
EcoStruxure Machine Expert - Basic
Generic Functions Library Guide

EIO0000003289.03
11/2022

www.se.com

Legal Information
The Schneider Electric brand and any trademarks of Schneider Electric SE and its
subsidiaries referred to in this guide are the property of Schneider Electric SE or its
subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and
furnished for informational use only. No part of this guide may be reproduced or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), for any purpose, without the prior written permission of
Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide
or its content, except for a non-exclusive and personal license to consult it on an "as
is" basis. Schneider Electric products and equipment should be installed, operated,
serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information
contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by
Schneider Electric and its subsidiaries for any errors or omissions in the informational
content of this material or consequences arising out of or resulting from the use of the
information contained herein.

As part of a group of responsible, inclusive companies, we are updating our
communications that contain non-inclusive terminology. Until we complete this
process, however, our content may still contain standardized industry terms that may
be deemed inappropriate by our customers.

© 2022 – Schneider Electric. All rights reserved.

Table of Contents

Safety Information...7
Before You Begin..7
Start-up and Test ..8
Operation and Adjustments ...9

About the Book..10

Introduction ..14
How to Use the Source Code Examples ...14
Operation Blocks ..15
Comparison Blocks...18

Language Objects...19
Objects ..19
Memory Bit Objects ..20
I/O Objects...21
Word Objects ...23
Floating Point and Double Word Objects ..27
Structured Objects..31
Indexed Objects ...33
Function Block Objects ...35

Instructions...37
Boolean Processing..37

Boolean Instructions ...37
Load Operators (LD, LDN, LDR, LDF) ..39
Assignment Operators (ST, STN, R, S) ...41
Logical AND Operators (AND, ANDN, ANDR, ANDF)42
Logical OR Operators (OR, ORN, ORR, ORF)43
Exclusive OR Operators (XOR, XORN, XORR, XORF)44
NOT Operator (N) ...46
Rising and Falling Functions (RISING, FALLING)47
Comparison Instructions..49

Numerical Processing ...50
Introduction to Numerical Operations..50
Assignment Instructions ..50
Bit Strings Assignment ..51
Words Assignment..52
Arithmetic Operators on Integers..53
Logic Instructions..55
Shift Instructions ...56
BCD/Binary Conversion Instructions...58
Single/Double Word Conversion Instructions...59

Program ..60
END Instructions...60
NOP Instructions ..61
Jump Instructions..61
Conditional Elements ..62
Loop Elements ...64
Subroutine Instructions..65

Floating Point ...66

EIO0000003289.03 3

Arithmetic Instructions on Floating Point Objects67
Trigonometric Instructions ...69
Angle Conversion Instructions ...70
Integer/Floating Conversion Instructions...71

ASCII...72
ROUND Instructions ...72
ASCII to Integer Conversion Instructions ..74
Integer to ASCII Conversion Instructions ..75
ASCII to Float Conversion Instructions ...76
Float to ASCII Conversion Instructions ...78
ASCII to Double Word Conversion Instructions......................................79
Double Word to ASCII Conversion Instructions......................................81

Stack Operators ...82
Stack Instructions (MPS, MRD, MPP)...82

Instructions on Object Tables...83
Word, Double Word, and Floating Point Tables Assignment84
Table Summing Functions ...85
Table Comparison Functions..86
Table Search Functions ..87
Table Search Functions for Maximum and Minimum Values88
Number of Occurrences of a Value in a Table89
Table Rotate Shift Functions ..90
Table Sort Functions ...91
Floating Point Table Interpolation (LKUP) Functions92
MEAN Functions of the Values of a Floating Point Table95
SWAP Function of the Values of a Word Table96

Instructions on I/O Objects ..96
Read Immediate Digital Embedded Input (READ_IMM_IN)96
Write Immediate Digital Embedded Output (WRITE_IMM_OUT).............98
Read Immediate Function Block Parameter (READ_IMM)......................99
Write Immediate Function Block Parameter (WRITE_IMM) 100

I/O Objects ... 101
Fast Counter (%FC).. 101
High Speed Counter (%HSC) .. 101
Pulse (%PLS)... 101
Pulse Width Modulation (%PWM) .. 101

Network Objects.. 103
Network Objects ... 103

Software Objects... 104
Using Function Blocks .. 104

Function Block Programming Principles.. 104
Adding a Function Block .. 105
Configuring a Function Block ... 107

Timer (%TM) .. 107
Description ... 107
Configuration.. 108
TON: On-Delay Timer.. 110
TOF: Off-Delay Timer .. 113
TP: Pulse Timer .. 116
Programming Example.. 119

4 EIO0000003289.03

Counter (%C) ... 119
Description ... 120
Configuration.. 121
Programming Example.. 122

Message (%MSG) and Exchange (EXCH).. 124
Overview.. 124
Description ... 126
Configuration.. 129
Programming Example.. 132
ASCII Examples ... 133
Modbus Standard Requests and Examples... 135

LIFO/FIFO Register (%R).. 141
Description ... 141
Configuration.. 142
LIFO Register Operation ... 144
FIFO Register Operation ... 145
Programming Example.. 146

Drums (%DR)... 146
Description ... 147
Configuration.. 148
Programming Example.. 149

Shift Bit Register (%SBR).. 152
Description ... 152
Configuration.. 153
Programming Example.. 154

Step Counter (%SC) ... 155
Description ... 155
Configuration.. 156
Programming Example.. 157

Schedule Blocks (%SCH).. 158
Description ... 158
Programming and Configuring ... 161

Real Time Clock (%RTC) ... 163
Description ... 163
Configuration.. 165

PID.. 166
PID Function .. 166

Data Logging.. 167
Data Logging.. 167

Grafcet Steps ... 169
Grafcet Steps ... 169

PTO Objects .. 170
Motion Task Table (%MT) .. 170
Pulse Train Output (%PTO) ... 170

Drive Objects ... 171
Drive Objects ... 171

Communication Objects... 172
Read Data from a Remote Device (%READ_VAR) 172

Description ... 172
Function Configuration .. 176

EIO0000003289.03 5

Programming Example.. 178
Write Data to a Modbus Device (%WRITE_VAR) 178

Description ... 178
Function Configuration .. 180
Programming Example.. 182

Read and Write Data on a Modbus Device (%WRITE_READ_VAR) 183
Description ... 183
Function Configuration .. 185
Programming Example.. 187

Communication on an ASCII Link (%SEND_RECV_MSG)......................... 188
Description ... 188
Function Configuration .. 190
Programming Example.. 192

Send Receive SMS (%SEND_RECV_SMS) ... 193
Description ... 193
Function Configuration .. 199

Timing Diagrams for Communication Object Function Blocks..................... 204
Examples of Timing Diagrams.. 204

User-Defined Functions ... 206
Presentation... 206

User-Defined Function Blocks .. 207
Presentation... 207

Clock Functions... 208
Clock Functions.. 208
Time and Date Stamping... 208
Setting Date and Time .. 210

Glossary ... 213

Index ... 215

6 EIO0000003289.03

Safety Information

Safety Information
Important Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, service, or maintain it. The
following special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

Please Note
Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

Before You Begin
Do not use this product on machinery lacking effective point-of-operation
guarding. Lack of effective point-of-operation guarding on a machine can result in
serious injury to the operator of that machine.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

! DANGER

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

WARNING!

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

CAUTION!

NOTICE is used to address practices not related to physical injury.

NOTICE

EIO0000003289.03 7

Safety Information

WARNING
UNGUARDED EQUIPMENT
• Do not use this software and related automation equipment on equipment

which does not have point-of-operation protection.
• Do not reach into machinery during operation.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

This automation equipment and related software is used to control a variety of
industrial processes. The type or model of automation equipment suitable for each
application will vary depending on factors such as the control function required,
degree of protection required, production methods, unusual conditions,
government regulations, etc. In some applications, more than one processor may
be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the
conditions and factors present during setup, operation, and maintenance of the
machine and, therefore, can determine the automation equipment and the related
safeties and interlocks which can be properly used. When selecting automation
and control equipment and related software for a particular application, you should
refer to the applicable local and national standards and regulations. The National
Safety Council's Accident Prevention Manual (nationally recognized in the United
States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection
such as point-of-operation guarding must be provided. This is necessary if the
operator's hands and other parts of the body are free to enter the pinch points or
other hazardous areas and serious injury can occur. Software products alone
cannot protect an operator from injury. For this reason the software cannot be
substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to
point-of-operation protection have been installed and are operational before
placing the equipment into service. All interlocks and safeties related to point-of-
operation protection must be coordinated with the related automation equipment
and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-
of-operation protection is outside the scope of the Function Block Library,
System User Guide, or other implementation referenced in this
documentation.

Start-up and Test
Before using electrical control and automation equipment for regular operation
after installation, the system should be given a start-up test by qualified personnel
to verify correct operation of the equipment. It is important that arrangements for
such a check are made and that enough time is allowed to perform complete and
satisfactory testing.

WARNING
EQUIPMENT OPERATION HAZARD
• Verify that all installation and set up procedures have been completed.
• Before operational tests are performed, remove all blocks or other temporary

holding means used for shipment from all component devices.
• Remove tools, meters, and debris from equipment.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

8 EIO0000003289.03

Safety Information

Follow all start-up tests recommended in the equipment documentation. Store all
equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary
grounds that are not installed according to local regulations (according to the
National Electrical Code in the U.S.A, for instance). If high-potential voltage
testing is necessary, follow recommendations in equipment documentation to
prevent accidental equipment damage.

Before energizing equipment:
• Remove tools, meters, and debris from equipment.
• Close the equipment enclosure door.
• Remove all temporary grounds from incoming power lines.
• Perform all start-up tests recommended by the manufacturer.

Operation and Adjustments
The following precautions are from the NEMA Standards Publication ICS 7.1-1995
(English version prevails):

• Regardless of the care exercised in the design and manufacture of equipment
or in the selection and ratings of components, there are hazards that can be
encountered if such equipment is improperly operated.

• It is sometimes possible to misadjust the equipment and thus produce
unsatisfactory or unsafe operation. Always use the manufacturer’s
instructions as a guide for functional adjustments. Personnel who have
access to these adjustments should be familiar with the equipment
manufacturer’s instructions and the machinery used with the electrical
equipment.

• Only those operational adjustments actually required by the operator should
be accessible to the operator. Access to other controls should be restricted to
prevent unauthorized changes in operating characteristics.

EIO0000003289.03 9

About the Book

About the Book
Document Scope

This guide describes how to use Function Blocks and Instructions in programs you
create with EcoStruxure Machine Expert - Basic software. The descriptions apply
to all logic controllers supported by EcoStruxure Machine Expert - Basic.

Validity Note
The information in this manual is applicable only for EcoStruxure Machine Expert
- Basic compatible products.

This document has been updated for the release of EcoStruxureTM Machine
Expert - Basic V1.2 SP1 Patch 1.

The characteristics that are described in the present document, as well as those
described in the documents included in the Related Documents section below,
can be found online. To access the information online, go to the Schneider Electric
home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the
same as those characteristics that appear online. In line with our policy of constant
improvement, we may revise content over time to improve clarity and accuracy. If
you see a difference between the document and online information, use the online
information as your reference.

Related Documents
Title of Documentation Reference Number

EcoStruxure Machine Expert - Basic - Operating Guide EIO0000003281 (ENG)

EIO0000003282 (FRA)

EIO0000003283 (GER)

EIO0000003284 (SPA)

EIO0000003285 (ITA)

EIO0000003286 (CHS)

EIO0000003287 (POR)

EIO0000003288 (TUR)

Modicon M221 Logic Controller Advanced Functions -
Library Guide

EIO0000003305 (ENG)

EIO0000003306 (FRE)

EIO0000003307 (GER)

EIO0000003308 (SPA)

EIO0000003309 (ITA)

EIO0000003310 (CHS)

EIO0000003311 (POR)

EIO0000003312 (TUR)

10 EIO0000003289.03

http://www.se.com/ww/en/download/
https://www.se.com/en/download/document/EIO0000003281
https://www.se.com/en/download/document/EIO0000003282
https://www.se.com/en/download/document/EIO0000003283
https://www.se.com/en/download/document/EIO0000003284
https://www.se.com/en/download/document/EIO0000003285
https://www.se.com/en/download/document/EIO0000003286
https://www.se.com/en/download/document/EIO0000003287
https://www.se.com/en/download/document/EIO0000003288
https://www.se.com/en/download/document/EIO0000003305
https://www.se.com/en/download/document/EIO0000003306
https://www.se.com/en/download/document/EIO0000003307
https://www.se.com/en/download/document/EIO0000003308
https://www.se.com/en/download/document/EIO0000003309
https://www.se.com/en/download/document/EIO0000003310
https://www.se.com/en/download/document/EIO0000003311
https://www.se.com/en/download/document/EIO0000003312

About the Book

Title of Documentation Reference Number

Modicon M221 Logic Controller - Programming Guide EIO0000003297 (ENG)

EIO0000003298 (FRE)

EIO0000003299 (GER)

EIO0000003300 (SPA)

EIO0000003301 (ITA)

EIO0000003302 (CHS)

EIO0000003303 (POR)

EIO0000003304 (TUR)

Modicon M221 Logic Controller - Hardware Guide EIO0000003313 (ENG)

EIO0000003314 (FRA)

EIO0000003315 (GER)

EIO0000003316 (SPA)

EIO0000003317 (ITA)

EIO0000003318 (CHS)

EIO0000003319 (POR)

EIO0000003320 (TUR)

Product Related Information

WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure

modes of control paths and, for certain critical control functions, provide a
means to achieve a safe state during and after a path failure. Examples of
critical control functions are emergency stop and overtravel stop, power
outage and restart.

• Separate or redundant control paths must be provided for critical control
functions.

• System control paths may include communication links. Consideration must
be given to the implications of unanticipated transmission delays or failures
of the link.

• Observe all accident prevention regulations and local safety guidelines.1

• Each implementation of this equipment must be individually and thoroughly
tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety
Guidelines for the Application, Installation, and Maintenance of Solid State
Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction
and Guide for Selection, Installation and Operation of Adjustable-Speed Drive
Systems" or their equivalent governing your particular location.

EIO0000003289.03 11

https://www.se.com/en/download/document/EIO0000003297
https://www.se.com/en/download/document/EIO0000003298
https://www.se.com/en/download/document/EIO0000003299
https://www.se.com/en/download/document/EIO0000003300
https://www.se.com/en/download/document/EIO0000003301
https://www.se.com/en/download/document/EIO0000003302
https://www.se.com/en/download/document/EIO0000003303
https://www.se.com/en/download/document/EIO0000003304
https://www.se.com/en/download/document/EIO0000003313
https://www.se.com/en/download/document/EIO0000003314
https://www.se.com/en/download/document/EIO0000003315
https://www.se.com/en/download/document/EIO0000003316
https://www.se.com/en/download/document/EIO0000003317
https://www.se.com/en/download/document/EIO0000003318
https://www.se.com/en/download/document/EIO0000003319
https://www.se.com/en/download/document/EIO0000003320

About the Book

WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this

equipment.
• Update your application program every time you change the physical

hardware configuration.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in
this manual, or that appear in or on the products themselves, are generally
derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may
include, but is not limited to, terms such as safety, safety function, safe state, fault,
fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard Description

IEC 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.

ISO 13849-1:2015 Safety of machinery: Safety related parts of control systems.

General principles for design.

EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.

ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment
and risk reduction

EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General
requirements

ISO 14119:2013 Safety of machinery - Interlocking devices associated with guards -
Principles for design and selection

ISO 13850:2015 Safety of machinery - Emergency stop - Principles for design

IEC 62061:2015 Safety of machinery - Functional safety of safety-related electrical,
electronic, and electronic programmable control systems

IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: General requirements.

IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2016 Industrial communication networks - Profiles - Part 3: Functional safety
fieldbuses - General rules and profile definitions.

2006/42/EC Machinery Directive

2014/30/EU Electromagnetic Compatibility Directive

2014/35/EU Low Voltage Directive

12 EIO0000003289.03

About the Book

In addition, terms used in the present document may tangentially be used as they
are derived from other standards such as:

Standard Description

IEC 60034 series Rotating electrical machines

IEC 61800 series Adjustable speed electrical power drive systems

IEC 61158 series Digital data communications for measurement and control – Fieldbus for
use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description
of specific hazards, and is defined as it is for a hazard zone or danger zone in the
Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific
products cited in the present documentation. For more information concerning
the individual standards applicable to the products described herein, see the
characteristics tables for those product references.

EIO0000003289.03 13

Introduction

Introduction
Overview

This chapter provides you information about how to use the source code
examples and the blocks that are required to run many of the examples of
operations and assignment instructions given in this document.

How to Use the Source Code Examples

Overview
Except where explicitly mentioned, the source code examples contained in this
document are valid for both the Ladder Diagram and Instruction List programming
languages. A complete example may require more than one rung.

Reversibility Procedure
To obtain the equivalent Ladder Diagram source code:

Step Action

1 Select and copy (Ctrl+C) the source code for the first rung of the sample program
shown in this manual.

2

In EcoStruxure Machine Expert - Basic, create a new rung by clicking on the
toolbar.

3 In this rung, click the LD > IL button to display Instruction List source code.

4 Select the line number 0000, then right-click and choose Paste Instructions to paste
the source code into the rung:

NOTE: Remember to delete the LD instruction from the last line of the rung if you
have pasted the instructions by inserting the line(s) before the default LD
operator.

5 Click the IL > LD button to display the Ladder Diagram source code.

6 Repeat the previous steps for any additional rungs in the sample program.

14 EIO0000003289.03

Introduction

Example
Instruction List program:

Rung Source Code

0 BLK %R0
LD %M1
I
LD %I0.3
ANDN %R2.E
O
END_BLK

1 LD %I0.3
[%MW20:=%R2.O]

2 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

Corresponding Ladder Diagram:

Operation Blocks

Inserting IL Operations and Assignment Instructions in Ladder
Diagrams

You can use the Operation Block graphical symbol to insert Instruction List
operations and assignment instructions into Ladder Diagram rungs:

Operation block at the end of a rung. Operation block anywhere in a rung.

EIO0000003289.03 15

Introduction

The Operation Block graphical symbol can be inserted in any position in a
Ladder Diagram rung except the first column, as it cannot be used as the first
contact in a rung.

If more than one Operation Block graphical symbol is used in a Ladder Diagram
rung, they must be placed in series. Operation Block instructions cannot be used
in parallel.

NOTE: If the application is configured with a functional level of at least Level
5.0:

• You can use up to five operands and three levels of parentheses in a
operation block. The operands must be of the same object types: words
with words, float with float, etc.

• A minimum of 20 memory words (%MW) must be available to use multiple
operands in the master task. If using multiple operands in a periodic task
as well, another 20 memory words must be available.

To insert an operation block graphical symbol in a Ladder Diagram rung:

Step Action

1
Click the Operation Block button on the toolbar.

2 Click anywhere the rung to insert the Operation Block.

3
Click the Selection mode button on the toolbar.

4 Double-click the operation expression line.

The Smart Coding, page 16 button appears at the end of the line. Click this button
for help selecting a function and with the syntax of the instruction.

5 Type a valid Instruction List operation or assignment instruction and press ENTER.

For example: %MF10 := ((SIN(%MF12 + 60.0) + COS(%MF13)) + %MF10) + 1.2

You can modify the expression in online mode. Refer to Online Mode Modifications (see
EcoStruxure Machine Expert - Basic, Generic Functions Library Guide).

NOTE: Multiple operand expressions cannot be used in event tasks.

OPER Instruction Syntax
The OPER instruction corresponds to an operation block placed anywhere in a
rung.

The equivalent OPER instruction can be used directly in Instruction List rungs.

OPER [expression] where expression is a valid expression, containing up to five
operands and three levels of parentheses. For example:

OPER [%MF10 := ((SIN(%MF12 + 60.0) + COS(%MF13)) + %MF10) + 1.2]

Smart Coding Tooltips in Ladder Diagrams
To help you selecting functions, EcoStruxure Machine Expert - Basic displays
tooltips while you type function names in operation blocks.

16 EIO0000003289.03

Introduction

Two types of tooltip are available:
• A list of function names, dynamically updated with the function names that

begin with the typed characters. For example, typing “AS” displays ASCII_
TO_FLOAT, ASCII_TO_INT, and ASIN.

• Help with the syntax of a function, displayed when you type an opening
parenthesis. For example, typing “ABS(“ displays:

Using the Smart Coding Assistant
The Smart Coding Assistant appears when you click the Smart Coding button

in the operation expression line:

Proceed as follows:

Step Action

1 Optionally, filter the list by category of function:
• All types
• ASCII
• Floating point
• I/O objects
• Floating Point
• Numerical Processing
• Table
• PID
• User-defined function

2 Select a function to add to the expression.

3 Click Insert Function.

EIO0000003289.03 17

Introduction

Getting Help with Syntax
If the syntax of the Instruction List operation or assignment instruction is incorrect,
the border of the operation expression box turns red. For assistance, either:

• Move the mouse over the operation expression line, or
• Select Tools > Program Messages.

Comparison Blocks

Inserting IL Comparison Expressions in Ladder Diagrams
You can use the Comparison Block graphical symbol to insert Instruction List
comparison expressions into Ladder Diagram rungs:

The operands must be of the same object types: words with words, float with float,
etc.

Proceed as follows:

Step Action

1

Click the Comparison Block button on the toolbar.

2 Click anywhere in the rung to insert the Comparison Block.

3 Double-click the Comparison expression line.

4 Type a valid Instruction List comparison operation and press ENTER.

You can modify the expression in online mode. Refer to Online Mode Modifications (see
EcoStruxure Machine Expert - Basic, Operating Guide).

NOTE: If the application is configured with a functional level (see EcoStruxure
Machine Expert - Basic, Operating Guide) of at least Level 6.0:

• You can use up to five operands and three level of parentheses in a
comparison block.

• A minimum of 20 memory words (%MW) must be available to use multiple
operands in the master task. If using multiple operands in a periodic task
as well, another 20 memory words must be available.

NOTE: Multiple operand expressions cannot be used in event tasks.

Getting Help with Syntax
If the syntax of the Instruction List comparison operation is incorrect, the border of
the Comparison expression box turns red. For assistance, either:

• Move the mouse over the Comparison expression line, or
• Select Tools > Program Messages.

18 EIO0000003289.03

Language Objects

Language Objects

Objects

Overview
In EcoStruxure Machine Expert - Basic, the term object is used to represent an
area of logic controller memory reserved for use by an application. Objects can
be:

• Simple software variables, such as memory bits and words
• Addresses of digital or analog inputs and outputs
• Controller-internal variables, such as system words and system bits
• Predefined system functions or function blocks, such as timers and counters.

Controller memory is either pre-allocated for certain object types, or automatically
allocated when an application is downloaded to the logic controller.

Objects can only be addressed by a program once memory has been allocated.
Objects are addressed using the prefix %. For example, %MW12 is the address of
a memory word, %Q0.3 is the address of an embedded digital output, and %TM0
is the address of a Timer function block.

EIO0000003289.03 19

Language Objects

Memory Bit Objects

Introduction
Memory bit objects are bit-type software variables that can be used as operands
and tested by Boolean instructions.

Examples of bit objects:
• Memory bits
• System bits
• Step bits
• Bits extracted from words

The range of valid objects is from 0 to the maximum reference used in your
application (see the programming guide of your logic controller).

Syntax
Use this format to address memory, system, and step bit objects:

This table describes the elements in the addressing format:

Group Item Description

Symbol % The percent symbol precedes a software variable.

Object type M Memory bits store intermediary values while a program is running.

S System bits provide status and control information for the
controller.

X Step bits provide status of Grafcet step activities.

Object instance
identifier

i The identifier of the object representing their sequential instance in
memory. The maximum number of objects depends on the number
of objects configured to the limits of available memory. For the
maximum amount of available memory, see the programming
guide of your logic controller.

For information on addressing of I/O bits, refer to I/O objects, page 21.

For information on addressing of bit extracted from word, refer to Extracting Bit
from Word Object, page 27.

20 EIO0000003289.03

Language Objects

Description
This table lists and describes memory, system, and step bits objects that are used
as operands in Boolean instructions:

Type Description Address or
Value

Write
Access1

Immediate
values

0 or 1 (False or True) 0 or 1 –

Memory Memory bits are internal memory areas used to store
binary values.

NOTE: Unused I/O objects cannot be used as
memory bits.

%Mi Yes

System System bits %S0 to %S127 allow you to monitor the
correct operation of the controller and the correct
running of the application program, as well as control
certain system-level features.

%Si Depends
on i

Grafcet
steps

Bits %X1 to %Xi are associated with Grafcet steps.
Step bit Xi is set to 1 when the corresponding step is
active, and set to 0 when the step is deactivated.

%Xi Yes

1 Written by the program or by using an animation table.

Example
This table shows some examples of bit object addressing:

Bit Object Description

%M25 Memory bit number 25

%S20 System bit number 20

%X4 Grafcet step number 4

I/O Objects

Introduction
I/O objects include both bits and words. Each physical input and output is mapped
to these objects in internal memory. I/O bit objects can be used as operands and
tested by Boolean instructions. I/O word objects can be used in most non-Boolean
instructions such as functions and instructions containing arithmetic operators.

Examples of I/O objects:
• Digital inputs
• Digital outputs
• Analog inputs
• Analog outputs
• Communication inputs and outputs

The range of valid objects is from 0 to the maximum configured and supported for
your controller (see the Hardware Guide and Programming Guide for your logic
controller).

EIO0000003289.03 21

Language Objects

Syntax
This figure shows the input/output address format:

This table describes the components of the addressing format:

Component Item Value Description

Symbol % – The percent symbol precedes an internal address.

Object type I – Digital input (bit object)

Q – Digital output (bit object)

IW – Analog input value (word object)

QW – Analog output value (word object)

IWS – Analog input channel status (word object)

QWS – Analog output channel status (word object)

Module number y 0 Embedded I/O channel on the logic controller, or on a
cartridge inserted in the logic controller.

1...m 1 I/O channel on an expansion module directly
connected to the controller.

m+1...n 2 I/O channel on an expansion module connected using
the TM3 Transmitter/Receiver modules.

Channel
number

z 0...31 I/O channel number on the logic controller or
expansion module. The number of available channels
depends on the logic controller or expansion module
reference.

p0q 3 I/O channel on a cartridge inserted in the logic
controller. The number of available channels depends
on the cartridge reference.

1 m is the number of local modules configured (maximum 7).

2 n is the number of remote modules configured (maximum n+7). The maximum position number is
14.
3 p is the number of the cartridge in the controller. q is the channel number on the cartridge.

22 EIO0000003289.03

Language Objects

Description
This table lists and describes the I/O objects that are used as operands in
instructions:

Type Address or
Value

Write
Access 1

Description

Input bits %Iy.z 2 No 3 These bits are the logical images of the electrical
states of the physical digital I/O. They are stored in
data memory and updated between each scan of the
program logic.

Output bits %Qy.z 2 Yes

Input word %IWy.z 2 No These word objects contain the analog value of the
corresponding channel.

Output word %QWy.z 2 Yes

Input word
status

%IWSy.z 2 No These word objects contain the status of the
corresponding analog channel.

Output word
status

%QWSy.z 2 No

1 Written by the program or by using an animation table.

2 y is the module number and z is the channel number. Refer to addressing syntax of I/Os, page 22
for descriptions of y and z.

3 Although you cannot write to input bits, they can be forced.

Examples
This table shows some examples of I/O addressing:

I/O Object Description

%I0.5 Digital input channel number 5 on the controller (embedded I/O are
module number 0).

%Q3.4 Digital output channel number 4 on the expansion module at address 3
(expansion module I/O).

%IW0.1 Analog input 1 on the controller (embedded I/O).

%QW2.1 Analog output 1 on the expansion module at address 2 (expansion
module I/O).

%IWS0.101 Analog input channel status of input channel 1 on the first cartridge in the
logic controller).

%QWS1.1 Analog output channel status of output channel 1 on the expansion
module at address 1 (expansion module I/O).

Word Objects

Introduction
Word objects addressed in the form of 16-bit words are stored in data memory and
can contain an integer value from -32768 to 32767 (except for the Fast Counter
function block which is from 0 to 65535).

EIO0000003289.03 23

Language Objects

Examples of word objects:
• Immediate values
• Memory words (%MWi)
• Constant words (%KWi)
• I/O exchange words (%IWi, %QWi, %IWSi, %QWSi)
• System words (%SWi)
• Function blocks (configuration and/or runtime data)

The range of valid objects is from 0 to the maximum reference used in your
application (see the Programming Guide of your logic controller).

For example, if the maximum reference in your application for memory words is %
MW9, then %MW0 through %MW9 are allocated space. %MW10 in this example is not
valid and cannot be accessed either internally or externally.

Syntax
Use this format to address memory, constant, and system words:

This table describes the elements in the addressing format:

Group Ite-
m

Description

Symbol % The percent symbol precedes an internal address.

Object type M Memory words store values while a program is running.

K Constant words store constant values or alphanumeric messages.
Their content can only be written to or modified using EcoStruxure
Machine Expert - Basic.

S System words provide status and control information for the logic
controller.

Format W 16-bit word.

Object instance
identifier

i The identifier of the object representing their sequential instance
in memory. The maximum number of objects depends on the
number of objects configured to the limits of available memory. For
the maximum amount of available memory, see the programming
guide of your logic controller.

Format
The contents of the words or values are stored in user memory in 16-bit binary
code (two’s complement format) using the following convention:

In signed binary notation, by convention, bit 15 is allocated to the sign of the
coded value:

• Bit 15 is set to 0: the content of the word is a positive value.
• Bit 15 is set to 1: the content of the word is a negative value (negative values

are expressed in two’s complement logic).

24 EIO0000003289.03

Language Objects

Words and immediate values (see the Exception List, page 25 for unsigned
integers) can be entered or retrieved in the following format:

• Decimal
Min.: -32768, Max.: 32767 (1579, for example)

• Hexadecimal
Min.: 16#0000, Max.: 16#FFFF (for example, 16#A536)
Alternate syntax: #A536

• ASCII format rules as follows:
◦ The function reads the most significant byte first.
◦ Any ASCII character that is not in the interval [0 - 9] ([16#30 - 16#39]) is

considered to be an end character, except for a minus sign '-' (16#2D)
when it is placed as the first character.

◦ In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic
overflow or detected error) is set to 1 and 32767 or -32768 value is
returned.

◦ If the first character of the operand is an "end" character, the value 0 is
returned and the bit %S18 is set to 1.

For example, "HELLO":
◦ %MW0:="HE"

◦ %MW1:="LL"

◦ %MW2:="O"

Exception List
This table lists the value range of the objects that are unsigned integers:

Object Value

%SW 0...65535

%FC.V and %FC.P 0...65535

%FC.VD and %FC.PD 0...4294967295

%HSC.V, %HSC.P, %HSC.S0, %HSC.S1, and %HSC.C 0...65535

%HSC.DV, %HSC.PD, %HSC.S0D, %HSC.S1D, and %
HSC.CD

0...4294967295

%HSC.T 100...1000

%PWM.P 0...32767

%PWM.R 0...100

%PLS.P 0...32767

%PLS.N 0...32767

%PLS.ND 0...2147483647

Other than the objects in the exception list, the data has the following value
ranges:

• Words: -32768...32767
• Double words: -2147483648...2147483647

EIO0000003289.03 25

Language Objects

Description
This table describes the word objects:

Words Description Address or
Value

Write Access1

Immediate
values

These are integer values that are in the
same format as the 16-bit words, which
enable values to be assigned to these
words.

- No

Base 10 (decimal) -32768 to 32767

Base 16 (hexadecimal) 16#0000 to
16#FFFF

Memory Used as "working" words to store
values during operation in data
memory.

%MWi Yes

Constants Store constants or alphanumeric
messages. Their content can be
written or modified using EcoStruxure
Machine Expert - Basic during
configuration and in online mode (see
EcoStruxure Machine Expert - Basic,
Operating Guide).

%KWi Yes, during
configuration and in
online mode using
Constant word
properties (see
EcoStruxure
Machine Expert -
Basic, Operating
Guide).

System These 16-bit words have several
functions:

• Provide access to data coming
directly from the controller by
reading %SWi words.

• Perform operations on the
application (for example,
adjusting schedule blocks).

%SWi Depends on i

Function
blocks

These words correspond to current
parameters or values of function
blocks.

%TM2.P, %Ci.P,
and so on.

Yes

1 Written by the program or by using an animation table.

The maximum number of objects available is determined by the logic controller.
Refer to the programming guide of your logic controller for maximum number of
objects.

Example
This table shows some examples of word object addressing:

Word Object Description

%MW15 Memory word number 15

%KW26 Constant word number 26

%SW30 System word number 30

26 EIO0000003289.03

Language Objects

Extracting Bits from Word Objects
This table describes how to extract 1 of the 16 bits from the following word objects:

Word Object Address or Value Write Access1

Memory %MWi:Xk Yes

System %SWi:Xk Depends on i

Constant %KWi:Xk No

Input value %IWy.z:Xk2 No

Output value %QWy.z:Xk2 Yes

Input status %IWSy.z:Xk2 No

Output status %QWSy.z:Xk2 Yes

1 Written by the program or by using an animation table.

2 For information on I/O word objects, refer to Addressing I/O objects (see EcoStruxure Machine
Expert - Basic, Operating Guide).

Xk indicates the bit number that has to be extracted from the word object. For example, %MW0.X3;
bit stored at the third sequential position of the memory word %MW0 will be extracted.

Floating Point and Double Word Objects

Introduction
A floating point object is a real number; that is, a number with a fractional part (for
example: 3.4E+38, 2.3, or 1.0).

A double word consists of 4 bytes stored in data memory and containing a two’s
complement value from -2147483648 to +2147483647.

Floating point and double word operations are not supported by all logic
controllers.

For compatibility, refer to the Programming Guide of your logic controller.

Floating Point Format and Value
The floating format used is the standard IEEE STD 734-1985 (equivalent to IEC
559). The length of the words is 32 bits, which corresponds to single decimal point
floating numbers.

This table shows the format of a floating point value:

Bit 31 Bits {30...23} Bits {22...0}

Sign of the exponent Exponent Significand

Representation precision is from 2...24 to display floating point numbers; it is not
necessary to display more than 6 digits after the decimal point.

NOTE: The value 1285 is interpreted as a whole value; in order for it to be
recognized as a floating point value, it must be written thus: 1285.0

EIO0000003289.03 27

Language Objects

Limit Range of Arithmetic Functions on Floating Point Objects
This table describes the limit range of arithmetic functions on floating point
objects:

Arithmetic Function Limit Range and Invalid Operations

Type Syntax NaN (Not a Number) Infinity

Square root of an
operand

SQRT(x) x < 0 x > SQRT(3.402824E
+38) is the maximum
number that can be
obtained

Power of an integer by
a real

EXPT(%MF,%MW)

EXPT(y, x)

(where:

x^y = %MW^%MF)

x < 0 and y = fractional
number

X ^ Y > 3.402824E+38

Base 10 logarithm LOG(x) x < 0 Calculation possible
until maximum value
of x is obtained
(3.402824E+38)

Natural logarithm LN(x) x < 0 No maximum value of
x. LN(3.402824E+38)
is the maximum
number that can be
obtained

Natural exponential EXP(x) No limit in the real
range

x > 88.72283

If x < -103.973 the
result is 0

Validity Check
When the result is not within the valid range, the system bit %S18 is set to 1.

The status word %SW17 indicates the cause of an error detected in a floating
operation.

