Product Environmental Profile
Modicon TMH2GDB
Product Environmental Profile – PEP

Product overview
The Modicon TMH2GDB (Remote Graphic Display) is a local control unit. It is provided to the Modicon M221 Logic Controller range for monitoring, commissioning, operating, and maintenance operations. The environmental analysis was performed in conformity with ISO 14040.

Constituent materials
The mass of the product is 328,66g including packaging. The constituent materials are distributed as follows:

- Stainless steel: 0.7%
- PA Polyamide: 5.7%
- PBT Polybutylene Terephthalate: 0.6%
- PC Polycarbonate: 25.1%
- PUR Polyurethane: 0.1%
- PE Polyethylene: 0.1%
- Elastomer: 5.7%
- Cables and connectors: 3.2%
- Electronic cards: 10.2%
- LCD screen: 7.5%
- Cardboard: 35.4%
- Paper: 3.7%
- Polyethylene film: 2.1%
- Polyamide: 5.7%
- Polycarbonate: 25.1%
- Polyurethane: 0.1%
- Polyethylene: 0.1%
- Elastomer: 5.7%
- Cables and connectors: 3.2%
- Electronic cards: 10.2%
- LCD screen: 7.5%
- Cardboard: 35.4%
- Paper: 3.7%
- Polyethylene film: 2.1%

Substance assessment
The products is designed in conformity with the requirements of the European RoHS Directive 2011/65/EU and does not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website. (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page)

Manufacturing
The Modicon TMH2GDB is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution
The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The Modicon TMH2GDB packaging weight is 128.3 g. It consists of cardboard (116.3g) and paper (12g).
Use

The Modicon TMH2GDB does not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.
The electrical power consumption depends on the conditions under which the product is implemented and used.
The electrical power consumed by the M2xx Hyperion Keypad is between 240 mW and 417mW. It is 417 mW in active mode and 0% in standby mode.
The product does not require special maintenance operations.

End of life

At end of life, the Modicon TMH2GDB has been optimized to decrease the amount of waste and allow recovery of the product components and materials.
This product contains one electronic card and polycarbonate housing parts that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website Green Premium website (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

The recyclability potential of the product has been evaluated using the “ECO DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).
According to this method, the potential recyclability ratio without packaging is: 46%.
As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.
Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- The calculation was performed on TMH2GDB.
- Product packaging is included.
- Installation components: no special components included.
- Scenario for the Use phase: this product is included in the category 2 “Energy consuming products” (assumed service life is 10 years and use scenario is: 417mW for 100% service uptime).
- The geographical representative area for the assessment is worldwide and the electrical power model used for calculation is the European model.
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>TMH2GDB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = M + D +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I + U + E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Air Acidification (AA)</td>
<td>kg H+ eq</td>
<td>1,01E-02</td>
</tr>
<tr>
<td>Air toxicity (AT)</td>
<td>m³</td>
<td>1,79E+07</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>MJ</td>
<td>6,61E+02</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>kg CO₂ eq.</td>
<td>4,58E+01</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>kg</td>
<td>8,90E-01</td>
</tr>
<tr>
<td>Ozone Depletion Potential (ODP)</td>
<td>kg CFC-11 eq.</td>
<td>3,95E-06</td>
</tr>
<tr>
<td>Photochemical Ozone Creation Potential (POCP)</td>
<td>kg C₂H₄ eq.</td>
<td>6,13E-03</td>
</tr>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>Y-1</td>
<td>4,34E-14</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>dm3</td>
<td>3,69E+02</td>
</tr>
<tr>
<td>Water Eutrophication (WE)</td>
<td>kg PO₄³⁻ eq.</td>
<td>5,91E-04</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>m³</td>
<td>7,39E+00</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5 and with its database version 2013-02
The Manufacturing phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

System approach

As the products of the range are designed in accordance with the European RoHS Directive 2011/65/EU, they can be incorporated without any restriction in an assembly or an installation subject to this Directive.
Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Air Acidification (AA)
The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.

Air Toxicity (AT)
This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Energy Depletion (ED)
This indicator gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.

Global Warming (GW)
The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.

Hazardous Waste Production (HWP)
This indicator quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Ozone Depletion (OD)
This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Photochemical Ozone Creation (POC)
This indicator quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Raw Material Depletion (RMD)
This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Water Depletion (WD)
This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

Water Eutrophication (WE)
Eutrophication is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO₄³⁻ (phosphate).

Water Toxicity (WT)
This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

PEP achieved with Schneider-Electric TT01 V9 and TT02 V18 procedures in compliance with ISO14040 series standards

Registration N°: SCHN-2014-086
Verifier accreditation N°: VH08
Program information: www.pep-ecopassport.org
Date of issue: 10-2014
Period of validity: 4 years

Independent verification of the declaration and data, according to ISO 14025:2006

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
<th>X</th>
</tr>
</thead>
</table>

In compliance with ISO 14025:2006 type III environmental declarations

PCR review was conducted by an expert panel chaired by J. Chevalier (CSTB).

The elements of the actual PEP cannot be compared with elements from another program.