
• contain the same type of elements as a plan, and
• be associated with one or many plans.

All elements of a layout are visible in the background of the plan, while elements of the plan are displayed in the foreground. Typically, a layout contains common elements for the plans, such as menu buttons or time and date.

The dimensions (pixel size) of the layout and plan can be different or identical. The centre point of both layout and plan is the same when displayed in the visualization.
A Widget is a small visualization page which can pop-up on top of the plan when a button is clicked or tapped.

The widget size must always be smaller than the plan size.

Example of a Plan with a Layout and a Widget

- **A** Layout: The area in the blue frame.
- **B** Plan: The area in the red frame.
- **C** Widgets: The area in the orange frame.

Content cannot be added to Layouts, Widgets and Plans using the Vis. Structure tab. Once the structure is created using the Vis. Structure tab, add the content via the Visualization tab.

9.4.1 Layouts and Widgets

Layouts / Widgets are optional design elements that can be used on plans.

A layout can be added to a plan (see Levels and Plans on page 75).
A widget can be added to an object (see Objects on page 84).
Add new Layout/Widget
Add a new Layout or Widget with these controls:
- The + button (layout or widget)
- The Add new layout button
- The Add new widget button.

Actions with levels including all plans or individual plans
- Export as file (*.tar) with the Export button
- Import a file (*.tar) with the Add/Import button
- Duplicate with the Duplicate button
- Delete with the Delete button

Example of Layout parameters

Plan Size
The size of the Layout and the Plan can be different. When displayed, the centre point of both layout and plan is the same.

Background images
First import the image via the Vis. Graphics tab.
A background image is aligned with the top left corner of the plan and is displayed at its original size.

In the **Visualization** Tab, images can be placed as image elements and positioned freely when the page is designed.

Repeat background image
An small image can be repeated (tiled) across the *Layout*.

Example of Widget parameters

![Widget parameters](image)

Plan size
The *Widget* size must be smaller than the plan on which it is placed.

Widget position
By default, *Widgets* are displayed next to the icon which calls the widget. Define another position on the plan for the widget if desired.

Background images
Firstly import the image via the *Vis. Graphics* tab.

A background image is aligned with the top left corner of the plan and is displayed at its original size.

In the **Visualization** Tab, images can be placed as image elements and positioned freely when the page is designed.

Repeat background image
An small image can be repeated (tiled) across the *Layout*.
9.4.2 Levels and Plans

A Plan is visualization page which can contain graphics, text and control elements. In the Vis. structure tab, Plans are linked to the Levels. Define the size and background colours and images in the Vis. structure tab, however the content of a plan has to be added in the Visualization tab.

Levels usually represent a part of a building, such as a floor. Levels can also be used for different functions such as lighting, shutter control and heating. Use levels as structure elements for plans in the navigation/sidebar of the visualization.

The Levels/plans sub-tab in the Vis. Structure tab contains the function icons and buttons for creating and editing levels and plans.

Add new level

Add a new main Level with the Add new level button (several main levels are possible). Protect access to the level with a Pin Code (3–8 digits).

Add a second level or plan

Add a second Level or a new Plan by clicking the main level Add/Import button:

Plans can be added to a second level, but not a third level. Protect access to the level with a Pin Code (3–8 digits).

Actions with levels including all plans or individual plans

- Re-order within a Level using the Move up/down buttons
- Export as file (*.tar) with the Export button
- Import a file (*.tar) with the Add/Import button
- Duplicate with the Duplicate button
- Delete with the Delete button
Example of plan parameters

Plan size in pixels
Click the plan size button to set the plan size:

Enter specific values or select a pre-set size:

Layout (optional)
Assign a layout to the plan. (First create a layout—see Layouts and Widgets on page 72).
PC/Tablet visualization and Smartphone visualization
- Show
- Show make default (= start page)
- Hide.

Background images (optional)
Firstly import the image via the Vis. Graphics tab.
A background image is aligned with the top left corner of the plan and is displayed at its original size.
In the Visualization Tab, images can be placed as image elements and positioned freely when the page is designed.

Repeat background image
An small image can be repeated (tiled) across the Layout.

9.5 Create visualization content

9.5.1 Overview
In the Visualization tab, add or modify the content to the plans, layouts and widgets. Toggle between editing and visualization mode.
- In visualization mode select a plan, layout or widget in the structure and test functions on the visualization map.
- In editing mode add and modify content on the visualization map using the plan editor.

Areas of the Visualization tab in the visualization mode
Main steps of editing
To add or modify content, follow these steps:
1. Select a Plan, Layout or Widget in the Structure panel.
2. Click the Unlock current plan for editing button to activate editing mode.
3. Add content using the Plan editor.
4. Select elements on the Visualization map and modify them as needed.
5. Click on the Save and reload plan button to finish editing.
6. Perform a final check by opening the PC/Tablet visualization and the Smartphone visualization.

9.5.2 Structure panel
Use the structure panel to select a Plan, Layout or Widget for configuration.

9.5.3 Additional tools and functions
Reorder Smartphone objects
In a newly created Smartphone visualization, the objects are listed in a default order. Click the button at the bottom of the structure panel to reorder the objects.

Access to PC/Tablet visualization
Click the button at the bottom of the structure panel to open the final PC/Tablet visualization in the default browser.

Access to Smartphone Visualization
Click the button at the bottom of the structure panel to open the final Smartphone visualization in the default browser.

Visualization configuration
Click the button at the bottom of the structure panel to open the visualization general settings. See Visualization configuration on page 68.

Size of a Plan/Layout/Widget
In editing mode, modify the size of the selected visualization map using selectors at the bottom of the structure panel. See Levels and Plans on page 75.

9.5.4 Visualization map
Use the visualization map to test the visualization and to edit while in editing mode. Toggle between visualization and editing modes using the buttons on the bottom of the plan editor.

Editing functions on the visualization map
In editing mode, the visualization map is shown with a 20 × 20 pixel grid.
When an object is selected, the buttons on the bottom of the visualization map can be used for the following functions.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Delete the object.</td>
</tr>
<tr>
<td>Duplicate</td>
<td>Make a copy of the object. The duplicate is placed relative to the original according to the coordinates entered in the selectors (0, 0 places the duplicate on top of the original).</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies the object to the clipboard, to paste into another plan/layout/widget.</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the object from the clipboard. This button is hidden when the clipboard is empty.</td>
</tr>
</tbody>
</table>

9.5.5 Plan editor

Use the plan editor to add new elements to the visualization map and to modify existing elements.

Available elements

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Add, modify and save elements, size and position of Elements. See General functions in the plan editor on page 80.</td>
</tr>
<tr>
<td>Object</td>
<td>Display/control the value of an Object in the Object list, i.e. a C-Bus object in a network with an application and a group. See Objects on page 84.</td>
</tr>
<tr>
<td>Link</td>
<td>Open another plan. See Link on page 81.</td>
</tr>
<tr>
<td>Text label*</td>
<td>Static text string, e.g. the name of the room. See Text label on page 83.</td>
</tr>
<tr>
<td>Image*</td>
<td>Local static image stored in the Vis. graphics tab or external link to a web page, e.g. URL with dynamic content. See Image on page 84.</td>
</tr>
<tr>
<td>Frame</td>
<td>Show internal/external web pages on the visualization page. See Frame on page 93.</td>
</tr>
<tr>
<td>Gauge*</td>
<td>An analogue graphic element to display values. See Gauge on page 92.</td>
</tr>
<tr>
<td>Camera</td>
<td>Used to show a stream (MJPEG) from an IP camera. See Camera on page 95.</td>
</tr>
<tr>
<td>Graph*</td>
<td>Is used to show real time graphs of logged values. See Graph on page 94.</td>
</tr>
</tbody>
</table>

* These elements are not displayed in the Smartphone Visualization.
9.6 General functions in the plan editor

Actions in the plan editor
The following actions can be applied for all elements in the plan editor.

Plan editor (example)

Add a new element
1. Click the Unlock current plan for editing button (if visualization mode is active).
2. Select and edit parameter values.
3. Click the Add to plan button.

Modify an existing element
1. Click the Unlock current plan for editing button (if visualization mode is active).
2. Select element on the visualization.
3. Select and edit parameter values.
4. Click the Apply button.

Save or cancel changes before changing to visualization mode
- Click the Save and reload plan button to save your changes.
- Click the Cancel button at the bottom of the plan to cancel your changes.

Element position
The element will be placed on the visualization map in the position entered here (default 10,10 = top left corner).
Element size
- Optionally change the size of elements such as icons, images or frames here.
- Once the element is added to the plan, directly resize the element on the visualization map by dragging the nodes on the borders (stretch) or the corners (keep ratio).
- Click the Restore button to restore the element’s original size.

Main steps of editing
Follow these steps to add or modify content:
1. Select a Plan, Layout or Widget in the Structure panel.
2. Click the Unlock current plan for editing button to activate editing mode.
3. Add content using the Plan editor.
4. To modify an element, select the element on the Visualization map. Position, copy, duplicate or delete elements on the visualization map. Many object elements have additional functions in the PC/Tablet visualization. See Objects on page 84.
5. Click the Save and reload plan button to finish editing.
6. Perform a final check by opening the PC/Tablet Visualization and the Smartphone Visualization. Text label, image, gauge and graph elements are only displayed in the PC/Tablet Visualization. Each object, link and frame element can optionally be hidden in the Smartphone Visualization.

After changing settings, refresh the browser to view the changes in the visualization. Refresh via browser menu or use the keyboard shortcuts [Ctrl] + [N] or [Ctrl] + [F5].

9.7 Link
Navigation links between the visualization pages are automatically created and can be used without any additional configuration work. This is done in the Vis. structure tab, where plans must always be linked to a level or a sub-level. All pages can be accessed via the sidebar on the left of the visualization page.

In addition, Links can be added to the visualization map. Use an icon, text or transparent surface as a link to other pages. To configure a link, open the Link tab of the Plan editor.

9.7.1 Parameter
Plan editor with activated Link tab
‘Link to:’ options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start page</td>
<td>The start page of the visualization.</td>
</tr>
<tr>
<td>Name of plan</td>
<td>A plan created in the Vis Structure tab.</td>
</tr>
<tr>
<td>Trend logs</td>
<td>Default visualization pages (has to be configured).</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Default visualization pages (has to be configured).</td>
</tr>
<tr>
<td>External link</td>
<td>Opens a web page (http://...). Can be used to view one trend. Copy the trend path via the Direct link button on the Trend log tab. See the next screenshot (Direct link).</td>
</tr>
<tr>
<td>Next plan</td>
<td>Navigation link to the next plan.</td>
</tr>
<tr>
<td>Previous plan</td>
<td>Navigation link to the previous plan.</td>
</tr>
</tbody>
</table>

When configuring an external link to a trend log, it is possible to link to a trend log in the same Automation Controller or another one. When linking to another Automation Controller, tick the Include IP/host option in the Direct link dialog box to display the complete IP address. See Trend logs on page 58.

Custom name

If setting Display mode to Value (see Display mode below), the custom name is displayed as the link.

Hide background

The background of the icon is not shown.

To create a transparent area for a link, select an empty SVG file for the icon and then hide the icon background.

Display mode

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icon</td>
<td>An icon is used as the link.</td>
</tr>
<tr>
<td>Value</td>
<td>The text of the Custom name parameter is used as the link.</td>
</tr>
</tbody>
</table>

Active state icon

Set another image to display in the icon when the linked page is opened. For example, create both grey (standard) and yellow (active) versions of an icon image and then assign the grey image to Icon and the yellow image to Active state icon.
9.7.2 Examples

Link with icons
In this example, when a plan is opened either by the link icon or by the sidebar menu, the active state icon for the link is shown in green colour and the other icons are shown in grey colour. Three link icons are placed on a layout associated with the three plans.

<table>
<thead>
<tr>
<th>Display mode</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icon</td>
<td>Icon with grey colour</td>
</tr>
<tr>
<td>Active state icon</td>
<td>Icon with green colour</td>
</tr>
</tbody>
</table>

Link with text
In this example, a user can click on some text to open a plan. Three link texts are placed on a plan with three rooms.

<table>
<thead>
<tr>
<th>Custom name</th>
<th>Text (e.g. Main Office)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display mode</td>
<td>Value (= Custom name)</td>
</tr>
<tr>
<td>Font size/color</td>
<td>As required</td>
</tr>
</tbody>
</table>

Link as transparent area
In this example, the user can click transparent links that are positioned over rooms on part of a building plan. Empty SVG files can be used as icons (see Hide background on page 82).

<table>
<thead>
<tr>
<th>Display mode</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icon</td>
<td>Empty SVG file</td>
</tr>
<tr>
<td>Hide background</td>
<td>Activated (makes icon with empty.svg transparent)</td>
</tr>
</tbody>
</table>

9.8 Text label
A Text label is a static element. Add text labels and position them on the visualization map. Open the Link tab of the Plan editor to edit a text label.

Text labels are only visible in the PC/Tablet Visualization.

9.8.1 Parameters

Plan editor with activated Text label tab

Set the Font size, Text Style, Font and the Font Color.
9.9 Image

Images can be positioned and resized on the visualization map. Use local static images stored in the Vis. graphics tab, or remote web pages (e.g., a URL with dynamic content). Open the Image tab of the Plan editor to configure an image.

Images are only viable in the PC/Tablet Visualization view.

9.9.1 Parameters

Plan editor with activated Image tab

Image source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Select an image previously added to Vis graphics → Images / Backgrounds.</td>
</tr>
<tr>
<td>Remote</td>
<td>Select the source URL of the image (http://...). This option is useful for</td>
</tr>
<tr>
<td></td>
<td>example to grab dynamic weather forecast images.</td>
</tr>
</tbody>
</table>

Image size

- After the image has been added to the plan, resize it directly on the visualization map by dragging either the nodes on the borders (stretch) or the nodes on the corners (keep ratio).
- It is possible to specify the image size by entering numbers.
- Restore the image to its original size by clicking the Restore button on the bottom of the Image tab.

External link (optional)

Enter a URL to open an external web page (e.g., http://www.mywebpage.com) when the image is clicked/pressed.

9.10 Objects

In a visualization, Objects are used to control or monitor different functions. Depending on the applications and the function, different Control types and parameters can be set.

To configure a control type, open the Object tab of the Plan editor.

Path: Visualization tab → Structure → Plan editor → Object tab.
Steps
① Select an object in the Object tab of the plan editor.
② Click the Visualization parameters button:
 - Select the control type, additional parameters and then save.
 - These parameters can also be edited in the Objects list (see Edit and test objects on page 47).
③ Select other parameters in the Objects tab of the plan editor.
④ Add the configured object to the plan with the Add to plan button.
⑤ Check the function:
 - On the plan it allows sending of values.
 - Complex control types like the Circular slider are not visible until the plan is reloaded. Click the Save and reload plan button on the plan editor.
 - On the PC/Tablet Visualization and the Smartphone Visualization, check the final functions of the element. Open the visualizations from the start page.

After changing the settings, refresh the browser to see the changes in the visualization. Refresh via the browser menu or use the keyboard short cuts [Ctrl] + [N] or [Ctrl] + [F5].

