Product Environmental Profile

Prisma M Floor standing switchboards up to 4000A
Product Environmental Profile – PEP

Product overview
The analysed product is part of the Prisma M range.
The main function of Prisma M Floor standing switchboards up to 4000A is:
• Installing electrical devices (mounting plates and front plates)
• Distribution of current (distribution blocks, busbars, etc)
• Connection of switchboards on site (connections, terminal blocks, cable tie supports, etc)
The functional unit used for the Life Cycle Assessment is: To contribute to the safety of people by ensuring the installation of electrical devices, distribute current and connect switchboards for 20 years.
The range consists of switchboards up to 4000A.

Use of the components in the Prisma M range ensures the creation of switchboards complying with standards IEC 61439-1 and 2, as well as local versions with the following electrical characteristics:
• Rated insulation level of main busbars: 1000 V
• Rated peak withstand current Ip: 220 kA
• Rated short-time withstand current Icw: 100 kA rms / 1 second
• Frequency: 50/60 Hz.
• The product used for the analysis is a Prisma M 1600A switchboard with components for the following functional units:
• incoming for: 1600A fixed circuit breaker (typically Compact NS)
• outgoing for:
 - 400A horizontal circuit breakers (typically Compact NSX)
 - 250A horizontal circuit breakers (typically Compact NSX)
 - 100A vertical circuit breakers (typically 4 pieces Compact NSX)
 - modular circuit breakers (typically 4 rows of Acti 9 devices)
Products in the Prisma M range have lifetime of 20 years. The representative product used for the analysis is a configuration comprised of the following commercial references:

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the Prisma M 1600A switchboard is 345402 g including packaging. The constituent materials are distributed as follows:
Substance assessment

Products of this range are designed in conformity with the requirements of the European RoHS Directive 2011/65/EU and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Manufacturing

The Prisma M Floor standing switchboards up to 4000A product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive.

The Prisma M 1600A switchboard packaging weight is 10093 g. It consists of cardboard of 8285g, paper of 955g and polyethylene film of 853g.

![Material Composition Diagram](image-url)
Use
The products of the Prisma M Floor standing switchboards up to 4000A range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The dissipated power is 306W for the Prisma M 1600A switchboard. This thermal dissipation represents less than 0.01% of the power which passes through the product.

The product range does not require special maintenance operations.

End of life
At end of life, the products in the Prisma M Floor standing switchboards up to 4000A range have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range doesn’t need any special end-of-life treatment. According to countries’ practices this product can enter the usual end-of-life treatment process.

The recyclability potential of the products has been evaluated using the “ECO DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio without packaging is: 89%.
As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts
Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:
- The calculation was performed on the Prisma M 1600A switchboard.
- Product packaging is included.
- Installation components: no special components included.
- Scenario for the Use phase: this product range is included in the category: ‘energy passing product’.
 Assumed service lifetime is 20 years. Product dissipation is 306W at 100% load and service uptime is 100%.
- The geographical representative area for the assessment is China and the electrical power model used for calculation is China model.
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>Prisma M 1600A switchboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S = M + D + I + U + E</td>
</tr>
<tr>
<td>Air Acidification (AA)</td>
<td>kg H+ eq</td>
<td>1.1834E+01 2.5564E-01 5.5648E-03 0.0000E+00 1.1569E+01 4.4697E-03</td>
</tr>
<tr>
<td>Air Toxicity (AT)</td>
<td>m³</td>
<td>1.4116E+10 5.4098E+08 8.2876E+06 0.0000E+00 1.3560E+10 6.6566E+06</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>MJ</td>
<td>6.7635E+05 1.5832E+04 3.9952E+02 0.0000E+00 6.5980E+05 3.2089E+02</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>kg CO₂ eq</td>
<td>5.5926E+04 1.1878E+03 2.8360E+01 0.0000E+00 5.4687E+04 2.2779E+01</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>kg</td>
<td>1.5199E+03 4.0723E+01 3.5091E-05 0.0000E+00 1.4792E+03 2.8185E-05</td>
</tr>
<tr>
<td>Ozone Depletion Potential (ODP)</td>
<td>kg CFC-11 eq</td>
<td>5.0359E-04 6.9598E-05 5.3719E-08 0.0000E+00 4.3930E-04 4.3147E-08</td>
</tr>
<tr>
<td>Photochemical Ozone Creation Potential (POCP)</td>
<td>kg C₂H₄ eq</td>
<td>7.2067E+00 2.1093E-01 7.0587E-03 0.0000E+00 6.9830E+00 5.6696E-03</td>
</tr>
</tbody>
</table>
Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5 and with its database version 2013-02.

The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators while manufacturing phase is the life cycle phase having the greatest impact on Raw Material Depletion (RMD).

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: Depending on the impact analysis, the environmental indicators (without RMD) of other products in this family may be proportional extrapolated by energy consumption values. For RMD, impact may be proportional extrapolated by mass of product.

System approach

As the products of the range are designed in accordance with the European RoHS Directive 2011/65/EU, they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Acidification (AA)</td>
<td>The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.</td>
</tr>
<tr>
<td>Air Toxicity (AT)</td>
<td>This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>This indicator gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.</td>
</tr>
<tr>
<td>Global Warming (GW)</td>
<td>The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>This indicator quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.</td>
</tr>
<tr>
<td>Ozone Depletion (OD)</td>
<td>This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.</td>
</tr>
<tr>
<td>Photochemical Ozone Creation (POC)</td>
<td>This indicator quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).</td>
</tr>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.</td>
</tr>
<tr>
<td>Water Eutrophication (WE)</td>
<td>Eutrophication is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO₄³-(phosphate).</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.</td>
</tr>
</tbody>
</table>

PEP achieved with Schneider-Electric TT01 V10.3 and TT02 V20 procedures in compliance with ISO14040 series standards

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifier accreditation N° : VH08</td>
<td>Program information: www.pep-ecopassport.org</td>
</tr>
<tr>
<td>Date of issue: 05-2015</td>
<td>Period of validity: 4 years</td>
</tr>
<tr>
<td>Independent verification of the declaration and data, according to ISO 14025:2006</td>
<td>In compliance with ISO 14025:2006 type III environmental declarations</td>
</tr>
</tbody>
</table>

PCR review was conducted by an expert panel chaired by J. Chevalier (CSTB).

The elements of the actual PEP cannot be compared with elements from another program.