Product overview
The main purpose of the Thalassa Polyester Accessories is to complete the main product – Thalassa polyester enclosures – with more functionalities and alternative usages. This range consists of: external accessories for installation and locking, and internal accessories for mounting equipment and cable management. This PEP concerns plinths made of polyester reinforced with fiberglass, designed to be installed on the floor, on concrete base or into the ground to support and raise the main enclosure. The representative product used for the analysis is NSYZHPLA103. The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology. The environmental analysis was performed in conformity with ISO 14040.

Constituent materials
The mass of the product range is from 4400 g and 22620 g including packaging. It is 22174 g for the NSYZHPLA103. The constituent materials are distributed as follows:

Substance assessment
Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Manufacturing
The Polyester Plinths product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution
The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The NSYZHPLA103 packaging weight is 3400,2 g. It consists of cardboard (corrugated) and wood (plain, for pallet).

There aren’t recycled materials used in this packaging.
The product distribution flows have been optimised by setting up local distribution centres close to the market areas.
Use
The products of the Polyester Plinths range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

End of life
At end of life, the products in the Polyester Plinths have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range doesn’t need any special end-of-life treatment. According to countries’ practices this product can enter the usual end-of-life treatment process.

The recyclability potential of the products has been evaluated using the “ECODEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME). According to this method, the potential recyclability ratio is: 18%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts
Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the NSYZHPLA103
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category Enclosure: (assumed service life is 20 years).
End of life impacts are based on a worst case transport distance to the recycling plant (1000km).

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>Polyester Plinths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = M + D + I + U + E</td>
<td>M</td>
</tr>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>5,57E-15</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>3,80E+03</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm³</td>
<td>4,48E+02</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g=CO₂</td>
<td>1,23E+05</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>g=CFC-11</td>
<td>1,27E-02</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>5,10E+07</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g=C₂H₄</td>
<td>9,57E+01</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g=H⁺</td>
<td>3,04E+01</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm³</td>
<td>1,78E+04</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g=PO₄</td>
<td>6,54E+00</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>1,24E+00</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4.0, and with its database version 11.0.

The manufacturing phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: the environmental indicators for manufacturing and distribution of other products in this family are proportional extrapolated by product mass.

System approach
As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive. Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Raw Material Depletion (RMD) This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm3.

Global Warming (GW) The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO$_2$.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Air Toxicity (AT) This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC) This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C$_2$H$_4$).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H$^+$.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Hazardous Waste Production (HWP) This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

PEP in compliance with Schneider-Electric TT01 V4.8 and TT02 V15 procedures

PEP established according to PCR PEPecopassport 2010:1.0 rules

Published by: Schneider Electric