Different bits of the word %SW17:

%SW17:X0 Invalid operation, result is not a number (NaN)

%SW17:X1 Reserved

%SW17:X2 Division by 0, result is invalid (-Infinity or +Infinity)

%SW17:X3 Result greater in absolute value than +3.402824E+38, result is invalid
(-Infinity or +Infinity)

%SW17:X4 to X15 Reserved

This word is reset to 0 by the system following a cold start, and can also be reset
by the program for reusage purposes.

Syntax
Use this format to address memory and constant floating point objects:

28 EIO0000003289.03

Language Objects

Use this format to address memory and constant double word objects:

This table describes the elements in the addressing format:

Group Item Description

Symbol % The percent symbol precedes an internal address.

Object type M Memory objects are used to store intermediary values while a
program is running.

K Constants are used to store constant values or alphanumeric
messages (only for double words).

Format F 32-bit floating point object.

D 32-bit double word object.

Object instance
identifier

i The identifier representing instance (sequential position) of an
object in memory. Refer to the programming guide of your logic
controller for maximum number of objects.

Description of Floating Point and Double Word Objects
This table describes floating point and double word objects:

Type of Object Description Address Write Access

Immediate values Integers (double word) or decimal
(floating point) numbers with
identical format to 32-bit objects.

- No

Memory floating point Objects used to store values during
operation in data memory.

%MFi Yes

Memory double word %MDi Yes

Floating constant
value

Used to store constants. %KFi Yes, during
configuration and in
online mode using
Constant word
properties (see
EcoStruxure Machine
Expert - Basic,
Operating Guide)

Double constant %KDi Yes, during
configuration and in
online mode using
Constant word
properties (see
EcoStruxure Machine
Expert - Basic,
Operating Guide)

NOTE: The maximum number of objects is determined by the logic controller;
refer to the Programming Guide for your hardware platform for details.

EIO0000003289.03 29

Language Objects

Example
This table shows some examples of floating point and double word objects
addressing:

Object Description

%MF15 Memory floating point object number 15

%KF26 Constant floating point object number 26

%MD15 Memory double word number 15

%KD26 Constant double word number 26

Possibility of Overlap Between Objects
Single, double length and floating words are stored in the data space in one
memory zone. Thus, the floating word %MFi and the double word %MDi
correspond to the single length words %MWi and %MWi+1; the word %MWi
containing the least significant bits and the word %MWi+1 the most significant bits
of the word %MFi.

This table shows how floating and double memory words overlap:

Floating and Double Odd Address Memory Words

%MF0 / %MD0 %MW0

%MF1 / %MD1 %MW1

%MF2 / %MD2 %MW2

%MF3 / %MD3 %MW3

%MF4 / %MD4 %MW4

... %MW5

... ...

%MFi / %MDi %MWi

%MFi+1 / %MDi+1 %MWi+1

This table shows how floating and double constants overlap:

Floating and Double Odd Address Memory Words

%KF0 / %KD0 %KW0

%KF1 / %KD1 %KW1

%KF2 / %KD2 %KW2

%KF3 / %KD3 %KW3

%KF4 / %KD4 %KW4

... %KW5

... ...

%KFi / %KDi %KWi

%KFi+1 / %KDi+1 %KWi+1

Example:

%MF0 corresponds to %MW0 and %MW1. %KF43 corresponds to %KW43 and %KW44.

30 EIO0000003289.03

Language Objects

Structured Objects

Introduction
Structured objects are combinations of adjacent objects. EcoStruxure Machine
Expert - Basic supports the following types of structured objects:

• Bit strings
• Tables of words
• Tables of double words
• Tables of floating words

Bit Strings
Bit strings are a series of adjacent object bits of the same type and of a defined
length (L). Bit strings are referenced starting on byte boundaries.

Example: Bit string %M8:6

NOTE: %M8:6 is valid (8 is a multiple of 8) while %M10:16 is invalid (10 is not
a multiple of 8).

Bit strings can be used with the Assignment instruction, page 51.

Available Types of Bits
Available types of bits for bit strings:

Type Address Write Access

Digital input bits %I0.0:L or %I1.0:L(1) No

Digital output bits %Q0.0:L or %Q1.0:L(1) Yes

System bits %Si:L

with i multiple of 8

Depending on i

Grafcet step bits %Xi:L

with i multiple of 8

Yes (by program)

Memory bits %Mi:L

with i multiple of 8

Yes

(1) Only I/O bits 0 to 16 can be read in a bit string. For logic controllers with 24 or 32 I/O channels,
bits over 16 cannot be read in a bit string.

L Represents the length of the structured objects (bit strings, table of words, table of double words,
and table of floating words).

The number of bits is determined by the logic controller; refer to the Programming
Guide for your hardware platform for details.

Tables of Words
Word tables are a series of adjacent words of the same type and of a defined
length (L, maximum value is 255).

EIO0000003289.03 31

Language Objects

Example: Word table %KW10:7

Word tables can be used with the Assignment instruction, page 84.

Available Types of Words
Available types of words for word tables:

Type Address Write Access

Memory words %MWi:L(1) Yes

Constant words %KWi:L(1) No

System words %SWi:L(1) Depending on i

Analog outputs %QWi.j:L(2) Yes

Analog inputs %IWi.j:L(2) No

EtherNet/IP input assemblies %QWEi:L(2) Yes

EtherNet/IP output assemblies %IWEi:L(2) No

Modbus mapping input
registers

%IWMi:L(2) No

Modbus mapping output
registers

%QWMi:L(2) Yes

IOScanner input registers %IWNa.b.c:L(2) No

IOScanner output registers %QWNa.b.c:L(2) Yes

(1) The number of words L is determined by the logic controller; refer to the Programming Guide for
your hardware platform for details.

(2) The number of words L depends on the configuration of each object. Refer to I/O Objects, page
21 or Network Objects, page 103.

Tables of Double Words
Double word tables are a series of adjacent words of the same type and of a
defined length (L, maximum value is 255).

Example: Double word table %KD10:7

Double word tables can be used with the Assignment instruction, page 41.

32 EIO0000003289.03

Language Objects

Available Types of Double Words
Available types of words for double word tables:

Type Address Write Access

Memory words %MDi:L Yes

Constant words %KDi:L No

Tables of Floating Words
Floating word tables are a series of adjacent words of the same type and of a
defined length (L, maximum value is 255).

Example: Floating point table %KF10:7

Floating point tables can be used with the Assignment instruction, page 41.

Types of Floating Words Available
Available types of words for floating word tables:

Type Address Write Access

Memory words %MFi:L Yes

Constant words %KFi:L No

Indexed Objects

Introduction
An indexed object is a single word, double word, floating point or memory bit
object with an indexed object address. There are 2 types of object addressing:

• Direct addressing
• Indexed addressing

Direct Addressing
A direct address of an object is set and defined when a program is written.

Example: %M26 is a memory bit with the direct address 26.

EIO0000003289.03 33

Language Objects

Indexed Addressing
An indexed address of an object provides a method of modifying the address of an
object by adding an index to the direct address of the object. The content of the
index is added to the direct address of the object. The index is defined by a
memory word %MWi.

Example: %MW108[%MW2] is a word with an address consisting of the direct
address 108 plus the contents of word %MW2.

If word %MW2 has a value of 12, writing to %MW108[%MW2] is equivalent to writing
to %MW120 (108 plus 12).

Objects Available for Indexed Addressing
This table describes the available types of objects for indexed addressing:

Type Address Write Access

Memory words %MWi[MWj]

%MWi[%PARAMj]1

Yes

Yes

Constant words %KWi[%MWj] No

Memory double words %MDi[MWj] Yes

Double constant words %KDi[%MWj] No

Memory floating points %MFi[MWj] Yes

Constant floating points %KFi[%MWj] No

Memory bits %Mi[%MWj] Yes

i Object instance identifier that represents instance (sequential position) of an object in memory.
Refer to the programming guide of your logic controller for maximum number of objects.

j Object instance identifier of the index object whose content has to be added to the direct address
of some other object.

1 Valid only in the RUNG of a User-Defined Function (UDF)/User-Defined Function Block (UDFB)
where %PARAMj is defined.

Indexed objects can be used with the Assignment instruction, page 50 and in
Comparison instructions, page 49.

This type of addressing enables series of objects of the same type (such as
memory words and constants) to be scanned in succession, by modifying the
content of the index object in the program.

Index Overflow System Bit %S20
An overflow of the index occurs when the address of an indexed object exceeds
the limits of the memory zone containing the same type of object. In summary:

• The object address plus the content of the index is less than 0.
• The object address plus the content of the index is greater than the largest

word directly referenced in the application.
In the event of an index overflow, system bit %S20 is set to 1 and the object is
assigned an index value of 0.

34 EIO0000003289.03

Language Objects

NOTE: Monitor for overflow. Your program must read %S20 for possible
processing. You should then confirm that it is reset to 0.

%S20 (initial status = 0):
• On index overflow: set to 1 by the controller.
• Acknowledgment of overflow: manually set to 0 in the program after

modifying the index.
Some of the detected mathematical errors could have significant impact on the
execution of your application. Monitor for these potential errors, and program
instructions to appropriately control the execution of your application should one
or more of these detected errors occur. The impact of any of these detected errors
depends upon configuration, equipment used, and the program instructions
executed prior to and after detection of the potential error or errors.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Write programming instructions to test the validity of operands intended to be

used in mathematical operations.
• Avoid using operands of different data types in mathematical operations.
• Always monitor the system bits assigned to indicate invalid mathematical

results.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Function Block Objects

Introduction
A function block is a reusable object that accepts one or more input values and
returns one or more output values. A function block is called through an instance
(a copy of a function block with its own dedicated name and variables). Each
function block instance has a persistent state (outputs and internal variables) from
one call to another.

NOTE: The function blocks (%FC, %HSC, %PLS, and %PWM) and Status
Alarm drive their inputs and outputs (%I0.x and %Q0.x, affected in the
configuration) directly with no relation with the controller cycle. The image bits
(%I0.x and %Q0.x) are not updated by the controller. So, these inputs and
outputs bits cannot be used directly in the user program, and an animation
table using these inputs/outputs cannot show the current states of these
inputs/outputs.

EIO0000003289.03 35

Language Objects

Example
This illustration shows a Counter function block:

Bit Objects
Bit objects correspond to the function block outputs. These bits can be accessed
by Boolean test instructions using either of the following methods:

• Directly (for example, LD E) if they are wired to the block in reversible
programming, page 104.

• By specifying the block type (for example, LD %Ci.E).
Inputs can be accessed in the form of instructions.

Word Objects
Word objects correspond to specified parameters and values as follows:

• Block configuration parameters: some parameters are accessible by the
program (for example, pre-selection parameters), and some are inaccessible
by the program (for example, time base).

• Current values: for example, %Ci.V, the current count value.

Double Word Objects
Double-word objects increase the computational capability of your logic controller
while executing system functions, such as fast counters (%FC), high speed
counters (%HSC) and pulse generators (%PLS, %PWM).

To address the 32-bit double word objects used with function blocks, append the
character D to the original syntax of the standard word objects.

This example shows how to address the current value of a fast counter in standard
format and in double word format:

• %FCi.V is the current value of the fast counter in standard format.
• %FCi.VD is the current value of the fast counter in double word format.

36 EIO0000003289.03

Instructions

Instructions

Boolean Processing

Aim of This Section
This section provides an introduction to Boolean processing instructions.

Boolean Instructions

Introduction
Boolean instructions can be compared to Ladder Diagram language elements.
These instructions are summarized in this table:

Item Operator Instruction
Example

Description

Test elements The load (LD) instruction is
equivalent to the first open
contact connected to a
power rail of a ladder
diagram.

Logical AND and OR
instructions are equivalent
to open contacts after the
first contact connected to
the power rail of a ladder
diagram.

LD %I0.0 Contact is closed when bit %
I0.0 is at state 1.

Action elements The store (ST) instruction is
equivalent to a coil.

ST %Q0.0 The associated bit object
takes a logical value of the
bit accumulator (result of
previous logic).

The Boolean result of the test elements is applied to the action elements as shown
by the following instructions:

Rung Instruction

0 LD %I0.0
AND %I0.1
ST %Q0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Testing Controller Inputs
Boolean test instructions can be used to detect rising or falling edges on the
controller inputs. An edge is detected when the state of an input has changed
between “scan n-1” and the current “scan n”. This edge remains detected during
the current scan.

EIO0000003289.03 37

Instructions

Edge Detection
This table summarizes the instructions and timing for detecting rising and falling
edges:

Edge IL Instruction Ladder
Diagram

Timing Diagram

Rising Edge
Contact

LDR %M0

Falling Edge
Contact

LDF %M0

The objects are only updated at the beginning of the next master cycle following edge
detection. A state change of a memory bit (e.g. %M0) is indicated one scan delayed.

NOTE: Rising and falling edge contacts can only be used on input bits (%I)
and memory bits (%M) objects.

Edge detection can also be performed using the RISING and FALLING

functions, page 47. To use them, the application must be configured with a
Functional Level of at least Level 6.0.

One of the differences between the rising edge/falling edge contacts and RISING/
FALLING functions is the scan applied on the program:

• The LDR/LDF instructions indicate rising/falling edges with a delay of one
scan.

• The RISING/FALLING functions indicate rising/falling edges in the same cycle
in which they occur.

Rising Edge Detection
The Load Rising Edge (LDR) instruction is equivalent to a Rising Edge detection
contact. The Rising Edge detects a change of the input value from 0 to 1.

A positive transition sensing contact is used to detect a Rising Edge as seen in
this example:

Rung Instruction

0 LDR %I0.0

38 EIO0000003289.03

Instructions

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Falling Edge Detection
The Load Falling Edge (LDF) instruction is equivalent to a Falling Edge detection
contact. The Falling Edge detects a change of the controlling input from 1 to 0.

A negative transition sensing contact is used to detect a Falling Edge as seen in
this example:

Rung Instruction

0 LDF %I0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Load Operators (LD, LDN, LDR, LDF)

Introduction
Load operators LD, LDN, LDR, and LDF correspond respectively to open, close,
rising edge, and falling edge contacts. LDR and LDF are used only with logic
controller inputs and memory words.

Syntax
This table lists the types of load operators with Ladder Diagram equivalents and
operands:

Operators Ladder Diagram
Equivalent

Operands

LD 0/1

%I, %Q, %M, %S, %X, %BLK.x

%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %
MW:Xk, %SW:Xk, %KW:Xk

%Mi[%MWj]1

LDN

LDR %I, %M

LDF

1 Functional level >= 10.0

EIO0000003289.03 39

Instructions

Coding Examples
Examples of Load instructions:

Rung Instruction

0 LD %I0.1
ST %Q0.3

1 LDN %M0
ST %Q0.2

2 LDR %I0.1
ST %Q0.4

3 LDF %I0.3
ST %Q0.5

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

NOTE: The memory bit (%M) bit edge detection is performed between master
task scans.

40 EIO0000003289.03

Instructions

Assignment Operators (ST, STN, R, S)

Introduction
The Assignment operators ST, STN, S, and R correspond respectively to the
direct, inverse, set, and reset coils.

Syntax
This table lists the types of Assignment operators with Ladder Diagram
equivalents and operands:

Operators Ladder Diagram
Equivalent

Operands

ST %Q, %M, %BLK.x

%QW:Xk, %MW:Xk, %S(1), %SW:Xk(1)

%Mi[%MWj](2)
STN

S %Q, %M, %S, %X, %BLK.x

%QW:Xk, %MW:Xk, %SW:Xk(1)

%Mi[%MWj](2)
R

(1) %S or %SW:Xk are on non-read-only system objects.

(2) Functional level >= 10.0

Coding Examples
Examples of Assignment instructions:

Rung Instruction

0 LD %I0.1
ST %Q0.3
STN %Q0.2
S %Q0.4

1 LD %I0.2
R %Q0.4

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

EIO0000003289.03 41

Instructions

Logical AND Operators (AND, ANDN, ANDR, ANDF)

Introduction
The AND operators perform a logical AND operation between the operand (or its
inverse, rising edge or falling edge) and the Boolean result of the preceding
instruction.

Syntax
This table lists the types of AND operators with Ladder Diagram equivalents and
operands:

Operators Ladder Diagram
Equivalent

Operands

AND 0/1

%I, %Q, %M, %S, %X, %BLK.x

%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:
Xk, %SW:Xk, %KW:Xk

%Mi[%MWj](1)

ANDN

ANDR %I, %M

ANDF

(1) Functional level >= 10.0

Coding Examples
Examples of logical AND instructions:

Rung Instruction

0 LD %I0.1
AND %M1
ST %Q0.3

1 LD %M0
ANDN %I0.0
ST %Q0.2

2 LD %I0.3
ANDR %I0.4
S %Q0.4

3 LD %M3
ANDF %I0.5
S %Q0.5

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

42 EIO0000003289.03

Instructions

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

Logical OR Operators (OR, ORN, ORR, ORF)

Introduction
The OR operators perform a logical OR operation between the operand (or its
inverse, rising edge or falling edge) and the Boolean result of the preceding
instruction.

Syntax
This table lists the types of OR operators with Ladder Diagram equivalents and
operands:

Operators Ladder Diagram
Equivalent

Operands

OR 0/1

%I, %Q, %M, %S, %X, %BLK.x

%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:Xk,
%SW:Xk, %KW:Xk

%Mi[%MWj](1)
ORN

ORR %I, %M

ORF

(1) Functional level >= 10.0

EIO0000003289.03 43

Instructions

Coding Examples
Examples of logical OR instructions:

Rung Instruction

0 LD %I0.1
OR %M1
ST %Q0.0

1 LD %I0.2
ORN %M2
ST %Q0.1

2 LD %M0
ORR %I0.3
S %Q0.5

3 LDF %I0.5
ORF %I0.6
S %Q0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

Exclusive OR Operators (XOR, XORN, XORR, XORF)

Introduction
The XOR operator performs an exclusive OR operation between the operand and
the Boolean result of the operator instruction.

The XORN operator performs an exclusive OR operation between the inverse of
the operand and the Boolean result of the preceding instruction.

The XORR operator performs an exclusive OR operation between the rising edge
of the operand and the Boolean result of the preceding instruction.

The XORF operator performs an exclusive OR operation between the falling edge
of the operand and the Boolean result of the preceding instruction.

44 EIO0000003289.03

Instructions

Syntax
This table lists the types of XOR operators and operands:

Operators Ladder Diagram
Equivalent

Operands

XOR %I, %Q, %M, %S, %X, %BLK.x

%IW:Xk, %QW:Xk, %IWS:Xk, %QWS:Xk, %MW:Xk,
%SW:Xk, %KW:Xk

XORN

XORR %I, %M

XORF

Coding Examples
Using the XOR instruction:

Rung Instruction

0 LD %I0.1
XOR %M1
ST %Q0.3

Equivalent logical instructions of the XOR operator:

Rung Instruction

0 LD %I0.1
ANDN %M1
OR(%M1
ANDN %I0.1
)
ST %Q0.3

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

EIO0000003289.03 45

Instructions

Special Cases
Do not insert:

• XOR contacts in the first position of a rung.
• XOR contacts in parallel with other Ladder Diagram elements (see the

following example).
As shown in this example, inserting an element in parallel with the XOR contact
will generate a validation error:

NOT Operator (N)

Introduction
The NOT (N) operator has an implicit operand; that being, the result stored in the
boolean accumulator. The NOT negates the value of the accumulator.

Syntax
This table shows the N operator:

Operator Ladder Diagram
Equivalent

Operands

N Not applicable.

Coding Examples
Example of NOT instruction:

Rung Instruction

0 LD %I0.1
N
ST %Q0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

46 EIO0000003289.03

Instructions

Timing Diagram
The following diagram illustrates the timing, and the effect on the output, of the
code from the coding example(s):

Rising and Falling Functions (RISING, FALLING)

Introduction
The RISING and a FALLING functions evaluate respectively a rising and a falling
edge of the expression that immediately precedes it.

These functions have an implicit operand; that is, the result of the preceding
expression, which is stored in the boolean accumulator.

You cannot place these functions in the first column of a Ladder language rung or
branch, and they cannot be the first instruction in an IL rung.

NOTE: To use the RISING and FALLING functions, the application must be
configured with a functional level (see EcoStruxure Machine Expert - Basic,
Operating Guide) of at least Level 6.0.

Syntax

Function Ladder Diagram Equivalent Operands

RISINGn 1 Not applicable.

FALLINGn 1 Not applicable.

1 n is an integer incremented each time a rising or a falling edge is inserted.

This integer is calculated automatically if you:
• Define no index.
• Enter an incorrect index.
• Delete the index.
• Change the index.

EIO0000003289.03 47

Instructions

Coding Examples

Function Rung Instruction

RISING 0 LD %M0

RISING0

ST %Q0.0

FALLING 1 LD %I0.1

FALLING0

ST %Q0.7

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

You can insert up to:
• 32 instructions of each type if the functional level is less than 10.1
• 255 instructions of each type if the functional level is greater or equal to 10.1

You cannot use the RISING and FALLING functions immediately after any of the
following instructions:

• AND
• ANDN
• OR
• ORN

Timing Diagram
The following diagram illustrates the timing of the example above for one master
task scan time:

48 EIO0000003289.03

Instructions

Comparison Instructions

Introduction
Comparison operators are used to compare up to 5 operands with 3 levels of
parentheses.

This table lists the types of Comparison operators:

Operator Function

> Test if Op1 is greater than Op2

>= Test if Op1 is greater than or equal to Op2

< Test if Op1 is less than Op2

<= Test if Op1 is less than or equal to Op2

= Test if Op1 is equal to Op2

<> Test if Op1 is different from Op2

Syntax
The following describes Instruction List syntax. You can insert Instruction List
comparison expressions, page 18 in Ladder Diagram rungs using a Comparison
Block graphical element.

Syntax for Comparison instructions:

Operator Syntax

>, >=, <, <=, =, <> LD [Op1 operator Op2]

AND [Op1 operator Op2]

OR [Op1 operator Op2]

This table gives details of operands:

Type Op1 Op2

Words %MWi, %KWi, %IW, %QWi, %SWi, %BLK.x Immediate value, %MWi, %KWi, %IW, %QW, %IWSi, %
QWSi, %SWi, %BLK.x, %MWi[%MWi], %KWi[%MWi]

Double words %MDi, %KDi Immediate value, %MDi, %KDi, %MDi[%MWi], %KD
[%MWi]

Floating point words %MFi, %KFi Immediate floating point value, %MFi, %KFi, %MFi[%
MWi], %KFi[%MWi]

NOTE: Comparison instructions can be used within parentheses.

Coding Examples
The comparison is executed inside square brackets following instructions LD,
AND, and OR. The result is 1 when the comparison requested is true.

EIO0000003289.03 49

Instructions

Examples of Comparison instructions:

Rung Instruction

0 LD %I0.2
AND [%MW10>100]
ST %Q0.3

1 LD %M0
AND [%MW20<%KW35]
ST %Q0.4

2 LD %I0.2
OR [%MF30>=%MF40]
ST %Q0.5

An example of using a Comparison instruction within parentheses:

Rung Instruction

0 LD %M0
AND([%MF20>10.0]
OR %I0.0
)
ST %Q0.1

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Numerical Processing

Aim of This Section
This section provides an introduction to Numerical Processing.

Introduction to Numerical Operations

At a Glance
Numerical instructions generally apply to 16-bit words and to 32-bit double words.
They are written between square brackets. If the result of the preceding logical
operation was true (Boolean accumulator = 1), the numerical instruction is
executed. If the result of the preceding logical operation was false (Boolean
accumulator = 0), the numerical instruction is not executed and the operand
remains unchanged.

Assignment Instructions

Introduction
Assignment instructions are used to load Op2 (operand 2) into Op1 (operand 1).

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

50 EIO0000003289.03

Instructions

Syntax for Assignment instructions:

Operator Syntax

:= [Op1 := Op2]

Op1 takes the value of Op2

Assignment operations can be performed on:
• Bit strings
• Words
• Double words
• Floating word
• Word tables
• Double word tables
• Floating word tables
• Pulse train output objects

Bit Strings Assignment

Introduction
Operations can be performed on the following bit strings:

• Bit string to bit string (Example 1)
• Bit string to word (Example 2) or double word (indexed)
• Word or double word (indexed) to bit string (Example 3)
• Immediate value to bit string

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for bit string assignments:

Operator Syntax

:= [Op1 := Op2]

Op1 takes the value of Op2

This table gives details for the operands:

Type Op1 Op2

Word, double word %MWi,%QWi, %SWi
%MWi[%MWi], %MDi, %MDi[%MWi]
%Mi:L, %Qi:L, %Si:L, %Xi:L
%TMi.P, %Ci.P, %Ri.I, %Ri.O, %FCi.P, %
PLSi.P, %PWMi.P
%Ci.PD, %FCi.PD

Immediate value, %MWi, %KWi, %IW, %QWi, %IWSi, %
QWSi, %SWi,%BLK.x, %MWi[%MWi], %KWi[%MWi], %
MDi[%MWi], %KDi[%MWi], %Mi:L,%Qi:L, %Si:L, %
Xi:L, %Ii:L

%TMi.P, %Ci.P, %Ri.I, %Ri.O, %FCi.P, %PLSi.P,
%PWMi.P

%Ci.PD, %FCi.PD

NOTE: The abbreviation %BLK.x (for example, %C0.P) is used to describe
any function block word.

EIO0000003289.03 51

Instructions

Structure
Examples of bit string assignments:

Rung Instruction

0 LD 1
[%Q0.0:8:=%M64:8]

1 LD %I0.2
[%MW100:=%M0:16]

2 LDR %I0.3
[%MW104:16:=%KW0]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Usage rules:
• For bit string to word assignment: the bits in the string are transferred to the

word starting on the right (first bit in the string to bit 0 in the word); and the
word bits which are not involved in the transfer (length ≤16) are set to 0.

• For word to bit string assignment: The word bits are transferred from the right
(word bit 0 to the first bit in the string).

Words Assignment

Introduction
Assignment operations can be performed on the following words and double
words:

• Word (indexed) to word (2, for example) (indexed or not)
• Double word (indexed) to double word (indexed or not)
• Immediate whole value to word (Example 3) or double word (indexed or not)
• Bit string to word or double word
• Floating point (indexed or not) to floating point (indexed or not)
• Word or double word to bit string
• Immediate floating point value to floating point (indexed or not)

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for word assignments:

Operator Syntax

:= [Op1 := Op2]

Op1 takes the value of Op2

This table gives details of operands:

Type Op1 Op2

Word, double word, bit
string

%BLK.x, %MWi, %MWi[%PARAMj], %QWi, %
SWi %MWi[%MWj], %MDi, %MDi[%MWj], %Mi:
L, %Qi:L, %Si:L, %Xi:L

Immediate value, %MWi, %MWi[%PARAMj], %KWi, %IW,
%QWi, %IWSi, QWSi, %SWi, %MWi[%MWj], %KWi[%
MWi], %MDi, %MDi[%MWj], %KDi, %KDi[%MWj], %Mi:
L, %Qi:L, %Si:L, %Xi:L, %Ii:L

Floating point %MFi, %MFi[%MWj] Immediate floating point value, %MFi, %MFi[%MWj], %
KFi, %KFi[%MWj]

52 EIO0000003289.03

Instructions

NOTE: The abbreviation %BLK.x (for example, R3.I) is used to describe any
function block word. For bit strings %Mi:L, %Si:L, and %Xi:L, the base
address of the first of the bit string must be a multiple of 8 (0, 8, 16, ..., 96, ...).

Structure
Examples of word assignments:

Rung Instruction

0 LD 1
[%SW112:=%MW100]

1 LD %I0.2
[%MW0[%MW10]:=%KW0[%MW20]]

2 LD %I0.3
[%MW10:=100]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Arithmetic Operators on Integers

Introduction
Arithmetic operators are used to perform arithmetic operations between 2 integer
operands or on 1 integer operand.

This table lists the types of Arithmetic operators:

Operator Function

+ Add 2 operands

- Subtract 2 operands

* Multiply 2 operands

/ Divide 2 operands

REM Remainder of division of the 2 operands

SQRT Square root of an operand

INC Increment an operand

DEC Decrement an operand

ABS Absolute value of an operand

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for Arithmetic instructions:

Operator Syntax

+,-,*,/,REM [Op1 := Op2 operator Op3]

INC, DEC [operator Op1]

SQRT (1) [Op1 := SQRT(Op2)]

ABS (1) [Op1 := ABS(Op2)]

EIO0000003289.03 53

Instructions

This table gives details of operands:

Type Op1 Op2 and Op3 1

Words %MWi, %QWi, %SWi, %BLK.x 2, %MWi[%MWj 3],
%MWi[%PARAMj] 4

Immediate value, %MWi, %KWi, %IWi, %QWi, %IWSi, %
QWSi, %SWi, %BLK.x 2 %MWi[%MWj 3], %MWi[%
PARAMj]4

Double words %MDi, %BLK.x Immediate value, %MDi, %KDi, %BLK.x 2

1 With this operator, Op2 cannot be an immediate value. The ABS function can only be used with double words (%MD and %KD) and floating
points (%MF and %KF). So, OP1 and OP2 must be double words or floating points.

2 %BLK.x represents all block objects.

3 Functional level >= 5.0.
4 Functional level >= 10.0.

Structure
Examples of Arithmetic instructions:

Rung Instruction

0 LD %M0
[%MW0:=%MW10+10]

1 LD %I0.2
[%MW0:=SQRT(%MW10)]

2 LDR %I0.3
[%MW10:=32767]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Special Cases
Addition

• Overflow during word operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set
to 1 and the result is not significant (see rung 1 of application example, page
55). The user program manages bit %S18.

NOTE: For double words, the limits are -2147483648 and 2147483647.
Multiplication

• Overflow during operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set
to 1 and the result is not significant.

Division / remainder
• Division by 0

If the divider is 0, the division is impossible and system bit %S18 is set to 1.
The result is then incorrect.

• Overflow during operation
If the division quotient exceeds the capacity of the result word, bit %S18 is set
to 1.

Square root extraction
• Overflow during operation

Square root extraction is only performed on positive values. Thus, the result is
positive. If the square root operand is negative, system bit %S18 is set to 1
and the result is incorrect.

54 EIO0000003289.03

Instructions

Some of the detected mathematical errors could have significant impact on the
execution of your application. Monitor for these potential errors, and program
instructions to appropriately control the execution of your application should one
or more of these detected errors occur. The impact of any of these detected errors
depends upon configuration, equipment used, and the program instructions
executed prior to and after detection of the potential error or errors.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Write programming instructions to test the validity of operands intended to be

used in mathematical operations.
• Avoid using operands of different data types in mathematical operations.
• Always monitor the system bits assigned to indicate invalid mathematical

results.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTE: The user program must manage system bits %S17 and %S18. These
are set to 1 by the controller and must be reset by the program so that they
can be reused (see previous page for example).

Application Example
Overflow during addition:

Rung Instruction

0 LD %M0
[%MW0:=%MW1+%MW2]

1 LDN %S18
[%MW10:=%MW0]

2 LD %S18
[%MW10 :=32767]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

If %MW1 =23241 and %MW2=21853, the result would be (45094), which cannot be
expressed in 1 signed 16-bit word. Therefore, bit %S18 is set to 1 and the value in
%MW0 (-20442) is incorrect. In this example when the result is greater than
32767, its value is fixed at 32767.

Logic Instructions

Introduction
The Logic operators can be used to perform a logical operation between 2 word
operands or, in the case of logical NOT, on 1 word operand.

This table lists the types of Logic instructions:

Instruction Function

AND AND (bit-wise) between 2 operands

OR Logic OR (bit-wise) between 2 operands

XOR Exclusive OR (bit-wise) between 2 operands

NOT Logic complement (bit-wise) of an operand

EIO0000003289.03 55

Instructions

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for Logic instructions:

Operator Syntax Op1 Op2 and Op3

AND, OR, XOR [Op1 := Op2 operator Op3] %MWi, %QWi, %SWi, %BLK.x Immediate value (1), %MWi, %
KWi, %IWi, %QWi, %IWSi, %
QWSi, %SWi, %BLK.xNOT [Op1 := NOT(Op2)]

(1) With NOT, Op2 cannot be an immediate value.

Structure
Examples of Logic instructions:

Rung Instruction

0 LD %M0
[%MW0:=%MW10 AND 16#00FF]

1 LD 1
[%MW0:=%KW5 OR %MW10]

2 LD %I0.3
[%MW102:=NOT(%MW100)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Application Example
Logical AND instruction:

[%MW15:=%MW32 AND %MW12]

When %MW32 = 0001 1011 (binary) (27 (decimal)) and %MW12 = 0011 0110 (binary)
(54 (decimal)) then the result will be %MW15 = 0001 0010 (binary) (18 (decimal)).

Shift Instructions

Introduction
Shift instructions move bits of an operand a specified number of positions to the
right or to the left.

56 EIO0000003289.03

Instructions

This table lists the types of Shift instructions:

Instruction Function

Logic shift

SHL(op2,n) Logic shift of n positions to the
left.

SHR(op2,n) Logic shift of n positions to the
right.

Rotate shift

ROL(op2,n) Rotate shift of n positions to the
left.

ROR(op2,n) Rotate shift of n positions to the
right.

Where n is an integer immediate value for:
• word: 1...16 inclusive
• double word: 1...32 inclusive.

NOTE: System bit %S17 indicates the value of the last ejected bit.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for Shift instructions:

Operator Syntax

SHL, SHR [Op1 := operator (Op2,n)]

ROL, ROR

Where n is an integer immediate value for:
• word: 1...16 inclusive
• double word: 1...32 inclusive.

This table gives details of operands:

Types Op1 Op2

Words %MWi, %QWi, %SWi

%BLK.x

%MWi, %KWi, %IWi, %QWi, %IWSi, %
QWSi, %SWi, %BLK.x

Double words %MDi

%BLK.x

%MDi, %KDi

%BLK.x

EIO0000003289.03 57

Instructions

Structure
Examples of Shift instructions:

Rung Instruction

0 LDR %I0.1
[%MW0:=SHL(%MW10,5)]

1 LDR %I0.2
[%MW10:=ROR(%KW9,8)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

BCD/Binary Conversion Instructions

Introduction
Conversion instructions perform conversion between different representations of
numbers.

This table lists the types of BCD/Binary Conversion instructions:

Instruction Function

BTI BCD to Binary conversion

ITB Binary to BCD conversion

Review of BCD Code
Binary Coded Decimal (BCD) represents a decimal digit (0 to 9) by coding 4 binary
bits. A 16-bit word object can thus contain a number expressed in 4 digits (0000 -
9999), and a 32-bit double word object can therefore contain an eight-figure
number.

During conversion, system bit %S18 is set to 1 if the value is not BCD. This bit
must be tested and reset to 0 by the program.

BCD representation of decimal numbers:

Deci-
mal

0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Examples:
• Word %MW5 expresses the BCD value 2450 which corresponds to the binary

value: 0010 0100 0101 0000
• Word %MW12 expresses the decimal value 2450 which corresponds to the

binary value: 0000 1001 1001 0010
Word %MW5 is converted to word %MW12 by using instruction BTI.

Word %MW12 is converted to word %MW5 by using instruction ITB.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

58 EIO0000003289.03

Instructions

Syntax for BCD/Binary Conversion instructions:

Operator Syntax

BTI, ITB [Op1 := operator (Op2)]

This table gives details of operands:

Types Op1 Op2

Words %MWi, %QWi, %SWi

%BLK.x

%MWi, %KWi, %IWi, %QWi, %IWSi,
%QWSi, %SWi, %BLK.x

Double word %MDi

%BLK.x

%MDi, %KDi

%BLK.x

Structure
Examples of BCD/Binary Conversion instructions:

Rung Instruction

0 LD %M0
[%MW0:=BTI(%MW10)]

1 LD %I0.2
[%MW10:=ITB(%KW9)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Application Example
The BTI instruction is used to process a setpoint value at controller inputs via BCD
encoded thumb wheels.

