Product Environmental Profile

30–60A Light Duty and General Duty E-series Safety Switches
Product overview
The E-Series Light and General Duty safety switches are designed for residential and commercial applications where durability and economy are prime considerations. Typical loads are lighting, air conditioning and appliances. When equipped with fuses, over-current and short circuit protection is also available. The switches are also suitable as service equipment when equipped with a factory-installed neutral assembly or a field-installed equipment grounding kit.

E-series Light and General Duty safety switches comply with UL® 98 and CSA® no22 on the offer noted below:

- Rated 30 and 60 Amperes
- Fused and non-fused 30 A and non-fused 60A
- NEMA TYPE 1 and 3R
- Light and General Duty Suitable for use on120/240 Vac systems
- Horse power rated
- Suitable for use as service equipment

The representative product used for the analysis is the DU221RB Safety Switch.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials
The mass of the product range is from 3.3 lbs. (1.5Kg) to 5.2 lbs. (2.35 Kg) including packaging. It is 4.84 lbs. (2.20 Kg) for the DU221RB. The constituent materials are distributed as follows:

Substance assessment
Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website.
Product Environmental Profile - PEP

Manufacturing

The E-Series Light and General Duty Safety Switches product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized. The E-Series Light and General Duty Safety Switches packaging weight is 0.32 lbs (0.14 Kg) and consists of corrugated carton.

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Use

The products of the E-Series Light and General Duty Safety Switches range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is between 0.37 W and 2.8 W for the E-Series Light and General Duty Safety Switches product range. It is 0.37 W for the referenced DU221RB Safety Switch. This thermal dissipation represents less than 0.01% of the power which passes through the product.

End of life

At end of life, the products in the E-Series Light and General Duty Safety Switches have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range doesn’t need any special end-of-life treatment. According to countries’ practices this product can enter the usual end-of-life treatment process.

The recyclability potential of the products has been evaluated using the “ECO DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 84%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the DU221RB
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category energy passing product with an assumed service life is 20 years.
The use scenario is: product dissipation is 0.37 W full load, loading rate is 30% and service uptime percentage is 100%
- the geographical representative area for the assessment is United States and the electrical power model used for calculation is American model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km)
Presentation of the product environmental impacts

Data calculated for product use for a period of 20 years.

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>For DU221RB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = M + D + I + U + E</td>
<td>M</td>
</tr>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>1.48 \times 10^{-14}</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>1.76 \times 10^{2}</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm^3</td>
<td>6.19 \times 10^{1}</td>
</tr>
<tr>
<td>Global Warming</td>
<td>kg-CO_2</td>
<td>1.28 \times 10^{1}</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>kg-CFC-11</td>
<td>1.27 \times 10^{6}</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m^3</td>
<td>3.14 \times 10^{6}</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>kg-C_2H_4</td>
<td>5.21 \times 10^{3}</td>
</tr>
<tr>
<td>Air acidification</td>
<td>kg-H^+</td>
<td>1.89 \times 10^{3}</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>m^3</td>
<td>2.39</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>kg-PO_4</td>
<td>3.73 \times 10^{4}</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>7.18 \times 10^{1}</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5.1, and with its database version 2013-02.

The Use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: the RMD impact of the products of the family may be proportional extrapolated by the mass of product. The other environmental indicators of the other products in this family may be proportional extrapolated by power dissipation of the product.

System approach

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Raw Material Depletion (RMD) This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

Global Warming (GW) The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO₂.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Air Toxicity (AT) This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC) This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Hazardous Waste Production (HWP) This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.