Product Environmental Profile

Altivar 212
Range: 22 to 75 kW – IP55
Product overview

The main purpose of the products range Altivar 212 – 22 to 75 kW – IP55 is to speed control and variation of an asynchronous electric motor for HVAC applications. This range consists of products with ratings from 22 to 75 kW for operation from 380/480 V, 3 phases supplies.

The representative product used for the analysis is the Altivar 212 / 22 kW / 380/480 V / 3PH / IP55 (ref. ATV212WD22N4).

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 41 kg and 88 kg including packaging. It is 41 kg for the Altivar 212 / 22 kW / 380-480 V / 3PH / IP55

The constituent materials are distributed as follows:

- **Wood**: 19.4%
- **Aluminium**: 9.9%
- **Cardboard**: 9.4%
- **Cables and connectors**: 2.6%
- **Electronic circuit > 10cm²**: 4.6%
- **Electrolytic capacitor (D>25, h>25mm)**: 1.2%
- **Brass**: 2.5%
- **Steel**: 49.1%
- **Other material under 0.01% with a total of 0.0%**
- **PC Polycarbonate**: 0.4%
- **PBT Polybutylene Terephthalate**: 0.3%
- **PA Polyamide Elastomer**: 0.2%
- **Other material under 0.01% with a total of 0.0%**
- **Paper**: 0.2%

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Manufacturing

The Altivar 212 – 22 to 75 kW – IP55 product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union’s packaging directive.

The Altivar 212 – 22 to 75 kW – IP55 packaging weight is 12 Kg. It consists of recyclable cardboard, polyethylene bags for accessories and paper for simplified users manuals.

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.
Product Environmental Profile - PEP

Use

The products of the Altivar 212 – 22 to 75 kW – IP55 range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The electrical power consumed by the Altivar 212 – 22 to 75 kW – IP55 range is between 626 W and 1945 W. It is 626 W in active mode and 24 W in standby mode for the referenced Altivar 212 / 22 kW / 380-480 V / 3PH / IP55.

End of life

At end of life, the products in the Altivar 212 – 22 to 75 kW – IP55 have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains electrolytic capacitors and Printed Circuit Boards Assemblies that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range.

The recyclability potential of the products has been evaluated using the "Codde- BV recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 58%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the Altivar 212 / 22 kW / 380-480 V / 3PH / IP55 (ref ATV212WD22N4)
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category N 2 "Energy consuming products": (assumed service life is 10 years and use scenario is:
 - active phase: consumed power: 626 W for 60 % uptime
 - idle phase: consumed power: 24 W for 30 % uptime,
 - sleep phase: consumed power: 0 W for 10 % uptime,
 - 24 hours per day, during 10 years.

The electrical power model used for calculation is European model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km).

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>For give the name and commercial reference or description of the representative product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>1,84E-12 1,41E-12 2,55E-16 0,00E+00 4,36E-13 8,49E-17</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>3,88E+05 3,88E+03 1,87E+02 0,00E+00 3,84E+05 6,23E+01</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm³</td>
<td>5,71E+04 1,61E+03 1,78E+01 0,00E+00 5,55E+04 5,91E+00</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g=CO₂</td>
<td>1,96E+07 2,32E+05 1,48E+04 0,00E+00 1,94E+07 4,93E+03</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>g=CFC-11</td>
<td>1,11E+00 4,42E-02 1,05E-02 0,00E+00 1,05E+00 3,49E-03</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>3,28E+09 6,50E+07 2,79E+06 0,00E+00 3,21E+09 9,29E+05</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g=C₂H₄</td>
<td>6,65E+03 7,46E+01 1,27E+01 0,00E+00 6,56E+03 4,22E+00</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g=H⁺</td>
<td>2,66E+03 4,08E+01 1,89E+00 0,00E+00 2,62E+03 6,29E-01</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm³</td>
<td>5,57E+06 3,70E+04 1,85E+03 0,00E+00 5,53E+06 6,17E+02</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g=PO₄</td>
<td>5,28E+01 6,99E+00 2,46E-01 0,00E+00 4,55E+01 8,20E-02</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>3,28E+02 6,38E+00 5,51E-03 0,00E+00 3,21E+02 1,83E-03</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4.0, and with its database version 11.

The Use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

For our electrical/electronic products, the first proposition for significant parameter is energy consumption values. Depending on the impact analysis, the environmental indicators (without RMD) of other products in this family may be proportionally extrapolated by energy consumption values. For RMD, impact may be proportionally extrapolated by mass of the product.
System approach

The variable speed drive saves energy by optimising the operating cycles of the machines used for HVAC applications

> Ready for Building Energy efficiency

The ATV212 helps you to save up to 30% of energy.

The consumption is reduced when using the control mode dedicated to pumps and fans.

Harmonics: Benefits of the solution:

- 15 % of savings on Investment and Operating cost.
 - Innovative Harmonic less technology to optimize your investment.

The products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.</td>
</tr>
<tr>
<td>Global Warming (GW)</td>
<td>The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.</td>
</tr>
<tr>
<td>Ozone Depletion (OD)</td>
<td>This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.</td>
</tr>
<tr>
<td>Air Toxicity (AT)</td>
<td>This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.</td>
</tr>
<tr>
<td>Photochemical Ozone Creation (POC)</td>
<td>This indicator quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).</td>
</tr>
<tr>
<td>Air Acidification (AA)</td>
<td>The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>This indicator is representing the water eutrophication (enrichment in nutritive elements) of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams of PO₄ as if all substances were PO₄ using equivalency in their nitrification potential.</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.</td>
</tr>
<tr>
<td>Heating Ventilation & Air Conditioning (HVAC)</td>
<td></td>
</tr>
</tbody>
</table>

Registration No.: SCHN-2011-615-V0
Accreditation No. of verifier:: VH05
Date of issue: 12-2011
Period of validity: 4 years

Independent verification of the declaration and data, in compliance with ISO 14025:2006

In compliance with the ISO 14025:2006 type III environmental declaration standard.

The critical review of the PCR was conducted by a panel of experts chaired by J. Chevalier (CSTB).

The information in the present PEP cannot be compared with information from another programme.