The ITB instruction is used to display numerical values (for example, the result of
a calculation, the current value of a function block) on BCD coded displays.

Single/Double Word Conversion Instructions

Introduction
This table describes instructions used to perform conversions between single and
double words:

Instruction Function

LW LSB of double word extracted to a word.

HW MSB of double word extracted to a word.

CONCATW Concatenates 2 words into a double word.

DWORD Converts a 16-bit word into a 32-bit double word.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

EIO0000003289.03 59

Instructions

Syntax for single/double word Conversion instructions:

Operator Syntax Op1 Op2 Op3

LW, HW Op1 = operator (Op2) %MWi %MDi, %KDi, %
BLK.x

[-]

CON-
CATW

Op1 = operator (Op2,
Op3))

%MDi, %BLK.x %MWi, %KWi,
immediate value

%MWi, %KWi,
immediate value

DWORD Op1 = operator (Op2) %MDi, %BLK.x %MWi, %KWi [-]

Structure
Examples of single/double word Conversion instructions:

Rung Instruction

0 LD %M0
[%MW0:=HW(%MD10)]

1 LD %I0.2
[%MD10:=DWORD(%KW9)]

2 LD %I0.3
[%MD11:=CONCATW(%MW10,%MW5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Program

Aim of This Section
This section provides an introduction to program instructions.

END Instructions

Introduction
The END instructions define the end of the execution of a program scan.

END, ENDC, and ENDCN
Four different END instructions are available:

• END: unconditional end of program
• ENDC: end of program if Boolean result of preceding test instruction is 1
• ENDCN: end of program if Boolean result of preceding test instruction is 0
• ENDT: end of transition rung in a Grafcet (SFC) program (only valid in a

transition rung).
By default (normal mode) when the end of program is activated, the outputs are
updated and the next scan is started.

If scanning is periodic, when the end of period is reached the outputs are updated
and the next scan is started.

60 EIO0000003289.03

Instructions

The END instruction ends the current level:
• If it is activated in a subroutine, a user-defined function or a user-defined

function block, it terminates it and returns to the calling program.
• If it is activated in a master, periodic or event task, it terminates the present

task.

Examples
Example of an unconditional END instruction:

Rung Instruction

0 LD %M1
ST %Q0.1

1 LD %M2
ST %Q0.2

2 END

Example of a conditional END instruction:

Rung Instruction

0 LD %I0.0
ST %Q0.0

1 LD %I0.1
ST %Q0.1

2 LD %I0.2
ENDC

3 LD %I0.3
ST %Q0.2

4 END

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

NOP Instructions

Introduction
The NOP instructions do not perform any operation. Use them to "reserve" lines in
a program so that you can insert instructions later without modifying the line
numbers.

Jump Instructions

Introduction
Jump instructions cause the execution of a program to be interrupted immediately
and to be continued from the line after the program line containing label %Li (i =
maximum module number).

EIO0000003289.03 61

Instructions

JMP, JMPC, and JMPCN
3 different Jump instructions are available:

• JMP: unconditional program jump
• JMPC: program jump if Boolean result of preceding logic is 1
• JMPCN: program jump if Boolean result of preceding logic is 0

Examples
Examples of Jump instructions:

Rung Instruction

0 LD %M15
JMPC %L8

1 LD [%MW24<%MW12]
ST %Q0.3
JMPC %L12

2 %L8:
LD %M12
AND %M13
ST %M12
JMPC %L12

3 LD %M11
S %Q0.0

4 %L12:
LD %I0.0
ST %Q0.4

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Guidelines
• Jump instructions are not allowed between parentheses, and must not be

placed between the instructions AND, OR, and a close parenthesis instruction
")".

• The label can only be placed before an LD, LDN, LDR, LDF, or BLK
instruction.

• The label number of label %Li must be defined only once in a program.
• The program jump is performed to a line of programming which is

downstream or upstream. When the jump is upstream, pay attention to the
program scan time. Extended scan time can trigger the watchdog timer.

Conditional Elements

Description
Conditional elements allow you to code conditions in your program. The elements
may only be programmed while in offline mode.

This feature contains the three following elements:
• IF

• ELSE

• ENDIF

You can insert one element per rung.

62 EIO0000003289.03

Instructions

NOTE: The application must be configured with a functional level of at least
Level 6.0.

Maximum Number of Elements
The maximum number of elements is up to 128 less the number of %L declared in
your application.

Element Description

Element IL Instruction Ladder Diagram Description

IF IF0...THEN0 Must be at the beginning of a rung.

The THEN element is automatically added. You cannot
modify this element.

ELSE ELSE0 Only if an IF element is defined in a preceding rung.

Must be at the beginning of a rung.

ENDIF ENDIF0 Must be at the end of a rung. You cannot insert other
elements in the same rung.

Configuring a Condition Instruction

Step Action

1
In an empty rung, insert the IF element by clicking → →IF. Insert the condition to be evaluated between
IF and THEN elements.

2 Optionally you can change the index.

If you modify the index of one element, you must assign the same index to the other elements.

The elements with the same index must be in the same POU.

3 Configure your program. When the condition between IF and THEN is TRUE, the subsequent rungs of your program
between THEN and the next conditional statement (ELSE or ENDIF) are evaluated. Otherwise, the subsequent rungs are
skipped and not evaluated.

4
Optionally insert the ELSE element by clicking → →ELSE. When the condition between IF and THEN is
FALSE, the portion of the program between ELSE and ENDIF is evaluated. This includes program statements in the same
rung as the ELSE element. Otherwise, this portion of the program is skipped and not evaluated.

5
In the last rung, insert the ENDIF element by clicking → →ENDIF.

In the example below:
• When the IF condition is TRUE, that is, %MW0 is less than 10:

1. Rung 3 is evaluated.
2. The ELSE10 rung is skipped. %MW2 and %Q0.1 retain their last values.

• When the IF condition is FALSE, that is, %MW0 is greater than or equal to 10:
1. Rung 3 is skipped. %MW1 and %Q0.0 retain their last values.
2. The ELSE10 rung is evaluated, that is, the operations on %MW2 and %

Q0.1 are executed when %MW0 is greater than 20.

EIO0000003289.03 63

Instructions

Loop Elements

Description
Loop elements allow you to code a sequence of instructions in your program. The
elements may only be programmed while in offline mode.

This feature contains the two following elements:
• FOR

• ENDFOR

You can insert one element per rung.
NOTE: The application must be configured with a functional level (see
EcoStruxure Machine Expert - Basic, Operating Guide) of at least Level 6.0.

Maximum Number of Elements
The maximum number of elements is up to 128 less the number of %L declared in
your application.

Element Description

Element IL Instruction Ladder Diagram Description

FOR FOR0 Must be at the beginning of a rung.

Click to configure.

ENDFOR ENDFOR0 Must be at the end of a rung. You cannot insert other
elements in the same rung.

name

Comment

name Comment

CommentLD

nameCommentLD

Comment
Symbol

LD

Rung body
IF

name

10 <

%MW0 < 10
%MW0 < 10

THEN 10

%MW1 := %MW0 + 1
%MW1 := %MW0 + 1

...

%Q0.0()

%MW2 := %MW0 + 2
%MW2 := %MW0 + 2

...

()

Comment
Symbol
%Q0.1

ELSE 10 <

%MW0 > 20
%MW0 > 20

ENDIF 10

If 10

LD Rung 3

Rung body

Else 10

Rung Body

Rung Body

EndIf 10

64 EIO0000003289.03

Instructions

Configuring a Loop

Step Action

1
In an empty rung, insert the FOR element by clicking → →FOR.

2 Optionally you can change the index.

If you modify the index of one element, you must assign the same index to the other
element.

The elements with the same index must be in the same POU.

3
Click to configure the FOR element.

Result: The FOR Assistant window appears.

4
In the last rung, insert the ENDFOR element by clicking →
→ENDFOR.

Configuring the FOR Element

Label Description

Loop counter Type a %MWx variable.

Initial value Type a %MWx variable or a value between -32768...32767.

Sign • <
• <=
• =
• >=
• >
• <>

End value Type a %MWx variable or a value between -32768...32767.

Incrementation step Type a %MWx variable or a value between -32768...32767.

Subroutine Instructions

Introduction
The Subroutine instructions cause a program to perform a subroutine and then
return to the main program at the point from which the subroutine was called.

Procedure
A subroutine is created in a Free POU. Refer to Free POUs (see EcoStruxure
Machine Expert - Basic, Operating Guide) for information on creating a Free POU
and subroutine, and defining the subroutine number. Also, refer to Managing
POUs (see EcoStruxure Machine Expert - Basic, Operating Guide) for more
information on managing POUs with task and rungs.

Calling a subroutine in 3 steps:

1 The SRn instruction calls the subroutine referenced by a Free POU SRn if
the result of the preceding boolean instruction is 1.

2 The subroutine is referenced by a Free POU SRn, where n is the number
of the subroutine.

3 The subroutine instruction must be written as a Free POU independent of
the main program.

EIO0000003289.03 65

Instructions

For more information about subroutines, refer to Creating Periodic Task (see
EcoStruxure Machine Expert - Basic, Operating Guide).

Examples
Example of instructions containing a Subroutine:

Rung Instruction

0 LD %M15
AND %M5
ST %Q0.0

1 LD [%MW24>%MW12]
SR1

2 LD %I0.4
AND %M13
ST %Q0.1
END

Example of a Subroutine instruction (SR1):

Rung Instruction

0 (SR1) LD %I0.0
ST %Q0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Guidelines
• A subroutine cannot call up another subroutine. Attempting to call a

subroutine within a Free POU will generate a compiler error.
• Subroutine instructions are not allowed between parentheses, and must not

be placed between the instructions AND, OR, and a close parenthesis
instruction ")".

• Care should be taken when an Assignment instruction is directly follows a
subroutine call in IL. This is because the subroutine may change the content
of the Boolean accumulator. Therefore upon return, it could have a different
value than before the call.

Floating Point

Aim of This Section
This section describes the advanced instructions of floating point.

66 EIO0000003289.03

Instructions

Arithmetic Instructions on Floating Point Objects

Introduction
These instructions are used to perform an arithmetic operation between 2 floating
point operands or on 1 floating point operand:

Instruction Purpose

+ Addition of 2 operands

- Subtraction of 2 operands

* Multiplication of 2 operands

/ Division of 2 operands

LOG Base 10 logarithm

LN Natural logarithm

SQRT Square root of an operand

ABS Absolute value of an operand

TRUNC Whole part of a floating point value

EXP Natural exponential

EXPT Power of an integer by a real

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Operators and syntax of arithmetic instructions on floating point:

Operators Syntax

+, - *, / Op1 := Op2 operator Op3

SQRT, ABS, TRUNC, LOG, EXP, LN Op1 := operator (Op2)

EXPT Op1 := operator (Op2,Op3)

Operands of arithmetic instructions on floating point:

Operators Op1 Op2 Op3

+, - *, / %MFi %MFi, %KFi,
immediate value

%MFi, %KFi,
immediate value

SQRT, ABS, LOG,
EXP, LN

%MFi %MFi, %KFi [-]

TRUNC %MFi, %MDi %MFi, %KFi [-]

EXPT %MFi %MFi, %KFi %MWi, %KWi,
immediate value

NOTE: EcoStruxure Machine Expert - Basic prevents the use of function with a %MWi as Op1.

EIO0000003289.03 67

Instructions

Structure
Example of arithmetic instruction:

Rung Instruction

0 LD %M0
[%MF0:=%MF10+129.7]

1 LD %I0.2
[%MF1:=SQRT(%MF10)]

2 LDR %I0.3
[%MF2:=ABS(%MF20)]

3 LDR %I0.4
[%MF3:=TRUNC(%MF2)]

4 LD %M1
[%MF4:=LOG(%MF10)]

5 LD %I0.5
[%MF5:=LN(%MF20)]

6 LD %I0.0
[%MF6:=EXP(%MF30)]

7 LD %I0.1
[%MF7:=EXPT(%MF40,%MW52)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Rules of Use
• Operations on floating point and integer values cannot be directly mixed.

Conversion operations, page 70 convert into one or other of these formats.
• The system bit %S18 is managed in the same way as integer operations,

page 70, the word %SW17 indicates the cause of the detected error.
• When the operand of the function is an invalid number (for example, logarithm

of a negative number), it produces an indeterminate or infinite result and
changes bit %S18 to 1. The word %SW17 indicates the cause of the detected
error.

NOTE: For the TRUNC instruction, the system bit %S17 is not affected.

Application Examples for TRUNC Instruction with %MDi
This table shows examples of TRUNC instruction when%MDi is used to store the
result:

Example Result

TRUNC(3.5) 3

TRUNC(324.18765) 324

TRUNC(927.8904) 927

TRUNC(-7.7) -7

TRUNC(45.678E+20) 2 147 483 647 (maximum signed double word) 1

%S18 is set to 1

TRUNC(-94.56E+13) - 2 147 483 648 (minimum signed double word) 1

%S18 is set to 1

1 This example applies to the TRUNC instruction when used with %MDi. (When used with %MFi, the
TRUNC instruction has no overflow and therefore has no maximum/minimum limits.)

68 EIO0000003289.03

Instructions

Trigonometric Instructions

Introduction
These instructions enable the user to perform trigonometric operations:

SIN sine of an angle expressed in radian ASIN
arc sine (result within and)

COS cosine of an angle expressed in radian ACOS arc cosine (result within 0 and)

TAN tangent of an angle expressed in radian ATAN
arc tangent (result within and)

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Operators, operands, and syntax of instructions for trigonometric operations:

Operators Syntax Op1 Op2

SIN, COS, TAN, ASIN,
ACOS, ATAN

Op1:=operator(Op2) %MFi %MFi, %KFi

Structure
Example of Trigonometric instructions:

Rung Instruction

0 LD %M0
[%MF0:=SIN(%MF10)]

1 LD %I0.0
[%MF1:=TAN(%MF20)]

2 LD %I0.3
[%MF2:=ATAN(%MF30)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Rules of Use
• When the operand of the function is an invalid number (for example, the arc

cosine of a number greater than 1), it produces an indeterminate or infinite
result and changes bit %S18 to 1. The word %SW17 indicates the cause of the
detected error.

• The functions SIN/COS/TAN allow as a parameter an angle between
and but their precision decreases progressively for angles outside the
range and because of the imprecision introduced by the modulo
carried out on the parameter before any operation.

EIO0000003289.03 69

Instructions

Angle Conversion Instructions

Introduction
These instructions are used to carry out conversion operations:

DEG_TO_RAD Conversion of degrees into radian, the result is the value of the angle
between 0 and

RAD_TO_DEG Conversion of an angle expressed in radian, the result is the value of the
angle 0...360 degrees

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Operators, operands, and syntax of conversion instructions

Operators Syntax Op1 Op2

DEG_TO_RAD RAD_
TO_DEG

Op1:=operator(Op2) %MFi %MFi, %KFi

Structure
Example of conversion instructions:

Rung Instruction

0 LD %M0
[%MF0:=DEG_TO_RAD(%MF10)]

1 LD %M2
[%MF2:=RAD_TO_DEG(%MF20)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Rules of Use
The angle to be converted must be between -737280.0 and +737280.0 (for DEG_
TO_RAD conversions) or between and (for RAD_TO_DEG
conversions).

For values outside these ranges, the displayed result will be + NaN, the %S18 and
%SW17:X0 bits being set to 1.

70 EIO0000003289.03

Instructions

Integer/Floating Conversion Instructions

Introduction
4 conversion instructions are offered:

INT_TO_REAL Conversion of an integer word to floating

DINT_TO_REAL Conversion of a double word (integer) to floating

REAL_TO_INT Conversation of a floating to integer word (the result is the nearest algebraic
value)

REAL_TO_DINT Conversation of a floating to double integer word (the result is the nearest
algebraic value)

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Operators and syntax (conversion of an integer word to floating):

Operators Syntax

INT_TO_REAL Op1=INT_TO_REAL(Op2)

Operands (conversion of an integer word to floating):

Op1 Op2

%MFi %MWi,%KWi

Example: integer word conversion to floating: 147 to 1.47e+02

Operators and syntax (double conversion of integer word to floating):

Operators Syntax

DINT_TO_REAL Op1=DINT_TO_REAL(Op2)

Operands (double conversion of integer word to floating):

Op1 Op2

%MFi %MDi,%KDi

Example: integer double word conversion to floating: 68905000 to 6.8905e+07

Operators and syntax (floating conversion to integer word or integer double word):

Operators Syntax

REAL_TO_INT Op1=operator(Op2)

REAL_TO_DINT

Operators (floating conversion to integer word or integer double word):

Type Op1 Op2

Words %MWi, %QWi.j, %QWEi, %QWMi %MFi, %KFi

Double words %MDi %MFi, %KFi

EIO0000003289.03 71

Instructions

Example:
• Floating conversion to integer word: 5978.6 to 5979
• Floating conversion to integer double word: -1235978.6 to -1235979

NOTE: If during a real to integer (or real to integer double word) conversion
the floating value is outside the limits of the word (or double word), bit %S18 is
set to 1.

Structure
Example of integer/ floating conversion instruction:

Rung Instruction

0 LD 1
[%MF0:=INT_TO_REAL(%MW10)]

1 LD %I0.8
[%MD2:=REAL_TO_DINT(%MF9)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Precision of Rounding
Standard IEEE 754 defines 4 rounding modes for floating operations.

The mode employed by the instructions above is the "rounded to the nearest"
mode:

"if the nearest representable values are at an equal distance from the theoretical
result, the value given will be the value whose low significance bit is equal to 0".

That is to say, the value will be rounded either up or down, but to the even number.

For example:
• Rounding of the value 10.5 to 10.
• Rounding of the value 11.5 to 12.

ASCII

Aim of This Section
This section describes the advanced instructions of ASCII.

ROUND Instructions

Introduction
The ROUND instruction rounds a floating point representation that is stored in an
ASCII string.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

72 EIO0000003289.03

Instructions

For the ROUND instruction, use the syntax: Op1 := ROUND(Op2,Op3).

For example:
[%MW0:7:=ROUND(%MW8,4)]

Parameters
This table describes the ROUND function parameters:

Parameters Description

Op1 %MW in which result is stored

Op2 %MW containing the floating point to be rounded

Op3 Number of significant digits required in rounding

Integer from 1 to 8

Rules of Use
The ROUND instruction rules are as follows:

• The operand is rounded down.
• The end character of the operand string is used as an end character for the

result string.
• The end character can be any ASCII character that is not in the interval [0 - 9]

([16#30 - 16#39]), except for:
◦ dot '.' (16#2E),
◦ minus '-' (16#2D),
◦ plus '+' (16#2B),
◦ Exp 'e' or 'E' (16#65 or 16#45).

• The result and operand should not be longer than 13 bytes: Maximum size of
an ASCII string is 13 bytes.

• The scientific notation is not authorized.

Special Cases
The software verifies the syntax. The following examples would result in syntax
errors:

Incorrect syntax Correct syntax

%MW10:= ROUND(%MW1,4)

missing ":7" in result

%MW10:7 := ROUND(%MW1,4)

%MW10:13:= ROUND(%MW1,4)

%MW10:n where n ≠ 7 is incorrect

%MW10:7 := ROUND(%MW1,4)

Application Example
This table shows examples of ROUND instruction:

Example Result

ROUND("987654321", 5) "987650000"

ROUND("-11.1", 8) "-11.1"

ROUND("NAN") "NAN"

EIO0000003289.03 73

Instructions

ASCII to Integer Conversion Instructions

Introduction
The ASCII to Integer conversion instructions convert an ASCII string into an
Integer value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the ASCII to Integer conversion instructions, use this syntax: Op1 := ASCII_
TO_INT(Op2)

For example:
[%MW0:=ASCII_TO_INT(%MW8)]

The instruction reads up to four word objects from Op2, converts them to integer
format, and stores the result in Op1.

Parameters
This table describes the ASCII to Integer conversion function parameters:

Parameters Description

Op1 %MW in which result is stored

Op2 %MW or %KW

Rules of Use
The ASCII to Integer instructions rules are as follows:

• Op2 must be between -32768 to 32767.
• The function reads the most significant byte first.
• Leading spaces are ignored.
• An ASCII character that is not in the range [0 - 9] ([16#30 - 16#39]) is

considered to be an end character, except for a minus sign '-' (16#2D) when it
is placed as the first character.

• In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic
overflow or detected error) is set to 1 and the value 32767 or -32768 is
returned.

• If the first character of the operand is a "separator" character, the value 0 is
returned and the bit %S18 is set to 1.

NOTE: The separator characters are '+' and '-', the letter 'e' or 'E', or '.'
(the decimal separator).

• Scientific notation is not valid.

74 EIO0000003289.03

Instructions

Application Example
Consider that the following ASCII data has been stored in %MW10 to %MW13:

Parameter Hexadecimal Value ASCII Representation

%MW10 16#3932 9, 2

%MW11 16#3133 1, 3

%MW12 16#2038 ‘ ’, 8

%MW13 16#387A 8, ‘z’

This table shows examples of ASCII to Integer conversion:

Example Result

%MW20 := ASCII_TO_INT(%MW10) %MW20 = 29318

%MW20 := ASCII_TO_INT(%MW12) %MW20 = 8

%MW20 := ASCII_TO_INT(%MW13) %MW20 = 0 and %S18 is set to 1

Integer to ASCII Conversion Instructions

Introduction
The Integer to ASCII conversion instructions convert an Integer into an ASCII
string value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the Integer to ASCII conversion instructions, use this syntax: Op1 := INT_
TO_ASCII(Op2)

For example:
[%MW0:4:=INT_TO_ASCII(%MW8)]

Parameters
This table describes the Integer to ASCII conversion function parameters:

Parameters Description

Op1 %MW in which result is stored

Op2 %MW, %KW, %SW, %IW, %QW or any WORD

(Immediate values are not accepted)

EIO0000003289.03 75

Instructions

Rules of Use
The Integer to ASCII conversion rules are as follows:

• Op2 must be between -32768 to 32767.
• The function writes the most significant byte first.
• The end character selected in the Application Behavior window (see

EcoStruxure Machine Expert - Basic, Operating Guide) is added. The default
value is ‘CR’ (carriage return, ASCII 13).

• The function automatically determines how many %MW variables should be
filled with ASCII values (from 1 to 4).

Syntax Errors
The software verifies the syntax. The following examples would result in syntax
errors:

Incorrect syntax Correct syntax

%MW10 := INT_TO_ASCII(%MW1)

missing ":4" in result

%MW10:4 := INT_TO_ASCII(%MW1)

%MW10:n := INT_TO_ASCII(%MW1)

%MW10:n where n ≠ 4 is incorrect

%MW10:4 := INT_TO_ASCII(%MW1)

Application Example
For the instruction MW10:4 := INT_TO_ASCII(%MW1) using the end character
‘CR’:

If ... Then...

Integer Value Hexadecimal Value ASCII Representation

%MW1 = 123
%MW10 = 16#3231 2, 1

%MW11 = 16#0D33 ‘CR’, 3

%MW1 = 45
%MW10 = 16#3534 5, 4

%MW11 = 16#000D ‘CR’

%MW1 = 7 %MW10 = 16#0D37 ‘CR’, 7

%MW1 = -12369

%MW10 = 16#312D 1, ‘-’

%MW11 = 16#3332 3, 2

%MW10 = 16#3936 9, 6

%MW11 = 16#000D ‘CR’

ASCII to Float Conversion Instructions

Introduction
The ASCII to Float conversion instructions convert an ASCII string into a floating
point value.

76 EIO0000003289.03

Instructions

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the ASCII to Float conversion instructions, use this syntax: Op1 := ASCII_
TO_FLOAT(Op2).

For example:
[%MF0:=ASCII_TO_FLOAT(%MW8)]

Parameters
This table describes the ASCII to Float conversion function parameters:

Parameters Description

Op1 %MF

Op2 %MW or %KW

Rules of Use
ASCII to Float conversion rules are as follows:

• The function reads the most significant byte first.
• Any ASCII character that is not in the interval [0 - 9] ([16#30 - 16#39]) is

considered to be an "end" character, except for:
◦ dot '.' (16#2E),
◦ minus '-' (16#2D),
◦ plus '+' (16#2B),
◦ Exp 'e' or 'E' (16#65 or 16#45).

• ASCII string format can be scientific notation (i.e. "-2.34567e+13") or decimal
notation (that is, 9826.3457)

• In case of overflow (calculation result is >3.402824E+38 or <-3.402824E+38):
◦ The system bit %S18 (arithmetic overflow or detected error) is set to 1,
◦ %SW17:X3 is set to 1,
◦ Value +/- 1.#INF (+ or - infinite value) is returned.

• If the calculation result is between -1.175494E-38 and 1.175494E-38, then
the result is rounded to 0.0.

• If the operand is not a number:
◦ Value NaN is returned,
◦ The bit %SW17:X0 is set to 1.

Application Example
Consider that the following ASCII data has been stored in %MW10 to %MW14:

Parameter Hexadecimal Value ASCII Representation

%MW10 16#382D 8, ‘-’

%MW11 16#322E 2, ‘.’

%MW12 16#3536 5, 6

%MW13 16#2B65 ‘+’, ‘e’

%MW14 16#2032 ‘ ’, 2

EIO0000003289.03 77

Instructions

This table shows examples of ASCII to Float conversion:

Example Result

%MF20 := ASCII_TO_FLOAT(%MW10) %MF20 = -826.5

%MF20 := ASCII_TO_FLOAT(%MW11) %MF20 = 26.5

%MF20 := ASCII_TO_FLOAT(%MW12) %MF20 = 6500.0

%MF20 := ASCII_TO_FLOAT(%MW13) %MF20 = NaN

%MF20 := ASCII_TO_FLOAT(%MW14) %MF20 = 2.0

Float to ASCII Conversion Instructions

Introduction
The Float to ASCII conversion instructions convert a floating point value into an
ASCII string value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the Float to ASCII conversion instructions, use this syntax: Op1 := FLOAT_
TO_ASCII(Op2).

For example:
[%MW0:7:=FLOAT_TO_ASCII(%MF8)]

Parameters
This table describes the Float to ASCII conversion function parameters:

Parameter Description

Op1 %MW

Op2 %MF or %KF

Rules of Use
The Float to ASCII conversion rules are as follows:

• The function writes the most significant byte first.
• The representation is made using conventional scientific notation.
• "Infinite" or "Not a number" results return the string "NAN".
• The end character selected in the Application Behavior window (see

EcoStruxure Machine Expert - Basic, Operating Guide) is added. The default
value is ‘CR’ (carriage return, ASCII 13).

• The function automatically determines how many %MW variables should be
filled with ASCII values.

• Conversion precision is 6 figures.

78 EIO0000003289.03

Instructions

Syntax Errors
The software verifies the syntax. The following examples would result in syntax
errors:

Incorrect Syntax Correct Syntax

%MW10 := FLOAT_TO_ASCII(%MF1)

missing ":7" in result

%MW10:7 := FLOAT_TO_ASCII(%MF1)

%MW10:n := FLOAT_TO_ASCII(%MF1)

%MW10:n where n ≠ 7 is incorrect

%MW10:7 := FLOAT_TO_ASCII(%MF1)

Application Example
For the instruction %MW10:7 := FLOAT_TO_ASCII(%MF1):

Number to Convert Result

1234567800 1.234568e+09

0.000000921 9.210000e-07

9.87654321 9.876543e+00

1234 1.234000e+03

ASCII to Double Word Conversion Instructions

Introduction
The ASCII to double word conversion instruction converts an ASCII string to a
double word value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the ASCII to double word conversion instruction, use this syntax: Op1 :=
ASCII_TO_DINT(Op2)

For example:
[%MD4 := ASCII_TO_DINT(%MW5)]

Parameters
This table describes the ASCII to double word conversion instruction parameters:

Parameters Description

Op1 %MDx

Op2 %MWy or %KWy

NOTE: It is not necessary to define Op1 and Op2 in an animation table.

EIO0000003289.03 79

Instructions

Rules of Use
The ASCII to Integer instructions rules are as follows:

• Op2 must be between –2147483648 to 2147483647.
• The function reads the most significant byte first.
• Leading spaces are ignored.
• An ASCII character that is not in the range [0 - 9] ([16#30 - 16#39]) is

considered to be an end character, except for a minus sign '-' (16#2D) when it
is placed as the first character.

• In case of overflow (> 2147483647 or < –2147483648), the system bit %S18
(arithmetic overflow or detected error) is set to 1 and the value 2147483647
or –2147483648 is returned.

• If the first character of the operand is a "separator" character, the value 0 is
returned and the bit %S18 is set to 1.

NOTE: The separator characters are '+' and '-', the letter 'e' or 'E', or '.'
(the decimal separator).

• Scientific notation is not valid.

Application Example
Consider that the following ASCII data has been stored in %MW11 to %MW13:

Parameter Hexadecimal Value ASCII Representation

%MW8 16#3431 4, 1

%MW9 16#3532 5, 2

%MW10 16#3239 2, 9

%MW11 16#3133 1, 3

%MW12 16#2038 ‘ ‘, 8

%MW13 16#387A 8, ‘z‘

This table shows examples of ASCII to Double word conversion:

Example Result

%MD10 := ASCII_TO_DINT(%MW8) %MD10 = 142592318

%MD10 := ASCII_TO_DINT(%MW12) %MD10 = 8

%MD10 := ASCII_TO_DINT(%MW13) %MD10 = 0 and %S18 is set to 1

80 EIO0000003289.03

Instructions

Double Word to ASCII Conversion Instructions

Introduction
The double word to ASCII conversion instruction converts a double word value to
an ASCII string value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the double word to ASCII conversion instruction, use this syntax: Op1 :=
DINT_TO_ASCII(Op2)

For example:
[%MW4:6 := DINT_TO_ASCII(%MD5)]

Parameters
This table describes the double word to ASCII conversion function parameters:

Parameters Description

Op1 %MWx:6

Op2 %MD or %KD

NOTE: It is not necessary to define Op1 and Op2 in an animation table.

Rules of Use
The Integer to ASCII conversion rules are as follows:

• Op2 must be between –2147483648 to 2147483647.
• The function writes the most significant byte first.
• The end character selected in the Application Behavior window (see

EcoStruxure Machine Expert - Basic, Operating Guide) is added. The default
value is ‘CR’ (carriage return, ASCII 13).

• The function automatically determines how many %MW variables should be
filled with ASCII values (from 1 to 6).

Syntax Errors
The software verifies the syntax. The following examples would result in syntax
errors:

Incorrect Syntax Correct Syntax

%MW2 := DINT_TO_ASCII (%MD1)

missing “:6” in result

%MW2:6 := DINT_TO_ASCII (%MD1)

%MW2:n := DINT_TO_ASCII (%KD7)

%MW2:n where n ≠ 6 is incorrect

%MW2:6 := DINT_TO_ASCII (%KD7)

EIO0000003289.03 81

Instructions

Application Example
For the instruction %MW0:6 := DINT_TO_ASCII(%MD10) using the line end
character ‘CR’:

If... Then...

Integer Value Hexadecimal Value ASCII Representation

%MD10 = 1236589 %MW0 = 16#3231 2, 1

%MW1 = 16#3633 6, 3

%MW2 = 16#3835 8, 5

%MW3 = 16#0D37 ‘CR’, 9

%MD10 = 45 %MW0 = 16#3534 5, 4

%MW1 = 16#000D ‘CR’

%MD10 = -1236945 %MW0 = 16#3145 1, ‘-‘

%MW1 = 16#3332 3, 2

%MW2 = 16#3936 9, 6

%MW3 = 16#3534 5, 4

%MW4 = 16#000D ‘CR’

Stack Operators

Aim of This Section
This section describes the advanced instructions of stack.

Stack Instructions (MPS, MRD, MPP)

Introduction
The stack instructions process routing to coils. The MPS, MRD, and MPP
instructions use a temporary storage area called the stack which can store up to
32 Boolean expressions.

NOTE: These instructions cannot be used within an expression between
parentheses.

Syntax
This table describes the 3 stack instructions:

Instruction Description Function

MPS Memory Push onto stack Stores the result of the last logical instruction
(contents of the accumulator) onto the top of the
stack (a push) and shifts the other values to the
bottom of the stack.

MRD Memory Read from stack Reads the top of the stack into the accumulator.

MPP Memory Pop from stack Copies the value at the top of the stack into the
accumulator (a pop) and shifts the other values
towards the top of the stack.

NOTE: For each MPS (push) instruction, a matching MPP (pop) instruction
must appear within the same rung.

82 EIO0000003289.03

Instructions

Operation
This diagram displays how stack instructions operate:

Application Example
Example of using stack instructions:

Rung Instruction

0 LD %I0.0
AND %M1
MPS
AND %I0.1
ST %Q0.0
MRD
AND %I0.2
ST %Q0.1
MRD
AND %I0.3
ST %Q0.2
MPP
AND %I0.4
ST %Q0.3

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Instructions on Object Tables

Aim of This Section
This section describes instructions to manage Object Tables of:

• Double words
• Floating point objects

EIO0000003289.03 83

Instructions

Word, Double Word, and Floating Point Tables Assignment

Introduction
Assignment operations can be performed on the following object tables:

• Immediate whole value to word table (see rung 0 of structure example, page
84) or double word table

• Word to word table (see rung 1 of structure example, page 84)
• Word table to word table (see rung 2 of structure example, page 84)

Table length (L) should be the same for both tables.
• Double word to double word table
• Double word table to double word table

Table length (L) should be the same for both tables.
• Immediate floating point value to floating point table
• Floating point to floating point table
• Floating point table to floating point table

Table length (L) should be the same for both tables.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax for word, double word, and floating point table assignments:

Operator Syntax

:= [Op1 := Op2]

Op1 takes the value of Op2

This table gives details of operands:

Type Op1 Op2

Word table %MWi:L, %SWi:L, %QWi.j:L, %
QWEi:L, %QWMi:L, %QWNi.j.k:L

%MWi:L, %SWi:L, immediate whole value, %MWi, %KWi, %IW, %
QW, %SWi, %BLK.x, %QWi.j:L, %QWEi:L, %QWMi:L, %QWNi.
j.k:L, %IWi.j:L, %IWEi:L, %IWMi:L, %IWNi.j.k:L

Double word tables %MDi:L Immediate whole value, %MDi, %KDi,%MDi:L, %KDi:L

Floating word tables %MFi:L Immediate floating point value, %MFi, %KFi, %MFi:L, %KFi:L

L Length of the table (maximum 255).

NOTE: The abbreviation %BLK.x (for example, R3.I) is used to describe any
function block word.

Structure
Examples of word table assignments:

Rung Instruction

0 LD 1
[%MW0:10:=100]

1 LD %I0.0
[%MW0:10:=%MW11]

2 LDR %I0.3
[%MW10:20:=%KW20:20]

84 EIO0000003289.03

Instructions

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Table Summing Functions

Introduction
The SUM_ARR function adds together all the elements of an object table:

• If the table is made up of double words, the result is given in the form of a
double word,

• If the table is made up of floating words, the result is given in the form of a
floating word.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table summing instruction:

Res:=SUM_ARR(Tab)

Parameters of table summing instruction:

Type Result (Res) Table (Tab)

Double word tables %MDi %MDi:L,%KDi:L

Floating word tables %MFi %MFi:L,%KFi:L

L Length of the table (maximum 255).

NOTE: When the result is not within the valid double word format range
according to the table operand, the system bit %S18 is set to 1.

