XpsuSupport

Library Guide

for XPSU Safety Modules

EIO0000004435.00 04/2021

Legal Information

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.

© 2021 Schneider Electric. All rights reserved.

Table of Contents

Safety Information	5
Before You Begin	5
Start-up and Test	6
Operation and Adjustments	7
About the Book	8
Presentation of the Library	14
General Information	
Enumerations	16
ET_ModuleType - General Information	
Function Blocks	
FB_XpsuDiag - General Information	
FB_XpsuMain - General Information	
Structures	
ST_DevControl - General Information	
ST_DiagCodes - General Information	
ST_InputControl - General Information	
ST_RemainNumOp - General Information	
Index	

Safety Information

Important Information

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

Before You Begin

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

AWARNING

UNGUARDED EQUIPMENT

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine and, therefore, can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, you should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as point-of-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for pointof-operation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

Start-up and Test

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check are made and that enough time is allowed to perform complete and satisfactory testing.

AWARNING

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- · Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary grounds that are not installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- · Close the equipment enclosure door.
- Remove all temporary grounds from incoming power lines.
- · Perform all start-up tests recommended by the manufacturer.

Operation and Adjustments

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments. Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

About the Book

Document Scope

The present document describes the function blocks *FB_XpsuDiag* and *FB_XpsuMain* provided by the XpsuSupport library. The library is used in conjunction with safety modules of the XPSU range. It provides diagnostics functionality and performs calculations concerning the service life and due dates for specific types of maintenance of XPSU safety modules as well as connected equipment.

Validity Note

This document has been updated for the release of EcoStruxure[™] Machine Expert V2.0.

The characteristics that are described in the present document, as well as those described in the documents included in the Related Documents section below, can be found online. To access the information online, go to the Schneider Electric home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

Related Documents

Document title	Reference	
EcoStruxure Machine Expert Functions and	EIO000002829 (eng)	
	EIO000002830 (fre)	
	EIO000002831 (ger)	
	EIO000002832 (ita)	
	EIO000002833 (spa)	
	EIO000002834 (chi)	
EcoStruxure Machine Expert Programming	EIO000002854 (eng)	
Guide	EIO000002855 (fre)	
	EIO000002856 (ger)	
	EIO000002857 (ita)	
	EIO000002858 (spa)	
	EIO000002859 (chi)	
XPSUABx1C User Guide	EIO000003454 (eng)	
	EIO000003455 (fre)	
	EIO000003456 (ger)	
	EIO000003457 (ita)	
	EIO000003458 (spa)	
	EIO000003461 (chi)	
XPSUAFx3A User Guide	EIO000003465 (eng)	
	EIO000003466 (fre)	
	EIO000003467 (ger)	

Document title	Reference
	EIO000003468 (ita)
	EIO000003469 (spa)
	EIO000003472 (chi)
XPSUAKx2A User Guide	EIO000003476 (eng)
	EIO000003477 (fre)
	EIO000003478 (ger)
	EIO000003479 (ita)
	EIO000003480 (spa)
	EIO000003483 (chi)
XPSUATx3A3A User Guide	EIO000003443 (eng)
	EIO000003444 (fre)
	EIO000003445 (ger)
	EIO000003446 (ita)
	EIO000003447 (spa)
	EIO000003450 (chi)
XPSUDNx3A User Guide	EIO000003498 (eng)
	EIO000003499 (fre)
	EIO000003500 (ger)
	EIO000003501 (ita)
	EIO000003502 (spa)
	EIO000003505 (chi)
XPSUSx2A User Guide	EIO000003487 (eng)
	EIO000003488 (fre)
	EIO000003489 (ger)
	EIO000003490 (ita)
	EIO000003491 (spa)
	EIO000003494 (chi)
XPSUVNx1A User Guide	EIO000004260 (eng)
	EIO000004262 (fre)
	EIO000004261 (ger)
	EIO000004264 (ita)
	EIO000004263 (spa)
	EIO000004265 (chi)
XPSUABx1C Instruction Sheet	PHA71839 (eng, fre, ger, ita, spa, chi)
XPSUABx1C Instruction Sheet	PHA71840 (eng, jpn, kor, por, rus, tur)
XPSUAFx3A Instruction Sheet	PHA71842 (eng, fre, ger, ita, spa, chi)
XPSUAFx3A Instruction Sheet	PHA71843 (eng, jpn, kor, por, rus, tur)
XPSUAKx2A Instruction Sheet	PHA71845 (eng, fre, ger, ita, spa, chi)
XPSUAKx2A Instruction Sheet	PHA71846 (eng, jpn, kor, por, rus, tur)
XPSUATx3A3A Instruction Sheet	PHA71829 (eng, fre, ger, ita, spa, chi)
XPSUATx3A3A Instruction Sheet	PHA71837 (eng, jpn, kor, por, rus, tur)
XPSUDNx3A Instruction Sheet	PHA71850 (eng, fre, ger, ita, spa, chi)
XPSUDNx3A Instruction Sheet	PHA71851 (eng, jpn, kor, por, rus, tur)

Document title	Reference
XPSUSx2A Instruction Sheet	PHA71847 (eng, fre, ger, ita, spa, chi)
XPSUSx2A Instruction Sheet	PHA71849 (eng, jpn, kor, por, rus, tur)
XPSUVNx1A Instruction Sheet	NNZ32597 (eng, fre, ger, ita, spa, chi)
XPSUVNx1A Instruction Sheet	NNZ32602 (eng, jpn, kor, por, rus, tur)

Product Related Information

AWARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

Before you attempt to provide a solution (machine or process) for a specific application using the POUs found in the library, you must consider, conduct and complete best practices. These practices include, but are not limited to, risk analysis, functional safety, component compatibility, testing and system validation as they relate to this library.

AWARNING

IMPROPER USE OF PROGRAM ORGANIZATION UNITS

- Perform a safety-related analysis for the application and the devices installed.
- Ensure that the Program Organization Units (POUs) are compatible with the devices in the system and have no unintended effects on the proper functioning of the system.
- Use appropriate parameters, especially limit values, and observe machine wear and stop behavior.
- Verify that the sensors and actuators are compatible with the selected POUs.
- Thoroughly test all functions during verification and commissioning in all operation modes.
- Provide independent methods for critical control functions (emergency stop, conditions for limit values being exceeded, etc.) according to a safety-related analysis, respective rules, and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Care must be taken and provisions made for use of this library for machine control to avoid inadvertent consequences of commanded machine operation, state changes, or alteration of data memory or machine operating elements.