To use names (tags) instead of values, add and edit levels in the Objects list (see Edit and test objects on page 47). In the case of the shutter/blind, for example, add levels for additional control functions and optionally use the Tag map (see Add new tags on page 53).

9.10.1 Overview of control types
Different control types are available, depending on the application.

<table>
<thead>
<tr>
<th>Application/Description</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-127 Lighting and related</td>
<td>Circular slider (PC/Tablet):</td>
</tr>
<tr>
<td>228 Measurement</td>
<td>On/Off button</td>
</tr>
<tr>
<td>250 User parameter values</td>
<td>Nudge/Steps: −, +</td>
</tr>
<tr>
<td></td>
<td>Value or name (tag) for levels is displayed</td>
</tr>
<tr>
<td></td>
<td>Circular slider opens via click on icon</td>
</tr>
</tbody>
</table>

Circular slider (Smartphone):
<table>
<thead>
<tr>
<th>Application/Description</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-127 Lighting and related</td>
<td>Slider (PC/Tablet):</td>
</tr>
<tr>
<td>228 Measurement</td>
<td></td>
</tr>
</tbody>
</table>
| 250 User parameter values | Vertical or horizontal slider
 Nudge/Steps: – and + |
| 48-127 Lighting and related | Slider (Smartphone): |
| 250 User parameter boolean | ![Slider](image) |
| Value or name (tag) for level is displayed | Vertical or horizontal slider
 Nudge/Steps: – and + |
| 48-127 Lighting and related | Toggle (PC/Tablet): |
| 250 User parameter boolean | ![Toggle](image) |
| Value or name (tag) for level is displayed | Custom name
 Value or name (tag) for level is displayed |
| 48-127 Lighting and related | Doorbell (PC/Tablet): |
| 250 User parameter boolean | ![Doorbell](image) |
| Value or name (tag) for level is displayed | Custom name
 Value or name (tag) for level is displayed |
| 48-127 Lighting and related | Doorbell (Smartphone): |
| 250 User parameter boolean | ![Doorbell](image) |
| Value or name (tag) for level is displayed | Custom name
 Value or name (tag) for level is displayed |
| 48-127 Lighting and related | Pre-Set (PC/Tablet): |
| 250 User parameter boolean | ![Pre-Set](image) |
| Value or name (tag) for level is displayed | Custom name
 Value or name (tag) for level is displayed |
| 48-127 Lighting and related | Pre-Set (Smartphone): |
| 250 User parameter boolean | ![Pre-Set](image) |
| Value or name (tag) for level is displayed | Custom name
 Value or name (tag) for level is displayed |
Application/Description

<table>
<thead>
<tr>
<th>48-127 Lighting and related</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutter/Blind (PC/Tablet):</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>• Sends a value when button is pressed (level)</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>• 3 levels are pre-set (level translation mode):</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>- Close (0)</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>- Stop (5)</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>- Open (255)</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>• Additional levels can be added to reach positions (e.g. 128 = Half)</td>
<td>![Shutter/Blind]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48-127 Lighting and related</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutter/Blind (Smartphone):</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>• Custom name</td>
<td>![Shutter/Blind]</td>
</tr>
<tr>
<td>• List with levels opens when button is pressed</td>
<td>![Shutter/Blind]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48-127 Lighting and related</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle/Fan (PC/Tablet):</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>• Sends next value when + or – button is pressed</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>• Cycle:</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>- max. to min. level</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>- min. to max. level</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>• Levels: names and values must be set</td>
<td>![Cycle/Fan]</td>
</tr>
<tr>
<td>• Actual level is displayed</td>
<td>![Cycle/Fan]</td>
</tr>
</tbody>
</table>

Cycle/Fan (Smartphone):	![Cycle/Fan]
• Custom name	![Cycle/Fan]
• Sends next value when + or – button is pressed	![Cycle/Fan]
• Actual level is displayed	![Cycle/Fan]

<table>
<thead>
<tr>
<th>202 Trigger Control (Set scenes)</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger select (PC/Tablet):</td>
<td>![Trigger select]</td>
</tr>
<tr>
<td>• Sends a value when button is pressed (action selector)</td>
<td>![Trigger select]</td>
</tr>
<tr>
<td>• Levels: can be edited in the Visualization tab or Scenes tab</td>
<td>![Trigger select]</td>
</tr>
<tr>
<td>• Actual level is displayed</td>
<td>![Trigger select]</td>
</tr>
</tbody>
</table>

<p>| Trigger select (Smartphone): | ![Trigger select] |
| • Custom name | ![Trigger select] |
| • Sends a value when button is pressed | ![Trigger select] |
| • Actual level is displayed | ![Trigger select] |</p>
<table>
<thead>
<tr>
<th>Application/Description</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>228 Measurement</td>
<td>Direct input/Step +/− (PC/Tablet):</td>
</tr>
<tr>
<td>250 User parameter values</td>
<td>![Image]</td>
</tr>
<tr>
<td>• Sends next value when + or – button is pressed</td>
<td></td>
</tr>
<tr>
<td>• Direct input</td>
<td></td>
</tr>
<tr>
<td>• Decimal places</td>
<td></td>
</tr>
<tr>
<td>• Nudge/steps: step width</td>
<td></td>
</tr>
<tr>
<td>• Min. and max. value</td>
<td></td>
</tr>
<tr>
<td>• Custom name</td>
<td></td>
</tr>
<tr>
<td>• Sends next value, when + or – button is pressed</td>
<td></td>
</tr>
<tr>
<td>• Direct input</td>
<td></td>
</tr>
</tbody>
</table>

9.10.2 Visualization parameters and control type

Control types are described in Overview of control types on page 85.

Access the visualization parameters in two ways:

- Click the Visualization parameters button in the Object tab of the plan editor.
- Click the Vis. parameters button in the Objects list (see Edit and test objects on page 47).

When starting in the Object tab of the plan editor, select an object there first and then go to Visualization parameters and select the Control type.

Circular slider and Shutter/Blind control types are explained below.

9.10.3 Circular slider

Example

<table>
<thead>
<tr>
<th>Application/Description</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-127 Lighting/Lighting like</td>
<td>Slider (PC/Tablet):</td>
</tr>
<tr>
<td></td>
<td>![Image]</td>
</tr>
<tr>
<td>• Vertical or horizontal slider</td>
<td></td>
</tr>
<tr>
<td>• Nudge/Steps: – and +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>![Image]</td>
</tr>
<tr>
<td>• Circular slider opens via click on icon</td>
<td></td>
</tr>
</tbody>
</table>

Direct input/Step +/− (Smartphone):
Visualization parameters

<table>
<thead>
<tr>
<th>Control type</th>
<th>Circular slider</th>
</tr>
</thead>
</table>
| Value display | • Percentage (0-100)
| | • Level (0-255)
| | • Tags |
| | In the example, Tags is selected. The levels are set in the Objects list of the Levels column. |
| | Path: Configurator → Objects tab → Objects list. |

Ramp rate

Set the time to reach the value (from 0 to 255):

- Minimum: 0 s (instantaneous)
- Maximum: 15 min.

<table>
<thead>
<tr>
<th>Minimum value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: 25 = Dimming starts at 10%.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum value</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: 230 = Dimming stops at 90%.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nudge/step value</th>
<th>Step width for control: 1-255 (e.g. 25 = steps in 10%).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Slider colour</th>
<th>Select a colour for the slider.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Background colour</th>
<th>Select (pre-set: no colour).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Round line cap</th>
<th>Use a rounded shape at the beginning and end of the circle line.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hide title</th>
<th>Do not display the default or custom name.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hide nudge buttons</th>
<th>Disable the step + and – buttons.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Line thickness</th>
<th>Select the line thickness.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Select the control size.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Custom On/Off label</th>
<th>Change the text displayed for the On/Off button in the centre of the controller.</th>
</tr>
</thead>
</table>

When all parameters are selected, press the Save button. Now set the parameters in the Object tab of the plan editor (see Object element parameters on page 91).
9.10.4 Shutter/Blind

Example

<table>
<thead>
<tr>
<th>Application/Description</th>
<th>Control type</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-95 Lighting/Lighting like</td>
<td>Shutter/Blind (PC/Tablet):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Percentage (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level (0-255)</td>
</tr>
<tr>
<td></td>
<td>Tags</td>
</tr>
</tbody>
</table>

Tags must be selected. Set the levels in the **Objects** list of the **Levels** column. The levels **Close** (0), **Stop** (5) and **Open** (255) are pre-set. These values are used in the level translation mode. Each level triggers a command.

For added convenience, set additional position values (levels) in the range 3% to 97% (7-247).

In the example, the pre-set values and 2 additional levels are set in the **Objects** list of the **Levels** column.

Path: **Configurator → Objects** tab → **Objects**

<table>
<thead>
<tr>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object values: 0</td>
</tr>
<tr>
<td>Object values: 5</td>
</tr>
<tr>
<td>Object values: 64</td>
</tr>
<tr>
<td>Object values: 128</td>
</tr>
<tr>
<td>Object values: 255</td>
</tr>
</tbody>
</table>

Show icons in PC/Tablet

Icons can be displayed instead of names. Add icons in the **Object** tab of the plan editor, using the **Additional icons** button.

Path: **Configurator → Visualization** tab → **Plan editor → Object** tab.

9.10.5 Global and local parameters

By default, use global visualization parameters for each object. If using several elements to control an object, use local visualization parameters.
Initially, global and local parameters are the same. Change the local parameters, for example, to use one button for dimming with a slider and another to switch on and off with a toggle button. In this case, select different control types in the local parameters of each object element.

Access global and local parameters via the Visualization parameters button in the plan editor Object tab.

Local parameters cannot be set in the Objects list.

9.10.6 Object element parameters

Configure object elements in the Object tab of the plan editor.

After selecting an object, open the Visualization parameters and select the Control type. Now select the object’s element parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Select object from the drop down list.</td>
</tr>
<tr>
<td>Visualization parameters</td>
<td>Click this button and select the Control type and other parameters, then save. Then continue setting the following parameters.</td>
</tr>
<tr>
<td>Custom name</td>
<td>A unique name for the object. Custom name is used for some control types and for the Smartphone Visualization.</td>
</tr>
<tr>
<td>Read only</td>
<td>Select this option to only monitor, not control, values.</td>
</tr>
<tr>
<td>Hide in smartphone</td>
<td>Select object is not visible in Smartphone Visualization.</td>
</tr>
<tr>
<td>Hide background</td>
<td>Show icon without background.</td>
</tr>
<tr>
<td>Pin code</td>
<td>Add a PIN to protect the object element value. Once set, the PIN is required whenever an attempt is made to change the value.</td>
</tr>
<tr>
<td>Widget</td>
<td>Assign a Widget that opens when the element is pressed. The widget must first be created so that it appears in the list. A widget cannot be tested in the editor mode, only in PC/Tablet Visualization.</td>
</tr>
</tbody>
</table>
| Display mode | Display mode refers to the first level of visualization. The options include:
 • Icon and value
 • Icon only
 • Value only.
 Additional elements can be opened for the control. See Overview of control types on page 85. |
| Default icon | The icon which is displayed when no other icon is assigned to the actual value (See Additional icons below). For same control types, set an On icon and an Off icon. |
| Smartphone icon | (Optional) If different icons are required between the PC/Tablet and Smartphone visualizations, use this parameter to set a different icon for the
 Smartphone visualization. |
| Font size | Affects the font size of the value display. |
| Text style | Affects the text style (e.g. bold, italic) of the value display. |
| Show value background | A solid background is displayed behind the value. |
| Show control (Inline in PC/Tablet) | Shows the control element instead of the icon button. (PC/Tablet only.) |
Additional icons

Shows different icons, depending on the current value. For each new icon, define a minimum and a maximum value.

In operation, if the object value does not fall within the range of any of the additional icons, the default icon is displayed.

9.11 Gauge

Use a gauge to display values. The gauge is typically used to display measured values such as temperature, brightness or energy.

A gauge is only visible in *PC/Tablet Visualization view*.

To configure a gauge, open the **Gauge** tab of the **Plan editor**.

9.11.1 Parameters

Plan editor with activated Gauge tab

![Plan editor with activated Gauge tab](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data object</td>
<td>Select a C-Bus object. A typical application is measurement (228).</td>
</tr>
<tr>
<td>Gauge size</td>
<td>Minimum size is 100, maximum size is 500.</td>
</tr>
<tr>
<td>Custom name</td>
<td>The name to display in the gauge (e.g. Temp. office).</td>
</tr>
<tr>
<td>Read only</td>
<td>Enabled: The value is displayed but cannot be changed. Disabled: The value can be changed by clicking/pressing the gauge.</td>
</tr>
<tr>
<td>Visualization parameters</td>
<td>Click the Visualization parameter button to open the visualization parameters (see Objects on page 84). Define Global Parameters for an object or Local parameters for an element. (The local parameters are only applied to the configured gauge.)</td>
</tr>
</tbody>
</table>

"92 | LSS5500NAC | LSS5500SHAC"
9.12 Frame

Use a frame to display internal or external web pages in the visualization. Schedulers and Trend logs can be shown in a frame on a visualization page. To configure a frame, open the Frame tab of the Plan editor.

9.12.1 Parameters

Plan editor with activated Frame tab

Source
- URL = http://...
- Scheduler
- Trend logs

Frame size
- The width and height of the frame

Refresh interval
- The rate at which element values are updated. The refresh interval options are 0, or a setting between 1 s and 3600 s.

- Frames do not display well in Smartphone Visualization view and should be hidden in this visualization.
- Stretch the frame to maximum width if Scheduler or Trend is used. The recommended minimum width is 1024.
- Not all web pages work correctly in frames. Test external web pages within frames using the PC/Tablet Visualization view.
9.13 Graph

A graph shows current and previous monitored values in the PC/Tablet Visualization view, e.g. logged temperature values. To configure a graph, open the Graph tab of the Plan editor.

Logging must be enabled on the Objects tab for the application being used.

9.13.1 Parameters

Plan editor with activated Graph tab

<table>
<thead>
<tr>
<th>Data object</th>
<th>Select an object. A typical application is measurement (228).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom name</td>
<td>The name which is displayed as the graph title (e.g. Temperature graph).</td>
</tr>
<tr>
<td>Icon</td>
<td>Select an icon for the button that opens the graph.</td>
</tr>
<tr>
<td>Window size</td>
<td>The width and height of the graph.</td>
</tr>
<tr>
<td>Number of points</td>
<td>Number of data points to show in the graph (5-200).</td>
</tr>
<tr>
<td>Auto open window</td>
<td>Select this option to open the graph window automatically when the plan opens.</td>
</tr>
<tr>
<td>Auto-follow value</td>
<td>Select this option to improve graph resolution for objects which never reach zero value (e.g. CO₂ level).</td>
</tr>
<tr>
<td>Hide background</td>
<td>Select this option to make the background of the icon transparent.</td>
</tr>
</tbody>
</table>
• Graphs are not visible in the Smartphone Visualization view.