Structure
Example of summing function:

Rung Instruction

0 LD %I0.2
[%MD5:=SUM_ARR(%MD3:1)]

1 LD 1
[%MD5:=SUM_ARR(%KD5:2)]

2 LD 1
[%MF2:=SUM_ARR(%MF8:5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Application Example
%MD4:=SUM_ARR(%MD30:4)

Where %MD30=10, %MD32=20, %MD34=30, %MD36=40

So %MD4:=10+20+30+40

EIO0000003289.03 85

Instructions

Table Comparison Functions

Introduction
The EQUAL_ARR function carries out a comparison of 2 tables, element by
element.

If a difference is shown, the rank of the first dissimilar elements is returned in the
form of a word, otherwise the returned value is equal to -1.

The comparison is carried out on the entire table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table comparison instruction:

Res:=EQUAL_ARR(Tab1,Tab2)

Parameters of table comparison instructions:

Type Result (Res) Tables (Tab1 and Tab2)

Double word tables %MWi %MDi:L,%KDi:L

Floating word tables %MWi %MFi:L,%KFi:L

L Length of the table (maximum 255).

NOTE: The tables must be of the same length and type.

Structure
Example of table comparison function:

Rung Instruction

0 LD %I0.2
[%MW5:=EQUAL_ARR(%MD20:7,%KD0:7)]

1 LD 1
[%MW0:=EQUAL_ARR(%MD20:7,%KD0:7)]

2 LD 1
[%MF2:=SUM_ARR(%MF8:5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Application Example
%MW5:=EQUAL_ARR(%MD30:4,%KD0:4)

Comparison of 2 tables:

Rank Word Table Constant Word Tables Difference

0 %MD30=10 %KD0=10 =

1 %MD32=20 %KD2=20 =

2 %MD34=30 %KD4=60 Different

3 %MD36=40 %KD6=40 =

86 EIO0000003289.03

Instructions

The value of the word %MW5 is 2 (first different rank).

Table Search Functions

Introduction
There are 3 search functions:

• FIND_EQR: searches for the position in a double or floating word table of the
first element which is equal to a given value

• FIND_GTR: searches for the position in a double or floating word table of the
first element which is greater than a given value

• FIND_LTR: searches for the position in a double or floating word table of the
first element which is less than a given value

The result of these instructions is equal to the rank of the first element which is
found or at -1 if the search is unsuccessful.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table search instructions:

Function Syntax

FIND_EQR Res:=Function(Tab,Val)

FIND_GTR

FIND_LTR

Parameters of floating word and double word table search instructions:

Type Result (Res) Table (Tab) Value (Val)

Floating word tables %MWi %MFi:L,%KFi:L %MFi,%KFi

Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

L Length of the table (maximum 255).

Structure
Example of table search function:

Rung Instruction

0 LD %I0.2
[%MW5:=FIND_EQR(%MD20:7,%KD0)]

1 LD %I0.3
[%MW6:=FIND_GTR(%MD20:7,%KD0)]

2 LD 1
[%MW7:=FIND_LTR(%MF40:5,%KF4)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 87

Instructions

Application Example
%MW5:=FIND_EQR(%MD30:4,%KD0)

Search for the position of the first double word = %KD0=30 in the table:

Rank Word Table Result

0 %MD30=10 -

1 %MD32=20 -

2 %MD34=30 Value (Val), rank

3 %MD36=40 -

Table Search Functions for Maximum and Minimum Values

Introduction
There are 2 search functions:

• MAX_ARR: search for the maximum value in a double word and floating word
table

• MIN_ARR: search for the minimum value in a double word and floating word
table

The result of these instructions is equal to the maximum value (or minimum) found
in the table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table search instructions for maximum and minimum values:

Function Syntax

MAX_ARR Result:=Function(Tab)

MIN_ARR

Parameters of table search instructions for maximum and minimum values:

Type Result (Res) Table (Tab)

Double word tables %MDi %MDn:L,%KDn:L

Floating word tables %MFi %MFn:L,%KFn:L

i is the object instance identifier for the memory variable.

n is the memory index of the table that indicates the base address for the search.

L is the number of positions to be considered on a search including the base address index
(maximum value of L is 255).

NOTE: L counts only the addresses that are not overlapped during the search.
For more information, refer to Possibility of Overlap Between Objects, page
30.

88 EIO0000003289.03

Instructions

Structure
Example of table search function:

Rung Instruction

0 LD %I0.2
[%MD0:=MIN_ARR(%MD20:7)]

1 LD 1
[%MF8:=MIN_ARR(%MF40:5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Number of Occurrences of a Value in a Table

Introduction
This function OCCUR_ARR searches in a double word or floating word table for
the number of elements equal to a given value.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table search instructions for maximum and minimum values:

Function Syntax

OCCUR_ARR Res:=Function(Tab,Val)

Parameters of table search instructions for maximum and minimum values:

Type Result (Res) Table (Tab) Value (Val)

Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi

Floating word tables %MWi %MFi:L,%KFi:L %MFi,%KFi

L Length of the table (maximum 255).

Structure
Example of number of occurrences:

Rung Instruction

0 LD %I0.3
[%MW5:=OCCUR_ARR(%MF20:7,%KF0)]

1 LD %I0.2
[%MW5:=OCCUR_ARR(%MD20:7,%MD1)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 89

Instructions

Table Rotate Shift Functions

Introduction
There are 2 shift functions:

• ROL_ARR: performs a rotate shift of n positions from top to bottom of the
elements in a floating word table

Illustration of the ROL_ARR functions

• ROR_ARR: performs a rotate shift of n positions from bottom to top of the
elements in a floating word table

Illustration of the ROR_ARR functions

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of rotate shift instructions in floating word or double word tables ROL_ARR
and ROR_ARR:

Function Syntax

ROL_ARR Function(n,Tab)

ROR_ARR

Parameters of rotate shift instructions for floating word tables: ROL_ARR and
ROR_ARR:

Type Number of positions (n) Table (Tab)

Floating word tables %MWi, %KWi, immediate
value

%MFi:L

Double word tables %MWi, %KWi, immediate
value

%MDi:L

L Length of the table (maximum 255).

NOTE: If the value of n is negative or null, no shift is performed.

90 EIO0000003289.03

Instructions

Structure
Example of table rotate shift function:

Rung Instruction

0 LD %I0.2
[ROL_ARR(%KW0,%MD20:7)]

1 LD %I0.3
[ROR_ARR(2,%MD20:7)]

2 LD %I0.4
[ROR_ARR(2,%MF40:5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Table Sort Functions

Introduction
The sort function SORT_ARR performs sorts in ascending or descending order of
the elements of a double word or floating word table and stores the result in the
same table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of table sort functions:

Function Syntax

SORT_ARR Function(direction,Tab)

The "direction" parameter gives the order of the sort:
• Direction > 0: the sort is done in ascending order.
• Direction < 0: the sort is done in descending order.
• Direction = 0: no sort is performed

The result (sorted table) is returned in the Tab parameter (table to sort).

Parameters of table sort functions:

Type Sort Direction Table (Tab)

Double word tables %MWi, %KWi, immediate
value

%MDi:L

Floating word tables %MWi, %KWi, immediate
value

%MFi:L

L Length of the table (maximum 255).

EIO0000003289.03 91

Instructions

Structure
Example of table sort function:

Rung Instruction

0 LD %I0.1
[SORT_ARR(%MW20,%MF0:6)]

1 LD %I0.2
[SORT_ARR(%MW20,%MF0:6)]

2 LD %I0.3
[SORT_ARR(0,%MF40:8)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Floating Point Table Interpolation (LKUP) Functions

Introduction
The LKUP function is used to interpolate a set of X versus Y floating point data for
a given X value.

Review of Linear Interpolation
The LKUP function makes use of the linear interpolation rule, as defined in this
equation:

(Equation 1)

for , where ;

assuming values are ranked in ascending order:

.
NOTE: If any two consecutive Xi values are equal (Xi=Xi+1=X), equation (1)
yields an invalid exception. In this case, to cope with this exception the
following algorithm is used in place of equation (1):

(Equation 2)

for , where .

92 EIO0000003289.03

Instructions

Graphical Representation
This graph illustrates the linear interpolation rule described above:

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

The LKUP function uses three operands, two of which are function attributes, as
described in this table:

Syntax Op1

Output Variable

Op2

User-defined (X) value

Op3

User-defined (Xi,Yi) Variable Array

[Op1 := LKUP(Op2,Op3)] %MWi %MF0 Integer value, %MWi,or %KWi

Definition of Op1
Op1 is the memory word that contains the output variable of the interpolation
function.

Depending on the value of Op1, you can know whether the interpolation was
successful or not, and what prevented success, as outlined in this table:

Op1 (%MWi) Description

0 Successful interpolation

1 Interpolation error detected: Incorrect array, Xm < Xm-1

2 Interpolation error detected: Op2 out of range, X < X1

4 Interpolation error detected: Op2 out of range, X > Xm

8 Invalid size of data array:
• Op3 is set as odd number, or
• Op3 < 6.

NOTE: Op1 does not contain the computed interpolation value (Y). For a
given (X) value, the result of the interpolation (Y) is contained in %MF2 of the
Op3 array, page 94.

EIO0000003289.03 93

Instructions

Definition of Op2
Op2 is the floating point variable (%MF0 of the Op3 floating point array) that
contains the user-defined (X) value for which to compute the interpolated (Y)
value.

Valid range for Op2: .

Definition of Op3
Op3 sets the size (Op3 / 2) of the floating-point array where the (Xi,Yi) data pairs
are stored.

Xi and Yi data are stored in floating point objects with even indexes; starting at %
MF4 (note that %MF0 and %MF2 floating point objects are reserved for the user set-
point X and the interpolated value Y, respectively).

Given an array of (m) data pairs (Xi,Yi), the upper index (u) of the floating point
array (%MFu) is set by using these relationships:

• (Equation 3)

• (Equation 4)
The floating point array Op3 (%MFi) has a structure similar to that of this example
(where Op3=8):

(X) (X1) (X2) (X3)

%MF0 %MF4 %MF8 %MF12

%MF2 %MF6 %MF10 %MF14

(Y) (Y1) (Y2) (Y3)

(Op3=8)

NOTE: As a result of the above array of floating-point structure, Op3 must
meet both of the following requirements; or otherwise this will cause an error
in the LKUP function:

• Op3 is an even number, and
• Op3 ≥ 6 (for there must be at least two data points to allow linear

interpolation).

Structure
Interpolation operations are performed as follows:

Rung Instruction

0 LD %I0.2
[%MW20:=LKUP(%MF0,%KW1)]

1 LD %I0.3
[%MW22:=LKUP(%MF0,10)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Application Example
Use of a LKUP interpolation function:

[%MW20:=LKUP(%MF0,10)]

94 EIO0000003289.03

Instructions

In this example:
• %MW20 is Op1 (the output variable).
• %MF0 is the user-defined (X) value which corresponding (Y) value must be

computed by linear interpolation.
• %MF2 stores the computed value (Y) resulting from the linear interpolation.
• 10 is Op3 (as given by equation 3 above). It sets the size of the floating point

array. The highest ranking item %MFu, where u=18 is given by equation 4,
above.

There are four pairs of data points stored in Op3 array [%MF4,...%MF18]:
• %MF4 contains X1,%MF6 contains Y1.
• %MF8 contains X2,%MF10 contains Y2.
• %MF12 contains X3,%MF14 contains Y3.
• %MF16 contains X4,%MF18 contains Y4.

MEAN Functions of the Values of a Floating Point Table

Introduction
The MEAN function is used to calculate the mean average from a given number of
values in a floating point table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

Syntax of the floating point table means calculation function:

Function Syntax

MEAN Result=Function(Op1)

Parameters of the calculation function for a given number L (maximum 255) of
values from a floating point table:

Op1 Result (Res)

%MFi:L, %KFi:L %MFi

Structure
Example of mean function:

Rung Instruction

0 LD %I3.2
[%MF0:=MEAN(%MF10:5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 95

Instructions

SWAP Function of the Values of a Word Table

Introduction
The SWAP function is used to swap the low and high bytes of the values in a word
table and store the result in a word table.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the SWAP function, use the syntax:

Op1 := SWAP(Op2)

Where:

Operand Type

Op1 %MWx:L, %QWx.y:L, %QWEx:L, %QWMx:L, %QWNx.y.z:L

Op2 %MWx:L, %KWx:L, %QWx.y:L, %IWx.y:L, %QWEx:L, %IWEx:
L, %QWMx:L, %IWMx:L, %QWNx.y.z:L, %IWNx.y.z:L

L Length of the table (maximum 255).

Structure
Example of SWAP function:

Rung Instruction

0 %MW0:3 := "1234"
[%MW0:3 := SWAP(%MW0:3)]

For this example, the result is:

%MW0="12" and %MW1="34"
NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Instructions on I/O Objects

Aim of This Section
This section describes the instructions on I/O objects.

Read Immediate Digital Embedded Input (READ_IMM_IN)

Introduction
The READ_IMM_IN instruction reads an embedded digital input (input integrated
in the logic controller) during the execution of a task and immediately updates the
input image. This therefore avoids having to wait for the next task cycle to update
the input image.

NOTE: This instruction is only valid for embedded digital inputs.

96 EIO0000003289.03

Instructions

NOTE: When using this instruction, evaluate the relative performance (turn on
and turn off delays) of regular inputs and fast inputs. Refer to Digital Inputs in
the programming guide for your logic controller.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the READ_IMM_IN instruction, use this syntax:

Op1 := READ_IMM_IN(Op2)

Where:

Operand Type Description

Op1 %MWi Stores the function return code (see the table below).

Op2 Immediate value
(integer)

%MWi

%KWi

Defines the input index (%I0.x).

i Object instance identifier for the memory variable.

Function Return Code
This table describes the function return codes:

Code Description

0 No error detected.

1 Input declared is greater than maximum input allowed.

2 Input declared is forced.

Example
%MW0 := READ_IMM_IN(2)

Upon execution of this operation block the current value of the input %I0.2 is read
and the input image is immediately updated. The function return code is stored in
the %MW0 memory word.

Structure
Example of READ_IMM_IN instruction:

Rung Instruction

0 LD %M0
[%MW0:=READ_IMM_IN(%MW5)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 97

Instructions

Write Immediate Digital Embedded Output (WRITE_IMM_OUT)

Introduction
The WRITE_IMM_OUT instruction physically writes to an embedded digital output
(output integrated into the logic controller). The value is immediately read from the
output image. This therefore avoids having to wait for the next task cycle to write
to the embedded output.

NOTE: This function is only valid for embedded digital outputs.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the WRITE_IMM_OUT instruction, use this syntax:

Op1 := WRITE_IMM_OUT(Op2)

Where:

Operand Type Description

Op1 %MWi Stores the function return code (see the table below).

Op2 Immediate value
(integer)

%MWi

%KWi

Defines the output index (%Q0.x).

i is the object instance identifier for the memory variable.

Function Return Code
This table describes the function return codes:

Code Description

0 No error detected.

3 Output declared is greater than maximum output allowed.

4 Output declared is forced.

5 Output declared is used as dedicated hardware output.

6 Output declared is used as alarm output.

Example
%MW0 := WRITE_IMM_OUT(%MW5) (with %MW5 = 2)

At execution of this operation block the output image %Q0.2 is written physically
on the embedded digital output. The function return code is stored in the %MW0
memory word.

98 EIO0000003289.03

Instructions

Structure
Example of WRITE_IMM_OUT instruction:

Rung Instruction

0 LD %M0
[%MW0:= WRITE_IMM_OUT(%MW4)]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Read Immediate Function Block Parameter (READ_IMM)

Introduction
The READ_IMM instruction reads a function block parameter during the execution
of a task and updates the input image during the same cycle.

This function is available only for certain function block parameters. The READ_
IMM instruction reads directly from the HSC.V and HSC.P registers in High Speed
Counter (%HSC) function blocks. For more details, refer to High Speed Counter
(%HSC) in the Advanced Functions Library Guide of your logic controller.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the READ_IMM instruction, use this syntax:

READ_IMM(Op1)

Where:

Operand Type Description

Op1 %HSCx.P, %HSCx.PD,
%HSCx.V, %HSCx.VD

This instruction reads a function block parameter given in
Op1 and updates the value in the I/O image and the
corresponding register.

x is the object instance identifier for the function block.

Example
The following code is an example of using the READ_IMM instruction:

Rung Instruction

0 LD %M0
[READ_IMM(%HSC0.P)]

NOTE: Refer to reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.
NOTE: The application must be configured with a functional level (see
EcoStruxure Machine Expert - Basic, Operating Guide) of at least Level 3.3 to
use the READ_IMM instruction.

EIO0000003289.03 99

Instructions

Write Immediate Function Block Parameter (WRITE_IMM)

Introduction
The WRITE_IMM instruction writes a function block parameter during the
execution of a task and updates the output image during the same cycle.

This function is available only for certain function block parameters. The WRITE_
IMM instruction writes directly to the HSC.V and HSC.P registers in High Speed
Counter (%HSC) function blocks. For more details, refer to High Speed Counter
(%HSC) in the Advanced Functions Library Guide of your logic controller.

Syntax
The following describes Instruction List syntax. You can insert Instruction List
operations and assignment instructions, page 15 in Ladder Diagram rungs using
an Operation Block graphical element.

For the WRITE_IMM instruction, use this syntax:

WRITE_IMM(Op1)

Where:

Operand Type Description

Op1 %HSCx.P, %HSCx.PD,
%HSCx.V, %HSCx.VD

This instruction writes a function block parameter given in
Op1 and updates the value in the I/O image.

x is the object instance identifier for the function block.

Example
The following code is an example of using the WRITE_IMM instruction:

Rung Instruction

0 LD %M1
[WRITE_IMM(%HSC0.V)]

NOTE: Refer to reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.
NOTE: The application must be configured with a functional level of at least
Level 3.3 to use the WRITE_IMM instruction.

100 EIO0000003289.03

I/O Objects

I/O Objects

Fast Counter (%FC)

Using Fast Counter Function Blocks
This section provides descriptions and programming guidelines for using Fast
Counter function blocks.

Overview
Refer to the Advanced Functions Library Guide of your controller.

High Speed Counter (%HSC)

Using High Speed Counter Function Blocks
This section provides descriptions and programming guidelines for using High
Speed Counter function blocks.

Overview
Refer to the Advanced Functions Library Guide of your controller.

Pulse (%PLS)

Using Pulse Function Blocks
This section provides descriptions and programming guidelines for using Pulse
function blocks.

Overview
Refer to the Advanced Functions Library Guide of your controller.

Pulse Width Modulation (%PWM)

Using Pulse Width Modulation Function Blocks
This section provides descriptions and programming guidelines for using Pulse
Width Modulation function blocks.

EIO0000003289.03 101

I/O Objects

Overview
Refer to the Advanced Functions Library Guide of your controller.

102 EIO0000003289.03

Network Objects

Network Objects

Network Objects

Presentation
Network objects are used to communicate via EtherNet/IP, Modbus TCP, or
Modbus Serial IOScanner.

There are two types of network object for EtherNet/IP communication:
• %QWE: Input Assembly
• %IWE: Output Assembly

There are two types of network object for Modbus TCP communication:
• %QWM: Input registers
• %IWM: Output registers

The following types of network object are used for the Modbus Serial IOScanner:
• %IN: Digital inputs (IOScanner)
• %QN: Digital outputs (IOScanner)
• %IWN: Input registers (IOScanner)
• %QWN: Output registers (IOScanner)
• %IWNS: IOScanner Network Diagnostic Codes

NOTE: References to input and output are from the point of view of the
EtherNet/IP master or Modbus TCP client.

For more information on how to configure network objects, refer to the
programming guide for your logic controller.

EIO0000003289.03 103

Software Objects

Software Objects

Using Function Blocks

Function Block Programming Principles

Overview
A function block is a reusable object that accepts one or more input values and
returns one or more output values.

You can insert up to five function blocks into each Ladder Diagram rung.

The function block parameters are not available if:
• your controller does not support the function block,
• the function block is not configured.

Ladder Diagram Programs
To use a function block in a Ladder Diagram rung:

Step Action

1 Insert, page 105 the function block into a rung.

2 Wire the inputs and outputs as necessary.

3 Configure, page 107 the function block by specifying values for its parameters.

Instruction List Programs
To add a function block to an Instruction List program, you can use one of the
following methods:

• Function block instructions (for example, BLK %TM2): This reversible method
of programming enables operations to be performed on the block in a single
place in the program.

• Specific instructions (for example, CU %Ci). This non-reversible method
enables operations to be performed on function block inputs in several places
in the program. For example:

Line Instruction

1000 CU %C1

1074 CD %C1

1209 R %C1

Use the instructions BLK, OUT_BLK, and END_BLK for reversible programming
of function blocks:

• BLK: Indicates the beginning of the block.
• OUT_BLK: Is used to wire directly the block outputs.
• END_BLK: Indicates the end of the block.

NOTE: Test and input instructions on the relevant block can only be placed
between the BLK and OUT_BLK instructions (or between BLK and END_BLK
when OUT_BLK is not programmed).

104 EIO0000003289.03

Software Objects

Example with Output Wiring
This example shows a Counter function block in a program with wired outputs:

Rung Instruction

0 BLK %C8
LDF %I0.1
R
LD %I0.1
AND %M0
CU
OUT_BLK
LD D
AND %M1
ST %Q0.0
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Example Without Output Wiring
This example shows reversible programming of a Counter function block without
wired outputs:

Rung Instruction

0 BLK %C8
LDF %I0.1
R
LD %I0.2
AND %M0
CU
END_BLK

1 LD %C8.D
AND %M1
ST %Q0.4

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Adding a Function Block

Inserting a Function Block Into a Ladder Diagram Program
Follow this procedure:

Step Action

1 Create a new Ladder Diagram rung in the programming workspace of EcoStruxure
Machine Expert - Basic. Refer to the EcoStruxure Machine Expert - Basic Operating
Guide for details.

2 Click the Function button on the graphical toolbar at the top of the programming
workspace.

Result: A list of all available function block objects is displayed (see the table below).

3 Select the function block.

4 Move the function block to the required position in the rung; then click to insert it.

You can insert up to five function blocks in series or parallel.

EIO0000003289.03 105

Software Objects

Available Function Block Objects
This table presents the available function block objects:

Function Block Object Description

Timer

LIFO/FIFO Register

Shift Bit Register

Step Counter

Counter

Fast Counter

High Speed Counter

Drum

RTC (Real-Time Clock)

Pulse

Pulse Width Modulation

Message

Data Logging

Pulse Train Output
NOTE: For a complete list of PTO objects, refer to the Advanced
Functions Library Guide, PTO Function Blocks.

Drive objects
NOTE: For a complete list of drive objects, refer to Advanced
Functions Library Guide, Drive Function Blocks.

Communication function blocks
NOTE: For a complete list of communication function blocks,
refer to Communication Objects, page 172.

User-defined function block

106 EIO0000003289.03

Software Objects

Configuring a Function Block

Configuring a Function Block in a Ladder Diagram Program
Follow this procedure:

Step Action

1 Optionally, click Address within the function block.

A default address appears in the text box, for example "%TM0" for a Timer function
block.

To change the default address, delete the final digit of the address (the instance
identifier).

A list of all available addresses appears.

Select the address to use to identify this instance of the function block.

The properties of the function block appear in the center of the function block object
and in the Properties table in the bottom half of the programming workspace.

At any other time, double-click anywhere within the function block to display the
properties.

2 Optionally, click Comment within the function block, type a short description of the
function block. For example, Pulse Timer.

3 Optionally, click Symbol within the function block and begin typing the name of the
symbol to associate with this function block.

A list of all existing symbols with names beginning with the character or characters you
type appears; click the symbol to use.

To create a new symbol for this function block, type the name of the symbol to create,
and select the object to associate with the symbol.

See the EcoStruxure Machine Expert - Basic Operating Guide (see EcoStruxure
Machine Expert - Basic, Operating Guide) for details on using symbols.

4 Click the function block.

Result: The Configuration tooltip appears.

5 Configure the available parameters of each function block, as described in the
“Parameters” topic of individual function block descriptions.

You can modify the values of the objects in online mode. Refer to Online Modifications
(see EcoStruxure Machine Expert - Basic, Operating Guide).

NOTE: You can also display the Properties table by double-clicking on the
function block in a rung.

Timer (%TM)

Using Timer Function Blocks
This section provides descriptions and programming guidelines for using Timer
function blocks.

Description

Introduction

A Timer function block is used to specify a period of time before doing
something, for example, triggering an event.

EIO0000003289.03 107

Software Objects

Illustration
This illustration is the Timer function block.

Inputs
The Timer function block has the following input:

Label Description Value

IN Input address (or
instruction)

Starts the Timer when a rising edge (TON or TP types) or
falling edge (TOF type) is detected.

Outputs
The Timer function block has the following output:

Label Description Value

Q Output address (%
TMi.Q)

Associated bit %TMi.Q is set to 1 (depending on the Timer
type) when the Timer expires.

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

Comment
SymbolIN
%TM0

Q

Ret., Dyn. Preset
Type: TON
TB: 1 min

Preset: 9999

108 EIO0000003289.03

Software Objects

The Timer function block has the following parameters:

Parameter Description Value Editable
in Online
Mode

Used Address used If selected, this address is in use in the program. No

Address Timer object address (%TMi) A program can contain only a limited number of Timer objects.
Refer to the Programming Guide of the related platform for the
maximum number of timers.

No

Symbol Symbol The symbol associated with this object. Refer to the
EcoStruxure Machine Expert - Basic Operating Guide, Defining
and Using Symbols (see EcoStruxure Machine Expert - Basic,
Operating Guide) for details.

No

Type Timer type One of the following:
• TON, page 110: Timer on-Delay (default)
• TOF, page 113: Timer off-Delay
• TP, page 116: Pulse timer (monostable)

Yes1

Retentive TRUE/FALSE When the Retentive checkbox is not selected (default), the
value is reset when a falling edge of the IN parameter is
detected. Counting restarts from 0.

When the Retentive checkbox is selected, the timer retains its
value when a falling edge of the IN parameter is detected before
the Preset value is reached. Counting restarts from this value.

NOTE: The application must be configured with a
functional level (see EcoStruxure Machine Expert - Basic,
Operating Guide) of at least Level 3.3 to use the Retentive
parameter.

Yes1

Dynamic Preset TRUE/FALSE When the Dynamic Preset checkbox is not selected (default)
and the preset value is modified (by programming instruction or
using EcoStruxure Machine Expert - Basic), the modified preset
value only takes effect on the next activation of the timer.

When the Dynamic Preset checkbox is selected and the preset
value is modified (by programming instruction or using
EcoStruxure Machine Expert - Basic), the modified preset value
takes effect immediately.

When the Dynamic Preset checkbox is selected and a new
preset value is received while the timer is running:

• If the Present value (TMi.V) is greater than or equal to the
new preset value, the timer behaves as if the preset value
has been reached.

• If the Present value (TMi.V) is less than the new preset
value, the timer continues to run until it reaches the new
preset value.

NOTE: Your application must be configured with a
functional level (see EcoStruxure Machine Expert - Basic,
Operating Guide) of at least Level 12.0 to use the
Dynamic Preset parameter.

Yes1

Time Base Time base The base time unit of the timer. The smaller the timer base unit,
the greater the acuity of the timer:

• 1 ms (supported in %TM0...%TM5)
• 10 ms
• 100 ms
• 1 sec
• 1 min (default)

Yes1

Preset Preset value 0...9999. Default value is 9999.

Timer Period = Preset x Time Base

Timer Delay = Preset x Time Base

This configured preset value can be read, tested, and modified
using the associated object %TMi.P.

Yes1

Comment Comment A comment can be associated with this object. No

1 The timer is immediately reset to 0 following any change to the parameter value when in online mode.

EIO0000003289.03 109

Software Objects

Objects
The Timer function block has the following objects:

Object Description Value

%TMi.P Preset value See description in Parameters table above.

%TMi.V Present value Word that increments from 0 to the preset value %TMi.P when
the timer is running. The value can be read and tested, but not
written to, by the program.

Its value can be modified in an animation table.

%TMi.Q Timer output See description in Outputs table above.

TON: On-Delay Timer

Introduction
The TON (On-Delay Timer) type of timer is used to control on-delay actions. This
delay is programmable using the software.

Special Cases
The following table contains a list of special cases for programming the Timer
function block.

Special case Description

Effect of a cold restart (%S0=1) Forces the value to 0. Sets output %TMi.Q to 0. The preset
value is reset to the value defined during configuration.

Effect of a warm restart (%S1=1) Has no effect on the timer value and preset value of the
timer. The timer value does not change during a power
outage.

Effect of a controller stop Stopping the controller does not freeze the value.

Effect of a program jump Jumping over the timer block does not freeze the timer. The
timer will continue to increment until it reaches the preset
value (%TMi.P). At that point, the Done bit (%TMi.Q)
assigned to output Q of the timer block changes state.
However, the associated output wired directly to the block
output is not activated and not scanned by the controller.

Testing by bit %TMi.Q (Done bit) Test bit %TMi.Q only once in the program.

Effect of modifying the preset %TMi.
P

The effect of modifying the preset value by using an
instruction, or by adjusting the value with an animation table,
depends on the configuration of the Dynamic Preset
parameter. Refer to Dynamic Preset parameter for details.

110 EIO0000003289.03

Software Objects

Timing Diagram
This diagram illustrates the operation of the TON type Timer.

(1) The Timer starts on the rising edge of the IN input.

(2) The value %TMi.V increases from 0 to %TMi.P in increments of 1 unit for each
pulse of the time base parameter TB.

(3) The %TMi.Q output bit is set to 1 when the value has reached the preset value
%TMi.P.

(4) The %TMi.Q output bit remains at 1 while the IN input is at 1.

(5) When a falling edge is detected at the IN input, the Timer is stopped, even if
the Timer has not reached %TMi.P, the %TMi.V value is set to 0.

Timing Diagram with Retentive Checkbox Selected
This diagram illustrates the operation of the TON type Timer when the Retentive
checkbox is selected.

(1) The Timer starts on the rising edge of the IN input.

(2) The value %TMi.V increases from 0 to %TMi.P in increments of 1 unit for each
pulse of the time base parameter TB.

(3) On the falling edge of the IN input, the Timer is stopped and remains
unchanged awaiting the next rising edge of the IN input.

(4) On the rising edge of the IN input, the Timer starts again from the value it
stopped at.

(5) The %TMi.Q output bit is set to 1 when the value reaches the preset value %
TMi.P.

(6) When a falling edge is detected at the IN input, if the Timer has reached the
preset value %TMi.P, the %TMi.V value is set to 0.

EIO0000003289.03 111

Software Objects

Timing Diagram with Dynamic Preset Checkbox Selected
This diagram illustrates the operation of the TON type Timer when the Dynamic
Preset checkbox is selected.

IN

TMi.P
80

30

TMi.V

Q
t

(1) (2) (3)(4)(5) (6) (7) (8) (9) (10)

(1) The Timer starts on the rising edge of the IN input.

(2) The value of %TMi.P is changed to 80. Since %TMi.V is less than the new %
TMi.P value, the %TMi.Q output bit value is unchanged and %TMi.V continues to
increment with each pulse of the Time Base parameter TB.

(3) The %TMi.Q output bit is set to 1 when %TMi.V reaches the new preset value
%TMi.P.

(4) The %TMI.Q output bit remains at 1 while the IN input is at 1.

(5) On a falling edge of the IN input, the Timer is stopped. %TMi.V is set to 0.

(6) The Timer starts on the rising edge of the IN input.

(7) The value of %TMi.P is changed to 30. The new %TMi.P value will be taken
into account at the next Time Base parameter value update. Since %TMi.V is
greater than the new %TMi.P value, the %TMi.Q output bit is set to 1.

(8) When a falling edge is detected at the IN input, the Timer is stopped. %TMi.V
is set to 0.

(9) The Timer starts on the rising edge of the IN input.

(10) When a falling edge is detected at the IN input, the Timer is stopped, even if
the value of %TMi.P has not been reached. The %TMi.V value is set to 0.

112 EIO0000003289.03

Software Objects

Timing Diagram with Dynamic Preset and Retentive Checkboxes Selected
This diagram illustrates the operation of the TON type Timer when both the
Dynamic Preset and Retentive checkboxes are selected.

(1) (2) (3)(4)(5) (6) (7) (8) (9) (10) (11)

IN

TMi.P

TMi.V

Q
t

80

30

(1) The Timer starts on the rising edge of the IN input.

(2) The value of %TMi.P is changed to 80. Since %TMi.V is less than the new %
TMi.P value, the %TMi.Q value is unchanged and %TMi.V continues to
increment with each pulse of the Time Base parameter TB.

(3) The %TMi.Q output bit is set to 1 when %TMi.V reaches the new preset value
%TMi.P.

(4) The %TMI.Q output bit remains at 1 while the IN input remains at 1.

(5) On a falling edge of the IN input, the Timer is stopped. %TMi.V is set to 0.

(6) The Timer starts on the rising edge of the IN input.

(7) The value of %TMi.P is changed to 30. The new %TMi.P value will be taken
into account at the next Time Base parameter value update. Since %TMi.V is
greater than the new %TMi.P value, the %TMi.Q output bit is set to 1.

(8) When a falling edge is detected at the IN input, the Timer is stopped. %TMi.V
is set to 0.

(9) The Timer starts on the rising edge of the IN input.

(10) When a falling edge is detected at the IN input, the Timer is stopped. %TMi.V
remains unchanged as the Retentive parameter is enabled.

(11) If %TMi.P is set to a value less than %TMi.V when the timer is disabled (that
is, the IN input is set to 0), the %TMi.V value is set to 0.

TOF: Off-Delay Timer

Introduction
Use the TOF (Off-Delay Timer) type of Timer to control off-delay actions. This
delay is programmable using the software.

EIO0000003289.03 113

Software Objects

Timing Diagram
This diagram illustrates the operation of the TOF type Timer.

(1) At a rising edge of input IN, %TMi.Q is set to 1.

(2) The Timer starts on the falling edge of input IN.

(3) The value %TMi.V increases to the preset value %TMi.P in increments of 1
unit for each pulse of the time base parameter TB.

(4) The %TMi.Q output bit is reset to 0 when the value reaches the preset value %
TMi.P.

(5) At a rising edge of input IN, %TMi.V is set to 0.

(6) At a rising edge of input IN, %TMi.V is set to 0, even if the preset value is not
reached.

Timing Diagram with Retentive Checkbox Selected
This diagram illustrates the operation of the TOF type Timer when the Retentive
checkbox is selected.

(1) At a rising edge of input IN, %TMi.Q is set to 1.

(2) The Timer starts on the falling edge of input IN.

(3) The value %TMi.V increases to the preset value %TMi.P in increments of 1
unit for each pulse of the time base parameter TB.

(4) On a rising edge of the IN input, the Timer is stopped and remains unchanged
awaiting the next falling edge of the IN input.

(5) The %TMi.Q output bit is reset to 0 when the value reaches the preset value %
TMi.P

(6) At a rising edge of input IN, %TMi.V is set to 0 and %TMi.Q is set to 1.

114 EIO0000003289.03

Software Objects

Timing Diagram with Dynamic Preset Checkbox Selected
This diagram illustrates the operation of the TOF type Timer when the Dynamic
Preset checkbox is selected.

IN

TMi.P

TMi.V

Q

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

t

80

30

(1) At a rising edge of the IN input, %TMi.Q is set to 1.

(2) The Timer starts on the falling edge of input IN.

(3) The value of %TMi.P is changed to 80. Since %TMi.V is less than the new %
TMi.P value, the %TMi.Q output bit value is unchanged and %TMi.V continues to
increment with each pulse of the Time Base parameter TB.