UNINTENDED EQUIPMENT OPERATION

- Place operator devices of the control system near the machine or in a place where you have full view of the machine.
- Protect operator commands against unauthorized access.
- If remote control is a necessary design aspect of the application, ensure that there is a local, competent, and qualified observer present when operating from a remote location.
- Configure and install the Run/Stop input, if so equipped, or, other external means within the application, so that local control over the starting or stopping of the device can be maintained regardless of the remote commands sent to it.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

AWARNING

UNINTENDED EQUIPMENT OPERATION

Update your application program as required, paying particular attention to I/O address adjustments, whenever you modify the hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as *safety*, *safety function*, *safe state*, *fault*, *fault reset*, *malfunction*, *failure*, *error*, *error message*, *dangerous*, etc.

Among others, these standards include:

Standard	Description		
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.		
ISO 13849-1:2015	Safety of machinery: Safety related parts of control systems.		
	General principles for design.		
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment.		
	Part 1: General requirements and tests.		
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction		
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements		
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection		
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design		
IEC 62061:2015	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems		
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: General requirements.		
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.		
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Software requirements.		
IEC 61784-3:2016	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.		
2006/42/EC	Machinery Directive		
2014/30/EU	Electromagnetic Compatibility Directive		
2014/35/EU	Low Voltage Directive		

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term *zone of operation* may be used in conjunction with the description of specific hazards, and is defined as it is for a *hazard zone* or *danger zone* in the *Machinery Directive* (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Presentation of the Library

General Information

Library Overview

The XpsuSupport library provides the function blocks *FB_XpsuDiag* and *FB_XpsuMain* for diagnostics and maintenance purposes with XPSU safety modules.

XPSU safety modules generate bit sequences that are available at the non-safetyrelated output Z1. The bit sequences encode diagnostics information relating to the XPSU safety module. Refer to the user guide of your XPSU safety module for details on the output Z1, Related Documents, page 8.

If the output Z1 is connected to a controller or to other suitable equipment, the bit sequence can be used as input information for the function block *FB_XpsuDiag*. The function block *FB_XpsuDiag* decodes the bit sequence provided by the XPSU safety module and outputs a diagnostics code.

This diagnostics code can be made available to the function block *FB_XpsuMain*.

The function block *FB_XpsuMain* provides counters that let you track and manage maintenance and service life requirements for the XPSU safety module itself as well as connected equipment such as sensors, command devices, and actuators:

- Counters for cycles of the safety-related inputs
- · Counters for cycles of the safety-related outputs
- · Counter for cycles of the safety module itself

In addition, the function block can be used to monitor and manage the due dates of proof tests required for the safety-related function and/or the equipment used to implement it.

General Considerations

The bit sequence generated by the XPSU safety module consists of 10 bits. The bit duration set at the input *i_timBitDuration* of the function block *FB_XpsuDiag* must be supported by the bit duration of the connected XPSU safety module. Refer to the user guide of your XPSU safety module for details, Related Documents, page 8. For correct detection of the full bit sequence, the cycle time of the task that executes the function blocks must be less than or equal to the signal duration of one bit divided by four. For example, if the bit duration is set to 200 ms, the cycle time must be less than or equal to 50 ms.

Both function blocks of the library must be used in a cyclic task and executed in each cycle of their task.

The duration of the full bit sequence is ten times the adjusted bit duration. Changes in state (for example, deactivation of a safety-related input of the XPSU safety module) during a running sequence are transmitted in the subsequent sequence. If such changes in state do not persist until the next sequence starts (for example, if a safety-related input is deactivated and activated within the duration of a single bit sequence), they are not encoded in this bit sequence. In such a case, they cannot be detected by the function block *FB_XpsuDiag*. As a consequence, the corresponding cycle counter is not increased by the function block *FB_XpsuMain*.

If several devices are connected to the safety-related inputs of an XPSUDN or an XPSUS safety module, the cycle counter may miss cycles under the following condition: If one connected device has deactivated a safety-related input and not yet reactivated it, and if other devices connected to other safety-related inputs perform switching operations in the meantime.

Removing power to the XPSU safety module is detected by the library with a delay of up to eight seconds.

Removing power to the XPSU safety module may cause the function block *FB_XpsuDiag* to detect information that is incorrect on the state of the XPSU safety module.

Characteristics of the Library

Characteristic	Value
Library title	XpsuSupport
Company	Schneider Electric
Category	Application
Component	CoreLibraries
Default namespace	XPSU
Language model attribute	qualified-access-only
Forward compatible library	Yes (FCL)

NOTE: For this library, qualified-access-only is set. This means that the POUs, data structures, enumerations, and constants have to be accessed using the namespace of the library.

Enumerations

ET_ModuleType - General Information

Overview

Туре:	List type
Available as of:	V1.0.4.0

Description

This enumeration provides a list of the XPSU safety modules that can be selected for the input *i_etModuleType* of the function block *FB_XpsuDiag*.

Enumeration Elements

Name	Value (UDINT)	Description
-	0	No XPSU safety module selected.
XPSUAB	1	Safety module XPSUAB
XPSUAF	2	Safety module XPSUAF
XPSUAK	3	Safety module XPSUAK
XPSUAT	4	Safety module XPSUAT
XPSUDN	5	Safety module XPSUDN
XPSUS	6	Safety module XPSUS
XPSUVN	7	Safety module XPSUVN

If the value is 0 or if no value is set for the input *i_etModuleType*, the function block *FB_XpsuDiag* detects an error.

Function Blocks

FB_XpsuDiag - General Information

Overview

Туре:	Function block
Available as of:	V1.0.4.0
Inherits from:	-
Implements:	-

Functional Description

The function block *FB_XpsuDiag* decodes the bit sequence provided at the input *i_xDiagSignal*. This bit sequence is provided by an XPSU safety module via its non-safety-related output Z1. The bit sequence encodes diagnostics information on the safety module (see *Output q_dwStatus*, page 19 for a list of codes).

The function block needs to be activated by setting the value at its input *i_xEnable* to TRUE. If the value at the input *i_xEnable* is set to FALSE, the bit sequence is not analyzed and the outputs of the function block are set to their default values.

The XPSU safety module used is specified via the input *i_etModuleType*.

The bit duration is set via the input *i_timBitDuration*.

The cycle time of the task in which the function block is called has to be specified at the input *i_timTaskCycle*. See chapter *General Considerations*, page 14 for details.

