Product Environmental Profile
Harmony XB5AW
Product Overview
The main function of the XB5AW product range is to command an action on a machine while viewing an operating state.
This range consists of: complete luminous pushbutton (with contacts, head and socket). The representative product used for the analysis is XB5AW33B5.
The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with the similar technology.
The environmental analysis was performed in conformity with ISO14040. This analysis takes in account the complete life cycle of the product.

Constituent materials
The mass of the product range is around 53 g no including packaging. It is 52.8 g for the XB5AW33B5.
The constituent materials are distributed as follows:

- PA Polyamide 39.3%
- PBT Polybutylene Terephthalate 10.6%
- PUR Polyurethane 0.6%
- Epoxy Resin 0.6%
- Elastomer + bronze 1.2%
- Stainless steel, 6.3%
- Steel, 18.2%
- Silver 1.6%
- PC Polycarbonate 13.9%
- Brass 7.9%
- Steel, 18.2%
- Silver 1.6%

Products of this range are designed in conformity with the requirements of the ROHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or in the authorised proportions, lead, mercury, cadmium, chromium hexavalent, flame retardant (polybromobiphenyles PBB, polybromodiphenylthers PBDE) as mentionned in the Directive.

Manufacturing
The XB5AW product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution
The weight and volume of the packaging have been reduced, in compliance with the European Union’s packaging directive.
The XB5AW33B5 packaging weight is 10.5 g. It consists of cardboard (10.4 g) and paper (0.1 g).
The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Utilisation
The products of the XB5AW range do not generate environmental pollution requiring special precautionary measures (noise, emissions, and so on) in using phase.
The dissipated power depends on the conditions under which the product is implemented and used.
The electrical power consumed by the XB5AW range spreads out between 0.216 W and 3.36 W. It is 0.432 W in active mode and 0 % in standby mode for the XB5AW33B5.
This thermal dissipation represents 100 % of the power which passes through the product.
End of life

At end of life, the products in the XB5AW33B5 have been optimized to decrease the amount of waste and valorise the components and materials of the product. The product range doesn’t need any specific end of life special treatment. According to the countries practices this product can enter the usual end of life treatment processes.

The potential of recyclability of the products has been evaluated using the Codde "recyclability and recoverability calculation method" (version V1, 20 Sep. 2008) and published by ADEME (French Agency for Environment and Energy Management).

According this method, the potential recyclability ratio is: 4.83 %. As described in the recyclability calculation method, this ratio includes metals and plastics chosen for their proven industrial recycling processes, but do not include materials which don’t have such proven treatment processes (ie most type of plastics which are not recycled…)

Environmental impacts

The life cycle assessment has been achieved on the following life phases: Materials and Manufacturing (M) , Distribution (D), Utilisation (U).

Modelisation hypothesis and impact results:
■ The calculation has been done on XB5AW33B5.
■ Product packaging : is included
■ Installation components : no special components included,
■ Scenario for the use phase : this product range is included in the category Energy consuming product (assumed lifetime service is 10 years and using scenario: 0.432 W for 30 % uptime).
■ The electrical power model used is European model.

Presentation of the environmental impacts

<table>
<thead>
<tr>
<th>Presentation of the environmental impacts</th>
<th>Unit</th>
<th>XB5R</th>
<th>S = M + D + U</th>
<th>M</th>
<th>D</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>5,706 . 10^{-14}</td>
<td>5,691 . 10^{-14}</td>
<td>8,7 . 10^{-16}</td>
<td>0,0148 . 10^{-16}</td>
<td></td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>141,1</td>
<td>10,23</td>
<td>0,899</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Water Depletion</td>
<td>dm³</td>
<td>25,65</td>
<td>6,329</td>
<td>0,533</td>
<td>18,79</td>
<td></td>
</tr>
<tr>
<td>Global Warming</td>
<td>g-\text{CO}_2</td>
<td>7218</td>
<td>606,9</td>
<td>51,2</td>
<td>6560</td>
<td></td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>mg-\text{CFC}-11</td>
<td>0,455</td>
<td>0,072</td>
<td>0,027</td>
<td>0,356</td>
<td></td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>1279700</td>
<td>170580</td>
<td>20930</td>
<td>1088000</td>
<td></td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g-\text{C}_2\text{H}_4</td>
<td>2,509</td>
<td>0,2545</td>
<td>0,03417</td>
<td>2,22</td>
<td></td>
</tr>
<tr>
<td>Air Acidification</td>
<td>g-\text{H}^+</td>
<td>1,012</td>
<td>0,111</td>
<td>0,016</td>
<td>0,866</td>
<td></td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm³</td>
<td>2270</td>
<td>387,2</td>
<td>11,17</td>
<td>1872</td>
<td></td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g-\text{PO}_4</td>
<td>0,1581</td>
<td>0,1389</td>
<td>0,0037</td>
<td>0,0154</td>
<td></td>
</tr>
<tr>
<td>Hazardous Waste Production</td>
<td>g</td>
<td>116,1</td>
<td>7,271</td>
<td>0,027</td>
<td>108,8</td>
<td></td>
</tr>
</tbody>
</table>

The life cycle assessment has been achieved with the EIME software (Environmental Impact and Management Explorer), version 4, and with its database, version 10.

The Use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products in this range: RMD may be extrapolated proportionally to the product mass.
System approach

As the product of the range are designed in accordance with the ROHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction within an assembly or an installation submitted to this Directive.

N.B.: please note that the environmental impacts of the product depend on the use and installation conditions of the product. Impacts values given above are only valid within the context specified and cannot be directly used to draw up the environmental assessment of the installation.

Glossary

Raw Material Depletion (RMD) This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

Global Warming (GW) The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO₂.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Photochemical Ozone Creation (POC) This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.

Hazardous Waste Production (HWP) This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Schneider Electric Industries SAS
35, rue Joseph Monier
CS30323
F - 92506 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 896 313 776 €
www.schneider-electric.com

We are committed to safeguarding our planet by "Combining innovation and continuous improvement to meet the new environmental challenges".

This document is based on ISO 14020 which relates to the general principles of environmental declarations and the ISO 14025 technical report relating to type III environmental declarations. Product Environmental Profiles Drafting Guide version 12.

It has to be noticed that the data of this PEP cannot be directly compared with datas of programs which don’t use the same LCA rules.

Published by: Schneider Electric

© 2011 - Schneider Electric - All rights reserved