(4) The %TMi.Q output bit is reset to 0 when %TMi.V reaches the preset value %
TMi.P.

(5) On a rising edge of the IN input, %TMi.V is set to 0

(6) The Timer starts on the falling edge of the IN input.

(7) The value of %TMi.P is changed to 30. The new %TMi.P value will be taken
into account at the next Time Base parameter value update. The new %TMi.P
value will be taken into account at the next Time Base parameter value update.
Since %TMi.V is greater than the new %TMi.P value, the %TMi.Q output bit is
reset to 0.

(8) At a rising edge of input IN, %TMi.V is set to 0.

(9) The Timer starts on the falling edge of the IN input.

(10) At a rising edge of the IN input, %TMi.V is set to 0, even if the preset value %
TMi.P has not been reached.

EIO0000003289.03 115

Software Objects

Timing Diagram with Dynamic Preset and Retentive Checkboxes Selected
This diagram illustrates the operation of the TOF type Timer when both the
Dynamic Preset and Retentive checkboxes are selected.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

IN

TMi.P

TMi.V

Q

t

80

30

(1) On a rising edge of the IN input, %TMi.Q is set to 1.

(2) The Timer starts on a falling edge of the IN input.

(3) The value of %TMi.P is changed to 80. Since %TMi.V is less than the new %
TMi.P value, the %TMi.Q output bit value is unchanged and %TMi.V continues to
increment with each pulse of the Time Base parameter TB.

(4) The %TMi.Q output bit is reset to 0 when the %TMi.V value reaches the new
preset value %TMi.P.

(5) On detecting a rising edge of the IN input, %TMi.V is set to 0.

(6) The Timer starts on the falling edge of the IN input.

(7) The value of %TMi.P is changed to 30. The new %TMi.P value will be taken
into account at the next Time Base parameter value update. Since %TMi.V is
greater than the new %TMi.P value, the%TMi.Q output bit is reset to 0.

(8) On detecting a rising edge of the IN input, %TMi.V is set to 0.

(9) The Timer starts on the falling edge of the IN input.

(10) At a rising edge of the IN input, the Timer is stopped. %TMi.V remains
unchanged as the Retentive parameter is enabled.

(11) If %TMi.P is set to a value less than %TMi.V when the timer is disabled (that
is, the IN input is set to 1) %TMi.V is reset to 0.

TP: Pulse Timer

Introduction
The TP (Pulse Timer) type of Timer is used to create pulses of a precise duration.
This delay is programmable using the software.

116 EIO0000003289.03

Software Objects

Timing Diagram
This diagram illustrates the operation of the TP type Timer.

(1) The Timer starts on the rising edge of the IN input. The current value %TMi.V
is set to 0 if the Timer has not already started and %TMi.Q is set to 1 when the
Timer starts.

(2) The current value %TMi.V of the Timer increases from 0 to the preset value %
TMi.P in increments of one unit per pulse of the time base parameter TB.

(3) The %TMi.Q output bit is set to 0 when the current value has reached the
preset value %TMi.P.

(4) The current value %TMi.V is set to 0 when %TMi.V equals %TMi.P and input
IN returns to 0.

(5) This Timer cannot be reset.

(6) When %TMi.V equals %TMi.P and input IN is 0, then %TMi.Q is set to 0.

EIO0000003289.03 117

Software Objects

Timing Diagram with Dynamic Preset Checkbox Selected
This diagram illustrates the operation of the TP type Timer when the Dynamic
Preset checkbox is selected.

IN

TMi.P

TMi.V

Q

(1) (2) (3) (4) (5) (6) (7) (8)(9) (10)

t

80

30

(1) The timer starts on a rising edge of the IN input. %TMi.V is set to 0 if the timer
has not already started. The %TMi.Q output bit value is set to 1 when the timer
starts.

(2) The current value %TMi.V of the Timer increases from 0 to the preset value %
TMi.P in increments of one unit per pulse of the Time Base parameter TB.

(3) The value of %TMi.P is changed to 80. Since %TMi.V is less than the new %
TMi.P value, the %TMi.Q value is unchanged and %TMi.V continues to
increment with each pulse of the Time Base parameter TB.

(4) The %TMi.Q output bit is reset to 0 when %TMi.V reaches the value of the
preset parameter %TMi.P.

(5) The current value %TMi.V is set to 0 when %TMi.V equals %TMi.P and the IN
input is reset to 0.

(6) The timer starts on a rising edge of the IN input. The current value %TMi.V is
set to 0 if the timer has not already started and %TMi.Q is set to 1 when the timer
starts.

(7) The value of %TMi.P is changed to 30. The new %TMi.P value will be taken
into account at the next Time Base parameter value update. Since %TMi.V is
greater than the new %TMi.P value, the %TMi.Q output bit is reset to 0.

(8) The Timer starts on a rising edge of the IN input. The current value %TMi.V is
set to 0 if the timer has not already started and %TMi.Q is set to 1 when the timer
starts.

(9) This type of timer cannot be reset.

(10) When %TMi.V equals %TMi.P and the input IN is 0, %TMi.Q is set to 0.

118 EIO0000003289.03

Software Objects

Programming Example

Introduction
Timer function blocks have the following operating modes:

• TON (Timer On-Delay), page 110: used to specify a period of time between a
specified input being activated and an output sensor being switched on.

• TOF (Timer Off-Delay), page 113: used to specify a period of time between an
output associated with a sensor no longer being detected and the
corresponding output being switched off.

• TP (Timer - Pulse), page 116: used to create a pulse of a precise duration.
The delays or pulse periods of Timers are programmable and can be configured
from within the software.

Programming
This example is a Timer function block with reversible instructions:

Rung Reversible Instruction

0 BLK %TM0
LD %M0
IN
OUT_BLK
LD Q
ST %Q0.0
END_BLK

1 LD [%TM0.V<400]
ST %Q0.1

2 LD [%TM0.V>=400]
ST %Q0.2

This example is the same Timer function block with non-reversible instructions:

Rung Non-Reversible Instruction

0 LD %M0
IN %TM0

1 LD %TM0.Q
ST %Q0.0

2 LD [%TM0.V<400]
ST %Q0.1

3 LD [%TM0.V>=400]
ST %Q0.2

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Counter (%C)

Using Counter Function Blocks
This section provides descriptions and programming guidelines for using Counter
function blocks.

EIO0000003289.03 119

Software Objects

Description

Introduction

The Counter function block provides up and down counting of events. These
2 operations can be done concurrently.

Illustration
This illustration presents the Counter function block.

Inputs
The Counter function block has the following inputs:

Label Description Value

R Reset input (or
instruction)

Sets the counter (%Ci.V) to 0 when the reset input (R) is
set to 1.

S Set input (or
instruction)

Sets the counter (%Ci.V) to the preset value (%Ci.P)
when the set input (S) is set to 1.

CU Count up Increments the counter value (%Ci.V) by 1 on a rising
edge at count up input (CU).

CD Count down Decrements the counter value (%Ci.V) by 1 on a rising
edge at count down input (CD).

Outputs
The Counter function block has the following outputs:

Label Description Value

E Down count
overflow

The associated bit %Ci.E (counter empty) is set to 1 when the
counter reaches 0 value. In case of following decrement, the
counter value passes to 9999.

D Preset output
reached

The associated bit %Ci.D (count done) is set to 1 when %Ci.V
= %Ci.P.

F Up count overflow The associated bit %Ci.F=1 (counter full), when %Ci.V
changes from 9999 to 0 (set to 1 when %Ci.V reaches 0, and
reset to 0 if the Counter continues to count up).

120 EIO0000003289.03

Software Objects

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

The Counter function block has the following parameters:

Parameter Description Value Editable
in
online
mode?

Used Address used If selected, this address is currently in use in a
program.

No

Address Counter object
address

A program can contain only a limited number
of counter objects. Refer to the Programming
Guide of your controller for the maximum
number of counters.

No

Symbol Symbol The symbol associated with this object. Refer
to the EcoStruxure Machine Expert - Basic
Operating Guide, Defining and Using
Symbols (see EcoStruxure Machine Expert -
Basic, Operating Guide) for details.

No

Preset Preset value Values accepted by preset value [0 − 9999].
Default value is 9999. This configured value
can be read, tested, and modified using the
associated object %Ci.P.

Yes

Comment Comment A comment can be associated with this
object.

No

Objects
The Counter function block has the following objects:

Object Description Value

%Ci.V Current value of
the Counter

This word is incremented or decremented
according to inputs (or instructions) CU and CD
(see Inputs table, page 120). Can be only read.

It can be modified in an animation table.

%Ci.P Preset value See Parameters table, page 121.

It can be modified in an animation table.

%Ci.E Empty See Outputs table, page 120.

It can be modified in an animation table.

%Ci.D Done See Outputs table, page 120.

It can be modified in an animation table.

%Ci.F Full See Outputs table, page 120.

It can be modified in an animation table.

EIO0000003289.03 121

Software Objects

Operations
This table describes the main stages of Counter function block operations:

Operation Action Result

Reset Input R is set to state 1(or the R
instruction is activated).

The current value %Ci.V is forced to 0.
Outputs %Ci.E, %Ci.D,and %Ci.F are
at 0. The reset input has priority.

Set If input S is set to 1 (or the S
instruction is activated) and the
reset input is at 0 (or the R
instruction is inactive).

The current value %Ci.V takes the %Ci.
P value and the %Ci.D output is set to 1.

Counting A rising edge appears at the Count
up input CU (or instruction CU is
activated).

The %Ci.V current value is incremented
by one unit.

The %Ci.V current value is equal
to the %Ci.P preset value.

The "preset reached" output bit %Ci.D
switches to 1.

The %Ci.V current value changes
from 9999 to 0.

The output bit %Ci.F (up-counting
overflow) switches to 1.

If the Counter continues to count
up.

The output bit %Ci.F (up-counting
overflow) is reset to 0.

Count down A rising edge appears at the down-
counting input CD (or instruction CD
is activated).

The current value %Ci.V is
decremented by 1 unit.

The current value %Ci.V changes
from 0 to 9999.

The output bit %Ci.E (down-counting
overflow) switches to 1.

If the Counter continues to count
down.

The output bit %Ci.F (down-counting
overflow) is reset to 0.

Special Cases
This table shows a list of special operating/configuration cases for Counter
function block:

Special Case Description

Effect of a cold restart (%S0=1) or INIT • The current value %Ci.V is set to 0.
• Output bits %Ci.E, %Ci.D, and %Ci.F are set

to 0.
• The preset value is initialized with the value

defined during configuration.

Effect of a warm restart (%S1=1) of a
controller stop

Has no effect on the current value of the Counter (%
Ci.V).

Effect of modifying the preset %Ci.P Modifying the preset value via an instruction or by
adjusting it takes effect when the block is processed
by the application (activation of one of the inputs).

NOTE: Effect of INIT is the same as %S0=1.

Programming Example

Introduction
The following example is a counter that provides a count of up to 5000 items.
Each pulse on input %I0.2 (when memory bit %M0 is set to 1) increments the
Counter function block %C8 up to its final preset value (bit %C8.D=1). The counter
is reset by input %I0.1.

122 EIO0000003289.03

Software Objects

Programming
This example is a Counter function block with reversible instructions:

Rung Reversible Instruction

0 BLK %C8
LD %I0.1
R
LD %I0.2
AND %M0
CU
END_BLK

1 LD %C8.D
ST %Q0.0

This example is the same Counter function block with non-reversible instructions:

Rung Non-Reversible Instruction

0 LD %I0.1
R %C8

1 LD %I0.2
AND %M0
CU %C8

2 LD %C8.D
ST %Q0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Configuration
The parameters must be entered during configuration:

Preset value (%Ci.P): set to 5000 in this example.

Example of an Up/Down Counter
This illustration is an example of a Counter function block.

In this example, %M0 is the increment (%M0 = False) and the decrement (%M0 =
True) order. The counter counts the Front edge of %I0.0. If %M0 is False, at each
Front Edge on %I0.0, %C1.V is incremented until it reaches the preset %C1.P
value, and the Done indicator %C1.D switches to TRUE. The %C1.D output sets %
M0 and switches the instruction into decrement order. Then at each Front Edge on
%I0.0, %C1.V is decremented until it reaches 0. The Empty indicator (%C1.E)
switches on and resets %M0 (Increment order).

EIO0000003289.03 123

Software Objects

Message (%MSG) and Exchange (EXCH)

Using Message Function Blocks
This section provides descriptions and programming guidelines for using Message
function blocks.

Overview

Introduction
A logic controller can be configured to communicate in Modbus protocol or can
send and/or receive messages in character mode (ASCII).

EcoStruxure Machine Expert - Basic provides the following functions for these
communications:

• Exchange (EXCH) instruction to transmit/receive messages.
• Message function block (%MSG) to control the data exchanges.

The logic controller uses the protocol configured for the specified port when
processing an Exchange instruction. Each communication port can be assigned a
different protocol. The communication ports are accessed by appending the port
number to the Exchange instruction (EXCH1, EXCH2) or Message function block
(%MSG1, %MSG2).

The logic controllers implement Modbus TCP messaging over the Ethernet
network by using the EXCH3 instruction and %MSG3 function block.

This table shows the Exchange instruction and Message function block used to
access the communication ports of the controller:

Communication Port Exchange Instruction Message Function Block

2 serial lines EXCH1 %MSG1

EXCH2 %MSG2

1 serial line and 1 Ethernet EXCH1 %MSG1

EXCH3 %MSG3

Exchange Instruction
The Exchange instruction allows a logic controller to send and/or receive
information to/from ASCII or Modbus devices. You define a table of words (%MWi:
L) containing control information and the data to be sent and/or received. Refer to
Configuring the transmission table, page 130. A message exchange is performed
using the Exchange instruction.

Syntax
The following is the format for the Exchange instruction:
[EXCHx %MWi:L]

Where: x = port number; L = total number of words of the word table.

The logic controller must finish the exchange from the first Exchange instruction
before a second Exchange instruction can be started. The Message function
block must be used when sending several messages.

124 EIO0000003289.03

Software Objects

ASCII Protocol
ASCII protocol provides the logic controller a character mode protocol to transmit
and/or receive data with a device. This protocol is supported using the Exchange
instruction and controlled using the Message function block.

3 types of communications are possible with the ASCII protocol:
• Transmission only
• Transmission/Reception
• Reception only

Modbus Protocol
In case of serial link, the Modbus protocol is a master-slave protocol that allows for
one, and only one, master to request responses from slaves, or to act based on
the request. On Ethernet support, several Master (client) can exchange with one
slave (server). Each slave must have a unique address. The master can address
individual slaves, or can initiate a broadcast message to the slaves. Slaves return
a message (response) to queries that are addressed to them individually.
Responses are not returned to broadcast queries from the master.

Modbus master mode allows the controller to send a Modbus query to a slave,
and to wait for the response. The Modbus master mode is only supported via the
Exchange instruction. Both Modbus ASCII and RTU are supported in Modbus
master mode.

Modbus slave mode allows the controller to respond to standard Modbus queries
from a Modbus master.

For detailed information about Modbus protocol, refer to the document Modbus
application protocol which is available at http://www.modbus.org.

Modbus Slave
The Modbus protocol supports 2 Data link layer of the OSI Model formats: ASCII
and RTU. Each is defined by the Physical Layer implementation, with ASCII using
7 data bits, and RTU using 8 data bits.

When using Modbus ASCII mode, each byte in the message is sent as 2 ASCII
characters. The Modbus ASCII frame begins with a start character (':'), and ends
with 2 end characters (CR and LF). The end of frame character defaults to 0x0A
(LF). The check value for the Modbus ASCII frame is a two's complement of the
frame, excluding the start and end characters.

Modbus RTU mode does not reformat the message prior to transmitting; however,
it uses a different checksum calculation mode, specified as a CRC.

The Modbus Data Link Layer has the following limitations:
• Address 1-247
• Bits: 128 bits on request
• Words: 125 words of 16 bits on request

EIO0000003289.03 125

http://www.modbus.org

Software Objects

Description

Introduction

The Message function block manages data exchanges and has three
functions:

• Communications error checking:
Error checking verifies the size of each Exchange table, and verifies the
validity of the exchange related to the configuration.

• Coordination of multiple messages:
To help ensure coordination when sending multiple messages, the Message
function block provides the information required to determine when a previous
message is complete.

• Transmission of priority messages:
The Message function block allows the on-going message transmission to be
stopped in order to allow the immediate sending of an urgent message.

The programming of the Message function block is optional.

When errors are detected, codes are written to the system words %SW63, %SW64,
and %SW65 for the exchange blocks EXCH1, EXCH2 and EXCH3, respectively. For
more information, refer to the Programming Guide of your controller.

Illustration
This illustration presents the Message function block:

126 EIO0000003289.03

Software Objects

Inputs
The Message function block has the following input:

Label Description Value

R Reset input (%
MSGx.R)

Set to 1 to reinitialize communication:
• Communication done (%MSGx.D) output is set to 1
• Communication Error Detected (%MSG.E) output is set to 0
• An error is set on any active Communication function block

(%READ_VAR, %WRITE_VAR, etc.).
• Active TCP connections to other Modicon M221 Logic

Controllers are closed.
NOTE: Only one Message function block, EXCH instruction,
or Communication function block can be active at a time on a
communication port during a master task cycle. If you attempt
to use several communication function blocks, MSG, or EXCH
instructions concurrently on the same communication port,
the function blocks return an error code.Therefore, verify that
no active exchange (%MSGx.D is TRUE) is in progress on a
communication port before starting a Communication function
block, Message function block, or EXCH instruction. Further,
verify that the IOScanner is not also active on the
communication port.
NOTE: The IOScanner does not update the outputs of the %
MSG function block. Therefore, the %MSG.D bit is irrelevant
to the function of the IOScanner.

Outputs
The Message function block has the following outputs:

Label Description Value

D Communication
Done (%MSGx.D)

State 1:
• End of transmission (if transmission)
• End of reception (end character received)
• Error
• Reset the block

State 0: request in progress.

E Communication
Error Detected (%
MSGx.E)

State 1:
• Undefined command
• Table incorrectly configured
• Incorrect character received (speed, parity, and so on)
• Reception table full (not updated)

State 0: message length correct, link established.

Refer to the table below for the error codes written to the system
words when communication error is detected.

EIO0000003289.03 127

Software Objects

Communication Error Codes
This table describes the error codes written to the system words when
communication error is detected:

System
word

Function Description

%SW63 EXCH1
block error
code

EXCH1 error code:

0 - operation was successful

1 - number of bytes to be transmitted exceeds the limit (> 255)

2 - insufficient transmission table

3 - insufficient word table

4 - receive table overflowed

5 - time-out elapsed

6 - transmission

7 - incorrect command within table

8 - selected port not configured/available

9 - reception error: This error code reflects an incorrect or corrupted
reception frame. It can be due to an incorrect configuration in the
physical parameters (for example, parity, data bits, baudrate, and so
on) or an unreliable physical connection causing signal degradation.

10 - cannot use %KW if receiving

11 - transmission offset larger than transmission table

12 - reception offset larger than reception table

13 - controller stopped EXCH processing

%SW64 EXCH2
block error
code

EXCH2 error code: See %SW63.

%SW65 EXCH3
block error
code

1-4, 6-13: See %SW63. (Note that error code 5 is invalid and replaced
by the Ethernet-specific error codes 109 and 122 described below.)

The following are Ethernet-specific error codes:

101 - incorrect IP address

102 - no TCP connection

103 - no socket available (all connection channels are busy)

104 - network is down

105 - network cannot be reached

106 - network dropped connection on reset

107 - connection aborted by peer device

108 - connection reset by peer device

109 - connection time-out elapsed

110 - rejection on connection attempt

111 - host is down

120 - incorrect index (remote device is not indexed in configuration
table)

121 - system error (MAC, chip, duplicate IP)

122 - receiving process timed-out after data was sent

123 - Ethernet initialization in progress

128 EIO0000003289.03

Software Objects

Configuration

Detected Error
If an error is detected when using an Exchange instruction, bits %MSGx.D and %
MSGx.E are set to 1, system word %SW63 contains the error code for port 1, and %
SW64 contains the error code for port 2. Refer to the System Words chapter of
your logic controller Programming Guide.

Operations
This table describes the main stages of Message function block operations:

Operation Action Result

Reset Input R is set to state 1 (or the R
instruction is activated).

• Any messages that are being
transmitted are stopped.

• The communication error output is
reset to 0.

• The Done bit is set to 1.
A new message can now be sent.

Communication
done

Output D is set to state 1. The logic controller is ready to send
another message. Use of the %MSGx.D
bit to help avoid losing messages when
multiple messages are sent.

Communication
Detected Error

The communication error output is set to 1:
• Either because of a communications programming error or a message

transmission error.
• If the number of bytes defined in the data block associated with the

Exchange instruction (word 1, least significant byte) is greater than 128
(+80 in hexadecimal by FA).

• If an error is detected in sending a Modbus message to a Modbus device.
In this case, you should verify the wiring, and that the destination device
supports Modbus communication.

Special Cases
This table contains a list of special cases for the Message operation:

Special Case Description

Effect of a cold restart (%S0=1) or INIT Forces a reinitialization of the communication.

Effect of a warm restart (%S1=1) Has no effect.

Effect of a controller stop If a message transmission is in progress, the controller
stops its transfer and reinitializes the outputs %MSGx.D
and %MSGx.E.

NOTE: Effect of INIT is the same as %S0=1.

EIO0000003289.03 129

Software Objects

Limitations
Note the following limitations:

• Port 2 (for ASCII protocol) availability and type (see %SW7) are verified only at
power-up or reset

• Port 2 (for Modbus protocol) presence and configuration (RS-485) are verified
at power-up or reset

• Any message processing on port 1 is aborted when EcoStruxure Machine
Expert - Basic is connected

• Exchange instructions abort active Modbus slave processing
• Processing of Exchange instructions is not retried in the event of a detected

error
• Reset input (R) can be used to abort Exchange instruction reception

processing
• Exchange instructions are configured with a time-out in case of Modbus

protocol.
• Multiple messages are controlled via %MSGx.D

Configuring the Transmission/Reception Table
The maximum size of the transmitted and/or received frames is:

• 250 bytes for Modbus protocol.
• 255 bytes for ASCII protocol.

The word table associated with the Exchange instruction is composed of the
control, transmission, and reception tables:

Most Significant Byte Least Significant Byte

Modbus ASCII Modbus ASCII

Control table Command Length (transmission/reception)

Rx offset Reserved (0) Tx offset Reserved (0)

Transmission
table

Transmitted byte 1 Transmitted byte 2

...
...

Transmitted byte n

Transmitted byte n+1

Reception table Received byte 1 Received byte 2

...
...

Received byte p

Received byte p+1

NOTE: In addition to queries to individual slaves, the Modbus master
controller can initiate a broadcast query to all slaves. The Command byte in
case of a broadcast query must be set to 00, while the slave address must be
set to 0.

Control Table for ASCII Protocol
The Length byte contains the length of the transmission table in bytes (255
maximum), which is overwritten by the number of characters received at the end
of the reception, if reception is requested.

130 EIO0000003289.03

Software Objects

The Command byte must contain one of the following:
• 0: Transmission only
• 1: Send/receive
• 2: Reception Only

Control Table for Modbus Protocol
The Length byte contains the length of the transmission table in bytes (250
maximum), which is overwritten by the number of characters received at the end
of the reception, if reception is requested.

This parameter is the length in bytes of the transmission table. If the Tx offset
parameter is equal to 0, this parameter will be equal to the length of the
transmission frame. If the Tx offset parameter is not equal to 0, one byte of the
transmission table (indicated by the offset value) will not be transmitted and this
parameter is equal to the frame length itself plus 1.

The Command byte in case of Modbus RTU request (except for broadcast) must
be equal to 1 (Tx and Rx). For broadcast, it must be 0.

The Tx offset byte contains the rank (1 for the first byte, 2 for the second byte,
and so on) within the transmission table of the byte to ignore when transmitting the
bytes. This is used to handle issues associated with byte/word values within the
Modbus protocol. For example, if this byte contains 3, the third byte would be
ignored, making the fourth byte in the table the third byte to be transmitted.

The Rx offset byte contains the rank (1 for the first byte, 2 for the second byte,
and so on) within the reception table to add when transmitting the packet. This is
used to handle issues associated with byte/word values within the Modbus
protocol. For example, if this byte contains 3, the third byte within the table would
be filled with a 0, and the third byte which was received would be entered into the
fourth location in the table.

Transmission/Reception Tables for ASCII Protocol
When in transmit-only mode, the control and transmission tables of type %MW are
filled prior to executing the Exchange (EXCH) instruction. No space is required for
the reception of characters in transmit-only mode. Once all bytes are transmitted,
%MSGx.D is set to 1, and a new Exchange (EXCH) instruction can be executed.

When in transmit/receive mode, the control and transmission tables are filled in
prior to executing the Exchange (EXCH) instruction, and must be of type %MW.
Space for up to 256 reception bytes is required at the end of the transmission
table. Once all bytes are transmitted, the logic controller switches to reception
mode and waits to receive any bytes.

When in reception-only mode, the control table is filled in prior to executing the
Exchange instruction, and must be of type %MW. Space for up to 256 reception
bytes is required at the end of the control table. The logic controller immediately
enters reception mode and waits to receive any bytes.

Reception ends when end of frame bytes used have been received, or the
reception table is full. In this case, a detected error code (receive table
overflowed) appears in the system words %SW63 and %SW64. If a non-zero timeout
is configured, reception ends when the timeout is completed. If a zero timeout
value is selected, there is no reception timeout. Therefore, to stop reception, %
MSGx.R input must be activated.

Transmission/Reception Tables for Modbus Protocol
When using either mode (Modbus ASCII or Modbus RTU), the transmission table
is filled with the request prior to executing the Exchange (EXCH) instruction. At
execution time, the logic controller determines what the data link layer is, and
performs the conversions necessary to process the transmission and response.

EIO0000003289.03 131

Software Objects

Start, end, and check characters are not stored in the Transmission/Reception
tables.

Once all bytes are transmitted, the logic controller switches to reception mode and
waits to receive any bytes.

Reception is completed in one of several ways:
• timeout on a character or frame has been detected,
• end of frame characters received in ASCII mode,
• the reception table is full.

Transmitted byte x entries contain Modbus protocol (RTU encoding) data that is
to be transmitted. If the communications port is configured for Modbus ASCII, the
correct framing characters are appended to the transmission. The first byte
contains the device address (specific or broadcast), the second byte contains the
function code, and the rest contain the information associated with that function
code.

NOTE: This is a typical application, but does not define all the possibilities. No
validation of the data being transmitted will be performed.

Received bytes x entries contain Modbus protocol (RTU encoding) data that is to
be received. If the communications port is configured for Modbus ASCII, the
correct framing characters are removed from the response. The first byte contains
the device address, the second byte contains the function code (or response
code), and the rest contain the information associated with that function code.

NOTE: This is a typical application, but does not define all the possibilities. No
validation of the data being received is performed, except for checksum
verification.

Programming Example

Introduction
The following are examples of programming a Message function block.

Programming a Transmission of Several Successive Messages
Execution of the Exchange instruction activates a Message function block in the
application program. The message is transmitted if the Message function block is
not already active (%MSGx.D = 1). If several messages are sent in the same cycle,
only the first message is transmitted using the same port.

132 EIO0000003289.03

Software Objects

Example of a transmission of 2 messages in succession on port 1:

Rung Reversible Instruction Comment

0 LD %M142
[%MW2:=16#0106]
[%MW3:=0]
[%MW4:=16#0106]
[%MW5:=4]
[%MW6:=7]

Write on a slave, at address 1: value 7 on
the register 4.

[%MW2:=16#0106]: Command code: 01
hex, transmission length: 06 hex

[%MW3:=0]: No reception or transmission
offset

[%MW4:=16#0106]: Slave address: 01
hex, function code: 06 hex (Write Single
Register)

[%MW5:=4]: Register address

[%MW6:=7]: Value to write

1 LD %MSG1.D
AND %M0
[EXCH1 %MW2:8]
R %M0

%MSG2.D: Detects whether the port is busy
or not and thereby manages coordination
of multiple messages.

2 LDR %I0.0
AND %MSG1.D
[EXCH1 %MW2:8]
S %M0

–

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Programming a Reinitialization Exchange
An exchange is canceled by activating the input (or instruction) R. This input
initializes communication and resets output %MSGx.E to 0 and output %MSGx.D to
1. It is possible to reinitialize an exchange if an error is detected.

Example of reinitializing an exchange:

Rung Reversible Instruction Comment

0 BLK %MSG1
LD %M0
R
END_BLK

–

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

ASCII Examples

Application Writing
Example of ASCII application:

Rung Instruction Comment

0 LD 1
[%MW10:=16#0104]
[%MW11:=16#0000]
[%MW12:=16#4F4B]

[%MW10:=16#0104]: Command code: 01 hex,
transmission length: 04 hex

[%MW11:=16#0000]: 0000: Null

[%MW12:=16#4F4B]: Ok
NOTE: The table has 8 elements.

1 LD 1
AND %MSG2.D
[EXCH2 %MW10:8]

2 LD %MSG2.E
ST %Q0.0
END

EIO0000003289.03 133

Software Objects

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Use EcoStruxure Machine Expert - Basic to create a program with 3 rungs:
• First, initialize the control and transmission tables to use for the Exchange

instruction. In this example, a command is set up to both send and receive
data. The amount of data to send is set to 4 bytes, as defined in the
application, followed by the end of frame character defined in the
configuration. Start and end characters do not display in an animation table,
only data characters. In all cases, those characters are automatically
transmitted or verified at reception (by %SW63 and %SW64), when used.

NOTE: The end characters defined in the configuration are sent
automatically in the end of the frame. For example, if you have configured
the first end character to 10 and the second end character to 13,
16#0A0D (ASCII codes, 0A = LF and 0D = CR) is sent in the end of the
frame.

• Next, verify the status bit associated with %MSG2 and issue the EXCH2
instruction only if the port is ready. For the EXCH2 instruction, a value of 8
words is specified. There are 2 control words (%MW10 and %MW11), 2 words to
be used for transmit information (%MW12 and %MW13), and 4 words to receive
data (%MW14 through %MW17).

• Finally, the detected error status of the %MSG2 is verified and stored on the
first output bit on the local base controller I/O. Additional error handling using
%SW64 could also be added to make this more accurate.

Animation Table Initialization
Example of initializing an animation table in online mode:

Address Value Format

%MW10 0104 Hexadecimal

%MW11 0000 Hexadecimal

%MW12 4F4B Hexadecimal

%MW13 0A0D Hexadecimal

%MW14 AL ASCII

%MW15 OH ASCII

%MW16 A ASCII

To display the possible formats, right-click on the Values box in an animation
table.

The final step is to download this application to the controller and run it. Initialize
an animation table to animate and display the %MW10 through %MW16 words. This
information is exchanged with a logic controller and displayed in an animation
table.

134 EIO0000003289.03

Software Objects

Modbus Standard Requests and Examples

Modbus Master: Read N Bits
This table represents requests 01 and 02 (01 for output or memory bit, 02 for input
bit):

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 03 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1...247) 01 or 02 (Request code)

3 Address of the first bit to read in the slave

4 N1 = Number of bits to read

Reception table (after
response)

5 Slave@(1...247) 01 or 02 (Response code)

6 00 (byte added by Rx offset action) N2

= Number of data bytes to read

= [1+(N1-1)/8],

where the result is the integer part of the
division.

7 Value of the first bit (value 00 or 01)
expanded into a byte

Value of the second bit (if N2>1) expanded
into a byte

8 Value of the third bit (if N1>1)
expanded into a byte

–

...

(N2/2)+6 (if N2 is
even)

(N2/2+1)+6 (if N2 is
odd)

Value of the N2th bit (if N1>1)
expanded into a byte

–

(1) This byte also receives the length of the string transmitted after response.

Modbus Master: Read N Words
This table represents requests 03 and 04 (03 for output or memory word, 04 for
input word):

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 03 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1...247) 03 or 04 (Request code)

3 Address of the first word to read

4 N = Number of words to read

Reception table (after
response)

5 Slave@(1...247) 03 or 04 (Response code)

6 00 (byte added by Rx offset action) 2*N (number of bytes read)

7 First word read

8 Second word read (if N>1)

... ...

N+6 Word N read (if N>2)

(1) This byte also receives the length of the string transmitted after response.

EIO0000003289.03 135

Software Objects

NOTE: The Reception offset of 3 adds a byte (value = 0) at the third position in
the reception table. This helps ensure a good positioning of the number of
bytes read and of the read words’ values in this table.

Modbus Master: Write Bit
This table represents request 05 (write a single bit: output or memory):

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 00 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1...247) or 0 in case of
broadcast

05 (Request code)

3 Value to write for MSB of the index word 4; whether 0xFF or 0x00(2).

4 Bit value to write in the slave (16#0000 = False and 16#FF00 = True)

Reception table (after
response)

5 Slave@(1...247) 05 (Response code)

6 Address of the bit written

7 Value written

(1) This byte also receives the length of the string transmitted after response.

(2) For a bit to write 1, the associated word in the transmission table must contain the value FF00h, and 0 for the bit to write 0.

NOTE:
• This request does not need the use of offset.
• The response frame is the same as the request frame here (in a normal

case).

Modbus Master: Write Word
This table represents request 06 (write a single word: output or memory):

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 06 (Transmission length)(1)

1 00 (Reception offset) 00 (Transmission offset)

Transmission table 2 Slave@(1...247) or 0 in case of
broadcast

06 (Request code)

3 Address of the word to write

4 Word value to write

Reception table (after
response)

5 Slave@(1...247) 06 (Response code)

6 Address of the word written

7 Value written

(1) This byte also receives the length of the string transmitted after response.

NOTE:
• This request does not need the use of offset.
• The response frame is the same as the request frame here (in a normal

case).

136 EIO0000003289.03

Software Objects

Modbus Master: Write of N Bits
This table represents request 15 (write N bits: output or memory):

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 8 + number of bytes (transmission)

1 00 (Reception offset) 07 (Transmission offset)

Transmission table 2 Slave@(1...247) or 0 in case of
broadcast

15 (Request code)

3 Address of the first bit to write

4 N1 = Number of bits to write

5 00 (byte not sent, offset effect) N2

= Number of data bytes to write

= [1+(N1-1)/8],

where the result is the integer part of the division.

6 Value of the first byte Value of the second byte

7 Value of the third byte Value of the fourth byte

...

(N2/2)+5 (if N2 is even)

(N2/2+1)+5 (if N2 is odd)

Value of the N2th byte

Reception table (after
response)

– Slave@(1...247) 15 (Response code)

– Address of the first bit written

– Number of bits written (= N1)

NOTE: The Transmission offset = 7 suppresses the seventh byte in the sent
frame. This also allows a correct correspondence of words’ values in the
transmission table.

Modbus Master: Write of N Words
This table represents request 16:

Table

Index

Most Significant Byte Least Significant Byte

Control table 0 01 (Transmission/reception) 8 + (2*N) (Transmission length)

1 00 (Reception offset) 07 (Transmission offset)

Transmission table 2 Slave@(1...247) or 0 in case of
broadcast

16 (Request code)

3 Address of the first word to write

4 N = Number of words to write

5 00 (byte not sent, offset effect) 2*N = Number of bytes to write

6 First word value to write

7 Second value to write

... ...

N+5 N values to write

Reception table (after
response)

N+6 Slave@(1...247) 16 (Response code)

N+7 Address of the first word written

N+8 Number of words written (= N)

EIO0000003289.03 137

Software Objects

NOTE: The Transmission offset = 7 suppresses the seventh byte in the sent
frame. This also allows a correct correspondence of words’ values in the
transmission table.