The function block must be used in a cyclic task, and it has to be executed in each cycle of this task. If the function block is not called in a cycle of the task, an error is detected (error code 16#1000)

The diagnostics data decoded from the bit sequence is provided at the output $q_{stDiagCode}$ (structure $ST_{DiagCodes}$) of the function block. Depending on the analysis result, the corresponding structure element in the structure $ST_{DiagCodes}$ is set to TRUE.

The output *q_dwStatus* provides the 6-bit code part (without the 4-bit start part) of the last bit sequence as a double word.

If the value at the input *i_xDiagSignal* is static TRUE, the output *q_xComWireInShort* is set to TRUE. This indicates a possible cross circuit in the wiring between the output Z1 of the XPSU safety module and the connected input of the controller. If the value at the input *i_xDiagSignal* is static FALSE, the value of the output *q_xComWireOpen* is set to TRUE.

The outputs q_xBusy and q_xValid provide information on the status of the function block. The outputs q_xError and $q_wErrorId$ provide information on detected errors.

Interface

Input	Data type	Description
i_xEnable	BOOL	TRUE activates the function block. When it is activated, the bit sequence at input <i>i_xDiagSignal</i> is evaluated.
i_xDiagSignal	BOOL	Input for connecting the bit sequence provided by the XPSU safety module. Connect this input to the variable which is assigned to the signal from the non-

i_timTaskCycle TIME Cycle time of the cyclic ta the function block is exect NOTE: The cycle tim less than or equal to duration of one bit (c timBitDuration) divid Example: If the bit did to 200 ms, the cycle less than or equal to chapter General Col page 14 for details. i_etModuleType ET_ModuleType, page 16 Sets the type of XPSU sa from which the bit sequer received. If the input is no or if the value is invalid, th 16x1007 is provided at th wErrorld. i_timBitDuration TIME Sets the duration of a bit milliseconds. The duratio sequence of ten bits is te value. Value range: 50 200	Input	Data type	Description
i_timTaskCycle TIME Cycle time of the cyclic ta the function block is exect the function block is exect the function block is exect a duration of one bit (set timBitDuration) divides than or equal to duration of one bit (set timBitDuration) divides the function block is exected by the bit duration of one bit (set timBitDuration) divides the bit duration of one bit (set timBitDuration) divides the bit duration of one bit (set timBitDuration) divides the bit duration of one bit (set timBitDuration) divides the bit duration of one bit (set timBitDuration) divides the bit duration of one bit (set timBitDuration) divides the bit duration of a bit to 200 ms, the cycle less than or equal to chapter General Coupage 14 for details. i_etModuleType ET_ModuleType, page 16 Sets the type of XPSU satisfies the value is invalid, the bit sequence received. If the input is not or if the value is invalid, the value is invalid, the duration of a bit milliseconds. The duration sequence of ten bits is the value. i_timBitDuration TIME Sets the duration of a bit milliseconds. The duration sequence of ten bits is the value.			safety-related output Z1 of the XPSU safety module.
i_etModuleType ET_ModuleType, page 16 duration of one bit (s i_etModuleType ET_ModuleType, page 16 Sets the type of XPSU sa from which the bit sequer received. If the input is no or if the value is invalid, the value is invalid, the value is invalid, the value is invalid, the value is invalid. i_timBitDuration TIME Sets the duration of a bit milliseconds. The duration sequence of ten bits is te value. Value range: 50 200 Sets the output is no	i_timTaskCycle	TIME	Cycle time of the cyclic task in which the function block is executed. NOTE: The cycle time must be less than or equal to the signal
i_etModuleType ET_ModuleType, page 16 Sets the type of XPSU satisfies from which the bit sequence received. If the input is not or if the value is invalid, the sequence of the value is invalid. TIME i_timBitDuration TIME Sets the duration of a bit milliseconds. The duration sequence of ten bits is the value. Value range: 50 200 Yalue range: 50 200			duration of one bit (set via <i>i_timBitDuration</i>) divided by four. Example: If the bit duration is set to 200 ms, the cycle time must be less than or equal to 50 ms. See chapter <i>General Considerations</i> , page 14 for details.
<i>i_timBitDuration</i> TIME Sets the duration of a bit milliseconds. The duratio sequence of ten bits is te value. Value range: 50 200	i_etModuleType	ET_ModuleType, page 16	Sets the type of XPSU safety module from which the bit sequence is received. If the input is not connected, or if the value is invalid, the error code 16x1007 is provided at the output <i>q_wErrorld</i> .
Value range: 50 200	i_timBitDuration	TIME	Sets the duration of a bit in milliseconds. The duration of the full sequence of ten bits is ten times this value.
			Value range: 50 200
Default value: 200			Default value: 200

Output	Data type	Description
q_xBusy	BOOL	If the value at this output is TRUE, the function block is being executed.
q_xError	BOOL	If the value at this output is TRUE, the function block has detected an error. Refer to <i>q_wErrorId</i> for details.
q_wErrorld	WORD	Provides information on detected errors. Error codes are listed in the section <i>Error Codes</i> , page 21.
q_xValid	BOOL	If the value at this output is TRUE, the values of the output variables are valid.
q_stDiagCode	ST_DiagCodes	Diagnostics information decoded from the input bit sequence. The corresponding bit value in the structure <i>ST_DiagCodes</i> is set to TRUE.
q_dwStatus	DWORD	Provides the 6-bit code part (without the 4-bit start part) of the last detected bit sequence converted to a double word data type.
		Refer to Output q_dwStatus, page 19 for details.

Output	Data type	Description
q_xComWireInShort	BOOL	If the value at the input <i>i_xDiagSignal</i> is static TRUE, the value at this output is set to TRUE. This indicates a possible cross circuit in the wiring between the output Z1 of the XPSU safety module and the connected input of the controller. Verify correct wiring between the output Z1 of the XPSU safety module and the controller as well as correct operation of
		the output Z1 and the input of the controller.
q_xComWireOpen	BOOL	If the value at the input <i>i_xDiagSignal</i> is static FALSE, the value at this output is set to TRUE. This indicates that either the output Z1 of the XPSU safety module is not correctly connected to the controller input or that the XPSU safety module is not energized.
		Verify correct wiring between the output Z1 of the XPSU safety module and the controller as well as correct operation of the output Z1 and the input of the controller.

Output q_dwStatus

The bit sequence consists of 10 bits. The first 4 bits (0010) represent the start sequence, followed by a 6-bit code sequence.

