Product Environmental Profile

EVlink Smart Wallbox 7 22 kW T2S RFID
General information

Representative product
EVlink Smart Wallbox 7 22 kW T2S RFID -EVB1A22P4RI

Description of the product
The EVlink Smart Wallbox station is designed to allow private persons to have a charging point dedicated to their electric vehicle. Its function unit is to allow the charging of an electrical vehicle 7 hours a day for 10 years.

Functional unit
Charging an electrical vehicle with power 7 to 22 kW, with RFID identificator, with T2S outlet during 10 years.

Constituent materials

Reference product mass
7610 g including the product, its packaging and additional elements and accessories

![Material composition diagram]

- polycarbonate (PC) - 51.2%
- polyamide resin 6.6 (PA6.6) - 4.7%
- polyvinylchloride (PVC) - 1.6%
- polyvinylchloride (PVC) 100% recycled - 0.8%
- polyamide 6 with 30% glass fibers (PA6 GF 30%) - 0.7%
- polyamide resin 6 (PA6) - 0.6%
- epoxy resin - 0.4%
- stainless - 1.4%
- steel - 3.6%
- copper - 5.6%
- various - 2.2%
- paper; virgin fiber - 15.1%
- cast iron - 0.5%
- iron - 0.5%
- glass fibre - 1.2%
- steel 35% recycled - 10%
- various - 2.2%
- paper; virgin fiber - 15.1%
- cast iron - 0.5%
- iron - 0.5%
- glass fibre - 1.2%
- stainless - 1.4%
- steel - 3.6%
- copper - 5.6%
- various - 2.2%
- paper; virgin fiber - 15.1%
- cast iron - 0.5%
- iron - 0.5%
- glass fibre - 1.2%
- stainless - 1.4%
- steel - 3.6%
- copper - 5.6%

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EU of 8 June 2011) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Additional environmental information

The EVlink Smart Wallbox 7 22 kW T2S RFID presents the following relevant environmental aspects:

Manufacturing
- Manufactured at a Schneider Electric production site ISO14001 certified

Distribution
- Weight and volume of the packaging optimized, based on the European Union's packaging directive
- Packaging weight is 1052.8 g, consisting of Cardboard (100%)
- Product distribution optimised by setting up local distribution centres

Installation
- Ref EVB1A22P4RI does not require any installation operations.
- The product does not require special maintenance operations.

Use
- This product contains materials that should be separated from the stream of waste so as to optimize end-of-life treatment.
- Recyclability potential: 21%

End of life
- End of life optimized to decrease the amount of waste and allow recovery of the product components and materials

Environmental impacts

Reference life time
- 10 years

Installation elements
- No special components needed

Use scenario
- The product is in active mode 29% of the time with a power use of 6,36W and in stand-by mode 71% of the time with a power use of 4,24W, for 10 years

Geographical representativeness
- France

Technological representativeness
- The EVlink Smart Wallbox station is designed to allow private persons to have a charging point dedicated to their electric vehicle. Its function unit is to allow the charging of an electrical vehicle 7 hours a day for 10 years.

Energy model used
- Energy model used: France

<table>
<thead>
<tr>
<th>Impact indicators</th>
<th>Unit</th>
<th>Total</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Installation</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to mineral resources depletion</td>
<td>kg Sb eq</td>
<td>2,98E-02</td>
<td>2,98E-02</td>
<td>0*</td>
<td>0*</td>
<td>1,40E-05</td>
<td>0*</td>
</tr>
<tr>
<td>Contribution to the soil and water acidification</td>
<td>kg SO₂ eq</td>
<td>3,84E-01</td>
<td>1,58E-01</td>
<td>4,48E-03</td>
<td>3,16E-04</td>
<td>2,19E-01</td>
<td>2,10E-03</td>
</tr>
<tr>
<td>Contribution to water eutrophication</td>
<td>kg PO₄³⁻ eq</td>
<td>5,60E-02</td>
<td>3,41E-02</td>
<td>1,03E-03</td>
<td>7,49E-05</td>
<td>2,02E-02</td>
<td>6,68E-04</td>
</tr>
<tr>
<td>Contribution to global warming</td>
<td>kg CO₂ eq</td>
<td>1,33E+02</td>
<td>6,85E+01</td>
<td>9,82E-01</td>
<td>1,01E-01</td>
<td>6,19E+01</td>
<td>1,53E+00</td>
</tr>
<tr>
<td>Contribution to ozone layer depletion</td>
<td>kg CFC11 eq</td>
<td>1,38E-04</td>
<td>3,50E-06</td>
<td>0*</td>
<td>0*</td>
<td>1,34E-04</td>
<td>5,96E-08</td>
</tr>
<tr>
<td>Contribution to photochemical oxidation</td>
<td>kg C₂H₄ eq</td>
<td>2,63E-02</td>
<td>1,31E-02</td>
<td>3,20E-04</td>
<td>3,32E-05</td>
<td>1,26E-02</td>
<td>2,12E-04</td>
</tr>
</tbody>
</table>

Resources use
- Net use of freshwater: m3
- Total Primary Energy: MJ

Compulsory indicators

EVlink Smart Wallbox 7 22 kW T2S RFID - EVB1A22P4RI

Environmental impacts

Reference life time
- 10 years

Installation elements
- No special components needed

Use scenario
- The product is in active mode 29% of the time with a power use of 6,36W and in stand-by mode 71% of the time with a power use of 4,24W, for 10 years

Geographical representativeness
- France

Technological representativeness
- The EVlink Smart Wallbox station is designed to allow private persons to have a charging point dedicated to their electric vehicle. Its function unit is to allow the charging of an electrical vehicle 7 hours a day for 10 years.

