
E
IO

00
00

00
20

36
 0

0

Quick Start
Developer

SoMachine HVAC Software
Programming Guide

09/2014

The information provided in this documentation contains general descriptions and/or technical characte-
ristics of the performance of the products contained herein. This documentation is not intended as a
substitute for and is not to be used for determining suitability or reliability of these products for specific
user applications. It is the duty of any such user or integrator to perform the appropriate and complete
risk analysis, evaluation and testing of the products with respect to the relevant specific application or use
thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein.
If you have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical,
including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this
product. For reasons of safety and to help ensure compliance with documented system data, only the
manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must
be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result
in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2014 Schneider Electric. All rights reserved.

2 EIO0000002036 09/2014

EIO0000002036 09/2014 3

PART 1. CONNECTION ... 7

PART 2. APPLICATION .. 59

PART 3. USER INTERFACE .. 301

PART 4. SIMULATION ... 446

TABLE OF CONTENTS

4 EIO0000002036 09/2014

Important Information
Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or
maintain it. The following special messages may appear throughout this documentation or on the equipment to inform of potential
hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger safety label indicates that an electrical hazard exists, which will result
in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards.
Obey all safety messages that follow this symbol to avoid possible injury or death.

 DANGER
DANGER indicates an imminently hazardous situation which, if not avoided, results in death or serious injury.

 WARNING
WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

 CAUTION
CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

NOTICE
NOTICE is used to address practices not related to physical injury.

PLEASE NOTE
Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.
No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its
installation, and has received safety training to recognize and avoid the hazards involved.

SAFETY INFORMATION

5 EIO0000002036 09/2014

ABOUT THE BOOK

Document Scope
This document is aimed at designers and developers and requires a knowledge of one or more IEC61131-3 stan-
dard programming languages and is designed to provide a first-level overview of the installation, functions and use
of SoMachine HVAC.

Validity Note
This document is valid for SoMachine HVAC.

Related Documents
Title of Documentation Reference Document Code
Modicon M171 Performance Logic Controllers Hardware User Manual EIO0000002030 (ENG)

Modicon M171 Optimized Logic Controllers Hardware User Manual EIO0000002032 (ENG)

SoMachine HVAC software Quick Start EIO0000002035 (ENG)

You can download these technical publications and other technical information from our website at:
www.schneider-electric.com

6 EIO0000002036 09/2014

Product Related Information

 WARNING
LOSS OF CONTROL

• The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical
control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control
functions are emergency stop and overtravel stop, power outage and restart.

• Separate or redundant control paths must be provided for critical control functions.
• System control paths may include communication links. Consideration must be given to the implications of unantici-

pated transmission delays or failures of the link.
• Observe all accident prevention regulations and local safety guidelines.(1)

• Each implementation of this equipment must be individually and thoroughly tested for proper operation before being
placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

(1) For additional information, refer to NEMA ICS 1.1 (latest edition), “Safety Guidelines for the Application, Installation, and
Maintenance of Solid State Control” and to NEMA ICS 7.1 (latest edition), “Safety Standards for Construction and Guide
for Selection, Installation and Operation of Adjustable-Speed Drive Systems” or their equivalent governing your particular
location.

 WARNING
UNINTENDED EQUIPMENT OPERATION

• Only use software approved by Schneider Electric for use with this equipment.
• Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EIO0000002036 09/2014 7

SoMachine HVAC - Connection

Contents
1. Basic concepts 13

1.1 Entry point and container 13

1.2 Composite applications and Field I/O 13

1.3 Distributed applications and Binding I/O 13

2. Using the environment 15

2.1 The workspace 15
2.1.1 The main window 15
2.1.2 The output window 16
2.1.3 The project window 17
2.1.4 The catalog window 18

2.2 Layout customization 20

2.3 Toolbars and docking windows 20
2.3.1 Showing/hiding 20
2.3.2 Moving toolbars 20
2.3.3 Moving docking windows 21

3. Managing projects 23

3.1 Creating a new project and main page 23

3.2 Saving the project 24

3.3 Managing existing projects 24
3.3.1 Opening an existing project 24
3.3.2 Closing the project 24

3.4 Building projects 25

3.5 Distributing projects 25
3.5.1 Distributing to other developers 25
3.5.2 Distributing to users or installers 25

4. Managing project elements 27

4.1 M171 Perf. Display 27
4.1.1 PLC 28
4.1.2 HMI 28
4.1.3 CANopen 29
4.1.4 RS485 32
4.1.5 Ethernet 33

4.2 M171 Perf. Blind 34

4.3 Generic Modbus 35
4.3.1 Modbus messages 35

4.4 Modbus Custom 37

8 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.4.1 Creating a new Modbus custom device 37
4.4.2 Editing an existing Modbus custom device 37
4.4.3 Deleting a Modbus custom device 38
4.4.4 Using a Modbus custom device 38

4.5 CAN custom 40
4.5.1 Importing a new CAN custom device 40
4.5.2 Deleting a CAN Custom device 41
4.5.3 Using a CAN custom device 41

4.6 Display for M171 Perf. 43
4.6.1 CANopen 43

4.7 M171 Perf. Flush Mounting 46
4.7.1 PLC 46
4.7.2 HMI 46
4.7.3 Providing HMI pages 47
4.7.4 CANopen 47
4.7.5 RS485 49
4.7.6 Ethernet 49

4.8 Modicon M171 Perf. Expansion 27 I/Os 49
4.8.1	 Using	Modicon	M171	Perf.	Expansion	27	I/Os	as	CANopen	field	slave	 50
4.8.2	 Using	Modicon	M171	Perf.	Expansion	27	I/Os	as	RS485	field	slave	 50

4.9 Virtual channels assignment criteria 51
4.9.1 CANopen network - virtual SDO servers 51
4.9.2 Ethernet - TCP Slave Channels 52
4.9.3	 CANopen	field	-	virtual	master	channels	 52

5. Technical reference 53

5.1 CANopen protocol 53
5.1.1 Overview 53
5.1.2 Physical structure of a CANopen network 53
5.1.3 COB and COB-ID 53
5.1.4 The object Dictionary 53
5.1.5 The Service Data Objects (SDO) 54
5.1.6 The Process Data Objects (PDO) 54
5.1.7 PDO transmission modes 54
5.1.8 The Emergency Object 55
5.1.9 SYNC Object and Time Stamp Object 55
5.1.10 Error Control: Node guarding 55
5.1.11 Error control: Heartbeat 55
5.1.12 The Network Behavior 55
5.1.13 The Boot-up Message 56
5.1.14	 The	CANopen	Device	Profiles	 56

5.2 Modbus protocol 56

EIO0000002036 09/2014 9

SoMachine HVAC - Connection

5.2.1 Overview 56
5.2.2 Data types 56
5.2.3 Function codes 57
5.2.4 Error detection and CRC 57
5.2.5 Protocol versions 57

10 EIO0000002036 09/2014

SoMachine HVAC - Connection

SAFETY INFORMATION

Important Information
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to inform of potential hazards or to call
attention	to	information	that	clarifies	or	simplifies	a	procedure.

The addition of this symbol to a Danger safety label indicates that an electrical hazard
exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards.
Obey all safety messages that follow this symbol to avoid possible injury or death.

 DANGER
DANGER indicates an imminently hazardous situation which, if not avoided, results in death
or serious injury.

 WARNING
WARNING indicates a potentially hazardous situation which, if not avoided, can result in
death or serious injury.

 CAUTION
CAUTION indicates a potentially hazardous situation which, if not avoided, can result in
minor or moderate injury.

NOTICE
NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical	equipment	should	be	installed,	operated,	serviced,	and	maintained	only	by	qualified	
personnel.

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of
this material.
You can download these technical publications and other technical information from our website at:

www.schneider-electric.com

http://www.schneider-electric.com

EIO0000002036 09/2014 11

SoMachine HVAC - Connection

PRODUCT RELATED INFORMATION

 WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure modes of control

paths and, for certain critical control functions, provide a means to achieve a safe state
during and after a path failure. Examples of critical control functions are emergency stop and
overtravel stop, power outage and restart.

• Separate or redundant control paths must be provided for critical control functions.
• System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.
• Observe all accident prevention regulations and local safety guidelines.(1)

• Each implementation of this equipment must be individually and thoroughly tested for proper
operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

(1) For additional information, refer to NEMA ICS 1.1 (latest edition), “Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control” and to NEMA ICS 7.1 (latest
edition), “Safety Standards for Construction and Guide for Selection, Installation and Operation
of Adjustable-Speed Drive Systems” or their equivalent governing your particular location.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this equipment.
• Update	your	application	program	every	time	you	change	the	physical	hardware	configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

12 EIO0000002036 09/2014

SoMachine HVAC - Connection

EIO0000002036 09/2014 13

SoMachine HVAC - Connection

1. BASIC CONCEPTS

1.1 ENTRY POINT AND CONTAINER
Device is an important piece in the SoMachine HVAC software suite.
It is designed to be the “entry point” to create and manage complex projects, made of
different devices and sub-projects; its main purpose is to keep all the pieces together
and to simplify the task of linking the various elements (software components or physical
devices).
For example, with Connection you can create a project (that can be seen as a big “work-
space”) that consists in two or more devices physically linked together on the same
network, that have both a PLC and HMI project, that act as a master and exchange data
with remote slaves, and moreover exchange data between each other, in a peer-to-peer
relationship.
At	the	end	of	the	developing	process,	Connection	will	create	a	single	file	containing	ALL	
the PLC programs, HMI pages, parameters and settings of ALL the devices; then, using
Device, you can distribute and deploy your complex application in the product environ-
ment with a single click.
Connection can also be seen as the starting point from which all the other tools of the
Suite can be launched, opening their respective documents and projects: Application,
UserInterface, and Device.

1.2 COMPOSITE APPLICATIONS AND FIELD I/O
Rich and advanced devices (such as M171 Perf. Display) can both run a PLC program and
show HMI pages on the same hardware.
With Connection you can create the two separate sub-projects by launching the corre-
sponding program (Application for PLC and UserInterface for HMI) and keep them to-
gether in a single folder on disk.
If the device can act as a master (that is the case of M171 Perf. Display), it can exchange
data on a local bus talking with one or more slaves, with a protocol like Modbus or CANo-
pen; with Connection you can describe those master/slave networks, by inserting the
slaves into the project and connecting their remote objects to local PLC variables, making
the PLC program aware of them.
We call this architecture “Field I/O”.

1.3 DISTRIBUTED APPLICATIONS AND BINDING I/O
Sometimes a single application on a single device is not enough to solve complex applica-
tions; sometimes it is necessary to create two or more applications that will act together,
communicating and exchanging data on a network to take decisions and cooperate.
This scenario is different from “Field I/O” because there is no master or slave, but a group
of devices of the same kind (like a group of M171 Perf. Display) that talk to each other in
a peer-to-peer way on a common network, exchanging objects (parameters and values.)
We call this architecture “Binding I/O”, because the various elements are bound to each
other to operate together.

14 EIO0000002036 09/2014

SoMachine HVAC - Connection

EIO0000002036 09/2014 15

SoMachine HVAC - Connection

2. USING THE ENVIRONMENT

2.1 THE WORKSPACE
The	figure	below	shows	a	view	of	Connection	workspace,	including	many	of	its	more	com-
monly used components.

The following paragraphs give an overview of these elements.

2.1.1 THE MAIN WINDOW

The Main window is the central part of the program window, that is surrounded by tool-
bars and docking windows.
It	shows	information	and	configuration	pages	in	a	graphical	and	user-friendly	form;	the	
current page is always determined by the selected item in Project window.
For example, in the previous image you can see that the RS485 node is selected (and
highlighted) in the Project tree and so the Main window shows the RS485 Configura-
tion page.
To change the current selected item and so the current page, just do a single click in the
Project tree.

16 EIO0000002036 09/2014

SoMachine HVAC - Connection

2.1.2 THE OUTPUT WINDOW

The Output window is the place where Connection prints its output messages: errors,
information, debug information, and compilation results.

In some situations (for example compilation errors) you can double-click on the error in
the output window and you will be brought just at the source of the error, that will be
highlighted with a red box.

EIO0000002036 09/2014 17

SoMachine HVAC - Connection

2.1.3 THE PROJECT WINDOW

18 EIO0000002036 09/2014

SoMachine HVAC - Connection

The Project window shows the elements of the current project in the form a tree, making
easy to see the master/slave and parent/child relationship between them.
Click on the + and - icons next to each item (or press to corresponding keys) to expand
or collapse each item; or press the * key to expand all children of the current item in
depth.
Left-clicking	an	item	opens	its	configuration	page	in	the	Main window (if there is one),
and shows in the Catalog window all objects that can be inserted under the current item
(if there are).
Right-clicking an item selects it and opens its context menu (if there is one), showing
some operations you can do on the current tree item, like Add/Remove/Copy/Paste and
so on.
Pressing the Delete key also triggers the Remove command.
A single left-click of the item name (or the F2 key) triggers the in-place rename of the
object (if it supports it).

2.1.4 THE CATALOG WINDOW

This window shows a list of objects that can be inserted in the project under the currently
selected item in the Project window; selecting a different item in Project window re-
freshes this list.
By default, only the “major” version number of each device is shown, and the highest
minor version number is implicitly selected; for example, if three different versions of the
same device are present in the catalog (10.0, 10.1, 10.2), the Catalog will show only the
10 (without the minor version) but will select the 10.2 (the highest).
This behavior can be changed by selecting the Show all versions in catalog option in

EIO0000002036 09/2014 19

SoMachine HVAC - Connection

the Options menu in the menu bar; if you activate this option ALL the available versions
(even the older ones) will be shown in the Catalog and you will have the chance to manu-
ally select and add in the project older versions of each device.

To add an object, drag and drop it from the Catalog window to the Project window, over
the currently selected item (a + icon will appear); it will be added as its last child.

Another way to add an object is to right-click an item in the Project window and choose
Add; a pop-up window will appear, showing the same list of the Catalog window. In this
way you can add an object without having the Catalog visible, useful for example if you
are working with a very small screen.
This window also has a Show all versions	option,	that	behaves	like	the	flag	in	the	Op-
tions menu described before.

20 EIO0000002036 09/2014

SoMachine HVAC - Connection

2.2 LAYOUT CUSTOMIZATION
The layout of Connection workspace can be freely customized in order to suit your
needs.
Connection	takes	care	of	saving	the	layout	configuration	on	application	exit,	in	order	to	
persist your preferences between different working sessions.

2.3 TOOLBARS AND DOCKING WINDOWS
2.3.1 SHOWING/HIDING

To show (or hide) a toolbar, open the View menu and select the desired toolbar or docking
window (for example, the Catalog dock window).

The element is then shown or hidden.

2.3.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

The toolbar shows up in the new position.
You can change the shape of the toolbar, from horizontal to vertical, either by pressing the

EIO0000002036 09/2014 21

SoMachine HVAC - Connection

Shift key or by moving the toolbar next to the vertical border of any window.

You	can	also	make	the	toolbar	float,	either	by	pressing	the	CTRL key or by moving the
toolbar away from any window border.

2.3.3 MOVING DOCKING WINDOWS

In order to move a docking window, click on its name (at the top of the window) and then
drag and drop it to the destination.

22 EIO0000002036 09/2014

SoMachine HVAC - Connection

You	can	make	the	tool	window	float,	by	double-clicking	on	its	name,	or	by	pressing	the	
CTRL key, or by moving the tool window away from the main window borders.

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

EIO0000002036 09/2014 23

SoMachine HVAC - Connection

3. MANAGING PROJECTS

3.1 CREATING A NEW PROJECT AND MAIN PAGE
When you open Connection, you are presented with the Main page.
In the General tab you can open the last recently opened projects (shown in upper sec-
tion) or insert a new device in the project, selecting it in the lower panel.
Here you can see all the “top level” devices that you can add, and this window shows
the same content of the Catalog window when the root item is selected in the Project
window; therefore it follows the same behavior with respect to the Show all versions
in catalog	flag.
With a just a click in the list, a new device is inserted in the project tree, ready to be con-
figured	and	programmed.

In the second tab of the Main page, named Networks list, you can manage a list of all
the “virtual networks” to be used in your project with the devices that will be connected
with Binding I/O.
For each network you have to choose a name, the protocol to use (CANopen or Ethernet/
ModbusTCP) and symbolic color to show as a small circle in the project tree; each device
connected to the same network will be shown with the same color.
While	by	default	you	already	have	two	predefined	networks	(one	CANopen	and	one	Ether-
net) you can add any number of other networks, to build complex scenarios.

24 EIO0000002036 09/2014

SoMachine HVAC - Connection

3.2 SAVING THE PROJECT
To save the project, you can select the corresponding item of the menu File or the Main
toolbar.
The	Connection	project	is	a	single	file	that	has	.CON extension; it links other sub-com-
ponents (like PLC application or HMI pages) that typically reside in the same containing
folder.
If you are saving a new project (that is still Untitled), you are presented with a dialog
that asks you the new name for the project and the directory where to save it; the pro-
gram will create a folder of the chosen Name under the chosen Directory, and will save
a	file	named	like	Name.CON under it.

In the above example, the folder C:\Projects\Example1\ will be created and the project
will be saved as C:\Projects\Example1\Example1.CON.
If you want to save the project with another name, you can choose the command File /
Save as... and specify a new name and location for the .CON file.
IMPORTANT: only the .CON project	file	is	saved,	no	folder	is	created	nor	the	linked	com-
ponents (PLC or HMI) are copied or moved.

3.3 MANAGING EXISTING PROJECTS
3.3.1 OPENING AN EXISTING PROJECT

To open an existing project, click Open in the File menu of Connection’s main window,
or in the Main toolbar. This will open a dialog box, which lets you browse to the directory
containing	the	project	and	select	the	relative	project	file.
Otherwise, you can select one of recently opened projects from the File menu or in the
Main page.

3.3.2 CLOSING THE PROJECT

You can terminate the working session either by:
 - starting a new project, with the File / New command, or the button in the toolbar;
 - explicitly closing the current project with File / Close command;
 - by exiting Connection.
In	all	cases,	when	there	are	changes	not	yet	saved	to	file,	the	program	asks	you	to	choose	
between saving and discarding them.

EIO0000002036 09/2014 25

SoMachine HVAC - Connection

3.4 BUILDING PROJECTS

When you press the Build project button in the toolbar (or the F7 key), Connection will
examine the current project and will:
 - Print in the output window any error it found in the checking process; you can then
double-click the error to see the source position.

 - Generate	specific	configuration	files	for	each	device	(for	example	CONNEC.PAR for M171
Perf.	Display,	with	Field	and	Binding	configuration	settings).

 - Generate a single .CFN file	to	be	used	in	Device;	this	file	will	contain	all	the	sub-com-
ponents	of	the	current	project	(devices	configurations,	PLC	applications	and	HMI	pages)	
all contained inside the CFN,	in	a	redistributable	form;	this	file	will	have	the	same	name	
of the .CON project and will reside in the same folder.

Choosing the Tools / Open with Device command, Device will be launched with the
generated CFN file	opened.
IMPORTANT: before executing compilation, please make sure that all the PLC and HMI
sub-project have been built with the respective tools (Application and UserInterface). In
fact Connection will include in the CFN the last compilation output of each sub-compo-
nent, so you have to build them BEFORE compiling the Connection project.
NOTE: be sure to eliminate all compiler errors and warnings before downloading your

application to your controller or other device.

3.5 DISTRIBUTING PROJECTS
This topic should be discussed in two different parts:

3.5.1 DISTRIBUTING TO OTHER DEVELOPERS

To distribute the full Connection project to other developers (for example for further de-
velopment or debugging) you can give the entire folder containing the .CON file,	that	has	
been	created	by	Connection	with	the	first	Save command.
In	this	way	all	the	sub-components	created	by	Connection	(PLC,	HMI,	CFN	file)	are	all	
contained	inside,	and	since	the	file	paths	are	maintained	as	relatives	the	project	can	be	
moved around; so other developers can open the Connection project anywhere and work
normally.
One important exception is for .CON projects that link external components, for example
external PLC projects (on an external directory, or taken from catalog); in this scenario
you will have to distribute all the external components manually, because they are not
self-contained in the main project folder.

3.5.2 DISTRIBUTING TO USERS OR INSTALLERS

In this scenario, it is enough to distribute the CFN	file	(Device	document)	created	by	Con-
nection;	you	will	be	able	to	download	everything	(PLC,	HMI,	config	files,	parameters	val-
ues) only using Device with a single click.
One important exception is for .CON projects that link external components from the
catalog (PLC and HMI), in this case the produced CFN file	will	not	include	them;	they	must	
be distributed manually.

26 EIO0000002036 09/2014

SoMachine HVAC - Connection

EIO0000002036 09/2014 27

SoMachine HVAC - Connection

4. MANAGING PROJECT ELEMENTS

4.1 M171 PERF. DISPLAY
M171 Perf. Display is one of the top-level devices that you can insert in the project.
On its main page you can change its name and see a picture of it.

It can run both a PLC application and HMI pages on the same CPU and has a lot of con-
nectivity capabilities, in terms of on-board connectors and may optional plug-ins.

Follows detailed description of each element.

28 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.1.1 PLC

This tree item lets you create or associate a PLC project to the M171 Perf. Display; the
associated page shows the relative path of the associated PPJS	file	(Application	project).

If you do a right-click on the PLC, a pop-up menu will appear with the command Open
with Application; if the device has no associated project, you will be prompted for the
name to give to the new application (by default, the name of the device with the _PLC
suffix).

Otherwise if a PLC project has already been associated, Application will be launched and
the existing PLC project opened.
If you want to manually associate an existing PLC project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.
If a PLC project has been associated, the Export to catalog command in the pop-up
menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2 HMI

This tree item lets you create or associate a HMI project to the M171 Perf. Display; the as-
sociated page shows the relative path of the associated PAJX file	(UserInterface	project).

EIO0000002036 09/2014 29

SoMachine HVAC - Connection

If you do a right-click on the HMI, a pop-up menu will appear with the command Open
with UserInterface; if the device has no associated project, you will be prompted for
the name to give to the new application (by default, the name of the device with the _HMI
suffix).

Otherwise if a HMI project has already been associated, UserInterface will be launched
and the existing HMI project opened.
If you want to manually associate an existing HMI project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.
If a HMI project has been associated, the Export to catalog command in the pop-up
menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2.1 RETRIEVING REMOTE DATA FROM LOCAL HMI PAGES

If in your HMI pages project you have imported one or more parameter map, you can
configure	the	real	address	of	the	remote	device	here.
In fact by default any parameter map is considered as “local”, and if you want to view
in your page any parameter of a remote device you have to insert here (and so outside
and independently from UserInterface) the used protocol (Modbus RTU, Modbus TCP or
CANopen) and address.
In this way you can design the HMI pages in UserInterface as they were “local” and then
later change the real address of the remote device without even recompiling the PAJX
project (the change is made only in Connection).
To load or update the list of remote devices (parameter maps) inserted in the UserInter-
face project, press the Reload device list button; please remember to build the PAJX
project with UserInterface to have an updated list before doing this.

4.1.3 CANOPEN

M171 Perf. Display has one on-board CANopen port, plus another one available as an ex-
ternal	plug-in.	Each	port	can	be	configured	as	Not used (disabled), Master	(field),	Slave
(binding).

4.1.3.1 FIELD

When	you	configure	 the	CANopen	port	as	Master the M171 Perf. Display will act as a
CANopen master on this port, so you can attach any number of CANopen slave devices
here and exchange data with Field I/O.

30 EIO0000002036 09/2014

SoMachine HVAC - Connection

For	a	CANopen	master	port,	you	have	to	configure	(see	5.1	for	further	information):
 - Baud rate used in this CANopen network (in Kb/s).
 - Node ID for the master (1..127), by default is 127.
 - Heartbeat time in ms, by default 0 (heartbeat producer disabled): it is the master pro-
ducer heartbeat time.

 - The SYNC COBID to use, by default 128.
 - The period for the SYNC cycle in ms, by default 0 (sync disabled).

Example of possible slaves are the Modicon M171 Perf. Expansion 27 I/Os module (see
4.5)	or	generic	custom	devices	imported	from	their	EDS	files	(CAN	custom,	see	4.4).
After	you	added	and	configured	the	various	CANopen	slaves,	you	can	establish	the	“link”	
between the remote objects of the slave and the internal PLC variables to read or write.
The set of PLC objects you can read or write is made of:
 - Status variables, created with Application (not BIOS).
 - Field variables, created with Application.

4.1.3.2 BINDING

When	you	configure	the	CANopen	port	as	Slave the M171 Perf. Display will act as a CANo-
pen slave on this port, so you can exchange data with Binding I/O with other M171 Perf.
Display devices on the CANopen network.

Configuring the port

EIO0000002036 09/2014 31

SoMachine HVAC - Connection

For	a	CANopen	slave	port,	you	have	to	configure:
 - Baud rate used in this CANopen network (in Kb/s).
 - Node ID for the slave (1..127), by default is 127.
 - The “virtual network” where this M171 Perf. Display is attached; in the tree will appear
a small colored circle of same color of the chosen network (same color means same
network).

The Binding object
When	you	configure	a	CANopen	port	as	Slave, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the device
only SEND objects on the network.
The set of PLC objects you can send or receive is made of:
 - EEPROM parameters, created with Application (not BIOS).
 - Status variables, created with Application (not BIOS).

Clicking the Binding	object	shows	its	configuration	page:	here	is	a	grid	where	you	have	
to insert all the remote objects to read, and link them to the local destinations.
To do this click the Add button, a window showing all the “public” objects from all other
devices	on	this	same	network	will	appear;	here	you	can	apply	search	filters	and	choose	
which objects to read from (multi-selection is also supported).

32 EIO0000002036 09/2014

SoMachine HVAC - Connection

Once you inserted the remote objects to read, you have to assign the local destination
locations to write to, choosing with the list in the Dest parameter column or manually
inserting the Address.
IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of public objects here.

In the above example:
 - M171 Perf Display_1 will read from M171 Perf Display_2 the M171_2_par1 object
and will put it in its local M171_1_par1 object.

 - M171 Perf Display_1 will read from M171 Perf Display_2 the M171_2_par2 object
and will put it in its local M171_1_par2 object.

In the Period	you	can	configure	in	detail	the	single	period	for	each	parameter;	the	object	
will be updated every “period” ms.

4.1.4 RS485

M171 Perf. Display has one on-board RS485 port, plus another one available as an exter-
nal	plug-in.	Each	port	can	be	configured	as	Not used (disabled) or Master	(field).

4.1.4.1 FIELD

When	you	configure	the	RS485	port	as	Master the M171 Perf. Display will act as a Mod-
busRTU master on this port, so you can attach any number of Modbus slave devices here
and exchange data with Field I/O.

For	a	Modbus	master	port,	you	have	to	configure:
 - Baud rate used in this Modbus network (in b/s).
 - Serial mode (parity, data bits, stop bits).

EIO0000002036 09/2014 33

SoMachine HVAC - Connection

Example of possible slaves are the Modicon M171 Perf. Expansion 27 I/Os module (see
4.5), Generic Modbus devices (see 4.2), or custom devices created with the ModbusCus-
tomEditor tool (see 4.3).
After	you	added	and	configured	the	various	Modbus	slaves,	you	can	establish	the	“link”	
between the remote objects of the slave and the internal PLC variables to read or write.
The set of PLC objects you can read or write is made of:
 - Status variables, created with Application (not BIOS).
 - Field variables, created with Application.

4.1.5 ETHERNET

M171 Perf. Display can have one Ethernet port, available as an external plug-in. The port
always	acts	a	Modbus	TCP	slave,	and	additionally	can	be	configured	also	as	Master (bind-
ing).

4.1.5.1 BINDING

Configuring the port

For	an	Ethernet	port,	you	have	to	configure:
 - if it acts also a Master (otherwise only Slave is implied);
 - its IP address;
 - the “virtual network” where this M171 Perf. Display is attached; in the tree will appear
a small colored circle of same color of the chosen network (same color means same
network).

34 EIO0000002036 09/2014

SoMachine HVAC - Connection

The Binding object
When	you	configure	a	Ethernet	port	as	Master, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the de-
vice only SEND objects on the network (in this case you do not even need to activate the
Master feature).
The set of PLC objects you can send or receive is made of:
 - EEPROM parameters, created with Application (not BIOS).
 - Status variables, created with Application (not BIOS).
The	configuration	page	for	the	Binding object in Modbus TCP is the same of CANopen, so
see 4.1.3.2 for a description and usage of this page.
Because the interface is the same between the two protocols, you can focus on designing
your	distributed	application	without	knowing	the	specific	communication	protocol	details.
The only difference from CANopen Binding is that here you have one more column named
Timeout,	where	you	can	configure	the	specific	time-out	in	ms	for	each	object	exchanged.

4.2 M171 PERF. BLIND
M171 Perf. Blind is a top-level device that has the same characteristics and network be-
haviour of a M171 Perf. Display device but does not support local HMI. In fact it has no
on-board display to show its own pages. M171 Perf. Blind supports HMI Remote so its
pages can be downloaded and shown by Display for M171 Perf. or M171 Perf. Flush Mount-
ing keyboards.

Please refer to 4.1 - M171 Perf. Display chapter for a full description of all M171 Perf. Blind
features.

Usage example

In this scenario M171 Perf. Blind_1 device has a PLC project and has an HMI Remote proj-
ect that makes available M171 Perf. Blind pages for linked keyboards.
M171 Perf. Blind HMI Remote pages can be remoted and shown by Display for M171

EIO0000002036 09/2014 35

SoMachine HVAC - Connection

Perf._1	via	CANopen	field	and	by	M171	Perf.	Flush	Mounting_1	via	Ethernet	network.

4.3 GENERIC MODBUS
The Generic Modbus object is a generic Modbus slave that can be inserted under the
RS485	port	of	the	M171	Perf.	Display,	when	configured	as	Modbus master.
You can use the Generic Modbus	when	you	want	to	manually	configure	and	have	full	con-
trol over the single Modbus messages to send to the slave.
Another typical usage is for third-party devices that you plan to use just once in your
projects, and you do not want to put in the catalog for future reuse.

In the main page of the Generic Modbus	you	can	configure:
 - A name for the object in the project.
 - Its Modbus address (in the range 1..247).
 - Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the SysMbMRtuNodeStatus[] array, that cointains
diagnostic information about each slave node.

4.3.1 MODBUS MESSAGES

The Generic Modbus object alone will do nothing; you have to add under it one or more
Modbus messages,	 that	are	specific	Modbus	 function	requests	 that	will	be	sent	on	 the	
bus.
The following messages are supported:
 - Function 2 (Read discrete inputs, 0x2): reads one or more read-only digital input (1-bit
objects).

 - Function 3 (Read holding registers, 0x3): reads one or more read-write register (16-bit
objects).

 - Function 4 (Read input registers, 0x4): reads one or more read-only register (16-bit
objects).

 - Function 15 (Write multiple coils, 0xF): writes one or more digital output (1-bit ob-
jects).

 - Function 16 (Write multiple registers, 0x10): writes one or more register (16-bit ob-
jects).

The messages will be processed in the order they are inserted in the tree.

36 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.3.1.1 GENERAL TAB

For each message, in its General	tab	you	can	configure.

 - Start	address:	address	of	the	first	modbus	object	to	read	or	write	(1..65536).
 - Polling time: the message will be processed with this period (ms); for writing opera-
tions, 0 means to write it only on variation of the value, for reading operations 0 means
maximum speed.

 - Timeout: the operation will be unsuccesful when this time-out expires (ms).
 - Wait before send: this is an additional timeout, to be used with slow slaves that do not
answer if the messages are sent too fast.

4.3.1.2 REGISTERS TAB

Beside the General	tab,	each	different	message	has	a	second	tab	where	you	can	config-
ure the list of objects to read or write.

Using the Add button, insert one row for each Modbus object to read or write, up to 16 ele-
ments;	the	first	row	has	the	address	configured	in	the	Start address box in the General
tab, and the other rows increment and follow.
For each row, press the Assign button to choose the PLC object to link and to be read or
written with this Modbus message; you can not leave unassigned rows in the message.
IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

EIO0000002036 09/2014 37

SoMachine HVAC - Connection

4.4 MODBUS CUSTOM
Modbus custom devices can be created and edit directly by the user.
In this way you can use in your project and add in the catalog for future reuse any third-
party	Modbus	slave,	 characterizing	 its	Modbus	map	only	 the	first	 time	and	simplifying	
its further use, because you do not have to care about Modbus messages and functions
anymore.

4.4.1 CREATING A NEW MODBUS CUSTOM DEVICE

To create a new Modbus custom device, choose Tools / Run ModbusCustomEditor; the
external ModbusCustomEditor tool will be launched, with a new empty document.

Here	you	can	configure:
 - Name of the device.
 - Long description for the device.
 - A version number.
 - Overlapping of bit and register maps: check this if the device has both a 0 register and
a 0 bit (in other words it has different addressing of 16-bit and 1-bit objects), uncheck
this if the address is unique and so duplicated are not allowed, even if the type is dif-
ferent.

 - Max message size: insert here the maximum number of registers per message sup-
ported by the device.

Then, using the Add button, add one row for each Modbus object of the device; you have
to insert its address, name, type (note that Type and Read only columns are linked with
the Modbus type column) and optionally a long description.
When	you	finish,	save	the	current	device	definition;	you	will	be	prompted	for	a	file	name	
with .PCT extension, by default it will be proposed the current name+version.
The	file	will	be	saved	in	the	special	ModbusCustom folder in the catalog; now you can close
the ModbusCustomEditor and go back in Connection to use the new device.

4.4.2 EDITING AN EXISTING MODBUS CUSTOM DEVICE

To edit an existing Modbus custom device, you can:
 - Run the ModbusCustomEditor with the Tools / Run ModbusCustomEditor command,
and	then	manually	open	the	PCT	file	with	the	standard	File / Open command.

38 EIO0000002036 09/2014

SoMachine HVAC - Connection

 - When the device you want to edit is visible in the Catalog window (for example when
a RS485 node is selected and is in Master mode), you can right-click on it and choose
the Edit device command; the ModbusCustomEditor will be launched and the selected
device opened.

IMPORTANT: when the ModbusCustomEditor is running, Connection is blocked waiting for
it to be closed.

4.4.3 DELETING A MODBUS CUSTOM DEVICE

To delete an existing Modbus custom device, when the device is visible in the Catalog
window do a right-click and choose Delete from catalog (see previous paragraph).

4.4.4 USING A MODBUS CUSTOM DEVICE

When you insert the Modbus custom device as a Modbus slave (for example under a
RS485 port) and click on it on the tree, you will see a page with three tabs.

4.4.4.1 GENERAL TAB

In the General	tab	you	can	configure:
 - Its Modbus address (in the range 1..247).
 - Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the SysMbMRtuNodeStatus[] array, that cointains
diagnostic information about each slave node.

 - Polling time: the Modbus messages will be processed with this period (ms); for writ-
ing operations, 0 means to write it only on variation of the value, for reading operations
0 means maximum speed.

 - Timeout: the operation will be unsuccesful when this time-out expires (ms).

EIO0000002036 09/2014 39

SoMachine HVAC - Connection

 - Wait before send: this is an additional timeout, to be used with slow slaves that do
not answer if the messages are sent too fast.

Here you can notice that for Modbus custom the Polling time, Timeout and Wait before
send are generic for the whole device, while for the Generic Modbus	you	can	put	specific	
different values for each single message. This is because with the Modbus custom the
low-level Modbus messages are automatically calculated and you do not have to worry
about	them,	but	as	a	side-effect	you	can	not	“fine-tune”	them,	because	these	settings	
are global.

4.4.4.2 INPUT/OUTPUT TAB

Then, in the Input and Output tabs you can insert one row for each Modbus object to
read or write; press the Add button and choose the parameters to exchange (multi selec-
tion is supported), and use the Assign button to link them to the PLC object to be read
or written to.
Insert in the Input tab the Modbus objects to READ from the Modbus slave (and to put
into PLC variables), and insert in the Output tab the Modbus objects to WRITE to the
Modbus slave (and to get from the PLC variables).
IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

Connection will create the correct Modbus messages analyzing the sequence of addresses
and types; if the addresses are consequent and the types are homogenous, different ob-
jects will be grouped in single messages to optimize the communication.
The	maximum	number	of	registers	configured	with	the	ModbusCustomEditor	is	also	con-
sidered, along with the maximum number of registers per message of the master (that is
16 for the M171 Perf. Display).
The grouping and generation of the Modbus messages is totally automatic and recalcu-
lated at each compilation, so you do not have to know technical details of the Modbus
protocol.

40 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.5 CAN CUSTOM
CAN custom device can be created and added to the Catalog by importing their EDS file.	In	
this way you can use any third-party CANopen device as a slave, if it provides a standard-
compliant EDS file	(Electronic	Data	Sheet),	that	follows	the	DS306	CiA	specification.

4.5.1 IMPORTING A NEW CAN CUSTOM DEVICE

To import a new CAN custom device, choose Tools / Import from EDS command.
The Import EDS window will appear.

Here	you	have	to	configure:
 - The source EDS file	to	import,	using	the	Choose... button.
 - The full name of the device (by default is Product name + Revision).
 - The short name, this must not include any special character or spaces.
 - If the device supports dynamic PDO mapping or not: if you activate this option, you will
be	able	to	manually	configure	and	change	the	default	PDO	mapping	read	from	the	EDS	
to match the actual mapping of the slave, otherwise the PDO mapping will be read-only
and determined only by the EDS default values

After you have chosen the EDS file,	the	window	will	show	a	resume	of	the	device	charac-
teristic and number of objects (detailed in mandatory, optional, manufacturer).

EIO0000002036 09/2014 41

SoMachine HVAC - Connection

4.5.2 DELETING A CAN CUSTOM DEVICE

When the device you want to delete is visible in the Catalog window (for example when
a CANopen port is selected and is in Master mode), you can right-click on it and choose
the Delete from catalog command.

4.5.3 USING A CAN CUSTOM DEVICE

When you insert a CAN custom device as a CANopen slave (for example under a CANopen
port) and click on it on the tree, you will see the following page.

4.5.3.1 GENERAL TAB

In the General	tab	you	can	configure	(see	5.1	for	further	information):
 - Node number (1..127).
 - Node guard period in ms (default 200ms), 0 to disable node guard for this slave; if not
zero is the interval of node guarding packets sent by the master to the slave.

 - Life time factor (default 3x), 0 to disable node guard for this slave; if not zero, mul-
tiplied for the Node guarding period is the maximum amount of time the master will
wait for the slave answer of the node guard.

 - Boot time elapsed: this is the maximum amount of time in ms that the master will
wait for the slave to become pre-operational at boot (default 10s), before signaling an
error.

 - Node heartbeat producer time in ms, default is 0 (heartbeat disabled); if not zero
the master will enable the heartbeat error handling check for this node.

 - Node heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the slave will wait for the heartbeat produced by the master,
before timing out. This should be greater than the Heartbeat time of the master.

42 EIO0000002036 09/2014

SoMachine HVAC - Connection

 - Master heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the master will wait for the heartbeat sent by the slave, be-
fore timing out. This should be greater than the Node heartbeat producer time.

 - Identity object check: when this option is enabled (the default) the master at boot
will check the slave for his identity, verifying that the Identity object	fields	(object	
0x1018) match with EDS default values (Vendor ID, Product code, Revision, Serial); if
the option is not enabled, no check will be done (this is useful for example with slaves
not	totally	CANopen-compliant	or	incorrect	EDS	files).

 - PDO Tx comm settings:	configure	here	the	transmission	mode	for	PDO	Tx;	depending	
on the device features (determined from EDS values), not all options may be avail-
able.

 - PDO Rx comm settings:	configure	here	the	transmission	mode	for	PDO	Rx;	depending	
on the device features (determined from EDS values), not all options may be avail-
able.

4.5.3.2 SDO SET TAB

In this page you can insert a list of objects and values to send to the slave at boot for
configuration	purpose,	using	SDO	packets.
Press the Add button, choose the objects to send and then insert their Value in the grid.
Some objects are handled automatically, for example the Transmission type and Event
timer	are	configured	automatically	depending	on	the	PDO Tx comm settings and PDO Rx
comm settings in the General tab.

4.5.3.3 PDO TX AND PDO RX TABS

EIO0000002036 09/2014 43

SoMachine HVAC - Connection

In the PDO Tx - Input	tab	you	configure	the	PDOs	(Process	Data	Object)	that	the	slave	
transmits, and so the master will receive in input; in the PDO Rx - Output	you	configure	
the PDOs that the slave receives, and so the master will send in output.
If the CAN custom device was imported with the Dynamic PDO mapping enabled, you will
be able to edit the PDO mapping by adding and removing objects and manually edit the
PDO and Bit columns; otherwise, the Add and Remove buttons will not be available and
you	have	to	use	the	PDO	configuration	as-is.

If you check the Split single bits option, the object you choose will be inserted as
splitted single bits to be linked to BOOL variables (that is the default for digital I/O objects
in the DS401 standard).
IMPORTANT:	please	note	that	the	PDO	mapping	configuration	you	enter	here	is	NOT	sent	
to	the	device,	its	only	purpose	is	to	match	an	already	configured	PDO	mapping	on	the	
device.
Then with the Assign button you can link each CAN object with the PLC variable to read
(PDO Tx) or write (PDO Rx).
IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

4.6 DISPLAY FOR M171 PERF.
Display for M171 Perf. is a keyboard with a display. It is used to show HMI Remote pages
that are made available by M171 Perf. Display or M171 Perf. Blind devices.
Display for M171 Perf. keyboard has not PLC, HMI and HMI Remote features and it has
one on-board CANopen port.
Display for M171 Perf. can maintain on-board no more than one HMI set of remote device
pages.

4.6.1 CANOPEN

Display for M171 Perf. can be connected to M171 Perf. Display or to M171 Perf. Blind in
field	mode	or	in	network	mode.

44 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.6.1.1 FIELD MODE

In this connection mode Display for M171 Perf. has to be considered a slave of M171 Perf.
Display. Display for M171 Perf. will be able to show only the remote pages of the master
device which is linked to.
To	configure	network	in	this	way	select	M171	Perf.	Display	or	M171	Perf.	Blind	and	add	it	
as	first	level	node;	then	configure	its	PLC,	HMI,	and	HMI	Remote	projects	normally.
The project associated to M171 Perf. Display_1 - HMI Remote node will be shown by Dis-
play for M171 Perf. device.

Click on CANopen and select Master	(for	field)	option	in	Mode	tab	and	configure	CANopen	
settings. Then Display for M171 Perf. device can be selected from Catalog, dragged and
dropped over CANopen node.
Select Display for M171 Perf._1 device child node and adjust network settings.

EIO0000002036 09/2014 45

SoMachine HVAC - Connection

As resulting output of the compiling process we see the output line:
M171 Perf. Display_1: added field CAN keyboard ‘Display for M171 Perf._1’
(with virtual master nodeID 124)

Display for M171 Perf._1 device communicates with M171 Perf. Display_1 using this CAN
nodeID. This node ID will be used for navigating remote pages.

4.6.1.2 NETWORK MODE

In this connection mode Display for M171 Perf. can be linked to one of the remote de-
vices that are available on the network to navigate HMI Remote pages provided by other
devices.
Using Connection it is possible to do so indicating one of the available HMI Remote device
of the network. Let’s see how with an example.
We have a CANOpen network with M171 Perf. Display_1 and M171 Perf. Blind_1, then add
as	first	level	node	Display	for	M171	Perf._1	to	the	network	taking	it	from	Catalog panel.
Click on CANOpen node of Display for M171 Perf._1 and select Master (for HMI remoting)
node, assign univoque Node ID and select network CANOpen1.

Once linked to the CANopen1 network it is possible to select the HMI remote pages to
navigate with Display for M171 Perf._1.
Click on the device node then click on Add. Window Add HMI Remote pages will be shown.
It is possible to select to navigate pages of M171 Perf. Display_1 or M171 Perf. Blind_1
because they are on the same network of the keyboard and provide HMI Remote pages.

46 EIO0000002036 09/2014

SoMachine HVAC - Connection

Click on M171 Perf. Display_1, then click on OK. Selected device will be added to HMI
Remote Pages. It is not possible to navigate more than one remote device at a time.

4.7 M171 PERF. FLUSH MOUNTING
M171 Perf. Flush Mounting is an advanced keyboard with display that can be used to navi-
gate HMI Remote pages and offers more connectivity (CANopen, RS485, Ethernet) than
Display for M171 Perf.. It can also run PLC and local HMI pages and it is also provided
with probes.

4.7.1 PLC

M171	Perf.	Flush	Mounting	can	run	PLC.	This	configuration	step	can	be	done	in	the	same	
way of M171 Perf. Display and is fully described in section 4.1.1 - PLC.

4.7.2 HMI

M171	Perf.	Flush	Mounting	can	run	local	HMI	project	with	its	own	pages.	This	configuration	
step can be done in the same way of M171 Perf. Display and is fully described in section
4.1.2 - HMI.

EIO0000002036 09/2014 47

SoMachine HVAC - Connection

4.7.3 PROVIDING HMI PAGES

This feature is not supported by M171 Perf. Flush Mounting. No linked device can upload
HMI pages from M171 Perf. Flush Mounting device.

4.7.4 CANOPEN

M171	Perf.	Flush	Mounting	can	be	connected	using	CANopen	in	field	mode	or	in	network	
mode.

4.7.4.1 FIELD MODE

To connect M171 Perf. Flush Mounting in this mode select M171 Perf. Display or M171
Perf. Blind CANopen node and select the option Master	(for	field)	then	take	M171	Perf.	
Flush Mounting device from Catalog tab and drop it over CANopen node.

Select M171 Perf. Flush Mounting_1	child	node	and	configure	Network settings.

Probes
M171 Perf. Display_1 can access on board M171 Perf. Flush Mounting_1 on-board probes.
To do so select Probes-Input tab then it is possible to map a M171 Perf. Display_1 pa-
rameter to let it obtain the value of an on-board M171 Perf. Displayprobe.
Choose one of the probe and click on Assign button. Take one of the M171 Perf. Display_1
INT parameter and click OK button.

48 EIO0000002036 09/2014

SoMachine HVAC - Connection

HMI
It	is	possible	to	associate	to	a	M171	Perf.	Flush	Mounting	(configured	as	CANopen	field	
slave) an HMI project with local pages. M171 Perf. Flush Mounting would be able to show
its own target variables and parameters of the master CANopen which belongs to.

4.7.4.2 NETWORK MODE

In this connection mode M171 Perf. Flush Mounting can be linked to one of the remote
devices that are available on the network to navigate HMI Remote pages provided by
other devices.
Using Connection it is possible to do so by indicating one of the available HMI Remote
device of the network. Let’s see how with an example.
We have a CANopen network with M171 Perf. Display_1 and M171 Perf. Blind_1 then add
as	first	level	node	M171 Perf. Flush Mounting_1 to the network taking it from Catalog
panel.
Click on CANOpen node of M171 Perf. Flush Mounting_1 and select Master (for HMI remot-
ing and binding) node, assign univoque Node ID and select network CANOpen1.
Binding of variables between M171 Perf. Flush Mounting_1 and M171 Perf. Blind_1 and
M171 Perf. Display_1 is allowed in a network of this type (see 4.1.3.2 for more details).

EIO0000002036 09/2014 49

SoMachine HVAC - Connection

HMI Remote pages
In	CANopen	network	mode	it	is	possible	to	configure	M171	Perf.	Flush	Mounting	in	order	to	
be linked to 0 to 10 remote devices that can provide HMI Remote pages to the keyboard.

To add HMI Remote pages select M171 Perf. Flush Mounting_1 node, then press Add
on the HMI Remote pages box thus all available devices will be shown and the user can
select the pages to navigate.

4.7.5 RS485

The usage of this communication feature is the same of M171 Perf. Display (see 4.1.4 -
RS485 paragraph).

4.7.6 ETHERNET

M171	Perf.	 Flush	Mounting	 is	 provided	with	 on-board	Ethernet.	 Ethernet	 configuration	
and	features	for	this	kind	of	device	is	similar	to	the	configuration	of	the	Ethernet	plugin	of	
M171 Perf. Display (see 4.1.5 – Ethernet).

4.8 MODICON M171 PERF. EXPANSION 27 I/OS
Modicon	M171	Perf.	Expansion	27	I/Os	is	a	device	that	can	be	linked	in	a	CANopen	field	or	
Modbus	RTU	field	network	whose	master	can	be	a	M171	Perf.	Display,	a	M171	Perf.	Blind	
or a M171 Perf. Flush Mounting device.
Modicon M171 Perf. Expansion 27 I/Os main feature is to provide a lot of I/O signal to its
field	master	device.	I/O	signals	mapping	can	be	configured	by	using	Connection.

50 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.8.1 USING MODICON M171 PERF. EXPANSION 27 I/OS AS CANOPEN
FIELD SLAVE

In	this	configuration	sample	we	want	to	use	Modicon	M171	Perf.	Expansion	27	I/Os	as	
expansion of a M171 Perf. Display device. The same can be done for M171 Perf. Blind and
M171 Perf. Flush Mounting.
Configure	M171	 Perf.	Display	CANopen	 in	Master	 (for	 field)	mode.	 From	 the	Catalog
panel it is possible to select Modicon M171 Perf. Expansion 27 I/Os node and drop it
on the CANopen node.

Modicon	M171	Perf.	Expansion	27	I/Os	configuration	is	quite	similar	to	CAN	Custom	con-
figuration	(see	4.5.3	-		Using	a	CAN	custom	device)	with	dynamic	PDO	mapping	feature	
disabled. Available Input/Output objects that can be mapped on M171 Perf. Display PLC
variables via PDO are listed in PDO TX-Input and PDO RX-Output.
Connection knows the Modicon M171 Perf. Expansion 27 I/Os dictionary. Each object can
be	here	linked	to	M171	Perf.	Display_1	PLC	variable	as	it	has	been	done	in	the	above	fig-
ure for Analogue Input 1 signal.

4.8.2 USING MODICON M171 PERF. EXPANSION 27 I/OS AS RS485
FIELD SLAVE

In	this	configuration	sample	we	want	to	use	Modicon	M171	Perf.	Expansion	27	I/Os	as	
expansion of a M171 Perf. Display device. The same can be done for M171 Perf. Blind and
M171 Perf. Flush Mounting.
Configure	M171	Perf.	Display	RS485	in	Modbus Master	(for	field)	mode.	From	the	Catalog
panel it is possible to select Modicon M171 Perf. Expansion 27 I/Os node and drop it
on the RS485 node.

EIO0000002036 09/2014 51

SoMachine HVAC - Connection

Modicon	M171	Perf.	Expansion	27	I/Os_1	configuration	is	quite	similar	to	a	Modbus	Cus-
tom	device	configuration	(see	4.4.4	-	Using	a	Modbus	custom	device)	in	which	it	is	pos-
sible to assign available Modicon M171 Perf. Expansion 27 I/Os dictionary I/O objects to
M171 Perf. Display_1 PLC variables.
Connection knows the Modicon M171 Perf. Expansion 27 I/Os dictionary. Input and Out-
put objects can be added, removed, assigned, unassigned or changed in position. Only
assigned objects will be requested by M171 Perf. Display_1 device.

4.9 VIRTUAL CHANNELS ASSIGNMENT CRITERIA
This paragraph concerns the criteria used by Connection to assign virtual node IDs due to
the	network	configuration.