The following table lists the 6-bit code part of the diagnostics codes available at the output $q_dwStatus$.

Code part of bit sequence	Decimal value at q_dwStatus	Description	Class. ⁽¹⁾
101111	47	Device in operating state Run, safety-related outputs activated.	S
101110	46	Start input activated. Waiting for falling edge for monitored start.	S
101010	42	Waiting for rising edge for automatic/manual or monitored start.	S
101011	43	Waiting for start-up test.	S
101001	41	Input S63 is expected to change its state.	S
101000	40	Input S62 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S62 and S63 are expected to change their state.	S
111000	56	Input S53 is expected to change its state.	S
111001	57	Input S52 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S52 and S53 are expected to change their state.	S
111011	59	Input S43 is expected to change its state.	S
111010	58	Input S42 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S42 and S43 are expected to change their state.	S
111110	62	Input S33 is expected to change its state.	S
111111	63	Input S32 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S32 and S33 are expected to change their state. XPSUVN: Voltage U32 does not meet the requirements for detected	S
111101	61		e
111101	01	input 525 is expected to change its state.	3
111100	60	Input S22 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S22 and S23 are expected to change their state.	S

Code part of bit sequence	Decimal value at q_dwStatus	Description	Class. ⁽¹⁾
110100	52	Input S13 is expected to change its state.	S
110101	53	Input S12 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S12 and S13 are expected to change their state.	S
		XPSUVN: Voltage U12 does not meet the requirements for detected standstill while U32 already does.	
110111	55	Safety-related inputs deactivated, safety-related outputs deactivated.	S
		XPSUVN: Voltage at safety-related input is above the adjusted voltage threshold, device is in defined safe state.	
110110	54	Instantaneous safety-related outputs are deactivated, delayed safety-related outputs are still activated.	S
100111	39	Synchronization alert. Both synchronized safety-related inputs have been activated, but not within the synchronization time.	E
110011	51	Synchronization alert. One of the synchronized safety-related inputs is still deactivated, but the synchronization time has already elapsed.	E
100000	32	Antivalence alert at input S2x.	E
		XPSUVN: Wiring in circuit for voltage U32 interrupted (between L3 and L2, wire break).	
100110	38	Antivalence alert at input S1x.	E
		XPSUVN: Wiring in circuit for voltage U12 interrupted (between L1 and L2, wire break).	
100011	35	Cross-circuit detected at input used for Cancel Delay function.	E
110000	48	Cross-circuit detected at start input.	E
011100	28	Cross-circuit detected at input S63.	E
011101	29	Cross-circuit detected at input S62.	E
011111	31	Cross-circuit detected at input S53.	E
011110	30	Cross-circuit detected at input S52.	E
011010	26	Cross-circuit detected at input S43.	E
011011	27	Cross-circuit detected at input S42.	E
101100	44	Cross-circuit detected at input S33.	E
011000	24	Cross-circuit detected at input S32.	E
001110	14	Cross-circuit detected at input S23.	E
001111	15	Cross-circuit detected at input S22.	E
001101	13	Cross-circuit detected at input S13.	E
001100	12	Cross-circuit detected at input S12.	E
000111	7	Configuration error detected.	E
000110	6	General error detected in expansion module.	E
000011	3	General error detected.	E
101101	45	Supply voltage is out of tolerance. If the supply voltage drops below the lower limit value, the output Z1 is no longer supplied.	E

(1) Classification of the message: E = Error, S = Status

The meaning of the bit sequences are specific to the XPSU safety module used in your application. Refer to the XPSU safety modules user guides, page 8 for details. For example, 100110 can indicate an antivalence error (xErrorS1x) for an XPSUDN safety module or a wire break condition (xOpenWireL1L2) for an XPSUVN safety module.

Error Codes

If the function block detects an error, the output $q_x Error$ is set to TRUE and an error code is provided at the output $q_w Error Id$.

Error code	Description
16#1000	Function block is not called cyclically.
	Remedy : Call the function block in a cyclic task and verify that the function block call cannot be skipped (for example, by a preceding conditional jump).
16#1001	Invalid task cycle time at the input <i>i_timTaskCycle</i> .
	Remedy : Set the cycle time to a value less than or equal to the duration of one bit (set via <i>i_timBitDuration</i>) divided by four. Refer to chapter General Considerations, page 14 for details.
16#1002	Synchronization with the bit sequence provided by the XPSU safety module not successful.
	Remedy : Verify that a valid signal from the output Z1 of the XPSU safety module) is properly connected to the input of the function block and that the XPSU safety module is operational. Verify that the function block is properly configured for the XPSU safety module used.
16#1004	The maximum number of invalid bit sequences has been exceeded.
	Remedy : Verify that a valid signal from the output Z1 of the XPSU safety module) is properly connected to the input of the function block and that the XPSU safety module is operational.
16#1005	Internal function block error detected.
	Remedy: Disable and re-enable the function block.
16#1006	Incorrect bit duration.
	Remedy : Set the bit duration at the input <i>i_timBitDuration</i> to a value between 50 and 200 ms.
16#1007	Invalid XPSU safety module.
	Remedy : Set the value for the XPSU safety module at the input <i>i_etModuleType</i> to a value corresponding to the XPSU safety module to be connected in the enumeration <i>ET_ModuleType</i> , page 16.

FB_XpsuMain - General Information

Overview

Туре:	Function block
Available as of:	V1.0.4.0
Inherits from:	-
Implements:	-

Functional Description

The function block *FB_XpsuMain* evaluates the diagnostics codes decoded by the function block *FB_XpsuDiag*. Based on the diagnostics codes, the function block performs calculations that let you track and manage maintenance and service life requirements (for example, due dates for proof tests or replacements) for the XPSU safety module itself as well as connected equipment such as sensors, command devices, and actuators. The function block provides counters for the number of remaining cycles:

- Counters for remaining cycles of the safety-related input channels: One cycle corresponds to one activation of a safety-related input channel.
- Counters for remaining cycles of the safety-related outputs: One cycle corresponds to one activation of a safety-related output.
- Counter for remaining cycles of the safety module itself: Once cycle corresponds to one transition from the defined safe state to the defined nonsafe state of the XPSU safety module.

NOTE: Refer to the user guide of your XPSU safety module, page 8 for details on the use of the terms activation and deactivation, and on the defined safe state.

The counters allow you to monitor the number of operations of equipment connected to the XPSU safety module as a function of the cycles of the safety-related inputs and the safety-related outputs.

