Product Environmental Profile
Metal base fixing Harmony ZB4BZ009
Product overview

The main purpose of the ZB4BZ009 is to fix and support the electrical contact blocks and pilot lights of the Harmony range.
This assembly consists of: 1 metal base fixing.
The representative product used for the analysis is ZB4BZ009.
The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the ZB4BZ009 product is 39.1 g including packaging.
The constituent materials are distributed as follows:

- Steel: 47.8%
- Zamak: 48.2%
- Cardboard: 3.8%
- Paper: 0.1%
- Stainless steel: 0.1%

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

Manufacturing

The ZB4BZ009 product is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive.
The ZB4BZ009 packaging weight is 1.52 g. It consists of paper and cardboard.
The product distribution flows have been optimised by setting up local distribution centres close to the market areas.
Product Environmental Profile - PEP

Use

The product ZB4BZ009 does not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use. The product ZB4BZ009 doesn’t need any maintenance operation.

End of life

At end of life, the product ZB4BZ009 has been optimized to decrease the amount of waste and allow recovery of the product components and materials. This product doesn’t need any special end-of-life treatment. According to countries’ practices this product can enter the usual end-of-life treatment process. The recyclability potential of the products has been evaluated using the “Codde- BV recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME). According to this method, the potential recyclability ratio is: 79 %.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the ZB4BZ009.
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category 3 (Enclosure or envelope) and don’t needs using scenario.

The electrical power model used for calculation is European model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>For ZB4BZ009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S = M + D + I + U + E)</td>
<td>M</td>
</tr>
<tr>
<td>Raw Material Depletion</td>
<td>(Y^{-1})</td>
<td>9,26E-17</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>4,41</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm(^3)</td>
<td>1,17</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g (\sim \text{CO}_2)</td>
<td>3,39E+02</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>g (\sim \text{CFC-11})</td>
<td>2,37E-05</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m(^3)</td>
<td>9,50E+04</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g (\sim \text{C}_2\text{H}_4)</td>
<td>1,14E-01</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g (\sim \text{H}^+)</td>
<td>6,49E-02</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm(^3)</td>
<td>2,48E+01</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g (\sim \text{PO}_4)</td>
<td>6,62E-03</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>2,35E-02</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4, and with its database version 11.

The Manufacturing phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

System approach

Three contact blocks can be mounted on each stair (only 2 on the previous generation) of the ZB4BZ009 fixing base, and this without needing screw.

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Depletion (RMD)</td>
<td>This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.</td>
</tr>
<tr>
<td>Energy Depletion (ED)</td>
<td>This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.</td>
</tr>
<tr>
<td>Water Depletion (WD)</td>
<td>This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.</td>
</tr>
<tr>
<td>Global Warming (GW)</td>
<td>The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.</td>
</tr>
<tr>
<td>Ozone Depletion (OD)</td>
<td>This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.</td>
</tr>
<tr>
<td>Air Toxicity (AT)</td>
<td>This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.</td>
</tr>
<tr>
<td>Photochemical Ozone Creation (POC)</td>
<td>This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).</td>
</tr>
<tr>
<td>Air Acidification (AA)</td>
<td>The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.</td>
</tr>
<tr>
<td>Water Toxicity (WT)</td>
<td>This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.</td>
</tr>
<tr>
<td>Hazardous Waste Production (HWP)</td>
<td>This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.</td>
</tr>
</tbody>
</table>

Registration No.: SCHN-2011-515-V0

Accreditation No. of verifier:: VH05

Date of issue: 08-2011

Period of validity: 4 years

Independent verification of the declaration and data, in compliance with ISO 14025:2006

Internal X External

In compliance with the ISO 14025:2006 type III environmental declaration standard.

The critical review of the PCR was conducted by a panel of experts chaired by. J. Chevalier (CSTB).

The information in the present PEP cannot be compared with information from another programme.

Schneider Electric Industries SAS
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 896 313 776 €

www.schneider-electric.com

Published by: Schneider Electric