• Use a gauge to show an actual measured value (see Gauge on page 92 and Link on page 81) and then configure the gauge to open the graph when clicked. To set this up, do the following:
 1. Create and save an empty SVG file.
 2. Add the empty SVG file to the Images/Backgrounds tab in the Vis. graphics tabs.
 3. Select the empty SVG file as Icon (Parameter of the Graph).
 4. Activate the check box Hide background (Parameter of the Graph).
 5. Click the Add to plan button to get the icon on the Visualization map (Parameter of the Graph).
 6. Position the icon (empty SVG) over the gauge and adapt the size of the icon to the gauge (Visualization map).

9.14 Camera

The video stream of an IP camera can be displayed on a visualization page.

• Only cameras which support HTTP MJPEG streaming in a web browser can be visualised. The Automation Controller redirects the stream from the camera to the browser.

• If the camera is external to the Automation Controller network, the IP of the camera needs to be port-forwarded through the router. When adding the external camera, use the IP with the correct port (IP:port).

• If using Smartphone Visualization, check the plan in this view and adapt the window size.

9.14.1 Parameters

Plan editor with activated Camera tab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source url</td>
<td>The source address of the video stream.</td>
</tr>
<tr>
<td>Window size</td>
<td>The width and height of the camera view window.</td>
</tr>
<tr>
<td>Custom name</td>
<td>A unique name for the camera view.</td>
</tr>
<tr>
<td>Auto open window</td>
<td>Select this option to open the camera view automatically when the Plan opens.</td>
</tr>
<tr>
<td>Hide background</td>
<td>Make the background of the icon transparent.</td>
</tr>
</tbody>
</table>

Source url: http://192.168.100.120/axis-cgi
10 User access

Add users with individual access rights. By default, users can access the following modules from the start page:

- PC/Tablet Visualization
- Smartphone Visualization
- Scheduler
- Trends.

Access can be partially or fully given, or denied, for each module. Partial access allows individual selection of pages. Access can be given or denied for each visualization page, scheduler and trend.

The Network Automation Controller is designed for a maximum of 50 users for visualization. This limit is not physical but dependent on maximum CPU load.

The Wiser for C-Bus Automation Controller is limited to a maximum of 8 users.

User access settings provide different levels of protection:

- **Unrestricted access**: All users are given access to all pages without restrictions.
- **Common restricted access**: All users are given access to all pages via a common PIN.
- **Individual restricted access**: Access to visualization, scheduler and trend logs is controlled via individual user login and password so that access can be defined for each user.

Access can be given to the start page or directly to one of the modules:

- PC/Tablet Visualization
- Smartphone Visualization
- Scheduler
- Trends.

Access to the configuration is defined under **Admin access** ([See Access to the Controller on page 26](#)). The default address is: http://192.168.0.10/scada-main.
10.1 Add and edit user

To add a user, click the *Add new user* button in the *User access* tab.

The user window is displayed:

User parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>User name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Length 2 to 20 characters, accepted characters: _.-_, a-z, A-Z, 0-9.</td>
</tr>
<tr>
<td>Password</td>
<td>Length: 8 to 20 characters. Any character accepted.</td>
</tr>
</tbody>
</table>
For each module, access can be partially or fully given, or denied:

- None
- Partial
- Full.

If partial is selected, access to visualization, scheduler and trend pages can be individually configured.

The following example shows a configuration with access to 3 pages of the visualization for the specific user:

<table>
<thead>
<tr>
<th>Visualization/Schedulers/Trend access</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each module, access can be partially or fully given, or denied:</td>
</tr>
<tr>
<td>• None</td>
</tr>
<tr>
<td>• Partial</td>
</tr>
<tr>
<td>• Full.</td>
</tr>
<tr>
<td>If partial is selected, access to visualization, scheduler and trend pages can be individually configured.</td>
</tr>
</tbody>
</table>

This parameter depends on selected Default homepage in the User access Settings (see User access settings on page 98).

If the Start page is selected in the user access settings, the start page is the homepage for all users. From the start page, the users get access to the other modules as configured.

If another page is selected in the user access settings, an individual homepage can be selected for each user. If a user should get access to different modules, select the Start page:

- Start page
- PC/Tablet visualization
- Smartphone
- Schedulers
- Trend logs.

10.2 User access settings

User access settings are applied for all users.

Click the User access settings button in the User access tab.

<table>
<thead>
<tr>
<th>Disable password for visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the password is disabled, full access to visualization, schedulers and trends is given to everyone. A logout is not required. The user settings are not applied (see Add and edit user on page 97). If the Visualization pin code is set, this common code is required to access visualization, schedulers and trends.</td>
</tr>
<tr>
<td>• If the password is enabled, a login is required and the user settings are applied (see Add and edit user on page 97).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default homepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the Default homepage is set to Start page, this page is the home page for all users.</td>
</tr>
<tr>
<td>If the Default homepage is set to another page and a password for visualization is required, the homepage depends on the user settings (see Add and edit user on page 97).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visualization pin code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access can be protected with a common PIN code (3 to 8 digits). The PIN code remains valid until the browser is closed.</td>
</tr>
</tbody>
</table>
Direct access via browser address

<table>
<thead>
<tr>
<th>Page/Module</th>
<th>Address (with default IP address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/Tablet Visualization</td>
<td>http://192.168.0.10/scada-vis</td>
</tr>
<tr>
<td>Smartphone/Visualization</td>
<td>http://192.168.0.10/scada-vis/touch</td>
</tr>
<tr>
<td>Scheduler</td>
<td>http://192.168.0.10/scada-vis/schedulers</td>
</tr>
<tr>
<td>Trends</td>
<td>http://192.168.0.10/scada-vis/trends</td>
</tr>
<tr>
<td>Start page</td>
<td>http://192.168.0.10/home</td>
</tr>
<tr>
<td>Configurator</td>
<td>http://192.168.0.10/scada-main</td>
</tr>
</tbody>
</table>

Direct access is also protected with the login and password.
11 Scripting

A script is a small, non-compiled program, written in the scripting language LUA. LUA is a general scripting language used in many products/computers. A reference manual is available for purchase at www.lua.org

Scripting can be used for wide ranging of functions. Examples of general commands are:

- If-elseif-else-then
- While
- Repeat and for loops
- Math functions
- Compare functions
- Logic functions
- I/O functions.

LUA can also be used for special functions, such as:

- Calculate sunrise/sunset
- Send e-mail
- Control of RS-232
- Control of Modbus.

Logic functions that can an be created with C-Bus products can also be created with LUA scripts, and much more.

11.1 Prepare a script

When creating a new script, first decide how the script will be triggered (started). Then choose a script type in the **Scripting** tab.

The following script types are available:

- **Event-based scripts:**
 - Scripts are triggered when the associated *Objects* are updated. The composed *Group Address* of an application or a *Keyword* can be used. With a keyword, a script can be updated by all objects assigned to the keyword.
 - Event-based scripts are the most commonly used.

- **Resident scripts** are triggered according to specified cycle time in seconds (0-60 s).

- **Scheduled scripts:**
 - Scripts are triggered according to specified time and/or date.
 - Scripts can be triggered by the specific minute, hour, day of the week, day of the month and month of the year.
 - Scripts can be triggered more frequently, such as every x minutes/hours/days.

- **Start up scripts** are triggered every time the system starts (power up, reboot or hardware reset).
11.1.1 Steps to prepare a script

1. Open the Scripting tab. (Path: Configurator → Scripting)
2. Select the type of script with one of the following buttons:
 - Event-based
 - Resident
 - Scheduled
 - Start-up (init) script.
3. Press the Add new script button at the bottom of the Scripting list, edit the parameters and save. A new line in the in scripting list is displayed.
4. Start editing the script. Click the icon in the Editor column of the scripting list.

If the script editor is already open, event-based scripts can also be opened from the Objects list.

11.1.2 Parameters for event-based scripts

Event-based scripts are triggered (started) when the associated Objects are updated. The composed Group Address of an application (see Add new objects on page 42) or a Keyword can be used. See Additional parameters for all applications on page 47.

Click the Event-based button and set the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script name</td>
<td>The name to display in the scripting list.</td>
</tr>
<tr>
<td>Group address/keyword</td>
<td>Group addresses or Keywords can be entered manually or selected from the drop-down list. All composed Group addresses from the Objects list are displayed. Keywords already assigned to the objects are also displayed.</td>
</tr>
<tr>
<td>Active</td>
<td>When Active is selected, the script is enabled. Otherwise, the script is disabled. This parameter can also be set from the scripting list.</td>
</tr>
<tr>
<td>Category</td>
<td>An optional name that can be used to group scripts in the Scripting list and the Print script listing (Scripting tab → Tools button).</td>
</tr>
<tr>
<td>Description</td>
<td>Optional.</td>
</tr>
</tbody>
</table>

To edit the new script, click the corresponding icon in the Editor column of the scripting list.

11.1.3 Parameters for resident scripts

Resident scripts are triggered according to a specified cycle time in seconds (0–60 s). Click the Resident button and set the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script name</td>
<td>The name to display in the scripting list.</td>
</tr>
<tr>
<td>Sleep interval</td>
<td>Interval (0–60 s) after which the script will be executed.</td>
</tr>
<tr>
<td>Active</td>
<td>When Active is selected, the script is enabled. Otherwise, the script is disabled. This parameter can also be set from the scripting list.</td>
</tr>
<tr>
<td>Category</td>
<td>An optional name that can be used to group scripts in the Scripting list and the Print script listing (Scripting tab → Tools button).</td>
</tr>
<tr>
<td>Description</td>
<td>Optional.</td>
</tr>
</tbody>
</table>

To edit the new script in the list press the script icon in the Editor column.

Avoid using a short sleep interval, especially 0. Resident scripts with sleep interval 0 have a high impact on the CPU load.
11.1.4 Parameters for scheduled scripts

Click the Scheduled button and set the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script name</td>
<td>The name to display in the scripting list.</td>
</tr>
<tr>
<td>Minute/Hour/Day of the month</td>
<td>Uses the cron format for date/time parameters. Lookup Help for more information about the date/time format. Example values for minutes:</td>
</tr>
<tr>
<td>Value</td>
<td>Execute</td>
</tr>
<tr>
<td>*</td>
<td>Every minute</td>
</tr>
<tr>
<td>*/20</td>
<td>Every 20 minutes</td>
</tr>
<tr>
<td>20</td>
<td>When the minute is 20</td>
</tr>
<tr>
<td>1-10</td>
<td>Every minute from 1 to 10 (inclusive)</td>
</tr>
<tr>
<td>15,50-51</td>
<td>When the minute is 15, 50 and 51.</td>
</tr>
<tr>
<td>Month of the year</td>
<td>(Optional) Select the check box if required.</td>
</tr>
<tr>
<td>Day of the week</td>
<td>(Optional) Select the check box if required.</td>
</tr>
<tr>
<td>Active</td>
<td>When Active is selected, the script is enabled. Otherwise, the script is disabled. This parameter can also be set from the scripting list.</td>
</tr>
<tr>
<td>Category</td>
<td>An optional name that can be used to group scripts in the Scripting list and the Print script listing (Scripting tab → Tools button).</td>
</tr>
<tr>
<td>Description</td>
<td>Optional.</td>
</tr>
</tbody>
</table>

To edit the new script in the list press the script icon in the Editor column.

11.1.5 Start up script

The start up script runs each time the system starts (e.g. power up, reboot or hardware reset). There are no parameters to edit for the start up script.

Click the Start up (init) script button to open the script editor.

If the script editor is already open, open the start up script for editing via the Scripts tab on the left side of the editor.

Example

In this example, the start up script is configured to wait for C-Bus to come online and then switch a floor light on at full brightness (level 255) immediately after the system starts (or is restarted). The composed group address of the light is: (0/56/3).

```
1 -- init script (comment)
2 WaitForCBusStatus (nil)
3 SetCBusLevel(0, 56, 3, 255, 0)
```

Backup and restore

Backup and restore the start up script (see Backup and restore libraries on page 109).

Path: Configurator → Scripting tab → User libraries button.

11.2 Script editor

Existing event-based, resident and scheduled scripts are located in the corresponding Script list (see Prepare a script on page 100). Click the corresponding Script icon in the list to open the script editor. The editor opens directly when the Start-up (init) script button is pressed.
Path: Configurator → Scripting tab → Event-based, Resident or Scheduled key → Script list.

Event-based scripts also open when the script icon is clicked in the Event script column of the Objects list.

11.2.1 Editor

The editor panel is displayed in the centre of the script editor (see B in the next screenshot). Here, type script commands in line by line. The left and right panels of the script editor display features to support script editing.

Example

The following screenshot shows the editor with the short event-based script.

```
1 tempoffice = event.getvalue()
2 -- Measured temperature
3 if (tempoffice > 30) then
4    SetCBusLevel(0, 56, l, 255, 0)
5    -- Control light (0/56/1) - On
6 else
7    SetCBusLevel(0, 56, l, 0, 0)
8    -- Control light (0/56/1) - Off
9 end
```

This event-based script is triggered when a temperature value is sent. The script causes a control light to be switched on when the measured temperature is higher than 30 °C. In this script, four different functions are used.

<table>
<thead>
<tr>
<th>Line</th>
<th>Functions</th>
<th>Description</th>
<th>Helpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>event. getvalue()</td>
<td>The variable gets the temperature value of a C-Bus application, in this case a measurement application with the composed group address (0/228/4/1).</td>
<td>Objects → Get event value</td>
</tr>
<tr>
<td>3, 6, 9</td>
<td>if-then-else-end</td>
<td>Conditional function that includes actions when the condition is true and other actions when the condition is not true.</td>
<td>Conditionals → If - Then - Else</td>
</tr>
<tr>
<td>4, 7</td>
<td>setCBus(net, app, group, value, ramp rate)</td>
<td>Sends a level command at a given ramp rate for the network, application and group. In this example, the values 0 and 255 are sent with the composed group address (0/56/1) found on the right side of the editor C. This composed group address (0/56/1) must be adapted to the syntax of the SetCBusLevel command: 0, 56, l, x, 0</td>
<td>C-Bus → Set C-bus level</td>
</tr>
<tr>
<td>2, 5, 8</td>
<td>-- (2x dash)</td>
<td>Comment line</td>
<td></td>
</tr>
</tbody>
</table>

In this example, the Helpers tab A can be used to click a function and add it to the editor. The variable parts of the script can then be replaced. For example, in line 3 of the script, (condition) is replaced with (tempoffice > 30).
Helpers

The **Helpers** tab contains predefined code snippets. Comment lines are included in the snippets to help edit the code. Click a Helper snippet to add the code to the Editor.