NOTE: The present documents refers to the number of "cycles of the safetyrelated input channels" and the number of "cycles of the safety-related outputs" as defined above. Whether or not this corresponds to the number of cycles of the equipment connected depends on the definition of a cycle for such equipment. For example, if a device connected to a safety-related input counts one "off-on" and one "on-off" operation as two separate cycles, this corresponds to one cycle of the safety-related input (one activation) of the XPSU safety module.

Typical scenarios for managing the counters include replacements of input devices or output devices as well as a replacement of the XPSU safety module itself. If you replace the XPSU safety module and activate a new XPSU safety module via the input *i_xNewModuleActive*, the counter for the total number of cycles is reset to zero. Since a replacement of the XPSU safety module may not necessitate a replacement of the connected equipment, the values of the counters for the safety-related inputs and the safety-related outputs retain the values at the time of the replacement. If you need to replace connected equipment or add further equipment, you can reset the corresponding counters to zero.

In addition, the function block can be used to monitor and manage the due dates of proof tests required for the safety-related function and/or the equipment used to implement it.

Both function blocks *FB_XpsuMain* and *FB_XpsuDiag* must be called in the same task cycle.

In order to evaluate the diagnostics code received from the function block *FB_XpsuDiag*, the function block *FB_XpsuMain* needs to be activated by setting the value at its input *i_xEnable* to TRUE. If the value at the input *i_xEnable* is set to FALSE, the diagnostics codes are no longer evaluated and the outputs of the function block are set to their default values.

The input *i_dwStatus* is connected to the output *q_dwStatus* of the function block *FB_XpsuDiag*. The input *i_xValid* is connected to the output *q_xValid* of the function block *FB_XpsuDiag*.

The function block receives the diagnostics information serving as the basis for the calculations via its input *i_dwStatus*.

Configuration of the Function Block

To be able to calculate the remaining number of cycles of the safety-related inputs, the safety-related outputs and the safety module itself, the function block requires the following information:

- The safety-related inputs and the safety-related outputs to be monitored.
- The maximum number of cycles for each safety-related input, each safetyrelated output and the XPSU safety module itself. These values are taken as the start values and decreased by each cycle detected by the function block FB_XpsuDiag.

NOTE: Cycles may not be detected if activation and deactivation occur too fast or if several inputs switch at the same time. Refer to *General Considerations*, page 14 for details.

The required information is provided in the form of data structures connected to the corresponding inputs of the function block. These data structures map the hardware implementation, that is, the input devices/sensors connected to the safety-related inputs and the actuators connected to the safety-related outputs of the XPSU safety module:

- The structure ST_InputControl is provided for the counters for the cycles of the safety-related inputs. The structure configures the input channels (CH+ (or CH- in the case of XPSUAK and XPSUAT)) of the safety-related inputs of the XPSU safety module to which the input devices/sensors are connected. An array of this structure with the length of six has to be connected to the input <u>i_astControlInp</u>.
- The structure ST_DevControl is provided for the counters for the safetyrelated outputs and for the counter for the XPSU safety module itself.
 - The structure has to be connected to the input *i_stControlProc* (counter for the cycles of the XPSU safety module itself).
 - An array of the structure with the length of 13 has to be connected to the input *i_astControlOut* (counters for the cycles of the safety-related outputs).

The structure $ST_RemainNumOp$ provides the information on the remaining number of cycles for the safety-related inputs, the safety-related outputs, and the XPSU safety module itself. This structure has to be connected to the output $q_stRemainNumOp$ of the function block.

NOTE: To keep the counters from being reset, declare the related variables as persistent variables. See *Persistent Variables*, page 27 for details.

The output *q_xOpExceeded* is set toTRUE if at least one structure element of the structure *ST_RemainNumOp* has the value 0. This means that no cycles are left for the corresponding safety-related input, safety-related output, or the XPSU safety module itself. The value at the output *q_wExceededId* indicates the affected safety-related input or safety-related output, or the XPSU safety module itself.

The output *q_udiNumOpSystem* provides the total number of cycles of the XPSU safety module.

Proof Tests

Safety-related functions and the hardware used for their implementation require proof tests at specific intervals. The function block lets you track and manage such proof test. The date and time of the proof test are set via the input *i_dtTestIntervalRef*. The interval between consecutive proof tests is set via the input *i_udiTestInterv*. After having performed a proof test, confirm this with a rising edge at the input *i_xTestExecuted*. The confirmed date for the first proof test is available

at the output *q_datTestStart*. The due date for the next proof test is provided at the output *q_datNextProof*. The function block provides time stamps of the last ten proof tests in an array at the output *q_adtProofTests*.

If you add or replace an XPSU safety module, confirm this with a rising edge at the input *i_xNewModuleActive*. This confirmation also resets the time stamp array, enters the time stamp in the first array element, and updates the value at the output *q_datTestStart*.

The value TRUE at the output *q_xTestIntervViol* indicates that the specified interval has been exceeded, that is, the proof test has not been performed on schedule.

Proof test time stamps can also be loaded from an external proof test array, for example, if the XPSU safety module is connected to a different controller. Such arrays can, for example, originate from an HMI application. To load an external time stamp array, set the input *i_xSaveBProofTest* to TRUE. As a result, the array connected to the input *i_adtProofTests* is read and copied to the internal array.

If the value at the output q_x Active is TRUE, the function block is activated. The outputs q_x Error and q_w ErrorId provide information on detected errors.

Interface

Input	Data type	Description
i_xEnable	BOOL	TRUE activates the function block.
i_dwStatus	DWORD	Connect this input to the output <i>q_dwStatus</i> of the function block <i>FB_XpsuDiag</i> .
		The function block processes this status information and writes the data to the structures connected to the outputs.
i_xValid	BOOL	Connect this input to the output <i>q_</i> <i>xValid</i> of the function block <i>FB_</i> <i>XpsuDiag</i> .
i_stControlProc	ST_DevControl	The structure <i>ST_DevControl</i> connected to this input sets the maximum number of cycles for the XPSU safety module itself. The structure element <i>xReset</i> can be used to reset the corresponding counter.
i_astControlInp	ARRAY[16] OF ST_ InputControl	The array of the structure <i>ST_</i> <i>InputControl</i> connected to this input configures the safety-related inputs of the XPSU safety module. It identifies the connected input channels of the safety-related inputs and sets the maximum number of cycles for the safety-related inputs. The structure element <i>xReset</i> can be used to reset the corresponding counters.
i_astControlOut	ARRAY[113] OF ST_ DevControl	The array of the structure <i>ST_DevControl</i> connected to this input configures the safety-related outputs of the XPSU safety module. It identifies the connected safety-related outputs and sets the maximum number of cycles for the corresponding relay contacts. The structure element <i>xReset</i> can be used to reset the corresponding counters.
		XPSU safety module can have plus six safety-related outputs provided by an XPSUEP extension module.
i_dtTestIntervalRef	DATE_AND_TIME	Date and time of the proof test to be performed (reference to the controller time).