Modbus Request: Read Device Identification
This table represents request 43 (read device identification):

Rung Instruction Comment

0 LD 1
[%MW800:
=16#0105]
[%MW801:
=16#0000]
[%MW802:
=16#032B]
[%MW803:
=16#0E01]
[%MW804:
=16#0000]

[%MW800:=16#0105]: Standard Modbus header

[%MW801:=16#0000]: No transmission and reception
offset

[%MW802:=16#032B]: Slave address, function code

[%MW803:=16#0E01]: MEI type, read device ID code

[%MW804:=16#0000]: Object ID, unused

Modbus Request: Diagnostic
This table represents request 8 (diagnostic):

Rung Instruction Comment

0 LD 1
[%MW1000:
=16#0106]
[%MW1001:
=16#0000]
[%MW1002:
=16#0308]
[%MW1003:
=16#0000]
[%MW1004:
=16#1234]

[%MW1000:=16#0106]: Standard Modbus header

[%MW1001:=16#0000]: No transmission and reception
offset

[%MW1002:=16#0308]: Slave address, function code

[%MW1003:=16#0000]: Subfunction code

[%MW1004:=16#1234]: Any data

The Slave answer will be a copy of the request. This mode is
referred to as Echo or Mirror mode.

Example 1: Modbus Application Writing
Master program:

Rung Instruction Comment

0 LD 1
[%MW0:=16#0106]
[%MW1:=16#0300]
[%MW2:=16#0203]
[%MW3:=16#0000]
[%MW4:=16#0004]

[%MW0:=16#0106]: Transmission length = 6

[%MW1:=16#0300] : Offset reception = 3, offset
Transmission = 0

%MW2 to %MW4: Transmission

[%MW2:=16#0203]: Slave 2, Fonction 3 (Read multi-words)

[%MW3:=16#0000]: First word address to read in the slave:
to 0 address

[%MW4:=16#0004]: Number of word to read: 4 words (%
MW0 to %MW3)

1 LD 1
AND %MSG2.D
[EXCH2 %MW0:11]

–

2 LD %MSG2.E
ST %Q0.0
END

–

138 EIO0000003289.03

Software Objects

Slave program:

Rung Instruction Comment

0 LD 1
[%MW0:=16#6566]
[%MW1:=16#6768]
[%MW2:=16#6970]
[%MW3:=16#7172]
END

–

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Using EcoStruxure Machine Expert - Basic, create an application program for both
the master and the slave. For the slave, write some memory words to a set of
known values. In the master, the word table of the Exchange instruction is
initialized to read 4 words from the slave at Modbus address 2 starting at location
%MW0.

NOTE: Note the use of the Reception offset set in %MW1 of the Modbus
master. The offset of 3 will add a byte (value = 0) at the third position in the
reception area of the table. This aligns the words in the master so that they fall
correctly on word boundaries. Without this offset, each word of data would be
split between 2 words in the Exchange block. This offset is used for
convenience.

Before executing the EXCH2 instruction, the application verifies the
communication bit associated with %MSG2. Finally, the error status of the %MSG2 is
detected and stored on the first output bit on the local base controller I/O.
Additional error verification using %SW64 could also be added to make this more
accurate.

Animation table initializing in online mode corresponding with the reception table
part:

Address Value Format

%MW5 0203 Hexadecimal

%MW6 0008 Hexadecimal

%MW7 6566 Hexadecimal

%MW8 6768 Hexadecimal

%MW9 6970 Hexadecimal

%MW10 7172 Hexadecimal

After downloading and setting each logic controller to run, open an animation table
on the master. Examine the response section of the table to verify that the
response code is 3 and that the correct number of bytes was read. Also in this
example, the words read from the slave (beginning at %MW7) are aligned correctly
with the word boundaries in the master.

EIO0000003289.03 139

Software Objects

Example 2: Modbus Application Writing
Master program:

Rung Instruction Comment

0 LD 1
[%MW0:
=16#010C]
[%MW1:
=16#0007]
[%MW2:
=16#0210]
[%MW3:
=16#0010]
[%MW4:
=16#0002]
[%MW5:
=16#0004]
[%MW6:
=16#6566]
[%MW7:
=16#6768]

[%MW0:=16#010C]: Transmission table length: 0C hex = 12 dec,
from %MW2 to %MW7

[%MW1:=16#0007]

[%MW2:=16#0210]: slave address 2, 10h function code write
words

[%MW3:=16#0010]: from address 16 in the slave

[%MW4:=16#0002]: write of 2 words

[%MW5:=16#0004]: number of bytes to write

[%MW6:=16#6566]: value of the first word

[%MW7:=16#6768]: value of the second word

1 LD 1
AND %MSG2.D
[EXCH2 %
MW0:12]

–

2 LD %MSG2.E
ST %Q0.0
END

–

Slave program:

Rung Instruction Comment

0 LD 1
[%MW18:
=16#FFFF]
END

–

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Using EcoStruxure Machine Expert - Basic, create an application program for both
the master and the slave. For the slave, write a single memory word %MW18. This
will allocate space on the slave for the memory addresses from %MW0 through %
MW18. Without allocating the space, the Modbus request would be trying to write to
locations that did not exist on the slave.

In the master, the word table of the EXCH2 instruction is initialized to read 4 bytes
to the slave at Modbus address 2 at the address %MW16 (10 hexadecimal).

NOTE: Note the use of the Transmission offset set in %MW1 of the Modbus
master application. The offset of 7 will suppress the high byte in the sixth word
(the value 00 hexadecimal in %MW5). This works to align the data values in the
transmission table of the word table so that they fall correctly on word
boundaries.

Before executing the EXCH2 instruction, the application verifies the
communication bit associated with %MSG2. Finally, the error status of the %MSG2 is
detected and stored on the first output bit on the local base controller I/O.
Additional detected error verification using %SW64 could also be added to make
this more accurate.

140 EIO0000003289.03

Software Objects

Animation table initialization on the master:

Address Value Format

%MW0 010C Hexadecimal

%MW1 0007 Hexadecimal

%MW2 0210 Hexadecimal

%MW3 0010 Hexadecimal

%MW4 0002 Hexadecimal

%MW5 0004 Hexadecimal

%MW6 6566 Hexadecimal

%MW7 6768 Hexadecimal

%MW8 0210 Hexadecimal

%MW9 0010 Hexadecimal

%MW10 0004 Hexadecimal

Animation table initialization on the slave:

Address Value Format

%MW16 6566 Hexadecimal

%MW17 6768 Hexadecimal

After downloading and setting each logic controller to run, open an animation table
on the slave controller. The 2 values in %MW16 and %MW17 are written to the slave.

In the master, an animation table can be used to examine the reception table
portion of the exchange data. This data displays the slave address, the response
code, the first word written, and the number of words written starting at %MW8 in
the example above.

LIFO/FIFO Register (%R)

Using LIFO/FIFO Register Function Blocks
This section provides descriptions and programming guidelines for using LIFO/
FIFO Register function blocks.

Description

Introduction

A LIFO/FIFO Register function block is a memory block which can store up to
16 words of 16 bits each in 2 different ways:

• Queue (First In, First Out) known as FIFO.
• Stack (Last In, First Out) known as LIFO.

EIO0000003289.03 141

Software Objects

Illustration
This illustration is the LIFO/FIFO Register function block.

Inputs
The LIFO/FIFO Register function block has the following inputs:

Label Description Value

R Reset input (or
instruction)

At state 1, initializes the LIFO/FIFO Register.

I Storage input (or
instruction)

On a rising edge, stores the contents of associated word %Ri.I in
the LIFO/FIFO Register.

O Retrieval input
(or instruction)

On a rising edge, loads a data word of the LIFO/FIFO Register
into associated word %Ri.O.

Outputs
The LIFO/FIFO Register function block has the following outputs:

Label Description Value

E Empty output (%
Ri.E)

The associated bit %Ri.E indicates that the LIFO/FIFO Register is
empty. The value of %Ri.E can be tested, for example, in an
animation table or with an instruction.

F Full output (%Ri.
F)

The associated bit %Ri.F indicates that the LIFO/FIFO Register is
full. The value of %Ri.F can be tested, for example, in an
animation table or with an instruction.

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

142 EIO0000003289.03

Software Objects

The LIFO/FIFO Register function block has the following parameters:

Parameter Description Value Editable in
Online
Mode?

Used Address used If selected, this address is currently in use in a program. No

Address LIFO/FIFO Register object
address

A program can contain only a limited number of LIFO/FIFO Register
objects. Refer to the Programming Guide of the hardware platform
for the maximum number of registers.

No

Symbol Symbol The symbol associated with this object. Refer to the EcoStruxure
Machine Expert - Basic Operating Guide, Defining and Using
Symbols (see EcoStruxure Machine Expert - Basic, Operating
Guide) for details.

No

Type LIFO/FIFO Register type FIFO (queue) or LIFO (stack). Yes

Comment Comment A comment can be associated with this object. No

Objects
The LIFO/FIFO Register function block has the following objects:

Object Description Value

%Ri.I LIFO/FIFO Register input
word

Can be read, tested, and written.

It can be modified in an animation table.

%Ri.O LIFO/FIFO Register
output word

Can be read, tested, and written.

It can be modified in an animation table.

%Ri.E Empty output See Outputs table above.

%Ri.F Full output See Outputs table above.

Special Cases
This table contains a list of special cases for programming the LIFO/FIFO Register
function block:

Special Case Description

Effect of a cold restart (%S0=1) or INIT Initializes the contents of the LIFO/FIFO Register.
The output bit %Ri.E associated with the output E is
set to 1.

Effect of a warm restart (%S1=1) or a
controller stop

Has no effect on the current value of the LIFO/FIFO
Register, nor on the state of its output bits.

Rising edge detected on both %Ri.O and %
Ri.I

If a rising edge on both %Ri.O and %Ri.I is detected in
the same LIFO/FIFO Register function block call,
the values are neither stored nor retrieved; your
program must manage the storage or retrieval of the
values.

NOTE: Effect of INIT is the same as %S0=1.

EIO0000003289.03 143

Software Objects

LIFO Register Operation

Introduction
In LIFO operation (Last In, First Out), the last data item entered is the first to be
retrieved.

Operation
This table describes LIFO operation:

Stage Description Example

1 Storage:

When a storage request is received (rising edge at input I or activation
of instruction I), the contents of input word %Ri.I are stored at the top of
the stack. When the stack is full (output F=1), no further storage is
possible.

Storage of the contents of %Ri.I at the top of the
stack.

2 Retrieval:

When a retrieval request is received (rising edge at input

O or activation of instruction O), the highest data word (last word to be
entered) is loaded into word %Ri.O. When the LIFO/FIFO Register is
empty (output E=1), no further retrieval is possible. Output word %Ri.O
does not change and retains its value.

Retrieval of the data word highest in the stack.

3 Reset:

The stack can be reset at any time (state 1 at input R or activation of
instruction R). The stack is empty after a reset (%Ri.E =1).

–

144 EIO0000003289.03

Software Objects

FIFO Register Operation

Introduction
In FIFO operation (First In, First Out), the first data item entered is the first to be
retrieved.

Operation
This table describes FIFO operation:

Stage Description Example

1 Storage:

When a storage request is received (rising edge at input I or activation
of instruction I), the contents of input word %Ri.I are stored at the top of
the queue. When the queue is full (output F=1), no further storage is
possible.

Storage of the contents of %Ri.I at the top of the
stack.

2 Retrieval:

When a retrieval request is received (rising edge at input O or activation
of instruction O), the data word lowest in the queue is loaded into output
word %Ri.O and the contents of the LIFO/FIFO Register are moved
down one place in the queue.

When the LIFO/FIFO Register is empty (output E=1), no further retrieval
is possible. Output word %Ri.O does not change and retains its value.

Retrieval of the first data item which is then loaded
into %Ri.O.

3 Reset:

The queue can be reset at any time (state 1 at input R or activation of
instruction R). The queue is empty after a reset (%Ri.E=1).

–

EIO0000003289.03 145

Software Objects

Programming Example

Introduction
The following programming example shows the content of a memory word (%
MW34) being loaded into a LIFO/FIFO Register (%R2.I) on reception of a storage
request (%I0.2) if LIFO/FIFO Register %R2 is not full (%R2.F = 0). The storage
request in the LIFO/FIFO Register is made by %M1. The retrieval request is
confirmed by input %I0.3, and %R2.O is loaded into %MW20 if the register is not
empty (%R2.E = 0).

Programming
This example is a LIFO/FIFO Register function block with reversible instructions:

Rung Reversible Instruction

0 BLK %R2
LD %M1
I
LD %I0.3
ANDN %R2.E
O
END_BLK

1 LD %I0.3
[%MW20:=%R2.O]

2 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

This example is the same LIFO/FIFO Register function block with non-reversible
instructions:

Rung Non-Reversible Instruction

0 LD %M1
I %R2

1 LD %I0.3
ANDN %R2.E
O %R2

2 LD %I0.3
[%MW20:=%R2.O]

3 LD %I0.2
ANDN %R2.F
[%R2.I:=%MW34]
ST %M1

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Drums (%DR)

Using Drum Function Blocks
This section provides descriptions and programming guidelines for using Drum
function blocks.

146 EIO0000003289.03

Software Objects

Description

Introduction

The Drum function block operates on a principle similar to an
electromechanical drum sequencer, which changes step according to external
events. On each step, the high point of a cam gives a command, which is then
executed by the controller. In the case of a Drum function block, these high points
are symbolized by state 1 for each step and are assigned to output bits %Qi.j, or
memory bits %Mi.

Illustration
This illustration is the Drum function block in offline mode.

Steps Displays the total number of steps configured in the Drum Assistant.

Step Appears in offline mode when a block is created. In online mode, it displays
the current step number.

Inputs
The Drum function block has the following inputs:

Label Description Value

R To return to step 0 (or
instruction)

At state 1, sets the Drum to step 0.

U Advance input (or
instruction)

On a rising edge, causes the Drum to advance by 1 step and
updates the control bits.

Outputs
The Drum function block has the following output:

Label Description Value

F Output (%DRi.F) Indicates that the current step equals the last step defined. The
associated bit %DRi.F can be tested.

EIO0000003289.03 147

Software Objects

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

The Drum function block has the following parameters:

Parameter Description Value Editable in
online
mode?

Used Address used If selected, this address is currently in
use in a program.

No

Address Drum object
address

A program can contain only a limited
number of Drum objects. Refer to the
Programming Guide of your controller for
the maximum number of Drum objects.

No

Symbol Symbol The symbol associated with this object.
Refer to the EcoStruxure Machine Expert
- Basic Operating Guide, Defining and
Using Symbols (see EcoStruxure
Machine Expert - Basic, Operating
Guide) for details.

No

Configuration Drum assistant Click to display the Drum Assistant, page
148.

Yes (all
parameters
on the
Drum
Assistant
window)

Comment Comment A comment can be associated with this
object.

No

Objects
The Drum function block has the following object:

Object Description Value

%DRi.S Current step number 0<=%DRi.S<=7. Word which can be read and written.
Written value must be a decimal immediate value.
When written, the effect takes place on the next
execution of the function block.

It can be modified in an animation table or in online
mode.

%DRi.F Full See Outputs table, page 147.

Operation
The Drum function block consists of:

• A matrix of constant data (the cams) organized in 8 steps (0 to 7) and 16 bits
(state of the step) arranged in columns numbered 0 to 15.

• A list of control bits is associated with a configured output (%Qi.j), or
memory word (%Mi). During the current step, the control bits take on the
binary states defined for this step.

Drum Assistant
Use the Drum Assistant to configure the Drum function block.

148 EIO0000003289.03

Software Objects

Configure the Number of steps: 1...8 and the outputs or memory bits associated
with each step: Bit0 ... Bit15, then click OK.

NOTE: The configuration can also be realized using memory bits (%Mi).

Special Cases
This table contains a list of special cases for Drum operation:

Special Case Description

Effects of a cold restart (%
S0=1)

Resets the Drum to step 0 (update of control bits).

Effect of a warm restart (%
S1=1)

Updates the control bits after the current step.

Effect of a program jump The fact that the Drum is no longer scanned means the control bits
retain their last state.

Updating the control bits Only occurs when there is a change of step or in the case of a warm
or cold restart.

Programming Example

Introduction
The following is an example of programming a Drum that is configured such that
none of the controls are set in step 0 and the controls are set for step 1 to step 6
on the outputs %Q0.0 to %Q0.5 respectively (see the Configuration, page 152).

The first 6 outputs %Q0.0 to %Q0.5 are activated in succession each time input %
I0.1 is set to 1. Input %I0.0 resets the following to 0 when it is high:

• Drum output F (%DRi.F = 0)
• Current step number (%DRi.S = 0)

EIO0000003289.03 149

Software Objects

Programming
This example is a Drum function block program:

Rung Instruction

0 BLK %DR1
LD %I0.0
R
LD %I0.1
U
OUT_BLK
LD F
ST %Q0.7
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

150 EIO0000003289.03

Software Objects

Timing Diagram
This diagram illustrates the operation of the Drum:

(1) At a rising edge on U input the current step is incremented

(2) When the current step is updated, the outputs are updated

(3) When the last step is reached, the output F is set to 1

(4) A rising edge at U input when the last step is active, resets the current step to 0

(5) %DR0.R = 1 (rising edge) the current value is set to 0

(6) The user writes the value of the step number: %DR0.S = 4

(7) The value written by the user is updated at the next execution time

EIO0000003289.03 151

Software Objects

Configuration
The following information is defined during configuration:

• Number of steps: 6
• The output states (control bits) for each Drum step:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step 0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 1: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 2: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Step 3: 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Step 4: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Step 5: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

• Assignment of the control bits:
This table presents the associated outputs of the control bits:

Bit Associated Output

0 No associated output

1 %Q0.1

2 %Q0.2

3 %Q0.3

4 %Q0.4

5 %Q0.5

Shift Bit Register (%SBR)

Using Shift Bit Register Function Blocks
This section provides descriptions and programming guidelines for using Shift Bit
Register function blocks.

Description

Introduction

The Shift Bit Register function block provides a left or right shift of binary
data bits (0 or 1).

152 EIO0000003289.03

Software Objects

Illustration
This illustration is the Shift Bit Register function block:

The value of the Shift Bit Register is displayed in the centre of the function block:
• Decimal value, for example 7
• Binary value, for example 111
• Hexadecimal value, for example 16#7

Inputs
The Shift Bit Register function block has the following inputs:

Label Description Value

R Reset input (or instruction) When function parameter R is 1, this sets register bits
0 to 15 %SBRi.j to 0.

CU Shift to left input (or
instruction)

On a rising edge, shifts a register bit to the left.

CD Shift to right input (or
instruction)

On a rising edge, shifts a register bit to the right.

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

The Shift Bit Register function block has the following parameters:

Parameter Description Value

Used Address used If selected, this address is currently in use in a
program.

Address Shift Bit Register object
address

A program can contain only a limited number of Shift
Bit Register objects. Refer to the Programming Guide
of the hardware platform for the maximum number of
registers.

Symbol Symbol The symbol associated with this object. Refer to the
EcoStruxure Machine Expert - Basic Operating Guide,
Defining and Using Symbols (see EcoStruxure
Machine Expert - Basic, Operating Guide) for details.

Comment Comment A comment can be associated with this object.

EIO0000003289.03 153

Software Objects

Objects
The Shift Bit Register function block has the following objects:

Object Description Value

%SBRi Register number 0 to 7

It can be modified in an animation table.

%SBRi.j Register bit Bits 0 to 15 (j = 0 to 15) of the shift register can be
tested by a test instruction and written using an
Assignment instruction.

Operation
This illustration shows a bit pattern before and after a shift operation:

This is also true of a request to shift a bit to the right (bit 15 to bit 0) using the CD
instruction. Bit 0 is lost.

If a 16-bit register is not adequate, it is possible to use the program to cascade
several Register.

Special Cases
This table contains a list of special cases for programming the Shift Bit Register
function block:

Special Case Description

Effect of a cold restart (%S0=1) Sets all the bits of the register word to 0.

Effect of a warm restart (%S1=1) Has no effect on the bits of the register word.

Programming Example

Introduction
The Shift Bit Register function block provides a left or right shift of binary data bits
(0 or 1).

Programming
In this example, a bit is shifted to the left every second while bit 0 assumes the
state to bit 15.

154 EIO0000003289.03

Software Objects

In reversible instructions:

Rung Reversible Instruction

0 BLK %SBR0
LD %S6
CU
END_BLK

1 LD %SBR0.15
ST %SBR0.0

In non-reversible instructions:

Rung Non-Reversible Instruction

0 LD %S6
CU %SBR0

1 LD %SBR0.15
ST %SBR0.0

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Step Counter (%SC)

Using Step Counter Function Blocks
This section provides descriptions and programming guidelines for using Step
Counter function blocks.

Description

Introduction

A Step Counter function block provides a series of steps to which actions can
be assigned. Moving from one step to another depends on external or internal
events. Each time a step is active, the associated bit (Step Counter bit %SCi.j) is
set to 1. Only one step of a Step Counter can be active at a time.

Illustration
This illustration is a Step Counter function block:

EIO0000003289.03 155

Software Objects

Inputs
The Step Counter function block has the following inputs:

Label Description Value

R Reset input (or
instruction)

When function parameter R is 1, this resets the Step
Counter.

CU Increment input (or
instruction)

On a rising edge, increments the Step Counter by one
step.

CD Decrement input (or
instruction)

On a rising edge, decrements the Step Counter by one
step.

Configuration

Parameters
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

The Step Counter function block has the following parameters:

Parameter Description Value

Used Address used If selected, this address is currently in use in a program.

Address Step Counter object
address

A program can contain only a limited number of Step
Counter objects. Refer to the Programming Guide of the
hardware platform for the maximum number of Step
Counter.

Symbol Symbol The symbol associated with this object. Refer to the
EcoStruxure Machine Expert - Basic Operating Guide,
Defining and Using Symbols for details.

Comment Comment A comment can be associated with this object.

Objects
The Step Counter function block has the following object:

Object Description Value

%SCi.j Step Counter bit Step Counter bits 0 to 255 (j = 0 to 255) can be tested
by a load logical operation and written by an
Assignment instruction.

It can be modified in an animation table.

Special Case
This table contains a list of special cases for operating the Step Counter function
block:

Special Case Description

Effect of a cold restart (%S0=1) Initializes the Step Counter.

Effect of a warm restart (%S1=1) Has no effect on the Step Counter.

156 EIO0000003289.03

Software Objects

Programming Example

Introduction
This example is a Step Counter function block.

• Step Counter 0 is decremented by input %I0.1.
• Step Counter 0 is incremented by input %I0.2.
• Step Counter 0 is reset to 0 by input %I0.3 or when it arrives at step 3.
• Step 0 controls output %Q0.1, step 1 controls output %Q0.2, and step 2

controls output %Q0.3.

Programming
This example is a Step Counter function block with reversible instructions:

Rung Reversible Instruction

0 BLK %SC0
LD %SC0.3
OR %I0.3
R
LD %I0.2
CU
LD %I0.1
CD
END_BLK

1 LD %SC0.0
ST %Q0.1

2 LD %SC0.1
ST %Q0.2

3 LD %SC0.2
ST %Q0.3

This example is a Step Counter function block with non-reversible instructions:

Rung Non-Reversible Instruction

0 LD %SC0.3
OR %I0.3
R %SC0

1 LD %I0.2
CU %SC0

2 LD %I0.1
CD %SC0

3 LD %SC0.0
ST %Q0.1

4 LD %SC0.1
ST %Q0.2

5 LD %SC0.2
ST %Q0.3

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 157

Software Objects

Timing Diagram
This diagram illustrates the operation of the Step Counter function block:

(1) Step 0 is active so %SC0.0 is set to 1

(2) At the rising edge of CU input, the step is incremented and the outputs are
updated

(3) The step is incremented and outputs are updated

(4) The step 3 is active so the Reset input is active after one cycle

(5) When Reset is active, the current step is set to 0 and the reset input is set to 0
after one cycle

(6) The current step is incremented at rising edge of CU input

(7) At rising edge of CD input, the step is decremented and outputs are updated

Schedule Blocks (%SCH)

Using Schedule Blocks
This section provides descriptions and programming guidelines for using
Schedule blocks.

Description

Introduction
Schedule blocks are used to control actions at a predefined month, day, and
time.

Schedule blocks are only configured in EcoStruxure Machine Expert - Basic;
they cannot be inserted into a program rung in the same way as other function
blocks.

NOTE: Verify system bit %S51 and system word %SW118 to confirm that the
Real-Time Clock (RTC) option is installed. The RTC option is required for
using Schedule blocks.

158 EIO0000003289.03

Software Objects

Schedule blocks can be configured either:
• In the Schedule block properties window (Tools tab > Schedule Blocks).
• Using dedicated objects %SCHi.xxx, page 159.

Configuring Schedule Block Properties
To configure a schedule block, read the description of Memory Allocation Modes
(see EcoStruxure Machine Expert - Basic, Operating Guide).

The Schedule blocks has the following parameters:

Parameter Description Value

Used Address used If selected, this address is currently in use in a program.

Address Schedule blocks object address A program can contain only a limited number of Schedule
blocks objects. Refer to the Programming Guide of the
hardware platform for the maximum number of Schedule
blocks.

Configured Whether the selected Schedule blocks number is
configured for use.

If checkbox is selected, it is configured for use. Otherwise, it is
not used.

Output bit Output bit Output assignment is activated by the Schedule blocks: %Mi
or %Qj.k.

This output is set to 1 when the current date and time are
between the setting of the start of the active period and the
setting of the end of the active period.

Start Day The day in the month to start the Schedule
blocks.

1...31

Start Month The month to start the Schedule blocks. Schedule blocks.

End Day The day in the month to end the Schedule blocks. 1...31

End Month The month to end the Schedule blocks. January...December

Start Time The time-of-day, hours, and minutes to start the
Schedule blocks.

Hour: 0...23

Minute: 0...59

End Time The time-of-day, hours, and minutes to end the
Schedule blocks.

Hour: 0...23

Minute: 0...59

Monday Check boxes that identify the day(s) of the week
for activation of the Schedule blocks.

If checkbox is selected, it is configured for use. Otherwise, it is
not used.

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Comment Comment A comment can be associated with this object.

Objects
These objects are available only if the block is configured as explained above.

The application must be configured with a functional level (see EcoStruxure
Machine Expert - Basic, Operating Guide) of at least Level 6.0.

EIO0000003289.03 159

Software Objects

The objects of the schedule blocks are:

Objects Description

%SCHi.STARTDAY The day in the month to start the Schedule
blocks.

%SCHi.STARTMONTH The month to start the Schedule blocks.

%SCHi.STARTHOUR The hour to start the Schedule blocks.

%SCHi.STARTMIN The minute to start the Schedule blocks.

%SCHi.ENDDAY The day in the month to end the Schedule
blocks.

%SCHi.ENDMONTH The month to end the Schedule blocks.

%SCHi.ENDHOUR The hour to end the Schedule blocks.

%SCHi.ENDMIN The minute to end the Schedule blocks.

%SCHi.DOW The day of the week to activate the Schedule
blocks.

Modifying these object values in the program allows to dynamically change
schedule block configuration. The modification is taken into account at the next
MAST scan.

After a cold restart (%S0=1), the object values are reset to the value defined during
configuration.

Configuring Schedule Blocks Using System or Memory Words
You can also configure Schedule Blocks using system words or memory words.

Enabling Schedule Blocks
The bits of system word %SW114 enable (bit set to 1) or disable (bit set to 0) the
operation of each of the 16 Schedule blocks.

Assignment of Schedule blocks in %SW114:

By default (or after a cold restart) the bits of this system word are set to 1
(enabled). Use of these bits by the program is optional.

Output of Schedule Blocks
If the same output (%Mi or %Qj.k) is assigned by several schedule blocks, it is the
OR of the results of each of the blocks which is finally assigned to this object (it is
possible to have several Schedule blocks for the same output).

For example, schedule block %SCH0 and %SCH1 are both assigned to output %
Q0.0. %SCH0 sets the output from 12:00 h to 13:00 h on Monday, and %SCH1 sets
the output from 12:00 h to 13:00 h on Tuesday. The result is that the output is set
from 12:00 h to 13:00 h on both Monday and Tuesday.

160 EIO0000003289.03

Software Objects

Programming and Configuring

Introduction
Schedule blocks are used to control actions at a predefined month, day, and time.

Programming Example
This table shows the parameters for a summer month spray program example:

Parameter Value Description Editable in online
mode?

Address Real-Time Clock 6 Schedule blocks number 6 No

Configured Box checked Box checked to configure the Schedule blocks
number 6.

No

Output bit %Q0.2 Activate output %Q0.2 Yes

Start Day 21 Start activity on the 21 day of June Yes

Start Month June Start activity in June Yes

Start Time 21 Start activity at 21:00 Yes

End Day 21 Stop activity on the 21st of September Yes

End Month September Stop activity in September Yes

End Time 22 Stop activity at 22:00 Yes

Monday Box checked Run activity on Monday Yes

Tuesday Box not checked No activity Yes

Wednesday Box checked Run activity on Wednesday Yes

Thursday Box not checked No activity Yes

Friday Box checked Run activity on Friday Yes

Saturday Box not checked No activity Yes

Sunday Box not checked No activity Yes

Using this program, the Schedule blocks can be disabled through a switch or a
humidity detector wired to input %I0.1:

Rung Instruction Comment

0 LD %I0.1
ST %SW114:X6

In this example, the %SCH6 is validated.

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

EIO0000003289.03 161

Software Objects

The following table presents a program example:

Rung Instruction

0 LD %M4

[%M0:4 := 7]

1 LD %M0

RISING1

OPER [%SCH0.STARTDAY := %MW0]

OPER [%SCH0.STARTMONTH := %MW1]

OPER [%SCH0.STARTHOUR := %MW2]

OPER [%SCH0.STARTMIN := %MW3]

R %M0

2 LD %M1

RISING0

OPER [%SCH0.ENDDAY := %MW4

OPER [%SCH0.ENDMONTH := %MW5]

OPER [%SCH0.ENDHOUR := %MW6]

OPER [%SCH0.ENDMIN := %MW7]

R %M1

3 LD %M2

RISING2

[%SCH0.DOW := %MW8]

Timing Diagram
This timing diagram shows the activation of output %Q0.2:

162 EIO0000003289.03

Software Objects

Real Time Clock (%RTC)

Using RTC Function Blocks
This section provides descriptions and programming guidelines for using RTC
function blocks.

NOTE: Your application must be configured with a functional level (see
EcoStruxure Machine Expert - Basic, Operating Guide) of at least Level 5.0 to
use RTC function blocks.

Description

Introduction

The RTC function block allows you to read from and write to the Real-Time
Clock (RTC) of the M221 Logic Controller.

Illustration
This illustration shows the RTC function block.

EIO0000003289.03 163

Software Objects

Inputs
The RTC function block has the following inputs:

Label Object Value

Enable - Enables the function block when a rising edge of this input is detected.

At state 1, the RD and WR input values are read continuously to determine
the action to take.

At state 0, the function block is disabled and the outputs are reset.

RD - A combination of the values of the 2 inputs determines the action to take:
• RD = 0 and WR = 0. No action.

The Done and Error outputs are set to 0.
• RD = 1 and WR = 0. Read the RTC value.

If successful, the Done output is set to 1 and the Error output is set to
0.
The input objects are continuously updated with the values read from
the RTC. Use an animation table (see EcoStruxure Machine Expert -
Basic, Operating Guide) to display the object values.

• RD = 0 and WR = 1. When the rising edge of WR is detected, update
the RTC using the object values specified in the RTC parameters
associated with this function block (see below).
If the update is successful, the Done output is set to 1 and the Error
output is set to 0. The RTC is updated.
If not successful, the Done output is set to 0 and the Error output is
set to 1.

• RD = 1 and WR = 1. Not supported.
The Done output is set to 0, the Error output is set to 1, and the
ErrorId output, page 165 is set to 256 (Simultaneous read and write).

WR -

Day %RTCi.DAY Day

Default value: 12

1...31

Month %RTCi.MONTH Month

Default value: 6

1...12

Year %RTCi.YEAR Year

Default value: 2017

Greater than or equal to 2000

Hours %RTCi.HOURS Hours

Default value: 0

0...23

Minutes %RTCi.MINUTES Minutes

Default value: 0

0...59

Seconds %RTCi.SECONDS Seconds

Default value: 0

0...59

164 EIO0000003289.03

Software Objects

Outputs
The RTC function block has the following outputs:

Label Object Value

Done %RTCi.Done Set to 1 when the RTC is successfully read from or
written to.

Set to 0 when the read or write operation was not
successful.

Error %RTCi.Error Set to 1 if an error occurs during execution. Function
block execution is finished. The ErrorId output object
indicates the cause of the error.

DayOfWeek %RTCi.
DayOfWeek

Returns the day of the week, calculated from the current
week value.

Range: 0...7

0: Function block not yet executed

1...7: Day of the week.

ErrorId %RTCi.ErrorId Error code identifier.

See Error Codes, page 165 below.

Error Codes
The following codes can be returned in the %RTCi.ErrorId object when the Error
output is set to 1.

Error Code Description

0 No error

1 Year error

2 Month error

3 Day error

4 Week error

5 Hour error

6 Minute error

7 Seconds error

8 Combination error

9 RTC internal error

256 Simultaneous read and write

257 RTC update already in progress (system bit %S50 = 1)

Configuration

Presentation
Configure the RTC function block properties with the values to use to update the
RTC in the logic controller.

To display the RTC properties page, either:
• Double-click an RTC function block.
• On the Programming tab, choose Tools > Software objects > RTC.

EIO0000003289.03 165

Software Objects

RTC Properties
To configure parameters, follow the Configuring a Function Block procedure, page
107 and read the description of Memory Allocation Modes in the EcoStruxure
Machine Expert - Basic Operating Guide.

The RTC Properties page displays the following properties:

Property Description Value Editable in
online mode?

Used Object address is in use If selected, this address is currently in use in a program. No

Address RTC object address %RTCi, where i is the object number.

A program can contain only a limited number of RTC
objects. Refer to the Programming Guide of your
controller for the maximum number of RTC objects.

No

Symbol Symbol The symbol associated with this object. Refer to the
EcoStruxure Machine Expert - Basic Operating Guide,
Defining and Using Symbols (see EcoStruxure Machine
Expert - Basic, Operating Guide) for details.

Yes

Day The day of the month 1...31 Yes

Month The month of the year 1...12 Yes

Year The year Greater than or equal to 2000 Yes

Hours The hour of the day 0...23 Yes

Minutes The minutes of the hour 0...59 Yes

Seconds The seconds of the minute 0...59 Yes

Comment Comment A comment can be associated with this object. Yes

PID

PID Function

Introduction
The PID function is used to control a dynamic process continuously. The purpose
of PID control is to keep a process running as close as possible to a desired set
point.

Refer to the Advanced Functions Library Guide for detailed information on the PID
behavior, functionalities, and implementation of the PID function:

• PID Operating Modes
• PID Auto-Tuning Configuration
• PID Standard Configuration
• PID Assistant
• PID Programming
• PID Parameters
◦ Role and Influence of PID Parameters
◦ PID Parameter Adjustment Method

166 EIO0000003289.03

Software Objects

Data Logging

Data Logging

Function Block Description
The data logging feature allows you to retentively store data from objects or
strings in the file /user/DATALOGx.csv, where x is the integer corresponding to the
data logging instance number. This file is stored on the SD card.