<table>
<thead>
<tr>
<th>Helper</th>
<th>Subfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditionals</td>
<td>If -Then, If (AND) -Then, If (OR) - Then
If - Then - Else
If - Else If</td>
</tr>
<tr>
<td>Loops and Iteration</td>
<td>Hashtable iteration, Array iteration
Numeric for loop, While loop, Repeat .. Until loop</td>
</tr>
<tr>
<td>Maths</td>
<td>Absolute value
Ceiling, Floor
Round to integer, Random value</td>
</tr>
<tr>
<td>Objects</td>
<td>Get event value (used for event-based scripts)</td>
</tr>
<tr>
<td>Storage</td>
<td>Get data from storage
Save data to storage</td>
</tr>
<tr>
<td>Script Control</td>
<td>Enable, Disable script
Get script status</td>
</tr>
<tr>
<td>Alerts and Logs</td>
<td>Alert, Formatted Alert, (appear in Alerts tab)
Log variables (appear in Log tab)</td>
</tr>
<tr>
<td>Time functions</td>
<td>Delay script execution</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Send an email
Sunrise/sunset, Convert sunrise/sunset to readable</td>
</tr>
<tr>
<td>Serial</td>
<td>Communication via RS-232 or RS-485
Open connection, Close connection
Write to port, Blocking read, Timeout read</td>
</tr>
<tr>
<td>Modbus</td>
<td>Create Modbus TCP object, Create Modbus RTU object
Open Modbus TCP connection, Open Modbus RTU connection
Close connection
Set slave address
Read ..., (single/multiple coils, discrete input, registers, input registers)
Write ..., (single bit, multiple bits, single registers, multiple registers)</td>
</tr>
<tr>
<td>C-Bus</td>
<td>Convert ... tag to address (network, application, group, level)
Convert ... address to tag (network, application, group, level)
Convert a set of network, application, group to tags
Convert a set of network, application, group to addresses
Convert ... to ... (percentage, level)
Get C-Bus ..., Set C-Bus ..., (level, state, ramp rate, target level)
Get C-Bus ..., Set C-Bus ..., (object by keyword, measurement value)
Get lighting ..., Set lighting ..., (state, level)
Get enable ..., Set enable ..., (state, level)
Get trigger level, Set trigger level
Set state of (C-Bus remote on, C-Bus remote on)
Get C-Bus (language, unit address, status)
Set ... label (C-Bus label, Unicode C-Bus label)
Get scene ..., (ID, name, level, setting)
Get unit parameter ... (age, status)
Wait for C-Bus status</td>
</tr>
<tr>
<td>User parameter</td>
<td>Get user parameter, Set user parameter</td>
</tr>
<tr>
<td>IO</td>
<td>Read digital ... (input, input range, input text representation)
Set relay state, Get relay state
Set LED mode, Set LED state, Toggle LED state</td>
</tr>
</tbody>
</table>
11.2.2 Lists

The right panel of the editor displays list boxes with preconfigured objects, storage values and scripts.

<table>
<thead>
<tr>
<th>List</th>
<th>Examples of copy</th>
<th>Examples of usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group addresses</td>
<td>'0/56/1'</td>
<td>value = GetCBusState(0, 56, 1)</td>
</tr>
<tr>
<td>Objects by name</td>
<td>'Local/Light/Kitchen'</td>
<td>grp_number = GetCBusGroupAddress(0, 56, 'Kitchen')</td>
</tr>
<tr>
<td>Keywords</td>
<td>'lights_office'</td>
<td>value = GetCBusByKW({'lights_office'}, 'or')</td>
</tr>
<tr>
<td>Storage</td>
<td>'light1_On'</td>
<td>data = storage.get('light1_On')</td>
</tr>
<tr>
<td>Scripts</td>
<td>'Office temp'</td>
<td>script.enable('Office temp')</td>
</tr>
</tbody>
</table>

11.2.3 Find and replace

To search code in a script, replace code and enter code from the topic. For each of these functions, use keyboard shortcuts. Before starting, click a line of the script in the editor to place the text cursor.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Result</th>
<th>Next steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ctrl] + [F]</td>
<td>Box for search opens</td>
<td>Enter code and press [Enter]</td>
</tr>
<tr>
<td></td>
<td>Code is highlighted in yellow</td>
<td></td>
</tr>
<tr>
<td>[Ctrl] + [G]</td>
<td>Shows next highlighted code</td>
<td></td>
</tr>
<tr>
<td>[Shift] + [Ctrl] + [G]</td>
<td>Shows previous highlighted code</td>
<td></td>
</tr>
<tr>
<td>[Shift] + [Ctrl] + [F]</td>
<td>Box for replace opens</td>
<td>Enter code "replace" and press [Enter]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter code "with" and press [Enter]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select: Yes, No, All, Stop</td>
</tr>
<tr>
<td>[Ctrl] + [Space]</td>
<td>List with commands and functions opens</td>
<td>Select in the list and press [Enter] or Enter first letter, select in list and press [Enter]</td>
</tr>
</tbody>
</table>

For more help, use functions and commands from the Helpers tab or the Select Topic list (see Editor on page 103).

11.2.4 Logs for testing

Use logs for testing and debugging a script. The log command converts variables to human readable form and stores them. In the Helpers list, access log variables via Alerts and logs → Log variables.

Function

log(var1, var2, var3, ...)

The function accepts variables of the following data types.

<table>
<thead>
<tr>
<th>Type of variable</th>
<th>Variable</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>var1 =true</td>
<td>boolean: true</td>
</tr>
<tr>
<td>Number</td>
<td>var2 =255</td>
<td>number: 255</td>
</tr>
<tr>
<td>String</td>
<td>var3 = 'text'</td>
<td>string: text</td>
</tr>
<tr>
<td>Not found/valid</td>
<td>var4 not defined</td>
<td>nil</td>
</tr>
</tbody>
</table>

A table can be defined with up to 5 nested levels.

var1 = {f1 =var4, t2= var5, ...}
Example of table	**Example of message**
```
var1 ={f1 =var4, t2= var5}
table: [f1]: number: 25 [f2]: boolean: false
```

The logging messages are listed in the **Logs** tab of the **Configurator** page. When editing a script, open the current logs immediately with the **Logs** button.

Example of a script with logging
```
1. tempoffice = event.getvalue()
2. - Get measured temperature
3. if (tempoffice > 30) then
4.   SetBusLevel(0, 56, 1, 255, 0)
5.   -- Control light (0/56/1) = On
6. else
7.   SetBusLevel(0, 56, 1, 0, 0)
8.   -- Control light (0/56/1) = Off
9. end
10. - Logging
11. Ctrl_light = GetBusLevel('Local','Lighting','Control light')
12. log(tempoffice, Ctrl_light)
```

Example of logs opened in the script editor

Options
- Automatically scroll content when new logs appear
- Show logs only for current script
- Clear logs (button).

11.2.5 Error logs

Error logs are displayed in the **Error log** tab of the **Configurator** page. Error messages are generated by the system. Errors can be detected in scripts or in the configuration (see **Error logs on page 36**).

Example script

A lighting channel (local network/Lights 1/room 99) does not respond, e.g. the address **Room 99** does not exist in **Objects list** or **Tag map**.

```
Error log 09.02.2017 00:33:57
Library cbuslogic:143: Unable to find group tag 'Room 99'
stack traceback:
[1]: In function 'error'
Library cbuslogic:143: in function 'CBusLookupTags'
Library cbuslogic:2542: in function 'GetBusLightData'
Library cbuslogic:2556: In function 'GetBusLevel'
```

When editing a script, open error logs by clicking the **Error log** button.
11.2.6 Finish the script

Once finished editing the script, use the following buttons at the bottom bar of the script editor.

<table>
<thead>
<tr>
<th>Button</th>
<th>Usage</th>
</tr>
</thead>
</table>
| Enabled/Disabled | Enabled: script is active and can be tested
 Disabled: script is not active |
| Run | When enabled, it allows event-based scripts to run.
 Depending on the application, send different values to trigger the script.
 Lighting
 • Target level
 • Ramp rate
 Measurement
 • Value
 • Unit. |
| Logs | Opens current logs ([see Logs for testing on page 105](#)) |
| Error logs | Opens error logs. Error messages from scripts are displayed in the Error logs tab ([see Error logs on page 36](#)). |
| Save | Save the script. |
| Save and close | Save the script and close the Editor window. |
| Close | Close the Editor window. |

11.3 Common functions

Common functions is a library of globally used functions. They can be called from any script, any time, without special inclusions. The functions *Send an e-mail* and *Sunrise/sunset calculation* are included by default.

Path: **Configurator** → **Scripting** tab → **Common functions** button.

When the script editor is open, use the **Scripts** tab in the left panel.

11.3.1 E-mail

The function *Send an e-mail* is preconfigured with this email address: example@gmail.com.

Use the e-mail function to send information related to an event. Examples include:

- Send an e-mail when the measured temperature is too high.
- For control, use a scheduled script.

To use the *Send an e-mail* function, perform the following checks and configuration:

1. The Automation Controller must be in a network with access to the Internet, e.g. access via a network router.
 - The basic network settings of the Automation Controller are explained in the chapter ([see Change IP settings of the Ethernet interface on page 28](#)).
 - Check the network connection with *Network Utilities* ([see page 144](#)).
2. An active e-mail account is mandatory together with information to connect to the SMTP server.
3. Insert the active e-mail account data into the **Common functions** script.
4. Prepare and edit an event-based script with the *Send an e-mail* function. Use a function in the **Helpers** tab: **Miscellaneous** → **Send an e-mail**.
Access via email has been tested. Be aware, however, that access configuration may be changed by email providers in the future (e.g. to enhance security standards).

Insert individual e-mail data

Edit the email function strings to include the settings for your email provider.

Common functions

```plaintext
-- user function library

function mail(to, subject, message)

-- make sure these settings are correct

local settings = {
    -- "from" field, only e-mail must be specified here
    from = 'example@gmail.com',
    -- smtp username
    user = 'example@gmail.com',
    -- smtp password
    password = 'mypassword',
    -- smtp server
    server = 'smtp.gmail.com',
    -- smtp server port
    port = 465,
    -- enable ssl, required for gmail smtp
    secure = 'sslv23',
}
```

Click the **Save** button at the bottom bar of the editor. The edited email data will be included whenever the **Send an e-mail** function in a script is used.

11.3.2 Sending an e-mail using a script

Use a function in the **Helpers** tab to include the **Send an e-mail** function in a script.

Path: **Miscellaneous → Send an e-mail**.

In the script, edit the following three strings (see lines 2, 3 and 4 in the following screenshot).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject</td>
<td>Subject of message</td>
<td>'E-Mail text'</td>
</tr>
<tr>
<td>message</td>
<td>Text of message</td>
<td>'Testing e-mail'</td>
</tr>
<tr>
<td>Destination</td>
<td>Email address of the receiver</td>
<td>'user@example.com'</td>
</tr>
</tbody>
</table>
11.3.3 Backup and restore common functions

Backup and restore common functions (see Backup and restore libraries on page 109).

Path: **Configurator → Scripting** tab → **User libraries** button.

11.4 User libraries

User libraries usually contain user defined functions that can be called from other scripts. To use functions defined in a user library, they must be included at the start of the script. For example, a user library with the name ‘test’ should be included as follows:

```
require('user.test')
```

Path: **Configurator → Scripting** tab → **User libraries** button.

11.4.1 Add and edit a library

Click the **Add new library** button in the bottom bar to prepare a new library.

The following parameters are available.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto load library</td>
<td>When selected, the script is loaded when the Automation Controller starts.</td>
</tr>
<tr>
<td>Keep source</td>
<td>By default, this parameter is enabled. Once disabled, the code is compiled and cannot be used for further editing.</td>
</tr>
</tbody>
</table>

Click the **Editor** icon in the list to open the script editor. Now edit the library script in the same way as other scripts.

From the script editor, access existing user libraries via the **Scripts** tab.

11.4.2 Backup and restore libraries

Click the **Export libraries** button to backup all **User libraries**, the **Start-up (init) script** and the **Common functions**. The backup file has the following name:

```
Libraries-Hostname-jjjj.mm.dd-hh.mm.tar
```

Click the **Restore/add libraries** button to load a backup file or a file containing new libraries.

- Existing libraries with the same name as a restored or added library are overwritten.
- It is also possible to exchange files from other Automation Controllers.
11.5 Tools

The tools offer various options for the export and import of scripts.

11.5.1 Backup and restore scripts

Backup

1. Click the Tools button and select Backup scripts.
2. (Optional) Include Common functions and the Start-up (init) script.
 The backup file has the following name:
 Scripting-Hostname- jjjj.mm.dd-hh-mm.tar

Restore

1. Click the Tools button and select Restore scripts.
2. (Optional) Remove or keep the existing scripts before a backup.

11.5.2 Print script listing

1. Click the Tools button and select Print script listings.
 A text page appears. The list is structured by categories (optional set).
2. Click with right mouse button
3. (Optional) Select from the following options:
 - Print
 - Save as
 - Show source code.

11.5.3 Edit custom Java script

This advanced function allows insertion of Java script code.

11.5.4 Show logs window

All log data are listed here (the list is a duplicate of the Logs list in the Logs tab). Use this tool to check the logged data when testing and debugging a script. Alternatively open this list from the script editor.

11.6 Alerts

System messages or user alert information from user edited scripts are displayed in the Alerts tab of the Configurator page.

In the following example, system starts and a user edited temperature alert are shown.

11.6.1 Alert command in a script

The following command stores an alert message and the current system time in the main database:

```plaintext
alert('message', var1, var2, ...)
```
Example with alert message

In this example, when a measured temperature is higher than 30 °C (e.g. 36 °C), the following message appears in the Alert list:

Temperature too high, 36 °C

Show alerts in PC/Tablet

By default, alerts appear in the Alerts tab within the configuration. They are displayed in the PC/Tablet visualization when enabled in the settings of the Visualization configuration (see page 68).

Show an alert as a message in PC/Tablet

The alert message can optionally be shown on a visualization page. Text and numeric values can be set to a string variable and set to User parameter application with data type String (255 byte):

```lua
-- Set to variable message: string, digits of variable tempval and °C
message = 'Temperature too high,'..string.format('%d',tempval)..string.format('°C')
-- Set message to user parameter (variable address: Temp_info)
SetUserParam('Local', 'Temp_info', message).
```

The user parameter can be configured for a visualization page (see Objects on page 84).
12 Inputs and Outputs

12.1 Overview

This chapter describes the configuration of the relay output, the LED driver output and the digital input. These external interfaces can be controlled via scripts. Script commands with comments are listed in the Helpers tab of the script editor (see Script editor on page 102). The following sections include examples of possible configurations.

12.1.1 Technical data

![Diagram of relay output and LED driver output](image)

- **LED Output driver**: 40 mA current limited
- **Relay output**: NO, NC, Common
 - 48 V AC/24 V DC 1 A max.
- **Digital input**: Potential-free contact (switch/relay)
 - Monitored input:
 - Impedance 2.2 kΩ (closed)
 - Impedance 6.9 kΩ (open)

12.2 Configuration of relay output

The relay output can be switched on and off via C-Bus applications. A standard use case is to switch the output via a lighting application. It is also possible to configure a 250 - User Parameter. With this application, the output can be switched via values sent from Modbus slaves or visualization pages.

