Product Environmental Profile

Wiser Wall Display: EER22000

[Image of Wiser Wall Display]
Product overview

Wiser Wall Display EER22000 is the wall-mounted touchscreen used as the remote display having the rated voltage of 24VDC and the rated current 60 mA. The main purpose of the Wiser Wall Display EER22000 is to show the consumption of a dwelling according to the 5 usages mentioned in the RT2012 regulation (heating, sanitary hot water, cooling, sockets and others). The product allows visualizing the actual and historical consumption data. Connecting the Wiser Wall display to the Wiser Controller enables the enhanced control features. The Wiser Wall Display is mounted in the life space.

The representative product used for the analysis is EER22000.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product EER22000 is 260 g including packaging.

The constituent materials are distributed as follows:

- Cardboard: 34.5%
- PET Polyethylen Terephalate: 12.3%
- Eilon: 0.7%
- Steel: 0.2%
- PC Polycarbonate: 15.6%
- PE Polyethylene: 0.1%
- PP Polypropylene: 0.0%
- PBT Polybutylene Terephalate: 0.0%

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Manufacturing

The Wiser Wall Display EER22000 product range is manufactured at a production site which complies with the regulations governing industrial sites.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union’s packaging directive.

The Wiser Wall Display EER22000 packaging weight is 95 g. It consists of only Cardboard (95 g).

The product distribution flows have been optimised by setting up local distribution centres close to the market area.

Use

The products of the Wiser Wall Display EER22000 range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The electrical power consumed by the Wiser Wall Display EER22000 is 1.44 W. It is 1.44 W in 100% active mode for EER22000.

The product range does not require special maintenance operations.
End of life
At the end of life, the products have been optimized to decrease the amount of waste and allow recovery of the product components and materials. This product range contains PCBA and LCD screen attached in the PCBA that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

The recyclability potential of the products has been evaluated using the “ECO DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME). According to this method, the potential recyclability ratio is: 14 %.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts
Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the EER22000
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category 2 Energy consuming product: (assumed service life is 10 years and use scenario is: Product dissipation is 1.44 W, loading rate is 100% and service uptime 100%).
- the geographical representative area for the assessment is Europe and electrical power model used for calculation is European model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>S = M + D + I + U + E</th>
<th>M</th>
<th>D</th>
<th>I</th>
<th>U</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>2.31E+14</td>
<td>2.14E-14</td>
<td>4.26E-19</td>
<td>0.00E+00</td>
<td>1.64E-15</td>
<td>5.30E-19</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>2.07E+03</td>
<td>6.30E+02</td>
<td>3.12E-01</td>
<td>0.00E+00</td>
<td>1.44E+03</td>
<td>3.89E-01</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm³</td>
<td>7.33E+02</td>
<td>5.24E+02</td>
<td>2.96E-02</td>
<td>0.00E+00</td>
<td>2.09E+02</td>
<td>3.69E-02</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g≈CO₂</td>
<td>1.25E+05</td>
<td>5.23E+04</td>
<td>2.47E+01</td>
<td>0.00E+00</td>
<td>7.29E+04</td>
<td>3.08E+01</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>g≈CFC11</td>
<td>5.65E-03</td>
<td>1.65E-03</td>
<td>1.75E-05</td>
<td>0.00E+00</td>
<td>3.96E-03</td>
<td>2.18E-05</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>2.57E+07</td>
<td>1.36E+07</td>
<td>4.66E+03</td>
<td>0.00E+00</td>
<td>1.21E+07</td>
<td>5.80E+03</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g≈C₂H₄</td>
<td>3.24E+01</td>
<td>7.73E+00</td>
<td>2.11E-02</td>
<td>0.00E+00</td>
<td>2.47E+01</td>
<td>2.63E-02</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g≈H⁺</td>
<td>2.14E+01</td>
<td>1.16E+01</td>
<td>3.15E-03</td>
<td>0.00E+00</td>
<td>9.84E+00</td>
<td>3.92E-03</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm³</td>
<td>2.26E+04</td>
<td>1.77E+03</td>
<td>3.09E+00</td>
<td>0.00E+00</td>
<td>2.08E+04</td>
<td>3.85E+00</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g≈PO₄</td>
<td>4.18E-01</td>
<td>2.46E-01</td>
<td>4.11E-04</td>
<td>0.00E+00</td>
<td>1.71E-01</td>
<td>5.12E-04</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>2.64E+00</td>
<td>1.43E+00</td>
<td>9.19E-06</td>
<td>0.00E+00</td>
<td>1.21E+00</td>
<td>1.15E-05</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 11, and with its database version 4.0

Both the manufacturing and use phase are the life cycle phases which have the greatest impact on the majority of environmental indicators.

System approach
As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Raw Material Depletion (RMD) This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm3.

Global Warming (GW) The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO$_2$.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Air Toxicity (AT) This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC) This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C$_2$H$_4$).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H$^+$.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Hazardous Waste Production (HWP) This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.