4.9.1 CANOPEN NETWORK - VIRTUAL SDO SERVERS

When CANopen is in use on a M171 Perf. Display or M171 Perf. Blind device in slave mode
(network for binding) three SDO servers are activated on it.
First SDO server is used to process requests that arrives to its physical node ID (the ID
assigned	by	user	in	the	configuration	box).	Supervisor	PC	should	be	connected	using	this	
node ID. CANopen physical node ID addr must be chosen in a range between 1 to 42.
Two other virtual SDO servers are opened on this device and are dedicated to the com-
munication with keyboards (max 2 for each CANopen network). So the device is able to
process requests addressed to these node IDs.
Virtual SDO servers node IDs are calculated with this criteria:
ch_1 = 124 – 2 * (addr – 1)

ch_2 = 123 – 2 * (addr – 1)

The	first	keyboard	on	the	network	communicates	to	the	destination	M171	Perf.	Display	
device using ch_1, channel ch_2 is dedicated to the second.
Example:
addr = 1 -> ch_1 = 124, ch_2 = 123

addr = 2 -> ch_1 = 122, ch_2 = 121

52 EIO0000002036 09/2014

SoMachine HVAC - Connection

4.9.2 ETHERNET - TCP SLAVE CHANNELS

If Ethernet network communication is enabled on a M171 Perf. Display or M171 Perf. Blind
device two TCP slave channels are always opened to support the communication with
keyboards.

4.9.3 CANOPEN FIELD - VIRTUAL MASTER CHANNELS

When CANopen is in use on a M171 Perf. Display or M171 Perf. Blind device in master
mode	(field)	three	master	channels	are	opened.
First master channel is used to process requests that arrive to its physical node ID (the
ID	assigned	by	user	in	the	configuration	box).	Supervisor	PC	should	be	connected	using	
this node ID. CANopen physical node ID addr must be chosen in a range between 1 to
122 or 125.
Two other virtual master channels are opened on this device and are dedicated to the
communication with keyboards (max 2 for each CANopen network).
Virtual	master	node	IDs	have	fixed	values	:
ch_1 = 123

ch_2 = 124

EIO0000002036 09/2014 53

SoMachine HVAC - Connection

5. TECHNICAL REFERENCE

5.1 CANOPEN PROTOCOL
5.1.1 OVERVIEW

CANopen realizes a communication model using the serial bus network Controller Area
Network (CAN).
Developed originally for passenger cars, the CAN two-wire bus system is already in use in
over one million industrial control devices, sensors and actuators.
CiA	(CANopen	in	Automation)	maintains	the	CANopen	specifications,	including	device	pro-
files	for	I/O	modules	(CiA	DS-401),	for	electric	drive	systems	(CiA	DSP-402)	and	many	
more.	The	process	of	defining	new	profiles	is	continually	performed.	An	independent	test	
and	certification	process	is	available	at	CiA.
A number of CANopen implementations (OEM code) and many CANopen products are al-
ready available. CiA regularly publishes an up-to-date catalog of CANopen products and
of	certified	ones.

5.1.2 PHYSICAL STRUCTURE OF A CANOPEN NETWORK

The	underlying	CAN	architecture	defines	the	basic	physical	structure	of	the	CANopen	net-
work.	Therefore,	a	line	(bus)	topology	is	used;	to	avoid	reflections	of	the	signals,	both	
ends of the network must be terminated. In addition, the maximum permissible branch
line lengths for connection of the individual network nodes must be observed.
Additionally,	for	CANopen,	two	additional	conditions	must	be	fulfilled:
 - all	nodes	must	be	configured	to	the	same	bit	rate	and
 - no node-ID may exist twice.

Unfortunately there are no mechanisms automatically ensuring these conditions. The sys-
tem integrator has to check the bit rate and node-ID of every single network node when
wiring a network and adjust if necessary.

5.1.3 COB AND COB-ID

CANbus, the physical layer of CANopen, can transmit short packages of data (called COB,
Communication Object), that have a 11-bit ID or 29-bit ID (in version CAN 2.0 B); this
ID	of	a	CAN-frame	is	known	as	Communication	Object	Identifier,	or	COB-ID.	In	case	of	a	
transmission collision, the bus arbitration used in the CANbus allows the frame with the
smallest	ID	to	be	transmitted	first	and	without	a	delay.	Thus	giving	a	low	code	number	for	
time critical functions helps ensure the lowest possible delay.

5.1.4 THE OBJECT DICTIONARY

All device parameters are stored in an object dictionary. This object dictionary contains the
description, data type and structure of the parameters as well as the address from others
point of view. The address is being composed of a 16 bit index and a 8 bit sub-index; the
sub-index refers to the elements of complex data types, like arrays and records.
There are a range of mandatory entries in the dictionary which helps ensure that all CANo-
pen devices of a particular type show the same behavior. The object dictionary concept
caters for optional device features which means a manufacturer does not have to provide
certain extended functionality on his device, but if he wishes to do so he has to do it in a
pre-defined	fashion.	Additionally,	there	is	sufficient	address	space	for	truly	manufacturer	
specific	functionality.

54 EIO0000002036 09/2014

SoMachine HVAC - Connection

5.1.5 THE SERVICE DATA OBJECTS (SDO)

Service Data Messages, in CANopen called Service Data Objects (SDO), are used for read
and write access to all entries of the object dictionary of a device. Main usage of this type
of	messages	is	the	device	configuration;	SDOs	are	typically	transmitted	asynchronously.	
The requirements towards transmission speed are not as high as for PDOs; the SDO mes-
sage contains information to address data in the device object dictionary and the data
itself.

5.1.6 THE PROCESS DATA OBJECTS (PDO)

Process Data Messages, in CANopen called Process Data Objects (PDO), are used to per-
form the real-time data transfer between different automation units. PDOs have to be
transmitted	quickly,	without	any	protocol	overhead	and	within	a	predefined	structure.
The contents of the PDO is encoded in the PDO mapping entries. A PDO can contain up
to 8 bytes or 64 single data elements from the object dictionary (in the case of 64, that
are bit data); the data are described via its index, sub-index and length. The mapping
parameter of a PDO resides also in the object dictionary.
The mapping for the PDO can be static or changeable. If the mapping can be changed,
it is called dynamic PDO mapping; changing of mapping can be done in the state pre-
operational (default) or operational.

5.1.7 PDO TRANSMISSION MODES

For the PDOs different transmission modes are distinguished:
 - SYNC: PDO are transmitted according to the SYNC clock transmitted by the master.
 - EVENT: PDO are transmitted when the value changes (asynchronous).
 - CYCLIC: PDO transmission is periodic and timer-based.
 - RTR: PDO are transmitted only on master request.

The communication parameters of a PDO reside in the object dictionary. The indices for
PDOs are built like follow:
 - PDO Tx: 0x1800 + PDO number.
 - PDO Rx: 0x1400 + PDO number.

The range of the PDO numbers is 1..512. that means up to 512 receive PDOs (RPDO) and
up to 512 transmit PDOs (TPDO) are possible for a device.
The communication parameter of PDOs are described with a structure: only sub-index 1
and 2 are mandatory.
Subindex 1 describes the used COB-ID of the PDO: a PDO communication channel be-
tween	two	devices	is	created	by	setting	the	TPDO	COB-ID	of	the	first	device	to	the	RPDO	
COB-ID of the second device. For PDOs a 1:1 and a 1:n communication is possible: that
means there is always only one transmitter, but an unlimited number of receivers.
The transmission type (sub-index 2) describes the kind of transmission; transmission type
1 means PDO will be triggered with each SYNC Object. If this entry has the value 240, the
PDO will be sent/received with each 240th SYNC. If the entry is 255, the transmission is
EVENT or CYCLIC, depending on the event timer (see below).
The	optional	entry	inhibit	time	(sub-index	3)	defines	a	minimum	time	period	between	two	
PDO transmissions. This feature helps ensure that messages with lower priorities than the
actual PDO can be transmitted in the case of continuous transmission of the actual PDO.
The optional entry event timer (sub-index 5) is only relevant for asynchronous Transmit
PDOs: if this value is greater then zero, indicates the time to elapse for the CYCLIC; oth-
erwise means EVENT (on variation).

EIO0000002036 09/2014 55

SoMachine HVAC - Connection

5.1.8 THE EMERGENCY OBJECT

The Emergency Message (EMCY) is a service which signs internal device errors.
The	EMCY	is	transmitted	with	highest	priority;	CANopen	defines	EMCY-Server	and	EMCY-
Clients, the server transmits EMCYs and the clients receive them.
The EMCY telegram consists of 8 bytes: it contains an emergency error code, the contents
of	object	and	5	byte	of	manufacturer	specific	error	code.

5.1.9 SYNC OBJECT AND TIME STAMP OBJECT

The SYNC Object is a network wide system clock. It is the trigger for synchronous mes-
sage transmission; the SYNC has a very high priority and contains no data in order to help
minimize	jitter.	The	SYNC	COB-ID	is	by	default	128,	but	can	be	configured.
The Time Stamp Object provides a common time reference; it is transmitted with high
priority.

5.1.10 ERROR CONTROL: NODE GUARDING

The Node Guarding is the periodical monitoring of certain network nodes; each node can
be checked by the master with a certain period called “Node guard period”. If the node
does not answer after a time calculated as the guard period x “Life time factor”, the con-
nection should be considered lost.
This feature is enabled for a slave when both parameters are not zero; please note that
when it is enabled it has a big impact on network load.

5.1.11 ERROR CONTROL: HEARTBEAT

The Heartbeat is an error control service without need for remote frames: the Heartbeat
producer transmits periodically a heartbeat message; one or more heartbeat consumer
receive this message and monitor this indication.
Each heartbeat producer can use a certain period (heartbeat producer time); the heart-
beat starts immediately if the heartbeat producer time is zero.
The heartbeat consumer has to monitor the heartbeat producer; it has an entry for each
heartbeat producer in its own object dictionary. The heartbeat consumer time can be dif-
ferent for each heartbeat producer but should be greater than the heartbeat producer
time.
Heartbeat has a big impact on network load, but in practice the half of the load of the
node guarding.

5.1.12 THE NETWORK BEHAVIOR

Devices have four operative states: the initialization, the pre-operational, the
stopped and the operational one; the difference between master and slave devices is
the initiation of the state transitions.
The master controls the state transitions of each device in the network: after power-on
a device goes in the initialization, and then in the pre-operational automatically;
in this state reading and writing to its object dictionary via the service data object (SDO)
is	possible.	Therefore	the	device	can	now	be	configured:	this	means	setting	of	objects	or	
changing of default values in the object dictionary like preparing PDO transmission.
Afterwards the device can be switched into the operational” state via the command
Start Remote Node in order to start PDO communication. PDO communication can be
stopped by the network master by simply switching the remote node back to pre-opera-
tional by using the Enter Pre-Operational State command.

56 EIO0000002036 09/2014

SoMachine HVAC - Connection

Via the Stop Remote Node command the master can force the slave(s) to the stopped
state. In this state no services besides network and error control mechanism are avail-
able.
The command Reset Communication resets the communication on the node: all commu-
nication parameters will be set to their defaults.
The application will be reset by Reset Node command, that resets all application param-
eter and then calls Reset Communication command.

5.1.13 THE BOOT-UP MESSAGE

After	a	CANopen	node	has	finished	 its	own	initialization	and	entered	 in	the	node	state	
pre-operational it has to send the Boot-up Protocol Message; this message indicated
that	the	slave	is	ready	for	work	(e.g.	configuration).
The master can wait for this message up to Boot time elapsed ms.

5.1.14 THE CANOPEN DEVICE PROFILES

A	device	profile	defines	a	 standard	kind	of	device:	 for	 these	standard	devices	a	basic	
functionality	has	been	specified,	that	every	device	has	to	implement.	The	CANopen	Device	
Profiles	help	to	ensure	a	minimum	of	identical	behavior	for	the	same	kind	of	device	in	or-
der to provide the greatest degree of interoperability and vendor independence possible.
Each	device	has	to	fulfill	the	requirements	on	the	behavior;	furthermore	it	has	to	support	
all mandatory objects: these objects are parameter and data for the device.
Additionally the manufacturer can decide about supported optional objects; all param-
eters	and	data,	which	are	not	covered	by	the	standardized	device	profiles	can	be	realized	
as	manufacturer	specific	objects.
For	example,	 two	of	 the	most	commonly	used	Device	Profiles	are	DS401	(Generic	 I/O	
Modules) and DS402 (Drives and Motion Control).

5.2 MODBUS PROTOCOL
5.2.1 OVERVIEW

Modbus is a serial communication protocol. In simple terms, it is a method used for trans-
mitting information over serial lines between electronic devices. The device requesting
the information is called the Modbus Master and the devices supplying information are
Modbus Slaves. In a standard Modbus network, there is one Master and up to 247 Slaves,
each with a unique Slave Address from 1 to 247; the Master can also write information
to the Slaves.
Address 0 is used as broadcast address.

5.2.2 DATA TYPES

Information is stored in the Slave device in four different types: two types are on/off
discrete values (coils) and two are numerical values (registers).
 - Discrete Input Contacts (read only), 1-bit.
 - Discrete Output Coils (read/write), 1-bit.
 - Analog Input Registers (read only), 16-bit.
 - Analog Output Holding Registers (read/write), 16-bit.
To	handle	more	complex	data	types	(like	32-bit	integers	or	floating	point)	you	have	to	use	
two or more following registers and read or write them together.

EIO0000002036 09/2014 57

SoMachine HVAC - Connection

5.2.3 FUNCTION CODES

The	Modbus	protocol	specifies	different	“function	codes”	for	each	Modbus	message:
 - 01 (0x01): Read Discrete Output Coils.
 - 05 (0x05): Write single Discrete Output Coil.
 - 15 (0x0F): Write multiple Discrete Output Coils.
 - 02 (0x02): Read Discrete Input Contacts.
 - 04 (0x04): Read Analog Input Registers.
 - 03 (0x03): Read Analog Output Holding Registers.
 - 06 (0x06): Write single Analog Output Holding Register.
 - 16 (0x10): Write multiple Analog Output Holding Registers.

5.2.4 ERROR DETECTION AND CRC

CRC stands for Cyclic Redundancy check: it is two bytes added to the end of every Mod-
bus message for error detection. Every byte in the message is used to calculate the CRC.
The receiving device also calculates the CRC and compares it to the CRC from the sending
device: if even one bit in the message is received incorrectly, the CRCs will be different
and an error will result.

5.2.5 PROTOCOL VERSIONS

Versions of the Modbus protocol exist for serial port and for Ethernet and other networks
that support the Internet protocol suite. There are many variants of Modbus protocols:
 - Modbus RTU: This is used in serial communication (RS232 or RS485) and makes use of
a compact, binary representation of the data for protocol communication. The RTU for-
mat follows the commands/data with a cyclic redundancy check checksum as an error
check mechanism helps ensure the reliability of data. Modbus RTU is the most common
implementation available for Modbus. A Modbus RTU message must be transmitted
continuously without inter-character delay. Modbus messages are framed (separated)
by idle (silent) periods.

 - Modbus ASCII: This is used in serial communication and makes use of ASCII characters
for protocol communication. The ASCII format uses a longitudinal redundancy check
checksum. Modbus ASCII messages are framed by leading colon (‘:’) and trailing new-
line (CR/LF).

 - Modbus TCP: This is a Modbus variant used for communications over TCP/IP networks.
It does not require a checksum calculation as lower layer takes care of the same.

58 EIO0000002036 09/2014

SoMachine HVAC - Connection

EIO0000002036 09/2014 59

SoMachine HVAC - Application

Contents
1. Overview 67

1.1 The workspace 67
1.1.1 The output window 68
1.1.2 The status bar 68
1.1.3 The document bar 68
1.1.4 The watch window 69
1.1.5 The library window 69
1.1.6 The workspace window 71
1.1.7 The source code editors 72

2. Using the environment 73

2.1 Layout customization 73

2.2 Toolbars 73
2.2.1 Showing/hiding toolbars 73
2.2.2 Moving toolbars 73

2.3 Docking windows 75
2.3.1 Showing/hiding tool windows 75
2.3.2 Moving tool windows 76

2.4 Working with windows 77
2.4.1 The document bar 77
2.4.2 The window menu 78

2.5 Full screen mode 78

2.6 Environment options 79

3. Managing projects 83

3.1 Creating a new project 83

3.2 Uploading the project from the target device 83

3.3 Saving the project 85
3.3.1 Persisting changes to the project 85
3.3.2 Saving to an alternative location 85

3.4 Managing existing projects 85
3.4.1 Opening an existing Application project 85
3.4.2 Editing the project 85
3.4.3 Closing the project 86

3.5 Distributing projects 86

3.6 Project options 87
3.6.1 Project info 87
3.6.2 Code generation 87
3.6.3 Build output 88

60 EIO0000002036 09/2014

SoMachine HVAC - Application

3.6.4 Download 89
3.6.5 Debug 89
3.6.6 Build events 90

3.7 Selecting the target device 90

3.8 Working with libraries 91
3.8.1 The library manager 91
3.8.2 Exporting to a library 92
3.8.3 Importing from a library or another source 93
3.8.4 Updating existing libraries 94

4. Managing project elements 95

4.1 Program Organization Units 95
4.1.1 Creating a new Program Organization Unit 95
4.1.2 Editing POUs 96
4.1.3 Deleting POUs 98
4.1.4 Source code encryption 98

4.2 Variables 99
4.2.1 Global variables 99
4.2.2 Local variables 105
4.2.3 Create multiple 106

4.3 Tasks 107
4.3.1 Assigning a program to a task 107
4.3.2	 Task	configuration	 108

4.4 Derived data types 108
4.4.1 Typedefs 108
4.4.2 Structures 110
4.4.3 Enumerations 112
4.4.4 Subranges 113

4.5 Browsing the project 115
4.5.1 object browser 115
4.5.2 Searching with the Find in project command 124

4.6 Working with Application extensions 126

5. Editing the source code 127

5.1 Instruction List (IL) editor 127
5.1.1 Editing functions 127
5.1.2 Reference to PLC objects 127
5.1.3 Automatic error location 128
5.1.4 Bookmarks 128

5.2 Structured Text (ST) Editor 128
5.2.1 Creating and editing ST objects 128
5.2.2 Editing functions 128

EIO0000002036 09/2014 61

SoMachine HVAC - Application

5.2.3 Reference to PLC objects 129
5.2.4 Automatic error location 129
5.2.5 Bookmarks 129

5.3 Ladder Diagram (LD) editor 129
5.3.1 Creating a new LD document 130
5.3.2 Adding/Removing networks 130
5.3.3 Labeling networks 130
5.3.4 Inserting contacts 131
5.3.5 Inserting coils 132
5.3.6 Inserting blocks 132
5.3.7 Editing coils and contacts properties 132
5.3.8 Editing networks 133
5.3.9 Modifying properties of blocks 133
5.3.10 Getting information on a block 133
5.3.11 Automatic error retrieval 133

5.4 Function Block Diagram (FBD) editor 134
5.4.1 Creating a new FBD document 134
5.4.2 Adding/Removing networks 134
5.4.3 Labeling networks 134
5.4.4 Inserting and connecting blocks 135
5.4.5 Editing networks 136
5.4.6 Modifying properties of blocks 136
5.4.7 Getting information on a block 136
5.4.8 Automatic error retrieval 136

5.5 Sequential Function Chart (SFC) Editor 137
5.5.1 Creating a new SFC document 137
5.5.2 Inserting a new SFC element 137
5.5.3 Connecting SFC elements 137
5.5.4 Assigning an action to a step 137
5.5.5 Specifying a constant/a variable as the condition of a transition 139
5.5.6 Assigning conditional code to a transition 139
5.5.7 Specifying the destination of a jump 141
5.5.8 Editing SFC networks 141

5.6 Variables editor 141
5.6.1 Opening a variables editor 142
5.6.2 Creating a new variable 143
5.6.3 Editing variables 143
5.6.4 Deleting variables 146
5.6.5 Sorting variables 147
5.6.6 Copying variables 147

6. Compiling 149

6.1 Compiling the project 149

62 EIO0000002036 09/2014

SoMachine HVAC - Application

6.1.1	 Image	file	loading	 149

6.2 Compiler output 150
6.2.1 Compiler errors 150

6.3 Command-line compiler 152

7. Launching the application 153

7.1 Setting up the communication 153
7.1.1 Saving the last used communication port 155

7.2 On-line status 155
7.2.1 Connection status 155
7.2.2 Application status 155

7.3 Downloading the application 156
7.3.1 Controlling source code download 156

7.4 Simulation 158

7.5 Control the PLC execution 159
7.5.1 Halt 159
7.5.2 Cold restart 159
7.5.3 Warm restart 160
7.5.4 Hot restart 160
7.5.5 Reboot target 161

8. Debugging 163

8.1 Watch window 163
8.1.1 Opening and closing the watch window 163
8.1.2 Adding items to the watch window 164
8.1.3 Removing a variable 167
8.1.4 Refreshment of values 167
8.1.5 Changing the format of data 168
8.1.6 Working with watch lists 169
8.1.7 Autosave watch list 171

8.2 Oscilloscope 171
8.2.1 Opening and closing the oscilloscope 172
8.2.2 Adding items to the oscilloscope 173
8.2.3 Removing a variable 175
8.2.4 Variables sampling 175
8.2.5 Controlling data acquisition and display 176
8.2.6 Changing the polling rate 182
8.2.7 Saving and printing the graph 183

8.3 Edit and debug mode 184

8.4 Live debug 185
8.4.1 SFC animation 186

EIO0000002036 09/2014 63

SoMachine HVAC - Application

8.4.2 LD animation 186
8.4.3 FBD animation 187
8.4.4 IL and ST animation 187

8.5 Triggers 187
8.5.1 Trigger window 187
8.5.2 Debugging with trigger windows 193

8.6 Graphic triggers 204
8.6.1 Graphic trigger window 204
8.6.2 Debugging with the graphic trigger window 210

9. Application reference 221

9.1 Menus reference 221
9.1.1 File menu 221
9.1.2 Edit menu 222
9.1.3 View menu 222
9.1.4 Project menu 223
9.1.5 Debug menu 224
9.1.6 On-line menu 224
9.1.7 Scheme menu 225
9.1.8 Variables menu 226
9.1.9 Window menu 226
9.1.10 Help menu 227

9.2 Toolbars reference 227
9.2.1 Main toolbar 227
9.2.2 FBD toolbar 228
9.2.3 LD toolbar 229
9.2.4 SFC toolbar 230
9.2.5 Project toolbar 231
9.2.6 Network toolbar 232
9.2.7 Debug toolbar 232

10. Language reference 235

10.1 Common elements 235
10.1.1 Basic elements 235
10.1.2 Elementary data types 235
10.1.3 Derived data types 236
10.1.4 Literals 238
10.1.5 Variables 239
10.1.6 Program Organization Units 242
10.1.7 IEC 61131-3 standard functions 245

10.2 Instruction List (IL) 258
10.2.1 Syntax and semantics 258
10.2.2 Standard operators 260

64 EIO0000002036 09/2014

SoMachine HVAC - Application

10.2.3 Calling Functions and Function blocks 260

10.3 Function Block Diagram (FBD) 261
10.3.1 Representation of lines and blocks 261
10.3.2	 Direction	of	flow	in	networks	 262
10.3.3 Evaluation of networks 262
10.3.4 Execution control elements 263

10.4 Ladder Diagram (LD) 265
10.4.1 Power rails 265
10.4.2 Link elements and states 265
10.4.3 Contacts 266
10.4.4 Coils 267
10.4.5 Operators, functions and function blocks 268

10.5 Structured Text (ST) 268
10.5.1 Expressions 268
10.5.2 Statements in ST 269

10.6 Sequential Function Chart (SFC) 274
10.6.1 Steps 274
10.6.2 Transitions 276
10.6.3 Rules of evolution 277

10.7 Application Language Extensions 279
10.7.1 Macros 279
10.7.2 Pointers 280
10.7.3 Waiting statement 281

11. ERRORS REFERENCE 283

11.1 Compile time error messages 283

EIO0000002036 09/2014 65

SoMachine HVAC - Application

SAFETY INFORMATION

Important Information
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to inform of potential hazards or to call
attention	to	information	that	clarifies	or	simplifies	a	procedure.

The addition of this symbol to a Danger safety label indicates that an electrical hazard
exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards.
Obey all safety messages that follow this symbol to avoid possible injury or death.

 DANGER
DANGER indicates an imminently hazardous situation which, if not avoided, results in death
or serious injury.

 WARNING
WARNING indicates a potentially hazardous situation which, if not avoided, can result in
death or serious injury.

 CAUTION
CAUTION indicates a potentially hazardous situation which, if not avoided, can result in
minor or moderate injury.

NOTICE
NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical	equipment	should	be	installed,	operated,	serviced,	and	maintained	only	by	qualified	
personnel.

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of
this material.
You can download these technical publications and other technical information from our website at:

www.schneider-electric.com

http://www.schneider-electric.com

66 EIO0000002036 09/2014

SoMachine HVAC - Application

PRODUCT RELATED INFORMATION

 WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure modes of control

paths and, for certain critical control functions, provide a means to achieve a safe state
during and after a path failure. Examples of critical control functions are emergency stop and
overtravel stop, power outage and restart.

• Separate or redundant control paths must be provided for critical control functions.
• System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.
• Observe all accident prevention regulations and local safety guidelines.(1)

• Each implementation of this equipment must be individually and thoroughly tested for proper
operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

(1) For additional information, refer to NEMA ICS 1.1 (latest edition), “Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control” and to NEMA ICS 7.1 (latest
edition), “Safety Standards for Construction and Guide for Selection, Installation and Operation
of Adjustable-Speed Drive Systems” or their equivalent governing your particular location.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this equipment.
• Update	your	application	program	every	time	you	change	the	physical	hardware	configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EIO0000002036 09/2014 67

SoMachine HVAC - Application

1. OVERVIEW

Application is an IEC61131-3 Integrated Development Environment supporting the whole
range	of	languages	defined	in	the	standard.
In order to support the user in all the activities involved in the development of an applica-
tion, Application includes:
 - textual	 source	 code	 editors	 for	 the	 Instruction	 List	 (briefly,	 IL)	 and	 Structured	 Text	
(briefly,	ST)	programming	languages	(see	Chapter	5);	

 - graphical	source	code	editors	for	the	Ladder	Diagram	(briefly,	LD),	Function	Block	Dia-
gram	 (briefly,	 FBD),	 and	 Sequential	 Function	 Chart	 (briefly,	 SFC)	 programming	 lan-
guages	(see	Chapter	5);	

 - compiler, which translates applications written according to the IEC standard directly
into machine code, avoiding the need for a run-time interpreter, thus making the pro-
gram	execution	as	fast	as	possible	(see	Chapter	7);

 - communication system which allows the download of the application to the target envi-
ronment	(see	Chapter	7);

 - rich set of debugging tools, ranging from an easy-to-use watch window to more power-
ful tools, which allows the sampling of fast changing data directly on the target environ-
ment, helping to ensure that the information is accurate and reliable (see Chapter 8).

1.1 THE WORKSPACE
The	figure	below	shows	a	view	of	Application’s	workspace,	 including	many	of	 its	more	
commonly used components.

68 EIO0000002036 09/2014

SoMachine HVAC - Application

The following paragraphs give an overview of these elements.

1.1.1 THE OUTPUT WINDOW

The Output window is the place where Application prints its output messages. This win-
dow contains four tabs: Build, Find in project, Debug, and Resources.

Build
The Build panel displays the output of the following activities:
 - opening	a	project;
 - compiling	a	project;
 - downloading code to a target.

Find in project
This panel shows the result of the Find in project activity.

Debug
The Debug panel displays information about advanced debugging activities (for example,
breakpoints). Depending on the target device you are interfacing with, Application can
print on this output window every PLC run-time error (for example, division by zero), lo-
cating the exact position where the error occured.

Resources
The Resources	panel	displays	messages	related	to	the	specific	target	device	Application	
is interfacing with.

1.1.2 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated
control reporting the state of communication at its right border.

1.1.3 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in Application.

Workspace
window

Source code
editors Watch window

Output window

Document bar

Library window Status bar

EIO0000002036 09/2014 69

SoMachine HVAC - Application

1.1.4 THE WATCH WINDOW

The Watch window is one of the many debugging tools supplied by Application. Among
the other debugging tools, it is worth mentioning the Oscilloscope (see Paragraph 8.2),
triggers, and the live debug mode (see Paragraph 8.2).

1.1.5 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories ex-
plained in the following paragraphs.
You can choose the display mode by clicking the right button of your mouse. In the View
list mode, each element is represented by its name and icon. Instead, a table appears
in the View details mode, each row of which is associated with one of the embedded
elements. The latter mode also displays the Type (Operator/Function) and the description
of each element.
If you right-click one of the elements of this panel, and you click Object properties from
the dialog box, then a window appears with further details on the element you selected
(input and output supported types, name of input and output pins, etc.).

1.1.5.1 OPERATORS AND STANDARD BLOCKS

This	panel	lists	basic	language	elements,	such	as	operators	and	functions	defined	by	the	
IEC 61131-3 standard.

70 EIO0000002036 09/2014

SoMachine HVAC - Application

1.1.5.2 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the inter-
face	between	firmware	and	PLC	application	code.

1.1.5.3 TARGET BLOCKS

This	panel	lists	all	the	system	functions	and	function	blocks	available	on	the	specific	target	
device.

1.1.5.4 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the Li-
brary window. However, other panels may be added to this window, one for each library
included in the current Application project. For example, the picture above was taken from
a Application project having two included libraries, basic.pll and thermmodel.pll (see
also Paragraph 3.7).

EIO0000002036 09/2014 71

SoMachine HVAC - Application

1.1.6 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

1.1.6.1 PROJECT

The Project panel contains a set of folders:
 - Program, Function blocks, Functions: each folder contains Program Organization
Units	(briefly,	POUs	-	see	Paragraph	4.1)	of	the	type	specified	by	the	folder	name.

 - Global variables: it is further divided in Variables, I/O Variables, Constants and
Retain variables.	Each	folder	contains	global	variables	of	the	type	specified	by	the	
folder name (see Paragraph 4.2).

 - Tasks: this item lists the system tasks and the programs assigned to each task (see
Paragraph 4.3).

1.1.6.2 DEFINITIONS

The Definitions	panel	contains	the	definitions	of	all	user-defined	data	types,	such	as	
structures or enumerated types.

1.1.6.3 RESOURCES

The contents of the Resources panel depends on the target device Application is interfac-
ing	with:	it	may	include	configuration	elements,	schemas,	wizards,	and	so	on.	

72 EIO0000002036 09/2014

SoMachine HVAC - Application

1.1.7 THE SOURCE CODE EDITORS

The Application programming environment includes a set of editors to manage, edit,
and	print	source	files	written	in	any	of	the	5	programming	languages	defined	by	the	IEC	
61131-3 standard (see Chapter 5).

The	definition	of	both	global	and	local	variables	is	supported	by	specific	spreadsheet-like	
editors.

EIO0000002036 09/2014 73

SoMachine HVAC - Application

2. USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements Application is composed
of,	in	order	to	let	you	set	up	the	IDE	in	the	way	which	best	suits	to	your	specific	develop-
ment process.

2.1 LAYOUT CUSTOMIZATION
The	layout	of	Application’s	workspace	can	be	freely	customized	in	order	to	suit	your	needs.
Application	takes	care	to	save	the	layout	configuration	on	application	exit,	in	order	to	per-
sist your preferences between different working sessions.

2.2 TOOLBARS
2.2.1 SHOWING/HIDING TOOLBARS

In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select
the desired toolbar (for example, the Function Block Diagram bar).

The toolbar is then shown (hidden).

2.2.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

74 EIO0000002036 09/2014

SoMachine HVAC - Application

The toolbar shows up in the new position.

You can change the shape of the toolbar, from horizontal to vertical, either by pressing the
Shift key or by moving the toolbar next to the vertical border of any window.

You	can	also	make	the	toolbar	float,	either	by	pressing	the	CTRL key or by moving the
toolbar away from any window border.

EIO0000002036 09/2014 75

SoMachine HVAC - Application

2.3 DOCKING WINDOWS
2.3.1 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows menu allows you to show (or hide) a tool window (for example,
the Output window).

The tool window is then shown (hidden).

76 EIO0000002036 09/2014

SoMachine HVAC - Application

2.3.2 MOVING TOOL WINDOWS

In order to move a tool window, click on its name (at the top of the window) and then drag
and drop it to the destination.

You	can	make	the	tool	window	float,	by	double-clicking	on	its	name,	or	by	pressing	the	
CTRL key, or by moving the tool window away from the main window borders.

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

EIO0000002036 09/2014 77

SoMachine HVAC - Application

2.4 WORKING WITH WINDOWS
Application allows to open many source code editors so that the workspace could get
rather messy.
You can easily navigate between these windows through the Document bar and the Win-
dow menu.

2.4.1 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by click-
ing on the corresponding name.

You can show or hide the Document bar with the menu option of the same name in the
menu View>Toolbars.

78 EIO0000002036 09/2014

SoMachine HVAC - Application

2.4.2 THE WINDOW MENU

The Window menu is an alternative to the Document bar: it lists all the currently open
editors and allows to switch between them.

Moreover, this menu supplies a few commands to automate some basic tasks, such as
closing all windows.

2.5 FULL SCREEN MODE
In order to ease the coding of your application, you may want to switch on the full screen
mode. In full screen mode, the source code editor extends to the whole working area,
making easier the job of editing the code, notably when graphical programming languag-
es (that is, LD. FBD, and SFC) are involved.

You can switch on and off the full screen mode with the Full screen option of the menu
View or with the corresponding command of the Main toolbar.

EIO0000002036 09/2014 79

SoMachine HVAC - Application

2.6 ENVIRONMENT OPTIONS
If you click Options... in the File menu, a multi-tab dialog box appears and lets you
customize some options of Application.

General
Autosave: if the Enable Autosave box is checked, Application periodically saves the
whole project. You can specify the period of execution of this task by entering the number
of minutes between two automatic savings in the Autosave interval text box.

Reset bars positions
The layout of the dock bars in the IDE will be resetted to default positions and dimensions.
In order to take effect Application must be restarted.

Graphic Editor
This panel lets you edit the properties of the LD, FBD, and SFC source code editors.

Text Editors

Language
You can change the language of the environment by selecting a new one from the list
shown in this panel.
After selecting the new language, press the Select	button	and	confirm	by	clicking	OK.
This change will be effective only the next time you start Application.

Tools
You can add up to 16 commands to the Tools menu. These commands can be associated
with any program that will run on your operating system. You can also specify arguments
for any command that you add to the Tools menu. The following procedure shows you
how to add a tool to the Tools menu.

80 EIO0000002036 09/2014

SoMachine HVAC - Application

1) Type	the	full	path	of	the	executable	file	of	the	tool	in	the	Command text box. Other-
wise,	you	can	specify	the	filename	by	selecting	it	from	Windows	Explorer,	which	you	
open by clicking the Browse button.

2) In the Arguments text box, type the arguments - if any - to be passed to the execut-
able command mentioned at step 1. They must be separated by a space.

3) Enter in Menu string the name you want to give to the tool you are adding. This is
the string that will be displayed in the Tools menu.

4) Press Add to effectively insert the new command into the suitable menu.
5) Press OK	to	confirm,	or	Cancel to quit.
For example, let us assume that you want to add Windows calculator to the Tools
menu:
 - Fill	the	fields	of	the	dialog	box	as	displayed.

 - Press Add. The name you gave to the new tool is now displayed in the list box at the
top of the panel.

And in the Tools menu as well.

EIO0000002036 09/2014 81

SoMachine HVAC - Application

Merge
Here you can set the merge function behavior.

See paragraph 3.8.3.2 for more details.

82 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 83

SoMachine HVAC - Application

3. MANAGING PROJECTS

This chapter focuses on Application projects.
A project corresponds to a PLC application and includes all the required elements to run
that application on the target device, including its source code, links to libraries, informa-
tion about the target device and so on.
The following paragraphs explain how to properly work with projects and their elements.

3.1 CREATING A NEW PROJECT
To start a new project, click New project in the File menu of the Application main
window. The same command is available in the Main toolbar and, if no project is open, in
Application’s	welcome	page.	This	causes	the	following	dialog	box	to	appear.

You are required to enter the name of the new project in the Name control. The string you
enter	will	also	be	the	name	of	the	folder	which	will	contain	all	the	files	making	up	the	Ap-
plication project. The pathname in the Directory control indicates the default location
of this folder.
Target selection allows you to specify the target device which will run the project.
Finally, you can make the project case-sensitive by activating the related option. Note
that, by default, this option is not active, in compliance with IEC 61131-3 standard: when
you choose to create a case-sensitive project, it will not be standard-compliant.
When	you	confirm	your	decision	to	create	a	new	project	and	the	whole	required	informa-
tion has been provided, Application completes the operation, creating the project direc-
tory	and	all	project	files;	then,	the	project	is	opened.
The list of devices from which you can select the target for the project you are creating
depends on the contents of the catalog of target devices available to Application.
When the desired target is missing, either you have run the incorrect setup executable
or you have to run a separate setup which is responsible to update the catalog to include
the target device. In both cases, you should contact your hardware supplier for support.

3.2 UPLOADING THE PROJECT FROM THE TARGET DEVICE
Depending on the target device you are interfacing with, you may be able to upload a
working Application project from the target itself.

84 EIO0000002036 09/2014

SoMachine HVAC - Application

In order to upload the project from the target device, follow the procedure below:
1) Select the item Import project from target in the menu File.

2) Select the target device you are connecting to, from the list shown in the Target list
window.
3)	Configure	connection	(see	paragraph	7.1	for	more	details).

4) You may optionally test the connection with the target device.

Application tries to establish the connection and reports the test result.

EIO0000002036 09/2014 85

SoMachine HVAC - Application

5)	If	the	connection	is	available	confirm	the	operation	by	clicking	on	the	upload	sources	
button. When the application upload completes successfully, the project is open for edit-
ing.

3.3 SAVING THE PROJECT
3.3.1 PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organi-
zation Unit) you are required to save the project in order to persist that change.
To save the project, you can select the corresponding item of the menu File or the Main
toolbar.

3.3.2 SAVING TO AN ALTERNATIVE LOCATION

When	you	do	not	want	to	(or	cannot	-	for	example,	because	the	file	is	read-only)	overwrite	
the	project	file,	you	may	save	the	modified	version	of	the	project	to	an	alternative	loca-
tion, by selecting Save project as... from the File menu.

Application asks you to select the new destination (which must be an empty directory),
then	saves	a	copy	of	the	project	to	that	location	and	opens	this	new	project	file	for	editing.

3.4 MANAGING EXISTING PROJECTS
3.4.1 OPENING AN EXISTING APPLICATION PROJECT

To open an existing project, click Open project in the File menu	of	Application’s	main	
window, or in the Main toolbar, or in the Welcome page (when no project is open). This
causes a dialog box to appear, which lets you load the directory containing the project and
select	the	relative	project	file.

3.4.2 EDITING THE PROJECT

In	order	to	modify	an	element	of	a	project,	you	need	first	to	open	that	element	by	double-
clicking	its	name,	which	you	can	find	by	browsing	the	tree	structure	of	the	project	tab	of	
the Workspace bar.
By double-clicking the name of the object you want to modify, you open an editor consist-
ent with the object type: for example, when you double-click the name of a project POU,
the	appropriate	source	code	editor	is	shown;	if	you	double-click	the	name	of	a	global	vari-
able, the variable editor is shown.

86 EIO0000002036 09/2014

SoMachine HVAC - Application

Note that Application prevents you from applying changes to elements of a project, when
at least one of the following conditions holds:
 - You cannot modify any object of the project if you are in debug mode.
 - You cannot edit an object of an included library, whereas you can modify an object that
you imported from a library.

 - The project is opened in read-only mode (view project).

3.4.3 CLOSING THE PROJECT

You can terminate the working session either by explicitly closing the project or by exiting
Application.	In	both	cases,	when	there	are	changes	not	yet	persisted	to	file,	Application	
asks you to choose between saving and discarding them.

To close the project, select the item Close project from the File menu;	Application	
shows the Welcome page, so that you can rapidly start a new working session.

3.5 DISTRIBUTING PROJECTS
When you need to share a project with another developer you can send him/her either
a	copy	of	the	project	file(s)	or	a	redistributable	source	module	(RSM)	generated	by	Ap-
plication.
In	the	former	case,	the	number	of	files	you	have	to	share	depends	on	the	format	of	the	
project	file:
 - PLC	single	project	file	(.ppjs file	extension):	the	project	file	itself	contains	the	whole	
information needed to run the application (assuming the receiving developer has an ap-
propriate target device available) including all source code modules, so that you need
to share only the .ppjs	file.

 - PLC	multiple	project	file	(.ppjx or .ppj file	extension):	the	project	file	contains	only	
the links to the source code modules composing the project, which are stored as single
files	in	the	project	directory.	You	need	to	share	the	whole	directory.

 - Full	XML	PLC	project	file	(.plcprj):	the	project	file	is	generated	entirely	in	XML	lan-
guage.The	information	contained	in	the	project	file	and	its	behavior	are	the	same	as	
.ppjs	file	extension.

Alternatively, you can generate a redistributable source module (RSM) with the corre-
sponding item of the Project menu or toolbar.

Application	notifies	you	of	the	name	of	the	RSM	file	and	lets	you	choose	whether	to	protect	
the	file	with	a	password	or	not.	If	you	choose	to	protect	the	file,	Application	asks	you	to	
insert the password.

EIO0000002036 09/2014 87

SoMachine HVAC - Application

The	advantages	of	the	RSM	file	format	are:
 - the source code is encoded in binary format, thus it cannot be read by third parties
which	do	not	use	Application,	making	a	transfer	over	the	Internet	more	secure;

 - it	can	be	protected	with	a	password,	which	will	be	required	by	Application	on	file	open-
ing;	

 - being	a	binary	file,	its	size	is	reduced.

3.6 PROJECT OPTIONS
You	can	edit	some	significant	project	properties	choosing	Options.. in the Project menu.

3.6.1 PROJECT INFO

Here you can set some basic properties related to the project, such as its application
name and version.

3.6.2 CODE GENERATION

Here you can edit some properties about code generation.

 - Case sensitivity: you can set the project as case-sensitive checking this option. Note
that, by default, this option is not active.

 - Check FB external variables: if this option is checked you must declare all function
blocks as external variables.

88 EIO0000002036 09/2014

SoMachine HVAC - Application

 - Print debug information:	prints	on	the	output	window	some	significant	debug	info.
 - Allow only integer indexes for arrays: if this option is checked you cannot use
BYTE, WORD or DWORD as array indexes.

 - Run-time check of array bounds: if this option is checked some check code is added
to verify that array indexes are not out of bounds during run-time. This option is set-
table depending on target device.

 - Run-time check of division by zero: if this option is checked some check code is
added to verify that divisions by zero are not performed on arrays during run-time. This
option is settable depending on target device.

 - Enable WAITING statement (standard extension): if this option is checked the WAIT-
ING construct for the ST language is added as IEC 61131-3 extension. See paragraph
11.7.3 for more details.

 - Disable warning emission: if this option is checked warning emissions are not printed
on the output window.

 - Disable warning codes:	if	this	option	is	checked	some	specified	warning	emissions	are	
not printed on the output window.

3.6.3 BUILD OUTPUT

Here	you	can	edit	some	significant		properties	of	the	output	files	generated	by	compiling	
operation.

Listing section
 - Generate listing file: if this option is checked the compiler will generate a listing
file	named	as	projectname.lst.

 - Include source code (active only if Generate listing file is checked): if this op-
tion is checked the source code will be inserted as visible in the lst file.	Otherwise	the	
source code will be hidden.

Downloadable target files section
 - Create downloadable target files: if this option is checked the compiler will gener-
ate	the	binary	files	that	can	be	downloaded	to	the	target.	You	can	specify	custom	file-
names or use default ones.
Please note that only valid Windows filename are accepted!

 - PLC application (active only if Create downloadable target files is checked):
this	field	specifies	the	name	of	the	PLC	application	binary	file.	By	default	projectname.
bin

EIO0000002036 09/2014 89

SoMachine HVAC - Application

 - Source code (active only if Create downloadable target files is	checked):	this	field	
specifies	the	name	of	the	Source	code	binary	file.	By	default	projectname._source.
bin.

 - Debug (active only if Create downloadable target files is	checked):	this	field	speci-
fies	the	name	of	the	Debug	symbol	binary	file.	By	default	projectname._debug.bin

Generate EXP file section
 - Generate EXP file:	 if	 this	option	 is	checked	the	compiler	will	generate	an	EXP	file	
named as projectname.exp

3.6.4 DOWNLOAD

Here	you	can	edit	some	significant	properties	of	the	download	behavior.	See	paragraph	
7.3.1 for more information.

3.6.5 DEBUG

Here	you	can	edit	some	significant	properties	of	the	debug	behavior.

 - Polling period for debug function (ms):	specifies	the	period	how	often	functions	
are seen in what state they are.

 - Number of displayed array elements without alert message:	specifies	the	maxi-
mum number of array element to be added in watch window without being alerted.

 - Polling period between more variables (ms):	specifies	the	period	between	vari-
ables before are seen in what state they are.

90 EIO0000002036 09/2014

SoMachine HVAC - Application

 - Autosave watch list: if checked (by default no) the watch list status will be saved into
a	file,	when	the	project	is	closed.	See	paragraph	9.1.7	for	more	details.

3.6.6 BUILD EVENTS

Here	you	can	specify	commands	that	run	before	the	build	starts	or	after	the	build	finishes.	
You	can	also	use	a	set	of	defined	environment	variables	listed	on	the	top	of	the	window.

3.7 SELECTING THE TARGET DEVICE
You may need to port a PLC application on a target device which differs from that you
originally wrote the code for. Follow the instructions below to adapt your Application pro-
ject to a new target device.
1) Click Select target in the Project menu of the Application main window. This

causes the following dialog box to appear.

2) Select one of the target devices listed in the combo box.
3) Click Change	to	confirm	your	choice,	Cancel to abort.
4) If	you	confirm,	Application	displays	the	following	dialog	box.

Press Yes to complete the conversion, No to quit.
If you press Yes, Application updates the project to work with the new target.
It	also	makes	a	backup	copy	of	the	project	file(s)	in	a	sub-directory	inside	the	project	
directory, so that you can roll-back the operation by manually (i.e., using Windows
Explorer)	replacing	the	project	file(s)	with	the	backup	copy.		

EIO0000002036 09/2014 91

SoMachine HVAC - Application

3.8 WORKING WITH LIBRARIES
Libraries are a powerful tool for sharing objects between Application projects. Libraries
are	usually	stored	in	dedicated	source	file,	whose	extension	is	.pll.

3.8.1 THE LIBRARY MANAGER

The library manager lists all the libraries currently included in a Application project. It also
allows you to include or remove libraries.
To access the library manager, click Library manager in the Project menu.

3.8.1.1 INCLUDING A LIBRARY

The following procedure shows you how to include a library in a Application project, which
results	in	all	the	library’s	objects	becoming	available	to	the	current	project.
Including	a	library	means	that	a	reference	to	the	library’s	.pll file	is	added	to	the	cur-
rent project, and that a local copy of the library is made. Note that you cannot edit the
elements of an included library, unlike imported objects.
If you want to copy or move a project which includes one or more libraries, make sure
that references to those libraries are still valid in the new location.
1) Click Library manager in the Project menu, which opens the Library manager

dialog box.
2) Press the Add button, which causes an explorer dialog box to appear, to let you select

the .pll file	of	the	library	you	want	to	open.
3) When you have found the .pll file,	open	it	either	by	double-clicking	it	or	by	press-

ing the Open button. The name of the library and its absolute pathname are now
displayed in a new row at the bottom of the list in the white box.

4) Repeat step 1, 2, and 3 for all the libraries you wish to include.
5) When	you	have	finished	including	libraries,	press	either	OK to	confirm,	or	Cancel to

quit.

92 EIO0000002036 09/2014

SoMachine HVAC - Application

3.8.1.2 REMOVING A LIBRARY

The following procedure shows you how to remove an included library from the current
project. Remember that removing a library does not mean erasing the library itself, but
the	project’s	reference	to	it.
1) Click Library manager in the Project menu of the Application main window, which

opens the Library manager dialog box.

Select the library you wish to remove by clicking its name once. The Remove button
is now enabled.

2) Click the Remove button, which causes the reference to the selected library to disap-
pear from the Project library list.

3) Repeat for all the libraries you wish to remove. Alternatively, if you want to remove
all the libraries, you can press the Remove all button.

4) When	you	have	finished	removing	libraries,	press	either	OK to	confirm,	or	Cancel not
to apply changes.

3.8.2 EXPORTING TO A LIBRARY

You may export an object from the currently open project to a library, in order to make
that object available to other projects. The following procedure shows you how to export
objects to a library.
1) Look for the object you want to export by browsing the tree structure of the project

tab of the Workspace bar, then click once the name of the object.
2) Click Export object to library in the Project menu. This causes the following

dialog box to appear.

EIO0000002036 09/2014 93

SoMachine HVAC - Application

3) Enter the destination library by specifying the location of its .pll file.	You	can	do	
this by:
 - typing	the	full	pathname	in	the	white	text	box;
 - clicking the Browse button , in order to open an explorer dialog box which allows

you to browse your disk and the network.
4) You may optionally choose to encrypt the source code of the POU you are exporting,

in order to protect your source code.
5) Click OK to	confirm	the	operation,	otherwise	press	Cancel to quit.
If at Step 3 of this procedure you enter the name of a non-existing .pll	file,	Application	
creates	the	file,	thus	establishing	a	new	library.

3.8.2.1 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an ob-
ject is to create another library containing all the objects of the current one, except the
one you wish to delete.

3.8.3 IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When
you import an object from a library, the local copy of the object loses its reference to the
original library and it belongs exclusively to the current project. Therefore, you can edit
imported objects, unlike objects of included libraries.
There are two ways of getting a POU from a library. The following procedure shows you
how to import objects from a library.
1) Click Import object from library in the Project menu. This causes an explorer

dialog box to appear, which lets you select the .pll file	of	the	library	you	want	to	
open.

2) When you have found the .pll file,	open	it	either	by	double-clicking	it	or	by	pressing	
the Open button. The dialog box of the library explorer appears in foreground. Each
tab	in	the	dialog	box	contains	a	list	of	objects	of	a	type	consistent	with	the	tab’s	title.

94 EIO0000002036 09/2014

SoMachine HVAC - Application

3) Select the tab of the type of the object(s) you want to import. You can also make
simple queries on the objects in each tab by using Filters. However, note that only
the Name filter	actually	applies	to	libraries.	To	use	it,	select	a	tab,	then	enter	the	name	
of the desired object(s), even using the * wildcard, if necessary.

4) Select the object(s) you want to import, then press the Import object button.
5) When	you	have	finished	importing	objects,	press	indifferently	OK or Cancel to close

the Library browser.

3.8.3.1 UNDOING IMPORT FROM A LIBRARY

When you import an object in a Application project, you actually make a local copy of that
object. Therefore, you just need to delete the local object in order to undo import.

3.8.3.2 MERGE FUNCTION

When you import objects in a Application project or insert a copied mapped variable, you
may encounter an overlapping address or duplicate naming warning.
By setting the corresponding environment options (see paragraph 2.6 for more details)
you can choose the behavior that Application should keep when encountering those prob-
lems.
The possible actions are:

Ask Automatic Take from
library

Do
nothing

Naming
behavior

If different types X X X
If same type but not
variables X X X

If both variables X X X

Address
behavior

If address overlaps X X X
Copy/paste mapped
variable X X

 - Ask (default): user has to decide every time an action is required.
 - Automatic: a valid name or address is automatically generated by Application and as-
signed to the imported object.

 - Take from library: the name or the address is taken from the imported object.
 - Do nothing:	the	name	or	the	address	of	the	objects	in	the	project	are	not	modified.
After	importing	objects,	Application	generates	a	log	file	in	the	project	folder	with	detailed	
info.