Example

In this example, a Lighting application is described. The load is connected to the NO (normally open) contact. The sequence is as follows:

- A sensor in the local network (0) sends the levels 0 or 255 with the ramp rate 0 s.
- If the state of the relay is set to true, the relay is switched on:
 - The NO contact is closed
 - The NC contact is open
 - The relay LED is green.
The following script sets the relay state:

```
Event-based: Event for relay (Local/Relay/Output NO (0/58/1))
1 -- Value from the sensor
2 switchoutput = event.getvalue()
3 if (switchoutput > 0) then
4   -- Set state of the relay true: NO contact - closed
5   SetRelayState(true)
6 else
7   -- Set state of the relay false: NO contact - open
8   SetRelayState(false)
9 end
```

All commands are listed in the **Helpers** tab of the script editor:
- Conditionals: If - Then - Else
- I/O: Set relay state.

Optionally, the relay can be switched from a visualization page. This can be configured via an **Object** element using the group address Local/Relay/Output NO (see **Objects** on page 84).

12.2.1 Commands in the Helpers tab

In the **Helpers** tab of the script editor, find an **I/O** command.

Path: **Configurator** → **Scripting** tab → **Event-based** button → **Editor** icon in the **Script** list.

Set relay state

```
-- Set state of the relay to on
SetRelayState(true)
```

If the value of the variable is set to `true`, the NO contact is closed.

Get relay state

```
-- Get state of the relay
value = GetRelayState()
```

If the NO contact is closed, the variable returns `true`.

The returned value of the relay state can also be used to switch an LED on or off.

12.3 Configuration of LED output

The LED output can be switched on and off via C-Bus applications. A common use case is to switch the LED via a lighting application. It is also possible to configure a **250 - User Parameter**. With this application, a LED can be switched via values sent from Modbus slaves or visualization pages.

12.3.1 Example with on and off

The LED output can be configured in a similar way to the relay output (see **Configuration of relay output on page 112**). Using an event-based script, the LED can be switched on and off.

On command

```
SetLEDState(true)
```
12.3.3 Off command

SetLEDState(false)

12.3.4 Example with LED flashing on/off

In this example, the LED flashes on/off when the temperature is higher than 30 °C. The minimal cycle (flashing) time is 1 s. The sequence is as follows:

- The temperature can be measured by a temperature sensor of a C-Bus device and sent by the application 228 - Measurement.
- A resident script can be used to evaluate the measured temperature.
- If the temperature is above a specified value, the LED state toggles (on/off). For example, the Toggle LED state command can be triggered with a sleep interval (e.g. 1 s).
- If the temperature is lower than the specified value, the LED switches off.

The following script sets the LED to on/off flashing or to permanent off state:

```
Resident: Temp room_2 > 30 = flashing LED
1 -- Get temperature from measurement: temp_room_2 (float)
2 -- Tag name of device ID1: 'Sensor_room_2' Channel: 1
3 -- Tag name of network: 'Local'
4 temp_room2 = GetCBusMeasurement('Local', 'Sensor_room_2', 1)
5 -- LED flashes, when temperature is > 30 °C (1 s on / 1 s off)
6 if temp_room2 > 30 then
7   -- Toggle LED state every second (time of resident script)
8   ToggleLEDState()
9 else
10   -- Switch LED Off
11   SetLEDState(false)
12 end
```

All commands are listed in the Helpers tab of the script editor:

- C-Bus: Get C-Bus measurement value
- Conditionals: If - Then - Else
- I/O: Toggle LED state
- I/O: Set LED state.

A high temperature event can also be shown in the alerts list (see Alerts on page 110).

12.3.5 Commands in the Helpers tab

In the Helpers tab of the script editor, find an I/O command.

Path: Configurator → Scripting tab → Event-based button → Editor icon in the Script list.

Set LED state

-- Set state of LED on
SetLEDState(true)

If the value of the variable is set to true, the LED is switched on.

Get LED state

-- Get state of LED
value = GetLEDState()

If the LED is switched on, the variable returns true.

Toggle LED state

-- Toggle state of LED
ToggleLEDState()
If the command is executed, the LED output toggles from the current state to the opposite state (e.g. from off to on).

Set LED mode

```java
-- Set mode of LED to 'normal'
SetLEDMode('normal')
```

No other modes can be set.

12.4 Configuration of digital input

The digital input of the Automation Controller is compatible with either a potential-free contact or a monitored cable using End of Line Resistance.

12.4.1 States of potential free contact

<table>
<thead>
<tr>
<th>LED Controller</th>
<th>Potential free contact (switch/relay)</th>
<th>Text representation script</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Input is open circuit</td>
<td>open</td>
</tr>
<tr>
<td>Red</td>
<td>Input is closed circuit</td>
<td>short</td>
</tr>
</tbody>
</table>

12.4.2 States of monitored input

<table>
<thead>
<tr>
<th>LED Controller</th>
<th>Monitored input</th>
<th>Text representation script</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Input in high resistance (6.9 kΩ)</td>
<td>alarm</td>
</tr>
<tr>
<td></td>
<td>Switch open state</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Open circuit (> 12 kΩ)</td>
<td>open</td>
</tr>
<tr>
<td>Red</td>
<td>Short circuit (< 1 kΩ)</td>
<td>short</td>
</tr>
<tr>
<td>Off</td>
<td>Input in low resistance (2.2 kΩ)</td>
<td>ok</td>
</tr>
<tr>
<td></td>
<td>Switch closed state</td>
<td></td>
</tr>
</tbody>
</table>

12.4.3 Example

In this example, text messages are used to show if a potential free window contact is open or closed. The sequence is as follows:

- The state of the digital input is repeatedly read and evaluated in a resident script.
- A variable is set to “Window open” or “Window closed”, and then set to a 250 - *User parameter* application with the data type *string*.
- The characters of the user parameter can be shown on a visualization page. The user parameter can also be configured as an *Object* element (see *Objects on page 84*).
The following script can be used to set a text message as “Window open” or “Window closed” depending on the contact state.

```plaintext
Read digital input open closed
1 -- Read state of digital input (resistance below 3.5 kΩ - true)
2 digital_input = ReadDigitalInput()
3 -- If the contact is closed or open
4 if digital_input -- true then
5   -- Set a string to the visualisation message
6   visualisation_message = 'window is closed'
7 else
8   visualisation_message = 'window is open'
9 -- Set a string to the visualisation_message
10 end
11 -- Set the visualisation message to User Parameter 250
12 -- User parameter: 'Status window' (Data type: String (255 bytes))
13 -- Tag name of network: 'Local'
14 SetUserParam('Local', 'Status window', visualisation_message)
```

All commands are listed in the **Helpers** tab of the script editor:

- **I/O**: Read digital input
- **Conditionals**: If - Then - Else
- **C-Bus**: Set user parameter
- **I/O**: Set LED state.

Commands in the Helpers tab

In the **Helpers** tab of the script editor, find an **I/O** command.

Path: **Configurator** → **Scripting** tab → **Event-based** button → **Editor** icon in the **Script** list.

Read digital input

```plaintext
-- Read state of digital input
value = ReadDigitalInput()
```

If the resistance is below 3.5 kΩ, the variable returns *true*.

Read digital input range

```plaintext
-- Read range of digital input
value = ReadDigitalInputRng()
```

If the resistance is between 1 kΩ, and 12 kΩ, the variable returns *true*.

Read digital input text representation

```plaintext
-- Read text representation of digital input state
value = ReadDigitalInputTxt()
```

The following strings are returned.

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
<th>LED Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>Input in high resistance (6.9 kΩ)</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>Switch open state</td>
<td></td>
</tr>
<tr>
<td>open</td>
<td>Open circuit (> 12 kΩ)</td>
<td>Yellow</td>
</tr>
<tr>
<td>short</td>
<td>Short circuit (< 1 kΩ)</td>
<td>Red</td>
</tr>
<tr>
<td>ok</td>
<td>Input in low resistance (2.2 kΩ)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Switch closed state</td>
<td></td>
</tr>
</tbody>
</table>
13 USB-A

13.1 Overview
A USB type A connector on the Automation Controller provides connection to USB expansion devices.
- USB 1.1 and 2.0 devices are supported.
- FAT and FAT32 file system formatted flash drives can be attached.
- USB 2.0 provides a bandwidth of 480 Mbit/s, corresponding to an effective image data rate of 40 MB/s.
- Devices complying with the USB specification may consume a total of 500 mA from the bus. Devices with a power rating of up to 2.5 W can therefore be supplied via the bus.
- Data transmission is possible in both directions.

13.2 USB flash drive configuration commands
Commands are listened in the Input and Output Facilities topic list of the script editor.

Path: Configurator → Scripting tab → Event-based button → Editor icon in the Script list.

The LUA reference manual available at www.lua.org provides further information.

13.2.1 Mounting
Before a drive is read from or written to it must be mounted and when your script is done it should unmount it, doing so reduces the chance of data loss if the power fails. The following script functions will perform this task:

function mount_usb(check)
 devs = io.ls('/sys/class/block/')
 table.sort(devs)
 for _, dev in ipairs(devs) do
 if dev:match('^sd%a%d$') then
 part = dev
 break
 elseif not devn and dev:match('^sd%a$') then
 devn = dev
 end
 end
 part = part or devn
 if part then
 os.execute('umount -f /mnt 2>&-')
 if check then
 io.readproc('fsck.fat -a /dev/' .. part)
 end
 res, stat = io.readproc('mount /dev/' .. part .. ' /mnt 2>&1')
 if stat == 0 then
 return true
 else
 return false, 'USB mount failed: ' .. tostring(res)
 end
 end
end
else
 return false, 'No valid USB devices found'
end
end

function unmount_usb()
 os.execute('umount -f /mnt 2>&-')
end

Incorporate this into your script (or have it as a user library) when accessing the drive call `mount_usb` from your script. When the function is successful it will mount the drive under the '/mnt' directory. It takes an optional boolean argument, if it is true then it will check the file system before mounting, it defaults to off as it takes several seconds to run.

- Note that only the first partition on the drive will be mounted.
- Also note that while it is possible to connect multiple USB drives via a hub the above script will only mount the first it detects. It is possible to extend it to properly handle more but that is beyond the scope of this document

Additionally other file systems are supported such as EXT2/3/4, these have fewer intrinsic limits than FAT but require extra software to read on Microsoft Windows or Mac OS X.

Read

`io.readfile(file)`

Function to read the entire contents of `file` and return it as a string. Returns nil if there is an error.

Write

`io.writeFile(file, data)`

Function that saves `data` to `file` and overwrites any existing content. `data` is a value converted to a string. The function returns a true when the file can be opened for writing, or nil when the file cannot be accessed.

Open

`io.open(file, mode)`

The open command is a lower level function, which opens `file` for IO and returns a file handle. The `mode` can be one of the following:

- "r" Open the file read-only.
- "w" Open the file write-only and truncate any existing data.
- "a" Open the file write-only and append to the end of the file.
- "r+" Open the file read/write, fails if the file doesn’t exist.
- "w+" Open the file read/write and truncate any existing data.
- "a+" Open the file read/write and append to the end of the file.

Returns the file handle on success, returns nil and an error on failure.

The file should be closed when no longer require. Further information can be found in the Lua reference manual.
Example 1
-- Update the file ‘/mnt/data’ with a value,
-- replacing any contents with the string ‘abcdef’ and a new line.
-- Emits an alert if the flash drive is not accessible.
res, err = mount_usb()

if res then
 io.writefile('/mnt/data', 'abcdef
')
 unmount_usb()
else
 alert(err)
end

Example 2
-- Append ‘abcdef’ and a new line to the file ‘/mnt/data’
-- Emits an alert if the flash drive is not accessible.
-- Note that the maximum size of a file in FAT/FAT32 is 4Gbyte.
res, err = mount_usb()
if res then
 f, err = io.open('/mnt/data', 'a')
 if f ~= nil then
 f:write('abcdef
')
 f:close()
 else
 alert('Unable to write to file: '..err)
 end
 unmount_usb()
else
 alert(err)
end
14 RS-232

14.1 Overview

Interaction with other equipment is possible via an isolated RS-232 interface. The RS-232 serial interface is one of the most widely used communication standards for data transmission between two devices over short distances.

TX = Transmit
RX = Receive
COM = Common

Typical not guaranteed data transmission with different cable lengths:

<table>
<thead>
<tr>
<th>Baud rate (bit/s)</th>
<th>Max. cable length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>60</td>
</tr>
<tr>
<td>4800</td>
<td>30</td>
</tr>
<tr>
<td>9600</td>
<td>15</td>
</tr>
<tr>
<td>19200</td>
<td>7.6</td>
</tr>
<tr>
<td>38400</td>
<td>3.7</td>
</tr>
<tr>
<td>57600</td>
<td>2.6</td>
</tr>
<tr>
<td>11500</td>
<td>1.5</td>
</tr>
<tr>
<td>230400</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The achievable error free baud rate depends on the specific hardware, cable length, cable type and quality, electromagnetic noise and other factors.

Note the wiring and configuration instructions in the manuals of the connected RS-232 equipment.

14.2 Configuration commands

In the following script commands for the data transfer between the Automation Controller and another device using RS-232 are described.

Serial commands are listed in the **Helpers** tab of the script editor.

Path: **Configurator** → **Scripting** tab → **Event-based** button → **Editor** icon in the **Script** list.

Open connection

```javascript
require('serial')
-- communication example with 38400 bit/s
port = serial.open('/dev/RS232', {
  baudrate = 38400,
  databits = 8,
  stopbits = 1,
  parity = 'none',
  duplex = 'half'
})
```
Configuration of the Automation Controller

Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1200, 2400, 9600, 19200, 38400, 57600, 115200, 230400</td>
</tr>
<tr>
<td>Data bits</td>
<td>5, 6, 7, 8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1, 2</td>
</tr>
<tr>
<td>Parity</td>
<td>‘none’, ‘even’, ‘odd’</td>
</tr>
<tr>
<td>Duplex</td>
<td>‘half’</td>
</tr>
</tbody>
</table>

Note the configuration instructions in the manuals of the connected RS-232 equipment. The Automation Controller and the other device must use the same settings and values.

Write to port

```lua
port:write('test data')
```

Blocking read

```lua
-- script will block until 10 characters are read
data = port:read(10) Blocking read
```

Timeout read

```lua
-- script will wait for 10 characters for 20 seconds
data = port:read(10, 20)
```

Close serial port

```lua
port:close()
```
15 RS-485

15.1 Overview

The Automation Controller has an isolated RS-485 interface, which can be used for a serial data transmission similar to the RS-232 interface.

Modbus over serial line

The following is recommended for a Modbus serial line (RS-485).