Input	Data type	Description
i_udiTestInterv	UDINT	Proof test interval. Specify the number of days between consecutive proof tests.
i_xNewModuleActive	BOOL	A rising edge at this input confirms that an XPSU safety module has been added or replaced.
		Results
		 The array with the proof test time stamps connected to the output q_adtProofTests is reset.
		 A time stamp is written to the first array element of the array with the proof test time stamps connected to the output <i>q_adtProofTests</i> (to confirm commissioning and first proof test of the XPSU safety module).
		The value at the output q_ datTestStart is updated.
i_xTestExecuted	BOOL	A rising edge at this input confirms that a proof test has been performed.
		Results:
		 A time stamp is added to the first array element of the array with the proof test time stamps connected to the output <i>q_adtProofTests</i>. The existing time stamps are moved by one position in the array (first in, first out (FIFO))
		 The due date of the next proof test is provided at the output q_ datNextProof.
i_xSaveBProofTests	BOOL	A rising edge at this input triggers reading of the time stamps from the proof test array connected to the input <i>i_adtProofTests</i> . Refer to the description of the input <i>i_adtProofTests</i> for details.
i_adtProofTests	ARRAY[110] OF DATE_ AND_TIME	Input for connecting an external proof test array containing proof test time stamps which originate, for example, from an HMI application.

Output	Data type	Description
q_xActive	BOOL	If the value at this output is TRUE, the function block is being executed.
q_xError	BOOL	If the value at this output isTRUE, the function block has detected an error. Refer to <i>q_wErrorId</i> for details.
q_wErrorld	WORD	Provides information on detected errors. Error codes are listed in the section <i>Error Codes</i> , page 26.
q_datTestStart	DATE	Date value of the first proof test after activation of a new XPSU safety module via the input <i>ixNewModuleActive</i> .
q_datNextProof	DATE	Due date for the next proof test.
q_xTestIntervViol	BOOL	If the value at this output is TRUE, the proof test interval has been exceeded.
q_xOpExceeded	BOOL	If the value at this output is TRUE, the number of remaining cycles is 0 for at least one of the monitored safety- related inputs or safety-related outputs, or for the XPSU safety module itself.
q_wExceededId	WORD	ID of the safety-related input, or the safety-related output, or the XPSU safety module itself that has exceeded

Output	Data type	Description
		the maximum number of cycles. Format:
		• For inputs: 16#101n
		• For outputs: 16#102n
		• For module: 16#100n
		Refer to <i>Output q_wExceededId</i> , page 26 for details.
q_adtProofTests	ARRAY[110] OF DATE_ AND_TIME	Array of time stamps of the last ten proof tests performed. The first array element contains the latest time stamp (FIFO).
q_udiNumOpSystem	UDINT	Number of cycles of the XPSU safety module itself. The value is reset to zero if a new XPSU safety module is activated via the input <i>ixNewModuleActive</i> .
q_stRemainNumOp	ST_RemainNumOp	Number of remaining cycles for each monitored safety-related input, for each safety-related output, and for the XPSU safety module itself, written to the structure <i>ST_RemainNumOp</i> .

Error Codes

If the function block detects an error, the output *q_xError* is set to TRUE and an error code is provided at the output *q_wErrorId*.

Error code	Description
16#1003	The proof test interval value at the input <i>i_udiTestInterv</i> is invalid. The value must be greater than zero.
16#1004	A new XPSU safety module has not yet been activated via the input <i>i_xNewModuleActive</i> (no first proof test confirmed). The error code is also generated when the function block is started for the first time via the input <i>i_xEnable</i> .
16#105n	Invalid configuration of safety-related input in the structure ST_InputControl. "n" is a number from 1 to 6 which indicates the number of the affected structure (corresponds to the affected safety-related input). Refer to <i>ST_InputControl</i> , page 32 for details on the parameters.

Output q_wExceededId

If no cycles remain for a safety-related input, or for a safety-related output, or for the XPSU safety module itself, the value at the output $q_xOpExceeded$ is set to TRUE. The value at the output $q_wExceededId$ identifies the affected safety-related input, or safety-related output, or the XPSU safety module itself.

ID	Description
16#1005	Remaining number of cycles for the XPSU safety module itself is 0.
16#1011	Remaining number of cycles for the safety-related input defined in the first element of the structure <i>ST_InputControl</i> is 0.
16#1012	Remaining number of cycles for the safety-related input defined in the second element of the structure <i>ST_InputControl</i> is 0.
16#1013	Remaining number of cycles for the safety-related input defined in the third element of the structure <i>ST_InputControl</i> is 0.
16#1014	Remaining number of cycles for the safety-related input defined in the fourth element of the structure <i>ST_InputControl</i> is 0.
16#1015	Remaining number of cycles for the safety-related input defined in the fifth element of the structure <i>ST_InputControl</i> is 0.
16#1016	Remaining number of cycles for the safety-related input defined in the sixth element of the structure <i>ST_InputControl</i> is 0.

ID	Description
16#1021	Remaining number of cycles for the safety-related output defined in the first element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1022	Remaining number of cycles for the safety-related output defined in the second element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1023	Remaining number of cycles for the safety-related output defined in the third element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1024	Remaining number of cycles for the safety-related output defined in the fourth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1025	Remaining number of cycles for the safety-related output defined in the fifth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1026	Remaining number of cycles for the safety-related output defined in the sixth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1027	Remaining number of cycles for the safety-related output defined in the seventh element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1028	Remaining number of cycles for the safety-related output defined in the eighth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#1029	Remaining number of cycles for the safety-related output defined in the ninth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#102A	Remaining number of cycles for the safety-related output defined in the tenth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#102B	Remaining number of cycles for the safety-related output defined in the eleventh element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#102C	Remaining number of cycles for the safety-related output defined in the twelfth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.
16#102D	Remaining number of cycles for the safety-related output defined in the thirteenth element of the structure <i>ST_DevControl</i> connected to the input <i>i_astControlOut</i> is 0.