3.8.4 UPDATING EXISTING LIBRARIES

If	you	edit	a	linked	library	file	you	can	refresh	its	content	on	the	project	without	closing	
Application.
1) Click Refresh all libraries object in the Project menu or click the item in the

project bar.
2) If	the	file	is	correct,	Application	updates	the	linked	library	content	and	prints	a	suc-

cessful message in the output window, otherwise no changes are made on the exist-
ing linked library.

EIO0000002036 09/2014 95

SoMachine HVAC - Application

4. MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely:
Program	Organization	Units	(briefly,	POUs),	tasks,	derived	data	types,	and	variables.

4.1 PROGRAM ORGANIZATION UNITS
This paragraph shows you how to add new POUs to the project, how to edit and eventu-
ally remove them.

4.1.1 CREATING A NEW PROGRAM ORGANIZATION UNIT

1) Select the New object item in the Project menu.

2) Specify what kind of POU you want to create by clicking one of the items in the sub-
menu which pops up.

3) Select the language you will use to implement the POU.

Enter the name of the new module.

4) Confirm	the	operation	by	clicking	on	the	OK button.
Alternatively,	you	can	create	a	new	POU	of	a	specific	type	(program,	function	block,	or	
function) by right-clicking on the correspondent item of the project tree.

96 EIO0000002036 09/2014

SoMachine HVAC - Application

5) After creating a new program, an alert icon (interrogation mark) appears below the
new program icon.

This alert icon indicates that the program is not yet associated to a task. Refer to
paragraph 4.3.1 to assign the program to the desired task.

4.1.1.1 ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, Application gives you the chance to assign that program
to a task at the same time: select the task you want the program to be assigned to from
the list shown in the Task section of the New program window.

4.1.2 EDITING POUS

All the POUs of the project are listed in the Programs, Function blocks, and Functions
folders in the Project tab of the Workspace bar.
The following procedure shows you how to edit the source code of an existing POU.
1) Open the folder in the Project tab of the workspace that contains the object you

want to edit by double-clicking the folder name.

2) Double-click the name of the object you want to edit. The relative editor opens and
lets you modify the source code of the POU.

EIO0000002036 09/2014 97

SoMachine HVAC - Application

You may want to change the name of the POU:
1) Open the Object properties editor from the contextual menu which pops up when

right-clicking the POU name in the project tree (alternatively, select the correspond-
ent item in the Project menu).

2) Change	the	object	name	and	confirm.

Finally, you can create a duplicate of the POU in this way:
1) Select Duplicate from the contextual menu (or the Project menu).

2) Enter	the	name	of	the	new	POU	and	confirm.

98 EIO0000002036 09/2014

SoMachine HVAC - Application

4.1.3 DELETING POUS

Follow this procedure to remove a POU from your project:
1) Open the folder in the Project tab of the workspace that contains the object you

want to delete by double-clicking the folder name.
2) Right-click the name of the object you want to delete. A context menu appears re-

ferred to the selected object.

3) Click Delete object in the context menu, then press Yes	to	confirm	your	choice.

4.1.4 SOURCE CODE ENCRYPTION

You may want to hide the source code of one or more POUs.
Application lets you encrypt POUs and protect them with a password.
To encrypt a POU, perform the following steps:
1) Right-click the POU name in the project tree and choose Crypt from the contextual

menu.

2) Enter the password twice (to avoid any problem which may arise from typos) and
confirm	the	operation.

EIO0000002036 09/2014 99

SoMachine HVAC - Application

To decrypt a POU, right-click the POU name in the project tree and choose Decrypt from
the contextual menu.

Application prompt you to enter the password.
You can choose to encrypt all the unencrypted POUs at once:

the same password applies to all objects.

4.2 VARIABLES
There are two classes of variables in Application: global variables and local variables.
This paragraph shows you how to add to the project, edit, and eventually remove both
global and local variables.

4.2.1 GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.

4.2.1.1 CLASSES OF GLOBAL VARIABLES

Global variables are listed in the project tree, in the Global variables folder, where they
are	further	classified	according	to	their	properties	as	Automatic	variables,	Mapped	vari-
ables, Constants, and Retain variables.
 - Automatic variables include all the variables that the compiler automatically allocates to
an appropriate location in the target device memory.

 - Mapped variables, on the other way, do have an assigned address in the target device
logical	addressing	system,	which	shall	be	specified	by	the	developer.

 - Constants list all the variables which the developer declared as having the CONSTANT
attribute, so that they cannot be written.

 - Retain variables list all the variables which the developer declared as having the RE-
TAIN attribute, so that their values are stored in a persistent memory area of the target
device.

100 EIO0000002036 09/2014

SoMachine HVAC - Application

4.2.1.2 GROUPS OF GLOBAL VARIABLES

You can further categorize the set of all global variables by grouping them according to
application-specific	criteria.	In	order	to	define	a	new	group,	follow	this	procedure:
1) Select Group from the Variables menu (note that this menu is available only if the

Global variables editor is open).

2) Enter the name of the new variable group, then click Add.

3) You can now use the variable group in the declaration of new global variables.

4.2.1.3 CREATING A NEW GLOBAL VARIABLE

Apply the following procedure to declare a new global variable:
1) Select New object in the Project menu.

2) Select New variable from the menu that shows up.

EIO0000002036 09/2014 101

SoMachine HVAC - Application

3) Choose the class of the variable you want to declare (Automatic variables, Mapped
variables, Constants, or Retain variables).

4) Enter	the	name	of	the	variable	(remember	that	some	characters,	such	as	‘?’,	‘.’,	‘/’,	
and	so	on,	cannot	be	used:	the	variable	name	must	be	a	valid	IEC	61131-3	identifier).

5) Specify the type of the variable either by typing it

or by selecting it from the list that Application displays when you click on the Browse
button.

102 EIO0000002036 09/2014

SoMachine HVAC - Application

6) If you want to declare an array, you can specify its size.

7) You may optionally assign the initial value to the variable.

8) Finally,	you	can	add	a	brief	description	and	then	confirm	the	operation.

If you create a new mapped variable, you are required to specify the address of the vari-
able	during	its	definition.	In	order	to	do	so,	you	may	do	one	of	the	following	actions:
 - Click on the button to open the editor of the address, then enter the desired value.

EIO0000002036 09/2014 103

SoMachine HVAC - Application

 - Select from the list that Application shows you the memory area you want to use: the
tool	automatically	chooses	the	address	of	the	first	free	memory	location	of	that	area.

4.2.1.4 EDITING A GLOBAL VARIABLE

To	edit	the	definition	of	an	existing	global	variable:
1) Open the folder in the Project tab of the workspace that contains the variable you

want to edit.

2) Double-click the name of the variable you want to edit: the global variables editor
opens	and	lets	you	modify	its	definition.

104 EIO0000002036 09/2014

SoMachine HVAC - Application

If you just want to change the name of the variable:
1) Open the Variable properties editor from the contextual menu which pops up

when right-clicking the variable name in the project tree (alternatively, select the
correspondent item in the Project menu).

2) Change	the	variable	name	and	confirm.

Finally, you can create a duplicate of the variable in this way:
1) Select Duplicate variable from the contextual menu (or the Project menu).

2) Enter	the	name	of	the	new	variable	and	confirm.

EIO0000002036 09/2014 105

SoMachine HVAC - Application

4.2.1.5 DELETING A GLOBAL VARIABLE

Follow this procedure to remove a global variable from your project:
1) Open the folder in the Project tab of the workspace that contains the variable you

want to delete.

2) Right-click the name of the variable you want to delete. A context menu appears re-
ferred to the selected variable.

3) Click Delete variable in the context menu, then press Yes	to	confirm	you	choice.

4.2.2 LOCAL VARIABLES

Local variables are declared within a POU (either program, or function, or function block),
the module itself being the only project element which can refer to and access them.
Local variables are listed in the project tree under the POU which declares them (only
when	that	POU	is	open	for	editing),	where	they	are	further	classified	according	to	their	
class (e.g., as input or inout variables).

106 EIO0000002036 09/2014

SoMachine HVAC - Application

In order to create, edit, and delete local variables, you have to open the Program Organi-
zation Unit for editing and use the local variables editor.

Refer to the corresponding section in this manual for details (see Paragraph 5.6.1.2).

4.2.3 CREATE MULTIPLE

Follow this procedure to add multiple variables in one shot.
1) Select Create Multiple in the Variables menu.

2) Insert	the	prefix	and	the	suffix	to	name	the	variables.

3) Select the type of the variables.
4) Insert the number of the variables you want to create specifying the start index,

the end index and the step value. You can see an example of the generated variable
names.

EIO0000002036 09/2014 107

SoMachine HVAC - Application

4.3 TASKS
4.3.1 ASSIGNING A PROGRAM TO A TASK

Read the instructions below to know how to make a task execute a program.
1) The tasks running on the target device are listed in the Project tab of the Work-

space window. Right-click the name of the task you want to execute the program and
choose Add program from the contextual menu.

2) Select the program you want the task to execute from the list which shows up and
confirm	your	choice.

3) The program has been assigned to the task, as you can see in the project tree.

108 EIO0000002036 09/2014

SoMachine HVAC - Application

Note that you can assign more than a program to a task. From the contextual menu you
can sort and, eventually, remove program assignments to tasks.

4.3.2 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to
configure	some	of	the	PLC	tasks’	settings.
1) Double	click	on	tasks	item	in	the	project	tree	or	select	the	task	configuration	item	in	

the contextual menu which pops up, if you right-click on a task.

2) In the Task configuration window you can edit the task execution period.

4.4 DERIVED DATA TYPES
The Definitions section of the Workspace window	lets	you	define	derived	data	types.

4.4.1 TYPEDEFS

The following paragraphs show you how to manage typedefs.

4.4.1.1 CREATING A NEW TYPEDEF

In	order	to	define	a	new	typedef	follow	this	procedure:
1) Right-click the TypeDefs folder and choose New TypeDef from the contextual menu.

EIO0000002036 09/2014 109

SoMachine HVAC - Application

2) Type the name of the typedef.

3) Select	the	type	you	are	defining	an	alias	for

(if	you	want	to	define	an	alias	for	an	array	type,	you	shall	choose	the	array	size).
4) Enter	a	meaningful	description	(optional)	and	confirm	the	operation.

110 EIO0000002036 09/2014

SoMachine HVAC - Application

4.4.1.2 EDITING A TYPEDEF

The typedefs of the project are listed under the TypeDefs folder. In order to edit a typedef
you just have to double-click on its name.

4.4.1.3 DELETING A TYPEDEF

To delete a typedef, follow this procedure:
1) Right-click the typedef name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.4.2 STRUCTURES

The following paragraphs show you how to manage structures.

4.4.2.1 CREATING A NEW STRUCTURE

Follow this procedure to create a new structure:
1) Right-click the Structures folder and choose New structure from the contextual

menu.

EIO0000002036 09/2014 111

SoMachine HVAC - Application

2) Type the name of the structure.

3) Enter	a	meaningful	description	and	confirm	the	operation.

4.4.2.2 EDITING A STRUCTURE

The structures of the project are listed under the Structures folder. In order to edit a
structure	(for	example,	to	define	its	fields)	you	have	to	double-click	on	its	name.

4.4.2.3 DELETING A STRUCTURE

Follow this procedure to delete a structure:
1) Right-click the structure name and choose Delete from the contextual menu.

2) Confirm	your	choice.

112 EIO0000002036 09/2014

SoMachine HVAC - Application

4.4.3 ENUMERATIONS

The following paragraphs show you how to manage enumerations.

4.4.3.1 CREATING A NEW ENUMERATION

Follow this procedure to create a new enumeration:
1) Right-click the Enumerations folder and choose New enumeration from the contex-

tual menu.

2) Type the name of the enumeration.

3) Enter	a	meaningful	description	and	confirm	the	operation.

4.4.3.2 EDITING AN ENUMERATION

The enumerations of the project are listed under the Enumerations folder. In order to edit
an	enumeration	(for	example,	to	define	its	values)	you	have	to	double-click	on	its	name.

EIO0000002036 09/2014 113

SoMachine HVAC - Application

4.4.3.3 DELETING AN ENUMERATION

Follow this procedure to delete an enumeration:
1) Right-click the enumeration name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.4.4 SUBRANGES

The following paragraphs show you how to manage subranges.

4.4.4.1 CREATING A NEW SUBRANGE

Follow this procedure to create a new subrange:
1) Right-click the Subranges folder and choose New Subrange from the contextual

menu.

2) Type the name of the subrange.

114 EIO0000002036 09/2014

SoMachine HVAC - Application

3) Select the basic type for the subrange.

4) Enter minimum and maximum values of the subrange.

5) Enter	a	meaningful	description	(optional)	and	confirm	the	operation.

EIO0000002036 09/2014 115

SoMachine HVAC - Application

4.4.4.2 EDITING A SUBRANGE

The subranges of the project are listed under the Subranges folder. In order to edit a
subrange you just have to double-click on its name.

4.4.4.3 DELETING A SUBRANGE

Follow this procedure to delete a subrange:
1) Right-click the subrange name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.5 BROWSING THE PROJECT
Projects may grow huge, hence Application provides two tools to search for an object
within a project: the Object browser and the Find in project feature.

4.5.1 OBJECT BROWSER

Application provides a useful tool for browsing the objects of your project: the Object
browser.

116 EIO0000002036 09/2014

SoMachine HVAC - Application

This tool is context dependent, this implies that the kind of objects that can be selected
and that the available operations on the objects in the different context are not the same.
Object browser can be opened in these three main ways:
 - Browser mode.
 - Import object mode.
 - Select object mode.

User interaction with Object browser is mainly the same for all the three modes and is
described in the next paragraph.

4.5.1.1 COMMON CHARACTERISTICS AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the Object browser that are com-
mon to every mode in which Object browser can be used.

Objects filter

This	is	the	main	filter	of	the	Object browser. User can check one of the available (ena-
bled) object items.
In this example, Programs, Function Blocks, Functions are selected, so objects of this
type are shown in the object list. Variables and User types objects can be selected
by user but objects of that type are not currently shown in the object list. Operators,
Standard functions, Local variables, and Basic types cannot be checked by user
(because of the context) so cannot be browsed.

EIO0000002036 09/2014 117

SoMachine HVAC - Application

User can also click Check all button to select all available objects at one time or can click
Check none button to deselect all objects at one time.

Other filters

Selected	objects	can	be	also	filtered	by	name,	symbol	location,	specific	library	and	var	
type.
Filters are all additive and are immediately applied after setting.

Name
Function Filters objects on the base of their name.

Set of legal values All the strings of characters.

Use

Type	a	string	to	display	the	specific	object	whose	name	
matches the string. Use the * wildcard if you want to
display all the objects whose name contains the string in
the Name text box. Type *	if	you	want	to	disable	this	filter.
Press Enter when edit box is focused or click on the OK
button	near	the	edit	box	to	apply	the	filter.

Applies to All object types.

118 EIO0000002036 09/2014

SoMachine HVAC - Application

Symbol location
Function Filters objects on the base of their location.

Set of legal values All, Project, Target, Library, Aux. Sources.

Use

All=	Disables	this	filter.
Project= Objects declared in the Application project.
Target= Firmware objects.
Library= Objects contained in a library. In this case, use
simultaneously also the Library	filter,	described	below.
Aux sources= Shows aux sources only.

Applies to All objects types.

Library

Function
Completes	the	specification	of	a	query	on	objects	contained	
in libraries. The value of this control is relevant only if the
Symbol location filter	is	set	to	Library.

Set of legal values All, libraryname1, libraryname2, ...

Use
All= Shows objects contained in whatever library.
LibrarynameN= Shows only the objects contained in the
library named librarynameN.

Applies to All objects types.

EIO0000002036 09/2014 119

SoMachine HVAC - Application

Vars Type

Function Filters global variables and system variables (also known
as	firmware	variables)	according	to	their	type.

Set of legal values All, Normal, Constant, Retain

Use

All= Shows all the global and system variables.
Normal= Shows normal global variables only.
Constant= Shows constants only.
Retain= Shows retain variables only.

Applies to Variables.

120 EIO0000002036 09/2014

SoMachine HVAC - Application

Object list

Object list shows	all	the	filtered	objects.	List	can	be	ordered	in	ascending	or	discend-
ing way by clicking on the header of the column. So it is possible to order items by Name,
Type, or Description.
Double-clicking on an item allows the user to perform the default associated operation
(the action is the same of the OK, Import object, or Open source button actions).
When item multiselection is allowed, Select all and Select none buttons are visible.
It is possible to select all objects by clicking on Select all button. Select none dese-
lects all objects.
If at least an item is selected on the list operation, buttons are enabled.

EIO0000002036 09/2014 121

SoMachine HVAC - Application

Resize
Window can be resized, the cursor changes along the border of the dialog and allows the
user to resize window. When reopened, Object browser dialog takes the same size and
position of the previous usage.

Close dialog
You have two options for closing the Object browser:
 - Press the button near the right-end border of the caption bar.

 - Press the Cancel/OK	button	below	the	filter	box.

4.5.1.2 USING OBJECT BROWSER AS A BROWSER

To use Object browser in this way click on Object browser in the Project menu. This
causes the Object browser dialog box to appear, which lets you navigate between the
objects of the currently open project.

Available objects
In this mode you can list objects of these types:
 - Programs.
 - Function Blocks.
 - Functions.
 - Variables.
 - User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.
Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be browsed in this context so they are unchecked and disabled).

Available operations

122 EIO0000002036 09/2014

SoMachine HVAC - Application

Allowed operations in this mode are:

Open source, default operation for double-click on an item

Function Opens the editor by which the selected object was created
and displays the relevant source code.

Use

If the object is a program, or a function, or a function
block, this button opens the relevant source code editor.
If the object is a variable, then this button opens the
variable editor.
Select the object whose editor you want to open, then click
on the Open source button.

Export to library
Function To export an object to a library.

Use Select the objects you want to export, then press the
Export to library button.

Delete objects
Function Allows you to delete an object.

Use Select the object you want to delete, then press the
Delete object button.

Multi selection
Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.3 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired
external library. Select Import object from library in the Project menu, then choose
the desired library.

EIO0000002036 09/2014 123

SoMachine HVAC - Application

Available objects
In this mode you can list objects of these types:
 - Programs.
 - Function blocks.
 - Functions.
 - Variables.
 - User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.
Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be imported so they are unchecked and disabled.

Available operations

Import objects is the only operation supported in this mode. It is possible to import
selected objects by clicking on Import objects button or by double-clicking on one of
the objects in the list.

Multi selection
Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.4 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single
PLC object. So Object browser can be used to select the program to add to a task, to se-
lect	the	type	of	a	variable,	to	select	an	item	to	find	in	the	project,	etc..

Available objects
Available objects are strictly dependent on the context, for example in the program as-
signment to a task operation the only available objects are programs objects.
It is possible that not all available objects are selected by default.

Available operations

In this mode it is possible to select a single object by double-clicking on the list or by click-
ing on the OK button, then the dialog is automatically closed.

Multi selection
Multi selection is not allowed for this mode, Select all and Select none buttons are
not visible.

124 EIO0000002036 09/2014

SoMachine HVAC - Application

4.5.2 SEARCHING WITH THE FIND IN PROJECT COMMAND

The Find in project command	retrieves	all	the	instances	of	a	specified	character	string	
in the project. Follow the procedure to use it correctly.
1) Click Find in project... in the Edit menu or in the Main toolbar.

This causes the following dialog box to appear.

2) In the Find what text box, type the name of the object you want to look for.

EIO0000002036 09/2014 125

SoMachine HVAC - Application

Otherwise, click the Browse button to the right of the text box, and select the name
of the object from the list of all the existing items.

3) Select one of the values listed in the Location combo box, so as to specify a con-
straint on the location of the objects to be inspected.

4) The frame named Filters contains 7 checkboxes, each of which, if ticked, enables
research of the string among the object it refers to.

5) Tick Match whole word only if you want to compare your string to entire word only.
6) Tick Match case if you want your search to be case-sensitive.

126 EIO0000002036 09/2014

SoMachine HVAC - Application

7) Press Find to start the search, otherwise click Cancel to abandon.

The results will be printed in the Find in project tab of the Output window.

4.6 WORKING WITH APPLICATION EXTENSIONS
Application’s	Workspace window may include a section whose contents completely depend
on the target device the IDE is interfacing with: the Resources panel.
If the Resources panel is visible, you can access some additional features related to the
target	device	(configuration	elements,	schemas,	wizards,	and	so	on).

Information about these features may be found in a separate document: refer to your
hardware supplier for details.

EIO0000002036 09/2014 127

SoMachine HVAC - Application

5. EDITING THE SOURCE CODE

PLC editors
Application	includes	five	source	code	editors,	which	support	the	whole	range	of	IEC	61131-
3 programming languages: Instruction List (IL), Structured Text (ST), Ladder Diagram
(LD), Function Block Diagram (FBD), and Sequential Function Chart (SFC).
Moreover,	Application	includes	a	grid-like	editor	to	support	the	user	in	the	definition	of	
variables.
This chapter focuses on all these editors.

5.1 INSTRUCTION LIST (IL) EDITOR

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of
the IEC-compliant languages.

5.1.1 EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows
platform, namely:
 - Text selection.
 - Cut, Copy, and Paste operations.
 - Find and Replace functions.
 - Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.1.2 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two
options:
 - You can type directly the name of the PLC object.
 - You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas standard operators and embedded functions can be
dragged from the Libraries window, whereas local variables can be selected from the
local variables editor.

128 EIO0000002036 09/2014

SoMachine HVAC - Application

5.1.3 AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where
a compiler error occurred, double-click the corresponding error line in the Output bar.

5.1.4 BOOKMARKS

You	can	set	bookmarks	to	mark	frequently	accessed	lines	in	your	source	file.	Once	a	book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.1.4.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.1.4.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line

5.1.4.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+ F2.

5.2 STRUCTURED TEXT (ST) EDITOR

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of
the IEC-compliant languages.

5.2.1 CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (Paragraphs 4.1.1 and 4.1.2).

5.2.2 EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows
platform, namely:
 - Text selection.
 - Cut, Copy, and Paste operations.
 - Find and Replace functions.
 - Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

EIO0000002036 09/2014 129

SoMachine HVAC - Application

5.2.3 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:
 - You can type directly the name of the PLC object.
 - You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas embedded functions can be dragged from the Librar-
ies window, whereas local variables can be selected from the local variables editor.

5.2.4 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a
compiler error has occurred, double-click the corresponding error line in the Output bar.

5.2.5 BOOKMARKS

You	can	set	bookmarks	to	mark	frequently	accessed	lines	in	your	source	file.	Once	a	book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.2.5.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.2.5.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line.

5.2.5.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+F2.

5.3 LADDER DIAGRAM (LD) EDITOR

130 EIO0000002036 09/2014

SoMachine HVAC - Application

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of
the IEC-compliant languages.

5.3.1 CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (Paragraphs 4.1.1 and 4.1.2).

5.3.2 ADDING/REMOVING NETWORKS

Every	POU	coded	 in	LD	consists	of	a	sequence	of	networks.	A	network	 is	defined	as	a	
maximal set of interconnected graphic elements. The upper and lower bounds of every
network	are	fixed	by	two	straight	lines,	while	each	network	is	delimited	on	the	left	by	a	
grey raised button containing the network number.

On each LD network the right and the left power rail are represented, according to the LD
language indication.
On the new LD network a horizontal line links the two power rails. It is called the “power
link”. On this link, all the LD elements (contacts, coils and blocks) are to be placed.
You can perform the following operations on networks:
 - To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

 - To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

 - To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

 - To add a comment, press the Comment button in the FBD toolbar.

5.3.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, which bears the network number.

This causes a dialog box to appear, where you can type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

EIO0000002036 09/2014 131

SoMachine HVAC - Application

5.3.4 INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:
 - Select a contact, a block or a connection. Select the insertion mode between serial or
parallel (using the button on the LD toolbar or the Scheme menu). Insert the appropriate
contact (using the button on the LD toolbar, the Scheme>Object>New or the pop-up
menu option). For serial insertion, the new contact will be inserted on the right side of
the selected contact/block or in the middle of the selected connection depending on the
element selected before the insertion. For parallel insertions, several contacts/blocks
can be selected before performing the insertion. The new contact will be inserted at the
endpoints of the selection block.

 - Drag a boolean variable to the desired place over a connection. For example, global
variables can be taken from the Workspace window, whereas local variables can be se-
lected from the local variables editor. The dialog box shown below will appear, request-
ing	to	define	whether	the	variable	should	be	inserted	as	a	contact,	coil	or	variable	(like	
FBD schemes). Choose the appropriate contact type. Contacts inserted with drag and
drop will always be inserted in series.

132 EIO0000002036 09/2014

SoMachine HVAC - Application

5.3.5 INSERTING COILS

To insert new coils on the network apply one of the following options:
 - Press one of the coil buttons in the LD toolbar. The new coil will be inserted and linked
to the right power rail. If other coils are already present in the network, the new coil will
be added in parallel with the previous ones.

 - Drag a boolean variable on the network. For example, global variables can be taken
from the Workspace window, whereas local variables can be selected from the local vari-
ables editor. A dialog box will appear, requesting to indicate whether the variable should
be inserted as a contact, coil or variable. Choose the appropriate coil type.

5.3.6 INSERTING BLOCKS

Operators, functions and function blocks can be inserted into an LD network in the follow-
ing modes:
 - On the power link, as contacts and coils.
 - Outside the power link (to do so, follow the indications as for the FBD blocks).

To insert blocks on the network apply one of the following options:
 - Select a contact, connection or block then click Object>New in the Scheme menu.
 - Select a contact, connection or block, then press the New block button in the FBD
toolbar, which causes a dialog box to appear listing all the objects of the project, then
choose one item from the list. If the block is a constant, a return statement, or a jump
statement, you can directly press the relevant buttons in the FBD toolbar.

 - Drag the selected object (from the Workspace window, the Libraries window or the
local variables editor) over the desired connection.

The two upper pins will be connected to the power link. The EN/ENO pins should be acti-
vated before the insertion.

5.3.7 EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated) or a coil (normal, negated, set, reset) can be
changed by one of the following operations:
 - Double-click on the element (contact or coil).
 - Select the element and then press the Enter key.
 - Select the element, activate the pop-up menu with the right mouse button, then select
Properties.

An apposite dialog box will appear. Select the desired element type from the list presented
and then press OK.

EIO0000002036 09/2014 133

SoMachine HVAC - Application

5.3.8 EDITING NETWORKS

The LD editor is endowed with functions common to most graphic applications running on
a Windows platform, namely:
 - Selection of a block.
 - Selection of a set of blocks by pressing Shift+Right button and by drawing a frame
including the blocks to select.

 - Cut, Copy, and Paste operations of a single block as well as of a set of blocks.
 - Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.3.9 MODIFYING PROPERTIES OF BLOCKS

 - Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

 - Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

 - Click Object . Instance name in the Scheme menu, or press the FBD properties but-
ton in the FBD toolbar, to change the name of an instance of a function block.

5.3.10 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting
it and then performing one of the following operations:
 - Click Object>Open source in the Scheme menu, or press the View source button in the
FBD toolbar, to open the source code of a block.

 - Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.3.11 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

134 EIO0000002036 09/2014

SoMachine HVAC - Application

5.4 FUNCTION BLOCK DIAGRAM (FBD) EDITOR

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Dia-
gram), one of the IEC-compliant languages.

5.4.1 CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (Paragraphs 4.1.1 and 4.1.2).

5.4.2 ADDING/REMOVING NETWORKS

Every	POU	coded	in	FBD	consists	of	a	sequence	of	networks.	A	network	is	defined	as	a	
maximal set of interconnected graphic elements. The upper and lower bounds of every
network	are	fixed	by	two	straight	lines,	while	each	network	is	delimited	on	the	left	by	a	
grey raised button containing the network number.

You can perform the following operations on networks:
 - To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

 - To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

 - To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

 - To add a comment, press the Comment button in the FBD toolbar.

5.4.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, that bears the network number.

EIO0000002036 09/2014 135

SoMachine HVAC - Application

This causes a dialog box to appear, which lets you type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

5.4.4 INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.
Add a block to the blank network, by applying one of the following options:
 - Click Object>New in the Scheme menu.
 - Press the New block button in the FBD toolbar, which causes a dialog box to appear
listing all the objects of the project, then choose one item from the list. If the block is a
constant, a return statement, or a jump statement, you can directly press the relevant
buttons in the FBD toolbar.

 - Drag the selected object to the suitable location. For example, global variables can be
taken from the Workspace window, whereas standard operators and embedded func-
tions can be dragged from the Libraries window, whereas local variables can be se-
lected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.
Then connect blocks:
 - Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar of your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the FBD editor draws a logical wire from
the former to the latter.

 - If you want to connect two blocks having a one-to-one correspondence of pins, you can
enable the autoconnection mode by clicking Autoconnect in the Scheme menu, or by
pressing the Autoconnect button in the Network toolbar. Then take the two blocks,
drag them close to each other so as to let the corresponding pins coincide. The FBD edi-
tor automatically draws the logical wires.

If you delete a block, its connections are not removed automatically, but they become in-
valid and they are redrawn red. Click Delete invalid connection in the Scheme menu,
or type Ctrl+B on your keyboard.

136 EIO0000002036 09/2014

SoMachine HVAC - Application

5.4.5 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:
 - Selection of a block.
 - Selection of a set of blocks by pressing Shift + left button and by drawing a frame
including the blocks to select.

 - Cut, Copy and Paste operations of a single block as well as of a set of blocks.
 - Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.4.6 MODIFYING PROPERTIES OF BLOCKS

 - Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

 - Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

 - Click Object>Instance name in the Scheme menu, or press the FBD properties button
in the FBD toolbar, to change the name of an instance of a function block.

5.4.7 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by select-
ing it and then performing one of the following operations:
 - Click Object> Open source in the Scheme menu, or press the View source button in
the FBD toolbar, to open the source code of a block.

 - Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.4.8 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

EIO0000002036 09/2014 137

SoMachine HVAC - Application

5.5 SEQUENTIAL FUNCTION CHART (SFC) EDITOR
The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function
Chart), one of the IEC-compliant languages.

5.5.1 CREATING A NEW SFC DOCUMENT

See the creating and editing POUs section (Paragraphs 4.1.1 and 4.1.2).

5.5.2 INSERTING A NEW SFC ELEMENT

You can apply indifferently one of the following procedures:
 - Click Object>New in the Scheme menu, then select the type of the new element (action,
transition, or jump).

 - Press the New step, Add Transition or Add Jump button in the SFC toolbar.
In either case, the mouse pointer changes to:

		for	steps;

		for	transitions;

 for jumps.

5.5.3 CONNECTING SFC ELEMENTS

Follow this procedure to connect SFC blocks:
 - Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar on your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the SFC editor draws a logical wire from
the former to the latter.

 - Alternatively, you can enable the autoconnection mode by clicking Autoconnect in the
Scheme menu, or by pressing the Autoconnect button in the Network toolbar. Then take
the two blocks, and drag them close to each other so as to let the respective pins coin-
cide, which makes the SFC editor draw automatically the logical wire.

5.5.4 ASSIGNING AN ACTION TO A STEP

This paragraph explains how to implement an action and how to assign it to a step.

5.5.4.1 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the
following procedures:
 - Click Code object>New action in the Scheme menu.
 - Right-click on the name of the SFC POU in the Workspace window. A context menu ap-
pears, from which you can select the New Action command.

138 EIO0000002036 09/2014

SoMachine HVAC - Application

In either case, Application displays a dialog box like the one shown below.

Select one of the languages and type the name of the new action in the text box at the
bottom	of	the	dialog	box.	Then	either	confirm	by	pressing	OK, or quit by clicking Cancel.
If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you are ready to type the code of the new
action.
Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.4.2 ASSIGNING AN ACTION TO A STEP

When	you	have	finished	writing	the	code,	double-click	the	step	you	want	to	assign	the	
new action to. This causes the following dialog box to appear.

From the list shown in the Code N box, select the name of the action you want to execute
if the step is active. You may also choose, from the list shown in the Code P (Pulse) box,
the name of the action you want to execute each time the step becomes active (that is,
the action is executed only once per step activation, regardless of the number of cycles
the	step	remains	active).	Confirm	the	assignments	by	pressing	OK.
In the SFC schema, action to step assignments are represented by letters on the step
block:
 - action N	by	letter	N	in	the	top	right	corner;
 - action P by letter P in the bottom right corner.

EIO0000002036 09/2014 139

SoMachine HVAC - Application

If later you need to edit the source code of the action, you can just double-click these
letters. Alternatively, you can double-click the name of the action in the Actions folder of
the Workspace window.

5.5.5 SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF
A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be
assigned through a constant, a variable, or a piece of code. This paragraph explains how
to	use	the	first	two	means,	while	conditional	code	is	discussed	in	the	next	paragraph.
First of all double-click the transition you want to assign a condition to. This causes the
following dialog box to appear.

Select True if you want this transition to be constantly cleared, False if you want the PLC
program to keep executing the preceding block.
Instead, if you select Variable the transition will depend on the value of a Boolean vari-
able. Click the corresponding bullet, to make the text box to its right available, and to
specify the name of the variable.
To this purpose, you can also make use of the objects browser, that you can invoke by
pressing the Browse button shown here below.

Click OK to	confirm,	or	Cancel to quit without applying changes.

5.5.6 ASSIGNING CONDITIONAL CODE TO A TRANSITION

This paragraph explains how to specify a condition through a piece of code, and how to
assign it to a transition.

5.5.6.1 WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:
 - Click Code object>New transition in the Scheme menu.
 - Right-click on the name of the SFC POU in the Workspace window, then select the New
transition command from the context menu that appears.

140 EIO0000002036 09/2014

SoMachine HVAC - Application

In either case, Application displays a dialog box similar the one shown in the following
picture.

Note that you can use any language except SFC to code a condition. Select one of the
languages and type the name of the new condition in the text box at the bottom of the
dialog	box.	Then	either	confirm	by	pressing	OK, or quit by clicking Cancel.
If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you can type the code of the new condition.
Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.6.2 ASSIGNING A CONDITION TO A TRANSITION

When	you	have	finished	writing	the	code,	double-click	the	transition	you	want	to	assign	
the new condition to. This causes the following dialog box to appear.

Select	the	name	of	the	condition	you	want	to	assign	to	this	step.	Then	confirm	by	press-
ing OK.
If later you need to edit the source code of the condition, you can double-click the name
of the transition in the Transitions folder of the Workspace window.

EIO0000002036 09/2014 141

SoMachine HVAC - Application

5.5.7 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area.
This causes the dialog box shown below to appear, listing the name of all the existing
steps. Select the destination step, then either press OK	to	confirm	or	Cancel to quit.

5.5.8 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:
 - Selection of a block.
 - Selection of a set of blocks by pressing Ctrl + left button.
 - Cut, Copy, and Paste operations of a single block as well as of a set of blocks.
 - Drag-and-drop.

Some of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.6 VARIABLES EDITOR
Application includes a graphical editor for both global and local variables that supplies a
user-friendly interface for declaring and editing variables: the tool takes care of the trans-
lation of the contents of these editors into syntactically correct IEC 61131-3 source code.
As an example, consider the contents of the Global variables editor represented in the
following	figure.

The corresponding source code will look like this:
VAR_GLOBAL

 gA : BOOL := TRUE;

 gB : ARRAY[0..4] OF REAL;

 gC AT %MD60.20 : REAL := 1.0;

 END_VAR

 VAR_GLOBAL CONSTANT

 gD : INT := -74;

 END_VAR

142 EIO0000002036 09/2014

SoMachine HVAC - Application

5.6.1 OPENING A VARIABLES EDITOR
5.6.1.1 OPENING THE GLOBAL VARIABLES EDITOR

In order to open the Global variables editor, double-click on Global variables in the
project tree.

5.6.1.2 OPENING A LOCAL VARIABLES EDITOR

To open a local variables editor, just open the Program Organization Unit the variables you
want to edit are local to.

EIO0000002036 09/2014 143

SoMachine HVAC - Application

5.6.2 CREATING A NEW VARIABLE

In order to create a new variable, you may click on the Insert record item in the Pro-
ject toolbar.

Alternatively, you may access the Variables menu and choose Insert.

5.6.3 EDITING VARIABLES

Follow this procedure to edit the declaration of a variable in a variables editor (all the fol-
lowing steps are optional and you will typically skip most of them when editing a variable):
1) Edit the name of the variable by entering the new name in the corresponding cell.

2) Change the variable type, either by editing the type name in the corresponding cell
or by clicking on the button in that cell and select the desired type from the list that
pops up.

144 EIO0000002036 09/2014

SoMachine HVAC - Application

3) Edit the address of the variable by clicking on the button in the corresponding cell
and entering the required information in the window that shows up. Note that, in the
case of global variables, this operation may change the position of the variable in the
project tree.

4) In the case of global variables, you can assign the variable to a group, by selecting
it from the list which opens when you click on the corresponding cell. This operation
will change the position of the variable in the project tree.

5) Choose	whether	a	variable	is	an	array	or	not;	if	it	is,	edit	the	size	of	the	variable.

6) Edit the initial values of the variable: click on the button in the corresponding cell and
enter the values in the window that pops up.

EIO0000002036 09/2014 145

SoMachine HVAC - Application

7) Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it
from the list which opens when you click on the corresponding cell.

8) Type a description for the variable in the corresponding cell. Note that, in the case of
global variables, this operation may change the position of the variable in the project
tree.

9) Save the project to persist the changes you made to the declaration of the variable.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Ensure	that	all	variables	are	initialized	to	an	appropriate	value	before	their	first	use	as	array	

indices.
• Write programming instructions to test the validity of operands intended to be used as array

indices.
• Do	not	attempt	to	access	an	array	element	outside	the	defined	bounds	of	the	array.
• Do not attempt to assign a value to an array name without using an appropriate index into

the array.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

146 EIO0000002036 09/2014

SoMachine HVAC - Application

5.6.4 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL
or the SHIFT keys to select multiple elements.

Then, click on the Delete record in the Project toolbar.

Alternatively, you may access the Variables menu and choose Delete.

Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

EIO0000002036 09/2014 147

SoMachine HVAC - Application

5.6.5 SORTING VARIABLES

You	can	sort	the	variables	in	the	editor	by	clicking	on	the	column	header	of	the	field	you	
want to use as the sorting criterion.

5.6.6 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use
keyboard shortcuts or the Edit menu to access these features.

148 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 149

SoMachine HVAC - Application

6. COMPILING

Compilation consists of taking the PLC source code and automatically translating it into
binary code, which can be executed by the processor on the target device.

6.1 COMPILING THE PROJECT
Before starting actual compilation, make sure that at least one program has been as-
signed to a task.

When this pre-condition does not hold, compilation aborts with a meaningful error mes-
sage.

In order to start compilation, click the Compile button in the Project toolbar.

Alternatively, you can choose Compile from the Project menu or press F7 on your key-
board.

Note that Application automatically saves all changes to the project before starting the
compilation.

6.1.1 IMAGE FILE LOADING

Before	performing	the	actual	compilation,	the	compiler	needs	to	load	the	image	file	(img
file), which contains the map of memory of the target device.

150 EIO0000002036 09/2014

SoMachine HVAC - Application

If	the	target	is	connected	when	compilation	is	started,	the	compiler	seeks	the	image	file	
directly	on	the	target.	Otherwise,	it	loads	the	local	copy	of	the	image	file	from	the	work-
ing	folder.	If	the	target	device	is	disconnected	and	there	is	no	local	copy	of	the	image	file,	
compilation cannot be carried out: you are then required to connect to a working target
device.

6.2 COMPILER OUTPUT
If the previous step was accomplished, the compiler performs the actual compilation, then
prints a report in the Output bar. The last string of the report has the following format:
m warnings, n errors

It tells the user the outcome of compilation.

Condition Description

n>0 Compiler error(s). The PLC code contains one or more serious errors,
which cannot be worked around by the compiler.

n=0, m>0

Emission of warning(s). The PLC code contains one or more minor
errors, which the compiler automatically spotted and worked around.
However, you are informed that the PLC program may act in a
different way from what you expected: you are encouraged to get rid
of these warnings by editing and re-compiling the application until no
warning messages are emitted.

n=m=0 PLC code entirely correct, compilation accomplished. You should
always work with 0 warnings, 0 errors.

NOTE: Be sure to eliminate all compiler errors and wornings before downloading your application
to your controller or other device.

6.2.1 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in
the Output window for each of those errors.

As you can see, the information includes:
 - the	name	of	the	Program	Organization	Unit	affected	by	the	error;
 - the	number	of	the	source	code	line	which	procured	the	error;
 - whether it is an unrecoverable error (error) or one that the compiler could work around
(warning);

 - the	error	code;
 - the error description.

EIO0000002036 09/2014 151

SoMachine HVAC - Application

Refer to the appropriate section for the compiler error reference.
If you double-click the error message in the Output bar, Application opens the source
code and highlights the line containing the error.

You can then solve the problem and re-compile.

152 EIO0000002036 09/2014

SoMachine HVAC - Application

6.3 COMMAND-LINE COMPILER
Application’s	compiler	can	be	used	independently	from	the	IDE:	in	Application’s	directory,	
you	can	find	an	executable	file,	Command-line compiler, which can be invoked (for ex-
ample,	in	a	batch	file)	with	a	number	of	options.
In order to get information about the syntax and the options of this command-line tool,
just launch the executable without parameters.

EIO0000002036 09/2014 153

SoMachine HVAC - Application

7. LAUNCHING THE APPLICATION

In order to download and debug the application, you have to establish a connection with
the target device. This chapter focuses on the operations required to connect to the target
and	to	download	the	application,	while	the	wide	range	of	Application’s	debugging	tools	
deserves a separate chapter (see Chapter 8).

7.1 SETTING UP THE COMMUNICATION
In order to establish the connection with the target device, make sure the physical link is
up	(all	the	cables	are	plugged	in,	the	network	is	properly	configured,	and	so	on).
Follow this procedure to set up and establish the connection to the target device:
1) Click Settings in the Communication menu of the Application main window. This

causes the following dialog box to appear.

The elements in the list of communication protocols you can select from depend on
the setup executable(s) you have run on your PC (refer to your hardware provider if
a protocol you expect to appear in the list is missing).

2) Choose the appropriate protocol and make it the active protocol.

154 EIO0000002036 09/2014

SoMachine HVAC - Application

3) Fill	 in	 all	 the	 protocol-specific	 settings	 (e.g.,	 the	 address	 or	 the	 communication	
timeout - that is how long Application must wait for an answer from the target before
displaying a communication error message).

4) Apply the changes you made to the communication settings.

Now you can establish communication by clicking Connect in the Communication menu,
or by pressing the Connect button in the Project toolbar.

EIO0000002036 09/2014 155

SoMachine HVAC - Application

7.1.1 SAVING THE LAST USED COMMUNICATION PORT

When you connect to target devices using a serial port (COM port), you usually use the
same port for all devices (many modern PCs have only one COM port). You may save the
last used COM port and let Application use that port to override the project settings: this
feature proves especially useful when you share projects with other developers, which
may use a different COM port to connect to the target device.
In order to save your COM port settings, enable the Use last port option in File > Op-
tions... menu.

7.2 ON-LINE STATUS
7.2.1 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status
bar.
If you have not yet attempted to connect to the target, the state of communication is set
to Not connected.

When you try to connect to the target device, the state of communication becomes one
of the following:
 - Error: the communication cannot be established. You should check both the physical
link and the communication settings.

 - Connected: the communication has been established.

7.2.2 APPLICATION STATUS

Next to the communication status there is another small box which gives information
about the status of the application currently executing on the target device.
When the connection status is Connected, the application status takes on one of the fol-
lowing values.
 - No code: no application is executing on the target device.

156 EIO0000002036 09/2014

SoMachine HVAC - Application

 - Diff. code: the application currently executing on the target device is not the same as
the	one	currently	open	in	the	IDE;	moreover,	no	debug	information	consistent	with	the	
running application is available: thus, the values shown in the watch window or in the
oscilloscope are not valid and the debug mode cannot be activated.

 - Diff. code, Symbols OK: the application currently executing on the target device is
not	the	same	as	the	one	currently	open	in	the	IDE;	however,	some	debug	information	
consistent with the running application is available (for example, because that applica-
tion has been previously downloaded to the target device from the same PC): the values
shown in the watch window or in the oscilloscope are valid, but the debug mode still
cannot be activated.

 - Source OK: the application currently executing on the target device is the same as the
one currently open in the IDE: the debug mode can be activated.

7.3 DOWNLOADING THE APPLICATION
A compiled PLC application must be downloaded to the target device in order to have
the processor execute it. This paragraph shows you how to send a PLC code to a target
device. Note that Application can download the code to the target device only if the latter
is connected to the PC where Application is running. See the related section for details.
To download the application, click on the related button in the Project toolbar.

Alternatively, you can choose Download code from the Project menu or press the F5 key.

Application checks whether the project has unsaved changes. If this is the case, it auto-
matically starts the compilation of the application. The binary code is eventually sent to
the target device, which then undergoes automatic reset at the end of transmission. Now
the code you sent is actually executed by the processor on the target device.

7.3.1 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or
not, depends on the target device you are interfacing with: some devices host the appli-
cation source code in their storage, in order to allow the developer to upload the project
in a later moment.
If this is the case, you can control some aspects of the source code download process, as
explained in the following paragraphs.

EIO0000002036 09/2014 157

SoMachine HVAC - Application

7.3.1.1 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a pass-
word, so that Application will not open the uploaded project unless the correct password
is entered.
Open the Project options window (Project > Options ... menu) and set the pass-
word.

You may opt to disable the password, instead.

158 EIO0000002036 09/2014

SoMachine HVAC - Application

7.3.1.2 SOURCE CODE AND DEBUG SYMBOLS DOWNLOAD TIME

From the following select menu you can set the Source code download time.

Choosing:
 - On PLC application download: the Source code will be downloaded to the target to-
gether with PLC application.

 - Before disconnection: the Source code will be downloaded before target disconnec-
tion.

 - Never: the Source code will be never downloaded to the target.
As well as Source code the Debug symbols download time can be set using the following
select menu with the same options.

7.4 SIMULATION
Depending on the target device you are interfacing with, you may be able to simulate the
execution	of	 the	PLC	application	with	Application’s	 integrated	 simulation	 environment:	
Simulation.

EIO0000002036 09/2014 159

SoMachine HVAC - Application

In order to start the simulation, just click on the appropriate item on the Project toolbar.

Refer	to	Simulation’s	manual	to	gain	information	on	how	to	control	the	simulation.

7.5 CONTROL THE PLC EXECUTION
The PLC application execution can be controlled using the related functions in the project
bar or by the command presents in the On-line menu.

7.5.1 HALT

You can stop the PLC execution selecting the following item in the project bar:

or by the following item in the On-line menu:

7.5.2 COLD RESTART

The PLC application execution will be restarted and both retain and non-retain variables
will be resetted.
You can cold restart the PLC execution selecting the following item in the project bar:

160 EIO0000002036 09/2014

SoMachine HVAC - Application

or by the following item in the On-line menu:

7.5.3 WARM RESTART

The PLC application execution will be restarted and only non-retain variables will be reset-
ted.
You can warm restart the PLC execution selecting the following item in the project bar:

or by the following item in the On-line menu:

7.5.4 HOT RESTART

The PLC application execution will be restarted and no variables will be resetted.
You can hot restart the PLC execution selecting the following item in the project bar:

EIO0000002036 09/2014 161

SoMachine HVAC - Application

or by the following item in the On-line menu:

7.5.5 REBOOT TARGET

You can reboot the target selecting the following item in the project bar:

or by the following item in the On-line menu:

162 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 163

SoMachine HVAC - Application

8. DEBUGGING

Application provides several debugging tools, which help the developer to check whether
the application behaves as expected or not.
All these debugging tools basically allow the developer to watch the value of selected vari-
ables while the PLC application is running.
Application debugging tools can be gathered in two classes:
 - Asynchronous debuggers. They read the values of the variables selected by the devel-
oper with successive queries issued to the target device. Both the manager of the de-
bugging tool (that runs on the PC) and, potentially, the task which is responsible to an-
swer those queries (on the target device) run independently from the PLC application.
Thus, there is no guarantee about the values of two distinct variables being sampled in
the same moment, with respect to the PLC application execution (one or more cycles
may	have	occurred);	for	the	same	reason,	the	evolution	of	the	value	of	a	single	variable	
is not reliable, especially when it changes fast.

 - Synchronous	debuggers.	They	require	the	definition	of	a	trigger	in	the	PLC	code.	They	
refresh simultaneously all the variables they have been assigned every time the proces-
sor reaches the trigger, as no further instruction can be executed until the value of all
the variables is refreshed. As a result, synchronous debuggers obviate the limitations
affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and syn-
chronous tools.

8.1 WATCH WINDOW
The Watch window allows you to monitor the current values of a set of variables. Being
an asynchronous tool, the Watch window does not guarantee synchronization of values.
Therefore, when reading the values of the variables in the Watch window, be aware of
the possibility that they may refer to different execution cycles of the corresponding task.
The Watch window contains an item for each variable that you added to it. The informa-
tion shown in the Watch window includes the name of the variable, its value, its type, and
its location in the PLC application.

8.1.1 OPENING AND CLOSING THE WATCH WINDOW

To open the Watch window, click on the Watch button of the Main toolbar.

To close the Watch window, click on the Watch button again.

164 EIO0000002036 09/2014

SoMachine HVAC - Application

Alternatively, you can click on the Close button in the top right corner of the Watch win-
dow.

In both cases, closing the Watch window means simply hiding it, not resetting it. As a
matter of fact, if you close the Watch window and then open it again, you will see that it
still contains all the variables you added to it.

8.1.2 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.
Note that, unlike trigger windows and the Graphic trigger window, you can add to the
Watch window all the variables of the project, regardless of where they were declared.

8.1.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or
ST) source code editor: select a variable, by double-clicking on it, and then drag it into
the watch window.

The same procedure applies to all the variables you wish to inspect.

8.1.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD,
FBD, or SFC) source code editor:
1) Press the Watch button in the FBD bar.

2) Click on the block representing the variable you wish to be shown in the Watch win-
dow.

EIO0000002036 09/2014 165

SoMachine HVAC - Application

3) A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

In order to display the variable in the Watch window, select Watch, then press OK.

The variable name, value, and location are now displayed in a new row of the Watch win-
dow.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Watch window all the variables you want to observe, you
should click on the Select/Move button in the FBD bar: the mouse cursor turns to its
original shape.

166 EIO0000002036 09/2014

SoMachine HVAC - Application

8.1.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record
in the variables editor and then either drag-and-drop it in the Watch window

or press the F8 key.

8.1.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and
then either drag-and-drop it in the Watch window

or press the F8 key.

EIO0000002036 09/2014 167

SoMachine HVAC - Application

8.1.2.5 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to
add a variable to it.

You shall type (or select by browsing the project symbols) the name of the variable and
its location (where it has been declared).

8.1.3 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by
clicking on its name once, then press the Del key.

8.1.4 REFRESHMENT OF VALUES
8.1.4.1 NORMAL OPERATION

Let us consider the following example.

168 EIO0000002036 09/2014

SoMachine HVAC - Application

The watch window manager reads periodically from memory the value of the variables.
However, this action is carried out asynchronously , that is it may happen that a higher-
priority	task	modifies	the	value	of	some	of	the	variables	while	they	are	being	read.	Thus,	
at the end of a refreshment process, the values displayed in the window may refer to dif-
ferent execution states of the PLC code.

8.1.4.2 TARGET DISCONNECTED

If the target device is disconnected, the Value column contains three dots.

8.1.4.3 OBJECT NOT FOUND

If the PLC code changes and Application cannot retrieve the memory location of an object
in the Watch window, then the Value column contains three dots.

If you try to add to the Watch window a symbol which has not been allocated, Application
gives the following error message.