- D1+ and D0− = twisted wires of Modbus cable.
- COM = wire of Modbus cable.
- Shield must be connected to earth at end of the line.
- The line must be terminated at each end:
 - The Automation Controller has an optional in-built low power terminator of 120 Ω + 1 nF via link AT–BT. This should be used when the Automation Controller is at one end of the Modbus line.
 - In large installations, install the master in the middle of the line. In this case, the inbuilt line termination should not be used.
- Topology:
 - Daisy chain or multi-drop with short stubs (40 m/number of stubs/derivations, max. 20 m).
 - The line must be terminated at each end.
 - Cable: e.g. Belden 9842 (2 twisted pairs, shielded, imp. 120 Ω).
- Baud rate and cable length:
 - The achievable error-free baud rate depends on length of a line, number of Modbus devices, cable type and quality, correct terminations, electromagnetic noise and other factors.
 - The Automation Controller supports up to 230400 bit/s. When the data rate is below 100 kbps, data can typically not guaranteed be transmitted at a distance up to 1200 m. At higher data rates, the cable length should be reduced:

<table>
<thead>
<tr>
<th>Baud rate (bit/s)</th>
<th>Max. cable length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200, 2400, 4800, 9600, 19200, 38400, 57600</td>
<td>1200 m</td>
</tr>
<tr>
<td>115200</td>
<td>750 m</td>
</tr>
<tr>
<td>230400</td>
<td>600 m</td>
</tr>
</tbody>
</table>

- All devices in a Modbus line must use the same baud rate. The max. cable length for a given baud rate may be reduced.

The configuration of a Modbus line is described in the Modbus chapter on page 124:

- Modbus line see Access via RS-485 on page 124
15.2 Configuration commands for two devices

In the following script commands for the data transfer between the Automation Controller and another device using RS-485 are described. **Serial** commands are listed in the *Helpers* tab of the script editor.

Path: *Configurator* → *Scripting* tab → *Event-based* button → *Editor* icon in the *Script* list.

Note the wiring and configuration instructions in the manuals of the connected RS-485 equipment.

15.2.1 Open connection

If using the scripts in the *Helpers* tab of the script command edit(`/dev/RS485`) instead of(`/dev/RS232`).

```lua
require('serial')
-- communication example with 38400 bit/s
port = serial.open('/dev/RS485', {
    baudrate = 38400,
    databits = 8,
    stopbits = 1,
    parity = 'none',
    duplex = 'half'
})
```

<table>
<thead>
<tr>
<th>Settings</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400</td>
</tr>
<tr>
<td>Data bits</td>
<td>5, 6, 7, 8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1, 2</td>
</tr>
<tr>
<td>Parity</td>
<td>'none', 'even', 'odd'</td>
</tr>
<tr>
<td>Duplex</td>
<td>'half'</td>
</tr>
</tbody>
</table>

Baud rate and cable length:

- The achievable error-free baud rate depends on cable length, cable type and quality, correct termination, electromagnetic noise and other factors.
- The Automation Controller supports up to 230400 bit/s. When the data rate is below 100 kbps, data can typically be transmitted at a distance up to 1200 m. At higher data rates, the cable length should be reduced:
- The Automation Controller and the baud rate. The max. cable length for a given baud rate may be reduced.

Write to port

```lua
port:write('test data')
```

Blocking read

```lua
-- script will block until 10 characters are read
data = port:read(10) Blocking read
```

Timeout read

```lua
-- script will wait for 10 characters for 20 seconds
data = port:read(10, 20)
```

Close serial port

```lua
port:close()
```
16 Modbus overview

Modbus is an open standard for client/server communication. The client sends a request message and the server sends a response message. The values of a server are saved in registers which can be accessed by the client.

The Automation Controller supports Modbus RTU serial communication via the RS-485 interface and Modbus TCP communication via the RJ45 Ethernet interface. In Modbus RTU mode, the client is usually referred to as the master and the server as the slave.

In general, the Automation Controller is the Modbus master/client. The supported registers of a slave/server can be mapped with objects of the application 250 - User Parameter. Thus, inputs, outputs, measured values and states of a server can be monitored and controlled. Use these objects for the basic functions of the Automation Controller such as visualization, trend logging and scheduling, as well as for advanced functions using LUA scripting.

Tables of Modbus registers are available in Modbus device manuals. For general information about the Modbus protocol and data model, refer to Modbus.org.

As the Automation Controller supports both Modbus RTU and Modbus TCP, buildings can be analysed and controlled in depth. With Modbus TCP, it is also possible to communicate remotely with Modbus devices installed in different buildings.

16.1 Access via RS-485

The most common method of Modbus communication is Modbus RTU serial communication via the RS-485 interface. The Automation Controller has RS-485 connectors for Modbus and acts as a master.

* By Modbus specification a serial line is limited to 31 slaves.

16.1.1 Slaves

By Modbus specification a serial line is limited to 31 slaves. The Network Automation Controller is not limited but designed for 31 slaves. The Wiser™ for C-Bus® Automation Controller is limited to a maximum of 6 Modbus slaves.

Schneider Electric offers a wide range of Modbus RTU devices which can be easily integrated with the Automation Controller:

- PM: Power Meter range (e.g. current, voltage, power, power factor, frequency, energy)
- iEM: Watt-hour meter range (e.g. current, voltage, power, power factor, frequency, energy)
- SIM10M: Smart Interface module (Pulse counter e.g. for water, gas, watt hours)
- Masterpact: Circuit Breaker Manager
- Compact: Circuit breakers for high loads
- Vigilohm: Insulation monitoring
- Smartlink RTU: smart communication I/O module
- SE 8000: Room Controllers
- TC 303: Digital Fan Coil Thermostat.

A complete building can be analysed and controlled in depth via a Modbus RTU line. Moreover, access Modbus slaves in another RTU line by using Modbus TCP over Modbus gateways.

16.1.2 Easy configuration with profiles

The slaves in a RTU line can be easily configured. Preinstalled profiles (*.json files) are available for the slaves. A profile provides a list of usable registers of the slave. Select the registers required and map these with objects of the application 250 - User Parameter. Step by step configuration is described in [Configure preinstalled profiles on page 126](#). There is also a list of available profiles.

If there is no preinstalled profile for the device to be integrated, download a profile and adapt it for your product. [See Add and edit profiles on page 129](#).

16.1.3 Configuration with scripts

If familiar with programming in LUA, use scripts ([see Modbus settings using scripts on page 132](#)). If using the Automation Controller as a slave, it is mandatory to use scripts instead of a profile. A combination of profiles and scripts cannot be used.

16.2 Access via Ethernet

The Automation Controller can communicate as a client with servers via TCP/IP. Servers or slaves can either be directly accessed via Ethernet or via a Modbus/IP gateway.

![Communication diagram](image)

An example of direct connection via Ethernet is Smartlink IP, where the Automation Controller acts as a client and Smartlink IP acts as a server. The configuration of IP-communication, channels, inputs and mapping is done via the profile Smartlink TCP.

A gateway connects Modbus via Ethernet (RJ45) with a Modbus serial line (RS-485 interface). Up to 31 Modbus RTU slaves can be connected with a gateway. The configuration can be performed via the profiles of the RTU slaves. The connection type for each slave in the serial Modbus line is TCP/IP. All slaves must be linked with the IP address of the gateway.

Step by step instructions for configuring RTU slaves are described in [Configure preinstalled profiles on page 126](#). Therein is a list of available profiles.

The Modbus TCP Interface allows up to 100 open TCP connections (e.g. servers/slaves).
16.3 Configure preinstalled profiles

Configuration is done in the Modbus tab. Modbus slaves (servers) can be added via either the Add device button or the RTU scan button.

Path: Configurator → Modbus tab.

16.3.1 Steps

Perform the following steps to configure Modbus slaves (servers) using profiles:

1. Enable Modbus RTU communication (click the RTU Settings button).
2. (Optional) Scan for Modbus RTU devices. The List of preinstalled Modbus profiles on page 126 shows the Modbus devices which can be scanned via the RTU scan button. If RTU is not enabled, scanning does not work.
3. If the RTU scan function is not possible, click the Add device button and assign the correct profile.
4. Edit the Modbus device (Modbus list) to set the polling period.
5. Select registers and check the data type.
6. If necessary, create new objects of the 250 User Parameter application.
7. Map the objects of the application to the selected registers.

16.3.2 List of preinstalled Modbus profiles

<table>
<thead>
<tr>
<th>Profile</th>
<th>Description</th>
<th>RTU scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact_NSX-Compact_NSX_E</td>
<td>Distribution Application Type E for NSX</td>
<td>Yes</td>
</tr>
<tr>
<td>Masterpact_NT_NW-Masterpact_A</td>
<td>Circuit Breaker Manager for Masterpact</td>
<td>Yes</td>
</tr>
<tr>
<td>Masterpact_NT_NW-Masterpact_H</td>
<td>Circuit Breaker Manager for Masterpact</td>
<td>Yes</td>
</tr>
<tr>
<td>PM-PM1200</td>
<td>Power Meter PM1200</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM210</td>
<td>Power Meter PM210</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM3250</td>
<td>Power Meter PM3250</td>
<td>Yes</td>
</tr>
<tr>
<td>PM-PM3255</td>
<td>Power Meter PM3255</td>
<td>Yes</td>
</tr>
<tr>
<td>PM-PM5110</td>
<td>Power Meter PM5110</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM5111</td>
<td>Power Meter PM5111</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM5310</td>
<td>Power Meter PM5310</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM5330</td>
<td>Power Meter PM5330</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM5350</td>
<td>Power Meter PM5350</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM710</td>
<td>Power Meter PM710</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM750</td>
<td>Power Meter PM750</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM810</td>
<td>Power Meter PM810</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM820</td>
<td>Power Meter PM820</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM850</td>
<td>Power Meter PM850</td>
<td>No</td>
</tr>
<tr>
<td>PM-PM870</td>
<td>Power Meter PM870</td>
<td>No</td>
</tr>
</tbody>
</table>
16.3.3 Modbus RTU Settings

In order to communicate with Modbus slaves connected over Modbus RTU (serial), it is mandatory to enable the communication and set the connection details.

Path: Modbus tab → RTU-Settings button.

RTU (serial) enabled

This option enables Modbus RTU communication.

Port

The default setting of the serial port is `/dev/RS485`. If the Port field is empty, `/dev/RS485` is automatically inserted when the **Save** button is pressed.

Baud rate

All Modbus devices must use the same setting.

All metering devices can run either on 9600 bit/s (max. cable distance 1200 m) or 19200 bit/s (max. cable distance 900 m). 19200 bit/s is default for most devices.

Some devices can also work with other speeds.

Parity

All Modbus devices must use the same setting.

Select either None, Even, or Odd. Even with One stop bit is the default for most devices.

Duplex

Must be Half-duplex for RS-485.
Reset to defaults
This button resets all RTU setting parameters to their default.

16.3.4 Modbus RTU scan
Devices with the RTU scan feature can be detected and added using the RTU scan function (see List of preinstalled Modbus profiles on page 126).

Path: Modbus tab → RTU scan button.

Steps
1. Ensure that Modbus slaves are connected to the Automation Controller via the RS-485 interface.
2. Click the RTU scan button.
3. Select the start and end device addresses of the slaves.
4. Click the Save button.
5. The Controller recognises Modbus devices that can be detected via the RTU scan function. Modbus devices that are not capable of being detected must firstly be assigned a correct profile and then edit the names and the poll intervals.
6. Choose which devices to be inserted in the Modbus device list.

16.3.5 Add Modbus device
Manually add Modbus devices.

Path: Modbus tab → Add device button.

Steps
1. Click the Add device button.
2. Edit and save the following parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Connection type</th>
<th>Profile</th>
<th>Device address</th>
<th>Poll interval</th>
<th>IP address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Modbus device</td>
<td>RTU (RS-485)</td>
<td>Select an installed profile</td>
<td>Select the Modbus device address. Note: It is mandatory to select this address on the Modbus device (e.g. via the display menu or the configuration software of the device).</td>
<td>Select an interval. Value 5 is the default (new values are read every 5 seconds).</td>
<td>If the TCP/IP connection type is selected, set the IP address. If the Modbus device (server) is directly connected to the Automation Controller (client), set the IP address of the Modbus device. If the Modbus device (slave) is connected via a RTU/TCP/IP gateway, set the IP address of the gateway (e.g. EGX300, Smartlink IP).</td>
<td>(Optional) Set the Port for Modbus TCP communication. The standard Modbus default Port is 502.</td>
</tr>
</tbody>
</table>

16.3.6 Modbus Mapping
When a Modbus device is added, bindings between Modbus registers and objects have to be created. This is done by setting the register mapping. The registers of the Modbus device can be mapped with objects of the application 250 - User Parameter. For each device in the Modbus device list, open a mapping list.

Path: Modbus tab → Modbus device list → Mapping column → Object mapping list.
Each row of the Mapping table represents one of the Modbus registers (defined in the device profile). Decide which registers to map, then check the data type of the selected registers. Link with objects of the C-Bus application 250 - User Parameter.

For the mapping, only select existing C-Bus objects with the correct application and data type.

Examples
- The register type of the Reactive Power is float32. In this case, link with the data type Floating point (32 bit). The application is 250 - User parameter.
- The register type of the PF Quadrant is internally converted from float32 to uint32 (float32=>uint32). In this case, link with data type Unsigned Integer (32 Bit). The application is 250 - User parameter.

16.3.7 Add Objects

It is recommended to prepare objects before the mapping procedure. New objects can be added in the Objects tab (see Add user parameters on page 46).

For each register in the Object mapping list, edit the following parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the register in the object mapping list.</td>
<td></td>
</tr>
<tr>
<td>Link to object</td>
<td>Set the object where the value read from the Modbus register will be saved. Only select existing objects from the drop down menu.</td>
</tr>
<tr>
<td>Value send delta</td>
<td>Set the value of delta. If the change of value read from Modbus register is bigger than this delta, the value is sent to the object.</td>
</tr>
<tr>
<td>Unit/suffix</td>
<td>If the User parameter application is selected, a unit is used from the profile or can be modified.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Keywords are assigned to the object. Keywords can be used in scripts (optional).</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional).</td>
</tr>
</tbody>
</table>

16.3.8 RTU read test

RTU read test allows quick reading of values stored in Modbus registers with different parameters.

Path: Modbus tab → RTU read test button.

For testing, select a register address from the Object mapping list. This functionality is also very useful when creating and testing your own Modbus profiles.

16.4 Add and edit profiles

If your Modbus device profile is not in the list of preinstalled profiles, define your own profile.
16.4.1 Structure of a profile

Modbus device profiles are distributed in *.json files. Use any common text editor to create and edit your profile.

Consider using a text editor with enhanced support for .json files. These editors display .json file content with syntax colouring/formatting and this makes the file easier to edit and save.