Persistent Variables

Certain variables for the function block need to be declared as persistent variables so that they are not re-initialized after a controller restart.

Procedure for adding the instance paths of the contained persistent values to the list of persistent variables:

Step	Action
1	In the Application tree under the Application node, add the [Persistent Variables] object.
2	Open the editor, right-click and select Add all instance paths.

This adds the following persistent global variables to the list:

Variable	Data IDs Output at q_ wExceededIdType	Default Value	Description
R_udiCountSystem	UDINT	0	Total number of cycles of the XPSU safety module itself.
R_audiCountInp	ARRAY[16] OF UDINT	0 (1)	Remaining number of cycles of the safety-related inputs. The array size of six covers the maximum number of safety-

Variable	Data IDs Output at q_ wExceededIdType	Default Value	Description
			related inputs that an XPSU safety module can provide.
R_udiCountProc	UDINT	0	Remaining number of cycles of the XPSU safety module itself.
R_audiCountOut	ARRAY[113] OF UDINT	0 (1)	Remaining number of cycles of the safety-related outputs.
			The array size of 13 covers the maximum number of safety- related outputs that an XPSU safety module with an XPSUEP extension module can provide.
R_adtProof	ARRAY[110] OF DATE_AND_ TIME	DT#1970-1-1-0:0:0.0 ⁽¹⁾	Array for the time stamps of the last ten proof tests (first in, first out).
R_datTestStart	DATE	D#1970-1-1	Time stamp of the first proof test performed for a new XPSU safety module after confirmation via the input <i>i</i> <i>xNewModuleActive</i> .

⁽¹⁾ The default value refers to each element of the array

The input *i_xNewModuleActive* of the function block *FB_XpsuMain* lets you reset *R_udiCountProc* to zero if an XPSU safety module is installed. The other counters are reset at the inputs of the function blocks via the corresponding reset bits in the structure elements.

Structures

ST_DevControl - General Information

Overview

Туре:	Structure
Available as of:	V1.0.4.0
Inherits from:	-

Description

The structure *ST_DevControl* is used for the cycle counter for the XPSU safety module itself and for the cycle counter for the safety-related outputs of the XPSU safety module. The number of cycles of a safety-related output allows you to determine the number of cycles of the equipment (actuator) connected to this safety-related output.

The structure is connected to the inputs *i_astControlOut* and *i_stControlProc* of the function block *FB_XpsuMain*.

The structure consists of 13 elements. The first seven elements correspond to the maximum number of safety-related outputs an XPSU safety module can have. The remaining six elements correspond to the number of safety-related outputs an XPSUEP extension module has.

Structure Elements

Name	Data type	Description
udiMaxNumOp	UDINT	Maximum number of cycles of the safety-related outputs of the XPSU safety module or maximum number of cycles of the XPSU safety module itself. If the value is set to 0, the cycles are not counted.
xReset	BOOL	If the value of this parameter is set to TRUE, the cycle counter for the corresponding safety-related output is reset to 0. Such a reset may be required if, for example, you have replaced equipment connected to a safety-related output.
		If the maximum number of cycles of the safety-related output is reached (and after you have replaced affected equipment), a reset is required for the counting to resume.
		NOTE: After resetting the counter by setting <i>xReset</i> to TRUE, <i>xReset</i> must be set back to FALSE by the application program. If the value remains TRUE, the counter is continuously reset.

Used By

FB_XpsuMain

ST_DiagCodes - General Information

Overview

Туре:	Structure
Available as of:	V1.0.4.0
Inherits from:	-

Description

The structure *ST_DiagCodes* contains the diagnostics codes, page 19 of the XPSU safety module, each represented as a BOOLEAN structure member. The structure is used at the output *q_stDiagCode* of the function block *FB_XpsuDiag*. Depending on the XPSU safety module used and on the bit sequence provided to the input *i_xDiagSignal* of the function block, the corresponding structure element is set to TRUE.

Structure Elements

Name	Data type	Description
xOperational	BOOL	Device in operating state Run, safety-related outputs activated.
xWaitMonStartFTrig	BOOL	Start input activated. Waiting for falling edge for monitored start.
xWaitMonStartRTrig	BOOL	Waiting for rising edge for automatic/manual or monitored start.
xWaitStartUpTest	BOOL	Waiting for startup test.
xInp63ChangeState	BOOL	Input S63 is expected to change its state.
xInp62ChangeState	BOOL	Input S62 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S62 and S63 are expected to change their state.
xInp53ChangeState	BOOL	Input S53 is expected to change its state.
xInp52ChangeState	BOOL	Input S52 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S52 and S53 are expected to change their state.
xInp43ChangeState	BOOL	Input S43 is expected to change its state.
xInp42ChangeState	BOOL	Input S42 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S42 and S43 are expected to change their state.
xInp33ChangeState	BOOL	Input S33 is expected to change its state.
xInp32ChangeState	BOOL	Input S32 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S32 and S33 are expected to change their state.
xInp23ChangeState	BOOL	Input S23 is expected to change its state.
xInp22ChangeState	BOOL	Input S22 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S22 and S23 are expected to change their state.
xInp13ChangeState	BOOL	Input S13 is expected to change its state.
xInp12ChangeState	BOOL	Input S12 is expected to change its state. In the case of a configuration with antivalent inputs, the inputs S12 and S13 are expected to change their state.
xIoffAllNOCoff	BOOL	Safety-related inputs deactivated, safety-related outputs deactivated.
xloffNOCoffDelayC	BOOL	Instantaneous safety-related outputs are deactivated, delayed safety-related outputs are still activated.