8.1.5 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, Application automatically recognizes its
type	(unsigned	integer,	signed	integer,	floating	point,	hexadecimal),	and	displays	its	value	
consistently.	Also,	if	the	variable	is	floating	point,	Application	assigns	it	a	default	number	
of	decimal	figures.
However, you may need the variable to be printed in a different format.

EIO0000002036 09/2014 169

SoMachine HVAC - Application

To impose another format than the one assigned by Application, press the Format value
button in the toolbar.

Choose	the	format	and	confirm	your	choice.

8.1.6 WORKING WITH WATCH LISTS

You	can	store	to	file	the	set	of	all	the	items	in	the	Watch window, in order to easily restore
the status of this debugging tools in a successive working session.
Follow this procedure to save a watch list:
1) Click on the corresponding item in the Watch window toolbar.

2) Enter	the	file	name	and	choose	its	destination	in	the	file	system.

170 EIO0000002036 09/2014

SoMachine HVAC - Application

You	can	load	a	watch	list	from	file,	removing	the	opened	one,	following	this	procedure:
1) Click on the corresponding icon in the Watch window toolbar.

2) Browse	the	file	system	and	select	the	watch	list	file.

The set of symbols in the watch list is added to the Watch window.

You	can	load	a	watch	list	from	file,	appendig	to	the	opened	one,	following	this	procedure:
1) Click on the corresponding icon in the Watch window toolbar.

EIO0000002036 09/2014 171

SoMachine HVAC - Application

2) Browse	the	file	system	and	select	the	watch	list	file.

The set of symbols in the watch list is added to the Watch window.

You can clear the current opened watch list by clicking on the following icon:

8.1.7 AUTOSAVE WATCH LIST

By selecting the associated option in the project options dialog (See paragraph 3.6.5 for
more info) the watch list will be automatically saved on the project closing.
The	saved	watch	list	will	be	automatically	loaded	(with	no	append	option)	on	the	first	con-
nection to target when the the project will be re-opened.

8.2 OSCILLOSCOPE
The Oscilloscope allows you to plot the evolution of the values of a set of variables. Be-
ing an asynchronous tool, the Oscilloscope cannot guarantee synchronization of samples.
Opening the Oscilloscope causes a new window to appear next to the right-hand border
of the Application frame. This is the interface for accessing the debugging functions that
the Oscilloscope makes available. The Oscilloscope consists of three elements, as shown
in the following picture.

172 EIO0000002036 09/2014

SoMachine HVAC - Application

The toolbar allows you to better control the Oscilloscope. A detailed description of the
function of each control is given later in this chapter.
The Chart area includes several items:
 - Plot: area containing the curve of the variables.
 - Vertical cursors: cursors identifying two distinct vertical lines. The values of each vari-
able at the intersection with these lines are reported in the corresponding columns.

 - Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

8.2.1 OPENING AND CLOSING THE OSCILLOSCOPE

To open the Oscilloscope, click on the Async button of the Main toolbar.

To close the Oscilloscope, click on the Async button again.

Alternatively, you can click on the Close button in the top right corner of the Oscillo-
scope window.

EIO0000002036 09/2014 173

SoMachine HVAC - Application

In both cases, closing the Oscilloscope means simply hiding it, not resetting it. As a mat-
ter of fact, if you open again the Oscilloscope after closing it, you will see that plotting of
the curve of all the variables you added to it starts again.

8.2.2 ADDING ITEMS TO THE OSCILLOSCOPE

In order to plot the evolution of the value of a variable, you need to add it to the Oscil-
loscope.
Note that unlike trigger windows and the Graphic trigger window, you can add to the
Oscilloscope all the variables of the project, regardless of where they were declared.

8.2.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or
ST) source code editor: select a variable by double-clicking on it, and then drag it into the
Oscilloscope window.

The same procedure applies to all the variables you wish to inspect.

8.2.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD,
FBD, or SFC) source code editor:
1) Press the Watch button in the FBD bar.

2) Click on the block representing the variable you wish to be shown in the Oscilloscope.

174 EIO0000002036 09/2014

SoMachine HVAC - Application

3) A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

Select Oscilloscope, the press OK. The name of the variable is now displayed in the
Track column.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Oscilloscope all the variables you want to observe, you should
click on the Select/Move button in the FBD bar: the mouse cursor turns to its original
shape.

8.2.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in
the variables editor and then either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which pops
up.

EIO0000002036 09/2014 175

SoMachine HVAC - Application

8.2.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then
either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which
pops up.

8.2.3 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name
once, then press the Del key.

8.2.4 VARIABLES SAMPLING
8.2.4.1 NORMAL OPERATION

Let us consider the following example.

176 EIO0000002036 09/2014

SoMachine HVAC - Application

The Oscilloscope manager periodically reads from memory the value of the variables.
However, this action is carried out asynchronously, that is it may happen that a higher-
priority	task	modifies	the	value	of	some	of	the	variables	while	they	are	being	read.	Thus,	
at the end of a sampling process, data associated with the same value of the x-axis may
actually refer to different execution states of the PLC code.

8.2.4.2 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen,
until communication is restored.

8.2.5 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control
the acquisition process and the way data are displayed. This paragraph focuses on these
commands.
Note that all the commands in the toolbar are disabled if no variable has been added to
the Oscilloscope.

8.2.5.1 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

However, you can suspend the acquisition by clicking on Pause acquisition.

EIO0000002036 09/2014 177

SoMachine HVAC - Application

The curve freezes (while the process of data acquisition is still running in background),
until you click on Restart acquisition.

In order to stop the acquisition you may click on Stop acquisition.

In this case, when you click on Restart acquisition, the evolution of the value of the
variable is plotted from scratch.

8.2.5.2 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, Application applies a default scale to the axes. However,
if you want to set a different scale, you may follow this procedure:
1) Open the graph properties by clicking on the corresponding item in the toolbar.

178 EIO0000002036 09/2014

SoMachine HVAC - Application

2) Set the scale of the horizontal axis, which is common to all the tracks.

3) For each variable, you may specify a distinct scale for the vertical axis.

4) Confirm	your	settings.	The	graph	adapts	to	reflect	the	new	scale.

EIO0000002036 09/2014 179

SoMachine HVAC - Application

You can also zoom in and out with respect to both the horizontal and the vertical axes.

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or
both to include all the samples, by clicking on the corresponding item of the toolbar.

180 EIO0000002036 09/2014

SoMachine HVAC - Application

8.2.5.3 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the
respective tracks. For this purpose, click on the Vertical split item in the Oscillo-
scope toolbar.

8.2.5.4 VIEWING SAMPLES

If you click on the Show samples item in the Oscilloscope toolbar, the tool highlights
the single values detected during data acquisition.

You can click on the same item again, in order to go back to the default view mode.

EIO0000002036 09/2014 181

SoMachine HVAC - Application

8.2.5.5 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some meas-
ures	on	the	chart;	in	order	to	show	and	hide	them,	click	on	the	Show measure bars item
in the Oscilloscope toolbar.

If you want to measure a time interval between two events, you just have to move one
bar	to	the	point	in	the	graph	that	corresponds	to	the	first	event	and	the	other	to	the	point	
that corresponds to the second one.

The time interval between the two bars is shown in the top left corner of the chart.

You can use a measure bar also to read the value of all the variables in the Oscilloscope
at a particular moment: move the bar to the point in the graph which corresponds to the
instant you want to observe.

182 EIO0000002036 09/2014

SoMachine HVAC - Application

In the table below the chart, you can now read the values of all the variables at that par-
ticular moment.

8.2.5.6 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph
properties item in the toolbar.

In the window that pops up you can choose whether to display or not the Background
grid, the Time slide bar, and the Track list.

8.2.6 CHANGING THE POLLING RATE

Application periodically sends queries to the target device, in order to read the data to be
plotted in the Oscilloscope.
The	polling	rate	can	be	configured	by	following	this	procedure:
1) Click on the Graph properties item in the toolbar.

EIO0000002036 09/2014 183

SoMachine HVAC - Application

2) In the window that pops up edit the Sampling polling rate.

3) Confirm	your	decision.
Note that the actual rate depends on the performance of the target device (in particular,
on the performance of its communication task). You can read the actual rate in the Oscil-
loscope settings window.

8.2.7 SAVING AND PRINTING THE GRAPH

Application	allows	you	to	persist	the	acquisition	either	by	saving	the	data	to	a	file	or	by	
printing a view of the data plotted in the Oscilloscope.

8.2.7.1 SAVING DATA TO A FILE

You	can	save	the	samples	acquired	by	the	Oscilloscope	to	a	file,	in	order	to	further	analyze	
the data with other tools.
1) You	may	want	to	stop	acquisition	before	saving	data	to	a	file.
2) Click on the Save tracks data into file in the Oscilloscope toolbar.

3) Choose	between	the	available	output	file	format:	OSC	is	a	simple	plain-text	file,	con-
taining	 time	 and	 value	 of	 each	 sample;	 OSCX	 is	 an	 XML	 file,	 that	 includes	more	
complete information, which can be further analyzed with another tool, provided
separately from Application.

4) Choose	a	file	name	and	a	destination	directory,	then	confirm	the	operation.

184 EIO0000002036 09/2014

SoMachine HVAC - Application

8.2.7.2 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:
1) Either suspend or stop the acquisition.

2) Move the time slide bar and adjust the zoom, in order to include in the view the ele-
ments you want to print.

3) Click on the Print graph item.

8.3 EDIT AND DEBUG MODE
While both the Watch window and the Oscilloscope do not make use of the source code,
all the other debuggers do: thus, Application requires the developer to switch on the de-
bug mode, where changes to the source code are inhibited, before (s)he can access those
debugging tools.
To switch on and off the debug mode, you can click on the corresponding item in the De-
bug toolbar.

EIO0000002036 09/2014 185

SoMachine HVAC - Application

Alternatively, you can choose Debug mode from the Project menu.

The status bar shows whether the debug mode is active or not.

Note that you cannot enter the debug mode if the connection status differs from Con-
nected.

8.4 LIVE DEBUG
Application can display meaningful animation of the current and changing state of execu-
tion over time of a Program Organization Unit (POU) coded in any IEC 61131-3 program-
ming language.
To switch on and off the live debug mode, you may click on the corresponding item in the
Debug toolbar

or choose Live debug mode from the Project menu.

186 EIO0000002036 09/2014

SoMachine HVAC - Application

8.4.1 SFC ANIMATION

As explained in the relevant section of the language reference, an SFC POU is structured
in a set of steps, each of which is either active or inactive at any given moment. Once
started	up,	this	SFC-specific	debugging	tool	animates	the	SFC	documents	by	highlighting	
the active steps.

Animation OFF Animation ON

In the left column, a portion of an SFC network is shown, diagram animation being off.
In the right column the same portion of network is displayed when the live debug mode
is active. The picture in the right column shows that steps S1 and S3 are currently active,
whereas Init, S2, and S4 are inactive.
Note that the SFC animation manager tests periodically the state of all steps, the user not
being allowed to edit the sampling period. Therefore, it may happen that a step remains
active for a slot of time too short to be displayed on the video.
The fact that a step is never highlighted does not imply that its action is not executed, it
may simply mean that the sampling rate is too slow to detect the execution.

8.4.1.1 DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a
transition can be associated with a condition code. Actions and conditions can be coded in
any of the IEC 61131-3 languages. General-purpose debugging tools can be used within
each action/condition, as if it was a stand-alone POU.

8.4.2 LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts
and coils whose value is true (in the example, i1 and i2).

EIO0000002036 09/2014 187

SoMachine HVAC - Application

Note that the LD animation manager tests periodically the state of all the elements. It
may happen that an element remains true for a slot of time too short to be displayed
on the video. The fact that an element is never highlighted does not imply that its value
never becomes true (the sampling rate may be too slow).

8.4.3 FBD ANIMATION

In live debug mode, Application displays the values of all the visible variables directly in
the graphical source code editor.

This works for both FBD and LD programming language.

Note that, once again, this tool is asynchronous.

8.4.4 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST).
You can quickly watch the values of a variable by hovering with the mouse over it.

8.5 TRIGGERS
8.5.1 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated
synchronously in a special pop-up window.

188 EIO0000002036 09/2014

SoMachine HVAC - Application

8.5.1.1 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation
Application debugging tools operate at run-time. Thus, unlike other programming lan-
guages such as C++, the compiler does not need to be told whether or not to support trig-
ger	windows:	given	a	PLC	code,	the	compiler’s	output	is	unique,	and	there	is	no	distinction	
between debug and release version.

Memory availability
A	trigger	window	takes	a	segment	in	the	application	code	sector,	having	a	well-defined	
length.	Obviously,	in	order	to	start	up	a	trigger	window,	it	is	necessary	that	a	sufficient	
amount of memory is available, otherwise an error message appears.

Incompatibility with graphic trigger windows
A graphic trigger window takes the whole free space of the application code sector. There-
fore, once such a debugging tool has been started, it is not possible to add any trigger
window, and an error message appears if you attempt to start a new window. Once the
graphic trigger window is eventually closed, trigger windows are enabled again.
Note that all the trigger windows existing before the starting of a graphic trigger window
keep working normally. You are simply not allowed to add new ones.

8.5.1.2 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if Application is
in debug mode.

Button Command Description

Set/Remove trigger

In order to actually start a trigger window,
select the point of the PLC code where to insert
the relative trigger and then press this button.
The same procedure applies to trigger window
removal:	in	order	to	definitely	close	a	debug	
window, click once the instruction/block where the
trigger was inserted, then press this button again.

Graphic trace

This button operates exactly as the above Set/
Remove trigger, except for that it opens a
graphic trigger window. It can be used likewise
also to remove a graphic trigger window. Shortcut
key: pressing Shift + F9 is equivalent to clicking
on Set/Remove trigger button.

Remove all
triggers

Pressing this key causes all the existing trigger
windows and the graphic trigger window to be
removed simultaneously. Shortcut key: pressing
Ctrl+Shift+F9 is equivalent to clicking on this
button.

Trigger list
This key opens a dialog listing all the existing
trigger windows. Shortcut key: pressing Ctrl+I is
equivalent to clicking on this button.

EIO0000002036 09/2014 189

SoMachine HVAC - Application

Each record refers to a trigger window, either graphic or textual. The following table ex-
plains	the	meaning	of	each	field.

Field Description

Type
T: trigger window.
G: graphic trigger window.

Module

Name of the program, function, or function block where
the trigger is placed. If the module is a function block, this
field	contains	its	name,	not	the	name	of	its	instance	where	
you actually put the trigger.

Line
For the textual languages (IL, ST) indicates the line in
which the trigger is placed. For the other languages the
value is always -1.

8.5.1.3 TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window:
this is the interface to access the debugging functions that the trigger window makes
available. It consists of three elements, as shown below.

Caption bar
The Caption bar of the pop-up window shows information on the location of the trigger
which causes the refresh of the Variables window, when reached by the processor.
The text in the Caption bar has the following format:
Trigger n° X at ModuleName#Location

190 EIO0000002036 09/2014

SoMachine HVAC - Application

where

X Trigger	identifier.

ModuleName Name of the program, function, or function block where
the trigger was placed.

Location

Exact location of the trigger, within module ModuleName.
If ModuleName is in IL, Location has the following format:
N1

Otherwise, if ModuleName is in FBD, it becomes:
N2$BT:BID

where:
N1 = instruction line number
N2 = network number
BT = block type (operand, function, function block, etc.)
BID	=	block	identifier

Controls section
This dialog box allows the user to better control the refresh of the trigger window to get
more information on the code under scope. A detailed description of the function of each
control is given in the Trigger window controls section (see 8.5.2.11).
All controls except Ac, the Accumulator display button, are not accessible until at least
one variable is dragged into the debug window.

The Variables section
This lower section of the Debug window is a table consisting of a row for each variable that
you	dragged	in.	Each	row	has	four	fields:	the	name	of	the	variable,	its	value,	its	type,	and	
its location (@task:ModuleName) read from memory during the last refresh.

8.5.1.4 TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.
This section is a table consisting of a row for each variable you dragged in. You can drag
into the trigger window only variables local to the module where you placed the relative
trigger, or global variables, or parameters. You cannot drag variables declared in another
program, or function, or function block.

EIO0000002036 09/2014 191

SoMachine HVAC - Application

8.5.1.5 REFRESH OF THE VALUES

Let us consider the following example.

The value of variables is refreshed every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables refreshed only when triggers satisfy
the	more	limiting	conditions	you	define.	
Note that the value of the variables in column Symbol is read from memory just before
the marked instruction (in this case: the instruction at line 5) and immediately after the
previous instruction (the one at line 4) has been performed.
Thus, in the above example the second ST statement has not been executed yet when the
new value of a is read from memory and displayed in the trigger window. Thus the result
of the second ST a is 1.

8.5.1.6 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better super-
vise the working of this debugging tool, to get more information on the code under scope.
Trigger	window	controls	act	in	a	well-defined	way	on	the	behavior	of	the	window,	regard-
less for the type of the module (either IL or FBD) where the related trigger has been
inserted.
All controls except the Accumulator display are not accessible until at least one variable
is dragged into the Variables window.
Window controls are made accessible to users through the grey top half of the debug
window.

192 EIO0000002036 09/2014

SoMachine HVAC - Application

Button Command Description

Start/Stop

This control is used to start a triggering session.
If system is triggering you can click this button to
force stop. Otherwise session automatically stops
when conditions are reached. At this point you
can press this button to start another triggering
session.

Single step
execution

This control is used to execute a single step
trigger. It is enabled only when there is no active
triggering session and None is	selected.	Specified	
condition is considered. After the single step
trigger is done, triggering session automatically
stops.

Accumulator
display

This control adds the Accumulator to the list of
variables already dragged into the trigger window.
A new row is added at the bottom of the table of
variables, containing the string Accumulator in
column Symbol,	the	accumulator’s	value	in	column	
Value, Type is	not	specified	and	Location is set
to	global	as	shown	in	the	following	figure.

In order to remove the accumulator from the table, click its name in Symbol column, and
press the Del key.
This control can be very useful if a trigger was inserted before a ST statement, because
it allows you to know what value is being written in the destination variable, during the
current execution of the task. You can get the same result by moving the trigger to an
instruction following the one marked by the green arrowhead.

Trigger counter

This read-only control counts how many times the debug window manager has been trig-
gered, since the window was installed.
The window manager automatically resets this counter every time a new triggering ses-
sion is started.

EIO0000002036 09/2014 193

SoMachine HVAC - Application

Trigger state
This read-only control shows the user the state of the Debug window. It can assume the
following values.

The trigger has not occurred during the current task execution.

The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet
or it has been stopped by user or an halt condition has been
reached.
Communication with target interrupted, the state of the trigger
window cannot be determined.

User-defined condition

If	you	define	a	condition	by	using	this	control,	the	values	in	the	Debug window are re-
freshed	every	time	the	window	manager	 is	triggered	and	the	user-defined	condition	 is	
true.
After	you	have	entered	a	condition,	the	control	displays	its	simplified	expression.

Counters

These	controls	allow	the	user	to	define	conditions	on	the	trigger	counter.	
The trigger window can be in one of the following three states.
 - None:	no	counter	has	been	started	up,	thus	no	condition	has	been	specified	upon	the	
trigger.

 - For: assuming that you gave the counter limit the value N, the window manager adds
1 to the current value of the counter and refreshes the value of its variables, each time
the debug window is triggered. However, when the counter equals N, the window stops
refreshing the values, and it changes to the Stop state.

 - After: assuming that you gave the counter limit the value N, the window manager re-
sets the counter and adds 1 to its current value each time it is triggered. The window
remains in the Ready state and does not update the value of its variables until the
counter reaches N.

8.5.2 DEBUGGING WITH TRIGGER WINDOWS
8.5.2.1 INTRODUCTION

The trigger window tool allows the user to select a set of variables and to have their val-
ues displayed and updated synchronously in a pop-up window. Unlike the Watch window,
trigger windows refresh simultaneously all the variables they contain, every time they are
triggered.

194 EIO0000002036 09/2014

SoMachine HVAC - Application

8.5.2.2 OPENING A TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.
In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.
Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.5.2.3 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this
purpose, select a variable by double-clicking it, and then drag it into the Variables win-
dow,	that	is	the	lower	white	box	in	the	pop-up	window.	The	variable’s	name	now	appears	
in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

EIO0000002036 09/2014 195

SoMachine HVAC - Application

8.5.2.4 OPENING A TRIGGER WINDOW FROM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of C, D, and K, just before the ST
k instruction is executed.
Provided that you can never place a trigger in a block representing a variable such as

you	must	select	the	first	available	block	preceding	the	selected	variable.	In	the	example	
of	the	above	figure,	you	must	move	the	cursor	to	network	3,	and	click	the	ADD block.
You can click the Set/Remove trigger button in the Debug bar

or you can press the F9 key.
In both cases, the color of the selected block turns to green, a white circle with a number
inside appears in the middle of the block, and the related trigger window pops up.

196 EIO0000002036 09/2014

SoMachine HVAC - Application

When preprocessing FBD source code, the compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:
LD k

ADD 1

ST k

When	you	add	a	trigger	to	an	FBD	block,	you	actually	place	the	trigger	before	the	first	
statement of its IL equivalent code.

8.5.2.5 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable k	of	the	FBD	code	in	the	figure	
below.
To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the trigger
window.
In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

EIO0000002036 09/2014 197

SoMachine HVAC - Application

In order to display the variable k in the trigger window, select its reference in the Debug
windows column, then press OK. The name of the variable is now printed in the Symbol
column.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the normal cursor button, so as to let the cursor take back its original
shape.

8.5.2.6 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

198 EIO0000002036 09/2014

SoMachine HVAC - Application

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

or a coil

In this case, follow the SE instructions. Let us also assume that you want to know the
value of some variables every time the processor reaches network number 1.
First you must click one of the items making up network number 1. Now you can click the
Set/Remove trigger button in the Debug bar.

Alternatively you can press the F9 key.
In both cases, the grey raised button containing the network number turns to green, and
a white circle with the number of the trigger inside appears in the middle of the button,
while the related trigger window pops up.

Unlike the other languages supported by Application, LD does not allow you to insert a
trigger into a single contact or coil, as it lets you select only an entire network. Thus the
variables in the trigger window will be refreshed every time the processor reaches the
beginning of the selected network.

8.5.2.7 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable b in the LD code represented in
the	figure	below.
To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

EIO0000002036 09/2014 199

SoMachine HVAC - Application

Now you can click the item representing the variable you wish to be shown in the trigger
window.
A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to display variable B in the trigger window, select its reference in the Debug win-
dow column, then press OK.
The name of the variable is now printed in the Symbol column.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, so as to restore the original shape of
the cursor.

200 EIO0000002036 09/2014

SoMachine HVAC - Application

8.5.2.8 OPENING A TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction
f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.
Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.
In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc..

8.5.2.9 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this
purpose, select a variable, by double clicking it, and then drag it into the Variables win-
dow, that is the lower white box in the pop-up window. The variable name now appears
in the Symbol column.

EIO0000002036 09/2014 201

SoMachine HVAC - Application

The same procedure applies to all the variables you wish to inspect.

8.5.2.10 REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by
clicking its name once, then press the Del key.

8.5.2.11 USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise
the working of this debugging tool to get more information on the code under scope. The
main	purpose	of	trigger	window	controls	is	to	let	you	define	more	limiting	conditions,	so	
that variables in Variables window are refreshed when the processor reaches the trig-
ger	location	and	these	conditions	are	satisfied.	If	you	do	not	use	controls,	variables	are	
refreshed every single time the processor reaches the relative trigger.

Enabling controls
When you set a trigger, all the elements in the Control window look disabled.

As a matter of fact, you cannot access any of the controls, except the Accumulator dis-
play, until at least one variable is dragged into the Debug window. When this happens
triggering automatically starts and the Controls window changes as follows.

Triggering can be started/stopped with the apposite button.

Fixing the number of refresh
If	you	want	the	values	to	be	refreshed	the	first	time	the	window	is	triggered,	select	None,
and press the single step button, otherwise set the counter to 1 and select For.
If	you	want	the	values	to	be	refreshed	the	first	X times the window is triggered, set the
counter to X and select For.
If you want the values to be refreshed after Y times the window is triggered, set the coun-
ter to Y and select After.
Triggers and conditions settings become the actual settings when the triggering is (re)
started.

Watching the accumulator
As stated in the Refresh of values section (see 8.5.1.5), when you insert a trigger on an in-
struction line, you establish that the variables in the relative debugging window will be up-
dated every time the processor reaches that location, before the instruction itself is executed.

202 EIO0000002036 09/2014

SoMachine HVAC - Application

In some cases, for example when a trigger is placed before a ST statement, it can be use-
ful to know the value of the accumulator. This allows you to forecast the outcome of the
instruction that will be executed after all the variables in the trigger window have been
updated. To add the accumulator to the trigger window, click on the Accumulator dis-
play button.

Defining a condition
This control enables users to set a condition on the occurrences of a trigger. By default,
this condition is set to TRUE, and the values in the debug window are refreshed every time
the window manager is triggered.
If you want to put a restriction on the refreshment mechanism, you can specify a condi-
tion by clicking on the apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the
condition.

Once	you	have	finished	writing	the	condition	code,	click	the	OK button to install it, or press
the Esc button to cancel. If you choose to install it, the values in the debug window are
refreshed	every	time	the	window	manager	is	triggered	and	the	user-defined	condition	is	
true.
A	simplified	expression	of	the	condition	now	appears	in	the	control.

To modify it, press again the above mentioned button.

The text window appears, containing the text you originally wrote, which you can now
edit.
To	completely	remove	a	user-defined	condition,	delete	the	whole	IL	code	in	the	text	win-
dow, then click OK.
After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.
Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the debug window. No new variables can be declared
in the condition window.

EIO0000002036 09/2014 203

SoMachine HVAC - Application

8.5.2.12 CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This	web	page	deals	with	what	you	can	do	when	you	finish	a	debug	session	with	a	trigger	
window. You can choose between the following options.
 - Closing the trigger window.
 - Removing the trigger.
 - Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window
If	you	have	finished	watching	a	set	of	variables	by	means	of	a	trigger	window,	you	may	
want to close the Debug window, without removing the trigger. If you click the button in
the top right-hand corner, you just hide the interface window, while the window manager
and the relative trigger keep working.

As a matter of fact, if later you want to resume debugging with a trigger window that you
previously hid, you just need to open the Trigger list window, to select the record
referred to that trigger window, and to click the Open button.

The interface window appears with value of variables and trigger counter updated, as if it
had not been closed.

Removing a trigger
If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose, just open the Trigger list window, select the record
referred to the trigger window you want to eliminate, and click the Remove button.

204 EIO0000002036 09/2014

SoMachine HVAC - Application

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click
the block (if the module is in FBD or LD) where you placed the trigger. Now press the Set/
Remove trigger button in the Debug toolbar.

Removing all the triggers
Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all button.

8.6 GRAPHIC TRIGGERS
8.6.1 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and to have their curve displayed in a special pop-up window.
Sampling of the dragged-in variables occurs every time the processor reaches the position
(i.e. the instruction - if IL, ST - or the block - if FBD, LD) where you placed the trigger.

8.6.1.1 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation
All the Application debugging tools operate at run-time. Thus, unlike other programming
languages such as C++, the compiler does not need to be told whether or not to support
trigger	windows:	given	a	PLC	code,	the	compiler’s	output	is	unique,	and	there	is	no	dis-
tinction between debug and release version.

Memory availability
A graphic trigger window takes all the free memory space in the application code sector.
Obviously,	in	order	to	start	up	a	trigger	window,	it	is	necessary	that	a	sufficient	amount	
of memory is available, otherwise an error message appears.

8.6.1.2 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface
window. This is the main interface for accessing the debugging functions that the graphic
trigger window makes available. It consists of several elements, as shown below.

Variables
window

Chart area

Caption bar
Controls bar

EIO0000002036 09/2014 205

SoMachine HVAC - Application

The caption bar
The Caption bar at the top of the pop-up window shows information on the location of
the trigger which causes the variables listed in the Variables window to be sampled.
The text in the caption has the following format:
ModuleName#Location

Where

ModuleName Name of program, function, or function block where the trigger was
placed.

Location

Exact location of the trigger, within module ModuleName.
If ModuleName is in IL, ST, Location has the format:
N1

Otherwise, if ModuleName is in FBD, LD, it becomes:
N2$BT:BID

N1 = instruction line number
N2 = network number
BT = block type (operand, function, function block, etc.)
BID	=	block	identifier

The Controls bar
This dialog box allows you to better control the working of the graphic trigger window. A
detailed description of the function of each control is given in the Graphic trigger window
controls section (see 8.6.1.5).

The Chart area
The Chart area includes six items:
1) Plot: area containing the actual plot of the curve of the dragged-in variables.
2) Samples to acquire: number of samples to be collected by the graphic trigger window

manager.
3) Horizontal cursor: cursor identifying a horizontal line. The value of each variable at

the intersection with this line is reported in the column horz cursor.
4) Blue cursor: cursor identifying a vertical line. The value of each variable at the inter-

section with this line is reported in the column left cursor.
5) Red cursor: same as blue cursor.
6) Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot

area, the scroll bar allows you to slide back and forth along the horizontal axis.

The Variables window
This lower section of the Debug window is a table consisting of a row for each variable
that	you	have	dragged	in.	Every	row	has	several	fields,	which	are	described	in	detail	in	
the Drag and drop information section.

206 EIO0000002036 09/2014

SoMachine HVAC - Application

8.6.1.3 GRAPHIC TRIGGER WINDOW:DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

Variables
window

This lower section of the Debug window is a table consisting of a row for each variable that
you	dragged	in.	Each	row	has	several	fields,	as	shown	in	the	picture	below.

Field Description
Track Name of the variable.
Um Unit of measurement.

Min value Minimum value in the record set.
Max value Maximum value in the record set.
Cur value Current value of the variable.

v/div
How many engineering units are represented by a unit
of the y-axis (i.e. the space between two ticks on the
vertical axis).

Blue cursor Value of the variable at the intersection with the line
identified	by	the	blue	cursor.

Red cursor Value of the variable at the intersection with the line
identified	by	the	red	cursor.

Horz cursor Value of the variable at the intersection with the line
identified	by	the	horizontal	cursor.

Note that you can drag into the graphic trigger window only variables local to the module
where you placed the relative trigger, or global variables, or parameters. You cannot drag
variables declared in another program, or function, or function block.

EIO0000002036 09/2014 207

SoMachine HVAC - Application

8.6.1.4 SAMPLING OF VARIABLES

Let us consider the following example.
The value of the variables is sampled every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables sampled when triggers also satisfy
further	limiting	conditions	that	you	define.	
The value of the variables in the column Track is read from memory just before the
marked instruction and immediately after the previous instruction.

8.6.1.5 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you
to specify in detail when Application is supposed to sample the variables added to the
Variables window.
Graphic	trigger	window	controls	act	in	a	well-defined	way	on	the	behavior	of	the	window,	
regardless for the type of the module (IL, ST, FBD or LD) where the related trigger has
been inserted.
Window controls are made accessible to users through the Controls bar of the debug
window.

Button Command Description

Start graphic
trace

When you push this button down, you let
acquisition start. Now, if acquisition is running
and you release this button, you stop the sample
collection process, and you reset all the data you
have acquired so far.

Enable/Disable
cursors

The two cursors (red cursor, blue cursor) may be
seen and moved along their axis as long as this
button is pressed. Release this button if you want
to hide simultaneously all the cursors.

Show samples
This control is used to put in evidence the exact
point in which the variables are triggered at each
sample.

Split variables

When pressed, this control splits the y-axis into
as many segments as the dragged-in variables,
so that the diagram of each variable is drawn in a
separate band.

Show all values
It	is	used	to	fill	in	the	graph	window	all	the	values	
sampled for the selected variables in the current
recordset.

Horizontal Zoom In
and Zoom Out

Zooming in is an operation that makes the curves
in the Chart area appear larger on the screen,
so that greater detail may be viewed. Zooming
out is an operation that makes the curves appear
smaller on the screen, so that it may be viewed
in its entirety. Horizontal zoom acts only on the
horizontal axis.

208 EIO0000002036 09/2014

SoMachine HVAC - Application

Button Command Description

Horizontal show
all

This control is used to horizontally center record
set	samples.	So	first	sample	will	be	placed	on	the	
left margin, and last will be placed on the right
margin of the graphic window.

Vertical Zoom In
and Zoom Out Vertical Zoom acts only on the vertical axis.

Vertical show all

This control is used to vertically center record set
samples. So max value sample will be placed near
top margin and low value sample will be placed on
the bottom margin of the graphic window.

Graphic trigger
window properties

Pushing this button causes a tabs dialog box
to appear, which allows you to set general user
options affecting the action of the graphic trigger
window. Since the options you can set are quite
numerous, they are dealt with in a section apart.
Click here to access this section.

Print chart Push this button to print both the Chart area and
the Variables window.

Save chart Press this button to save the chart.

Trigger counter

This read-only control displays two numbers with the following format: X/Y.
X indicates how many times the debug window manager has been triggered, since the
graphic trigger was installed.
Y represents the number of samples the graphic window has to collect before stopping
data acquisition and drawing the curves.

Trigger state
This read-only control shows you the state of the Debug window. It can assume the fol-
lowing values.

No sample(s) taken, as the trigger has not occurred during the
current task execution.

Sample(s) collected, as the trigger has occurred during the
current task execution.
The trigger counter indicates that a number of samples
has been collected satisfying the user request or memory
constraints, thus the acquisition process is stopped.
Communication with target interrupted, the state of the trigger
window cannot be determined.

EIO0000002036 09/2014 209

SoMachine HVAC - Application

8.6.1.6 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls
bar. When you do this, the following dialog box appears.

General

Control

Control Description

Show grid Tick this control to display a grid in the Chart area
background.

Show time
bar

The scroll bar at the bottom of the Chart area is
available as long as this box is checked.

Show tracks
list

The Variables window is shown as long as this box
is checked, otherwise the Chart area extends to the
bottom of the graphic trigger window.

Values

Control Description
Horizontal

scale Number of samples per unit of the x-axis. By unit of the
x-axis the space is meant between two vertical lines of
the background grid.

Buffer size

Number of samples to acquire. When you open the
option tab, after having dragged-in all the variables you
want to watch, you can read a default number in this
field,	representing	the	maximum	number	of	samples	you	
can collect for each variable. You can therefore type a
number which is less or equal to the default one.

210 EIO0000002036 09/2014

SoMachine HVAC - Application

Tracks
This	tab	allows	you	to	define	some	graphic	properties	of	the	plot	of	each	variable.	To	select	
a variable, click its name in the Track list column.

Control Description

Unit Unit of measurement, printed in the table of the
Variables window.

Value/div
Δ	value	per	unit	of	the	y-axis.	By	unit	of	the	y-axis	is	
meant the space between two horizontal lines of the
background grid.

Hide Check	this	flag	to	hide	selected	track	on	the	graph.

Push Apply to make your changes effective, or push OK to apply your changes and to
close the options tab.

User-defined condition
If	you	define	a	condition	by	using	this	control,	the	sampling	process	does	not	start	until	
that	condition	is	satisfied.	Note	that,	unlike	trigger	windows,	once	data	acquisition	begins,	
samples are taken every time the window manager is triggered, regardless of the user
condition being still true or not.
After	you	enter	a	condition,	the	control	displays	its	simplified	expression.

8.6.2 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and their curve displayed in a special pop-up window.

8.6.2.1 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then click the Graphic trace button in the Debug toolbar.

EIO0000002036 09/2014 211

SoMachine HVAC - Application

A green arrowhead appears next to the line number, and the graphic trigger window pops
up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.6.2.2 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger
window. To this purpose, select a variable, by double clicking it, and then drag it into the
Variables window. The variable now appears in the Track column.

The same procedure applies to all the variables you wish to inspect.
Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.3 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

212 EIO0000002036 09/2014

SoMachine HVAC - Application

Let us also assume that you want to know the values of c, d, and k, just before the ST
k instruction is executed.
Provided that you can never place a trigger in a block representing a variable such as

you	must	select	the	first	available	block	preceding	the	selected	variable.	In	the	example	
of	the	above	figure,	you	must	move	the	cursor	to	network	3,	and	click	the	ADD block.
Now click the Graphic trace button in the Debug toolbar.

This causes the colour of the selected block to turn to green, a white circle with the trig-
ger ID number inside to appear in the middle of the block, and the related trigger window
to pop up.

When preprocessing the FBD source code, compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:
LD k

ADD 1

ST k

When	you	add	a	trigger	to	an	FBD	block,	you	actually	place	the	trigger	before	the	first	
statement of its IL equivalent code.

8.6.2.4 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD
MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let
us assume that you want to see the plot of the variable k of	the	FBD	code	in	the	figure	
below.
To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

EIO0000002036 09/2014 213

SoMachine HVAC - Application

Now you can click the block representing the variable you wish to be shown in the graphic
trigger window.
In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable k, select Graphic Trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, in order to restore the original cursor.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

214 EIO0000002036 09/2014

SoMachine HVAC - Application

8.6.2.5 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a
contact

or coil

In this case, follow the instructions. Let us also assume that you want to know the value
of some variables every time the processor reaches network number 1.
Click one of the items making up network nr. 1, then press the Graphic trace button in
the Debug toolbar.

This causes the grey raised button containing the network number to turn to green, a
white circle with a number inside to appear in the middle of the button, and the graphic
trigger window to pop up.

EIO0000002036 09/2014 215

SoMachine HVAC - Application

Note that unlike the other languages supported by Application, LD does not allow you to
insert a trigger before a single contact or coil, as it lets you select only an entire network.
Thus the variables in the Graphic trigger window will be sampled every time the pro-
cessor reaches the beginning of the selected network.

8.6.2.6 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD
MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger
window. Let us assume that you want to see the plot of the variable b in the LD code
represented	in	the	figure	below.
To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the item representing the variable you wish to be shown in the Graphic
trigger window.
A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.
In order to plot the curve of variable b, select Graphic trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

The same procedure applies to all the variables you wish to inspect.
Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press again the Normal cursor button, so as to restore the original shape
of the cursor.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

216 EIO0000002036 09/2014

SoMachine HVAC - Application

8.6.2.7 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction
f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.
Then click the Graphic trace button in the Debug toolbar.

A green arrowhead appears next to the line number, and the Graphic trigger window
pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc.

8.6.2.8 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST
MODULE

In order to get the diagram of a variable plotted, you need to add it to the Graphic trig-
ger window. To this purpose, select a variable, by double clicking it, and then drag it into
the Variables window, that is the lower white box in the pop-up window. The variable
now appears in the Track column.

EIO0000002036 09/2014 217

SoMachine HVAC - Application

The same procedure applies to all the variables you wish to inspect.
Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.9 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its
name once, then press the Del key.

8.6.2.10 USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better
supervise the working of this debugging tool, so as to get more information on the code
under scope.

Enabling controls
When you set a trigger, all the elements in the Control bar are enabled. You can start
data acquisition by clicking the Start graphic trace acquisition button.
If	you	defined	a	user	condition,	which	is	currently	false,	data	acquisition	does	not	start,	
even though you press the apposite button.

On the contrary, once the condition becomes true, data acquisition starts and continues
until the Start graphic trace acquisition button is released, regardless for the con-
dition being or not still true.
if you release the Start graphic trace acquisition button before all the required
samples have been acquired, the acquisition process stops and all the collected data get
lost.

Defining a condition
This control enables users to set a condition on when to start acquisition. By default, this
condition is set to true, and acquisition begins as soon as you press the Enable/Disable
acquisition button. From that moment on, the value of the variables in the Debug win-
dow is sampled every time the trigger occurs.
In order to specify a condition, open the Condition tab of the Options dialog box, then
press the relevant button.

A text window pops up, where you can write the IL code that sets the condition.

218 EIO0000002036 09/2014

SoMachine HVAC - Application

Once	you	have	finished	writing	the	condition	code,	click	the	OK button to install it, or press
the Esc button to cancel. The collection of samples will not start until the Start graphic
trace acquisition button	is	pressed	and	the	user-defined	condition	is	true.	A	simplified	
expression of the condition now appears in the control.

To modify it, press again the relevant button.

The text window appears, containing the text you originally wrote, which you can now
edit.
To	completely	remove	a	user-defined	condition,	press	again	on	the	above	mentioned	but-
ton, delete the whole IL code in the text window, then click OK.
After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.
Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the Debug window. Also, no new variables can be de-
clared in the condition window.

Setting the scale of axes
 - x-axis

When acquisition is completed, Application plots the curve of the dragged-in variables ad-
justing	the	x-axis	so	that	all	the	data	fit	in	the	the	Chart window. If you want to apply a
different scale, open the General tab of the Graph properties dialog box, type a number
in	the	horizontal	scale	edit	box,	then	confirm	by	clicking	Apply.
 - y-axis

You can change the scale of the plot of each variable through the Tracks list tab of the
Graph properties dialog box. Otherwise, if you do not need to specify exactly a scale,
you can use the Zoom In and Zoom Out controls.

8.6.2.11 CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between
the following options:
 - Closing the Graphic trigger window.
 - Removing the trigger.
 - Removing all the triggers.

Closing the graphic trigger window
If	you	have	finished	plotting	the	diagram	of	a	set	of	variables	by	means	of	the	Graphic
trigger window, you may want to close the Debug window without removing the trigger.
If you click the button in the top right-hand corner, you just hide the Interface window,
while the window manager and the relative trigger keep working.
As a matter of fact, if later you want to restore the Graphic trigger window that you
previously hid:
 - open the Trigger list window;
 - select the record (having type G);
 - click the Open button.

EIO0000002036 09/2014 219

SoMachine HVAC - Application

The Interface window appears with the trigger counter properly updated, as if it had
never been closed.

Removing the trigger
If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose:
 - open the Trigger list window;
 - select the record (having type G);
 - click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block
(if the module is in FBD) where you placed the trigger. Now press the Graphic trace
button in the Debug toolbar.

Removing all the triggers
Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all triggers button.

220 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 221

SoMachine HVAC - Application

9. APPLICATION REFERENCE

9.1 MENUS REFERENCE
In	the	following	tables	you	can	see	the	list	of	all	Application’s	commands.	However,	since	
Application	has	a	multi-document	interface	(MDI),	you	may	find	some	disabled	commands	
or even some unavailable menus, depending on what kind of document is currently active.

9.1.1 FILE MENU

Command Description
New project Lets you create a new Application project.

Import project
from target Lets you upload the project from the target device.

Open project Lets you open an existing Application project.
View project Opens an existing Application project in read-only mode.

Save project

Same as Save all, but it saves also the ppj file.	Note	that,	
since	all	modifications	to	a	Application	project	are	first	applied	
in memory only, you need to release the Save project
command to make them permanent.

Save project As Asks you to specify a new project name and a new location,
and	saves	there	a	copy	of	all	the	files	of	the	project.

Close project Asks you whether you want to keep unsaved changes, then
closes the active project.

New text file Opens	a	blank	new	generic	text	file.

Open file
Opens	an	existing	file,	whatever	its	extension.	The	file	is	
displayed	in	the	text	editor.	Anyway,	if	you	open	a	project	file,	
you actually open the Application project it refers to.

Save Lets you save the document in the currently active window.
Close Closes the document in the currently active window.
Options Opens the Programming environment options dialog box.

Print Displays a dialog box, which lets you set printing options and
print the document in the currently active window.

Print preview
Shows a picture on your video, that reproduces faithfully
what you get if you print the document in the currently active
window.

Print project Prints all the documents making up the project.
Printer setup Opens the Printer setup dialog box.

..recent.. Lists a set of ppj file	of	recently	opened	Application	projects.	
Click one of them, if you want to open the relevant project.

Exit Closes Application.

222 EIO0000002036 09/2014

SoMachine HVAC - Application

9.1.2 EDIT MENU

Command Description
Undo Cancels last change made in the document.
Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active document and
stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the system
buffer.

Delete Deletes the selected item.
Delete line Deletes the whole source code line.

Find in project Opens the Find in project dialog box.
Bookmarks Lets you set, remove, and move between bookmarks.

Go to line Allows	you	to	quickly	move	to	a	specific	line	in	the	source	
code editor.

Find
Asks	you	to	type	a	string	and	searches	for	its	first	instance	
within the active document from the current location of the
cursor.

Find next Iterates the search previously performed by the Find
command.

Replace Allows you to automatically replace one or all the instances of
a string with another string.

Insert/Move mode Editing mode which allows you to insert and move blocks.

Connection mode Editing mode which allows you to draw logical wires to
connect pins.

Watch mode Editing mode which allows you to add variables to any
debugging tool.

9.1.3 VIEW MENU

Command Description
Main Toolbar If checked, displays the Main toolbar, otherwise hides it.
Status bar If checked, displays the Status bar, otherwise hides it.
Debug bar If checked, displays the Debug bar, otherwise hides it.
FBD bar If checked, displays the FBD toolbar, otherwise hides it.
LD bar If checked, displays the LD toolbar, otherwise hides it.
SFC bar If checked, displays the SFC bar, otherwise hides it.

Project bar If checked, displays the Project bar, otherwise hides it.
Network If checked, displays the Network toolbar, otherwise hides it.

Document bar If checked, displays the Document bar, otherwise hides it.

Workspace If checked, displays the Workspace (also called Project
window), otherwise hides it.

Library If checked, displays the Libraries window, otherwise hides
it.

Output If checked, displays the Output window, otherwise hides it.

EIO0000002036 09/2014 223

SoMachine HVAC - Application

Command Description
Async Graphic

window
If checked, displays the Oscilloscope window, otherwise
hides it.

Watch window If checked, displays the Watch window, otherwise hides it.
Force I/O bar If checked, displays the Force I/O bar, otherwise hides it.
PLC run-time

status
If checked, displays the PLC run-time window, otherwise hides
it.

Full screen
Expands the currently active document window to full screen.
Press Esc to restore the normal appearance of the Application
interface.

Grid If checked, displays a dotted grid in a graphical source code
editor background.

9.1.4 PROJECT MENU

Command Description

New object Opens another menu which lets you create a new POU or
declare a new global variable.

Copy object Copies the object currently selected in the Workspace.
Paste object Pastes the previously copied object.

Duplicate object Duplicates the object currently selected in the Workspace, and
asks you to type the name of the copy.

Delete object
Deletes the currently selected object. As explained above, you
need to release the Save project command	to	definitively	
erase a document from your project.

PLC object
properties

Shows properties and description of the object currently
selected in the Workspace.

Object browser Opens the Oject browser, which lets you navigate between
objects.

Compile Asks you whether to save unsaved changes, then launches
the Application compiler.

Recompile all Recompiles the project.
Generate

redistributable
source module

Generates	an	RSM	file.

Import object
from library Lets you import a Application object from a library.

Export object to
library Lets you export a Application object to a library.

Library manager Opens the Library manager.

Macros Opens another menu which lets you create/delete macros.
Select target Lets you change the target.
Refresh current

target Lets	you	update	the	target	file	for	the	same	version.

Options... Lets you specify the project options.

224 EIO0000002036 09/2014

SoMachine HVAC - Application

9.1.5 DEBUG MENU

Command Description
Simulation mode Open/close the integrated simulation environment.

Debug mode Switches the debug mode on.
Live debug mode Switches the live debug mode on.
Add symbol to

watch Adds a symbol to the Watch window.

Insert new item
into watch Inserts a new item into the Watch window.

Add symbol to a
debug window Adds a symbol to a debug window.

Insert new item
into a debug

window
Inserts a new item into a debug window.

Run Restarts program after a breakpoint is hit.
Add/Remove
breakpoint Adds/removes a breakpoint.

Remove all
breakpoints Removes all the active breakpoints.

Breakpoint list Lists all the active breakpoints.
Add/remove text

trigger Adds/removes a text trigger.

Add/remove
graphic trigger Adds/removes a graphic trigger.

Remove all
triggers Removes all the active triggers.

Trigger list Lists all the active triggers.

9.1.6 ON-LINE MENU

Command Description
Set up

communication... Lets you set the properties of the connection to the target.

Connect Application tries to establish a connection to the target.

Download code
Application checks if any changes have been applied since last
compilation, if so compiles the project and then downloads
the source code to the target.

Download options Lets you set the properties of the source code downloaded to
the target.

Force image
upload If	the	target	device	is	connected,	lets	you	upload	the	img	file.

Force debug
symbols upload

If the target device is connected, lets you upload the debug
symbols	file.

Start/Stop watch
value Freezes/resumes refreshment of the Watch window.

EIO0000002036 09/2014 225

SoMachine HVAC - Application

9.1.7 SCHEME MENU

Command Description Network
type

Network> New>
Top

Adds a blank network at the top of the active
document. LD/FBD

Network> New>
Bottom

Adds a blank network at the bottom of the
active document. LD/FBD

Network> New>
Before

Adds a blank network before the selected
network in the active document. LD/FBD

Network >New >
After

Adds a blank network after the selected network
in the active document. LD/FBD

Network >Label
Assigns a label to the selected network, so
that it can be indicated as the target of a jump
instruction.

LD/FBD

Object >New Lets you insert a new object into the selected
network. All

Object > Modify Lets you to add/remove/change pins to
transitions. SFC

Object >
Instance name

Lets you assign a name to an instance of
a function block, that you have previously
selected by clicking it once.

LD/FBD

Object >
Open source

Opens the editor by which the selected object
was created, and displays the relevant source
code:
 - if the object is a program, or a function, or a
function block, this command opens its source
code;

 - if the object is a variable or a parameter, this
command opens the corresponding variable
editor;

 - if the object is a standard function or an
operator, this command opens nothing.

LD/FBD

Code Object >
New Action

Lets you to add an action in the active
document. SFC

Code Object >
New Transiction

code

Lets you to dd a transition in the active
document. SFC

Auto connect
If checked, enables autoconnection, that is
automatic creation of a logical wire linking the
pins of two blocks, when they are brought close.

All

Delete invalid
connection

Removes all invalid connections, represented by
a red line in the active scheme. All

Connect Paral Activates the parallel insertion mode. LD
Connect series Activates the series insertion mode. LD

Increment pins

By default some operators like ADD, MUL,
etc. have two input pins, however you may
occasionally need to perform such operations on
more than two operands. This command allows
you to add as many input pins as to reach the
required number of operands.

LD/FBD

226 EIO0000002036 09/2014

SoMachine HVAC - Application

Command Description Network
type

Decrement pins Undoes the Increment pins command. LD/FBD

Enable EN/ENO
pins

Adds the enable in/enable out pins to the
selected block. The code implementing the
selected block will be executed only when the
enable in signal is true. The enable out signal
simply repeats the value of enable in, allowing
you either to enable or to disable a set of blocks
in cascade.

LD/FBD

Object
properties

Shows some properties of the selected block:
 - if the object is a function or a function block,
displays a table with the input and output
variables;

 - if the object is a variable or a parameter,
opens a dialog box which lets you change the
name and the logical direction (input/output).

All

9.1.8 VARIABLES MENU

Command Description

Insert
Adds a new row to the table in the currently active editor (if
PLC	editor,	to	the	table	of	local	variables;	if	parameters	editor,	
to the table of parameters, etc.).

Delete Deletes the variable in the selected row of the currently active
table.

Create multiple Lets you to create a set of multiple variables.

Group Opens a dialog box which lets you create and delete groups of
variables.

9.1.9 WINDOW MENU

Command Description

Cascade Displaces all open documents in cascade, so that they
completely overlap except for the caption.

Tile

The PLC editors area is split into frames having the same
dimensions, depending on the number of currently open
documents. Each frame is automatically assigned to one of
such documents.

Arrange Icons Displaces the icons of the minimized documents in the bottom
left-hand corner of the PLC editors area.

Close all Closes all open documents.

EIO0000002036 09/2014 227

SoMachine HVAC - Application

9.1.10 HELP MENU

Command Description
Index Lists all the Help keywords and opens the related topic.

Context Context-sensitive help. Opens the topic related to the
currently active window.

About... Information on producers and version.