The structure of a profile is shown below:

```json
{
  "manufacturer": "Schneider Electric",
  "description": "Example device",
  "mapping": [
    { "name": "Output 1", "bus_datatype": "bool", "type": "coil",
      "address": 0, "writable": 1 },
    { "name": "Input 1", "bus_datatype": "float16",
      "type": "inputregister", "address": 0,
      "value_multiplier": 0.001, "units": "V" }
  ]
}
```

16.4.2 Mapping parameters

Each “mapping” line in the .json file contains mapping information for one Modbus register or coil. All the possible mapping parameters are listed in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Object name, e.g. Output 2.</td>
<td>String</td>
<td>Yes</td>
</tr>
<tr>
<td>bus_datatype</td>
<td>C-Bus object data type, key from dt table, e.g. float32.</td>
<td>String/Number</td>
<td>Yes</td>
</tr>
<tr>
<td>type</td>
<td>Modbus register type. Possible values: coil, discreteinput, register, inputregister.</td>
<td>String</td>
<td>Yes</td>
</tr>
<tr>
<td>address</td>
<td>Register address (0-based).</td>
<td>Number</td>
<td>Yes</td>
</tr>
<tr>
<td>writable</td>
<td>Set to true to enable writing to the register if type is either coil or register.</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>write_only</td>
<td>Set to true to disable reading coil or register value when “writable” is enabled.</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>datatype</td>
<td>Modbus value data type. If set, conversion will be done automatically. Possible values: bool, uint16, int16, float16, uint32, int32, float32, uint64, int64, quad10k, s10k.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>value_delta</td>
<td>New value is sent when the difference between previously sent value and current value is larger than delta. Defaults to 0 (send after each read).</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>value_base</td>
<td>Add specified number to the resulting value.</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>value_multiplier</td>
<td>Multiply resulting value by the specified number.</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>value_bitmask</td>
<td>Bit mask to apply. Shifting is done automatically based on the least significant "1" found in the mask.</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>value_nan</td>
<td>Array of 16-bit integers. If specified and the read operation returns the same array, no further processing of the value is done.</td>
<td>Array</td>
<td>No</td>
</tr>
<tr>
<td>value_conv</td>
<td>Apply one of the inbuilt conversion functions.</td>
<td>String (Int)</td>
<td>No</td>
</tr>
<tr>
<td>value_custom</td>
<td>Name of an inbuilt enumeration or a list of key → value mapping. Resulting value will be 0 if key is not found.</td>
<td>String/Object</td>
<td>No</td>
</tr>
<tr>
<td>internal</td>
<td>Not visible to the user when set to true. Should be used for scale registers.</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>units</td>
<td>Object units/suffix.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>address_scale</td>
<td>Address of the register containing value scale. Value = value * 10^scale</td>
<td>Number</td>
<td>No</td>
</tr>
</tbody>
</table>
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_count</td>
<td>Number of registers to read at once (for devices that only support reading of a specific block of registers).</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>read_swap</td>
<td>Swap register order during conversion (endianness).</td>
<td>Boolean</td>
<td>No</td>
</tr>
<tr>
<td>read_offset</td>
<td>Position of first register of data from the block of registers (0-based).</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>timeout</td>
<td>Specify device timeout in seconds. If the slave device does not reply within specified time, it is treated as a timeout error. Default values: 0.5 s for Modbus RTU, 3 s for Modbus TCP</td>
<td>Number</td>
<td>No</td>
</tr>
<tr>
<td>write_multiple</td>
<td>This parameter sets the multiple writing function (function 15 or 16 is used instead of function 5 or 6). If "Type" is set to "register" and "Write_multiple" is set to "true", Modbus function 16 is used for writing to the register. If "Type" is set to "coil" and "Write_multiple" is set to "true", Modbus function 15 is used for writing to the coil. Default value is "false", which means that Modbus function 5 or 6 (depending on register type) is used for writing.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>

When the Modbus devices are physically connected, use the RTU read test. This allows quick reading of values stored in Modbus registers ([See RTU read test on page 129](#))

16.4.3 Export profiles

When creating a new profile, use an existing profile as an example. If a preinstalled profile must be modified, e.g. to add registers, it can be exported, modified in Notepad and imported again. If required to keep both versions, rename the new json file.

Path: Modbus tab → Profiles button → Profiles list → Export icon.

Steps

1. Click the Profiles button.
2. Click the Export icon in the profiles list and select where to save the .json file.

Editing of the file with a text editor is now possible.

16.4.4 Import profiles

Import new or changed .json files in the Profiles list.

Path: Modbus tab → Profiles button → Profiles list → Add profile button.

Steps

1. Click the Add Profiles button and select the .json file.

 If something is wrong, e.g. the characters ", [] { } are missing or in the wrong place, this error message appears: Invalid profile selected. If a parameter is not recognised, it will just be skipped.

2. After successful import, the profile becomes available in the Profiles list.

16.4.5 Delete profiles

Path: Modbus tab → Profiles button → Profiles list → Delete icon.

Click the Delete icon to delete a profile.
16.5 Modbus settings using scripts

16.5.1 Function Codes and corresponding Master Functions

All the possible Modbus function codes that can be used in the Automation Controller are listed below. There is an LUA function in the Automation Controller for each function code.

All of these functions can be used for both Modbus TCP and Modbus RTU.

FC#01 Read Coils

Name: Read single coil
Command: coil = mb:readcoils(address)
Arguments: [address]: address of the coils
Returned values: 1: ON, 0: OFF
Exception codes: 01 or 02 or 03 or 04

Name: Read multiple coil
Command: coil = mb:readcoils(start, count)
Arguments: [start]: address of the first coil to read
 [count]: number of coils to read (max. 2000)
Returned values: 1: ON, 0: OFF
Exception codes: 01 or 02 or 03 or 04
Script example: coil1, coil2, coil3 = mb:readcoils(1000, 3)
Value read from coil address 1000 is returned into variable coil1.
Value read from coil address 1001 is returned into variable coil2.
Value read from coil address 1002 is returned into variable coil3.

FC#02 Read Discrete Inputs

Name: Read discrete input
Command: value = mb:readdiscreteinputs(address)
Arguments: [address]: address of the input
Returned values: 1: ON, 0: OFF
Exception codes: 01 or 02 or 03 or 04

Name: Read discrete inputs
Command: value = mb:readdiscreteinputs(address, count)
Arguments: [address]: address of first input to read
 [count]: number of inputs to read (max. 2000)
Returned values: 1: ON, 0: OFF
Exception codes: 01 or 02 or 03 or 04
Script example: bool1, bool2 = mb:readdiscreteinputs(10, 2)
Value read from discrete input address 10 is returned into variable bool1.
Value read from discrete input address 11 is returned into variable bool2.
FC#03 Read Holding Registers

Name
Read registers

Command
value = mb:readregisters(address, count)

Arguments
[address]: address of the first register to read
[count]: number of registers to read (max 125)

Returned values
2 byte values

Exception codes:
01 or 02 or 03 or 04

Script example
value1, value2 = mb:readregisters(1100, 2)

Value read from register address 1100 is returned into variable value1.
Value read from register address 1101 is returned into variable value2.

FC#04 Read Input Registers

Name
Read input registers

Command
value = mb:readinputregisters(address, count)

Arguments
[address]: address of the first input register to read
[count]: number of input registers to read (max. 125)

Returned values
2 byte values

Exception codes:
01 or 02 or 03 or 04

Script example
value1, value2 = mb:readinputregisters(1015, 2)

Value read from input register address 1015 is returned into variable value1.
Value read from input register address 1016 is returned into variable value2.

FC#05 Write Single Coil

Name
Write single bit

Command
mb:writebits(address, value)

Arguments
[address]: address of the coil
[value]: true or false

FC#06 Write Single Register

Name
Write single register

Command
mb:writeregisters(address, value)

Arguments
[address]: address of the register
[value]: value of the register

FC#0F Write Multiple Coils

Name
Write multiple bits

Command
mb:writebits(address, value1, value2, value3,...)

Arguments
[address]: start address of the coils
[value1]: true or false, [value2]: true or false, ... (max. 1968 bits)

Script example
mb:writebits(1000, true, false)

Write bit at address 1000 to true (on)
Write bit at address 1001 to false (off)

FC#0F Write Multiple Registers

Name
Write multiple registers

Command
mb:writeregisters(address, value1, value2, value3, ...)

Modbus overview

Arguments

- **[address]**: start address of the registers
- **[value1]**: number, **[value2]**: number, ... (max. 123 registers)

Exception codes

mb:readcoils(start, count)
mb:readdiscreteinputs(start, count)
mb:readregisters(start, count)
mb:readinputregisters(start, count)

These commands read one or more registers/coils from the start address and return all values when successful. When an error occurs, three variables are sent back:
- Nil
- Exception code description
- Exception code (see table below).

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function</td>
<td>The Function Code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It may also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, a request of offset 96 and a length of 5 will generate exception 02.</td>
</tr>
<tr>
<td>03</td>
<td>Illegal Data Value</td>
<td>The value contained in the query data field is not an allowable value for the server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the Modbus protocol is unaware of the significance of any value of any register.</td>
</tr>
<tr>
<td>04</td>
<td>Failure in Associated Device</td>
<td>An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.</td>
</tr>
<tr>
<td>05</td>
<td>Acknowledge</td>
<td>Specialised in conjunction with programming commands. The server (or slave) has accepted the request and is processing it, but a long duration of time will be required. This response is returned to prevent a timeout error from occurring in the client (or master). The client (or master) can next issue a poll program complete message to determine if processing is completed.</td>
</tr>
<tr>
<td>06</td>
<td>Busy, Rejected Message</td>
<td>Specialised use in conjunction with programming commands. The server (or slave) is engaged in processing a long-duration program command. The client (or master) should retransmit the message later when the server (or slave) is free.</td>
</tr>
<tr>
<td>07</td>
<td>NAK – Negative knowledgegment</td>
<td>Specialised use in conjunction with programming commands. The server (or slave) is engaged in processing a long-duration program command. The client (or master) should retransmit the message later when the server (or slave) is free.</td>
</tr>
<tr>
<td>08</td>
<td>Memory Parity Error</td>
<td>Specialised use in conjunction with function codes 20 and 21 and reference type 6, indicates the extended file area failed to pass a consistency check. The server (or slave) attempted to read a record file, but detected a parity error in the memory. The client (or master) can retry the request, but service may be required on the server (or slave) device.</td>
</tr>
<tr>
<td>0A</td>
<td>Gateway Path Unavailable</td>
<td>Specialised use in conjunction with gateways. Indicates that the gateway was unable to allocate an internal communication path from the input port to the output port for processing the request.</td>
</tr>
</tbody>
</table>
For more information, see: http://modbus.org.

16.5.2 Modbus RTU configuration commands

Create Modbus RTU object

```lua
require('luamodbus')
mb = luamodbus.rtu()
```

Open Modbus RTU connection

```lua
-- 19200 baud rate, even parity, 8 data bits, 1 stop bit, 
-- half duplex
mb:open('/dev/RS485', 19200, 'E', 8, 1, 'H')
mb:connect()
```

- **Terminal name**
 - `/dev/RS485`

- **Supported Baud rates**
 - 1200 bit/s
 - 2400 bit/s
 - 4800 bit/s
 - 9600 bit/s
 - 19200 bit/s
 - 38400 bit/s
 - 57600 bit/s
 - 115200 bit/s
 - 230400 bit/s

All Modbus devices in a line must use the same setting.

The achievable error-free baud rate depends on length of a line, number of Modbus devices, cable type and quality, correct terminations, electromagnetic noise and other factors ([see Access via RS-485 on page 124](#)).

- **Parity**
 - "N" None choose between one and two stop bits
 - "E" Even one stop bit is set
 - "O" Odd one stop bit is set

The default parity mode of Modbus is “even” parity.

- **Data bits and stop bits**

 Data bits: [Number of data bits = 5, 6, 7, 8]
 Stop bits: [Number of stop bits 1, 2]

- **Duplex**

 - "H" Half duplex
 - "F" Full duplex (not supported in RS-485)
Delay Between Frames

-- Wait for 1.5 seconds

```plaintext
os.sleep(1.5)
```

Some devices require considerable time after the end of response until they are ready to receive the following request from the master. If the behaviour of the device is not known, select (1.5).

Set slave address

-- Set slave address to 123

```plaintext
mb:setslave(123)
```

Address range is [1..247].

Read registers

-- Read from address 1000 and write it to value

```plaintext
value = mb:readregisters(1000)
```

Close modbus connection

```plaintext
mb:close()
```

Example 1

-- init modbus on first script execution

```plaintext
if not mb then
    require('Luamodbus')
    mb = Luamodbus.rtu()
    mb:open('/dev/RS485', 38400, 'E', 8, 1, 'H')
    mb:connect()
end
mb:setslave(30)
mb:flush()
```

Example 2

-- Timeout interval between two consecutive bytes of the same message

```plaintext
mb:getbytetimeout()
mb:setbytetimeout(timeout)
```

Example 3

-- Timeout interval used to wait for a response:

```plaintext
mb:getresponsetimeout()
mb:setresponsetimeout(timeout)
```

Example 4

-- Timeout interval used for an incoming indication from master (Slave mode only)

```plaintext
mb:getreceivetimeout()
mb:setreceivetimeout(timeout)
```

16.5.3 Modbus master functions

```plaintext
mb:setslave(slaveid)
Sets slave id to read/write data from/to.
mb:readcoils(start, count)
start – address of first coil to read.
count – number of coils to read.
```
mb:readdiscreteinputs(start, count)
start – address of first discrete input to read.
count – number of discrete inputs to read

mb:readregisters(start, count)
start – address of first holding register to read.
count – number of holding registers to read.

mb:readinputregisters(start, count)
start – address of input register to read.
count – number of input registers to read.
Returns all values on success and nil, error description on error.

mb:writebits(start, v1, [v2, [v3, ...]])
Writes values to coils from start address.

mb:writeregisters(start, v1, [v2, [v3, ...]])
Writes values to registers/coils from the start address.
Single write will be used when only one value is supplied, multiple write otherwise
returns all of values written on success and nil, error description on error.

mb:reportslaveid()
Reads slave internal data.
Returns values on success.
Returns nil, error description on error.

16.5.4 Modbus slave functions

Receive data from master
mb:receive()
Receives data from master with 1 minute timeout.
Returns data as a binary string on success.
Returns nil, error description on error.

Set Modbus mapping of slave device
mb:setmapping(coils, inputs, holding_regs, input_regs)
Creates memory mapping for the registers with size specified for each type.

Handle slave
mb:handleslave()
Waits for an incoming indication from master and sends a reply when necessary.

Get functions
mb:getcoils(start, count)
mb:discreetemplets(start, count)
mb:getinputregisters(start, count)
mb:getregisters(start, count)
Gets one or many register/coil/input values from mapping from the start address.
Returns all values on success.
Returns nil, error description on error, exception code if applicable.
Set functions

mb:setcoils(start, v1, [v2, [v3, ...]])
mb:setdiscreteinputs(start, v1, [v2, [v3, ...]])
mb:setinputregisters(start, v1, [v2, [v3, ...]])
mb:setregisters(start, v1, [v2, [v3, ...]])

Sets values to register/coil mapping from the start address.
Returns true on success.
Returns nil, error description on error, exception code if applicable.

Callback functions

mb:setwritecoilcb(fn)
mb:setwriteregistercb(fn)

Sets a callback function for coil/register write event.
Callback should accept two parameters: coil/register address and value (boolean or number).
For multiple writes callback is executed for each coil/register separately.
Use nil to remove a callback.
17 BACnet

17.1 Overview

BACnet is designed to allow communication of building automation and control systems for applications such as heating, ventilation, air conditioning control, lighting control, access control, fire detection systems and their associated equipment. The BACnet protocol provides exchange information for building automation devices, regardless of the particular building service they perform.

There are two formats for BACnet: BACnet Ethernet and BACnet IP. Both formats use Ethernet media for communications. The Automation Controller only supports BACnet IP format via the RJ45 Ethernet connector.