Name	Data type	Description
xSyncFltTestInRun	BOOL	Synchronization alert. Both synchronized safety-related inputs have been activated, but not within the synchronization time.
xSyncFltWaitTest	BOOL	Synchronization alert. One of the synchronized safety- related inputs is still deactivated, but the synchronization time has already elapsed.
xErrorS2x	BOOL	Antivalence alert at input S2x.
xErrorS1x	BOOL	Antivalence alert at input S1x.
xExtFltDelayCirc	BOOL	Cross-circuit detected at input used for Cancel Delay function.
xExtFltStartMonFdb	BOOL	Cross-circuit detected at start input.
xExtFltIn63Circ	BOOL	Cross-circuit detected in circuit of input terminal S63.
xExtFltIn62Circ	BOOL	Cross-circuit detected in circuit of input terminal S62.
xExtFltIn53Circ	BOOL	Cross-circuit detected in circuit of input terminal S53.
xExtFltIn52Circ	BOOL	Cross-circuit detected in circuit of input terminal S52.
xExtFltIn43Circ	BOOL	Cross-circuit detected in circuit of input terminal S43.
xExtFltIn42Circ	BOOL	Cross-circuit detected in circuit of input terminal S42.
xExtFltIn33Circ	BOOL	Cross-circuit detected in circuit of input terminal S33.
xExtFltIn32Circ	BOOL	Cross-circuit detected in circuit of input terminal S32.
xExtFltIn23Circ	BOOL	Cross-circuit detected in circuit of input terminal S23.
xExtFltIn22Circ	BOOL	Cross-circuit detected in circuit of input terminal S22.
xExtFltIn13Circ	BOOL	Cross-circuit detected in circuit of input terminal S13.
xExtFltIn12Circ	BOOL	Cross-circuit detected in circuit of input terminal S12.
xErrorConfig	BOOL	Configuration error detected.
xIntFltInExModule	BOOL	General error detected in expansion module.
xIntFlt	BOOL	General error detected.
xSupplyOutOfTol	BOOL	Supply voltage out of tolerance. If the supply voltage drops below the lower limit value, the output Z1 is no longer supplied.
xOpenWireL1L2	BOOL	Wiring in circuit for voltage U12 interrupted (between L1 and L2, wire break).
xOpenWireL3L2	BOOL	Wiring in circuit for voltage U32 interrupted (between L3 and L2, wire break).
xVoltOnAllNOCoff	BOOL	Voltage at safety-related input is above the adjusted voltage threshold, device is in defined safe state.
xL1L2AboveThres- hold	BOOL	Voltage U12 does not meet the requirements for detected standstill while U32 already does.
xL3L2AboveThres- hold	BOOL	Voltage U32 does not meet the requirements for detected standstill while U12 already does.

Used By

FB_XpsuDiag

ST_InputControl - General Information

Overview

Туре:	Structure
Available as of:	V1.0.4.0
Inherits from:	-

Description

The structure *ST_InputControl* configures the cycle counter for the safety-related inputs of an XPSU safety module. The number of cycles of a safety-related input allows you to determine the number of cycles of the equipment (sensor, command device) connected to this safety-related input.

An array of six structures is connected to the input *i_astControlInp* of the function block *FB_XpsuMain*.

Each structure configures the input channel or input channels of a safety-related input of the XPSU safety module.

NOTE: The cycle counter is available for digital safety-related inputs (Snn), not for analog safety-related inputs (Lnn).

Structure Elements

Name	Data type	Description
udiMaxNumOp	UDINT	Maximum number of cycles of safety-related input specified with <i>byMonitorInput1</i> (and with <i>byMonitorInput2</i> in the case of XPSUDN or XPSUS safety modules which feature safety-related inputs having two input channels). If the value is set to 0, the cycles are not counted.
byMonitorInput1	BYTE	Specifies the number of the input channel Snn of the safety-related input of the XPSU safety module.
		Format: Number nn of the input channel Snn of the safety-related input to configure.
		Examples: 12 configures S12, 62 configures S62.
		If your XPSU safety module has safety-related inputs with two input channels (XPSUDN, XPSUS), you can configure the corresponding second input channel via the structure element <i>byMonitorInput2</i> .
		If the value is set to 0, the input channel is not monitored.

Name	Data type	Description
byMonitorInput2	BYTE	Specifies the number of the second input channel of the safety-related input of an XPSU safety module if your XPSU safety module has safety-related inputs with two input channels (XPSUDN, XPSUS).
		Format: Number nn of the second input channel Snn of the safety-related input configured with <i>byMonitorInput1</i> .
		Examples: 13 configures S13, 63 configures S63.
		If the value is set to 0, the input channel is not monitored.
xReset	BOOL	If this value is set to TRUE, the cycle counter for the safety-related input or input channel corresponding to this array element is reset to the value of <i>udiMaxNumOp</i> .
		Such a reset may be required if, for example, you have replaced equipment connected to the safety-related input.
		If the maximum number of cycles of the safety-related input is reached (and after you have replaced affected equipment), a reset is required for the counting to resume.
		NOTE: After resetting the counter by setting <i>xReset</i> to TRUE, <i>xReset</i> must be set back to FALSE by the application program. If the value remains TRUE, the counter is continuously reset.

Used By

FB_XpsuMain

ST_RemainNumOp - General Information

Overview

Туре:	Structure
Available as of:	V1.0.4.0
Inherits from:	-

Description

The structure *ST_RemainNumOp* contains the remaining number of cycles of the safety-related inputs, the safety-related outputs, and the XPSU safety module itself. It is connected to the output *q_stRemainNumOp* of the function block *FB_XpsuMain*.

Structure Elements

Name	Data type	Description
udiNumRemainingProc	UDINT	Remaining number of cycles of the XPSU safety module itself.
audiNumOpRemainInp	ARRAY(16) OF UDINT	Remaining number of cycles of the safety-related inputs of the XPSU safety module.
		Each array element contains the information for one safety-related input.
audiNumOpRemainOut	ARRAY(113) OF UDINT	Remaining number of cycles of the safety-related outputs of the XPSU safety module.
		Each array element contains the information for one safety-related output (up to seven for the XPSU safety module plus an additional six for a connected XPSUEP extension module).

Used By

FB_XpsuMain

Index

В

bit sequence from XPSU safety	module14
-------------------------------	----------

С

cyclic task		17
-------------	--	----

D

diagnostics codes19

Ε

error codes	
FB XpsuDiag	21
FB ⁻ XpsuMain	26
ET_ModuleType	16

F

FB	_XpsuDiag	17
FB_	_XpsuMain	22

Ν

number of remaining cycles22	2
------------------------------	---

0

output Z11	4
------------	---

Ρ

persistent variables	27
----------------------	----

R

remaining cycles, numbe	r of22
-------------------------	--------

S

ST DevControl	29
ST DiagCodes	30
ST_InputControl	32
ST_RemainNumOp	34

Т

ask cycle time17

X

XpsuSupport	14
ET ModuleType	
FB_XpsuDiag	17
FB XpsuMain	22
ST DevControl	29
ST DiagCodes	
ST_InputControl	32

ST_RemainNumOp......34

Ζ

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2021 - Schneider Electric. All rights reserved.

EIO000004435.00