9.2 TOOLBARS REFERENCE
In	the	following	tables	you	can	see	the	list	of	all	Application’s	toolbars.	The	buttons	making	
up each toolbar are always the same, whatever the currently active document. However,
some of them may produce no effect, if there is no logical relation to the active document.

9.2.1 MAIN TOOLBAR

Button Command Description

New project Creates a new project.

Open project Opens an existing project.

Save project

Saves all documents in the currently open
windows,	including	the	project	file.	Note	that,	
since	all	modifications	to	a	Application	project	are	
first	applied	in	memory	only,	you	need	to	release	
the Save project command to make them
permanent.

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active
document and stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the
system buffer.

Find
Asks	you	to	type	a	string	and	searches	for	its	first	
instance within the active document from the
current location of the cursor.

Find next Iterates the search previously performed by the
Find command.

Find in project Opens the Find in project dialog box.

228 EIO0000002036 09/2014

SoMachine HVAC - Application

Button Command Description

Print
Displays a dialog box, which lets you set printing
options and print the document in the currently
active window.

Print preview
Shows a picture on your video, that reproduces
faithfully what you get if you print the document
in the currently active window.

Workspace If pressed, displays the Workspace (also called
Project window), otherwise hides it.

Output If pressed, displays the Output window, otherwise
hides it.

Library If pressed, displays the Libraries window,
otherwise hides it.

Watch If checked, displays the Watch window, otherwise
hides it.

Async If checked, displays the Oscilloscope window,
otherwise hides it.

Force I/O If pressed, displays the Force I/O window,
otherwise hides it.

PLC run-time
monitor

If checked, displays the PLC run-time window,
otherwise hides it.

Full screen

Expands the currently active document window to
full screen. Press Esc or release the Full screen
button to restore the normal appearance of the
Application interface.

9.2.2 FBD TOOLBAR

Button Command Description

Move/Insert Editing mode which allows you to insert and move
blocks.

Connection Editing mode which allows you to draw logical
wires to connect pins.

Watch Editing mode which allows you to add variables to
any debugging tool.

New block Lets you insert a new block into the selected
network.

Constant Adds a constant to the selected network.

Return Adds a conditional return block to the selected
network.

Jump Adds a conditional jump block to the selected
network.

Comment Adds a comment to the selected network.

EIO0000002036 09/2014 229

SoMachine HVAC - Application

Button Command Description

Inc pins

By default some operators like ADD, MUL, etc. have
two input pins, however you may occasionally
need to perform such operations on more than
two operands. This command allows you to add as
many input pins as to reach the required number
of operands.

Dec pins Undoes the Inc pins command.

EN/ENO

Adds the enable in/enable out pins to the
selected block. The code implementing the
selected block will be executed only when the
enable in signal is true. The enable out signal
simply repeats the value of enable in, allowing
you either to enable or to disable a cascade of
blocks.

FBD properties

Shows some properties of the selected block:
 - if the object is a function or a function block,
displays a table with the input and output
variables;	

 - if the object is a variable or a parameter, opens
a dialog box which lets you change the name
and the logical direction (input/output).

View source

Opens the editor by which the selected object was
created, and displays the relevant source code:
 - if the object is a program, or a function, or a
function block, this command opens the relevant
source	code	editor;	

 - if the object is a variable or a parameter, then
this command opens the corresponding variable
editor;

 - if the object is a standard function or an
operator, this command opens nothing.

9.2.3 LD TOOLBAR

Button Command Description

Insert parallel
Activates the parallel insertion mode. All contacts
inserted in this mode will be inserted in parallel
with the actually selected contacts.

Insert series

Activates the series insertion mode. All contacts
inserted in this mode will be inserted on the
right of the currently selected contact/block. If
a connection is selected, the new contact will be
placed in the middle of the connection segment.

Insert contact Insertion of a new contact according to the
selected mode (series or parallel).

230 EIO0000002036 09/2014

SoMachine HVAC - Application

Button Command Description
Insert negated

contact
Insertion of a new negative contact according to
the selected mode (series or parallel).

Insert rising
edge contact

Insertion of a new rising edge contact according to
the selected mode (serial or parallel).

Insert falling
edge contact

Insertion of a new falling edge contact according
to the selected mode (serial or parallel).

Insert coil Insertion of a new coil attached to the right power
rail.

Insert negated
coil

Insertion of a new negative coil attached to the
right power rail.

Insert set
contact

Insertion of a new set coil attached to the right
power rail.

Insert reset coil Insertion of a new reset coil attached to the right
power rail.

Insert rising
edge contact

Insert positive transition-sensing coil to the right
power rail.

Insert falling
edge contact

Insert negative transition-sensing coil to the right
power rail.

9.2.4 SFC TOOLBAR

Button Command Description

New step Inserts a new step into the currently open SFC
document.

Add transition Adds a new transition to the currently open SFC
document.

Add jump Adds a new jump block to the currently open SFC
document.

Add divergent pin Adds a new pin to the selected divergent
transition.

Remove divergent
pin

Removes the rightmost pin from the selected
divergent transition.

Add convergent
pin

Adds a new pin to the selected convergent
transition.

Remove convergent
pin

Removes the rightmost pin from the selected
convergent transition.

Add simultaneous
divergent pin

Adds a new pin to the selected simultaneous
divergent transition.

Remove
simultaneous
divergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

EIO0000002036 09/2014 231

SoMachine HVAC - Application

Button Command Description
Add simultaneous
convergent pin

Adds a new pin to the selected simultaneous
convergent transition.

Remove
simultaneous
convergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

Shift pin right

Increases the distance between the two rightmost
pins of the currently selected transition, in order
to let the SFC subnet linked to the pin on the left
contain divergent branches.

Shift pin left Decreases the distance between the two rightmost
pins of the currently selected transition.

New action code

Allows the user to create a new action to be
associated with one of the steps. When you press
this button, Application asks you which language
you want to use to implement the new action,
then opens the corresponding editor.

New transition
code

Allows the user to write the code to be associated
with one of the transitions. When you press this
button, Application asks you which language you
want to use to implement the new transition, then
opens the corresponding editor.

9.2.5 PROJECT TOOLBAR

Button Command Description

Library manager Opens the library manager.

Compile Asks you whether to save unsaved changes, then
launches the Application compiler.

Recompile all
Asks you whether to save unsaved changes, then
launches the Application compiler to recompile the
whole project.

Connect to the
target

Application tries to establish a connection to the
target.

Code download

Application checks if any changes have been
applied since last compilation, and compiles the
project if this is the case. Then, it sends the target
the compiled code.

New macro Defines	a	new	macro.

Object browser Opens the object browser, which lets you navigate
between objects.

PLC Obj
properties

Shows properties and description of the object
currently selected in the Workspace.

232 EIO0000002036 09/2014

SoMachine HVAC - Application

Button Command Description

Insert record

Adds a new row to the table in the currently active
editor	(if	PLC	editor,	to	the	table	of	local	variables;	
if parameters editor, to the table of parameters,
etc.).

Delete record Deletes the variable in the selected row of the
currently active table.

Generate
redistributable
source module

Creates	an	RSM	file	of	the	project.

9.2.6 NETWORK TOOLBAR

Button Command Description

Insert Top Adds a blank network at the top of the active LD/
FBD document.

Insert Bottom Adds a blank network at the bottom of the active
LD/FBD document.

Insert After Adds a blank network after the selected network
in the active LD/FBD document.

Insert Before Adds a blank network before the selected network
in the active LD/FBD document.

View grid If checked, displays a dotted grid in the LD/FBD
editor background.

Auto connect
If checked, enables auto connection, that is
automatic creation of a logical wire linking the pins
of two blocks, when they are brought close.

9.2.7 DEBUG TOOLBAR

Button Command Description

Debug mode Switch on/off the Debug mode.

Live debug mode Switch on/off the Live debug mode.

Set/Remove
trigger

Sets/removes a trigger at the current source code
line.

Graphic trigger Sets/removes a graphic trigger at the current
source code line.

Remove all
triggers Removes all triggers.

EIO0000002036 09/2014 233

SoMachine HVAC - Application

Button Command Description

Trigger list Lists all triggers.

Set breakpoints Sets a breakpoint at the current source code line.

Remove all
breakpoints Removes all breakpoints.

Run Restarts program execution after a breakpoint is
hit.

Breakpoint list Lists all breakpoints.

Change current
instance

Changes the current function block instance (live
debug mode).

234 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 235

SoMachine HVAC - Application

10. LANGUAGE REFERENCE

All Application languages are IEC 61131-3 standard-compliant.
 - Common elements
 - Instruction list (IL)
 - Function block diagram (FBD)
 - Ladder diagram (LD)
 - Structured text (ST)
 - Sequential Function Chart (SFC).

Moreover, Application implements some extensions:
 - Pointers
 - Macros.

10.1 COMMON ELEMENTS
By common elements textual and graphic elements are means which are common to all
the	programmable	controller	programming	languages	specified	by	IEC	61131-3	standard.
NOTE: the	definition	and	editing	of	the	most	part	of	the	common	elements	(variables,	structured	

elements,	function	blocks	definitions	etc.)	are	managed	by	Application	through	specific	
editors, forms and tables.
Application does not allow to edit directly the source code related to the above mentioned
common elements.
The	following	paragraphs	are	meant	as	a	language	specification.	To	correctly	manage	
common elements refer to the Application user guide.

10.1.1 BASIC ELEMENTS
10.1.1.1 CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the
standard ASCII character set.

10.1.1.2 COMMENTS

User comments are delimited at the beginning and end by the special character combina-
tions “(*” and “*)”, respectively. Comments are permitted anywhere in the program,
and	they	have	no	syntactic	or	semantic	significance	in	any	of	the	languages	defined	in	
this standard.
The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

10.1.2 ELEMENTARY DATA TYPES

A	number	of	elementary	(i.e.	pre-defined)	data	types	are	made	available	by	Application,	
all compliant with IEC 61131-3 standard.
The elementary data types, keyword for each data type, number of bits per data element,
and range of values for each elementary data type are described in the following table.

Keyword Data type Bits Range
BOOL Boolean See note 0 to 1
SINT Short integer 8 -128 to 127

USINT Unsigned short integer 8 0 to 255
INT Integer 16 -32768 to 32767

236 EIO0000002036 09/2014

SoMachine HVAC - Application

Keyword Data type Bits Range
UINT Unsigned integer 16 0 to 65536
DINT Double integer 32 -231 to 231-1

UDINT Unsigned long integer 32 0 to 232

BYTE Bit string of length 8 8 —
WORD Bit string of length 16 16 —

DWORD Bit string of length 32 32 —
REAL Real number 32 -3.40E+38 to +3.40E+38

STRING String of characters - -

NOTE: the actual implementation of the BOOL data type depends on the processor of the target
device, e.g. it is 1 bit long for devices that have a bit-addressable area.

10.1.3 DERIVED DATA TYPES

Derived data types can be declared using the TYPE...END_TYPE construct. These derived
data types can then be used in variable declarations, in addition to the elementary data
types.
Both single-element variables and elements of a multi-element variable, which are de-
clared to be of derived data types, can be used anywhere that a variable of its parent type
can be used.

10.1.3.1 TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. No difference
between a typedef and its parent type exists, apart from the name.
Typedefs can be declared using the following syntax:
 TYPE

 <enumerated data type name> : <parent type name>;

 END_TYPE

For example, consider the following declaration, mapping the name LONGWORD to the IEC
61131-3 standard type DWORD:
 TYPE

 longword : DWORD;

 END_TYPE

10.1.3.2 ENUMERATED DATA TYPES

An	enumerated	data	type	declaration	specifies	that	the	value	of	any	data	element	of	that	
type	can	only	be	one	of	the	values	given	in	the	associated	list	of	identifiers.	The	enumera-
tion	list	defines	an	ordered	set	of	enumerated	values,	starting	with	the	first	identifier	of	
the list, and ending with the last.
Enumerated data types can be declared using the following syntax:
 TYPE

 <enumerated data type name> : (<enumeration list>);

 END_TYPE

For example, consider the following declaration of two enumerated data types. Note that,
when	no	explicit	value	is	given	to	an	identifier	in	the	enumeration	list,	its	value	equals	the	
value	assigned	to	the	previous	identifier	augmented	by	one.		

EIO0000002036 09/2014 237

SoMachine HVAC - Application

 TYPE

 enum1: (

 val1, (* the value of val1 is 0 *)

 val2, (* the value of val2 is 1 *)

 val3 (* the value of val3 is 2 *)

);

 enum2: (

 k := -11,

 i := 0,

 j, (* the value of j is (i + 1) = 1 *)

 l := 5

);

 END_TYPE

Different	enumerated	data	types	may	use	the	same	identifiers	for	enumerated	values.	In	
order	to	be	uniquely	identified	when	used	in	a	particular	context,	enumerated	literals	may	
be	qualified	by	a	prefix	consisting	of	their	associated	data	type	name	and	the	# sign.

10.1.3.3 SUBRANGES

A	subrange	declaration	specifies	that	the	value	of	any	data	element	of	that	type	is	re-
stricted	between	and	including	the	specified	upper	and	lower	limits.
Subranges can be declared using the following syntax:
 TYPE

 <subrange name> : <parent type name> (<lower limit>..<upper limit>
);

 END_TYPE

For a concrete example consider the following declaration:
 TYPE

 int_0_to_100 : INT (0..100);

 END_TYPE

10.1.3.4 STRUCTURES

A STRUCT declaration	specifies	that	data	elements	of	that	type	shall	contain	sub-elements	
of	specified	types	which	can	be	accessed	by	the	specified	names.
Structures can be declared using the following syntax:
 TYPE

 <structured type name> : STRUCT

 <declaration of stucture elements>

 END_STRUCT;

 END_TYPE

For example, consider the following declaration:
 TYPE

 structure1 : STRUCT

 elem1 : USINT;

 elem2 : USINT;

 elem3 : INT;

238 EIO0000002036 09/2014

SoMachine HVAC - Application

 elem3 : REAL;

 END_STRUCT;

 END_TYPE

10.1.4 LITERALS

10.1.4.1 NUMERIC LITERALS

External representation of data in the various programmable controller programming lan-
guages consists of numeric literals.
There are two classes of numeric literals: integer literals and real literals. A numeric literal
is	defined	as	a	decimal	number	or	a	based	number.
Decimal literals are represented in conventional decimal notation. Real literals are dis-
tinguished by the presence of a decimal point. An exponent indicates the integer power
of ten by which the preceding number needs to be multiplied to obtain the represented
value. Decimal literals and their exponents can contain a preceding sign (+ or -).
Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation.
For base 16, an extended set of digits consisting of letters A through F is used, with the
conventional	significance	of	decimal	10	through	15,	respectively.	Based	numbers	do	not	
contain any leading sign (+ or -).
Boolean data are represented by the keywords FALSE or TRUE.
Numerical literal features and examples are shown in the table below.

Feature description Examples
Integer literals -12 0 123 +986

Real literals -12.0 0.0 0.4560

Real literals with exponents
-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Base 2 literals 2#11111111 (256 decimal)
2#11100000 (240 decimal)

Base 8 literals 8#377 (256 decimal)
8#340 (240 decimal)

Base 16 literals 16#FF or 16#ff (256 decimal)
16#E0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE TRUE

10.1.4.2 CHARACTER STRING LITERALS

A	character	string	literal	is	a	sequence	of	zero	or	more	characters	prefixed	and	terminated	
by the single quote character (').
The three-character combination of the dollar sign ($) followed by two hexadecimal digits
shall be interpreted as the hexadecimal representation of the eight-bit character code.

Example Explanation
'' Empty string (length zero)
'A' String of length one containing the single character A
' ' String of length one containing the space character
'$'' String of length one containing the single quote character

EIO0000002036 09/2014 239

SoMachine HVAC - Application

Example Explanation
'”' String of length one containing the double quote character

'RL' String of length two containing CR and LF characters
'$0A' String of length one containing the LF character

Two-character combinations beginning with the dollar sign shall be interpreted as shown
in the following table when they occur in character strings.

Combination Interpretation when printed
$$ Dollar sign
$' Single quote

$L or $1 Line feed
$N or $n Newline
$P or $p Form feed (page)
$R or $r Carriage return
$T or $t Tab

10.1.5 VARIABLES
10.1.5.1 FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g.,
data associated with the inputs, outputs, or memory of the programmable controller. A
variable must be declared to be one of the elementary types. Variables can be represent-
ed symbolically, or alternatively in a manner which directly represents the association of
the	data	element	with	physical	or	logical	locations	in	the	programmable	controller’s	input,	
output, or memory structure.
Each program organization unit (POU) (i.e., each program, function, or function block)
contains at its beginning at least one declaration part, consisting of one or more structur-
ing elements, which specify the types (and, if necessary, the physical or logical location)
of the variables used in the organization unit. This declaration part has the textual form of
one of the keywords VAR, VAR_INPUT, or VAR_OUTPUT	as	defined	in	the	keywords	section,	
followed in the case of VAR	by	zero	or	one	occurrence	of	the	qualifiers	RETAIN, NON_RE-
TAIN	or	the	qualifier	CONSTANT, and in the case of VAR_INPUT or VAR_OUTPUT by zero or
one	occurrence	of	the	qualifier RETAIN or NON_RETAIN, followed by one or more decla-
rations separated by semicolons and terminated by the keyword END_VAR. A declaration
may also specify an initialization for the declared variable, when a programmable control-
ler supports the declaration by the user of initial values for variables.

10.1.5.2 STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring
element:
KEYWORD [RETAIN] [CONSTANT]

 Declaration 1

 Declaration 2

...

 Declaration N

END_VAR

240 EIO0000002036 09/2014

SoMachine HVAC - Application

10.1.5.3 KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.

VAR_INPUT Externally supplied.

VAR_OUTPUT Supplied by organization unit to external
entities.

VAR_IN_OUT Supplied by external entities, can be
modified	within	organization	unit.

VAR_EXTERNAL Supplied	by	configuration	via	VAR_GLOBAL,
can	be	modified	within	organization	unit.

VAR_GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements is local
to the program organization unit (POU) in which the declaration part is contained. That
is, the declared variables are accessible to other program organization units except by
explicit argument passing via variables which have been declared as inputs or outputs
of those units. The one exception to this rule is the case of variables which have been
declared to be global. Such variables are only accessible to a program organization unit
via a VAR_EXTERNAL declaration. The type of a variable declared in a VAR_EXTERNAL must
agree with the type declared in the VAR_GLOBAL block.
There is an error if:
 - any program organization unit attempts to modify the value of a variable that has been
declared with the CONSTANT	qualifier;

 - a variable declared as VAR_GLOBAL CONSTANT	in	a	configuration	element	or	program	or-
ganization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (with-
out the CONSTANT	qualifier)	of	any	element	contained	within	the	containing	element.

10.1.5.4 QUALIFIERS

Qualifier Description

CONST

The attribute CONST indicates that the variables within
the structuring elements are constants, i.e. they have
a	constant	value,	which	cannot	be	modified	once	the	
PLC project has been compiled.

RETAIN

The attribute RETAIN indicates that the variables
within the structuring elements are retentive, i.e. they
keep their value even after the target device is reset
or switched off.

10.1.5.5 SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elemen-
tary types or one of the derived data types.
An	array	is	a	collection	of	data	elements	of	the	same	data	type;	in	order	to	access	a	single	
element of the array, a subscript (or index) enclosed in square brackets has to be used.
Subscripts can be either integer literals or single-element variables.
To	easily	represent	data	matrices,	arrays	can	be	multi-dimensional;	in	this	case,	a	com-
posite subscript is required, one index per dimension, separated by commas. The maxi-
mum	number	of	dimensions	allowed	in	the	definition	of	an	array	is	three.

EIO0000002036 09/2014 241

SoMachine HVAC - Application

10.1.5.6 DECLARATION SYNTAX

Variables must be declared within structuring elements, using the following syntax:
VarName1 : Typename1 [:= InitialVal1];

VarName2 AT Location2 : Typename2 [:= InitialVal2];

VarName3 : ARRAY [0..N] OF Typename3;

where:

Keyword Description

VarNameX
Variable	identifier,	consisting	of	a	string	of	
alphanumeric characters, of length 1 or more. It is
used for symbolic representation of variables.

TypenameX Data type of the variable, selected from elementary
data types.

InitialValX The value the variable assumes after reset of the
target.

LocationX See the next paragraph.

N Index of the last element, the array having length
N + 1.

10.1.5.7 LOCATION

Variables	can	be	represented	symbolically,	i.e.	accessed	through	their	identifier,	or	alter-
natively in a manner which directly represents the association of the data element with
physical	or	logical	 locations	in	the	programmable	controller’s	input,	output,	or	memory	
structure.
Direct representation of a single-element variable is provided by a special symbol formed
by the concatenation of the percent sign “%”	,	a	location	prefix	and	a	size	prefix,	and	one	
or two unsigned integers, separated by periods (.).
%location.size.index.index

1) location
The	location	prefix	may	be	one	of	the	following:

Location prefix Description
I Input location
Q Output location
M Memory location

2) size
The	size	prefix	may	be	one	of	the	following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

242 EIO0000002036 09/2014

SoMachine HVAC - Application

3) index.index
This	sequence	of	unsigned	integers,	separated	by	dots,	specifies	the	actual	position	
of	the	variable	in	the	area	specified	by	the	location	prefix.

Example:

Direct representation Description

%MW4.6 Word	starting	from	the	first	byte	of	the	7th
element of memory datablock 4.

%IX0.4 First	bit	of	the	first	byte	of	the	5th element
of input set 0.

Note that the absolute position depends on the size of the datablock elements, not on the
size	prefix.	As	a	matter	of	fact,	%MW4.6 and %MD4.6 begin from the same byte in memory,
but the former points to an area which is 16 bits shorter than the latter.
For advanced users only: if the index consists of one integer only (no dots), then it loses
any reference to datablocks, and it points directly to the byte in memory having the index
value as its absolute address.

Direct representation Description

%MW4.6 Word	starting	from	the	first	byte	of	the	7th
element of datablock 4 in memory.

%MW4 Word starting from byte 4 of memory.

Example
VAR [RETAIN] [CONSTANT]
 XQuote : DINT; Enabling : BOOL := FALSE;
 TorqueCurrent AT %MW4.32 : INT;
 Counters : ARRAY [0 .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]

END_VAR

 - Variable XQuote is 32 bits long, and it is automatically allocated by the Application com-
piler.

 - Variable Enabling is initialized to FALSE after target reset.
 - Variable TorqueCurrent is allocated in the memory area of the target device, and it
takes	16	bits	starting	from	the	first	byte	of	the	33rd element of datablock 4.

 - Variable Counters is an array of 10 independent variables of type unsigned integer.

10.1.5.8 DECLARING VARIABLES IN APPLICATION

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies the Local variables editor, the Global variables editor, and the Param-
eters editor, which provide a friendly interface to declare all kinds of variables.

10.1.6 PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. These program
organization units can be delivered by the manufacturer, or programmed by the user
through	the	means	defined	in	this	part	of	the	standard
Program	organization	units	are	not	recursive;	that	is,	the	invocation	of	a	program	organi-
zation unit cannot cause the invocation of another program organization unit of the same
type.

EIO0000002036 09/2014 243

SoMachine HVAC - Application

10.1.6.1 FUNCTIONS

Introduction
For the purposes of programmable controller programming languages, a function is de-
fined	as	a	program	organization	unit	(POU)	which,	when	executed,	yields	exactly	one	data	
element, which is considered to be the function result.
Functions contain no internal state information, i.e., invocation of a function with the
same arguments (input variables VAR_INPUT and in-out variables VAR_IN_OUT) always
yields the same values (output variables VAR_OUTPUT, in-out variables VAR_IN_OUT and
function result).

Declaration syntax
The declaration of a function must be performed as follows:
FUNCTION FunctionName : RetDataType

VAR_INPUT

 declaration of input variables (see the relevant section)

END_VAR

VAR

 declaration of local variables (see the relevant section)

END_VAR

 Function body

END_FUNCTION

Keyword Description
FunctionName Name of the function being declared.
RetDataType Data type of the value to be returned by the function.

Function body

Specifies	the	operations	to	be	performed	upon	the	
input variables in order to assign values dependent on
the	function’s	semantics	to	a	variable	with	the	same	
name as the function, which represents the function
result. It can be written in any of the languages
supported by Application.

Declaring functions in Application
Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using functions.

10.1.6.2 FUNCTION BLOCKS

Introduction
For the purposes of programmable controller programming languages, a function block is
a program organization unit which, when executed, yields one or more values. Multiple,
named instances (copies) of a function block can be created. Each instance has an associ-
ated	identifier	(the	instance	name),	and	a	data	structure	containing	its	input,	output	and	
internal variables. All the values of the output variables and the necessary internal vari-
ables	of	this	data	structure	persist	from	one	execution	of	the	function	block	to	the	next;	
therefore, invocation of a function block with the same arguments (input variables) does
not always yield the same output values.
Only the input and output variables are accessible outside of an instance of a function
block,	i.e.,	the	function	block’s	internal	variables	are	hidden	from	the	user	of	the	function	
block.

244 EIO0000002036 09/2014

SoMachine HVAC - Application

In order to execute its operations, a function block needs to be invoked by another POU.
Invocation	depends	on	the	specific	language	of	the	module	calling	the	function	block.	
The scope of an instance of a function block is local to the program organization unit in
which it is instantiated.

Declaration syntax
The declaration of a function must be performed as follows:
FUNCTION_BLOCK FunctionBlockName

 VAR_INPUT

 declaration of input variables (see the relevant section)

 END_VAR

 VAR_OUTPUT

 declaration of output variables

 END_VAR

 VAR_EXTERNAL

 declaration of external variables

 END_VAR

 VAR

 declaration of local variables

 END_VAR

 Function block body

END_FUNCTION_BLOCK

Keyword Description

FunctionBlockName Name of the function block being declared (note:
name of the template, not of its instances).

VAR_EXTERNAL .. END_VAR

A function block can access global variables only
if they are listed in a VAR_EXTERNAL structuring
element. Variables passed to the FB via a VAR_
EXTERNAL	construct	can	be	modified	from	within	the	
FB.

Function block body

Specifies	the	operations	to	be	performed	upon	the	
input variables in order to assign values to the
output	variables	-	dependent	on	the	function	block’s	
semantics and on the value of the internal variables.
It can be written in any of the languages supported
by Application.

Declaring functions in Application
Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using function blocks.

EIO0000002036 09/2014 245

SoMachine HVAC - Application

10.1.6.3 PROGRAMS

Introduction
A	program	is	defined	in	IEC	61131-1	as	a	“logical	assembly	of	all	the	programming	lan-
guage elements and constructs necessary for the intended signal processing required for
the control of a machine or process by a programmable controller system.

Declaration syntax
The declaration of a program must be performed as follows:
PROGRAM < program name>

 Declaration of variables (see the relevant section)

 Program body

END_PROGRAM

Keyword Description
Program Name Name of the program being declared.

Program body
Specifies	the	operations	to	be	performed	to	get	the	
intended signal processing. It can be written in any of
the languages supported by Application.

Writing programs in Application
Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for writing programs.

10.1.7 IEC 61131-3 STANDARD FUNCTIONS

This paragraph is a reference of all IEC 61131-3 standard functions available in Applica-
tion,	along	with	a	few	others,	which	may	be	considered	as	Application’s	exstensions	to	
the standard.
These functions are common to the whole set of programming languages and can there-
fore be used in any Programmable Organization Unit (POU).
A	function	specified	in	this	paragraph	to	be	extensible	(Ext.)	is	allowed	to	have	a	variable	
number of inputs.

Type conversion functions
According to the IEC 61131-3 standard, type conversion functions shall have the form *_
TO_**, where “*” is the type of the input variable, and “**” the type of the output variable
(for example, INT_TO_REAL). Application provides a more convenient set of overloaded
type conversion functions, relieving the developer to specify the input variable type.

TO_BOOL
Description Conversion to BOOL (boolean)
Number of operands 1
Input data type Any numerical type
Output data type BOOL

Examples
out := TO_BOOL(0); (* out = FALSE *)

out := TO_BOOL(1); (* out = TRUE *)

out := TO_BOOL(1000); (* out = TRUE *)

246 EIO0000002036 09/2014

SoMachine HVAC - Application

TO_SINT
Description Conversion to SINT (8-bit signed integer)
Number of operands 1
Input data type Any numerical type
Output data type SINT

Examples
out := TO_SINT(-1); (* out = -1 *)

out := TO_SINT(16#100); (* out = 0 *)

TO_USINT
Description Conversion to USINT (8-bit unsigned integer)
Number of operands 1
Input data type Any numerical type
Output data type USINT

Examples
out := TO_USINT(-1); (* out = 255 *)

out := TO_USINT(16#100); (* out = 0 *)

TO_INT
Description Conversion to INT (16-bit signed integer)
Number of operands 1
Input data type Any numerical type
Output data type INT

Examples
out := TO_INT(-1000.0); (* out = -1000 *)

out := TO_INT(16#8000); (* out = -32768 *)

TO_UINT
Description Conversion to UINT (16-bit unsigned integer)
Number of operands 1
Input data type Any numerical type
Output data type UINT

Examples
out := TO_UINT(1000.0); (* out = 1000 *)

out := TO_UINT(16#8000); (* out = 32768 *)

TO_DINT
Description Conversion to DINT (32-bit signed integer)
Number of operands 1
Input data type Any numerical type
Output data type DINT

Examples
out := TO_DINT(10.0); (* out = 10 *)

out := TO_DINT(16#FFFFFFFF); (* out = -1 *)

EIO0000002036 09/2014 247

SoMachine HVAC - Application

TO_UDINT
Description Conversion to UDINT (32-bit unsigned integer)
Number of operands 1
Input data type Any numerical type
Output data type UDINT

Examples
out := TO_UDINT(10.0); (* out = 10 *)

out := TO_UDINT(16#FFFFFFFF); (* out = 4294967295 *)

TO_BYTE
Description Conversion to BYTE (8-bit string)
Number of operands 1
Input data type Any numerical type
Output data type BYTE

Examples
out := TO_BYTE(-1); (* out = 16#FF *)

out := TO_BYTE(16#100); (* out = 16#00 *)

TO_WORD
Description Conversion to WORD (16-bit string)
Number of operands 1
Input data type Any numerical type
Output data type WORD

Examples
out := TO_WORD(1000.0); (* out = 16#03E8 *)

out := TO_WORD(-32768); (* out = 16#8000 *)

TO_DWORD
Description Conversion to DWORD (32-bit string)
Number of operands 1
Input data type Any numerical type
Output data type DWORD

Examples
out := TO_DWORD(10.0); (* out = 16#0000000A *)

out := TO_DWORD(-1); (* out = 16#FFFFFFFF *)

TO_REAL
Description Conversion	to	REAL	(32-bit	floating	point)
Number of operands 1
Input data type Any numerical type
Output data type REAL

Examples
out := TO_REAL(-1000); (* out = -1000.0 *)

out := TO_REAL(16#8000); (* out = -32768.0 *)

248 EIO0000002036 09/2014

SoMachine HVAC - Application

TO_LREAL
Description Conversion	to	LREAL	(64-bit	floating	point)
Number of operands 1
Input data type Any numerical type
Output data type LREAL

Examples
out := TO_LREAL(-1000); (* out = -1000.0 *)

out := TO_LREAL(16#8000); (* out = -32768.0 *)

Numerical functions
The availability of the following functions depends on the target device. Please refer to
your hardware supplier for details.

ABS
Description Absolute value. Computes the absolute value of input #0
Number of operands 1
Input data type Any numerical type
Output data type Same as input

Examples
OUT := ABS(-5);(* OUT = 5 *)

OUT := ABS(-1.618);(* OUT = 1.618 *)

OUT := ABS(3.141592);(* OUT = 3.141592 *)

SQRT
Description Square root. Computes the square root of input #0
Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := SQRT(4.0); (* OUT = 2.0 *)

LN

Description Natural logarithm. Computes the logarithm with base e of
input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := LN(2.718281); (* OUT = 1.0 *)

LOG

Description Common logarithm. Computes the logarithm with base 10 of
input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := LOG(100.0);(* OUT = 2.0 *)

EIO0000002036 09/2014 249

SoMachine HVAC - Application

EXP

Description Natural exponential. Computes the exponential function of
input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := EXP(1.0); (* OUT ~ 2.718281 *)

SIN

Description Sine. Computes the sine function of input #0 expressed in
radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := SIN(0.0); (* OUT = 0.0 *)

OUT := SIN(2.5 * 3.141592); (* OUT ~ 1.0 *)

COS

Description Cosine. Computes the cosine function of input #0 expressed
in radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := COS(0.0); (* OUT = 1.0 *)

OUT := COS(-3.141592); (* OUT ~ -1.0 *)

TAN

Description Tangent. Computes the tangent function of input #0
expressed in radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := TAN(0.0); (* OUT = 0.0 *)

OUT := TAN(3.141592 / 4.0); (* OUT ~ 1.0 *)

ASIN

Description Arc	sine.	Computes	the	principal	arc	sine	of	input	#0;	result	
is expressed in radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := ASIN(0.0); (* OUT = 0.0 *)

OUT := ASIN(1.0); (* OUT = PI / 2 *)

250 EIO0000002036 09/2014

SoMachine HVAC - Application

ACOS

Description Arc	cosine.	Computes	the	principal	arc	cosine	of	input	#0;	
result is expressed in radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := ACOS(1.0); (* OUT = 0.0 *)

OUT := ACOS(-1.0); (* OUT = PI *)

ATAN

Description Arc tangent. Computes the principal arc tangent of input
#0;	result	is	expressed	in	radians

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := ATAN(0.0); (* OUT = 0.0 *)

OUT := ATAN(1.0); (* OUT = PI / 4 *)

ADD
Description Arithmetic addition. Computes the sum of the two inputs.
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := ADD(20, 40); (* OUT = 60 *)

MUL
Description Arithmetic multiplication. Multiplies the two inputs.
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := MUL(10, 10); (* OUT = 100 *)

SUB
Description Arithmetic subtraction. Subtracts input #1 from input #0
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := SUB(10, 3); (* OUT = 7 *)

EIO0000002036 09/2014 251

SoMachine HVAC - Application

DIV
Description Arithmetic division. Divides input #0 by input #1
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := DIV(20, 2); (* OUT = 10 *)

MOD
Description Module. Computes input #0 module input #1
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := MOD(10, 3); (* OUT = 1 *)

POW
Description Exponentiation. Raises Base to the power Expo
Number of operands 2

Input data type
LREAL	where	available,	REAL	otherwise;
LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := POW(2.0, 3.0); (* OUT = 8.0 *)

OUT := POW(-1.0, 5.0); (* OUT = -1.0 *)

ATAN2*

Description Arc tangent (with 2 parameters). Computes the principal arc
tangent	of	Y/X;	result	is	expressed	in	radians

Number of operands 2

Input data type
LREAL	where	available,	REAL	otherwise;
LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples

OUT := ATAN2(0.0, 1.0); (* OUT = 0.0 *)

OUT := ATAN2(1.0, 1.0); (* OUT = PI / 4 *)

OUT := ATAN2(-1.0, -1.0); (* OUT = (-3/4) * PI
*)

OUT := ATAN2(1.0, 0.0); (* OUT = PI / 2 *)

SINH*

Description Hyperbolic sine. Computes the hyperbolic sine function of
input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := SINH(0.0); (* OUT = 0.0 *)

252 EIO0000002036 09/2014

SoMachine HVAC - Application

COSH*

Description Hyperbolic cosine. Computes the hyperbolic cosine function
of input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := COSH(0.0); (* OUT = 1.0 *)

TANH*

Description Hyperbolic tangent. Computes the hyperbolic tangent
function of input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := TANH(0.0); (* OUT = 0.0 *)

CEIL*

Description Rounding up to integer. Returns the smallest integer that is
greater than or equal to input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := CEIL(1.95); (* OUT = 2.0 *)

OUT := CEIL(-1.27); (* OUT = -1.0 *)

FLOOR*

Description Rounding down to integer. Returns the largest integer that is
less than or equal to input #0

Number of operands 1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

Examples
OUT := FLOOR(1.95); (* OUT = 1.0 *)

OUT := FLOOR(-1.27); (* OUT = -2.0 *)

*: function provided as extension to the IEC 61131-3 standard.

Bit string functions

SHL
Description Input#0	left-shifted	of	Input	#1	bits,	zero	filled	on	the	right.
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

Examples
OUT := SHL(IN := 16#1000CAFE, 16);

(* OUT = 16#CAFE0000 *)

EIO0000002036 09/2014 253

SoMachine HVAC - Application

SHR

Description Input	#0	right-shifted	of	Input	#1	bits,	zero	filled	on	the	
left.

Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

Examples
OUT := SHR(IN := 16#1000CAFE, 24);

(* OUT = 16#00000010 *)

ROL
Description Input #0 left-shifted of Input #1 bits, circular.
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

Examples
OUT := ROL(IN := 16#1000CAFE, 4);

(* OUT = 16#000CAFE1 *)

ROR
Description Input #0 right-shifted of Input #1 bits, circular.
Number of operands 2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

Examples
OUT := ROR(IN := 16#1000CAFE, 16);

(* OUT = 16#CAFE1000 *)

AND

Description Logical AND if both Input #0 and Input #1 are BOOL,
otherwise bitwise AND.

Number of operands 2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs

Examples
OUT := TRUE AND FALSE; (* OUT = FALSE *)

OUT := 16#1234 AND 16#5678; (* OUT = 16#1230 *)

OR

Description Logical OR if both Input #0 and Input #1 are BOOL,
otherwise bitwise OR.

Number of operands 2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs

Examples
OUT := TRUE OR FALSE; (* OUT = FALSE *)

OUT := 16#1234 OR 16#5678;(* OUT = 16#567C *)

254 EIO0000002036 09/2014

SoMachine HVAC - Application

XOR

Description Logical XOR if both Input #0 and Input #1 are BOOL,
otherwise bitwise XOR.

Number of operands 2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs

Examples
OUT := TRUE OR FALSE; (* OUT = TRUE *)

OUT := 16#1234 OR 16#5678; (* OUT = 16#444C *)

NOT
Description Logical NOT if Input is BOOL, otherwise bitwise NOT.
Number of operands 1
Input data type Any but STRING
Output data type Same as Inputs

Examples
OUT := NOT FALSE; (* OUT = TRUE *)

OUT := NOT 16#1234;(* OUT = 16#EDCB *)

Selection functions

SEL
Description Binary selection
Number of operands 3
Input data type BOOL, Any, Any
Output data type Same as selected Input

Examples
OUT := SEL(G := FALSE, IN0 := X, IN1 := 5);

(* OUT = X *)

MAX
Description Maximum value selection
Number of operands 2, extensible

Input data type Any numerical type, Any numerical type, .., Any numerical
type

Output data type Same as max Input
Examples OUT := MAX(-8, 120, -1000); (* OUT = 120 *)

MIN
Description Minimum value selection
Number of operands 2, extensible

Input data type Any numerical type, Any numerical type, .., Any numerical
type

Output data type Same as min Input
Examples OUT := MIN(-8, 120, -1000); (* OUT = -1000 *)

EIO0000002036 09/2014 255

SoMachine HVAC - Application

LIMIT

Description Limits Input #0 to be equal or more than Input#1, and equal or
less than Input #2.

Number of operands 3
Input data type Any numerical type, Any numerical type, Any numerical type
Output data type Same as Inputs

Examples
OUT := LIMIT(IN := 4, MN := 0, MX := 5); (* OUT = 4 *)

OUT := LIMIT(IN := 88, MN := 0, MX := 5);(* OUT = 5 *)

OUT := LIMIT(IN := -1, MN := 0, MX := 5);(* OUT = 0 *)

MUX
Description Multiplexer. Selects one of N inputs depending on input K
Number of operands 3, extensible

Input data type Any numerical type, Any numerical type, ..., Any numerical
type

Output data type Same as selected Input
Examples OUT := MUX(0, A, B, C); (* OUT = A *)

Comparison functions
Comparison functions can be also used to compare strings if this feature is supported by
target device.

GT

Description Greater than. Returns TRUE if Input #0 > Input #1,
otherwise FALSE.

Number of operands 2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL

Examples
OUT := GT(0, 20); (* OUT = FALSE *)

OUT := GT(‘pippo’, ‘pluto’); (* OUT = TRUE *)

GE

Description Greater than or equal to. Returns TRUE if Input #0 >=
Input #1, otherwise FALSE.

Number of operands 2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL

Examples
OUT := GE(20, 20); (* OUT = TRUE *)

OUT := GE(‘pippo’, ‘pluto’); (* OUT = FALSE *)

256 EIO0000002036 09/2014

SoMachine HVAC - Application

EQ

Description Equal to. Returns TRUE if Input #0 = Input #1, otherwise
FALSE.

Number of operands 2
Input data type Any, Any
Output data type BOOL

Examples
OUT := EQ(TRUE, FALSE); (* OUT = FALSE *)

OUT := EQ(‘pippo’, ‘pluto’); (* OUT = FALSE *)

LT

Description Less than. Returns TRUE if Input #0 < Input #1, otherwise
FALSE.

Number of operands 2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL

Examples
OUT := LT(0, 20); (* OUT = TRUE *)

OUT := LT(‘pipp’, ‘pluto’); (* OUT = TRUE *)

LE

Description Less than or equal to. Returns TRUE if Input #0 <= Input
#1, otherwise FALSE.

Number of operands 2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL

Examples
OUT := LE(20, 20); (* OUT = TRUE *)

OUT := LE(‘pipp’, ‘pluto’); (* OUT = TRUE *)

NE

Description Not equal to. Returns TRUE if Input #0 != Input #1,
otherwise FALSE.

Number of operands 2
Input data type Any, Any
Output data type BOOL

Examples
OUT := NE(TRUE, FALSE); (* OUT = TRUE *)

OUT := NE(‘pipp’, ‘pluto’); (* OUT = TRUE *)

EIO0000002036 09/2014 257

SoMachine HVAC - Application

String functions
The availability of the following functions depends on the target device. Please refer to
your hardware supplier for details.

CONCAT
Description Character string concatenation
Number of operands 2
Input data type STRING, STRING
Output data type STRING
Examples OUT := CONCAT(‘AB’, ‘CD’); (* OUT = ‘ABCD’ *)

DELETE

Description Delete L characters of IN, beginning at the P-th character
position

Number of operands 3
Input data type STRING, UINT, UINT
Output data type STRING

Examples
OUT := DELETE(IN := ‘ABXYC’, L := 2, P := 3);

(* OUT = ‘ABC’ *)

FIND

Description Find	the	character	position	of	the	beginning	of	the	first	occurrence	
of IN2 in IN1. If no occurrence of IN2 is found, then OUT := 0.

Number of operands 2
Input data type STRING, STRING
Output data type UINT
Examples OUT := FIND(IN1 := ‘ABCBC’, IN2 := ‘BC’); (* OUT = 2 *)

INSERT
Description Insert IN2 into IN1 after the P-th character position
Number of operands 3
Input data type STRING, STRING, UINT
Output data type STRING

Examples
OUT := INSERT(IN1 := ‘ABC’, IN2 := ‘XY’, P := 2);

(* OUT = ‘ABXYC’ *)

LEFT
Description Leftmost L characters of IN
Number of operands 2
Input data type STRING, UINT
Output data type STRING
Examples OUT := LEFT(IN := ‘ASTR’, L := 3); (* OUT = ‘AST’ *)

258 EIO0000002036 09/2014

SoMachine HVAC - Application

MID
Description L characters of IN, beginning at the P-th
Number of operands 3
Input data type STRING, UINT, UINT
Output data type STRING

Examples
OUT := MID(IN := ‘ASTR’, L := 2, P := 2);

(* OUT = ‘ST’ *)

REPLACE

Description Replace L characters of IN1 by IN2, starting at the P-th
character position

Number of operands 4
Input data type STRING, STRING, UINT, UINT
Output data type STRING

Examples OUT := REPLACE(IN1 := ‘ABCDE’, IN2 := ‘X’, L := 2, P
:= 3); (* OUT = ‘ABXE’ *)

RIGHT
Description Rightmost L characters of IN
Number of operands 2
Input data type STRING, UINT
Output data type STRING
Examples OUT := RIGHT(IN := ‘ASTR’, L := 3); (* OUT = ‘STR’ *)

10.2 INSTRUCTION LIST (IL)
This	section	defines	the	semantics	of	the	IL	(Instruction	List)	language.

10.2.1 SYNTAX AND SEMANTICS
10.2.1.1 SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line
and	contains	an	operator	with	optional	modifiers,	and,	if	necessary	for	the	particular	op-
eration, one or more operands separated by commas. Operands can be any of the data
representations for literals and for variables.
The instruction can be preceded by an identifying label followed by a colon (:). Empty
lines can be inserted between instructions.

EIO0000002036 09/2014 259

SoMachine HVAC - Application

Example
Let us parse a small piece of code:
START:

 LD %IX1 (* Push button *)

 ANDN %MX5.4 (* Not inhibited *)

 ST %QX2 (* Fan out *)

The	elements	making	up	each	instruction	are	classified	as	follows:

Label Operator
[+ modifier] Operand Comment

START: LD %IX1 (* Push button *)

ANDN %MX5.4 (* Not inhibited *)

ST %QX2 (* Fan out *)

Semantics of IL instructions
 - Accumulator
By accumulator a register is meant containing the value of the currently evaluated re-
sult.

 - Operators
Unless	otherwise	specified,	the	semantics	of	the	operators	is
accumulator := accumulator OP operand

That is, the value of the accumulator is replaced by the result yielded by operation OP
applied to the current value of the accumulator itself, with respect to the operand. For
instance, the instruction “AND %IX1” is interpreted as
accumulator := accumulator AND %IX1

and the instruction “GT %IW10” will have the Boolean result TRUE if the current value
of the accumulator is greater than the value of input word 10, and the Boolean result
FALSE otherwise:
accumulator := accumulator GT %IW10

 - Modifiers
The	modifier	“N” indicates bitwise negation of the operand.
The	left	parenthesis	modifier	“(”	indicates	that	evaluation	of	the	operator	must	be	de-
ferred until a right parenthesis operator “)” is encountered. The form of a parenthesized
sequence of instructions is shown below, referred to the instruction
accumulator := accumulator AND (%MX1.3 OR %MX1.4)

The	modifier	“C” indicates that the associated instruction can be performed only if the
value of the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is com-
bined with the “N”	modifier).

260 EIO0000002036 09/2014

SoMachine HVAC - Application

10.2.2 STANDARD OPERATORS

Standard	operators	with	their	allowed	modifiers	and	operands	are	as	listed	below.

Operator Modifiers
Supported operand

types: Acc_type,
Op_type

Semantics

LD N Any, Any Sets the accumulator equal to
operand.

ST N Any, Any Stores the accumulator into
operand location.

S BOOL, BOOL Sets operand to TRUE if
accumulator is TRUE.

R BOOL, BOOL Sets operand to FALSE if
accumulator is TRUE.

AND N, (Any but REAL, Any but
REAL Logical or bitwise AND

OR N, (Any but REAL, Any but
REAL Logical or bitwise OR

XOR N, (Any but REAL, Any but
REAL Logical or bitwise XOR

NOT Any but REAL Logical or bitwise NOT
ADD (Any but BOOL Addition
SUB (Any but BOOL Subtraction
MUL (Any but BOOL Multiplication
DIV (Any but BOOL Division
MOD (Any but BOOL Modulo-division
GT (Any but BOOL Comparison:
GE (Any but BOOL Comparison: =
EQ (Any but BOOL Comparison: =
NE (Any but BOOL Comparison:
LE (Any but BOOL Comparison:
LT (Any but BOOL Comparison:
JMP C, N Label Jumps to label
CAL C, N FB instance name Calls function block

RET C, N Returns from called program,
function, or function block.

) Evaluates deferred operation.

10.2.3 CALLING FUNCTIONS AND FUNCTION BLOCKS
10.2.3.1 CALLING FUNCTIONS

Functions	(as	defined	in	the	relevant	section)	are	invoked	by	placing	the	function	name	in	
the	operator	field.	This	invocation	takes	the	following	form:
LD 1

MUX 5, var0, -6.5, 3.14

ST vRES

EIO0000002036 09/2014 261

SoMachine HVAC - Application

Note	that	the	first	argument	is	not	contained	in	the	input	list,	but	the	accumulator	is	used	
as	the	first	argument	of	the	function.	Additional	arguments	(starting	with	the	2nd), if re-
quired,	are	given	in	the	operand	field,	separated	by	commas,	in	the	order	of	their	decla-
ration. For example, operator MUX	in	the	table	above	takes	5	operands,	the	first	of	which	
is loaded into the accumulator, whereas the remaining 4 arguments are orderly reported
after the function name.

The following rules apply to function invocation.
1) Assignments to VAR_INPUT arguments may be empty, constants, or variables.
2) Execution of a function ends upon reaching a RET instruction or the physical end of

the function. When this happens, the output variable of the function is copied into the
accumulator.

Calling Function Blocks
Function	blocks	(as	defined	in	the	relevant	section)	can	be	invoked	conditionally	and	un-
conditionally via the CAL operator. This invocation takes the following form:
LD A

ADD 5

ST INST5.IN1

LD 3.141592

ST INST5.IN2

CAL INST5

LD INST5.OUT1

ST vRES

LD INST5.OUT2

ST vVALID

This method of invocation is equivalent to a CAL with an argument list, which contains only
one variable with the name of the FB instance.
Input arguments are passed to / output arguments are read from the FB instance through
ST / LD operations performed on operands taking the following form:
FBInstanceName.IO_var

where

Keyword Description
FBInstanceName Name of the instance to be invoked.

IO_var Input or output variable to be written / read.

10.3 FUNCTION BLOCK DIAGRAM (FBD)
This	section	defines	the	semantics	of	the	FBD	(Function	Block	Diagram)	language.

10.3.1 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as
shown in the table below.

262 EIO0000002036 09/2014

SoMachine HVAC - Application

No storage of data or association with data elements can be associated with the use of
connectors;	hence,	to	avoid	ambiguity,	connectors	cannot	be	given	any	identifier.

Feature Example

Lines

Line crossing with connection

Blocks with connecting lines
and unconnected pins

10.3.2 DIRECTION OF FLOW IN NETWORKS

A	network	 is	defined	as	a	maximal	set	of	 interconnected	graphic	elements.	A	network	
label delimited on the right by a colon (:) can be associated with each network or group
of networks. The scope of a network and its label is local to the program organization unit
(POU) where the network is located.
Graphic	languages	are	used	to	represent	the	flow	of	a	conceptual	quantity	through	one	
or more networks representing a control plan. Namely, in the case of function block dia-
grams	(FBD),	the	“Signal	flow”	is	typically	used,	analogous	to	the	flow	of	signals	between	
elements	of	a	signal	processing	system.	Signal	flow	in	the	FBD	language	is	from	the	out-
put (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

10.3.3 EVALUATION OF NETWORKS
10.3.3.1 ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same
as the order in which they are labeled or displayed. When the body of a program organiza-
tion unit (POU) consists of one or more networks, the results of network evaluation within
said body are functionally equivalent to the observance of the following rules:
1) No element of a network is evaluated until the states of all of its inputs have been

evaluated.
2) The evaluation of a network element is not complete until the states of all of its out-

puts have been evaluated.
3) As stated when describing the FBD editor, a network number is automatically as-

signed to every network. Within a program organization unit (POU), networks are
evaluated according to the sequence of their number: network N is evaluated before
network N+1,	unless	otherwise	specified	by	means	of	the	execution	control	elements.

10.3.3.2 COMBINATION OF ELEMENTS

Elements	of	the	FBD	language	must	be	interconnected	by	signal	flow	lines.
Outputs of blocks shall not be connected together. In particular, the “wired-OR” construct
of the LD language is not allowed, as an explicit Boolean “OR” block is required.