When DATALOGx.csv exceeds the defined maximum file size, it is renamed as
DATALOGx.bak, overwriting any existing DATALOGx.bak file. New logging data is
then stored in the new DATALOGx.csv file. DATALOGx.bak is also stored on the
SD card.

The SD card name must be DATA.
NOTE: The application must be configured with a functional level (see
EcoStruxure Machine Expert - Basic, Operating Guide) of at least Level 6.0
and the boot loader version 50 or later. Refer to the system word (see Modicon
M221 Logic Controller, Programming Guide) %SW13.

Graphical representation

EIO0000003289.03 167

Software Objects

Configuring Data Logging

Step Action

1 In the Programming window, click Tools > Software Objects > Data Logging.

2
In the Configuration column, click .

Result: The DATALOG assistant appears.

3 Type the Maximum file size.

The Maximum file size can be 1...500. The default value is 100.

4 Select Historical data or Event log.

The Historical data feature allows you to store several data from objects. Only the
EcoStruxure Machine Expert - Basic objects are allowed. You can store up to 32
objects.

The Event log feature allows you to store one string (see EcoStruxure Machine Expert
- Basic, Operating Guide).

5 Clear or Select Add time stamping.

This feature adds the time of the event into the CSV file.

6 Type the object in the Address column.

If you selected Event log, type the first %MW of the string.

If you assigned a symbol to the object, it is displayed in the Symbol column. You
cannot change the symbol here.

7 Click Apply.

8 To insert the function block in the Ladder editor, do one of the following methods:

• Click , then .
• Drag and drop from Data Logging properties.

Input
The following table describes the input of the function block:

Label Type Description

EXECUTE BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the
function block, it is ignored and the ongoing command is not
affected.

Outputs
The following table describes the outputs of the function block:

Label Type Description

DONE BOOL If TRUE, indicates that the function block execution is completed
successfully with no errors detected.

BUSY BOOL If TRUE, indicates that the function block execution is in
progress.

ERROR BOOL If TRUE, indicates that an error was detected. Function block
execution is stopped. The Errorld output indicates the error
code.

BAK BOOL If TRUE, indicates that the BAK file is created.

168 EIO0000003289.03

Software Objects

Error Codes
Error Code Description

0 No error.

1 Operation in progress.

2 Error when storing data in the CSV file.

3 Error when creating the BAK file.

4 Datalog instance already used.

10 Restore timeout. Eject the SD card.

11 SD card not detected.

12 SD card write protected.

50 File system error.

51 Error when opening the CSV file.

Grafcet Steps

Grafcet Steps

Overview
Grafcet Step objects (%Xi) are used to identify the status of the corresponding
Grafcet step i in a program.

Parameters
The Grafcet Step Properties window shows the following properties:

Parameter Description Value

Used Address used If selected, this address is in use in a program.

Address Grafcet Step object
address

The maximum number of Grafcet Step objects that the
application can contain is:

• 96, if the Functional Level < 10.0.
• 200, if the Functional Level >= 10.0.

Symbol Symbol The symbol associated with this object. Refer to the
EcoStruxure Machine Expert - Basic Operating Guide,
Defining and Using Symbols (see EcoStruxure Machine
Expert - Basic, Operating Guide) for details.

Comment Comment A comment associated with this object.

EIO0000003289.03 169

PTO Objects

PTO Objects

Motion Task Table (%MT)

Using Motion Task Table
This section provides descriptions and programming guidelines for using Motion
Task tables and Motion Task Table function blocks.

Overview
Refer to the Advanced Functions Library Guide of your controller.

Pulse Train Output (%PTO)

Using Pulse Train Output Function Blocks
This section provides descriptions and programming guidelines for using Pulse
Train Output function blocks.

Overview
Refer to the Advanced Functions Library Guide of your controller.

170 EIO0000003289.03

Drive Objects

Drive Objects

Drive Objects

Overview
Drive objects control ATV drives and other devices configured on the Modbus
Serial IOScanner or Modbus TCP IOScanner.

Refer to the Advanced Functions Library Guide of your logic controller.

EIO0000003289.03 171

Communication Objects

Communication Objects
Introduction

The communication function blocks are used for communication with Modbus
devices and send/receive messages in character mode (ASCII).

NOTE: Only one communication function block can be active at a time on a
communication port during a master task cycle. If you attempt to use several
communication function blocks or EXCH instructions concurrently on the
same communication port, the function blocks return an error code. Therefore,
verify that no active exchange (%MSGx.D is TRUE) is in progress on a
communication port before starting a communication function block or EXCH
instruction.

Read Data from a Remote Device (%READ_VAR)

Using %READ_VAR Function Blocks
This section provides descriptions and programming guidelines for using %
READ_VAR function blocks.

Description

Introduction
The %READ_VAR function block is used to read data from a remote device on
Modbus SL or Modbus TCP.

Illustration
This illustration is the %READ_VAR function block:

172 EIO0000003289.03

Communication Objects

Inputs
The %READ_VAR function block has the following inputs:

Label Type Value

Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function
block, it is ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.

The Aborted output is set to 1 and the %READ_VARi.CommError object
contains the code 02 hex (exchange stopped by a user request).

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN
is not detected as a rising edge. The function block needs to first see the input
as FALSE in order to detect a subsequent rising edge.

Outputs
The %READ_VAR function block has the following outputs:

Label Type Value

Done BOOL If TRUE, indicates that the function block execution is completed
successfully with no detected errors.

Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled
with the Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block
execution is stopped.

For details on the CommError and OperError, refer to the tables
Communication Error Codes, page 174 and the Operation Error
Codes, page 175.

This table describes the output objects of the function block:

Output object Type Description

CommError BYTE For details on %READ_VARi.CommError, refer to the table
Communication Error Codes, page 174.

OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation
Error Codes, page 175.

EIO0000003289.03 173

Communication Objects

Communication Error Codes
This table describes the error codes written to the %READ_VARi.CommError
word object:

Name Detected
error code

Description

CommunicationOK 0 (00 hex) Exchange is correct.

TimedOut 1 (01 hex) Exchange stopped because timeout expired.

Abort 2 (02 hex) Exchange stopped on user request (Abort input).

BadAddress 3 (03 hex) Address format is incorrect.

BadRemoteAddr 4 (04 hex) Remote address is incorrect.

BadMgtTable 5 (05 hex) Management table format is incorrect.

BadParameters 6 (06 hex) Specific parameters are incorrect.

ProblemSendingRq 7 (07 hex) Unsuccessful sending request to destination.

RecvBufferNotAlloc 9 (09 hex) Reception buffer size is insufficient.

SendBufferNotAlloc 10 (0A hex) Transmission buffer size is insufficient.

SystemResourceMiss-
ing

11 (0B hex) System resource is unavailable.

BadLength 14 (0E hex) Length is incorrect.

ProtocolSpecificEr-
ror

254 (FE
hex)

Indicates a Modbus protocol error. For more details,
refer to Operation Error Codes., page 175

Refused 255 (FF hex) Message is refused. For more details, refer to
Operation Error Codes., page 175.

174 EIO0000003289.03

Communication Objects

Operation Error Codes
This return code is significant when the communication error code (CommError
object) has the value:

• 0 (00 hex) (correct)
• 254 (FE hex) (Modbus exception code)
• 255 (FF hex) (refused)

This table describes the error codes written to the %READ_VARi.OperError
double word object:

CommError Name Detected error code Description

0 (00 hex)
(correct)

OperationOK 0 (00000000 hex) Exchange is correct.

NotProcessed 1 (00000001 hex) Request has not been processed.

BadResponse 2 (00000002 hex) Received response is incorrect.

254 (FE hex)
(Modbus
exception code)

IllegalFunction 1 (00000001 hex) The function code received in the request is
not an authorized action for the slave. The
slave may not be in the correct state to
process a specific request.

IllegalDataAddress 2 (00000002 hex) The data address received by the slave is not
an authorized address for the slave.

IllegalDataValue 3 (00000003 hex) The value in the request data field is not an
authorized value for the slave.

SlaveDeviceFailure 4 (00000004 hex) The slave cannot perform a requested action
because of an unrecoverable error.

Acknowledge 5 (00000005 hex) The slave acknowledged the request but
communications timed out before the slave
complied.

SlaveDeviceBusy 6 (00000006 hex) The slave is busy processing another
command.

MemoryParityError 8 (00000008 hex) The slave detects a parity error in the memory
when attempting to read extended memory.

GatewayPathUnavailable 10 (0000000A hex) The gateway is overloaded or not correctly
configured.

GatewayTargetDeviceFailed-
ToRespond

11 (0000000B hex) The slave is not present on the network.

255 (FF hex)
(refused)

TargetResourceMissing 1 (00000001 hex) Target system resource is unavailable.

BadLength 5 (00000005 hex) Length is incorrect.

CommChannelErr 6 (00000006 hex) Error detected on the communication channel.

BadAddr 7 (00000007 hex) Address is incorrect.

SystemResourceMissing 11 (0000000B hex) System resource is unavailable.

TargetCommInactive 12 (0000000C hex) Target communication function is not active.

TargetMissing 13 (0000000D hex) Target is incommunicative.

ChannelNotConfigured 15 (0000000F hex) Channel not configured.

EIO0000003289.03 175

Communication Objects

Function Configuration

Properties
Double-click the function block to open the function properties table.

The properties of this function block cannot be modified in online mode.

The %READ_VAR function block has the following properties:

Property Value Description

Used Activated / deactivated check box Indicates whether the address is in use.

Address %READ_VARi, where i is from 0 to the number of
objects available on this logic controller

i is the instance identifier. For the maximum number of
instances, refer to Maximum Number of Objects (see Modicon
M221, Logic Controller, Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object. For details, refer to
the EcoStruxure Machine Expert - Basic Operating Guide
(Defining and Using Symbols) (see EcoStruxure Machine
Expert - Basic, Operating Guide).

Link • SL1: Serial 1
• SL2: Serial 2
• ETH1: Ethernet

Port selection.
NOTE: SL2 and ETH1 embedded communication ports are
available on certain controller references only.

Id This parameter depends on the link configuration:
• 1...247 for serial lines slave address
• 1...16 for Ethernet index

Device identifier.

For more details about the Ethernet index, refer to Adding
Remote Servers (see Modicon M221, Logic Controller,
Programming Guide).

Timeout Specified in units of 100 ms, with a default of 100
(10 seconds).

A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait to receive an
answer.

If the timeout expires, the exchange terminates in error with an
error code (CommError = 01 hex). If the system receives a
response after the timeout expiration, this response is ignored.

NOTE: The timeout set on the function block overrides the
value configured into EcoStruxure Machine Expert - Basic
configuration screens (Modbus TCP Configuration (see
Modicon M221, Logic Controller, Programming Guide) and
Serial Line Configuration (see Modicon M221, Logic
Controller, Programming Guide)).

ObjType The object type to read:
• 0 for words
• 1 for digital inputs
• 2 for digital outputs
• 3 for input words

The types of Modbus read function codes are:
• Mbs 0x03 - Read multiple words (holding register)
• Mbs 0x02 - Read multiple bits (digital inputs)
• Mbs 0x01 - Read multiple bits (digital outputs)
• Mbs 0x04 - Read multiple words (input register)

FirstObj 0...65535 The address of the first object on the remote device from which
values are read.

Quantity • 1...125 for %MW
• 1...2000 for %I
• 1...2000 for %Q or %M
• 1...125 for %IW

The number of objects to read from the remote device.

IndexData 0...7999 The address of the local word table (%MW) into which the
values read are stored.

When reading bits (%I or %Q), the retrieved bits are written into
the word table starting at the first address specified. For
example, when reading 16 bits with IndexData = 10 and
Quantity = 16, the result is stored in %MW10:X0 to %MW10:
X15

Comment User-defined text A comment to associate with this object.

176 EIO0000003289.03

Communication Objects

Objects
The %READ_VAR function block has the following objects:

Object Description Value

%READ_VARi.LINK Port selection Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.ID Remote device identifier Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.TIMEOUT Function block timeout Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.OBJTYPE Type of objects to read Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.FIRSTOBJ The address of the first object on the remote
device from which values are read.

Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.QUANTITY The number of objects to read from the
remote device.

Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.INDEXDATA The address of the local word table (%MW)
into which the values read are stored.

Refer to Properties, page 176. Can be read
and written. Can be modified in an
animation table.

%READ_VARi.COMMERROR Communication Error Codes Refer to Communication Error Codes, page
174. Read only. Can be read in an
animation table.

%READ_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes, page 175.
Read only. Can be read in an animation
table.

%READ_VARi.DONE Execution completed successfully Refer to Outputs, page 173. Read only. Can
be read in an animation table.

%READ_VARi.BUSY Execution is in progress Refer to Outputs, page 173. Read only. Can
be read in an animation table.

%READ_VARi.ABORTED Execution was canceled Refer to Outputs, page 173. Read only. Can
be read in an animation table.

%READ_VARi.ERROR An error was detected Refer to Outputs, page 173. Read only. Can
be read in an animation table.

EIO0000003289.03 177

Communication Objects

Programming Example

Introduction
The %READ_VAR function block can be configured as presented in this
programming example.

Programming
This example is a %READ_VAR function block:

Rung Instruction

0 BLK %READ_VAR0
LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
Timing Diagrams for Communication Function Blocks, page 204.

Write Data to a Modbus Device (%WRITE_VAR)

Using %WRITE_VAR Function Blocks
This section provides descriptions and programming guidelines for using %
WRITE_VAR function blocks.

Description

Introduction
The %WRITE_VAR function block is used to write data to an external device using
the Modbus SL or Modbus TCP protocol.

178 EIO0000003289.03

Communication Objects

Illustration
This illustration is the %WRITE_VAR function block:

Inputs
The %WRITE_VAR function block has the following inputs:

Label Type Value

Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function
block, it is ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.

The Aborted output is set to 1 and the %WRITE_VARi.CommError object
contains the code 02 hex (exchange stopped by a user request).

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN
is not detected as a rising edge. The function block needs to first see the input
as FALSE in order to detect a subsequent rising edge.

Outputs
The %WRITE_VAR function block has the following outputs:

Label Type Value

Done BOOL If TRUE, indicates that the function block execution is completed
successfully with no detected errors.

Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled
with the Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block
execution is stopped.

For details on the CommError and OperError, refer to the tables
Communication Error Codes, page 174 and the Operation Error
Codes, page 175 .

EIO0000003289.03 179

Communication Objects

This table describes the output objects of the function block:

Output object Type Description

CommError BYTE For details on %READ_VARi.CommError, refer to the table
Communication Error Codes, page 174.

OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation
Error Codes, page 175.

Communication Error Codes
Refer to Communication Error Codes, page 174.

Operation Error Codes
Refer to Operation Error Codes, page 175.

Function Configuration

Properties
Double-click on the function block to open the function properties table.

The properties of this function block cannot be modified in online mode.

180 EIO0000003289.03

Communication Objects

The %WRITE_VAR function block has the following properties:

Property Value Description

Used Activated / deactivated checkbox Indicates whether the address is in use.

Address %WRITE_VARi, where i is from 0 to the number of objects
available on this logic controller

i is the instance identifier. For the maximum
number of instances, refer to Maximum Number of
Objects table (see Modicon M221, Logic
Controller, Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object. For
details, refer to the EcoStruxure Machine Expert -
Basic Operating Guide (Defining and Using
Symbols) (see EcoStruxure Machine Expert -
Basic, Operating Guide).

Link • SL1: Serial 1
• SL2: Serial 2
• ETH1: Ethernet

Port selection.
NOTE: SL2 and ETH1 embedded
communication ports are available on certain
controller references only.

Id This parameter depends on the link configuration:
• 0 for broadcast
• 1...247 for serial lines slave address
• 1...16 for Ethernet index

Device identifier.

For value 0, the Modbus master controller initiates
a broadcast to all connected slaves. In broadcast
mode, the slaves do not answer the master.

For more details about the Ethernet index, refer to
Adding Remote Servers (see Modicon M221, Logic
Controller, Programming Guide).

Timeout Specified in units of 100 ms, with a default of 100 (10 seconds).

A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait to
receive an answer.

If the timeout expires, the exchange terminates in
error with an error code (CommError = 01 hex). If
the system receives a response after the timeout
expiration, this response is ignored.

NOTE: The timeout set on the function block
overrides the value configured into
EcoStruxure Machine Expert - Basic
configuration screens (Modbus TCP
Configuration (see Modicon M221, Logic
Controller, Programming Guide) and Serial
Line Configuration (see Modicon M221, Logic
Controller, Programming Guide)).

ObjType The following Modbus function codes are supported:
• 0
• 2
• 4
• 5

The type of objects to write:
• Mbs 0x10 - Write multiple words (register)
• Mbs 0x0F - Write multiple bits (digital

outputs)
• Mbs 0x05 - Write single bit (digital output)
• Mbs 0x06 - Write single word (register)

NOTE: The application must be
configured with a functional level of at
least 5.0 to use the Single Coil (Mbs
0x05) or Single Register (Mbs 0x06)
Modbus function codes.

FirstObj 0...65535 The address of the first object on the remote
device to which values are written.

Quantity • 1...123 (internal register) for %MW
• 1...1968 (internal bit) for %M or %Q

The number of objects to write to the remote
device.

Ignored for single coil and single register object
types.

IndexData 0...7999 The address of the local word table (%MW)
containing the values to be written to the remote
device. This memory word table (%MW) is used for
all supported function codes.

When writing bits (%M or %Q), the values to be
written are retrieved from the word table starting at
the first address specified. For example, when
writing 16 bits with IndexData = 10 and Quantity =
16, the values are retrieved from %MW10:X0 to %
MW10:X15

Comment User-defined text A comment to associate with this object.

EIO0000003289.03 181

Communication Objects

Objects
The %WRITE_VAR function block has the following objects:

Object Description Value

%WRITE_VARi.LINK Port selection Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.ID Remote device identifier Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.TIMEOUT Function block timeout Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.OBJTYPE Type of objects to write Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.FIRSTOBJ The address of the first object on the remote
device to which values are written.

Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.QUANTITY The number of objects to write to the remote
device.

Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.INDEXDATA The address of the local word table (%MW)
containing the values to be written to the
remote device.

Refer to Properties, page 180. Can be read
and written. Can be modified in an
animation table.

%WRITE_VARi.COMMERROR Communication Error Codes Refer to Communication Error Codes, page
180. Read only. Can be read in an
animation table.

%WRITE_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes, page 180.
Read only. Can be read in an animation
table.

%WRITE_VARi.DONE Execution completed successfully Refer to Outputs, page 179. Read only. Can
be read in an animation table.

%WRITE_VARi.BUSY Execution is in progress Refer to Outputs, page 179. Read only. Can
be read in an animation table.

%WRITE_VARi.ABORTED Execution was canceled Refer to Outputs, page 179. Read only. Can
be read in an animation table.

%WRITE_VARi.ERROR An error was detected Refer to Outputs, page 179. Read only. Can
be read in an animation table.

Programming Example

Introduction
The %WRITE_VAR function block can be configured as presented in this
programming example.

182 EIO0000003289.03

Communication Objects

Programming
This example is a %WRITE_VAR function block:

Rung Instruction

0 BLK %WRITE_VAR0
LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
Timing Diagrams for Communication Function Blocks, page 204.

Read and Write Data on a Modbus Device (%WRITE_
READ_VAR)

Using %WRITE_READ_VAR Function Blocks
This section provides descriptions and programming guidelines for using %
WRITE_READ_VAR function blocks.

Description

Introduction
The %WRITE_READ_VAR function block is used to read and write data stored in
internal memory words to an external device using the Modbus SL or Modbus
TCP protocol.

This function block performs a single write request followed by a single read
request in the same transaction.

EIO0000003289.03 183

Communication Objects

Illustration
This illustration is the %WRITE_READ_VAR function block:

Inputs
The %WRITE_READ_VAR function block has the following inputs:

Label Type Value

Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function
block, it is ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.

The Aborted output is set to 1 and the %WRITE_READ_VARi.
CommError object contains the code 02 hex (exchange stopped by a user
request).

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN
is not detected as a rising edge. The function block needs to first see the input
as FALSE in order to detect a subsequent rising edge.

Outputs
The %WRITE_READ_VAR function block has the following outputs:

Label Type Value

Done BOOL If TRUE, indicates that the function block execution is completed
successfully with no detected errors.

Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled
with the Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block
execution is stopped.

For details on the CommError and OperError, refer to the tables
Communication Error Codes, page 174 and the Operation Error
Codes, page 175.

184 EIO0000003289.03

Communication Objects

This table describes the output objects of the function block:

Output object Type Description

CommError BYTE For details on %READ_VARi.CommError, refer to the table
Communication Error Codes, page 174.

OperError DWORD For details on %READ_VARi.OperError, refer to the table Operation
Error Codes, page 175.

Communication Error Codes
Refer to Communication Error Codes, page 174.

Operation Error Codes
Refer to Operation Error Codes, page 175.

Function Configuration

Properties
Double-click on the function block to open the function properties table.

The properties of this function block cannot be modified in online mode.

EIO0000003289.03 185

Communication Objects

The %WRITE_READ_VAR function block has the following properties:

Property Value Description

Used Activated / deactivated checkbox Indicates whether the address is in use.

Address %WRITE_READ_VARi, where i is from 0 to the
number of objects available on this logic
controller

i is the instance identifier. For the maximum number of
instances, refer to Maximum Number of Objects table (see
Modicon M221, Logic Controller, Programming Guide).

Symbol User-defined text The symbol uniquely identifies this object. For details,
refer to the EcoStruxure Machine Expert - Basic Operating
Guide (Defining and Using Symbols) (see EcoStruxure
Machine Expert - Basic, Operating Guide).

Link • SL1: Serial 1
• SL2: Serial 2
• ETH1: Ethernet

Port selection
NOTE: SL2 and ETH1 embedded communication
ports are available on certain controller references
only.

Id This parameter depends on the link
configuration:

• 1...247 for serial lines slave address
• 1...16 for Ethernet index

Device identifier

For more details about the Ethernet index, refer to Adding
Remote Servers (see Modicon M221, Logic Controller,
Programming Guide).

Timeout Specified in units of 100 ms, with a default of
100 (10 seconds).

A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait to receive an
answer.

If the timeout expires, the exchange terminates in error
with an error code (CommError = 01 hex). If the system
receives a response after the timeout expiration, this
response is ignored.

NOTE: The timeout set on the function block
overrides the value configured into EcoStruxure
Machine Expert - Basic configuration screens
(Modbus TCP Configuration (see Modicon M221,
Logic Controller, Programming Guide) and Serial Line
Configuration (see Modicon M221, Logic Controller,
Programming Guide)).

ObjType %MW (Mbs Fct 17): memory words The type of Modbus read/write function code is Mbs Fct
17, which is equivalent to Modbus function code 17.

FirstWriteObj 0...65535 The address of the first object on the remote device to
which values are written.

WriteQuantity 1...121 The number of objects to write to the remote device.

IndexDataOut 0...7999 The address of the local word table (%MW) containing
values to be written to the remote device.

FirstReadObj 0...65535 The address of the first object on the remote device from
which values are read.

ReadQuantity 1...125 The number of objects to read from the remote device.

IndexDataIn 0...7999 The address of the local word table (%MW) into which the
values read are stored.

Comment User-defined text A comment to associate with this object.

186 EIO0000003289.03

Communication Objects

Objects
The %WRITE_READ_VAR function block has the following objects:

Object Description Value

%WRITE_READ_VARi.LINK Port selection Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.ID Remote device identifier Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.TIMEOUT Function block timeout Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.OBJTYPE Type of objects to read Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.FIRSTWRITEOBJ The address of the first object on the
remote device to which values are
written.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.WRITEQUANTITY The number of objects to write to the
remote device.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.INDEXDATAOUT The address of the local word table (%
MW) containing values to be written to
the remote device.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.FIRSTREADOBJ The address of the first object on the
remote device from which values are
read.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.READQUANTITY The number of objects to read from the
remote device.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.INDEXDATAIN The address of the local word table (%
MW) into which the values read are
stored.

Refer to Properties, page 185. Can be read
and written. Can be modified in an
animation table.

%WRITE_READ_VARi.COMMERROR Communication Error Codes Refer to Communication Error Codes, page
185. Read only. Can be read in an
animation table.

%WRITE_READ_VARi.OPERERROR Operation Error Codes Refer to Operation Error Codes, page 185.
Read only. Can be read in an animation
table.

%WRITE_READ_VARi.DONE Execution completed successfully Refer to Outputs, page 184. Read only. Can
be read in an animation table.

%WRITE_READ_VARi.BUSY Execution is in progress Refer to Outputs, page 184. Read only. Can
be read in an animation table.

%WRITE_READ_VARi.ABORTED Execution was canceled Refer to Outputs, page 184. Read only. Can
be read in an animation table.

%WRITE_READ_VARi.ERROR An error was detected Refer to Outputs, page 184. Read only. Can
be read in an animation table.

Programming Example

Introduction
The %WRITE_READ_VAR function block can be configured as presented in this
programming example.

EIO0000003289.03 187

Communication Objects

Programming
This example is a %WRITE_READ_VAR function block:

Rung Instruction

0 BLK %WRITE_READ_VAR0
LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
Timing Diagrams for Communication Function Blocks, page 204.

Communication on an ASCII Link (%SEND_RECV_MSG)

Using %SEND_RECV_MSG Function Blocks
This section provides descriptions and programming guidelines for using %
SEND_RECV_MSG function blocks.

Description

Introduction
The %SEND_RECV_MSG function block is used to send or receive data on a
serial line configured for the ASCII protocol.

188 EIO0000003289.03

Communication Objects

Illustration
This illustration is the %SEND_RECV_MSG function block:

Inputs
The %SEND_RECV_MSG function block has the following inputs:

Label Type Value

Execute BOOL Starts function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function
block, it is ignored and the ongoing command is not affected.

Abort BOOL Stops function block execution when a rising edge is detected.

The Aborted output is set to 1 and the %SEND_RECV_MSGi.
CommError object contains the code 02 hex (exchange stopped by a user
request).

NOTE: Setting Execute or Abort input to TRUE at the first task cycle in RUN
is not detected as a rising edge. The function block needs to first see the input
as FALSE in order to detect a subsequent rising edge.

Outputs
The %SEND_RECV_MSG function block has the following outputs:

Label Type Value

Done BOOL If TRUE, indicates that the function block execution is completed
successfully with no detected errors.

Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled
with the Abort input.

Error BOOL If TRUE, indicates that an error was detected. Function block
execution is stopped.

For details on the CommError and OperError, refer to the tables
Communication Error Codes, page 174 and the Operation Error
Codes, page 175.

EIO0000003289.03 189

Communication Objects

Communication Error Codes
Refer to Communication Error Codes, page 174.

Operation Error Codes
Refer to Operation Error Codes, page 175.

End Conditions
For a send-only operation, the Done output is set to TRUE when all data
(including any start/stop characters) have been sent.

For a receive-only operation, the system receives characters until the end
condition is TRUE. When the end condition is reached, the Done output is set to
TRUE. Received characters are then copied into BufferToRecv, up to
sizeRecvBuffer characters. sizeRecvBuffer is not an end condition.

The end condition must be set in the Serial line configuration screen (see Modicon
M221, Logic Controller, Programming Guide):

The end condition can be set to:
• A number of bytes received: Frame length received
• An end of frame silence: Frame received timeout (ms)
• A frame structure: First end character

For a send-receive operation, characters are first sent to the line, then characters
are received until the end condition is TRUE (same as receive-only).

Function Configuration

Properties
Double-click the function block to open the function properties table.

The properties of this function block cannot be modified in online mode.

190 EIO0000003289.03

Communication Objects

The %SEND_RECV_MSG function block has the following properties:

Property Value Description

Used Activated / deactivated check box Indicates whether the address is in use.

Address %SEND_RECV_MSGi, where i is from 0 to the number of
objects available on this logic controller

i is the instance identifier. For the maximum
number of instances, refer to the Programming
Guide for the logic controller.

Symbol User-defined text The symbol uniquely identifies this object. For
details, refer to the EcoStruxure Machine
Expert - Basic Operating Guide (Defining and
Using Symbols) (see EcoStruxure Machine
Expert - Basic, Operating Guide).

Link • SL1: Serial 1
• SL2: Serial 2

Port selection
NOTE: SL2 embedded communication
port is available on certain controller
references only.

Timeout Specified in units of 100 ms, with a default of 100 (10
seconds).

A value of 0 means no timeout enforced.

The timeout sets the maximum time to wait to
receive an answer.

If the timeout expires, the exchange terminates
in error with an error code (CommError = 01
hex). If the system receives a response after
the timeout expiration, this response is ignored.

NOTE: The timeout set on the function
block overrides the value configured into
EcoStruxure Machine Expert - Basic
configuration screens (Modbus TCP
Configuration and Serial Line
Configuration, refer to the Programming
Guide for the logic controller.).

QuantityToSend 0...255

A value of 0 means that the function block only receives
data.

Number of bytes to send

BufferToSend 0...7999 Address of the first object to send

SizeRecvBuffer 0...255

A value of 0 means that the function block only sends data.

Available size in bytes of the receive buffer.

BufferToRecv 0...7999 The first address of the word table to which
read values are stored (%MW).

QuantityRecv 0...255 Quantity of received data in bytes

Comment User-defined text A comment to associate with this object.

EIO0000003289.03 191

Communication Objects

Objects
The %SEND_RECV_MSG function block has the following objects:

Object Description Value

%SEND_RECV_MSGi.LINK Port selection Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.TIMEOUT Function block timeout Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.
QUANTITYTOSEND

Number of bytes to send Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.BUFFERTOSEND Address of the first object to send Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.SIZERECVBUFFER Available size in bytes of the receive buffer Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.BUFFERTORECV First address of the word table to which read
values are to be stored

Refer to Properties, page 190. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_MSGi.QUANTITYRECV Quantity of received data in bytes Refer to Properties, page 190. Can be only
read. Can be modified in an animation table.

%SEND_RECV_MSGi.COMMERROR Communication Error Codes Refer to Communication Error Codes, page
190. Read only. Can be read in an
animation table.

%SEND_RECV_MSGi.OPERERROR Operation Error Codes Refer to Operation Error Codes, page 190.
Read only. Can be read in an animation
table.

%SEND_RECV_MSGi.DONE Execution completed successfully Refer to Outputs, page 189. Read only. Can
be read in an animation table.

%SEND_RECV_MSGi.BUSY Execution is in progress Refer to Outputs, page 189. Read only. Can
be read in an animation table.

%SEND_RECV_MSGi.ABORTED Execution was canceled Refer to Outputs, page 189. Read only. Can
be read in an animation table.

%SEND_RECV_MSGi.ERROR An error was detected Refer to Outputs, page 189. Read only. Can
be read in an animation table.

Programming Example

Introduction
The %SEND_RECV_MSG function block can be configured as presented in this
programming example.

192 EIO0000003289.03

Communication Objects

Programming
This example is a %SEND_RECV_MSG function block:

Rung Instruction

0 BLK %SEND_RECV_MSG0
LD %I0.0
EXECUTE
LD %I0.1
ABORT
OUT_BLK
LD DONE
ST %Q0.0
LD BUSY
ST %Q0.1
LD ABORTED
ST %M1
LD ERROR
ST %Q0.2
END_BLK

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Timing Diagram
Timing Diagrams for Communication Function Blocks, page 204.

Send Receive SMS (%SEND_RECV_SMS)

Using %SEND_RECV_SMS Function Block
This section provides description and programming guidelines for using %SEND_
RECV_SMS function block.

Description

Introduction
The %SEND_RECV_SMS function block is used to send and receive Short
Message Service (SMS) messages through a modem connected to a serial line.
For example, the controller can send an SMS to transmit an alarm to a specified
mobile phone, or receive an SMS to terminate a function of the machine.

NOTE: The application must be configured with a functional level (see
EcoStruxure Machine Expert - Basic, Operating Guide) of at least Level 3.2 to
use the SMS functionality.

The %SEND_RECV_SMS function block is used to either:
• send an SMS to one recipient only, or
• receive an SMS filtered by a table of approved phone numbers.

Only 1 %SEND_RECV_SMS function block can be used in a program.

EIO0000003289.03 193

Communication Objects

Care must be taken and provisions made for use of the SMS functionality as a
remote control device to avoid inadvertent consequences of commanded machine
operation, controller state changes, or alteration of data memory or machine
operating parameters.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Ensure that there is a local, competent, and qualified observer present when

operating from a remote location.
• Configure and install the Run/Stop input for the application so that local

control over the starting or stopping of the controller can be maintained
regardless of the remote commands sent to the controller.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

The SMS functionality is dependent on an external telecommunication network
and parameters. SMS commands and messages transmitted to the machine may
be delayed or not sent nor received. Do not use the SMS functionality for safety
critical functions or other critical purposes.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Do not allow safety critical functions in SMS commands.
• Do not use SMS commands or messages for any mission critical purposes.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTE: Verify the SMS functionality and associated telecommunication
network during commissioning, and test it periodically to verify the network
coverage.

Illustration
This illustration is the %SEND_RECV_SMS function block:

194 EIO0000003289.03

Communication Objects

Inputs
This table describes the inputs of the function block:

Label Type Value

Execute BOOL Starts the function block execution when a rising edge is detected.

If a second rising edge is detected during the execution of the function
block, it is ignored and the ongoing command is not affected.

Abort BOOL Stops the function block execution when a rising edge is detected.

The Aborted output is set to 1 and the %SEND_RECV_SMSi.CommError
object contains the code 02 hex (exchange stopped on a rising edge on
the Abort input).

S BOOL If 1, the function block is configured to send an SMS.

If 0, the function block is configured to receive an SMS.

The value change is taken into account when the function block is
aborted.

NOTE: Setting Execute or Abort input to 1 at the first task cycle in RUN is not
detected as a rising edge. The function block needs to first see the input as 0
in order to detect a subsequent rising edge.

This table describes the input objects of the function block:

Input object Type Value range Description

Link BYTE 1 - SL1

2 - SL2

Indicates the serial line used to communicate through the modem.

Timeout WORD 0...255 Sets the maximum time to wait to receive a response from the modem.

Specified in units of 100 ms, with a default of 100 (10 seconds). A value of
0 means no timeout is enforced.

Index WORD 0...15 The value of the index is used:
• While sending, to select a text to send from the Messages table.

0 corresponds to the first string in the table.
• While receiving, to select a string in the Commands table that

matches the received text.
Set to FFFF hex if no matching string is found.

VAD DINT -2147483648...
2147483647

• While sending, the value in %SEND_RECV_SMSi.VAD replaces the
placeholder $VAD in the text of the SMS.

• While receiving, the value in %SEND_RECV_SMSi.VAD contains the
value where the placeholder $VAD is inserted in the SMS stored in
the Commands table.

VBD DINT -2147483648...
2147483647

• While sending, the value in %SEND_RECV_SMSi.VBD replaces the
placeholder $VBD in the text of the SMS.

• While receiving, the value in %SEND_RECV_SMSi.VBD contains the
value where the placeholder $VBD is inserted in the SMS stored in
the Commands table.

MASKPHONE WORD 0...15 • While sending, the mask is used to select the recipient of the SMS
from the Phone numbers table.

• While receiving, the mask is applied to the Phone numbers table to
create a list of valid numbers.

EIO0000003289.03 195

Communication Objects

Outputs
This table describes the outputs of the function block:

Label Type Value

Done BOOL If TRUE, indicates that the function block execution completed
successfully with no errors detected.

Busy BOOL If TRUE, indicates that the function block execution is in progress.

Aborted BOOL If TRUE, indicates that the function block execution was canceled with the
%SEND_RECV_SMSi.Abort input.

Error BOOL If TRUE, indicates that an error has been detected. The function block
execution is stopped.

