Product Environmental Profile

TeSys K Differential thermal overload relay 3.7-5.5A

TeSys K

General information

Reference product	TeSys K Differential thermal overload relay 3.7-5.5A - LR2K0312
Description of the product	The main purpose of the thermal overload relays is to detect overload currents in order to protect the motor.
Description of the range	The products of the range are: This range consists of TeSys K thermal overload relay, the representative product used for analysis is TeSys K thermal overload relay (LR2K0312) The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology.
Functional unit	The functional unit of the LR2K0312 is to detect overload currents in order to protect the load for 20 years.
Specifications are:	rated insulation voltage: 690V conventional free air thermal current:6A rated operational voltage:690V AC rated impulse withstand voltage:6KV thermal protection adjustment range:3.7-5.5A thermal overload class: 10A

Constituent materials Reference product mass including the product, its packaging and additional elements and accessories PBT Polybutylene Terephtalate - <u>4</u>.8% UP Polyester - 1.3% PC Polycarbonate - 1.3% PA Polyamide - 7.2% Brass - 24.7% _Steel - 13.8% Diverse Thermosetting Plastics - 28.1% Cardboard - 6.3% Copper - 2.4% Stainless steel - 0.8% 43.10% Plastics 50.40% Metals 6.50%

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website https://www.se.com/ww/en/work/support/green-premium/

(1) Additional environmental information

End Of Life

Recyclability potential:

61%

The recyclability rate was calculated from the recycling rates of each material making up the product with the exception of data using the ESR database. For materials or components using the ESR database or the absence of data the conservative hypothesis "0% recyclability" was used.

Tenvironmental impacts

Reference service life time	20 years						
Product category	Other equipments - Passive product - non-continuous operation						
Installation elements	No						
Use scenario	See PSR						
Time representativeness	The collected data are representative of the year 2023						
Technological representativeness	The Modules of Technologies such as material production, manufacturing process and transport technology used in this PEP analysis (LCA-EIME in this case) are Similar and representative of the actual type of technologies used to make the product in production						
Geographical representativeness	Europe						
Energy model used	[A1 - A3] Electricity Mix; Low voltage; 2018; Czech Republic, CZ	[A5] Electricity Mix; Low voltage; 2018; Europe, EU-27	[B6] Electricity Mix; Low voltage; 2018; Europe, EU-27	[C1 - C4] Electricity Mix; Low voltage; 2018; Europe, EU-27			

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.schneiderelectric.com/contact

Mandatory Indicators		TeSys K Differential thermal overload relay 3.7-5.5A - LR2K0312						
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	1.34E+01	1.41E+00	7.21E-02	1.33E-02	1.16E+01	2.72E-01	-1.33E-01
Contribution to climate change-fossil	kg CO2 eq	1.31E+01	1.12E+00	7.21E-02	1.26E-02	1.16E+01	2.70E-01	-1.30E-01
Contribution to climate change-biogenic	kg CO2 eq	3.05E-01	2.87E-01	0*	6.28E-04	1.55E-02	1.39E-03	-2.67E-03
Contribution to climate change-land use and land use change	kg CO2 eq	4.29E-06	3.94E-06	0*	0*	0*	3.56E-07	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	2.26E-07	1.73E-07	1.10E-10	1.72E-10	4.97E-08	3.32E-09	-1.93E-08
Contribution to acidification	mol H+ eq	8.38E-02	1.61E-02	4.56E-04	3.88E-05	6.64E-02	8.63E-04	-1.46E-03
Contribution to eutrophication, freshwater	kg (PO4) ³⁻ eq	1.31E-04	6.27E-05	2.70E-08	3.03E-07	3.18E-05	3.63E-05	-3.74E-07
Contribution to eutrophication marine	kg N eq	9.54E-03	1.53E-03	2.14E-04	1.69E-05	7.54E-03	2.38E-04	-9.35E-05
Contribution to eutrophication, terrestrial	mol N eq	1.35E-01	1.70E-02	2.35E-03	1.17E-04	1.13E-01	2.49E-03	-1.02E-03
Contribution to photochemical ozone formation - human health	COVNM	3.14E-02	5.82E-03	5.92E-04	2.69E-05	2.42E-02	7.38E-04	-3.81E-04
Contribution to resource use, minerals and metals	kg Sb eq	3.93E-04	3.92E-04	0*	0*	8.43E-07	9.68E-07	-3.98E-05
Contribution to resource use, fossils	MJ	3.39E+02	3.20E+01	1.00E+00	1.31E-01	2.96E+02	9.99E+00	-2.79E+00
Contribution to water use	m3 eq	1.02E+00	4.34E-01	2.74E-04	1.02E-03	4.12E-01	1.78E-01	-8.36E-02

Additional indicators for the French regulation are available as well

idditional indicators for the French regulation are available as well								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding enewable primary energy used as raw material	MJ	5.74E+01	3.82E-01	0*	1.72E-02	5.69E+01	4.19E-02	3.69E-03
Contribution to use of renewable primary energy resources used as raw material	MJ	2.56E-01	2.56E-01	0*	0*	0*	0*	-1.83E-01
Contribution to total use of renewable primary energy esources	MJ	5.76E+01	6.38E-01	0*	1.72E-02	5.69E+01	4.19E-02	-1.79E-01
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw naterial	MJ	3.38E+02	3.04E+01	1.00E+00	1.31E-01	2.96E+02	9.99E+00	-2.79E+00
Contribution to use of non renewable primary energy esources used as raw material	MJ	1.53E+00	1.53E+00	0*	0*	0*	0*	0.00E+00
Contribution to total use of non-renewable primary energy esources	MJ	3.39E+02	3.20E+01	1.00E+00	1.31E-01	2.96E+02	9.99E+00	-2.79E+00
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to net use of freshwater	m³	2.46E-02	1.01E-02	6.37E-06	2.38E-05	9.58E-03	4.79E-03	-1.95E-03
Contribution to hazardous waste disposed	kg	8.77E+00	8.55E+00	0*	0*	2.17E-01	3.96E-03	-3.22E+00
Contribution to non hazardous waste disposed	kg	3.42E+00	1.65E+00	2.53E-03	5.67E-03	1.67E+00	8.52E-02	-9.54E-02
Contribution to radioactive waste disposed	kg	5.47E-04	1.86E-04	1.80E-06	7.00E-07	3.50E-04	7.80E-06	-4.34E-05
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to materials for recycling	kg	1.25E-01	1.43E-02	0*	0*	0*	1.10E-01	0.00E+00
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00
Contribution to exported energy	MJ	2.53E-02	1.37E-03	0*	5.41E-04	0*	2.34E-02	0.00E+00

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg de C	0.00E+00
Contribution to biogenic carbon content of the associated	kg de C	3.50E-03

Life cycle assessment performed with EIME version v6.1, database version 2023-02 in compliance with ISO14044, EF 3.0 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number:	ENVPEP2211018_V2	Drafting rules	PCR-4-ed4-EN-2021 09 06				
Verifier accreditation N°		Supplemented by	PSR-0005-ed3-EN-2023 06 06				
Date of issue	04-2024	Information and reference documents	www.pep-ecopassport.org				
		Validity period	5 years				
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006							
Internal X External							
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (Ddemain)							
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022							
The components of the present PEP may not be compared with components from any other program.							
Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"							

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com

Published by Schneider Electric

ENVPEP2211018_V2 ©2024 - Schneider Electric – All rights reserved

04-2024