EIO0000002036 09/2014 263

SoMachine HVAC - Application

Feedback
A feedback path is said to exist in a network when the output of a function or function
block	is	used	as	the	input	to	a	function	or	function	block	which	precedes	it	in	the	network;	
the associated variable is called a feedback variable.
Feedback paths can be utilized subject to the following rules:
1) Feedback	variables	must	be	initialized,	and	the	initial	value	is	used	during	the	first	

evaluation of the network. Look the Global variables editor, the Local variables editor,
or the Parameters editor to know how to initialize the respective item.

2) Once the element with a feedback variable as output has been evaluated, the new
value of the feedback variable is used until the next evaluation of the element.

For instance, the Boolean variable RUN is the feedback variable in the example shown
below.

Explicit loop

Implicit loop

10.3.4 EXECUTION CONTROL ELEMENTS
10.3.4.1 EN/ENO SIGNALS

Additional Boolean EN (Enable) input and ENO (Enable Out) characterize Application blocks,
according to the declarations

EN ENO
VAR_INPUT

 EN: BOOL := 1;
END_VAR

VAR_OUTPUT

 ENO: BOOL;
END_VAR

264 EIO0000002036 09/2014

SoMachine HVAC - Application

See the Modifying properties of blocks section to know how to add these pins to a block.

When	these	variables	are	used,	the	execution	of	the	operations	defined	by	the	block	are	
controlled according to the following rules:
1) If the value of EN is FALSE	when	the	block	is	invoked,	the	operations	defined	by	the	

function body are not executed and the value of ENO is reset to FALSE by the program-
mable controller system.

2) Otherwise, the value of ENO is set to TRUE by the programmable controller system,
and	the	operations	defined	by	the	block	body	are	executed.

10.3.4.2 JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The
signal line for a jump condition originates at a Boolean variable, or at a Boolean output of
a function or function block. A transfer of program control to the designated network label
occurs when the Boolean value of the signal line is TRUE;	thus,	the	unconditional	jump	is	
a special case of the conditional jump.
The target of a jump is a network label within the program organization unit within which
the jump occurs.

Symbol / Example Explanation

Unconditional Jump

Conditional Jump

Example: Jump Condition
Network

10.3.4.3 CONDITIONAL RETURNS

 - Conditional returns from functions and function blocks are implemented using a RETURN
construction as shown in the table below. Program execution is transferred back to the
invoking entity when the Boolean input is TRUE, and continues in the normal fashion
when the Boolean input is FALSE.

EIO0000002036 09/2014 265

SoMachine HVAC - Application

 - Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example Explanation

Conditional Return

Example: Return Condition
Network

10.4 LADDER DIAGRAM (LD)
This	section	defines	the	semantics	of	the	LD	(Ladder	Diagram)	language.

10.4.1 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail,
and on the right side by a vertical line known as the right power rail. The right power rail
may be explicit in the Application implementation and it is always shown.
The two power rails are always connected with an horizontal line named signal link. All LD
elements should be placed and connected to the signal link.

Description Symbol

Left power rail (with attached
horizontal link)

Right power rail (with attached
horizontal link)

Power rails connected by the
signal link

10.4.2 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be de-
noted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The
term	link	state	shall	be	synonymous	with	the	term	power	flow.
The following properties apply to the link elements:
 - The state of the left rail shall be considered ON	at	all	times.	No	state	is	defined	for	the	
right rail.

266 EIO0000002036 09/2014

SoMachine HVAC - Application

 - A horizontal link element is indicated by a horizontal line. A horizontal link element
transmits the state of the element on its immediate left to the element on its immedi-
ate right.

 - The vertical link element consists of a vertical line intersecting with one or more hori-
zontal link elements on each side. The state of the vertical link represents the inclusive
OR of the ON states of the horizontal links on its left side, that is, the state of the verti-
cal link is:
OFF if the states of all the attached horizontal links to its left are OFF;
 ON if the state of one or more of the attached horizontal links to its left is ON.

 - The state of the vertical link is copied to all of the attached horizontal links on its right.
 - The state of the vertical link is not copied to any of the attached horizontal links on its
left.

Description Symbol

Vertical link with attached
horizontal links

10.4.3 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which
is equal to the Boolean AND of the state of the horizontal link at its left side with an ap-
propriate function of an associated Boolean input, output, or memory variable.
A contact does not modify the value of the associated Boolean variable. Standard contact
symbols are given in the following table.

Name Description Symbol

Normally open
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is ON.
Otherwise, the state of the right
link is OFF.

Normally closed
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is OFF.
Otherwise, the state of the right
link is OFF.

Positive transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from OFF to ON is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

EIO0000002036 09/2014 267

SoMachine HVAC - Application

Name Description Symbol

Negative transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from ON to OFF is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

10.4.4 COILS

A coil copies the state of the link on its left side to the link on its right side without modi-
fication,	and	stores	an	appropriate	function	of	the	state	or	transition	of	the	left	link	into	
the associated Boolean variable.
Standard coil symbols are shown in the following table.

Name Description Symbol

Coil
The state of the left link is
copied to the associated
Boolean variable.

Negated coil

The inverse of the state of
the left link is copied to the
associated Boolean variable,
that is, if the state of the left
link is OFF, then the state of the
associated variable is ON, and
vice versa.

SET (latch) coil

The associated Boolean variable
is set to the ON state when the
left link is in the ON state, and
remains set until reset by a
RESET coil.

RESET (unlatch) coil

The associated Boolean variable
is reset to the OFF state when
the left link is in the ON state,
and remains reset until set by a
SET coil.

Positive transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from OFF to ON is
sensed.

Negative transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from ON to OFF is
sensed.

268 EIO0000002036 09/2014

SoMachine HVAC - Application

10.4.5 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the
one used for FBD. At least one Boolean input and one Boolean output shall be shown on
each	block	to	allow	for	power	flow	through	the	block	as	shown	in	the	following	figure.

10.5 STRUCTURED TEXT (ST)
This	section	defines	the	semantics	of	the	ST	(Structured	Text)	language.

10.5.1 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one
of the data types listed in the elementary data types table. Application does not set any
constraint on the maximum length of expressions.
Expressions are composed of operators and operands.

10.5.1.1 OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

10.5.1.2 OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evalu-
ation of an expression consists of applying the operators to the operands in a sequence
defined	by	the	operator	precedence	rules.	

10.5.1.3 OPERATOR PRECEDENCE RULES

Operators	have	different	levels	of	precedence,	as	specified	in	the	table	of	operators.	The	
operator	with	highest	precedence	in	an	expression	is	applied	first,	followed	by	the	opera-
tor of next lower precedence, etc., until evaluation is complete. Operators of equal prec-
edence are applied as written in the expression from left to right.
For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:
A+B-C*ABS(D)

yields -9, and:
(A+B-C)*ABS(D)

yields 0.
When	an	operator	has	two	operands,	the	leftmost	operand	is	evaluated	first.	For	example,	
in the expression
SIN(A)*COS(B)

the expression SIN(A)	is	evaluated	first,	followed	by	COS(B), followed by evaluation of
the product.
Functions are invoked as elements of expressions consisting of the function name fol-
lowed	by	a	parenthesized	list	of	arguments,	as	defined	in	the	relevant	section.

EIO0000002036 09/2014 269

SoMachine HVAC - Application

10.5.1.4 OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence
Parenthesization (<expression>) HIGHEST

.

.

.

.

.

.

.

.

.

.

.

.

.

Function evaluation <fname>(<arglist>)

Negation Complement
-

NOT

Exponentiation **

Multiply Divide Modulo
*

/

MOD

Add Subtract
+

-

Comparison <, >, <=, >=

Equality Inequality
=

<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR LOWEST

10.5.2 STATEMENTS IN ST

All statements comply with the following rules:
 - they	are	terminated	by	semicolons;
 - unlike IL, a carriage return or new line character is treated the same as a space char-
acter;	

 - Application does not set any constraint on the maximum length of statements.
ST statements can be divided into classes, according to their semantics.

10.5.2.1 ASSIGNMENTS

Semantics
The assignment statement replaces the current value of a single or multi-element variable
by the result of evaluating an expression.
The assignment statement is also used to assign the value to be returned by a function,
by placing the function name to the left of an assignment operator in the body of the
function declaration. The value returned by the function is the result of the most recent
evaluation of such an assignment.

Syntax
An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator “:=”, followed by the expression to be evaluated. For in-
stance, the statement
A := B ;

would be used to replace the single data value of variable A by the current value of vari-
able B if both were of type INT.

270 EIO0000002036 09/2014

SoMachine HVAC - Application

Examples
a := b ;

assignment
pCV := pCV + 1 ;

assignment
c := SIN(x);

assignment with function invocation
FUNCTION SIMPLE_FUN : REAL

variables declaration

...

function body

...

SIMPLE_FUN := a * b - c ;

END_FUNCTION

assigning the output value to a function

10.5.2.2 FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics
 - Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments. Each argument can be a literal, a variable,
or an arbitrarily complex expression.

 - Function blocks are invoked by a statement consisting of the name of the function block
instance followed by a parenthesized list of arguments. Both invocation with formal ar-
gument list and with assignment of arguments are supported.

 - RETURN: function and function block control statements consist of the mechanisms for
invoking function blocks and for returning control to the invoking entity before the phys-
ical end of a function or function block. The RETURN statement provides early exit from
a function or a function block (e.g., as the result of the evaluation of an IF statement).

Syntax
1) Function:
 dst_var := function_name(arg1, arg2 , ... , argN);

2) Function block with formal argument list:
 instance_name(var_in1 := arg1 ,
 var_in2 := arg2 ,
 ... ,
 var_inN := argN);

3) Function block with assignment of arguments:
 instance_name.var_in1 := arg1;
 ...
 instance_name.var_inN := argN;
 instance_name();

4) Function and function block control statement:
 RETURN;

EIO0000002036 09/2014 271

SoMachine HVAC - Application

Examples
CMD_TMR(IN := %IX5,

 PT:= 300) ;

FB invocation with formal argument list:
IN := %IX5 ;

PT:= 300 ;

CMD_TMR() ;

FB invocation with assignment of arguments:
a := CMD_TMR.Q;

FB output usage:
RETURN ;

early exit from function or function block.

10.5.2.3 SELECTION STATEMENTS

Semantics
Selection statements include the IF and CASE statements. A selection statement selects
one	(or	a	group)	of	its	component	statements	for	execution	based	on	a	specified	condi-
tion.
 - IF: the IF	statement	specifies	that	a	group	of	statements	is	to	be	executed	only	if	the	
associated Boolean expression evaluates to the value TRUE. If the condition is false,
then either no statement is to be executed, or the statement group following the ELSE
keyword (or the ELSIF keyword if its associated Boolean condition is true) is executed.

 - CASE: the CASE statement consists of an expression which evaluates to a variable of
type DINT (the “selector”), and a list of statement groups, each group being labeled by
one	or	more	integer	or	ranges	of	integer	values,	as	applicable.	It	specifies	that	the	first	
group of statements, one of whose ranges contains the computed value of the selector,
is to be executed. If the value of the selector does not occur in a range of any case, the
statement sequence following the keyword ELSE (if it occurs in the CASE statement) is
executed. Otherwise, none of the statement sequences is executed.

Application does not set any constraint on the maximum allowed number of selections in
CASE statements.

Syntax
Note that square brackets include optional code, while braces include repeatable portions
of code.
1) IF:
 IF expression1 THEN

 stat_list

 [{ ELSIF expression2 THEN

 stat_list }]

 ELSE

 stat_list

 END_IF ;

272 EIO0000002036 09/2014

SoMachine HVAC - Application

2) CASE:
 CASE expression1 OF

 intv [{, intv }] :

 stat_list

 { intv [{, intv }] :

 stat_list }

 [ELSE

 stat_list]

 END_CASE ;

 intv being either a constant or an interval: a or a..b

Examples
IF statement:
IF d 0.0 THEN

nRoots := 0 ;

ELSIF d = 0.0 THEN

nRoots := 1 ;

x1 := -b / (2.0 * a) ;

ELSE

nRoots := 2 ;

x1 := (-b + SQRT(d)) / (2.0 * a) ;

x2 := (-b - SQRT(d)) / (2.0 * a) ;

END_IF ;

CASE statement:
CASE tw OF

1, 5:

display := oven_temp ;

2:

display := motor_speed ;

3:

display := gross_tare;

4, 6..10:

display := status(tw - 4) ;

ELSE

 display := 0;

 tw_error := 1;

END_CASE ;

10.5.2.4 ITERATION STATEMENTS

Semantics
Iteration statements specify that the group of associated statements are executed repeat-
edly. The FOR	statement	is	used	if	the	number	of	iterations	can	be	determined	in	advance;	
otherwise, the WHILE or REPEAT constructs are used.

EIO0000002036 09/2014 273

SoMachine HVAC - Application

 - FOR: the FOR statement indicates that a statement sequence is repeatedly executed,
up to the END_FOR keyword, while a progression of values is assigned to the FOR loop
control	variable.	The	control	variable,	initial	value,	and	final	value	are	expressions	of	
the same integer type (e.g., SINT, INT, or DINT) and cannot be altered by any of the
repeated statements. The FOR statement increments the control variable up or down
from	an	initial	value	to	a	final	value	in	increments	determined	by	the	value	of	an	ex-
pression;	this	value	defaults	to	1.The	test	for	the	termination	condition	is	made	at	the	
beginning of each iteration, so that the statement sequence is not executed if the initial
value	exceeds	the	final	value.

 - WHILE: the WHILE statement causes the sequence of statements up to the END_WHILE
keyword to be executed repeatedly until the associated Boolean expression is false. If
the expression is initially false, then the group of statements is not executed at all.

 - REPEAT: the REPEAT statement causes the sequence of statements up to the UNTIL
keyword to be executed repeatedly (and at least once) until the associated Boolean
condition is true.

 - EXIT: the EXIT statement is used to terminate iterations before the termination condi-
tion	is	satisfied.	When	the	EXIT statement is located within nested iterative constructs,
exit is from the innermost loop in which the EXIT is located, that is, control passes to
the	next	statement	after	the	first	loop	terminator	(END_FOR, END_WHILE, or END_RE-
PEAT) following the EXIT statement.

NOTE: the WHILE and REPEAT statements cannot be used to achieve interprocess synchronization,
for example as a “wait loop” with an externally determined termination condition. The SFC
elements	defined	must	be	used	for	this	purpose.

Syntax
Note that square brackets include optional code, while braces include repeatable portions
of code.
1) FOR:
 FOR control_var := init_val TO end_val [BY increm_val] DO

 stat_list

 END_FOR ;

2) WHILE:
 WHILE expression DO

 stat_list

 END_WHILE ;

3) REPEAT:
 REPEAT

 stat_list

 UNTIL expression

 END_REPEAT ;

Examples
FOR statement:
j := 101 ;

FOR i := 1 TO 100 BY 2 DO

 IF arrvals[i] = 57 THEN

j := i ;

 EXIT ;

 END_IF ;

END_FOR ;

274 EIO0000002036 09/2014

SoMachine HVAC - Application

WHILE statement:
j := 1 ;

WHILE j <=100 AND arrvals[i] <> 57 DO

j := j + 2 ;

END_WHILE ;

REPEAT statement:
j := -1 ;

REPEAT

 j := j + 2 ;

UNTIL j = 101 AND arrvals[i] = 57

END_REPEAT ;

10.6 SEQUENTIAL FUNCTION CHART (SFC)
This	section	defines	Sequential	Function	Chart	(SFC)	elements	to	structure	the	internal	
organization of a PLC program organization unit (POU), written in one of the languages
defined	in	this	standard,	for	the	purpose	of	performing	sequential	control	functions.	The	
definitions	in	this	section	are	derived	from	IEC	848,	with	the	changes	necessary	to	convert	
the representations from a documentation standard to a set of execution control elements
for a PLC program organization unit.
Since SFC elements require storage of state information, the only program organization
units which can be structured using these elements are function blocks and programs.
If any part of a program organization unit is partitioned into SFC elements, the entire
program organization unit is so partitioned. If no SFC partitioning is given for a program
organization unit, the entire program organization unit is considered to be a single action
which executes under the control of the invoking entity.

SFC elements
The SFC elements provide a means of partitioning a PLC program organization unit into a
set of steps and transitions interconnected by directed links. Associated with each step is
a set of actions, and with each transition is associated a transition condition.

10.6.1 STEPS
10.6.1.1 DEFINITION

A step represents a situation where the behavior of a program organization unit (POU)
with	respect	to	its	inputs	and	outputs	follows	a	set	of	rules	defined	by	the	associated	ac-
tions of the step. A step is either active or inactive. At any given moment, the state of
the	program	organization	unit	is	defined	by	the	set	of	active	steps	and	the	values	of	its	
internal and output variables.
A step is represented graphically by a block containing a step name in the form of an iden-
tifier.	The	directed	link(s)	into	the	step	can	be	represented	graphically	by	a	vertical	line	
attached to the top of the step. The directed link(s) out of the step can be represented by
a vertical line attached to the bottom of the step.

Representation Description

Step
(graphical representation with

direct links)

EIO0000002036 09/2014 275

SoMachine HVAC - Application

Application does not set any constraint on the maximum number of steps per SFC.

Step flag
The	step	flag	(active	or	inactive	state	of	a	step)	can	be	represented	by	the	logic	value	of	a	
Boolean variable ***_x, where *** is the step name. This Boolean variable has the value
TRUE when the corresponding step is active, and FALSE when it is inactive. The scope of
step	names	and	step	flags	is	local	to	the	program	organization	unit	where	the	steps	ap-
pear.

Representation Description

Step Name_x
Step	flag
= TRUE when Step Name_x is active
= FALSE otherwise

Users cannot assign a value directly to a step state.

10.6.1.2 INITIAL STEP

The initial state of the program organization unit is represented by the initial values of
its internal and output variables, and by its set of initial steps, i.e., the steps which are
initially active. Each SFC network, or its textual equivalent, has exactly one initial step.
An initial step can be drawn graphically with double lines for the borders, as shown below.
For system initialization, the default initial state is FALSE for ordinary steps and TRUE for
initial steps.
Application cannot compile an SFC network not containing exactly one initial step.

Representation Description

Initial step
(graphical representation with

direct links)

10.6.1.3 ACTIONS

An action can be:
 - a	collection	of	instructions	in	the	IL	language;
 - a	collection	of	networks	in	the	FBD	language;
 - a	collection	of	rungs	in	the	LD	language;
 - a	collection	of	statements	in	the	ST	language;
 - a	sequential	function	chart	(SFC)	organized	as	defined	in	this	section.	

Zero or more actions can be associated with each step. Actions are declared via one of the
textual structuring elements listed in the following table.

Structuring element Description
STEP StepName :
(* Step body *)

END_STEP
Step (textual form)

INITIAL_STEP StepName :
(* Step body *)

END_STEP
Initial step (textual form)

276 EIO0000002036 09/2014

SoMachine HVAC - Application

Such	a	structuring	element	exists	in	the	lsc	file	for	every	step	having	at	least	one	associ-
ate action.

10.6.1.4 ACTION QUALIFIERS

The	time	when	an	action	associated	to	a	step	is	executed	depends	on	its	action	qualifier.
Application	implements	the	following	action	qualifiers.

Qualifier Description Meaning

N Non-stored	(null	qualifier). The action is executed as long as
the step remains active.

P Pulse.

The action is executed only once per
step activation, regardless of the
number of cycles the step remains
active.

If a step has zero associated actions, then it is considered as having a WAIT function, that
is, waiting for a successor transition condition to become true.

10.6.1.5 JUMPS

Direct	links	flow	only	downwards.	Therefore,	if	you	want	to	return	to	a	upper	step	from	a	
lower one, you cannot draw a logical wire from the latter to the former. A special type of
block exists, called Jump, which lets you implement such a transition.
A Jump block is logically equivalent to a step, as they have to always be separated by a
transition.	The	only	effect	of	a	Jump	is	to	activate	the	step	flag	of	the	preceding	step	and	
to	activate	the	flag	of	the	step	it	points	to.

Representation Description

Jump
(logical link to the destination step)

10.6.2 TRANSITIONS
10.6.2.1 DEFINITION

A transition represents the condition whereby control passes from one or more steps
preceding the transition to one or more successor steps along the corresponding directed
link. The transition is represented by a small grey square across the vertical directed link.
The direction of evolution following the directed links is from the bottom of the predeces-
sor step(s) to the top of the successor step(s).

10.6.2.2 TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation
of a single Boolean expression. A transition condition which is always true is represented
by the keyword TRUE, whereas a transition condition always false is symbolized by the
keyword FALSE.

EIO0000002036 09/2014 277

SoMachine HVAC - Application

A transition condition can be associated with a transition by one of the following means:

Representation Description

By placing the appropriate Boolean constant {TRUE,
FALSE} adjacent to the vertical directed link.

By declaring a Boolean variable, whose value
determines whether or not the transition is cleared.

By writing a piece of code, in any of the languages
supported by Application, except for SFC. The result
of the evaluation of such a code determines the
transition condition.

The scope of a transition name is local to the program organization unit (POU) in which
the transition is located.

10.6.3 RULES OF EVOLUTION
Introduction
The initial situation of a SFC network is characterized by the initial step which is in the
active state upon initialization of the program or function block containing the network.
Evolutions of the active states of steps take place along the directed links when caused by
the clearing of one or more transitions.
A transition is enabled when all the preceding steps, connected to the corresponding tran-
sition symbol by directed links, are active. The clearing of a transition occurs when the
transition is enabled and when the associated transition condition is true.
The clearing of a transition causes the deactivation (or “resetting”) of all the immediately
preceding steps connected to the corresponding transition symbol by directed links, fol-
lowed by the activation of all the immediately following steps.
The alternation Step/Transition and Transition/Step is always maintained in SFC element
connections, that is:
 - two	steps	are	never	directly	linked;	they	are	always	separated	by	a	transition;
 - two	transitions	are	never	directly	linked;	they	are	always	separated	by	a	step.	

When the clearing of a transition leads to the activation of several steps at the same time,
the sequences to which these steps belong are called simultaneous sequences. After their
simultaneous activation, the evolution of each of these sequences becomes independent.
In order to emphasize the special nature of such constructs, the divergence and conver-
gence of simultaneous sequences is indicated by a double horizontal line.
The clearing time of a transition may theoretically be considered as short as one may
wish, but it can never be zero. In practice, the clearing time will be imposed by the PLC
implementation: several transitions which can be cleared simultaneously will be cleared
simultaneously, within the timing constraints of the particular PLC implementation and
the	priority	constraints	defined	in	the	sequence	evolution	table.	For	the	same	reason,	the	
duration of a step activity can never be considered to be zero. Testing of the successor
transition condition(s) of an active step shall not be performed until the effects of the step
activation have propagated throughout the program organization unit in which the step
is declared.

278 EIO0000002036 09/2014

SoMachine HVAC - Application

Sequence evolution table
This	 table	defines	 the	syntax	and	semantics	of	 the	allowed	combinations	of	steps	and	
transitions.

Example Rule

Normal transition
An evolution from step S3 to step S4
takes place if and only if step S3 is
in the active state and the transition
condition c is TRUE.

Divergent transition
An evolution takes place from S5 to
S6 if and only if S5 is active and the
transition condition e is TRUE, or from
S5 to S8 only if S5 is active and f is
TRUE and e is FALSE.

Convergent transition
An evolution takes place from S7
to S10 only if S7 is active and the
transition condition h is TRUE, or from
S9 to S10 only if S9 is active and j is
TRUE.

Simultaneous divergent transition
An evolution takes place from S11 to
S12, S14,... only if S11 is active and
the transition condition b associated
to the common transition is TRUE.
After the simultaneous activation of
S12, S14, etc., the evolution of each
sequence proceeds independently.

Simultaneous convergent transition
An evolution takes place from S13,
S15,... to S16 only if all steps above
and connected to the double horizontal
line are active and the transition
condition d associated to the common
transition is TRUE.

EIO0000002036 09/2014 279

SoMachine HVAC - Application

Examples

Invalid scheme Equivalent allowed scheme Note

Expected behavior: an
evolution takes place
from S30 to S33 if a is
FALSE and d is TRUE.
The scheme in the
leftmost column
is invalid because
conditions d and TRUE
are directly linked.

Expected behavior: an
evolution takes place
from S32 to S31 if c is
FALSE and d is TRUE.
The scheme in the
leftmost column
is invalid because
direct	links	flow	only	
downwards. Upward
transitions can be
performed via jump
blocks.

10.7 APPLICATION LANGUAGE EXTENSIONS
Application features a few extensions to the IEC 61131-3 standard, in order to further
enrich the language and to adapt to different coding styles.

10.7.1 MACROS

Application implements macros in the same way a C programming language pre-proces-
sor does.
Macros	can	be	defined	using	the	following	syntax:
 MACRO <macro name>

 PAR_MACRO

 <parameter list>

 END_PAR

 <macro body>

 END_MACRO

Note that the parameter list may eventually be empty, thus distinguishing between ob-
ject-like macros, which do not take parameters, and function-like macros, which do take
parameters.

280 EIO0000002036 09/2014

SoMachine HVAC - Application

A	concrete	example	of	macro	definition	is	the	following,	which	takes	two	bytes	and	com-
poses a 16-bit word:
MACRO MAKEWORD

 PAR_MACRO

 lobyte;

 hibyte;

 END_PAR

 { CODE:ST }

 lobyte + SHL(TO_UINT(hibyte), 8)

END_MACRO

Whenever the macro name appears in the source code, it is replaced (along with the ac-
tual parameter list, in case of function-like macros) with the macro body. For example,
given	the	definition	of	the	macro	MAKEWORD and the following Structured Text code frag-
ment:
 w := MAKEWORD(b1, b2);

the macro pre-processor expands it to
 w := b1 + SHL(TO_UINT(b2), 8);

10.7.2 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the
1pointed	variable).	The	value	of	a	pointer	is,	in	fact,	the	address	of	the	pointed	variable;	
in order to access the data stored at the address pointed to, pointers can be dereferenced.
Pointer declaration requires the same syntax used in variable declaration, where the type
name is the type name of the pointed variable preceded by a @ sign:
 VAR

 <pointer name> : @<pointed variable type name>;

 END_VAR

For example, the declaration of a pointer to a REAL variable shall be as follows:
 VAR

 px : @REAL;

 END_VAR

A pointer can be assigned with another pointer or with an address. A special operator, ADR,
is available to retrieve the address of a variable.
 px := py; (* px and py are pointers to REAL (that is, vari-
ables of type @REAL) *)

 px := ADR(x) (* x is a variable of type REAL *)

 px := ?x (* ? is an alternative notation for ADR *)

The @ operator is used to dereference a pointer, hence to access the pointed variable.
 px := ADR(x);

 @px := 3.141592; (* the approximate value of pi is assigned to x *)

 pn := ADR(n);

 n := @pn + 1; (* n is incremented by 1 *)

EIO0000002036 09/2014 281

SoMachine HVAC - Application

Beware that careless use of pointers is potentially hazardous: indeed, pointers can point
to any arbitrary location, which can cause undesirable effects.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Ensure	that	all	variables	are	initialized	to	an	appropriate	value	before	their	first	use	as	point-

ers.
• Write programming instructions to test the validity of operands intended to be used as mem-

ory pointers.
• Do	not	attempt	to	access	memory	element	outside	the	defined	bounds	of	the	allocated	mem-

ory.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

10.7.3 WAITING STATEMENT

Application implements a WAITING statement that can be used in ST code as following
example:
...

WAITING <condition> DO

 <code to be executed waiting for condition becomes true>

END_WAITING;

...

Until	the	condition	is	not	verified,	the	code	will	be	executed	(not	as	in	a	loop	cycle	but	
returning to caller in every execution).
The WAITING statement can be used only if the associated project option is enabled (See
paragraph 3.6.2 for more details).

282 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 283

SoMachine HVAC - Application

11. ERRORS REFERENCE

11.1 COMPILE TIME ERROR MESSAGES

ERROR
CODE SHORT DESCRIPTION EXPLANATION

A04097 Object not found The object indicated (variable or function block) has not
been	defined	in	the	application.

A04098 Unsupported data type The size (in bits) requested by the indicated data type
isn't supported by the target system.

A04099 Auto vars space exhausted The total allocation space requested by all local variables
exceeds the space available on the target system.

A04100 Retentive vars space exhausted
The total allocation space requested by all local retentive
variables exceeds the space available on the target
system.

A04101 Bit vars space exhausted
The total allocation space requested by all local bit
(boolean) variables exceeds the space available on the
target system.

A04102 Invalid ++ in data block The variable indicated is associated with an index that is
not available in the relative data block.

A04103 Data block not found The variable indicated is associated with a data block
that	doesn't	exist	(isn't	defined)	in	the	target	system.

A04104 Code space exhausted
The total size of code used for POU (programs, functions
and function blocks) exceed the space available on the
target system.

A04105 Invalid bit offset The variable indicated is associated with a bit index that
is not available in the relative data block.

A04106 Image variable requested Error code superseded.

A04107 Target function not found The function indicated isn't available on the target
system.

A04108 Base object not found The indicated instance refers to a function block
definition	non	defined.

A04109 Invalid base object type The indicated variable is associated with a data type
(including	function	block	definition)	that	isn't	defined.

A04110 Invalid data type The	data	type	used	in	the	variable	definition	doesn't	
exist.

A04111 Invalid operand type The operand type is not allowed for the current operator.

A04112 Function block shares global data
and is used by more tasks

The indicated function block is called by more than one
task but uses global variables with process image. For
this reason the compiler isn't able to refer to the proper
image variable for each instance of the function block.

A04113 Temporary variables allocation
error Internal compiler error.

A04114 Embedded functions do not
support arrays as input variables

A04115 Too many parameters input to
embedded function

A04116 Incremental build failed, perform
a full build command

A04117 Less then 10% of free data

A04118 Less then 10% of free retain data

284 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

A04119 Less then 10% of free bit data

A04120 Variable exceeds data block space

A04121 Element not found

A04123 Invalid access to private member

A04129 Not a structured type

A04130 Not a function block instance

A04131 Incompatible external declaration

A04133 Not a variable

A04134 Index exceeds array size

A04135 Invalid index data type

A04136 Missing index(es)

A04137 Function block instance required

A04138 Simple variable required

A04139 Too many indexes

A04140 Not a structure instance

A04141 Not an array

A04143 Not a pointer

A04144 Double pointer indirection not
allowed

A04145 To be implemented

A04146 Bit datatype not allowed

A04147 Unable to calculate variable offset

A04148 Complex variables cannot have
process image

A04149
Cannot use directly represented
variables with process image in
function blocks (not implemented)

A04150 Function block instance not
allowed

A04151 Structure not allowed

A04152 16-bit variables must be aligned
to a 16-bit boundary

A04153 32-bit variables must be aligned
to a 32-bit boundary

A04154
Temporary string variable
allocation error. Instruction shall
be split.

A04155 Ext/aux auto vars space
exhausted

A04156 Ambiguous enum value,
<enum>#	prefix	required

B00001 Data block not found The variable indicated is associated with a data block
that	doesn't	exist	(isn't	defined)	in	the	target	system.

B00002 Error	on	create	file The	indicated	file	can't	be	created	due	to	a	file	system	
error	or	to	a	missing	source	file.

C00001 Parser not inizialized Internal compiler error.

C00002 Invalid token Invalid word for the current language syntax

EIO0000002036 09/2014 285

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

C00003 Invalid	file	specification Internal compiler error.

C00004 Can't	open	file The	indicated	file	can't	be	opened	due	to	a	file	system	
error	or	to	a	missing	source	file.

C00005 Parser tabel error Internal compiler error.

C00006 Parser	non	specified Internal compiler error.

C00007 Unexpected	end	of	file The	indicated	file	is	truncated	or	the	syntax	is	
incomplete.

C00009 Reserved keyword The indicated word can't be used for declaration
purposes because is a keyword of the language.

C00010 Invalid element The indicated word isn't a valid one for the language
syntax.

C00011 Aborted by user

C00032 Too many parameters in macro
call

C00033 Invalid number of parameters in
macro call

C00034 Too many macro calls nested

C04097 Invalid variable type The data type indicated isn't allowed.

C04098 Invalid	location	prefix The address string of the indicated variable isn't correct,
'%' missing.

C04099 Invalid	location	specification The address string of the indicated variable isn't correct,
the data access type indication isn't 'I', 'Q' or 'M'.

C04100 Invalid location type The address string of the indicated variable isn't correct,
the data type indication isn't 'X', 'B', 'W', 'D', 'R' or 'L'.

C04101 Invalid	location	index	specification The address string of the indicated variable isn't correct,
the index isn't correct.

C04102 Duplicate variable name The name of the indicated variable has already been
used for some other project object.

C04103 Only 0 admitted here The compiler uses only arrays zero-index based

C04104 Invalid array dimension
The dimension of the array isn't indicated in the correct
way (e.g.: contains invalid characters, negative numbers
etc.).

C04105 Constant not initialized Every constant need to have an initial value.

C04106 Invalid string size

C04107 Initialization exceeding string size

C04108 Invalid repetition in initialization

C04109 Invalid data type for initialization

C04353 Duplicate label The	indicated	label	has	already	been	defined	in	the	
current POU (program, function or function block).

C04354 Constant not admitted The operation indicated doesn't allow to use constants
(typically store or assign operations).

C04355 Address of explicit constant not
defined

C04356 Maximum number of subscripts
exceeded

C04358 Invalid array base

C04359 Invalid operand

C04609 Invalid binary constant A	constant	value	with	2#	prefix	must	contain	only	binary	
digits (0 or 1).

286 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

C04610 Invalid octal constant A	constant	value	with	8#	prefix	must	contain	only	octal	
digits (between 0 and 7).

C04611 Invalid hexadecimal constant
A	constant	value	with	16#	prefix	must	contain	only	
hexadecimal digits (between 0 and 9 and between A and
F).

C04612 Invalid decimal constant
A decimal constant must contain only digits between 0
and 9, a leading sign + or -, a decimal separator '.' Or a
exponent indicator 'e' or 'E'.

C04613 Invalid time constant
A	constant	value	with	t#	prefix	must	contain	a	time	
indication in decimal notation and a time unit between
'ms, 's' or 'm'.

C04614 Invalid constant string

C04864 Duplicate function name The indicated function name has already been used for
another application object.

C04865 Invalid function type The data type returned by the indicated function is not
correct.

C05120 Duplicate program name The indicated program name has already been used for
another application object.

C05376 Duplicate function block name The indicated function block name has already been
used for another application object.

C05632 Invalid pragma

C05633 Invalid pragma value

C05889 Duplicate macro name

C05890 Duplicate macro parameter name

C06144 Invalid	resource	definition:	two	or	
more tasks have the same ID

C16385 Invalid init value

C16386 Invalid	initialization	definition

C16387 Invalid array delimiters (brakets)

C16388 Empty init value

C16389 Empty array init value

C16390 Invalid repeated init value

C16391 Not implemented

C16392 Missing array delimiters (brakets)

C16393 Missing comma

C16394 Not implemented

C16395 Invalid (incomplete) string

D12289 Can't allocate database

The memory space needed for parameter's database
exceeds the space available on the target system. If
possible, remove unused parameter's records, menus
etc.

D12290 Can't allocate database record

The memory space needed for parameter's database
exceeds the space available on the target system. If
possible, remove unused parameter's records, menus
etc.

D12291 Database variable not found Internal compiler error.

D12292 Invalid expression or expression
syntax error

The database expression that has the result indicated
isn't correct, contains syntax errors or invalid operators.

EIO0000002036 09/2014 287

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

D12293 Invalid parameter reference in
expression

The database expression that has the result indicated
contains a parameter (as operand) that isn't the same to
which the expression refers to. The expression can use
only PLC variables (including the variables associated
with parameters) and the value of the parameter that
is exchanged at the moment. For example: pDELTA
= DELTA / pRATIO + pOFFSET is correct because
the parameter exchanged is DELTA and it's the only
parameter value used in the expression. The expression:
pDELTA = DELTA / pRATIO + OFFSET isn't correct
because the parameter OFFSET used in the expression
isn't currently exchanged

D12294 Recursive expression
The database expression that has the result indicated
calls itself by means of some operand used that contains
the current expression result.

D12295 Unresolved variable in expression
The database expression that has the result indicated
uses	an	operand	that	isn't	defined	in	the	whole	PLC	
project.

D12296 Unresolved expression result Internal compiler error.

D12297 Invalid result type for expression The parameter that is the result of the expression has a
data	type	invalid	(such	as	enumerative)	or	not	defined.

D12298 Invalid operand in expression The database expression that has the result indicated
uses an invalid operand.

D12299 Invalid variable type for
expression

The variable that is the result of the expression has a
data	type	invalid	(such	as	enumerative)	or	not	defined.

D12300 Assembler error Internal compiler error.

D12301 Can't allocate database code
The code space needed for the expression is exhausted.
Is necessary to remove some expressions from the
parameter's database.

D12302 Invalid operation in expression The database expression that has the result indicated
uses an invalid operand.

F01025 Invalid network
The indicated FBD or LD network contains a connection
error (the errors are normally indicated by red
connections).

F01026 Unconnected pin The indicated block (operator, function, contact or coil)
has an unconnected pin.

F01027 Invalid connection (incomplete,
more than a source etc.) Internal compiler error.

F01028 More than one network per block The network indicated contains more networks of blocks
and variables not connected between them.

F01029 Ambiguous network evaluation The	compiler	is	not	able	to	find	an	univocal	way	to	
establish the order of blocks execution.

F01030 Temporary variables allocation
error Internal compiler error.

F01031 Inconsistent network The network indicated doesn't have input or output
variables.

F01032 Invalid object connected to power
rail

F01033
Invalid use of pin negation (ADR
operator does not allow negated
input

F01034
Invalid use of pin negation
(SIZEOF operator does not allow
negated input

288 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00001 Invalid operand number The number of operands is not correct for the operand or
the function indicated.

G00002 Variable	not	defined The	variable	has	not	been	defined	in	the	local	or	global	
context.

G00003 Label	not	defined The	label	indicated	for	the	JMP	operand	isn't	defined	in	
the current POU (program, function or function block).

G00004 Function	block	not	defined The indicated instance refers to a function block not
defined	in	the	whole	project.

G00005 Reference	to	object	not	defined The	indicated	instance	refers	to	an	object	not	defined	in	
the whole project.

G00006 Constant not admitted The operation indicated doesn't allow to use constants
(typically store or assign operations).

G00007 Code	buffer	overflow
The total size of code used for POU (programs, functions
and function blocks) exceed the space available on the
target system.

G00008 Invalid access to variable
The access made to the indicated variable is not allowed.
An attempt to write a read-only variable or to read a
write-only variable has been made.

G00009 Program not found The indicated program doesn't exist in the current
project.

G00010 Program already assigned to a
task

The indicated program has been assigned to more than
one task of the target system.

G00011 Can't allocate code buffer There isn't enough memory on the PC to create the
image of the code of the target system.

G00012 Function	not	defined The indicated function doesn't exist in the current
project.

G00013 Cyclic declaration of function
blocks

The indicated function block call itself directly or by
means of other functions.

G00014 Incompatible external declaration

The external variable declaration of the current function
block	doesn't	match	with	the	global	variable	definition	it	
refers to (the one with the same name). Typically is the
case of a type mismatch.

G00015 Accumulator extension
The access made to the indicated variable is not allowed.
An attempt to write a read-only variable or to read a
write-only variable has been made.

G00016 External variable not found
The external variable doesn't refer to any of the global
variables of the project (e.g.: there isn't a global variable
with the same name).

G00017 Program is not assigned to a task The indicated program hasn't been assigned to a task in
the target system.

G00018 Task not found in resources The	indicated	task	isn't	defined	in	the	target	system.

G00019 No	task	defined	for	the	application
There	aren't	task	definitions	for	the	target	system.	The	
target	definition	file	(*.TAR)	is	missing	or	incomplete.	
Contact the target system vendor.

G00020 Far data allowed only for load/
store operations in PROGRAMs

Huge memory access isn't allowed for function blocks,
only for programs (error code valid only for some target
system with NEAR/FAR data access).

G00021 Invalid processor type The	processor	indicated	into	the	target	definition	file	
(*.TAR) isn't correct or isn't supported by the compiler.

G00022
Function block with process image
variables can't be used in event
tasks

EIO0000002036 09/2014 289

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00023 Process image variables can't be
used in event tasks

G00024 Accumulator	undefined

G00025 Invalid index

G00026 Only constant index allowed

G00027 Illegal reference to the address of
a register

G00028 Less then 10% of free code

G00029 Index exceeds array size

G00030 Access to array as scalar -
assuming index 0

G00031 Number of indexes not matching
the var size

G00032 Multidimensional variables not
supported

G00033 Invalid data type

G00034 Invalid operand type

G00035 Assembler error

G00036 Aborted by user

G00037 Element	not	defined

G00038 Cyclic declaration of structures

G00039 Cyclic declaration of typedefs

G00040 Unresolved	definition	of	typedef

G00041 Exceeding dimensions in typedef

G00042 Unable to allocate compiler
internal data

G00043 CODE GENERATOR INTERNAL
ERROR

G00044 Real data not supported

G00045 Long real data not supported

G00046 Long data not supported

G00047 Operation not implemented

G00048 Invalid operator

G00049 Invalid operator value

G00050 Unbalanced parentheses

G00051 Data conversion

G00052 To be implemented

G00053 Invalid index data type

G00054 Negation without condition

G00055 Operation not allowed on boolean

G00056 Negation of a non-boolean
operand

G00057 Boolean operand required

G00058 Floating point parameter not
allowed

G00059 Operand extension

290 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00060 Division by zero

G00061 Illegal comparison

G00062 Function block must be
instanciated

G00063 String operand not allowed

G00064 Operation not allowed on pointers

G00065 Destination may be too small to
store current result

G00066

Cannot use a function block
containing external variables with
process image in more than one
task

G00067 Cannot load the address of an
explicit constant

G00068 Writing a real value into an
integer variable

G00069 Cannot use complex variables in
functions. Not implemented

G00070 Signed/unsigned mismatch

G00071 Conversion data types mismatch,
possible loss of data

G00072 Implicit type conversion of
boolean to integer

G00073 Implicit type conversion of
boolean to real

G00074 Implicit type conversion of integer
to boolean

G00075 Implicit type conversion of integer
to boolean

G00076 Implicit type conversion of real to
boolean

G00077 Implicit type conversion of real to
integer

G00078 Arithmetic operations require
numerical operands

G00079 Bitwise logical operations require
bitstring/integer operands

G00080
Comparison operations require
elementary (i.e., not user-
defined)	operands

G00081 Cannot take the address of a bit
variable

G00082 Writing a signed value into an
unsigned variable

G00083 Writing an unsigned value into a
signed variable

G00084 Implicit conversion from single to
double precision

G00085 Implicit conversion from double to
single precision

G00086 Function parameter extension

EIO0000002036 09/2014 291

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00087 Casting to the same type has no
effects

G00088 Function parameters wrong
number

G00089 Embedded target function not
found

G00090 Recursive type declaration

G00091 Wrong initial value. Signed/
unsigned mismatch

G00092
Wrong initial value. Conversion
data types mismatch, possible
loss of data

G00093 String will be truncated

G00094 Init value type mismatch

G00095 Improper init value

G00096 Init value object not found

G00097 Invalid assignment to pointer

G00513 Invalid operator The operator indicated is not allowed for the indicated
operation.

G00514 Operation not implemented The operator indicated isn't supported by the current
target system.

G00515 Real data not supported The	target	system	in	use	doesn't	support	floating	point	
operations.

G00516 Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G00517 Long data not supported The target system in use doesn't support long data
operations.

G00518 Accumulator extension

The variable destination of the store/assignment
operation has a data type bigger than the one of the
accumulator. An extension operation has been performed
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).

G00519 Assembler error Internal compiler error.

G00520 Negation allowed only on boolean
The	'N'	modifier	used	for	some	IL	operators	(LDN,	STN,	
ANDN etc.) can't be used with operators having type
other than boolean.

G00521 Operation allowed with boolean
types

The IL operator indicated (typically 'S' or 'R') can't be
used when the accumulator has a type other than BOOL.

G00522 Instruction has constant result The indicated operation has a result that is constant (ex.
multiply by 0, AND with FALSE).

G00523 Instruction is a NOP The	operation	indicated	has	no	influence	on	the	value	of	
the accumulator (ex. multiply by 1, AND with TRUE).

292 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00524 Unbalanced parentheses
The number of opened parentheses doesn't match with
the number of the closed parentheses in the indicated
code block.

G00525 Operation not allowed on boolean The indicated operation can't be performed on boolean
operands (ex. the arithmetic operations).

G00526 Can't perform modulo with long
values

The current target system doesn't allow the modulo
operation with long data types.

G00527 Division by 0 The indicated division operation has the constant value 0
as denominator.

G00528 Negation without condition

The indicated operation (JMP or RET) has the negation
modifier	'N'	without	the	conditional	evaluation	modifier	
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G00529 Initial	value	not	defined Internal compiler error.

G00530 Invalid initial value The initial value of the variable isn't indicated correctly.

G00531 Invalid accumulator type
The accumulator has a data type not allowed for the
indicated operation (ex. MUX operator with REAL
accumulator).

G00532 Code generator internal error Internal compiler error.

G00533 Invalid operator value The operator has a value not acceptable for the indicated
operation (ex. SHL with constant value bigger than 32).

G00534 Accumulator	undefined The operation is performed without a previously loaded
value into the accumulator.

G00535 Invalid index
The constant index value used in the indicated
expression is too big for the array dimension. See the
array declaration string.

G00536 Only constant index allowed
The use of variable as index for the indicated array is not
supported by the compiler. This error is typically issued
with boolean (bit) arrays.

G00537 Indexing of boolean constants not
allowed

The use of variable as index for the indicated array is not
supported by the compiler. This error is typically issued
with boolean (bit) arrays.

G00538 Return not allowed from programs The RET operator isn't allowed in PROGRAM blocks.

G00539 Function block must be
instantiated

A function block can't be invoked directly with a CAL
instruction. It must be instantiated before its use eg.
must be a variable with data type corresponding to the
function block instead.

G00540 Operation not allowed with real
types

The indicated operation can't be executed on REAL data
types. Instructions of this kind are logical and bitwise
operations.

G00541 Accumulator conversion

This warning informs that the data type of the
accumulator has been automatically converted by the
compiler. This operation is typically executed when
the accumulator and the operand used in a arithmetic
operation have different data types.

G00542 Real accumulator must be
reloaded

Some	target-specific	implementations	with	software	
floating	point	emulation	require	that	each	store	
operation shall be preceded by a new load operation or a
arithmetic sequence.

G00543 Real accumulator not stored

Some	target-specific	implementations	with	software	
floating	point	emulation	require	that	when	the	floating	
point stack has been loaded, the same shall be unloaded
at the end of arithmetic sequence.

EIO0000002036 09/2014 293

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00544 Long real data not supported The long real data type LREAL isn't supported by the
compiler.

G00769 Invalid operator The operator indicated is not allowed for the indicated
operation.

G00770 Operation not implemented The operator indicated isn't supported by the current
target system.

G00771 Assembler error Internal compiler error.

G00772 Long real data not supported The long real data type LREAL isn't supported by the
compiler.

G00773 Long data not supported The long data type LINT isn't supported by the compiler.

G00774 Negation of a non-boolean
parameter

The	negation	modifier	'N'	can't	be	used	in	operations	
with data types different than boolean.

G00775 Operation not allowed on boolean The indicated operation can't be performed on boolean
operands (ex. the arithmetic operations).

G00776 Accumulator extension

The variable destination of the store/assignment
operation has a data type bigger than the one of the
accumulator. An extension operation has been performed
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).

G00777 Accumulator	undefined The operation is performed without a previously loaded
value into the accumulator.

G00778 Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G00779 Division by zero The indicated division operation has the constant value 0
as denominator.

G00780 Operation allowed on real
parameters only

The indicated operation can't be executed on REAL data
types. Instructions of this kind are logical and bitwise
operations.

G00781 Illegal comparison The indicated comparison operation is executed between
non homogeneous data types.

G00782 Negation without condition

The indicated operation (JMP or RET) has the negation
modifier	'N'	without	the	conditional	evaluation	modifier	
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G00783 Boolean parameter required The IL operator indicated (typically 'S' or 'R') can't be
used when the accumulator has a type other than BOOL.

G00784 Operand extension

The data type of the operand has been extended to
the data type of the accumulator. Then the operation is
executed. The operand extension take place whenever
the operand data type is smaller than the accumulator
data type.

G00785 Does	not	support	float	
accumulator

The accumulator has REAL data type and it's not allowed
for the indicated operation (typically MUX operation).

G00786 Does not support boolean
accumulator

The accumulator has boolean data type and isn't allowed
for the indicated operation (ex. MUX operator).

294 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G00787 Comparison of unsigned type and
signed type

The compare operation indicated is performed using
operators that have signed and unsigned data type.
Indeterminate results may be possible.

G00788 Illegal conversion Internal compiler error.

G00789 Conversion may result in loss or
corruption of data Error code not used.

G00790 Illegal negation of a real
parameter Error code not used.

G00791 Writing a real value into an
integer var / param

The parameter passed to the function is of REAL type
instead of an integer data type as required by the
function	input	variables	definition.

G00792 Writing an integer value into a
real var / param

The parameter passed to the function is of an integer
data type instead of the REAL type as required by the
function	input	variables	definition.

G00793 Writing a signed value into an
unsigned var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Indeterminate results may be possible.

G00794 Writing an unsigned value into a
signed var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Indeterminate results may be possible.

G00795 Unbalanced parentheses
The number of opened parentheses doesn't match with
the number of the closed parentheses in the indicated
code block.

G00796 Error while extending parameters Internal compiler error.

G00797 Invalid index
The constant index value used in the indicated
expression is too big for the array dimension. See the
array declaration string.

G00798 Using a boolean index to access
an element of array

The indicated array access is incorrect because the index
variable used has a boolean data type.

G00799 Return not allowed from programs The RET operator isn't allowed in PROGRAM blocks.

G00800 Boolean accumulator required The indicated SEL operator requires that the accumulator
has the boolean data type.

G00801 Operators have mismatching type
The selection performed by MUX and SEL operators shall
be done between elements that have homogeneous data
types.

G00802 Function block must be
instantiated

A function block can't be invoked directly with a CAL
instruction. It must be instantiated before its use eg.
must be a variable with data type corresponding to the
function block instead.

G01537 Using a boolean index to access
an element of array

G01538 Does not support boolean
accumulator

G01539 Does	not	support	float	
accumulator

G01540 Error while extending operand(s)

G01541 Writing a signed value into an
unsigned variable

G01542 Writing an unsigned value into a
signed variable

G01543 Writing a real value into an
integer variable

EIO0000002036 09/2014 295

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G01544 Writing an integer value into a
real variable

G01545 Converting a string into a number

G01546 Converting a number into a string

G01547 FPU stack full

G01548 FPU stack empty

G01549 FPU stack size error

G01550 Illegal access to variable through
function

G01551
Illegal reference to address
of variable accessible through
function

G01552 Invalid access through function

G01553 Two variables with the same
handle

G01554 Invalid index for variable
accessible through function

G01555 Invalid instruction with non-empty
FPU stack

G01556 Function result of type string
requires store to variable

G08193 Type	definition	of	unknown	data	
type

G08194 Type	definition	has	exceedin	array	
dimensions

G08195 Cyclic	definition	of	data	type

G08196 Double pointers are not supported

G08197 No enumerative elements

G08199 Invalid	or	undefined	initialization	
constant

G10241 Too many initializer for variable

G10242 Too less initializer for variable

G10243 Constant without init values

P02048 Can't	open	parameters	file
The	source	file	for	parameters	(with	PPC	extension)	can't	
be opened because of is missing or is locked by the PC's
file	system.