For details on %SEND_RECV_SMSi.CommError and %SEND_RECV_
SMSi.OperError, refer to the tables Communication Error Codes, page 197
and Operation Error Codes, page 197.

NOTE: When the Busy output is set to TRUE, the execution continues until one of the Done,
Aborted, or Error outputs is set to TRUE.
NOTE: While the Busy output is set to TRUE, changes in the Execute input do not affect the
execution of the ongoing function block. However, if another %SEND_RECV_SMS function
block is called, it terminates with an error (CommError = 255 (FF hex) and OperError = 11 (0B
hex)).

This table describes the output objects of the function block:

Output object Type Description

CommError BYTE For details on %SEND_RECV_SMSi.CommError, refer to the table
Communication Error Codes, page 197.

OperError DWORD For details on %SEND_RECV_SMSi.OperError, refer to the table
Operation Error Codes, page 197.

196 EIO0000003289.03

Communication Objects

Communication Error Codes
This table describes the error codes written to the %SEND_RECV_SMSi.
CommError output object:

Decimal
(hexadecimal)
detected error code

Name Description

0 (00 hex) CommunicationOK Exchange is correct.
NOTE: In this case, the %SEND_RECV_SMSi.OperError
output object contains the modem signal level, as
opposed to an error code.

1 (01 hex) TimedOut Exchange stopped because timeout expired.

2 (02 hex) Abort Exchange stopped on a rising edge on the %SEND_RECV_
SMSi.Abort input.

3 (03 hex) BadLink Link is incorrect.

4 (04 hex) BadCommand Command is incorrect.

5 (05 hex) BadMgtTable Management table format is incorrect.

6 (06 hex) BadParameters Specific parameters are incorrect.

7 (07 hex) ProblemSendingSms SMS send command unsuccessful.

9 (09 hex) RecvCmdError Invalid command.

10 (0A hex) SendValueError Invalid value.

11 (0B hex) SystemResourceMissing System resource is unavailable.

14 (0E hex) BadLength Length is incorrect.

254 (FE hex) ProtocolSpecificError Indicates that a protocol error has been detected.
NOTE: In this case, the %SEND_RECV_SMSi.OperError
output object contains more details. Refer to Operation
Error Codes., page 197

255 (FF hex) Refused SMS is refused.
NOTE: In this case, the %SEND_RECV_SMSi.OperError
output object contains more details. Refer to Operation
Error Codes., page 197

Operation Error Codes
This return code is significant when the communication error code (%SEND_
RECV_SMSi.CommError output object) has the value:

• 0 (00 hex) (correct protocol)
• 254 (FE hex) (incorrect protocol)
• 255 (FF hex) (SMS refused)

When the %SEND_RECV_SMSi.CommError is 0 (00 hex) (correct protocol), the
%SEND_RECV_SMSi.OperError output object indicates the Received Signal
Strength Indication (RSSI):

Decimal value in the%SEND_
RECV_SMSi.OperError object

RSSI modem signal level

Less than 9 Marginal value (the attenuation exceeds the limit needed to
keep the wireless network up)

10 to 14 Ok

15 to 19 Good

Greater than 20 Excellent

EIO0000003289.03 197

Communication Objects

When the %SEND_RECV_SMSi.CommError is 254 (FE hex) (incorrect protocol),
the %SEND_RECV_SMSi.OperError output object returns more details:

Decimal (hexadecimal) value in the%
SEND_RECV_SMSi.OperError object

Name Description

256 (00000100 hex) ModemConfSLAsciiFailed The ASCII configuration of the serial line is
incorrect.

512 (00000200 hex) ModemReconfSLFailed The configuration of the serial line back to the user
configuration is incorrect.

768 (00000300 hex) ModemBusy The modem answers BUSY to the dial command.

1024 (00000400 hex) ModemNoDialtone The modem answers NODIALTONE to the dial
command.

1280 (00000500 hex) ModemNoCarrier The modem carrier signal has been lost or
disconnected. The modem answers NO CARRIER
to the dial command.

1536 (00000600 hex) ModemBadAnswer The response from the modem is incorrect.

Specific errors for SIM card use

4096 (00001000 hex) SimConfigurationFailed The SIM card configuration is incorrect. For
example, a PUK code is requested.

8192 (00002000 hex) SimPinCodeInvalid The PIN code is incorrect.

16384 (00004000 hex) SimSmsCenterInvalid The SMS center phone number is incorrect.

When the %SEND_RECV_SMSi.CommError is 255 (FF hex) (SMS refused), the
%SEND_RECV_SMSi.OperError output object returns more details:

Decimal (hexadecimal) value in the
%SEND_RECV_SMSi.OperError
object

Name Description

1 (00000001 hex) TargetResourceMissing The target system resource is unavailable.

5 (00000005 hex) BadLength The length is incorrect.

6 (00000006 hex) CommChannelErr An error has been detected on the communication
channel.

11 (0000000B hex) SystemResourceMissing The system resource is unavailable.

12 (0000000C hex) TargetCommInactive The target communication function is not active.

13 (0000000D hex) TargetMissing The target is unavailable.

15 (0000000F hex) ChannelNotConfigured The communication channel is not configured.

16 (00000010 hex) PhoneNumberNotMatching The phone number in the received message does
not match with the list of approved numbers
(whitelist).

17 (00000011 hex) MessageNotMatching The received message does not match with any
message in the command list. Issued only if the
sender phone number matches an entry in the list of
approved numbers (whitelist).

198 EIO0000003289.03

Communication Objects

Function Configuration

Main Steps
The following procedure describes the main steps to configure the %SEND_
RECV_SMS function block, after connecting a modem to the serial line:

Step Action

1 In the Configuration tab in EcoStruxure Machine Expert - Basic, configure the serial line with the modem, the Init Command
and ASCII protocol. For more details, refer to the Programming Guide for your logic controller.

2 Verify that the modem is connected to the serial line of the controller and that:
• the SIM card is unlocked, that is, not protected by a PIN code.
• the SMS center phone number is correctly configured in the SIM card.

3 In the Programming tab:
• Add the %SEND_RECV_SMS function block and double-click the function block to display the function properties table
• Click the SMS Configuration button to open the SMS Assistant window
• Edit the Messages, Commands and Phone numbers tables

For more details, refer to SMS Assistant.
• Click Apply to close the SMS Assistant

NOTE: If the function block address (for example %SEND_RECV_SMS0) is invalid and double-clicking is disabled,
verify that the functional level of your application (Programming tab > Tasks > Behavior) is at least Level 3.2).

4 In the Programming tab, edit the fields in the function properties table.

For details about these fields, refer to Properties, page 201.

WARNING
UNINTENDED EQUIPMENT OPERATION

Verify that the indices for the messages, commands and phone numbers used
in the function block are valid (those that you intend to use) before using the
function block.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

For more details on the installation and setting of SR2MOD03 modems, refer to
SR2MOD02 and SR2MOD03 Wireless Modem User Guide (EIO00000001575).

SMS Assistant
To use the %SEND_RECV_SMS function block, configure the commands,
messages, and phone numbers tables.

Click the SMS Configuration button in the Send Receive SMS properties area
to display the SMS Assistant window.

EIO0000003289.03 199

https://www.se.com/en/download/document/EIO0000001575

Communication Objects

The SMS Assistant window contains three tabs with tables to configure:
• Messages

Enter the strings that are used when the controller sends an SMS. Use
placeholders to include variables, date, and time. Consider limits on the
number of characters and the format.

• Commands
Enter the strings that are used when the controller receives an SMS. Use
placeholders to include variables. Consider the limits on the number of
characters and the format.

• Phone numbers
When programming the function block to send SMS messages, you select the
recipient from this table.
When programming the function block to receive SMS messages, you select
the authorized originating phone numbers from this list. When a call and
subsequent SMS is transmitted to your application via the modem, the
originating phone number is validated before acting upon the incoming SMS.
For more details, refer to the MASKPHONE line in Properties, page 201.

NOTE: Refer to your modem documentation for international dialing code
formats.

If the application is configured with a functional level of at least Level 6.1, you can
declare the strings in a %MW variable and enter this memory variable in the Value
field.

NOTE: %MW variables are supported as variables, not as strings.
Each table contains a maximum of 16 entries with an index on each line from 0 to
15.

The strings contained in the assistant tables can be interpreted in the following
formats and message size limit:

Character format Messages and Commands tables

GSM 7-bit 105 characters max.

UNICODE 45 characters max.

NOTE: The character format is determined automatically by the characters in the text field.

The following placeholders can be added in the text of Messages or Commands
to be interpreted as variables:

Placeholder Replaced at execution by: Number of
characters in
GSM 7-bit
formats

Number of
characters in
UNICODE format

$DATE(1) YY/MM/DD (present date) 8 + 1 16 + 2

$TIME(1) HH:MM:SS (present time) 8 + 1 16 + 2

$VAD The DWORD value of parameter %
SEND_RECV_SMSi.VAD converted
to text.

12 maximum 24 maximum

$VBD The DWORD value of parameter %
SEND_RECV_SMSi.VBD converted
to text.

12 maximum 24 maximum

$$ The symbol $ 1 2

NOTE: When the entered text is valid (characters limit not exceeded, valid placeholders), the
Apply button is active.

(1) Ignored for Commands

200 EIO0000003289.03

Communication Objects

Examples
This example illustrates the use of placeholders in messages:

Messages

Message
configured

$DATE : $TIME - Value A = $VAD and Value B = $VBD !

Placeholder
values

VAD = 10; VBD = 2000

Final SMS sent 15/04/27 : 11:15:43 - Value A = 10 and Value B = 2000 !

This example illustrates the use of placeholders in commands:

Commands

Command
configured

Value A = $VAD and Value B = $VBD !

SMS received Value A = 300 and Value B = 2 !

Values captured VAD = 300; VBD = 2

Properties
Double-click the function block to open the function properties table.

The properties of this function block cannot be modified in online mode.

EIO0000003289.03 201

Communication Objects

The %SEND_RECV_SMS function block has the following properties:

Property Value Description

Used Activated / deactivated check box. Indicates whether the address is in use.

Address %SEND_RECV_SMSi, where i is
from 0 to the number of objects
available on this logic controller.

i is the instance identifier. For the maximum number of instances, refer to the
Programming Guide of your logic controller.

Symbol User-defined text. The symbol uniquely identifies this object. For details, refer to Defining and
Using Symbols (see EcoStruxure Machine Expert - Basic, Operating Guide).

Link 1 - SL1

2 - SL2

The serial line on which the modem is configured (Configuration tab).

Timeout 0...255

Specified in units of 100 ms, with a
default of 100 (10 seconds).

A value of 0 means no timeout
enforced.

The timeout sets the maximum time to wait to receive a response from the
modem.

If the timeout expires, the exchange terminates with an error code (%SEND_
RECV_SMSi.CommError = 01 hex). If the system receives a response after
the timeout expiration, this response is ignored.

NOTE: The timeout set on the function block overrides the value
configured on the EcoStruxure Machine Expert - Basic configuration
screen. For more details, refer to the Programming Guide for your logic
controller.

Index 0...15
NOTE: 0 corresponds to the
first string of the list.

• While sending, the value of the index is used to select a text to send from
the Messages table.

• While receiving, the value corresponds to the index in the Commands
table that matches the received text.

VAD -214748364 ...2147483647 • While sending, the value in %SEND_RECV_SMSi.VAD replaces the
placeholder $VAD in the text of the SMS.

• While receiving, the value in %SEND_RECV_SMSi.VAD contains the
value where the placeholder $VAD is inserted in the SMS stored in the
Commands table.

VBD -214748364 ...2147483647 • While sending, the value in %SEND_RECV_SMSi.VBD replaces the
placeholder $VBD in the text of the SMS.

• While receiving, the value in %SEND_RECV_SMSi.VBD contains the
value where the placeholder $VBD is inserted in the SMS stored in the
Commands table.

MASKPHONE 0000000000000000 bin to
1000000000000000 bin

The initial value of the mask.
• While sending, this mask is used to select the recipient of the SMS from

the Phone numbers table.
Example: 0000000000000010 bin = the SMS is sent to the second phone
number (index 1) listed in the Phone numbers table.

• While receiving, the mask is applied to the Phone numbers table to
create a list of valid originator phone numbers. A bit of the mask indicates
which phone number was used to send the SMS to the logic controller.
Example: 0000000000000100 bin means the third phone number of the
Phone numbers list (index 2) has sent the SMS.

Comment User-defined text A comment to associate with this object.

202 EIO0000003289.03

Communication Objects

Objects
The %SEND_RECV_SMS function block has the following objects:

Object Description Value

%SEND_RECV_SMSi.LINK Port selection Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.TIMEOUT Function block timeout Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.INDEX Index in messages or commands table Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.VAD VAD - placeholder A Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.VBD VBD - placeholder B Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.MASKPHONE Mask to select entries in the phone number
table

Refer to Properties, page 201. Can be read
and written. Can be modified in an
animation table.

%SEND_RECV_SMSi.COMMERROR Communication Error Codes Refer to Communication Error Codes, page
197. Can be only read. Can be modified in
an animation table.

%SEND_RECV_SMSi.OPERERROR Operation Error Codes Refer to Operation Error Codes, page 197.
Can be only read. Can be modified in an
animation table.

%SEND_RECV_SMSi.DONE Execution completed successfully Refer to Outputs, page 196. Can be only
read. Can be modified in an animation table.

%SEND_RECV_SMSi.BUSY Execution is in progress Refer to Outputs, page 196. Can be only
read. Can be modified in an animation table.

%SEND_RECV_SMSi.ABORTED Execution was canceled Refer to Outputs, page 196. Can be only
read. Can be modified in an animation table.

%SEND_RECV_SMSi.ERROR An error was detected Refer to Outputs, page 196. Can be only
read. Can be modified in an animation table.

Timing Diagrams
Refer to Signal Behavior of Function Blocks with the input Execute, page 204.

EIO0000003289.03 203

Communication Objects

Timing Diagrams for Communication Object Function
Blocks

Examples of Timing Diagrams

Example 1
Execution completed without an error:

Example 2
Execution completed with an error:

Example 3
Function block aborted by the application:

204 EIO0000003289.03

Communication Objects

If Execute has already been reset to FALSE when the abort request occurred,
Abort is set to TRUE for one cycle only.

(1) Set to TRUE for one cycle only, as Execute has already been set to FALSE.

Example 4
Execution completed without an error after Execute has been set to FALSE.

(1) Set to TRUE for one cycle only, as Execute has already been set to FALSE.

EIO0000003289.03 205

User-Defined Functions

User-Defined Functions

Presentation

Overview
A user-defined function allows you to create new functions with one or more input
parameters, local variables and a return value. User-defined functions are stored
as part of the EcoStruxure Machine Expert - Basic project.

You can call user-defined functions in:
• The Master task
• Periodic tasks
• Free POUs

To create user-defined functions, the application must be configured with a
functional level (see EcoStruxure Machine Expert - Basic, Operating Guide) of at
least Level 6.0.

For information about using user-defined functions, refer to EcoStruxure Machine
Expert - Basic Operating Guide - User-Defined Functions (see EcoStruxure
Machine Expert - Basic, Operating Guide).

206 EIO0000003289.03

User-Defined Function Blocks

User-Defined Function Blocks

Presentation

Overview
A user-defined function block allows you to create new function blocks with one or
more input and outputs parameters, local variables and a return value. User-
defined function blocks are stored as part of the EcoStruxure Machine Expert -
Basic project.

You can call user-defined function blocks in:
• The Master task
• Periodic tasks
• Events
• Free POUs

To create user-defined function blocks, the application must be configured with a
functional level (see EcoStruxure Machine Expert - Basic, Operating Guide) of at
least Level 6.0.

For information about using user-defined function blocks, refer to EcoStruxure
Machine Expert - Basic Operating Guide - User-Defined Function Blocks (see
EcoStruxure Machine Expert - Basic, Operating Guide).

EIO0000003289.03 207

Clock Functions

Clock Functions
Overview

This chapter describes the time management functions for controllers.

Clock Functions

Introduction
On logic controllers equipped with a Real-Time Clock (RTC) feature, you can use
the following time-of-day clock functions when EcoStruxure Machine Expert -
Basic is connected to the logic controller:

• RTC function blocks, page 163 are used to read the time and date from the
RTC, or update the RTC in the logic controller with a user-defined time and
date.

• Schedule function blocks, page 158 are used to control actions at predefined
or calculated times.

• Time/date stamping, page 208 is used to assign time and dates to events
and measure event duration.

The time-of-day clock can be set by a program, page 208. The controller battery
facilitates Clock settings to continue operating for up to 1 year when the controller
is turned off. The controller does not have a rechargeable battery. The battery has
an average lifetime of 4 years and should be replaced prior to its end of life. In
order not to lose the data during battery replacement, change the battery within
120 seconds after the battery is removed from the controller.

The time-of-day clock has a 24-hour format and takes leap years into account.

Time and Date Stamping

Introduction
System words %SW49 to %SW53 contain the current date and time in BCD format
which is useful for display on or transmission to a peripheral device. These system
words can be used to store the time and date of an event.

The BTI instructions are used to convert dates and times from BCD format to
binary format. For more information, refer to the BCD/Binary conversion
instructions, page 58.

Dating an Event
To associate a date with an event, it is sufficient to use assignment operations to
transfer the contents of system words to memory words, and then process these
memory words (for example, transmission to a display unit using the EXCH
instruction).

208 EIO0000003289.03

Clock Functions

Programming Example
This example shows how to date a rising edge on input %I0.1:

Rung Instruction

0 LDR %I0.1
[%MW11:5:=%SW49:5]

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Once an event is detected, the word table contains:

Encoding Most Significant Byte Least Significant Byte

%MW11 - Day of the week (1)

%MW12 00 Second

%MW13 Hour Minute

%MW14 Month Day

%MW15 Century Year

(1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6 = Saturday, 7 = Sunday

Example of Word Table
Example data for 13:40:30 on Monday 03 June 2013:

Word Value (hex) Meaning

%MW11 0001 Monday

%MW12 0030 30 seconds

%MW13 1340 13 hours, 40 minutes

%MW14 0603 06 = June, 03rd

%MW15 2013 2013

Date and Time of the Last Stop
System words %SW54 to %SW57 contain the date and time of the last stop, and
word %SW58 contains the code showing the cause of the last stop, in BCD format.

EIO0000003289.03 209

Clock Functions

Setting Date and Time

Introduction
You can update the time and date settings in the logic controller by using one of
the following methods:

• Using the RTC Management tab on the Commissioning tab of EcoStruxure
Machine Expert - Basic. This method is only available when in online mode
(see EcoStruxure Machine Expert - Basic, Operating Guide).
You can choose between 2 methods:
◦ Manual: this method displays a time/date picker and lets you manually

choose what time to set in the logic controller.
◦ Automatic: this method uses the time of the PC on which EcoStruxure

Machine Expert - Basic is running.
For more details, refer to RTC Management (see EcoStruxure Machine
Expert - Basic, Operating Guide).

• In a program, using RTC function blocks, page 163.
• When in online mode, by updating the system words, either directly or

programmatically using operating blocks, %SW49 to %SW53 or system word %
SW59.

NOTE: The date and time can only be set when the RTC feature is available in
your logic controller (refer to the programming guide of your logic controller).

Using %SW49 to %SW53
To use system words %SW49 to %SW53 to set the date and time, bit %S50 must be
set to 1. While %S50 is set to 1, system words %SW49 to %SW53 are no longer
updated by the controller. On a falling edge of %S50 (%S50 set to 0), the internal
RTC of the controller is updated by the values in %SW49 to %SW53.The controller
then resumes updating %SW49 to %SW53 using the RTC.

This table lists the system words containing date and time values (in BCD) for
real-time clock (RTC) functions:

System Word Description

%SW49 xN Day of week (N=1 for Monday)

%SW50 00SS: seconds

%SW51 HHMM: hour and minute

%SW52 MMDD: month and day

%SW53 CCYY: century and year

Refer to the programming guide of your controller for a complete list of system bits
and words.

Programming example:

Rung Instruction Comment

0 LD %S50
R %S50

–

1 LD %I0.1
[%SW50:=%MW11]
[%SW51:=%MW12]
[%SW52:=%MW13]
[%SW53:=%MW14]
S %S50

Refer to BCD/Binary Conversion Instruction, page
58.

210 EIO0000003289.03

Clock Functions

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

Words %MW11 to %MW14 contain the new date and time (see Review of BCD Code,
page 58) and corresponds to the coding of words %SW50 to %SW53.

NOTE: %SW49 (Day of the week) is automatically calculated based upon the
date supplied.

The word table must contain the new date and time:

Encoding Most Significant Byte Least Significant Byte

%MW11 – Second

%MW12 Hour Minute

%MW13 Month Day

%MW14 Century Year

Example data for 03 June 2013:

Word Value (hex) Meaning

%MW11 0030 30 seconds

%MW12 1340 13 hours, 40 minutes

%MW13 0603 06 = June, 03rd

%MW14 2013 2013

Using %SW59
Another method of updating the date and time is to use system bit %S59 and date
adjustment system word %SW59.

Setting bit %S59 to 1 enables adjustment of the current date and time by word %
SW59. %SW59 increments or decrements each of the date and time components
on a rising edge.

This table describes each bit of the system word %SW59 for adjusting date and
time parameters:

Increment Decrement Parameter

Bit 0 Bit 8 Day of week(1)

Bit 1 Bit 9 Seconds

Bit 2 Bit 10 Minutes

Bit 3 Bit 11 Hours

Bit 4 Bit 12 Days

Bit 5 Bit 13 Month

Bit 6 Bit 14 Years

Bit 7 Bit 15 Centuries(1)

(1) Day of week and centuries cannot be modified (increment or decrement) by the user.

Refer to the programming guide of your controller for a complete list of system bits
and words.

EIO0000003289.03 211

Clock Functions

Application Example
This front panel is created to modify the hour, minutes, and seconds of the internal
clock.

Description of the commands:
• The Hours/Minutes/Seconds switch selects the time display to change using

inputs %I0.2, %I0.3, and %I0.4 respectively.
• Push button "+" increments the selected time display using input %I0.0.
• Push button "-" decrements the selected time display using input %I0.1.

This program reads the inputs from the panel and sets the internal clock:

Rung Instruction Comment

0 LD %M0
ST %S59

–

1 LD %I0.2
ANDR %I0.0
ST %SW59:X3

Hour

2 LD %I0.2
ANDR %I0.1
ST %SW59:X11

–

3 LD %I0.3
ANDR %I0.0
ST %SW59:X2

Minute

4 LD %I0.3
ANDR %I0.1
ST %SW59:X10

–

5 LD %I0.4
ANDR %I0.0
ST %SW59:X1

Second

6 LD %I0.4
ANDR %I0.1
ST %SW59:X9

–

NOTE: Refer to the reversibility procedure, page 14 to obtain the equivalent
Ladder Diagram.

212 EIO0000003289.03

Glossary
A
%:

According to the IEC standard, % is a prefix that identifies internal memory
addresses in the logic controller to store the value of program variables,
constants, I/O, and so on.

analog input:

Converts received voltage or current levels into numerical values. You can store
and process these values within the logic controller.

analog output:

Converts numerical values within the logic controller and sends out proportional
voltage or current levels.

ASCII:

(American standard code for Information Interchange) A protocol for representing
alphanumeric characters (letters, numbers, certain graphics, and control
characters).

C
conditional element:

Allows to implement conditions in the program in offline mode.

D
data logging:

Stores permanently data from objects or strings.

F
function block:

A programming unit that has 1 or more inputs and returns 1 or more outputs. FBs
are called through an instance (function block copy with dedicated name and
variables) and each instance has a persistent state (outputs and internal
variables) from 1 call to the other.

Examples: timers, counters

I
instruction list language:

A program written in the instruction list language that is composed of a series of
text-based instructions executed sequentially by the controller. Each instruction
includes a line number, an instruction code, and an operand (see IEC 61131-3).

L
ladder diagram language:

A graphical representation of the instructions of a controller program with symbols
for contacts, coils, and blocks in a series of rungs executed sequentially by a
controller (see IEC 61131-3).

loop element:

Allows to implement a sequence of instructions in the program in offline mode.

EIO0000003289.03 213

Q
%Q:

According to the IEC standard, %Q represents an output bit (for example, a
language object of type digital OUT).

R
RTC:

(real-time clock) A battery-backed time-of-day and calender clock that operates
continuously, even when the controller is not powered for the life of the battery.

214 EIO0000003289.03

Index
A
ABS ...67
absolute value...53
ACOS...69
add ..53
addressing

format ...22
I/O objects ...21

AND ...42
AND operators ..42
ANDF ...42
ANDN...42
ANDR...42
arithmetic instructions..53
ASCII

examples .. 133
ASIN ..69
assignment instructions

bit strings...51
inserting in Ladder Diagram rungs.......................15
numerical ..50
object tables ..84
words..52

assignment operators ..41
ATAN..69

B
bit objects

function block ..36
bit strings..31
boolean instructions ..37

C
%C... 120
calculation ..53
clock functions

overview.. 208
setting date and time .. 210
time and date stamping 208

comparison blocks
inserting IL expressions in18

comparison expression
inserting in Ladder Diagram rungs.......................18

comparison instructions ...49
conditional element ...62

configuring ..63
conversion instructions

BCD/Binary ...58
single/double word ...59

COS...69
counter

configuration.. 121
description... 120
programming example...................................... 122

D
data logging .. 167

configuring .. 168
decrement ..53
DEG_TO_RAD ...70

DINT_TO_REAL ...71
divide ...53
double word objects

description...27
function block ..36

%DR .. 147
Drive objects ... 171
Drum

configuration.. 148
description... 147
programming example...................................... 149

Drum assistant .. 148

E
END instructions ...60
EQUAL_ARR..86
examples, source code ..14
EXCH... 124
exchange instructions

EXCH1.. 124
EXCH2.. 124
EXCH3.. 124

exclusive OR operators..44
EXP ...67
EXPT ...67

F
FALLING

operator ..47
falling edge

detection with FALLING operator.........................39
detection with LDF instruction39

FIND_ ..87
floating point objects

description...27
function blocks

counter.. 120
Drum... 147
general description...35
LIFO/FIFO register ... 141
message ... 126
programming principles 104
%READ_VAR .. 172
Real-Time Clock (RTC) 163
Schedule blocks... 158
%SEND_RECV_MSG...................................... 188
%SEND_RECV_SMS 193
shift bit register .. 152
step counter .. 155
timer ... 107
user-defined .. 207
%WRITE_READ_VAR 183
%WRITE_VAR... 178

G
Grafcet Step properties.. 169

I
%I ..21
increment ...53
index overflow...34
input/output address format....................................21
instructions

EIO0000003289.03 215

angle conversion..70
arithmetic ..53
ASCII ..72
ASCII to double word conversion.........................79
ASCII to float conversion76
ASCII to integer conversion74
boolean...37
comparison ...49
double word to ASCII conversion.........................81
END..60
exchange .. 124
float to ASCII conversion78
input/output objects .. 101
integer to ASCII conversion75
integer/floating conversion..................................71
jump ...61
NOP ...61
object table..83
object tables ..85
ROUND ..72
SR ..65
stack ...82
subroutine ...65
trigonometric ...69

INT_TO_REAL..71
%IW ...21
%IWS...21

K
%KD ..27
%KF...27
%KW..23

L
LD..39
LDF..39
LDN ...39
LDR ... 38–39
LIFO/FIFO register

configuration.. 142
description... 141
FIFO ... 145
LIFO ... 144
programming example...................................... 146

LKUP ...92
LN..67
load operators...39
LOG ...67
logic instructions ...55
loop element ...64

configuring ..65

M
%M ..20
MAX_ARR..88
%MD..27
MEAN ..95
memory bit objects

description...20
message

configuration.. 129
description... 126
programming example...................................... 132

%MF ..27
MIN_ARR ...88

modbus
standard requests and examples....................... 135

%MSG ... 126
multiply...53
%MW ...23

N
N..46
network objects ... 103
NOP instruction...61
NOT operator ..46
numerical instructions

shift...56
numerical processing

assignment..50
overview..50

O
objects

definition of..19
direct address..33
indexed ...33
indexed address ..33
network ... 103
software .. 104
structured..31
tables..31

OCCUR_ARR...89
operation blocks

inserting assignment instructions in15
operations

inserting in Ladder Diagram rungs.......................15
operators

AND..42
assignment..41
FALLING ...47
load ..39
NOT..46
OR..43
RISING ...47
XOR ...44

OR ...43
OR operators ..43
ORF ...43
ORN...43
ORR...43
overflow

index...34

P
PID .. 166

Q
%Q ..21
%QW ...21
%QWS ...21

R
R.. 41, 141
RAD_TO_DEG ...70
READ_IMM_IN ...96

216 EIO0000003289.03

%READ_VAR ... 172
configuration.. 176
description... 172
programming example...................................... 178

REAL_TO_DINT ...71
REAL_TO_INT..71
remainder ...53
RISING

operator ..47
rising edge

detection with LDR instruction.............................38
detection with RISING operator...........................38

ROL_ARR ..90
ROR_ARR..90
RTC

configuration.. 165

S
%S... 20, 41
%SBR .. 152
%SC .. 155
%SCH .. 158
schedule blocks

description... 158
programming and configuring............................ 161

%SEND_RECV_MSG ... 188
configuration.. 190
description... 188
programming example...................................... 192

%SEND_RECV_SMS.. 193
configuration.. 199
description... 193

shift bit register
configuration.. 153
description... 152
programming example...................................... 154

shift instructions ..56
SIN ..69
SORT_ARR..91
source code, using example...................................14
SQRT...67
square root ...53
SR (subroutine) instructions65
ST..41
stack instructions

MPP ...82
MPS ...82
MRD ...82

step counter
configuration.. 156
description... 155
programming example...................................... 157

STN ...41
subtract ..53
SUM_ARR..85
%SW..23
SWAP ..96
system bits

%S18..28
system words

%SW17...28

T
tables

instructions on ...83
TAN..69

timer
configuration.. 108
description... 107
programming example...................................... 119
TOF type ... 113
TON type... 110
TP type ... 116

%TM .. 107
tools

Drive objects.. 171
network objects.. 103

TRUNC ..67

U
user-defined function blocks................................. 207
user-defined functions ... 206
using source code examples14

W
word objects

description...23
function block ..36

WRITE_IMM_OUT ..98
%WRITE_READ_VAR... 183

configuration.. 185
description... 183
programming example...................................... 187

%WRITE_VAR.. 178
configuration.. 180
description... 178
programming example...................................... 182

X
%X...20
%Xi (Grafcet Step) properties............................... 169
XOR...44
XORF...44
XORN ..44
XORR ..44

EIO0000003289.03 217

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time,
please ask for confirmation of the information given in this publication.

© 2022 Schneider Electric. All rights reserved.

EIO0000003289.03

	EcoStruxure Machine Expert - Basic
	Safety Information
	Before You Begin
	Start-up and Test
	Operation and Adjustments

	About the Book
	Introduction
	How to Use the Source Code Examples
	Operation Blocks
	Comparison Blocks

	Language Objects
	Objects
	Memory Bit Objects
	I/O Objects
	Word Objects
	Floating Point and Double Word Objects
	Structured Objects
	Indexed Objects
	Function Block Objects

	Instructions
	Boolean Processing
	Boolean Instructions
	Load Operators (LD, LDN, LDR, LDF)
	Assignment Operators (ST, STN, R, S)
	Logical AND Operators (AND, ANDN, ANDR, ANDF)
	Logical OR Operators (OR, ORN, ORR, ORF)
	Exclusive OR Operators (XOR, XORN, XORR, XORF)
	NOT Operator (N)
	Rising and Falling Functions (RISING, FALLING)
	Comparison Instructions

	Numerical Processing
	Introduction to Numerical Operations
	Assignment Instructions
	Bit Strings Assignment
	Words Assignment
	Arithmetic Operators on Integers
	Logic Instructions
	Shift Instructions
	BCD/Binary Conversion Instructions
	Single/Double Word Conversion Instructions

	Program
	END Instructions
	NOP Instructions
	Jump Instructions
	Conditional Elements
	Loop Elements
	Subroutine Instructions

	Floating Point
	Arithmetic Instructions on Floating Point Objects
	Trigonometric Instructions
	Angle Conversion Instructions
	Integer/Floating Conversion Instructions

	ASCII
	ROUND Instructions
	ASCII to Integer Conversion Instructions
	Integer to ASCII Conversion Instructions
	ASCII to Float Conversion Instructions
	Float to ASCII Conversion Instructions
	ASCII to Double Word Conversion Instructions
	Double Word to ASCII Conversion Instructions

	Stack Operators
	Stack Instructions (MPS, MRD, MPP)

	Instructions on Object Tables
	Word, Double Word, and Floating Point Tables Assignment
	Table Summing Functions
	Table Comparison Functions
	Table Search Functions
	Table Search Functions for Maximum and Minimum Values
	Number of Occurrences of a Value in a Table
	Table Rotate Shift Functions
	Table Sort Functions
	Floating Point Table Interpolation (LKUP) Functions
	MEAN Functions of the Values of a Floating Point Table
	SWAP Function of the Values of a Word Table

	Instructions on I/O Objects
	Read Immediate Digital Embedded Input (READ_IMM_IN)
	Write Immediate Digital Embedded Output (WRITE_IMM_OUT)
	Read Immediate Function Block Parameter (READ_IMM)
	Write Immediate Function Block Parameter (WRITE_IMM)

	I/O Objects
	Fast Counter (%FC)
	High Speed Counter (%HSC)
	Pulse (%PLS)
	Pulse Width Modulation (%PWM)

	Network Objects
	Network Objects

	Software Objects
	Using Function Blocks
	Function Block Programming Principles
	Adding a Function Block
	Configuring a Function Block

	Timer (%TM)
	Description
	Configuration
	TON: On-Delay Timer
	TOF: Off-Delay Timer
	TP: Pulse Timer
	Programming Example

	Counter (%C)
	Description
	Configuration
	Programming Example

	Message (%MSG) and Exchange (EXCH)
	Overview
	Description
	Configuration
	Programming Example
	ASCII Examples
	Modbus Standard Requests and Examples

	LIFO/FIFO Register (%R)
	Description
	Configuration
	LIFO Register Operation
	FIFO Register Operation
	Programming Example

	Drums (%DR)
	Description
	Configuration
	Programming Example

	Shift Bit Register (%SBR)
	Description
	Configuration
	Programming Example

	Step Counter (%SC)
	Description
	Configuration
	Programming Example

	Schedule Blocks (%SCH)
	Description
	Programming and Configuring

	Real Time Clock (%RTC)
	Description
	Configuration

	PID
	PID Function

	Data Logging
	Data Logging

	Grafcet Steps
	Grafcet Steps

	PTO Objects
	Motion Task Table (%MT)
	Pulse Train Output (%PTO)

	Drive Objects
	Drive Objects

	Communication Objects
	Read Data from a Remote Device (%READ_VAR)
	Description
	Function Configuration
	Programming Example

	Write Data to a Modbus Device (%WRITE_VAR)
	Description
	Function Configuration
	Programming Example

	Read and Write Data on a Modbus Device (%WRITE_READ_VAR)
	Description
	Function Configuration
	Programming Example

	Communication on an ASCII Link (%SEND_RECV_MSG)
	Description
	Function Configuration
	Programming Example

	Send Receive SMS (%SEND_RECV_SMS)
	Description
	Function Configuration

	Timing Diagrams for Communication Object Function Blocks
	Examples of Timing Diagrams

	User-Defined Functions
	Presentation

	User-Defined Function Blocks
	Presentation

	Clock Functions
	Clock Functions
	Time and Date Stamping
	Setting Date and Time

	Glossary
	Index