Energy model used
- Energy model used: France
<table>
<thead>
<tr>
<th>Impact indicators</th>
<th>Unit</th>
<th>Total</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Installation</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to fossil resources depletion</td>
<td>MJ</td>
<td>1,46E+03</td>
<td>8,62E+02</td>
<td>1,38E+01</td>
<td>1,42E+00</td>
<td>5,70E+02</td>
<td>9,25E+00</td>
</tr>
<tr>
<td>Contribution to air pollution</td>
<td>m³</td>
<td>8,05E+03</td>
<td>6,44E+03</td>
<td>4,18E+01</td>
<td>1,11E+01</td>
<td>1,48E+03</td>
<td>7,35E+01</td>
</tr>
<tr>
<td>Contribution to water pollution</td>
<td>m³</td>
<td>3,10E+04</td>
<td>2,81E+04</td>
<td>1,61E+02</td>
<td>1,19E+01</td>
<td>2,43E+03</td>
<td>2,67E+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resources use</th>
<th>Unit</th>
<th>Total</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Installation</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of secondary material</td>
<td>kg</td>
<td>7,00E-01</td>
<td>7,00E-01</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>MJ</td>
<td>2,90E+02</td>
<td>3,07E+01</td>
<td>0*</td>
<td>0*</td>
<td>2,60E+02</td>
<td>0*</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>MJ</td>
<td>6,46E+03</td>
<td>1,20E+03</td>
<td>1,39E+01</td>
<td>1,73E+00</td>
<td>5,23E+03</td>
<td>1,14E+01</td>
</tr>
<tr>
<td>Use of renewable primary energy excluding renewable</td>
<td>MJ</td>
<td>2,70E+02</td>
<td>1,05E+01</td>
<td>0*</td>
<td>0*</td>
<td>2,60E+02</td>
<td>0*</td>
</tr>
<tr>
<td>primary energy used as raw material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of renewable primary energy resources used as</td>
<td>MJ</td>
<td>2,02E+01</td>
<td>2,02E+01</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>raw material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of non renewable primary energy excluding non</td>
<td>MJ</td>
<td>6,30E+03</td>
<td>1,04E+03</td>
<td>1,39E+01</td>
<td>1,73E+00</td>
<td>5,23E+03</td>
<td>1,14E+01</td>
</tr>
<tr>
<td>renewable primary energy used as raw material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of non renewable primary energy resources used as</td>
<td>MJ</td>
<td>1,61E+02</td>
<td>1,61E+02</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>raw material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of non renewable secondary fuels</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste categories</th>
<th>Unit</th>
<th>Total</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Installation</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>1,43E+02</td>
<td>1,29E+02</td>
<td>0*</td>
<td>2,11E+00</td>
<td>0*</td>
<td>1,16E+01</td>
</tr>
<tr>
<td>Non hazardous waste disposed</td>
<td>kg</td>
<td>1,08E+02</td>
<td>5,50E+00</td>
<td>3,49E-02</td>
<td>0*</td>
<td>1,02E+02</td>
<td>3,06E-02</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>1,69E+00</td>
<td>3,10E-03</td>
<td>0*</td>
<td>0*</td>
<td>1,68E+00</td>
<td>0*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other environmental information</th>
<th>Unit</th>
<th>Total</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Installation</th>
<th>Use</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
<td>1,52E+00</td>
<td>1,78E-01</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>1,34E+00</td>
</tr>
<tr>
<td>Components for reuse</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>2,86E-01</td>
<td>3,28E-02</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>2,53E-01</td>
</tr>
<tr>
<td>Exported Energy</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
<td>0*</td>
</tr>
</tbody>
</table>

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version EIME v5.5, database version 2015-04.

The end of life phase is the life cycle phase which has the greatest impact on the majority of environmental indicators (based on compulsory indicators).

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Independent verification of the declaration and data, in compliance with ISO 14025 : 2010

The PCR review was conducted by a panel of experts chaired by Philippe Osset (SOLINNEN)
The elements of the present PEP cannot be compared with elements from another program.

Document in compliance with ISO 14025 : 2010 « Environmental labels and declarations. Type III environmental declarations »

Schneider Electric Industries SAS
Country Customer Care Center
www.schneider-electric.com/contact
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 896 313 776 €

www.schneider-electric.com
Published by Schneider Electric
SCHN-00073-V01.01-EN © 2016 - Schneider Electric – All rights reserved 05-2016