P02049 Symbol	table	file	not	created
The	symbol	allocation	file	(with	SYM	extension)	can't	be	
written	because	of	disk	write	protection	or	insufficient	
disk space.

P02050 Can't	create	parameters	file
The	parameters	file	(with	PAR	extension)	can't	be	
written	because	of	disk	write	protection	or	insufficient	
disk space.

P02051 Can't create directory

The directory for the new project can't be created. The
problem arises when there is a disk write protection or
when the new directory indicated for the project is more
than one level deep form an existing disk directory. The
compiler creates only one new directory level (the one
with the name of the project) starting from an existing
directory.

296 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

P02052 Can't open source project
The source project indicated for creating the new project
doesn't	exist,	is	incomplete	or	is	locked	by	the	file	
system.

P02053 Save project error
The new project can't be saved due to disk write
protection,	non	existing	destination	directory	or	file	
system lock.

P02054 Generic	file	error A	non	specific	error	occurred	during	file	operations.

P02055 Can't	copy	file
The	indicated	file	can't	be	copied	because	of	missing	
source	file,	disk	write	protection	or	destination	file	
existing and protected.

P02056 Can't	save	file The	indicated	file	can't	be	saved	because	of	disk	write	
protection	or	destination	file	existing	and	protected.

P02057 Object already exist in project

The indicated object (variable, function, function block or
program) is contained in the last loaded library but there
is already another object with the same name in the
current project.

P02058 Can't	open	library	file The	indicated	library	file	doesn't	exits	or	can't	be	opened	
due	to	file	system	locking.

P02059 Listing	file	not	created

P02060 Cannot create PLC application
binary	file

P02061 Can't open template project

P02062 Support for processor isn't
available

P02063 Less than 10% of free code

P02064 Less than 10% of free data

P02065 Less than 10% of free retain data

P02066 Less than 10% of free bit data

P02067 Task not found in resources

P02068 No	task	defined	for	the	application

P02069
Project is in the old PPJ format.
It will be saved in the actual PPJX
format

P02070 Can't	open	auxiliary	source	file

P02071 Can't	read	file

P02072

Application name is longer than
10	characters:	only	the	first	10	
characters will be downloaded into
the target

P02073 Downloadable	source	code	file	is	
not password-protected

P02074 Downloadable PLC application
binary	file	not	created

P02075 Less than 10% of free ext/aux
data

P02076

Project private copy of this
library was missing and has been
replaced with a new copy of the
library (from the original path)

EIO0000002036 09/2014 297

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

P02077

Cannot load library! Project
private copy of this library was
missing and the original path to
the library is invalid: library has
been dropped

P02078 PLC	variables	export	file	not	
created

P02079
Debug symbols package (for
following download to the target
device) not created

P02080
Source code package (for
following download to the target
device) not created

P02081 Invalid	task	definition

P02083 Invalid or incoherent task period

P02084 Broken library link

S01281 Generic ST error

S01282 Too many expressions nested

S01283 No iteration to exit from

S01284 Missing END_IF

S01285 Invalid ST statement

S01286 Invalid assignment

S01287 Missing;

S01288 Invalid expression

S01289 Invalid expression or missing DO

S01290 Missing END_WHILE

S01291 Missing END_FOR

S01292 Missing END_REPEAT

S01293 Invalid expression or missing
THEN

S01294 Invalid expression or missing TO

S01295 Invalid expression or missing BY

S01296 Invalid statement or missing
UNTIL

S01297 Invalid assignment, := expected

S01298 Invalid address expression

S01299 Invalid size expression

S01300 Function return value ignored

S01301 Invalid parameter passing

S01302 Function	parameter	not	defined

S01303 Useless expression

S01304 Unbalanced parentheses

S01305 Unknown function

S01306 Invalid function parameter(s)
specification

S01307 Function parameter doesn't exist

298 EIO0000002036 09/2014

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

S01308 Multiple assignment not allowed
(in accordance with IEC 61131-3)

S01309 ST	preprocessor	buffer	overflow

S01310 Function block invocation of a
non-function block instance

S01311 Missing END_WAITING

S01312 Syntax error

S01537 Generic SFC error

S01538 Initial step missing

S01539 Output connection missing

S01540 The output pin must be connected
to a transition

S01541
Every output pin of a transition
must be connected to a step/jump
block

S01542 Transition expected

S01543 Step or jump expected

S01544 Could	not	find	the	associate	
program code

S01545 Could	not	find	the	condition	code

S01546 Unknown-type transition

S01547 Invalid destination

S01548
Duplicates action. Same SFC
action cannot be used in more
than one step

T08193 Communication timeout

The communication with the target system is unsuccesful
because there is no answer from the system itself. More
common causes of this problem are incorrect cable
connection, invalid target address in communication
settings, invalid settings of communication parameters
(such as baud rate), target system availability.

T08194 Incompatible target version Error code not used.

T08195 Invalid	code	file

The	target	system	image	file	(with	IMG	extension)	
is invalid or corrupted. Try to upload and create new
version	of	the	image	file	using	the	“Communication”	-	
“Upload	image	file”	menu	option.

T08196 Invalid data block index

The	image	file	(with	IMG	extension)	contains	a	data	
block that has an index greater than the largest
index supported by the target system. Try to upload
and	create	new	version	of	the	image	file	using	the	
“Communication”	-	“Upload	image	file”	menu	option.	If	
the problem persist, contact the target system vendor.

T08197 Invalid target information address Internal compiler error.

T08198 Flash erase failure
The	target	system	was	not	able	to	complete	the	flash	
erasure procedure. Contact the target system vendor for
details.

T08199 Code write failure
The	target	system	was	not	able	to	complete	the	flash	
programming procedure. Contact the target system
vendor for details.

EIO0000002036 09/2014 299

SoMachine HVAC - Application

ERROR
CODE SHORT DESCRIPTION EXPLANATION

T08200 Communication device unavailable

The compiler tried to communicate with the target
system but the communication channel is not available.
If the problem persist and there are other applications
that communicate with the target system, deactivate the
communication on the other applications and try again.

T08201 Invalid function index Internal compiler error.

T08202 Invalid database information
address

The address of the parameter's database memory area
of the target system isn't correct or valid. Try to upload
and	create	new	version	of	the	image	file	using	the	
"Communication	Upload	image	file"	menu	option.

T08203 Invalid target information

T08204 Rebuild required

T08205 Invalid task

T08206

Application-level communication
protocol error: PLC run-time
was not able to understand the
received command

T08207 Not implemented

T08209 No	room	for	source	file	on	the	
target

T08210 Error while uploading source code
from target device

T08211 No room for debug symbols on
the target

T08212 Memory read error

T08213 Memory write error

T08214
Not enough space available on
the target device for the PLC
application binary

300 EIO0000002036 09/2014

SoMachine HVAC - Application

EIO0000002036 09/2014 301

SoMachine HVAC - UserInterface

Contents
1. Overview 309

1.1 Main elements 309

1.2 Run-time functionalities 312

1.3 Communicating with the target 312

2. Creating a simple UserInterface project 313

2.1 Purpose of this chapter 313

2.2 Creating a new project 313

2.3	 Inserting	the	first	page	in	the	project	 314
2.3.1 Creating a new page 314
2.3.2 Editing the colors of the page 315

2.4 Inserting a secondary page 316
2.4.1 Creating a secondary page 316
2.4.2 Dimensioning and setting the secondary page 316
2.4.3 Viewing the title bar and the system button 317
2.4.4 Assigning a style to the window 318
2.4.5 Choosing the start window 319

2.5 Inserting static controls 319
2.5.1 Inserting a line 320
2.5.2 Inserting a rectangle in the page 320

2.6 Inserting static images 322
2.6.1 Importing a bitmap in the project 322
2.6.2 Associating an imported bitmap with an image control 324

2.7 Text strings 325
2.7.1 Inserting a text string 325

2.8 Data management in UserInterface 325
2.8.1 Declaring a local variable 326
2.8.2 Declaring a global variable 327
2.8.3 Importing the PLC variables in the UserInterface project 327
2.8.4	 Inserting	field	parameters	 328

2.9 Inserting edit box 329
2.9.1 Inserting an edit box in the page 329
2.9.2 Edit box and UserInterface local variable association 332
2.9.3 Edit box and UserInterface global variable association 333
2.9.4 Linking an edit box with a target (or system) variable 334
2.9.5 Linking an edit box with a PLC Application variable 335
2.9.6 Linking an edit box to a parameter 335
2.9.7 Linking an edit box to a variable by dragging and dropping 336

302 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.10 Inserting buttons 337
2.10.1 Inserting a led-button 337
2.10.2 Inserting a boolean variable command button 339
2.10.3 Inserting a button to open a child page 340
2.10.4 Inserting a button aimed at launching a procedure of the user 342

2.11 Visibility and updating of controls 343
2.11.1 The visibility property 343
2.11.2 The refresh property 345

2.12 Compiling and downloading the project on the target 345
2.12.1 Connecting to the target 346
2.12.2 Compiling pages for the target 346
2.12.3 Downloading and executing the compiled pages on the target 347
2.12.4 Simulation 347

3. UserInterface layout 349

3.1 Project window 349

3.2 Embedded editors 350

3.3 Properties window 350

3.4 Toolbars 350

3.5 The output window 351

3.6 Target variables and parameters 351

3.7 Table of keys-actions associations 351

4. HMI project in UserInterface 353

4.1 Project properties 353
4.1.1 General 353
4.1.2 System options 354
4.1.3 Language selection 354
4.1.4 Global periodic procedure 356

4.2 Frame set 356

4.3 Pages 357
4.3.1 Navigating between pages 357
4.3.2 Child Pages 357
4.3.3 Pop-up pages 358
4.3.4 Asynchronous messages 358

4.4 Controls 359
4.4.1 Static 359
4.4.2 Graphic element 359
4.4.3 Edit box 359
4.4.4 Text box 360

EIO0000002036 09/2014 303

SoMachine HVAC - UserInterface

4.4.5 Image 360
4.4.6 Animation 360
4.4.7 Button 360
4.4.8 Chart 361
4.4.9 Trend 361
4.4.10 Progress bar 361
4.4.11 Combo box 361
4.4.12 Checkbox 361
4.4.13 Custom control 362

4.5 Variables 362
4.5.1 Local variables 362
4.5.2 Global variables 363
4.5.3 Variables imported from PLC 363
4.5.4 System variables 364

4.6 Multiple pages management 364
4.6.1 Association of elements of a set 364
4.6.2 Navigation of the elements of a set 365
4.6.3 Pages numbering 365

4.7 Advanced operations on pages 366
4.7.1	 Export/import	of	pages	to/from	files	 366
4.7.2 Export/import procedures and variables 367
4.7.3 Copy/paste of pages in the project 367
4.7.4 Rename pages 368
4.7.5 Templates of page management 368

4.8 Events 371
4.8.1 Page or control events 371
4.8.2 Key pressure events 372
4.8.3 Events raised by software 372
4.8.4 Procedures that can be associated to events 373
4.8.5 Actions that can be associated to key pressure 373

4.9 Resources 374
4.9.1 Fonts 374
4.9.2 Bitmaps 374
4.9.3 Strings table 375
4.9.4 Enumeratives 376
4.9.5 Images lists 376
4.9.6 Sets 377

4.10 Automatic documentation 378

4.11 Managing projects 379
4.11.1 Selecting the target device 379

304 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

5. Appendix I: page properties and object properties 381

5.1 Frame set 381
5.1.1 Properties 381

5.2 Child page 382
5.2.1 Properties 382
5.2.2 Events 382

5.3 Pop-up page 383
5.3.1 Properties 383
5.3.2 Events 384

5.4 Static 384
5.4.1 Properties 384
5.4.2 Events 385

5.5 Line 385
5.5.1 Properties 385

5.6 Rectangle 386
5.6.1 Properties 386

5.7 Edit box 386
5.7.1 Properties 386
5.7.2	 Format	specification	-	printf	 388
5.7.3 Events 389

5.8 Text box 389
5.8.1 Properties 389
5.8.2 Events 391

5.9 Image 391
5.9.1 Properties 391

5.10 Animation 392
5.10.1 Properties 392
5.10.2 Events 392

5.11 Button 393
5.11.1 Properties 393
5.11.2 Events 394

5.12 Progress bar 395
5.12.1 Properties 395
5.12.2 Events 396

5.13 Custom control 396
5.13.1 Properties 396
5.13.2 Events 397

5.14 Chart 397
5.14.1 Properties 397

EIO0000002036 09/2014 305

SoMachine HVAC - UserInterface

5.14.2 Events 399

5.15 Trend 399
5.15.1 Properties 399
5.15.2 Events 402

6. APPENDIX II: FILE FOR TARGET DESCRIPTION 403

6.1 Target properties 403
6.1.1 Description 403

6.2 Object version 404

6.3 System enumeratives 404
6.3.1 Descriptions 404
6.3.2 Example 406

7.	 Appendix	III:	Description	of	parameter	file	 409

8. Appendix IV: elements of HMI runtime 411

8.1 Functions 411
8.1.1 System functions: hardware and operating system 411
8.1.2 Function for managing project resources and common properties 413
8.1.3 Functions for operating with pages 415
8.1.4 Function for objects 417
8.1.5 Drawing functions 419
8.1.6 Functions for text 421
8.1.7 Functions for parameter access 422
8.1.8 Functions for events 424

8.2 Function Blocks 425

306 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

SAFETY INFORMATION

Important Information
Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to inform of potential hazards or to call
attention	to	information	that	clarifies	or	simplifies	a	procedure.

The addition of this symbol to a Danger safety label indicates that an electrical hazard
exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards.
Obey all safety messages that follow this symbol to avoid possible injury or death.

 DANGER
DANGER indicates an imminently hazardous situation which, if not avoided, results in death
or serious injury.

 WARNING
WARNING indicates a potentially hazardous situation which, if not avoided, can result in
death or serious injury.

 CAUTION
CAUTION indicates a potentially hazardous situation which, if not avoided, can result in
minor or moderate injury.

NOTICE
NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical	equipment	should	be	installed,	operated,	serviced,	and	maintained	only	by	qualified	
personnel.

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of
this material.
You can download these technical publications and other technical information from our website at:

www.schneider-electric.com

EIO0000002036 09/2014 307

SoMachine HVAC - UserInterface

PRODUCT RELATED INFORMATION

 WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure modes of control

paths and, for certain critical control functions, provide a means to achieve a safe state
during and after a path failure. Examples of critical control functions are emergency stop and
overtravel stop, power outage and restart.

• Separate or redundant control paths must be provided for critical control functions.
• System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.
• Observe all accident prevention regulations and local safety guidelines.(1)

• Each implementation of this equipment must be individually and thoroughly tested for proper
operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

(1) For additional information, refer to NEMA ICS 1.1 (latest edition), “Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control” and to NEMA ICS 7.1 (latest
edition), “Safety Standards for Construction and Guide for Selection, Installation and Operation
of Adjustable-Speed Drive Systems” or their equivalent governing your particular location.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this equipment.
• Update	your	application	program	every	time	you	change	the	physical	hardware	configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

308 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

EIO0000002036 09/2014 309

SoMachine HVAC - UserInterface

1. OVERVIEW

UserInterface is a software application that allows the developer to create user interfaces
for embedded systems based on HMI runtime.
UserInterface is an easy to learn and use software, which allows the user to implement
graphical interfaces in a visual way. The realized pages are viewed in UserInterface as
they	will	appear	on	the	final	target.
Thanks to its multi-pages structure, UserInterface can support HMI (Human Machine In-
terface) applications with an arbitrary number of pages.
It is equipped with a considerable number of tools to realize even complex applications
and it interfaces directly to the PLC IEC1131 Application compiler for managing the vari-
ables	which	are	defined	in	the	target	PLC	application.
The following paragraphs show you the main features of this product.

1.1 MAIN ELEMENTS
Set of controls

Each	page	may	contain	an	arbitrary	number	of	defined	graphic	controls.	There	are	
two classes of graphic controls:
 ∙ Static	controls:	drawing	tools	such	as	lines,	rectangles,	and	figures.
 ∙ Dynamic controls: multilayered objects, which enable data and images display

and user interaction (strings, editboxes, textboxes, buttons, progress, charts and
trends, custom controls).

310 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

UserInterface is an open system, allowing the implementation of custom controls
which may be included in the target system.

Multi-pages structure

UserInterface	supports	the	definition	of	an	arbitrary	number	of	pages	(full-screen	or	
pop-up). Each page may contain links to other pages, so that the whole project takes
a tree structure.

Resources management

EIO0000002036 09/2014 311

SoMachine HVAC - UserInterface

The	controls’	properties	in	the	page	are	not	statically	defined	in	the	project	code,	but	
they can be managed separately as resources.
Resources include fonts for characters display, images, string table, enumerated data
types, and elements sets.
Specifically	regarding	the	images,	UserInterface	allows	to	import	bitmap	files	directly	
from	the	Windows-formatted	file	(.bmp, .gif, .emf, .jpg, .ico etc.).

Languages management

Strings and enumerated data types are structured as to ease the multilingual device;
moreover UserInterface provides a function to export/import the above mentioned
elements	to/from	a	text	file,	in	order	to	simplify	the	translation	from	a	language	to	
another.

Variables and procedures

UserInterface enables the implementation of procedures which may be as complex as
you want in the ST language. Through these procedures, the user can interact with
the UserInterface application, the PLC application or the target system variables to
customize the interface’s behaviour or the whole CNC.

312 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

1.2 RUN-TIME FUNCTIONALITIES
Asynchronous messages management(1)

UserInterface supports the issue of asynchronous messages whatever their complex-
ity. You can entirely customize the issue messages management by typing a simple
ST procedure.

Multilingual support
UserInterface allows you to change strings, resources, and enumerations language
without recompiling nor reloading the application.

Events management

UserInterface applications are structured in events; the user may seize the available
events and manage them through ST-coded procedures.

1.3 COMMUNICATING WITH THE TARGET

You can establish the communication with the target device through the PC communica-
tion drivers, thus using one of the available custom protocols (which can be easily imple-
mented thanks to the modular structure of the communication system).

EIO0000002036 09/2014 313

SoMachine HVAC - UserInterface

2. CREATING A SIMPLE USERINTERFACE PROJECT

2.1 PURPOSE OF THIS CHAPTER
This chapter aims to lead the user to realize a simple HMI project with UserInterface,
through a sequence of easy steps.
Here	below	you	can	find	the	list	of	this	chapter’s	topics.
 - Creating a new project: starting at zero the realization of a HMI project.
 - Inserting	the	first	page	in	the	project.
 - Inserting a secondary page.
 - Inserting static controls: how to insert simple objects (lines, rectangles, etc.) in a
page.

 - Inserting static images: how to insert an image in a page, starting at a .bmp file.
 - Inserting strings: how to insert a text label.
 - Inserting edit boxes: how to access the data of the system and the control PLC, how to
declare new variables, how to insert text frames to view/edit these data.

 - Inserting buttons: learning to use an essential control for the interaction between the
user and the system.

 - Compiling and downloading the project.

2.2 CREATING A NEW PROJECT
Launch UserInterface, then select the New Project command from the File menu. The
following dialog box appears.

Type the name you want to assign to the project in the Name field,	and	in	the	Directory
field	specify	the	directory	where	you	want	to	create	the	project	folder.	
Select the target which will execute the HMI from the Target selection menu. The
contents of this menu can be customized: if the desired target does not appear in the list,
refer to your hardware provider.
Confirm	your	choice	by	pressing	OK. UserInterface automatically creates the folder l:\
Demo manuale\Demo HMI	as	specified	in	Directory.

314 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.3 INSERTING THE FIRST PAGE IN THE PROJECT
2.3.1 CREATING A NEW PAGE

To insert a new page in the project, right-click on the Pages item of the project tree.

Select the Insert page option from the menu which has just shown up. This causes a
dialog box to appear where you have to specify the page name and whether the page is
a pop-up one or not.

If you do not select the Pop-up property when creating it, the page is called Child Page.
Its	main	feature	is	that	it	fits	the	whole	video	area.	Consequently	the	user	cannot	define	
position and size of a child page because they are automatically set depending on the
video area and on an eventual frame set (see paraghaph 4.2).
Choose to create a child page and call it Init: type the name Init	in	the	apposite	field	
and press OK to	 confirm	your	 choice.	A	new	node	appears	 in	 the	pages	 folder	of	 the	
project tree.

EIO0000002036 09/2014 315

SoMachine HVAC - UserInterface

Double-click on the Init item to open the document with this page preview(1), which is
blank at the moment.

2.3.2 EDITING THE COLORS OF THE PAGE

You can edit the background color of the page and the foreground default text color
through the page properties: double-click in the Background Color field.	A	little	button	
appears.

Pressing it, the colors palette appears(1). Then you can select the desired color.

Choose grey as background color and black as default text color(1).

316 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.4 INSERTING A SECONDARY PAGE
2.4.1 CREATING A SECONDARY PAGE

Let us assume that you want to create a secondary page: right-click on the Pages item of
the project tree and choose the Insert page option from the contextual menu. Type the
name Pag2 in the dialog box which appears and select the pop-up property.

Consequently a new item appears in the Pages folder of the project tree.

2.4.2 DIMENSIONING AND SETTING THE SECONDARY PAGE

Note that the icon of the Init page different from the new Pag2 one. In fact, the last one
has	been	created	as	pop-up	page,	whereas	the	first	one	has	been	created	as	child	page.
Pop-up pages are not subjected to any restriction from the frame set (see paragraph 4.2):
their dimensions and positions can be chosen by the user.
Assign to the secondary window the dimensions 300x180 pixel and set it (x, y) = (250,
150) because these are the top left-hand corner’s coordinates of the window. Double-click
on the Pag2 item of the project tree. In this way you open the corresponding document.
Assign dimensions and position.

EIO0000002036 09/2014 317

SoMachine HVAC - UserInterface

After editing the colors, too, the new window will look like the picture below(1).

The grey area in the centre is the active area of the Pag2 page, whereas the clearer area
which surrounds it represents the video area of the target system. In this way you obtain
a clear vision of the new page placement.

2.4.3 VIEWING THE TITLE BAR AND THE SYSTEM BUTTON

UserInterface enables the automatic creation of a title bar (Title bar properties = Yes)
and of a button to close the page (System menu properties = Yes), besides the print of a
text string as title (Caption properties).
Let us assume that you want to activate the title bar and the close button, and to print
the Pagina 2 string as title.

Then the secondary page looks like the following picture(1).

The text and the background color and the used font are the same for all the pages of the
project,	so	you	will	not	find	them	in	this	specific	page	properties.	In	order	to	customize	
these features, double-click on the Properties item of the project tree.

318 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

A multi-tabs window opens. In System options assign the font (in this case 8x16), the
text color and the background color (in this case respectively white and blue).

Then	the	secondary	page	looks	like	the	following	figure(1).

2.4.4 ASSIGNING A STYLE TO THE WINDOW

UserInterface supports three styles for the windows, which you can select through the
Appearance property: Flat (the default style when you create a window), Sunken and
Raised.
Choose the last one.

The window looks like the picture below(1).

EIO0000002036 09/2014 319

SoMachine HVAC - UserInterface

2.4.5 CHOOSING THE START WINDOW

The user has to indicate the start window of the whole HMI project. The start window will
open at the HMI application start. If the project consists in one single page, the system
will take this one as start page. You can indicate the start page in the project properties
window, which you can open by double-clicking on the Properties item of the project
tree. The General window is used for this purpose.

In	order	to	indicate	the	start	page,	select	the	desired	one	from	the	list.	Then	confirm	your	
choice by clicking OK.
The start page is marked in the project tree by a red triangle.

2.5 INSERTING STATIC CONTROLS
The	two	pages	which	you	have	just	created	are	blank	yet.	Go	back	to	the	first	page	(Init)
and start inserting some controls.
Static controls are objects which are drawn once, when opening the page, and they do not
change until the page is active.

320 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.5.1 INSERTING A LINE

Insert a line by clicking the corresponding button in the Page toolbar.

Move the mouse to the active area of the page. A cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	insertion	point	by	left-clicking.	A	new	Line control appears(1). It has a default
size and horizontal alignment.

You can resize it by dragging one of the two ends of the line(1).

You can edit the line thickness through the Thickness points property of the control. For
example, assign a 3 pixel thickness.

In the page preview you can see how the line looks like(1).

2.5.2 INSERTING A RECTANGLE IN THE PAGE

Press the corresponding button in the Page toolbar.

EIO0000002036 09/2014 321

SoMachine HVAC - UserInterface

Move the mouse to the active area of the page. A cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	insertion	point	by	left-clicking.	A	new	Rectangle control appears(1). It has a
default size.

You can edit both the dimensions dragging one of the rectangle vertexes, or one dimen-
sion at a time dragging one of the rectangle’s sides(1).

You can customize the border and the background color and the transparency through the
control properties. For example, make the rectangle white and opaque with white border
and thickness set to 1.

If the target has new feature of trasparency the properties are now like this.

In the page preview you can see how the rectangle looks like(1).

Now	superimpose	another	rectangle	to	the	first	one.	Let	us	assume	that	you	want	the	new	
rectangle to be transparent with black borders, and thickness set to 2.

322 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

If the target has new feature of trasparency the properties are now like this.

In the page preview you will see the following image.

2.6 INSERTING STATIC IMAGES
The following paragraph shows you how to insert static images in the page. Static images
are different from animations (images which may change dynamically, even though they
have	fixed	position	and	dimensions)	and	from	floating	images	(images	which	move	in	the	
page).

2.6.1 IMPORTING A BITMAP IN THE PROJECT

Image	that	has	to	be	visualized	must	be	available	on	PC	as	a	basic	Windows	image	file	
(.bmp, .dib, .emf, .gif, .ico, .jpg, .wmf ...). If this pre-condition holds, you can start
the importing procedure.
Right-click the Bitmaps item in the resources tree and select the Import bitmap com-
mand in the contextual menu which appears.

A dialog window opens.

EIO0000002036 09/2014 323

SoMachine HVAC - UserInterface

Pressing the Browse button, you can navigate in the computer resources and select the
source	file.	In	this	case,	the	source	file	is	BulbOn.jpg, which represents a lighted bulb(1).

In the Bitmap Name field,	you	can	assign	the	bitmap	name	which	will	appear	in	the	re-
sources	tree;	the	default	name	is	the	file	name	without	extension	and	preceded	by	the	
Bmp prefix.
The Transparency color field	 lets	you	specify	 the	transparency	color,	 that	 is	a	color	
which will not be really drawn but will let the elements appear through the bitmap back-
ground.
You can customize the transparency color by taking the desired one with the mouse from
the Converted bitmap window.
RGB indicate the transparency color components. If the values are n/a it means that no
transparency color has been selected. The Reset Transp. button lets to cancel the last
selected transparency color.
At	last	you	can	confirm	the	operation	by	clicking	the	Import button. The imported bitmap
appears as a new item in the resources tree.

324 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.6.2 ASSOCIATING AN IMPORTED BITMAP WITH AN IMAGE
CONTROL

The control which is aimed to display the static images is called Image: press the corre-
sponding button in the Page toolbar.

Move the mouse to the active area of the page. A cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	insertion	point	by	left-clicking.	A	new	blank	frame	appears(1).

Trough the Bitmap property specify the image which this Image control must display.
Choose the desired bitmap from the list; in this case, you can see and select the only
bitmap which you have imported: BmpBulbOn.

The control changes its size to be compatible with the assigned bitmap measures. The
image in the page preview looks like the following picture(1).

EIO0000002036 09/2014 325

SoMachine HVAC - UserInterface

2.7 TEXT STRINGS
Text strings are not part of static controls because they have some properties which let
them change in a page through time. Visibility, selection, and refresh may be assigned to
variables, which may change their value at any time.

2.7.1 INSERTING A TEXT STRING

Click the corresponding button in the Page toolbar.

Move the mouse to the active area of the page. A cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	insertion	point	by	left	clicking.	A	new	Static (that is string) control with the
default text str appears(1).

You can edit the contents of the string through the Text property of the control. For ex-
ample, Text string.

The page preview looks like the image below.

This is the basic use of the string. Alternatively you can assign strings by taking them
from the resources (see paragraph 4.9.3).

2.8 DATA MANAGEMENT IN USERINTERFACE
This paragraph shows you the variables management in UserInterface. It is possible to
distinguish the data in local variables (visible in the page scope only) and global variables
(visible from every page). For some controls it is possible to use parameters and sets.

326 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.8.1 DECLARING A LOCAL VARIABLE

First	of	all	declare	a	local	variable,	which	you	can	use	just	in	the	specific	page	where	the	
declaration takes place.
In the pages tree, under the Init page item, right-click on the Local variables item
and select Open in the contextual menu which appears.

The local variables editor window opens. It is blank at present.
Click the New record button in the Project toolbar.

A dialog window opens requesting to specify the new variable’s basic features. We can
declare n as a new 16 bit unsigned integer variable.

Confirm	the	operation	by	clicking	Ok. The new corresponding record is added to the vari-
ables editor.

You	can	change	this	new	variable’s	 features	editing	 the	fields	of	 the	record	which	you	
have just created. For example, you may assign an initial value different from null and a
comment.

EIO0000002036 09/2014 327

SoMachine HVAC - UserInterface

When you save the project by clicking the apposite button

or when you close the variables editor, UserInterface adds a new item in the pages tree.
It corresponds to the local variable which you have just declared.

2.8.2 DECLARING A GLOBAL VARIABLE

Let	us	assume	that	you	want	to	declare	a	floating	point	global	variable	t: right-click on
the Variables item under the Global variables node of the resources tree and select
the Open command in the contextual menu which appears.

Follow the steps as shown in paragraph 2.8.1, until the new global variable appears as a
new item in the pages tree.

2.8.3 IMPORTING THE PLC VARIABLES IN THE USERINTERFACE
PROJECT

Usually an HMI project is not a stand-alone one, but is an interface for a PLC. More pre-
cisely, if the PLC project has been carried out with Application, you can easily publish
some variables to UserInterface.

328 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

A variable of the Application project can be exported to UserInterface if it has been al-
located on a datablock (it is not an automatic variable). If this pre-condition holds, when
compiling the PLC, the program automatically creates an .exp	file,	which	contains	a	list	
of the exported variables with their location in the datablocks, which the UserInterface
program can work out.
In order to import in UserInterface the variables which have been exported from the PLC
Application project, you have to select the Link PLC variables file… from the Project
menu.
A	window	opens	and	lets	you	select	the	file	which	contains	the	exported	variables.
If	you	confirm	to	include	the	.exp	file	in	the	UserInterface	project,	a	new	table	called	PLC
vars appears in the libraries window. It contains the list of the exported variables.

When you need to update the list of the exported variables, if the .exp	file	has	not	been	
moved to another directory, it is not necessary to repeat the above mentioned procedure.
It is enough to launch the Refresh PLC variables command from the Project menu.

2.8.4 INSERTING FIELD PARAMETERS

Target	system	usually	has	internal	variables	and	is	connected	on	a	fieldbus,	so	it	needs	to	
show some variables of the different devices which are connected on the net.
For	this	reason,	UserInterface	lets	you	link	a	specific	file	which	contains	the	variables	defi-
nition on the bus. Click the apposite button in the toolbar.

The parameters management window appears.

Through the Add Device button you can add a new object linked to the target on the
fieldbus.
The selection window appears. Then you have to take from your PC a .parx	file	 (see	

EIO0000002036 09/2014 329

SoMachine HVAC - UserInterface

chapter	7).	After	inserting	this	file,	the	parameters	management	window	will	look	like	the	
image below.

A device called Frigo has been inserted. In order to see the relevant parameters, click
the Close button.
In the Window target vars and parameters you will see the device and its param-
eters.

When you need to update the list of parameters, if the .parx	file	has	not	been	moved	to	
another directory, it is not necessary to repeat the above mentioned procedure, but it is
enough to press the button

2.9 INSERTING EDIT BOX
An edit box is a text frame which lets you display and eventually edit an associated vari-
able or parameter.

2.9.1 INSERTING AN EDIT BOX IN THE PAGE

Insert an Edit box control in the page by pressing the corresponding button in the Page
toolbar.

Move the mouse to the active area of the page. A cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	 insertion	point	by	 left-clicking.	A	new	text	frame	appears(1). It consists by

330 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

default	in	a	certain	number	of	characters	and	its	font	is	specified	in	the	Font property of
the page.

Edit this control’s properties as you can see below(1).

In	the	following	list	you	can	find	all	the	changes	which	may	be	carried	out:
 - Appearance: you can make the edit box appearance “sunken” by assigning the Sunken
property.

 - Font: you can customize font by choosing, for example, a 16x32 font instead of the
default 8x16 font.

 - Select background and Select Foreground: respectively text and background colors
when the edit box is selected.

 - Number of Chars: maximum number of characters which can be displayed.
 - Access: in order to set the read-only mode, replace RW (read-write) with RO (read-
only).

 - Refresh: in order to constantly update the contents of the edit box, select the TRUE
option.	Otherwise,	the	contents	are	refreshed	just	when	drawing	the	page	for	the	first	
time.

 - Label: if the target has a touchscreen display, shows keyboard and has this feature
enabled, it is possible to add this text/’string resource’ as header of keyboard.

EIO0000002036 09/2014 331

SoMachine HVAC - UserInterface

 - Format: it represents the display format of the associated variable’s value. The format
value can be inserted only if a variable is just available. It opens a dialog window with
these settings according to the type of variable (integer, real, string).

 ∙ Integers: number of digit before comma
 ∙ Decimals: number of digit after comma
 ∙ Hexadecimal Uppercase: the number is shown as 0...0H representation with up-

percase H letter
 ∙ Hexadecimal Lowercase: the number is shown as 0...0h representation with low-

ercase h letter
 ∙ Fill with zeros:	fill	the	entire	editbox	controls	with	0	where	there	are	not	num-

bers
 ∙ View always sign: show the +/- symbol in editbox
 ∙ Password: show only * symbols
 ∙ Target custom format:	the	target	can	define	custom	format	to	show	the	data	in	

a particular way. In that case there is a variable on the target with the value of the
corresponding user mode.

 ∙ Enumerative: this representation allows to select a string value corresponding to
numeric	value	defined	in	Resources, under Enumeratives.

332 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

 ∙ Integers: number of digit before comma
 ∙ Decimals: number of digit after comma
 ∙ Fill with zeros:	fill	 the	entire	editbox	controls	with	0	whrere	 there	are	not	

numbers
 ∙ View always sign: show the +/- symbol in editbox
 ∙ Password: show only * symbols
 ∙ Target custom format:	the	target	can	define	custom	format	to	show	the	data	in	

a particular way. In that case there is a variable on the target with the value of the
corresponding user mode.

 ∙ Password: show only * symbols.
The Target custom format is a special feature which enables a particular custom for-
mat implemented on the target.
The	format	is	specified	according	with	language	printf syntax (see paragraph 5.7.2).

2.9.2 EDIT BOX AND USERINTERFACE LOCAL VARIABLE
ASSOCIATION

The edit box which you have just inserted lacks an essential element: the associated
variable to take the values to display from. Let us assume that you want to link the edit
box to a local variable (in order to get information on how to declare a local variable, see
paragraph 2.8.1).
Select the edit box by clicking it once and select the Variable property.
You	can	either	type	the	name	of	the	variable	or	click	on	the	field	and	open	the	dialog	win-
dow by clicking on the apposite button.

EIO0000002036 09/2014 333

SoMachine HVAC - UserInterface

You can restrict the research just to the local variables of the Init page (consequently
only the n variable) by using the Filter tool.

Select the local variable. The Variable	field	in	the	table	properties	refreshes	accordantly.

Then the Edit box control shows the n local variable’s value constantly refreshed.

2.9.3 EDIT BOX AND USERINTERFACE GLOBAL VARIABLE
ASSOCIATION

The principle to associate the Edit box control with a global variable is similar to the one
to associate the Edit box control with a local variable. The difference consists in the
variable declaration (in order to get information on how to declare a global variable, see
paragraph 2.8.2).

334 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

You can associate the Edit box with the global variable through the dialog window which
was introduced in the preceding paragraph, but in this case it is necessary to use a differ-
ent	filter	in	the	Filter	field.

2.9.4 LINKING AN EDIT BOX WITH A TARGET (OR SYSTEM) VARIABLE

The target system executing PLC and HMI often publishes some variables which allow the
interaction between user interface and system. In UserInterface, such variables are called
target variables. You can view them in the Target vars table of the Target Vars and
Parameters window.

You can associate an Edit box with a target variable through the dialog window which
opens from the Variable	field,	but	in	this	case	it	is	necessary	to	use	a	different	filter	in	
the Filter field.

EIO0000002036 09/2014 335

SoMachine HVAC - UserInterface

2.9.5 LINKING AN EDIT BOX WITH A PLC APPLICATION VARIABLE

You can associate an Edit box with a PLC Application variable through the dialog window
which opens from the Assoc var	field	(see	paragraph	2.9.2),	but	in	this	case	it	is	neces-
sary	to	use	a	different	filter	in	the	Filter field.

2.9.6 LINKING AN EDIT BOX TO A PARAMETER

You can associate an Edit box with a parameter through the dialog window which opens
from the Variable	field	(see	paragraph	2.9.2),	but	in	this	case	it	is	necessary	to	use	a	
different	filter	in	the	Filter field.

336 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

The name of parameters is composed of @device.variable name, differently from vari-
ables which show just their name.
The parameter may be inserted in the apposite controls property in the following forms:
 - explicit form = @d.oi.os:type: d = numerical ID of the device, oi = object index,
os = object subindex type= PLC type (e. g. @1.2010.0:UINT);

 - implicit form = @dev.name: dev =	symbolic	identifier	of	the	device,	name = symbolic
name of the parameter (e. g. Frigo.AIL1).

The d	(ID)	field	of	the	device	is	a	numerical	or	symbolic	identifier	(to	be	defined	at	project	
creation).	It	refers	to	a	specific	device	which	may	be	local	(the	device	which	executes	the	
pages	itself)	or	on	the	fieldbus.
The dev	field	is	a	symbolic	identifier	of	a	device	whose	numerical	ID	can	be	retrieved	by	
UserInterface.

2.9.7 LINKING AN EDIT BOX TO A VARIABLE BY DRAGGING AND
DROPPING

You may add variables and parameters to the Target vars and parameters window by
dragging	and	dropping	them	in	the	page.	UserInterface	will	request	to	define	the	type	of	
control to insert, to associate it with the variable.

EIO0000002036 09/2014 337

SoMachine HVAC - UserInterface

2.10 INSERTING BUTTONS
Buttons are very versatile controls which play an essential role in the interaction between
user and system, particularly in case of touchscreen systems without keyboard.
This chapter’s aim is to show four kinds of use of the button control:
 - LED-button to view the state of a boolean variable;
 - command button of a boolean variable’s state;
 - opening button of a secondary page;
 - activation button to start the execution of a customized procedure.

2.10.1 INSERTING A LED-BUTTON

The following paragraph teaches you how to use a button which shows an associated
boolean variable’s state.
Insert a new button in the page by pressing the corresponding button in the Page tool-
bar.

Move the mouse in the active area of the page; a cross + appears. The object will be in-
serted in the grid near to the mouse cursor.
Confirm	the	insertion	point	by	left-clicking.	A	new	Button control appears. It has a default
size.

338 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

You may edit both the dimensions by dragging one of the button’s vertexes or one dimen-
sion at a time by dragging one of the button’s sides.

The Border color and the Background Color properties determine the border and the
background color when the button is inactive, whereas the Selection Border and Se-
lection Background properties	define	the	border	and	the	background	color	when	the	
button is selected(1).

The Selection variable property determines the state of the button and, consequently,
the couple of colors related to the control. This property may be associated either with
a constant value (FALSE = the control is always inactive, TRUE = the control is always
selected, on PRESS = the control is automatically selected when the user presses the but-
ton) or with a boolean variable whose value determines dynamically the selection state.
Declare a boolean global variable b and associate it with the control button as selection
variable.

You may customize the button appearance through the Appearance property. For exam-
ple, choose the Sunken option(1).

EIO0000002036 09/2014 339

SoMachine HVAC - UserInterface

2.10.2 INSERTING A BOOLEAN VARIABLE COMMAND BUTTON

Insert a new button in the page by following the aforesaid instructions (see paragraph
2.10.1). Set it beside the LED button and let a text string show on it by means of the Text
property.

The preview looks like as follows(1).

The Press variable property allows the user to associate a boolean variable with a but-
ton control. The boolean variable’s value corresponds to the pressure state of the button.

340 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

For example, associate the button which you have just created with the global variable b
which has been created paragraph 2.10.1.

At runtime, the LED-button (see paragraph 2.10.1) will be red when pressing the Press
button. Otherwise it will be green.

2.10.3 INSERTING A BUTTON TO OPEN A CHILD PAGE

Paragraph 2.4.1 showed you how to create a pop-up page.
The following paragraph explains how to invoke the Pag2 page from the Init page by
pressing a button.
First of all insert a new button in Init and set it under the previously created Press but-
ton (see paragraph 2.10.2). As it should be exactly alike the previous one except the text
string and the function, you can copy and paste the Press button and afterwards custom-
ize its properties.
Select the Press button by clicking once: the selection rectangle appears inside the con-
trol(1).

Press successively Ctrl+C and Ctrl+V. A cross + appears. The object will be inserted in
the grid near the mouse pointer.
Confirm	the	insertion	point	by	clicking	under	Press. A copy of the control appears(1); it is
the same as the source button except its position and name.

EIO0000002036 09/2014 341

SoMachine HVAC - UserInterface

You can access this new control’s properties and customize them according to the relative
purpose(1).

The preview looks like this(1).

The button control has got a very important attribute, which has not been represented
in the properties grid above: the Action attribute allows the user to associate an action
with the button pressure. Some actions require an additional parameter which you may
specify in the Action par	field.	
In this case let us assume that you want that the pressure of the Open button opens the
Pag2 page. To obtain this select the OpenPage action in the Action field;	then	type	the	
name of the child page Pag2 in the Action par	field.	

342 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.10.4 INSERTING A BUTTON AIMED AT LAUNCHING A PROCEDURE OF
THE USER

UserInterface enables the user to implement some procedures (see paragraph 4.8.4)
through which it is possible to customize the HMI behaviour: this feature makes User-
Interface projects very versatile.
Let us suppose that you want to create a procedure to increment the local variable n of
the Init page. As this procedure applies on a local variable, it will be local in the Init
page, too.
First of all create the procedure: expand the Init page tree, right-click on the Local
prcedures item and select the Insert procedure command in the contextual menu
which appears.

A little dialog window opens. The user is then required to type the new procedure’s name.
In this case, it may be prcIncrem.

Press the OK button. Then UserInterface adds a new item in the page tree: it corresponds
to the local variable which has been just declared.

EIO0000002036 09/2014 343

SoMachine HVAC - UserInterface

Double-click on the above mentioned new item: the ST language editor opens and lets
you either implement or edit the selected procedure’s code.
Write a procedure that applies a unit increment to the n variable.

Then close the document.
Insert a new button beside the edit box associated with the n variable and type the char-
acter + in the Text property(1).

Let us suppose that you want to execute the prcIncrem procedure by clicking the + but-
ton: select the Call action in the Action field	and	type	the	procedure’s	name	in	the	Ac-
tion par	field.	

Every time the user will press the + button when executing the HMI, n will increase by one
and the edit box will show the up-to-date value.

2.11 VISIBILITY AND UPDATING OF CONTROLS
As stated in the previous paragraphs, each control has its own properties which the user
may	customize	through	the	properties	table	fields.
Some	of	these	features	are	specifically	related	to	a	single	type	of	control.	Others	may	be	
included in the properties set of different objects. The following paragraphs concern two
important properties which are common to some kinds of control.

2.11.1 THE VISIBILITY PROPERTY

Almost all of controls are endowed with the Visibility property, which determines
whether the object is visible or not. This property can be associated either with a constant
value (FALSE = the control is always hidden, TRUE = the control is always shown) or a
boolean variable, whose value dynamically establishes the visibility state.
By following the instructions in paragraph 2.7.1 you have inserted the string: Stringa di
testo in the Init page. At present this string is always visible, as you can deduce from
the assigned value to its Visibility property.

344 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Let us assume that you want to assign this control’s visibility to the local variable n, which
is displayed in the edit box created in paragraph 2.9.2 and managed by the prcIncrem
procedure, which was implemented in paragraph 2.10.4 and started up by the + but-
ton. More precisely, let us suppose that you want the text string visible when n is even,
whereas hidden when n is odd.
To this purpose, it is necessary to declare a new boolean local variable which indicates
whether at present n is even.

Then it is necessary to edit the prcIncrem procedure so that, when it refreshes the n
value, it evaluates again whether it is even or odd. In order to access the prcIncrem
source code, select the corresponding item in the project tree by right-clicking. After-
wards, choose Open from the contextual menu which appears.

The ST language editor opens and the procedure’s code may be extended as follows.

In order to associate the string’s visibility state with the even boolean variable, select the
text string and click the Visibility field:	a	button	appears.	

EIO0000002036 09/2014 345

SoMachine HVAC - UserInterface

After clicking it, a dialog box opens. Select the radio button Variable, which enables
the	overhead	variables	list;	change	the	filter	Filter into Page locals and select the only
local boolean variable that is even.

Confirm	your	choice	by	clicking	OK. The result is the following.

2.11.2 THE REFRESH PROPERTY

When available, the Refresh property determines it the associated object has to be
drawn once (when opening the page or coming back from a child page) or it needs to be
constantly refreshed.
This property distinguishes, for example, the edit box and the text box.
With regard to the edit box, the refresh property has to be set when compiling and it can-
not be edited at runtime. If you assign Refresh = TRUE, the associated variable’s value
is constantly read and refreshed, otherwise (Refresh = FALSE) the value is read and
refreshed only when you open the page or when you come back from a child page.
There is another option about text boxes: you can associate a boolean variable that is
used as trigger for refresh: when the trigger variable becomes TRUE, the control’s con-
tents are refreshed then it is automatically reset by UserInterface to FALSE.

2.12 COMPILING AND DOWNLOADING THE PROJECT ON THE
TARGET
The following paragraph shows you how to compile and download a HMI project on the
target board that runs UserInterface.

346 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

2.12.1 CONNECTING TO THE TARGET

Launch the Communication settings command from the Project menu. This causes
the following dialog window to open.

The user is required to select a suitable communication protocol from the left column and
to activate it by pressing the Activate button.
Then the Properties button becomes active: by clicking it the user accesses another
dialog	window	which	is	different	in	accordance	with	the	specific	selected	control	and	lets	
set the protocol’s parameters. Let us consider the following example.

2.12.2 COMPILING PAGES FOR THE TARGET

You can start compiling the HMI project by clicking the corresponding button in the User-
Interface’s Project toolbar.

Compilation	is	composed	of	two	phases:	the	first	one	consists	in	the	PLC	code	generation	
which realizes the pages as they have been planned in UserInterface. The program shows
in the Output window the progress level of the compilation and displays eventual errors.

EIO0000002036 09/2014 347

SoMachine HVAC - UserInterface

The second one consists in the compilation of the PLC code which has been generated
during	the	first	phase.	It	can	be	started	only	 if	 the	first	phase	has	been	accomplished	
without any error.
This process is carried out by an external tool: the PLC command-line compiler llc, which
UserInterface automatically invokes with the suitable parameters.

2.12.3 DOWNLOADING AND EXECUTING THE COMPILED PAGES ON THE
TARGET

At the end of the compilation, if all the phases have been successfully accomplished, you
will see the downloading button become active in the Project toolbar

Clicking it, you activate again the PLC command-line compiler llc, which this time just
downloads the compiled code in the target.
The downloading permission management depends on the implementation of the on board
firmware.	Consequently	it	changes	according	to	the	destination	target	of	the	download.	

2.12.4 SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the
execution of the HMI application with UserInterface’s integrated simulation environment:
Simulation.
In order to start the simulation, just click on the appropriate item on the Project toolbar.

Refer to Simulation’s manual to gain information on how to control the simulation.

348 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

EIO0000002036 09/2014 349

SoMachine HVAC - UserInterface

3. USERINTERFACE LAYOUT

The following picture shows you the layout and the essential elements of UserInterface.

3.1 PROJECT WINDOW
This window includes two pages which are alternatively selectable by pressing the cor-
responding tab:
 - Project: it shows the project tree and all the objects the project is composed of, hierar-
chically arranged. The pages node contains the project properties and the single pages.
Each page contains the list of the local variables (visible and usable only in the page
where they are declared) and the local procedures, which can be invoked only from the
page where they are implemented. Moreover there is the node of the asynchronous
messages, the node of the global variables (visible and usable from whatever page) and
the node of the global procedures which you can invoke from whatever page.

 - Resources: it shows the project resources, that is fonts, bitmaps, strings table, enumer-
ated data types, images lists, and sets.

Target variables and parameters Output window Key-action
associations

Templates

Project window Toolbar Pages editor Selected control’s properties

350 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

3.2 EMBEDDED EDITORS
UserInterface is endowed with three types of editor:
 - Pages editor: in order to open this editor, double-click the name of the desired page in
the project tree (see paragraph 3.1). This tool shows you a page preview and lets you
edit it: you may either add or remove controls (see paragraph 4.4), customize proper-
ties, manage the events and the documentation.

 - Variables editor: by double-clicking on a local or global variable in the project tree, you
can see respectively the declaration table of the local variables or the global variable
table.

 - Procedures editor: it allows the user in implementing procedures to be associated to
the	events	which	are	defined	for	the	various	project’s	objects	(pages	and	controls)	or	
generated from the user himself (see paragraph 4.8).

3.3 PROPERTIES WINDOW
Each time you select an object in the pages editor, the properties window automatically
refreshes and shows the selected object’s properties and events.
This window is composed of many pages which you may select alternatively by pressing
the corresponding tag above.
 - Properties: it shows a table including the selected object’s properties either it is a whole
page or it is a page’s control. The user is enabled to customize this values through the
right-hand column of the table.

 - Events: it shows a table including the typical events of the currently selected object.
The user may associate either a local or variable procedure with each event by typing
its name on the corresponding row of the event in the right-hand column.

 - Doc: it displays a table which shows the Description field	of	the	currently	selected	
object. The user may describe the object and this description will be included in the
automatic documentation management (see paragraph 4.10).

3.4 TOOLBARS
The user can give commands to UserInterface through some useful toolbars. A toolbar
can	be	defined	as	a	collection	of	buttons	which	you	may	enable	by	left-clicking	them	and	
whose functions are intuitively represented by their icons.
The toolbars support tooltips, too. A tooltip is a small text frame containing a short de-
scription of the object which UserInterface automatically displays when you hover with
the mouse over a button.
UserInterface is endowed with three essential toolbars:
 - Main toolbar: it contains the commands to open and save the project, to cancel/restore
the last changes, to print, to display or close other toolbars.

 - Project toolbar: it allows you to add new elements to the project as variables, pages,
events, actions, as well as to enable or prevent the simulation mode and to compile and
download the whole project.

 - Page toolbar: it allows you to choose a new type of control to be inserted in the active
page, to align or equally space several controls, or to set the vertical order of the ele-
ments on the page.

EIO0000002036 09/2014 351

SoMachine HVAC - UserInterface

3.5 THE OUTPUT WINDOW
UserInterface prints in this window some messages which indicate the progress and the
output of the requested processes: opening and compilation of a project, resources im-
porting/exporting, etc..

3.6 TARGET VARIABLES AND PARAMETERS
This window shows the list of external variables, available for UserInterface coding.
The window is composed of several pages which you may alternatively select by pressing
the	corresponding	tab.	One	page	contains	the	list	of	the	available	variables	(file	.tgt),
another page contains the list of the variables which have been exported from the PLC
Application	(file	.exp). Other pages are optional, as many as the number of devices with
external parameters linked to the project.