The Automation Controller can act as a BACnet server only (not as a client). The Automation Controller serves data which can be read by BACnet client devices (like Building Management Systems). BACnet client devices can write data to the server. This allows for a wide functional integration. For example, the Automation Controller gets Modbus master measurement data from a Modbus RTU and delivers the data via BACnet to a BMS (Building Management System).

BACnet IP is a protocol that complies with the following standards:

ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ANSI	American National Standards Institute
ISO	International Organization for Standardization

The Automation Controller has been certified by BACnet Testing Laboratories (BTL) as a BACnet Application Specific Controller (B – ASC).

The Automation Controller complies with all the necessary interoperability requirements.

17.2 List of all BACnet Interoperability Building Blocks (BIBBs) supported

<table>
<thead>
<tr>
<th>Data Sharing</th>
<th>Device and Network Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReadProperty-B</td>
<td>Dynamic Device Binding-B</td>
</tr>
<tr>
<td>ReadPropertyMultiple-B</td>
<td>Dynamic Object Binding-B</td>
</tr>
<tr>
<td>WriteProperty-B</td>
<td>DeviceCommunicationsControl-B</td>
</tr>
<tr>
<td>COV-B</td>
<td>TimeSynchronization-B</td>
</tr>
<tr>
<td>DS-RP-B</td>
<td>DM-DDB-B</td>
</tr>
<tr>
<td>DS-RPM-B</td>
<td>DM-DOB-B</td>
</tr>
<tr>
<td>DS-WP-B</td>
<td>DM-DCC-B</td>
</tr>
<tr>
<td>DS-COV-B</td>
<td>DM-TS-B</td>
</tr>
<tr>
<td></td>
<td>UTCTimeSynchronization-B</td>
</tr>
<tr>
<td></td>
<td>DM-UTC-B</td>
</tr>
<tr>
<td></td>
<td>ReinitializeDevice-B</td>
</tr>
<tr>
<td></td>
<td>DM-RD-B</td>
</tr>
</tbody>
</table>

BACnet Object Types Supported

Device ID
Analogue Value
Binary Value
Data Link Layer Options
Media: BACnet IP
Option: Register as a Foreign Device

17.3 Schneider Electric Building Management System

Schneider Electric offers StruxureWare as a BACnet certified Building Management System. Building Operation WorkStation is software used to configure and commission Enterprise Server (software) and the Automation Server (hardware) which can retrieve and send data to the C-Bus Automation Controller.

The following image shows a list of BACnet data points in the StruxureWare Building Operation WorkStation software (SBO).

The configuration of the C-Bus Automation Controller is done in three steps:
① Select objects in the objects list and activate the Export function.
② Configure BACnet communication (BACnet Settings).
③ Check the view of BACnet objects and optionally save as a .csv file that can be used for documentation.

17.4 Object export

Use the following applications for exporting to BACnet:

<table>
<thead>
<tr>
<th>Number</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Lighting</td>
</tr>
<tr>
<td>203</td>
<td>Enable</td>
</tr>
<tr>
<td>202</td>
<td>Trigger control</td>
</tr>
<tr>
<td>228</td>
<td>Measurement</td>
</tr>
<tr>
<td>250</td>
<td>User Parameter</td>
</tr>
<tr>
<td>255</td>
<td>Unit Parameter</td>
</tr>
</tbody>
</table>

![Image of BACnet data points in StruxureWare Building Operation WorkStation software]
Most C-Bus applications deliver, or are controlled by (AV) analogue numeric values 0-255 as well as status indication. These can be used as on/off/dim commands or scene triggers to C-Bus units, depending upon the C-Bus application being used.

The application 250 - User Parameter with the Boolean data type will appear as binary values (BV) with a range of 0-1. On C-Bus, this translates to 0=Off and 1=On.

17.5 BACnet configuration

The Automation Controller can be configured as a BACnet server in the BACnet Settings of the Automation Controller. The BACnet Building Management System on the client site will then discover the selected data.

17.5.1 BACnet settings

Configure the Automation Controller as a BACnet server in the BACnet Settings.

Path: Configurator → Utilities button → System button → Network tab → BACnet Settings.

<table>
<thead>
<tr>
<th>BACnet settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server enabled</td>
<td>Enable/disable Automation Controller as a BACnet server.</td>
</tr>
<tr>
<td>Device ID</td>
<td>BACnet device ID which must be unique on the BACnet network.</td>
</tr>
<tr>
<td>Password</td>
<td>BACnet password.</td>
</tr>
<tr>
<td>Object priority</td>
<td>Define the priority array to which the Automation Controller writes. The default value of the object property is 16. The Automation Controller writes to the Relinquish Default (RD) property by first reading (Upload from BMS) and takes the current value of the object. It is not possible to change the value of the Relinquish Default property afterwards. If the object read from the Automation Controller has a higher value than the RD property, it raises the Overwritten flag.</td>
</tr>
<tr>
<td>Add group address to object name</td>
<td>Names of BACnet objects contain information about group address (see BACnet objects on page 142).</td>
</tr>
<tr>
<td>Use comment as object description</td>
<td>Comments in objects are visible in the SBO (StruxureWare Building Operation WorkStation software) as a description.</td>
</tr>
<tr>
<td>Port</td>
<td>BACnet port, default 47808.</td>
</tr>
<tr>
<td>BBMD* IP</td>
<td>Router IP.</td>
</tr>
<tr>
<td>BBMD* port</td>
<td>Router port.</td>
</tr>
<tr>
<td>BBMD* lease time (seconds)</td>
<td>Registration resend interval.</td>
</tr>
</tbody>
</table>
17.5.2 **BACnet objects**

Open a list of BACnet objects with the selected parameters.

Path: **Configurator** → **Utilities** button → **System** button → **Network** tab → **BACnet objects**.

In the **Type** column of the above screenshot, there are five analogue (AV) and one binary value (BV).

BACnet objects can optionally be downloaded to a .csv file via the **Download CSV** button. This list can be used for documentation.

17.5.3 **BACnet COV setting**

The first 256 objects exported to BACnet can use the change of value (COV) subscription on the client side. This parameter defines the minimum change of value (delta) which implies a change of the value on the client side.

The default value is 1.

Path: **Configurator** → **Utilities** button → **System** button → **Network** tab → **BACnet COV settings**.

* BBMD is for port forwarding. Typically, this feature is not used. BBMD is an optional setup parameter and does not require configuration unless using BBMD onsite.
18 Advanced network functions

18.1 Network Settings
Path: Configurator → Utilities button → System button → Network tab.

18.1.1 Interfaces
Click Interfaces in the Network tab and then click eth0 to configure the IP address (see Change IP settings of the Ethernet interface on page 28). Click the Show network usage button to check the network traffic.

18.1.2 Routes
The routing table shows the network routes associated with the Automation Controller.
Click Routes in the Network tab.

eth0 network adapter
196.168.5.5 is the address of the gateway (router), i.e. access to Internet.
192.168.5.0 is the address of the local network (default is 192.168.0.0).

usb0 network adapter
192.168.254.0 is the address of the USB-B network connection. The IP address of the Automation Controller on this network is 192.168.254.10.
18.2 Network utilities

Use network utilities to check the connection to other network devices via Ping and Trace route. For example, check the connection between the Automation Controller and a Modbus IP gateway or a IP camera, locally or via the public address.

Path: Configurator → Utility tab → System button → Status tab → Network utilities.

Depending on your network settings, the response to a ping command may be blocked.

Example of pinging a network time protocol server (NTP)

--- 0.schneider.pool.ntp.org ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 18.447/26.858/26.897 ms

Trace route displays the path and delay times to a destination on the Internet.

18.3 Access via HTTP, HTTPS or VPN

Port forwarding is used to get remote access to an IP device in a local network. Settings must be made in the network router. See the manual for the particular router for instructions on how to set and use port forwarding.

If there is no static address on the public side of your router, a dynamic DNS service is needed to reach the your router. DNS service providers can supply information about configuring a dynamic DNS service.

HTTP or HTTPS

NOTICE

HTTP IS NOT A SECURE MEANS OF COMMUNICATION
- Information transmitted via HTTP is not encrypted and therefore insecure.
- Only use HTTPS for port forwarding and remote access.

Failure to follow these instructions may result in network security breaches.

VPN

Many network solution providers offer a way to set up a virtual private network (VPN) connection to get direct secure access via Internet to a local network. Usually a VPN solution requires VPN server and VPN client software.
Depending on the security standards used, VPN access can provide a high level of security.

18.3.1 HTTP Server
On the System page, set an additional HTTP and HTTPS port. By default, HTTP port 80 and HTTP port 443 are already set.
Path: Configurator → Utilities button → Services button → Http Server.

18.4 Remote services
Use remote services (XML/JSON) to remotely activate functions or control objects.
Path: Configurator → Utilities button → System button → Services tab → Remote services.

18.4.1 Parameters
Service status
Enable/disable the function.

Username
The username is remote.

Password
The default password is remote.

Allow only exported objects
Only control objects with the activated export function can be checked. This function is set in the Objects tab (see Additional parameters for all applications on page 47).

18.4.2 Examples
Show alerts
Alerts are displayed in the Alerts tab and can be shown in XML format in the browser.
Example of browser command:
http://remote:remote@192.168.0.10/scada-remote/?m=rss&r=alerts
Example of browser response:
...
 <item>
 <title>System start</title>
 <pubDate>Mon, 06 Feb 2017 09:22:35 +1030</pubDate>
 ...
...
Set value
In this example, the value of an object (light) with the composed address 0/56/1 is set to 255.

Example of browser command:
http://remote:remote@192.168.0.10/scada-remote/?m=json&r=grp&fn=write&alias=0/56/1&value=255

Example of browser response:
true

The new value of 0/56/1 is 255 and the light is switched on remotely.

18.5 FTP server
The Automation Controller includes an FTP server. By default, the FTP server is disabled.

Path: **Configurator** → **Utilities** button → **System** button → **Services** tab → **FTP server**.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF THE FTP SERVER CAN AFFECT AUTOMATION CONTROLLER OPERATING FILES.</td>
</tr>
<tr>
<td>The FTP server can expose files that are necessary for the Automation Controller to work properly.</td>
</tr>
<tr>
<td>● Exercise care when working with files via the FTP server.</td>
</tr>
<tr>
<td>● Do not move or delete any files that are necessary for Automation Controller operation.</td>
</tr>
<tr>
<td>Failure to follow these instructions may result in the Automation Controller becoming inoperative.</td>
</tr>
</tbody>
</table>

18.5.1 Parameters

Server status
Enable/disable the function.

Port
The default port is 22.

Username
The username is `ftp`.

Passive mode min port
Minimum port for passive mode.

Passive mode max port
Maximum port for passive mode.
18.6 Remote diagnostic

Remote diagnostic allows access to the controller via SSH (Secure Shell), a network protocol for secure services. By default, remote diagnostic is disabled.

Path: Configurator → Utilities button → System button → Services tab → Remote diagnostic.

![NOTICE]

USE OF THE REMOTE DIAGNOSTIC FUNCTION CAN AFFECT AUTOMATION CONTROLLER OPERATING FILES

Remote diagnostic can expose files that are necessary for the Automation Controller to work properly.

- Only use the Remote diagnostic function when recommended by Schneider technical support.
- Exercise care when using the Remote diagnostic function.
- Do not move or delete any files that are necessary for Automation Controller operation.

Failure to follow these instructions may result in the Automation Controller becoming inoperative.

By default, remote diagnostic is disabled. When enabled, Port 22 must be forwarded on the router.
19 Open source license information

This Schneider Electric product is provided with certain open source software components (collectively, “OSS”) developed by third parties. The OSS is licensed in accordance with the OSS license terms set forth below.

1 The following open source software components are licensed in accordance with the GNU General Public License v.2 reprinted below.

a. Linux Kernel

NOTE: This copyright does “not” cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does “not” fall under the heading of “derived work”. Also note that the GPL below is copyrighted by the Free Software Foundation, but the instance of code that it refers to (the linux kernel) is copyrighted by me and others who actually wrote it.

Copyright (c) 1991-1992 Linus Torvalds

b. LEDE Build System

Copyright (c) 2016 LEDE Project

c. Base-files

Copyright (c) 2007-2016 OpenWrt.org

Copyright (c) 2010 Vertical Communications

d. Eibd

Copyright (c) 2005-2011 Martin Koegler

e. Luarrd

Copyright (c) 1997-2015 Tobias Oetiker

f. Opkg

Copyright (c) 2011 Mikhail Gusarov

g. Rrdtool

Copyright (c) 1997-2015 Tobias Oetiker

h. Pcsk

Copyright (c) 2004 Norbert Buchmuller

i. Bacnet

Copyright (C) 2012 Steve Karg

Bacnet special exception to GNU General Public License v.2:

As a special exception, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other works to produce a work based on this file, this file does not by itself cause the resulting work to be covered by the GNU General Public License. However the source code for this file must still be made available in accordance with section (3) of the GNU General Public License.

This exception does not invalidate any other reasons why a work based on this file might be covered by the GNU General Public License.
j. Vsftpd

Copyright (c) Chris Evans

As copyright holder, I give permission for vsftpd to be linked to the OpenSSL libraries. This includes permission for vsftpd binaries to be distributed linked against the OpenSSL libraries. All other obligations under the GPL v2 remain intact.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

19.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
19.2 GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0 This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification"). Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1 You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2 You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.
3 You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
 a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for non-commercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4 You may not copy, modify, sub-license, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sub-license or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5 You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6 Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7 If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8 If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9 The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10 If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

19.3 NO WARRANTY

11 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
19.4 END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.
2. The following open source software components are licensed in accordance with the GNU Lesser General Public License v.2.1 reprinted below.
 a. Libmodbus
 Copyright (c) 2008-2014 Stephane Raimbault
 b. Px5g
 Copyright (c) 2009 Steven Barth
 Copyright (c) 2014 Felix Fietkau
 c. Uci
 Copyright (c) 2008-2014 OpenWrt.org
 Copyright (c) 2016 LEDE Project

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.]

19.5 Preamble
The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can re-link them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author’s reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the user’s freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based on the library” and a “work that uses the library”. The former contains code derived from the library, whereas the latter must be combined with the library in order to run.
19.6 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0 This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you".

1 A “Library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables.

2 The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the Library” means either the library or any derivative work under copyright law: that is to say, a work containing the library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a Library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does.

3 You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

4 You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code.

A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

As an exception to the Sections above, you may also combine or link a “work that uses the Library” with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer’s own use and reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

- Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.)

- Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user’s computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with.

- Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

- If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.

- Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

9 You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things:

- Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above.

- Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

10 You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

11 You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it.

12 Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

13 If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

14 It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

15 If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

16 The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation.

17 If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.
19.6.1 NO WARRANTY

1 BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

2 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

19.7 END OF TERMS AND CONDITIONS

How to apply these terms to your new libraries:

- If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

- To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

 one line to give the library’s name and an idea of what it does.

 Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

- Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob’ (a
library for tweaking knobs) written by James Random Hacker.

- signature of Ty Coon, 1 April 1990, Ty Coon, President of Vice.