3.7 TABLE OF KEYS-ACTIONS ASSOCIATIONS
This table takes primary importance in case of traditional keyboards without touchscreen
where the user interact with the system by pressing the relevant keys.
See in paragraph 4.8.5 the list of actions which may be associated to keys.

352 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

EIO0000002036 09/2014 353

SoMachine HVAC - UserInterface

4. HMI PROJECT IN USERINTERFACE

UserInterface	manages	the	creation	(development)	of	pages	for	a	specific	application	as	
projects.
The UserInterface project is composed of several pages where the user may arbitrarily
arrange the controls.
In each UserInterface project you have to specify the start page which will be displayed at
the start of the system. Other pages will have at least a parent page from which they will
be invoked and may have child page to invoke. The invoking/invoked relations implicitly
give to the whole project a tree structure.

4.1 PROJECT PROPERTIES
In the project tree, click the Pages item and access the Properties item. By double-
clicking the Properties item you open a dialog window which is composed of four pages.
The following paragraphs show you the features of these pages.

4.1.1 GENERAL

It allows to select the UserInterface project’s start page among the implemented pages.
The Page Model feature allows to select the type of page model in case of a page calls
another page. If the model is hierarchical then a child page cannot recall a parent page.
Instead	if	the	model	is	flat	all	the	pages	can	call	the	others	without	limitations.

354 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

4.1.2 SYSTEM OPTIONS

It allows the user to customize the window’s title bar features: the font, the text color and
the background color.

4.1.3 LANGUAGE SELECTION

It allows you to add, remove, export, import, and select the resources languages (see
paragraph 4.9). The label: sysLangID Value indicates the value which the sysLangID
target variables must take to display the pages in the selected language.
In order to add a language, apply the following procedure.

EIO0000002036 09/2014 355

SoMachine HVAC - UserInterface

First of all export the language supported by the translator, choose Italian and press the
export...button, which opens a window requiring the destination folder for the selected
language	file.

The	program	suggests	a	file	name:	Res + project title+’_’	+	first	three	characters	of	the	
language + extension.txt.	At	the	end	of	the	exportation	the	file	is	composed	of	all	the	
project’s resources which have to be translated:
 - strings
 - enumeratives
Translate	the	file	and	replace	the	text	under	the	Language tag with the one of the new
language (for example, in this case change it into Chinese). In the Language selection
panel choose the Import...	button,	then	select	the	suitable	file	in	the	PC.	
The new language appears in the list.

356 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

4.1.4 GLOBAL PERIODIC PROCEDURE

Global on timer allows you to specify the name of a global procedure to be periodically
and independently executed on the active page. Such a procedure may be effectively used
to constantly test one or more PLC variables and to emit alarm messages, for example
through asynchronous messages (see paragraph 4.3.4).

4.2 FRAME SET

UserInterface	allows	to	define	areas	which	are	called	frames	and	are	placed	on	the	sides	
of the screen and are always active(1).
The user may set these frames’ dimensions and insert some controls which are active
whatever the currently loaded page. Consequently frames are useful to host the objects
which have to appear in the whole project. In this way the user does not need to duplicate
them in each page.
As regards to the above, there are two exceptions: the pop-up pages (see paragraph
4.3.3) when the Modal property is set to Yes and all the asynchronous messages. When
these pages are active, the controls of the frame set are automatically disabled.

EIO0000002036 09/2014 357

SoMachine HVAC - UserInterface

4.3 PAGES
4.3.1 NAVIGATING BETWEEN PAGES

UserInterface	manages	pages	development	for	a	specific	application	as	projects.	
UserInterface project is composed of pages where the user can arbitrarily arrange con-
trols.
In	each	UserInterface	project	it	is	necessary	to	define	a	start	page	which	will	be	viewed	
at system startup. Other pages must have at least a parent page from which they are
invoked and may have child page to invoke. The invoking-invoked relations of the pages
give the whole project, even though in an implicit way, a multi-node tree structure.
A child page may be invoked in two ways:
 - Through an action associated to a key: associate an OpenPage action with a physical
key (if there is a keyboard) or with a virtual key (whose pressure is an event raised by
software);

 - Through an action associated with a button: insert in the parent page a Button control
(see paragraph 4.4.7) and specify in the Action property that by pressing it the child
page opens.

4.3.2 CHILD PAGES

Let us assume that you want to add a page to a project(1).
UserInterface displays a dialog window which requests to insert the name you intend to
assign to the new page. This dialog window contains a checkbox with the label: Pop-up.
If you do not select it, the new page will be a child one.

358 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

A	child	page	fits	the	whole	screen	or,	alternatively	if	there	are	defined	frames	(see	para-
graph	4.2),	it	fits	the	free	remaining	area.	Consequently,	the	user	cannot	define	position	
and dimensions of a child page as they are automatically set according to the screen and
the frame set.

4.3.3 POP-UP PAGES

When creating a new page, if the user selects the aforesaid checkbox with the Pop-up
label, the new page will be a pop-up one(1).
There are no restrictions about position and dimension. In fact the user may superimpose
a pop-up page on the frames: when activating this page, if it is not modal (property:
Modal), the controls superimposed on the open page will be disabled; otherwise, all the
controls will be inactive.

4.3.4 ASYNCHRONOUS MESSAGES

Asynchronous messages are similar to standard pages, except the following features:
 - They	have	an	additional	property,	that	is	the	identifier	of	the	associated	message	(Msg
ID).

 - They cannot contain invocations to child pages.
 - They	have	no	defined	parent	page	nor	a	tree	structure	(see	Introduction	4),	but	they	
can be invoked from any other standard page.

An asynchronous message cannot be explicitly invoked; the system displays it whatever
the active page when it intercepts a message containing the corresponding Msg ID. This
message	may	be	launched	either	by	the	firmware	or	by	a	procedure	through	the		Video_
SendMessage function (see paragraph 8.1.8) by using the following syntax:
Video_SendEvent(kWM_MSG, Msg ID);

EIO0000002036 09/2014 359

SoMachine HVAC - UserInterface

4.4 CONTROLS
A control is a display element which is contained in a page. The following paragraphs
shows you the controls which UserInterface supports.

4.4.1 STATIC

It	displays	a	fixed	string,	whose	contents	cannot	be	edited	when	executing.	In	fact,	you	
should specify the text of the string directly or by the association of the ID of a string de-
fined	as	resource	to	support	multi	language	management.	For	project	resources	and	multi	
language support see paragraph 4.9.
In order to insert a Static control, press the corresponding button in the Page tool-
bar.

Then click the point where you want to insert the control.
You can get information on properties and events of the Static control in paragraph
5.4.

4.4.2 GRAPHIC ELEMENT

It displays a static line or rectangle. This means that their properties cannot be edited
when executing.
In order to insert a Line control, press the corresponding button in the Page toolbar.

Then click the point where you want to insert the control.
In order to insert a Rectangle, press the corresponding button in the Page toolbar.

Then click the point where you want to insert the control.
You can get information on properties and events of the Line and Rectangle controls in
paragraphs 5.5-5.6.

4.4.3 EDIT BOX

It displays the contents of an associated variable.
In order to insert an Edit box, click the corresponding button in the Page toolbar.

Then either click the point where you want to insert the control or drag a variable from
the project tree or from the library window.
You can get information on properties and events of the Edit box control in paragraph
5.7.

360 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

4.4.4 TEXT BOX

It displays the contents of an associated string variable. It supports the formatting on
several lines of the text which is contained in the string.
To insert a Text box control in the page, press the corresponding button in the Page
toolbar.

Then either click the point where you want to insert the control or drag a variable from
the project tree or the library window.
You can get information on properties and events of the Text box control in paragraph
5.8.

4.4.5 IMAGE

It displays a bitmap image.
In order to insert an Image press the corresponding button in the Page toolbar

Then click the point where you want to insert the control.
You can get information on properties and events of the Image control in paragraph 5.9.

4.4.6 ANIMATION

It displays a bitmap image which you select from a list of images depending on the value
of an associated selection variable.
In order to insert an Animation press the corresponding button in the Page toolbar.

Then click the point where you want to insert the control.
You can get information on properties and events of the Animation control in paragraph
5.10.

4.4.7 BUTTON

You may use the Button control either to check a boolean variable’s state or (press=
TRUE, release = FALSE) or to send a command to the system.
In order to insert a Button press the corresponding button in the Page toolbar.

Then either click the point where you want to insert the control or drag a boolean variable
from the project tree or the library window.
You can get information on properties and events of the Button control in paragraph
5.11.

EIO0000002036 09/2014 361

SoMachine HVAC - UserInterface

4.4.8 CHART

Chart control draws the static diagram of one or more arrays of values associated.
In order to insert a Chart control, click the corresponding button in the Page toolbar.

Then click the point where you want to place the control.
You can get information on properties and events of the Chart control in paragraph
5.14.

4.4.9 TREND

After assigning up to 8 numerical variables, the object will automatically and periodically
(once	every	a	defined	time)	acquire	their	values	and	will	draw	the	corresponding	graphic	
in a dynamic and automatic way.
In order to insert a Trend control press the corresponding button Page toolbar.

Then click the point where you want to insert the control.
You can get information on properties and events of the Trend control in paragraph
5.15.

4.4.10 PROGRESS BAR

It represents the progress of an operation by showing a stained bar in a horizontal or
vertical rectangle. The length of the bar, related to the bar’s lenght, shows the percentage
of the completed operation.
In order to insert a Progress bar control press the corresponding button in the Page
toolbar.

Then click the point where you want to place the control.
You can get information on properties and events of the Progress bar control in para-
graph 5.12.

4.4.11 COMBO BOX

Shows a list of strings connected to a variable with an enumerator element. In order to
insert a Combobox, click the corresponding button in the Page toolbar.

Then either click the point where you want to insert the control or drag a variable from the
project tree or from the library window. You can get information on properties and events
of the Combobox control in paragraph 5.16.

4.4.12 CHECKBOX

Displays	a	check	box	that	allows	the	user	to	select	a	true	or	false	condition	indetified	by	
a variable.

362 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

In order to insert an Checkbox, click the corresponding button in the Page toolbar.

Then either click the point where you want to insert the control or drag a variable from the
project tree or from the library window. You can get information on properties and events
of the Checkbox control in paragraph 5.17.

4.4.13 CUSTOM CONTROL

This	control	is	implemented	in	the	firmware.	You	can	have	several	types	of	custom	con-
trols which are marked by the Control ID property and each type of control may have
several instances.
In order to insert a Custom control, press the corresponding button in the Page tool-
bar.

Then click the point where you want to insert the control.
You can get information on properties and events of the Custom control in paragraph
5.13.

4.5 VARIABLES
In a UserInterface project there are different classes of variables. The following para-
graphs show you their features.

4.5.1 LOCAL VARIABLES

EIO0000002036 09/2014 363

SoMachine HVAC - UserInterface

Local variables are variables of the UserInterface project. You can access them only
through the page they were declared from.
They are listed in the project tree, under the Local variables folder. Local variables can
be used to carry out operations on PLC (for example to apply a different scale or to add
an offset) or system variables or to implement local procedures.

4.5.2 GLOBAL VARIABLES

Global variables are declared in UserInterface and they are accessible from every page of
the project. Global variables are listed in the Global variables folder in the project tree.
The function of the global variables is similar to the local variable’s one but the different
visibility scope makes them unusable for the implementation of global procedures or for
the parameters passing between distinct pages.

4.5.3 VARIABLES IMPORTED FROM PLC

A compiled UserInterface project consists in a PLC that, once downloaded on the target
board, is executed by the actual PLC., which is implemented with Application. Variables
exported from the Application PLC contained in the .exp	file	enable	the	interaction	be-
tween these two distinct components. PLC variables which are not automatic, thus associ-
ated to a datablock are exported in the .exp file.

364 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

In order to include a .exp file	in	the	UserInterface	project,	press	the	Link PLC variables
file option from the Project menu,	then	search	for	the	file	in	the	PC	resources.		After	
linking a .exp file	to	the	UserInterface	project,	you	can	get	a	list	update	of	the	exported	
variables by selecting the Refresh PLC variables option from the same menu.

4.5.4 SYSTEM VARIABLES

The interaction between UserInterface and target is enabled by system variables which
the software publishes outside in a .tgt	file.
You may access system variables in read/write or in read-only mode; if you try to access
a read-only variable in write mode, an error will occur when compiling.

4.6 MULTIPLE PAGES MANAGEMENT
These functions allow to construct pages with data of different kind that must be repre-
sented on distinct pages for space reasons.
Sets (see paragraph 4.9.6) can be used with edit boxes or progress bars. Sets are en-
semble	of	variables	even	of	different	type.	Set	definition	can	be	done	from	the	resource	
tree, they are implemented using a table with a series of variables that are dynamically
associated to the control basing on the current index assigned to the page.
Let us see how to use a set.

4.6.1 ASSOCIATION OF ELEMENTS OF A SET

Elements of a set can be associated to a control using the following syntax: character #
first	of	all,	then	the	name	of	the	set	followed	by	the	index	of	the	position	of	the	element	
in the page, between round brackets.
Position index is used to indicate the order in which elements are shown in case of more
than one element in the same page.
A page contains one or more controls based on one (or more) set. At runtime, the page
is replied in order to show all the elements contained in the set. In the last page, if any
control	cannot	be	filled	with	element	value,	that	control	is	hidden(1).

EIO0000002036 09/2014 365

SoMachine HVAC - UserInterface

We	created	before	a	set	of	five	elements	named	BIOSParameters, now we can associate
#BIOSParemeters(0) to	the	first	edit	box	and	#BIOSParemeters(1) to the second. So
there	are	three	pages:	first	page	with	the	first	two	elements	of	the	set,	second	page	with	
elements 2 and 3 and third page showing the last element of the set. In the last page the
second edit box is not visible.

4.6.2 NAVIGATION OF THE ELEMENTS OF A SET

Navigation of pages that represent a set of elements is automatically done using the Nex-
tEdit event of the last selectable control of the page and using PrevEdit event of the
first	selectable	control	of	the	page.
It is also possible to send special events to force the change of the page in this way:
Video_SendEvent(kEV_WM_CHANGESETPAGE, numpage);

Where numpage is the number of the page of the set.

4.6.3 PAGES NUMBERING

UserInterface	defines	two	variables	related	to	pages	numbering:
 - $PagIndex = current index of the page containing controls based on a set;
 - $PagNumber = number of pages that complete the visualization of the whole elements
of the set.

366 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

These variables can be used in the page to show the numeration of the pages. In fact they
can be used as variables associated to edit box controls in this way(1):

4.7 ADVANCED OPERATIONS ON PAGES
Advanced operations such as export/import, copy/paste and page based template man-
agement can be done with UserInterface. Next paragraphs show these arguments in
details.

4.7.1 EXPORT/IMPORT OF PAGES TO/FROM FILES

Each page, even if of a certain complexity, can be saved to be used later in other
projects.
To do so click with the right button on the page node in the project window then select
Export page from the menu:

EIO0000002036 09/2014 367

SoMachine HVAC - UserInterface

Next,	application	asks	user	to	insert	the	name	of	the	file	in	which	the	page	will	be	saved.	
This	file	assumes	a .pex	extension.	Export	file	contains	page	info	and	local	procedures.
Import operation is quite similar to the export operation. Select Pages node, click with
right button and select Import page	from	the	popup	menu.	User	can	then	select	the	file	
of the page to import. Imported page takes the same name that it had when it was ex-
ported.

4.7.2 EXPORT/IMPORT PROCEDURES AND VARIABLES

It is also possible to export/import local or global variables and procedures using the
menu commands Export var/procedures or Import var/procedures.

4.7.3 COPY/PASTE OF PAGES IN THE PROJECT

It is possible to copy and to paste a page inside the project. Select desired page, click
with right button of the mouse and select Copy Page from the menu. Then, to paste page
copied, select Pages node and select Paste Page from the menu.

368 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

4.7.4 RENAME PAGES

Select desired page from the project tree then click with the right mouse button and se-
lect Rename from the menu. This allows the user to change the name of the page.

N.B.: this operation changes only the name of the page, project references to the re-
named page are not automatically updated.

4.7.5 TEMPLATES OF PAGE MANAGEMENT

Templates allow the user to save only the skeleton of the page and not the whole page.
Templates can be described as pages without references to external variables. Templates
can	be	grouped	in	libraries	files	(.petx) and can be linked into the project.

4.7.5.1 EXPORT PAGES INTO A TEMPLATE FILE

To export a page into a library of templates follow the procedure paragraph 4.7.1 initial
steps then select Export page as template from the menu.

A	library	file	with	.petx extension (new or already existing) should be indicated. Template
is appended to the existing templates and a name for the library is requested. If the tem-
plate is already available in the library a message asks the user if he desires to rewrite
the existing template or not.
Page	is	exported	as	template	into	the	specified	library	with	all	its	element	but	without	any	
referenced variable.

EIO0000002036 09/2014 369

SoMachine HVAC - UserInterface

Scripts and local variables are exported without changes. References to variables con-
tained	in	the	scripts	are	not	modified.
Child pages, popup and asynchronous messages can be treated as templates.

4.7.5.2 USAGE OF THE TEMPLATE LIBRARY IN A PROJECT

It is possible to include a template library in a project in order to use templates when
desired.
Select Template Management menu voice from Project menu. Following window will be
shown:

Available operations are listed here:
 - Add: add a template library to the project. Including a library means that a reference
to the library’s .petx file	is	added	to	the	current	project,	and	that	a	local	copy	of	the	
library is made.

 - Remove: Remove template library from current project.
 - Edit: To modify local copy of the template library removing no more used templates.
 - Re-export: Export local copy of the template library into a new .petx library	file.
 - Remove All: Remove all template libraries from current project.

Now press the Add button to add a template library to the project. Once chosen one of
the available libraries, Template list window appears as shown here.

Template library has been included to the project. Press Close button, Templates window
is shown: there is a tab for each library imported in current project.

370 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Each tab shows the list of templates of the corresponding library.

4.7.5.3 USING A TEMPLATE

Once a template library has been added it is possible to use its elements simply dragging
the chosen one from the template window and dropping it on the project tree.

Once the item has been dropped application asks the user for the name of the new page
created (based on the template).

EIO0000002036 09/2014 371

SoMachine HVAC - UserInterface

4.7.5.4 PROJECT TEMPLATE UPDATE

It is possible to delete templates from the (local) template library using Edit command in
the Template management window.

4.8 EVENTS
There are different classes of events.

4.8.1 PAGE OR CONTROL EVENTS

Each	characteristic	behaviour	of	a	specific	object	can	raise	a	specific	event.
Each event can be associated to a procedure (see paragraph 4.8.4) that is executed each
time the event takes place. The list of all available events for each UserInterface object
(page or control) is reported in Chapter 5.

372 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

4.8.2 KEY PRESSURE EVENTS

These events take place when a key is pressed, the raising of the event starts the execu-
tion of the associated action (see paragraph 4.8.5) if it is. The pressure of a key can be
also simulated by software, see next paragraph.

4.8.3 EVENTS RAISED BY SOFTWARE

Programmer can raise events by software using the function Video_SendEvent inside the
target software or in the body of the procedure, using following syntax:
Video_SendEvent(event_id, param);

Where event_id	is	the	identifier	of	the	type	of	the	event	and	param	is	an	integer	16	bit	
parameter.
UserInterfacesupports	software	events	defined	in	this	table:

Event Parameter Description

kWM_NULL Do not care No event.

kWM_KEY Key code
Simulates the pressure of the key
specified	as	parameter	then	cause	the	
associated action if it is.

kWM_MSG Window ID

Causes a system message that, once
got by the system, causes the instant
opening of the alarm page that has
Window ID	as	identifier.

kWM_SELECT Edit box handle

In touchscreen systems simulates
the pressure on the edit box whose
handle is passed as parameter,
causing its selection or its transition
to edit mode.

kWM_PUSH Button handle

In touchscreen systems simulates the
pressure on the button whose handle
is passed as parameter, causing the
execution of the associated action if
it is.

kEV_WM_
CHANGESETPAGE Page number

Shows	the	page	specified	by	the	
parameter (if the context is a page in
which sets are used).

EIO0000002036 09/2014 373

SoMachine HVAC - UserInterface

4.8.4 PROCEDURES THAT CAN BE ASSOCIATED TO EVENTS

A procedure is a program that is executed when the event that has been associated to it,
takes place. Events have been deeply described in previous paragraphs (see paragraph
4.8).
There are two classes of procedures:

Local procedures
This kind of procedures can be called only within the scope of the page in which are
declared. In particular, they can be associated to the events of the page itself and of
all their controls. The same can be said for software events raised when the page they
refer to is active. Procedure code can contains references to all the types of variables,
with local variables of the page too.

Global procedures
This kind of procedures can be called from every page and can be also used as peri-
odic asynchronous routine of alarm management. They cannot contain variables refer-
ences.

Here follow the description of the syntax to get the properties of a control from a proce-
dure; similarly to C language printf it is:
“fb%s%s.%s”, page_name, ctrl_name, prop_name

Where:
 - page_name is the name of the page that has the control;
 - ctrl_name is the name of the control;
 - prop_name is the name of the property of the control.

So if we want to get the property Foreground color of the Static named String_26 in
Main page, we have to write:
fbMainString_26.foreCol

N.B.: the name of the property to use in the scripts of the procedures is the name of the
functional block exported by the software of the target (see paragraph 8.2), not the name
in the properties window (see paragraph 3.3).

4.8.5 ACTIONS THAT CAN BE ASSOCIATED TO KEY PRESSURE

In common keyboard, not touchscreen systems, interaction between the user and the
system is normally based on keys pressure.
UserInterface shows the following table to the user.

This table permits to associate a code of a key to one of the actions listed in the following
table.	In	this	way	the	pressure	of	that	key	causes	the	specified	action.

374 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Action Link Description

Call Procedure name
Causes the invocation of the local
or global procedure whose name is
indicated in the Link field.

OpenPage Page name Causes the opening of the page whose
name is indicated in the Link field.

Close Do not care Causes the closure of the current page

NextField Do not care

Move the selection to the next edit box.
If the system is not touchscreen moves
selection to the buttons to allow their
pressure.

PrevField Do not care Move the selection to the previous edit
box.

Edit Do not care

Access edit mode for the selected edit
box. If the system is not touchscreen
allows the user to simulate the pressure
of the button.

There are two types of associations key-action:
 - Local actions: local associations, valid only for the page currently open in the editor of
the pages.

 - Global actions: global associations, valid in any point of the project.
If the system has the touchscreen feature, normal interaction with user is made by the
pressure of sensible area on the screen. However this table does not loss its meaning
because	allows	the	user	to	define	virtual	keys	and	to	control	their	pressure	by	software	
causing	in	this	way	the	dynamic	execution	of	specific	actions.
N.B.:	if	the	same	action	is	defined	both	at	local	and	at	global	level,	system	does	not	give	
errors nor warnings because local declaration precedes global one.

4.9 RESOURCES
A resource is an interface element. User can get informations from resources or can use
them to do actions.
UserInterface supports different categories of resources that are managed by Tab Re-
sources project window. (see paragraph 3.1). Categories are explained in details in the
following paragraphs.

4.9.1 FONTS

Fonts are the different kinds of characters supported for the output of text strings on the
screen.	Fonts	had	been	managed	by	PageLab	old	versions	as	text	files	with	.plf exten-
sion	and	structured	with	the	same	syntax	of	the	initialization	definition	of	an	array	vari-
able in IEC. Now, images are saved and loaded in binary format to optimize loading time
on images of big size.
At	project	opening	time,	if	PageLab	finds	this	declaration,	it	searches	in	project	folder	for	
a	file	named	font_name.plk and loads it in memory.

4.9.2 BITMAPS

Bitmaps are pictures to associate to image controls (see paragraph 4.4.5). Bitmaps had
been	managed	by	UserInterface	old	versions	as	text	files	with	.plb extension and struc-
tured	with	the	same	syntax	of	the	initialization	definition	of	an	array	variable	in	IEC.	Now,	

EIO0000002036 09/2014 375

SoMachine HVAC - UserInterface

images are saved and loaded in binary format to optimize loading time on images of big
size.
At	project	opening	time,	if	UserInterface	finds	this	declaration,	it	searches	in	project	folder	
for	a	file	named	bitmap_name.plk and loads it in memory.
UserInterface provides a tool to convert bitmaps from Windows format to UserInterface
format.
To start this tool click on Import resource > Bitmap from Project menu, it is also pos-
sible to click on Import bitmap from context menu that can be shown by right click on
Bitmaps node of resources tree.
This dialogue box will be shown as follows.

Click on Browse	button	to	navigate	computer	resources	to	select	desired	source	file.
In Bmp Name field	user	can	personalize	bitmap	name	that	will	be	shown	on	resource	tree;	
bitmap	name	is	constituted	by	file	name	without	extension	and	with	Bmp	prefix	by	de-
fault.
Transparency	color	field	allows	the	user	to	specify	transparency	color,	so	a	color	that	is	
not really drawn on the screen but a transparent color zone that does not cover elements
previously drawn.
Transparency color can be personalized by choosing it by mouse from Converted bitmap
window.
RGB indicates transparency color Red, Green, Blue components. n/a value indicates that
no transparency color has been selected.
Reset Transp. button allows the user to undo last selected transparency color.
Once	finished	these	operations	it	is	possible	to	confirm	bitmap	importation	by	clicking	on	
Import button.

4.9.3 STRINGS TABLE

In a UserInterface project it is always possible to explicitly write the text to show on a
text string or on a title of the page. It is also possible to refer to one of the strings of the
resources specifying its ID.
In	first	case	text	will	be	always	the	same,	in	second	case	the	text	that	correspond	to	the	
active language will be shown.

376 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

So, English language string table contains the following record.

And Italian language string table contains the following record.

If	we	refer	to	the	identifier	ID_GDB_RXNAK from a page control or from a page, if current
active language is English Bad RX packets will be shown, if current active language is
Italian Pacchetti RX errati will be shown instead.

4.9.4 ENUMERATIVES

An	enumerative	is	a	data	type	defined	by	user,	it	is	a	set	of	constants	named	by	user.	Each	
element of an enumerative is treated as a constant and can be translated in all available
languages of the project.
e.g.:	we	defined	ImpostazTouch enumerative that is shown on resource tree as follows.

Enumerative records are shown by double clicking on ImpostazTouch node.

Now we introduce an Edit box control (see paragraph 4.4.3) and insert the name of the
enumerative ImpostazTouch in its Format property field.	Control	will	show	the	string	
associated to the value as it is in the table above, not the numeric value of the variable
associated to the control.
If the numeric value of the variable does not match with any record of the enumerative
table, an error string ######## is shown instead.
Even enumerative are supported by multi-language feature. In fact it is possible to per-
sonalize the name of the enumerative.

And its record values.

4.9.5 IMAGES LISTS

An images list is very similar to an enumerative but with the following differences:
 - intervals of constants are supported, not only simple values;
 - each value has an image associated;
 - a list of images determines the content shown by an Animation control, while an enu-
merative can be associated to an Edit box.

EIO0000002036 09/2014 377

SoMachine HVAC - UserInterface

e.g.: now we have an images list ListBulbs that is shown on the resource tree.

It is possible to see all the records of the list by double-clicking the node.

If we introduce an Animation control (see paragraph 4.4.6) in the page, and we set its
property Image list with the name of the enumerative ListBulbs, the control will show
the	image	whose	specified	interval	includes	the	value	of	a	variable	associated	to	the	con-
trol.
If the numeric value of the associated variable does not match any record in the list a
default image (with init and end value set to *) will be shown if it is. If no default image
is	specified	no	image	will	be	drawn.

4.9.6 SETS

As it is described above (see paragraph 4.6) sets are ensemble of global variable even of
distinct type.
In particular there are two types of set:
 - Variable/parameter sets even of not equal type (VARIANT);
 - Strings sets (STRINGS).
The	sets	of	the	first	type	are	defined	indicating	VARIANT	as	type.	This	kind	of	set	has	the	
following attributes:
 - Dynamic: indicates that every n execution cycles target automatically reloads the ele-
ments of the set and hides those elements that have no visibility (boolean constant
FALSE or associated visibility variable set to false at that moment).

 - Array: indicates that the unique element of this set is a variable of type array.
N.B.: this kind of set can be assigned only to an edit-box control.

In	this	example	four	sets	with	different	characteristics	have	been	defined.
Once	defined	a	set,	each	element	of	the	set	can	be	added	via	drag	&	drop	from	Target
vars and parameters or can be manually inserted by user.

378 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Lets see how to manage ParametriBIOS set.

Following	attributes	can	be	defined:
 - Variable/Parameter = variable/parameter name.
 - Format = indicates how to show associated variable value specifying a syntax analogous
to C language printf (see paragraph 5.7.2).

 - Text Align = the alignment of the text to show.
 - Min/Max = minimum and maximum value for the element of the set.
 - Visible	=	boolean	variable	or	constant	that	defines	the	visibility	of	the	element.	If	dy-
namic feature of the set is active the variable is periodically checked to hide or show
the element.

 - Selectable = indicates that the element can be selected. In this case a boolean variable
or constant can be assigned too.

For a set of type STRING each element of the set is quite simple as it is shown in the next
figure:

We	have	to	define	only	two	attributes,	the	string	or	the	ID	of	a	string	resource	(see	para-
graph 4.9.3) and the variable/constant of visibility. As we said an element not visible will
not be shown on the screen.
N.B.: this kind of set can be used with Static control only.

4.10 AUTOMATIC DOCUMENTATION
During project development it is usually necessary to write comments for each page in
order to explain how the page works.
UserInterface integrates into its development environment the automatic documentation
feature that consists in the generation of a graphical report with all the previously inserted
comments followed by the pages they refer to.

EIO0000002036 09/2014 379

SoMachine HVAC - UserInterface

Comments related to controls and pages should be inserted in the Doc tab of the proper-
ties window.

Documentation is generated when the apposite button is pressed.

At the end of the process the following dialogue is shown. By clicking on the Open docu-
mentation link it is possible to view the generated report using the browser.

It is also possible to manually open the .html file	generated.	This	file	is	created	in	the	
project folder and is named project name.html.
N.B.:	documentation	generation	process	requires	the	file	Documentation.xsl to be in the
project	folder.	This	file	can	be	personalized	by	user	to	redefine	report	style.

4.11 MANAGING PROJECTS
4.11.1 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from that you
originally wrote the code for. Follow the instructions below to adapt your UserInterface
project to a new target device.

380 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

1) Click Select target in the Project menu of the UserInterface main window. This
causes the following dialog box to appear.

2) Select one of the target devices listed in the combo box.
3) Click Change	to	confirm	your	choice,	Cancel to abort.
4) If	you	confirm,	UserInterface	displays	the	following	dialog	box.

Press Yes to complete the conversion, No to quit.
If you press Yes, UserInterface updates the project to work with the new target.
It	also	makes	a	backup	copy	of	the	project	file(s)	in	a	sub-directory	inside	the	project	
directory, so that you can roll-back the operation by manually (i.e., using Windows
Explorer)	replacing	the	project	file(s)	with	the	backup	copy.

EIO0000002036 09/2014 381

SoMachine HVAC - UserInterface

5. APPENDIX I: PAGE PROPERTIES AND OBJECT
PROPERTIES

5.1 FRAME SET
5.1.1 PROPERTIES

Properties Available values Description
TopDim >= 0 Top-height of the frame (#pixel).

BottomDim >= 0 Bottom-height of the frame
(#pixel).

LeftDim >= 0 Left-width of the frame (#pixel).
RightDim >= 0 Right-width of the frame (#pixel).

CharDimX > 0 Horizontal space among grid
points (#pixel).

CharDimY > 0 Vertical space among grid points
(#pixel).

Font Name found in Resources Default font used when inserting
new objects in page.

Background
Color ...

Background color selectable from
palette. In addition this color
is also set when inserting new
objects in the frame.

Text Color ...

Foreground color selectable from
palette. This color is set when
inserting new objects in the
frame.

Title bar Yes, No

Title bar, settings can be found in
System options dialog:
 - Yes: page has title;
 - No: page has not title.

Page Border Yes, No
 - Yes: page with outer border;
 - No: page without outer border.

Caption Text otherwise Resource
ID

Text on title bar or Resource ID.
This property is not sensible if
Title Bar	field	is	set	to	No.

System menu Yes, No

If Yes denotes that there is
a button with ‘X’ image on it
and the behaviour is similar to
Windows Dialog:
 - Yes: page has close button;
 - No: page has not close button.

Appearance Flat, Raised, Sunken
 - Flat
 - Raised
 - Sunken

382 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

5.2 CHILD PAGE
5.2.1 PROPERTIES

Properties Available values Description

CharDimX > 0 Horizontal space among grid
points (#pixel).

CharDimY > 0 Vertical space among grid
points (#pixel).

Font Name found in
Resources

Default font used when
inserting new objects in page.

Background
Color ...

Background color selectable
from palette. In addition this
color is also set when inserting
new objects in the frame.

Text Color ...

Foreground color selectable
from palette. This color is set
when inserting new objects in
the frame.

Title bar Yes, No

Title bar, settings can be found
in System options dialog:
 - Yes: page has title;
 - No: page has not title.

Page Border Yes, No
 - Yes: page with outer border;
 - No: page without outer
border.

Caption Text otherwise Resource ID

Text on title bar or Resource
ID. This property is not
sensible if Title Bar	field	is	
set to No.

System menu Yes, No

If Yes denotes that there is
a button with ‘X’ image on it
and the behaviour is similar to
Windows Dialog:
 - Yes: page has close button;
 - No: page has not close
button.

Appearance Flat, Raised, Sunken
 - Flat
 - Raised
 - Sunken

5.2.2 EVENTS

Event Description
OnLoad On loading this page, i.e. when calling from parent page.

OnUnload On closing this page, when the page returns and the parent
page will be restored.

EIO0000002036 09/2014 383

SoMachine HVAC - UserInterface

Event Description

OnDeactivate On calling a child page and the current page is no more active.
This event does not exist in main page.

OnActivate
When the previous opened child page will be closed. This event
does not appear in leaf page, i.e in the pages which do not call
child pages.

OnDraw When the page starts drawing all the objects. The page has just
drawn border, background, and title.

OnTimer Asynchronous event. The user can link a procedure and it will be
executed cyclically.

5.3 POP-UP PAGE
5.3.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left ‘x coordinate’ edge of full page.
YPos >= 0 Top-left ‘y coordinate’ edge of full page.
XDim > 0 Width of the page (#pixel).
YDim > 0 Height of the page (#pixel).

CharDimX > 0 Horizontal space among grid points (#pixel).
CharDimY > 0 Vertical space among grid points (#pixel).

Modal Yes, No

 - Yes: all the parent page objects will be
disabled;

 - No: all the parent page objects will be
enabled if they are completely visible.

Font Name found in
Resources

Default font used when inserting new objects
in page.

Background
Color ...

Background color selectable from palette. In
addition this color is also set when inserting
new objects in the frame.

Text Color ...
Foreground color selectable from palette. This
color is set when inserting new objects in the
frame.

Title bar Yes, No

Title bar, the settings can be found in System
options dialog:
 - Yes: page has title;
 - No: page has not title.

Page Border Yes, No
 - Yes: page with outer border;
 - No: page without outer border.

Caption Text otherwise
Resource ID

Text on title bar or Resource ID.
This property is not sensible if the Title Bar
field	is	set	to	No.

384 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

System menu Yes, No

If Yes denotes that there is a button with X
image on it and the behaviour is similar to
Windows Dialog:

 - Yes: page has close button;
 - No: page has not close button.

Appearance Flat, Raised,
Sunken

Flat
Raised
Sunken

5.3.2 EVENTS

Event Description
OnLoad On loading this page, i.e. when calling from parent page.

OnUnload On closing this page, when the page returns and the parent
page will be restored.

OnDeactivate On calling a child page and the current page is no more active.
This event does not exist in main page.

OnActivate
When the previous opened child page will be closed. This event
does not appear in leaf page, i.e in the pages which do not call
child pages.

OnDraw When the page starts drawing all the objects. The page has just
drawn border, background and title.

OnTimer Asynchronous event. The user can link a procedure and it will be
executed cyclically.

5.4 STATIC
5.4.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
Name Not empty Name of object.

Text Text otherwise
Resource ID Text or Resource ID shown in the object.

Font Name found in
Resources Font used for drawing the text in object.

Background
Color ... Background color selectable from palette.

Text Color ... Text color selectable from palette.

Sel.
Background ...

Background color selectable from palette
when the object is chosen. This property is
not sensible if the Select field	is	constant	
FALSE.

EIO0000002036 09/2014 385

SoMachine HVAC - UserInterface

Properties Available values Description

Sel.
Foreground ...

Text color selectable from palette when the
object is chosen. This property is not sensible
if the Select field	is	constant	FALSE.

Appearance Flat, Raised,
Sunken

 - Flat
 - Raised
 - Sunken

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat.

Number of
Chars > 0

Number of chars that this object can show.
If the value is 0 the object will show the
complete text. Otherwise with another value
it can be truncated or extended.

Alignment Right, Center,
Left Text alignment in the object.

Refresh TRUE, FALSE

Continuous redraw of the object:
 - FALSE: the Text value is read from
memory and updated only when opening
the page or when a child page is closed;

 - TRUE: the Text value is read from
memory and always updated.

Select TRUE, FALSE,
var_name

Selected status of the object. It can be
constant (TRUE or FALSE) or linked with a
boolean variable var_name: if var_name is
TRUE the object is selected and so it will show
the colors Select Back, Select Fore.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

5.4.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

5.5 LINE
5.5.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.

386 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

X2Pos > 0 Bottom-right 'x coordinate' edge relative to
page.

Y2Pos > 0 Bottom-right 'y coordinate' edge relative to
page.

Name Not empty Name of object.
Thickness

pts > 0 Line thickness (#pixel).

Border col ... Line color selectable from palette.

5.6 RECTANGLE
5.6.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Border
points > 0 Border thickness (#pixel).

Border color ... Border color selectable from palette.

Background
Color ...

Background color selectable from palette.
This property is sensible only if Transparent
is set to TRUE.

Transparent TRUE, FALSE

Transparency:
 - TRUE: transparent background;
 - FALSE: solid background where color is
Back Color.

5.7 EDIT BOX
5.7.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
Name Not empty Name of object.

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Font Name found in
Resources Font used for drawing the text in object.

EIO0000002036 09/2014 387

SoMachine HVAC - UserInterface

Properties Available values Description
Background

Color ... Background color selectable from palette.

Text Color ... Text color selectable from palette.

Sel.
Background ...

Background color selectable from palette
when the object is chosen. This property
is not sensible if the Selectable field	is	
constant FALSE.

Sel.
Foreground ...

Text color selectable from palette when the
object is chosen. This property is not sensible
if the Selectable field	is	constant	FALSE.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat.

Number of
Chars > 0

Chars visible in the object. Width of entire
object is calculated among this value and
the size of Font. If NumChar are less than
the value, the object shows this error string:
#####.

Format String as printf or
.enum_name

The	format	can	be	numeric,	to	define	as	
printf of C language (see par. 5.7.2),
enumerative,	if	in	this	field	there	is	
enum_name defined	in	Resources (see par.
4.9).

Alignment Right, Center,
Left Text alignment in the object.

Access RO, RW
Accesses variable Assoc var used in object:
 - RO = read only;
 - RW = read/write.

Selection
Order >= 0

Selection order of the object. It can be
selected by pressing a key or by means of a
procedure. In this case the selection moves
from the current object to the previous or
next Sel. Order object.

Variable Not empty

Name of the variable that can be shown and
edited with this object. It can be any variable
of the project, (local, global, imported from
PLC or target - see par. 2.9.2), a parameter
(see par. 2.9.2) or an element of a set (see
par. 4.6).

Data type

UNDEF, BOOL,
SINT, USINT,

BYTE, INT, UINT,
WORD, DINT,
UDINT, DWORD,
REAL, STRING

Type of Assoc var. If it is a variable, the
type	is	defined	automatically.	This	property		
is sensible if Assoc var is an explicit
parameter.

388 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

Low limit CONSTANT,
var_name

Name of variable or numeric constant. This
is the least number that the object can show.
It can be any variable of the project, (local,
global, imported from PLC or target - see
par. 2.9.2). This object shows an error string
(!!!!!!!) if condition does not holds.
The * symbol means that there is no low
limit.

High limit CONSTANT,
var_name

Name of the variable or numeric constant.
This is the maximum number that the object
can show. It can be any variable of the
project, (local, global, imported from PLC or
target - see par. 2.9.2). This object views an
error string (!!!!!!!) if condition does not
hold. The * symbol means that there is no
high limit.

Refresh TRUE, FALSE

Enables continuous update of the value:
 - FALSE: the Assoc var value is read from
memory and updated only when open page
or when a child page is closed;

 - TRUE: the Assoc var value is read from
memory and always updated.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise hidden.

Selectable TRUE, FALSE,
var_name

Selected status of the object. It can be
constant (TRUE or FALSE) or linked with a
boolean variable var_name: if var_name is
TRUE the object is selected and so it will
show the colors Select Back, Select Fore.
If	this	field	is	FALSE the Access property is
not sensible.

5.7.2 FORMAT SPECIFICATION - PRINTF

If the object has not any enumerative format, the format string is composed as follows:
%[flags][width][.precision]type

The	field	has	one	or	more	characters,	that	describe	the	specification.	The	simplest	format	
contains only percentage symbol and one char as type (for example: %s).
Next table explains in details functions and values.

Field Available values Description

flags

 - + prints always the sign,
even if the number is
positive.

 - 0 prints zeros in head until
width (if	specified)	or	
NumChar.

This char is an option for chars order,
print sign, number of decimal digit. This
field	may	have	more	than	one	flag.

EIO0000002036 09/2014 389

SoMachine HVAC - UserInterface

Field Available values Description

width > 0, <= NumChar Maximum chars can be printed. Allows to
view	values	that	do	not	fill	NumChar fully.

precision >= 0

Decimal	digits	after	the	point.	If	the	field	
is an integer and there is a precision the
object shows a decimal point. E.g. the
value is 102 integer, and precision is 2,
with %.2d, the number is shown as 1.02.

type

 - %d: Integer with sign.
 - %f: Real.
 - %x: Hexadecimal with
lowercase chars.

 - %x: Hexadecimal with
uppercase chars.

 - %s: String.
 - %@sdf: Password.
 - [%d,u,f,x]: Custom
measure unit format.

Mandatory	field.

5.7.3 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.
OnGotFocus Whenever object is selected.
OnLostFocus Whenever object loses the selection.

OnEnter Whenever the object is selected and receives the command for
entering in edit-mode.

OnClick Whenever HMI receives a pressure on the object, valid only for
touchscreen systems.

OnChange Whenever	the	user	confirms	the	modifications	and	the	value	is	
different from start.

5.8 TEXT BOX
5.8.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
Name Not empty Name of object.

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

390 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

Font Name found in
Resources Font used for drawing the text in the object.

Background
Color ... Background color selectable from palette.

Text Color ... Text color selectable from palette.
Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat.

Number of
Chars > 0

Chars visible in the object. Width of entire
object is calculated among this value and the
size of Font.

Number of
Rows > 0

Rows visible in the object. Height of entire
object is calculated among this value and the
size of Font.

Show line
number TRUE, FALSE Flag for viewing number of lines.

Access RO, RW

Access on variable Assoc string used in
object:
 - RO: read only;
 - RW: read/write.

Selection
order >= 0

Selection order on which the object can be
selected with the pressure of a key or with a
procedure. In this case the selection moves
from the current object to the previous or
next Sel.Order object.

String
variable Not empty

Name of variable that can be shown and
edited with this object. It can be any string
variable of the project, (local, global,
imported from PLC or target - see par. 2.9.2).

Refresh trg TRUE, FALSE,
var_name

Enables update of the value:
 - FALSE: the Assoc string value is read
from memory and updated only when
opening page or when a child page is
closed.

 - TRUE: the Assoc string value is read from
memory and always updated.

The runtime sets automatically the value to
FALSE.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise hidden.

EIO0000002036 09/2014 391

SoMachine HVAC - UserInterface

5.8.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

OnClick Whenever HMI receives a pressure on the object, valid only for
touchscreen systems.

OnChange Whenever	the	user	confirms	the	modifications	and	the	value	is	
different from start.

5.9 IMAGE
5.9.1 PROPERTIES

Properties Available values Description

XPos const >= 0,
variable

Top-left ‘x coordinate’ edge relative to page.
It is possible to assign a variable only if Style
is set to Floating.

YPos const >= 0,
variable

Top-left ‘y coordinate’ edge relative to page.
It is possible to assign a variable only if Style
is set to Floating.

XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Appearence Flat, Raised,
Sunken

 - Flat = plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat.

Bitmap Name found in
Resources Bitmap used for drawing the image in object.

Background
image

Image object in the
page

Name of another object that is redrawn when
Style is set to Floating. It is sensible only if
it is overlapped with this image.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

Style Docking, Floating
 - Docking:	fixed	position;
 - Floating: variable position, according to
XPos variable and Ypos variable.

392 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

5.10 ANIMATION
5.10.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Appearance Flat, Raised,
Sunken

 - Flat = plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat.

Image list Name found in
Resources

It contains the images that the object can
view and the value range.

Animation
variable var_name Name of the variable that is compared with

value range in Image list.

Data type

SINT, USINT,
BYTE, INT, UINT,

WORD, DINT,
UDINT, DWORD

Type of Animation var. If it is a variable, the
type	is	automatically	defined.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise hidden.

5.10.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

EIO0000002036 09/2014 393

SoMachine HVAC - UserInterface

5.11 BUTTON
5.11.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Text/Img
Empty or explicit

text or Resource ID
or Bitmap

Text or image to view in the button:
 - string;
 - Resource ID;
 - bitmap.

Selection
Text/Img

Empty or explicit
text or Resource ID

or Bitmap

Text or image to view in the button when it is
selected:
 - string;
 - Resource ID;
 - bitmap.

Font Name found in
Resources

Font used for drawing the text in object. This
field	is	not	sensible	if	it	shows	a	bitmap.

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat or Text is not empty.

Background
color ...

Background color selectable from palette.
This property is sensible only if Transparent
is set to TRUE.

Selection
border ...

Border color when the object is selected. This
property is not sensible if Selection var is
FALSE fixed.

Sel.
background ...

Background color when the object is selected.
This property is not sensible if Selection
var is FALSE fixed.

394 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

Selection
order >= 0

Selection order on which the object can be
selected with the pressure of a key or with a
procedure. In this case the selection moves
from the current object to the previous or
next Sel. Order object.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

Transparent TRUE, FALSE,
var_name

Transparency. It can be constant (TRUE or
FALSE) or linked with a boolean variable
var_name: if var_name is TRUE the object is
transparent.

Press
variable Empty or var_name

When the button is pressed var_name is set
to TRUE. When the button is not pressed,
var_name is set to FALSE.

Selection
variable

TRUE, FALSE,
var_name

Selected status of the object. It can be
constant (TRUE or FALSE) or linked with a
boolean variable var_name: if var_name is
TRUE the object is selected and so it will show
the colors Select Back, SelectBord. If this
field	is	FALSE SelectBord and Select Back
properties are not sensible.

Action
Call, OpenPage,
Close, NextField,
PrevField, Edit

Action executed on button pressure.

Action par page_name
proc_name

Parameter associated with the action
executed on button pressure. It is sensible
only if Action is OpenPage (Action par =
name of the page to open) or Call (Action
par = name of the procedure to execute).

Alignment Right, Center,
Left Text alignment in the object.

5.11.2 EVENTS

Event Description

OnClick Whenever HMI receives a pressure on the object, valid only for
touchscreen systems.

OnRelease Whenever HMI releases the pressure on the object, valid only
for touchscreen systems.

EIO0000002036 09/2014 395

SoMachine HVAC - UserInterface

5.12 PROGRESS BAR
5.12.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat or Text is not empty.

Bar color ... Color of step bar, selectable from palette.
Background

color ... Background color selectable from palette.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwiseit is hidden.

Refresh
trigger

TRUE, FALSE,
var_name

Object redraw:
 - FALSE: the Progress var value is read
from memory and updated only when
opening page or when a child page is
closed.

 - TRUE: the Progress var value is read
from memory and always updated.

 - var_name: the Progress var value is read
from memory and updated only when the
variable becomes TRUE. After the update
the runtime sets it to FALSE.

Progress
variable Not empty

Step	variable.	This	is	the	filling	percentage	
of bar in relation with the range assigned by
Lo limit and Hi limit. It can be any string
variable of the project (local, global, imported
from PLC or target) or a parameter (see
2.9.2).

Data type

UNDEF, BOOL, SINT,
USINT, BYTE, INT,

UINT, WORD, DINT,
UDINT, DWORD,
LWORD, REAL,
LREAL, STRING

Type of Progress var. If it is a variable, the
type	is	automatically	defined.	This	property		
is sensible if Progress var is an explicit
parameter.

396 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

Low limit Constant or
var_name

Name of the variable or numeric constant.
This is the least value for step bar. It can be
any variable of the project, (local, global,
imported from PLC or target) with type
specified	by	Data type.

High limit Constant or
var_name

Name of the variable or numeric constant.
This is the maximum value for step bar. It can
be any variable of the project, (local, global,
imported from PLC or target) with type
specified	by	Data type.

Orientation Horizontal, vertical Direction of step bar.

5.12.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.

AfterUpdate Immediately after the object is
redrawn.

5.13 CUSTOM CONTROL
5.13.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Control ID > 0 Identifier	of	custom	control	type.

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

Refresh TRUE, FALSE

Continuous redraw of the object:
 - FALSE: the body of the runtime object is
updated only when opening page or when a
child page is closed.

 - TRUE: the body of the runtime object is
always updated.

EIO0000002036 09/2014 397

SoMachine HVAC - UserInterface

5.13.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

5.14 CHART
5.14.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

Track 1 var_name

Opens a dialog with the following options:
 - the array with data of track (Data Source);
 - the visibility condition of the track (TRUE or
boolean variable);

 - Color of the track;
 - the scale factor (range among two
horizontal divisions);

 - the offset (displacement of the track 0-Y);
 - step of print label for Y axis;
 - three horizontal bars with name, value and
colors.
If var_name	is	empty	the	track	is	not	defined	
and not drawn.

Track 2 var_name As Track 1, but for track 2.
Track 3 var_name As Track 1, but for track 3.
Track 4 var_name As Track 1, but for track 4.
Track 5 var_name As Track 1, but for track 5.
Track 6 var_name As Track 1, but for track 6.
Track 7 var_name As Track 1, but for track 7.
Track 8 var_name As Track 1, but for track 8.

Track Left >=0, var_name

Integer value that is the track for Y axis left.
It is admitted a constant value (ex 1). If
empty means that the chart must not draw
the label for Y axis left.

Track Right >=0, var_name As Track Left for the right side.
Format Left String as printf Format of Y axis left as c printf function.
Format Right String as printf As Format Left for the right side.

XLabel >=0, var_name Step for X-axis labels. How many divisions of
horizontal bar must have labels.

398 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

X Scale var_name
Scale factor of x-Axis. Value range among two
divisions of horizontal bars. An empty value
indicates that the chart is in autoscale mode.

Len Data var_name

Name of the variable that contains the array
index samples. The chart adds the sample
values when the Refresh is TRUE. If the value
remains unchanged the chart does not add
new values. The runtime maintains the last
value	of	this	field.	Constant	values	are	not	
allowed.

X Offset var_name
Variable name for the deviation of 0 for
x-Axis, left or right. A positive value moves
the chart values to left.

Grid Yes, No Visibility of the grid.

X Div. Grid value
Number of division on horizontal bar, used
with scale factor and offset for drawing the
chart tracks.

Y Div. Grid value
Number of division on vertical bar, used with
scale factor and offset for drawing the chart
tracks.

Background
color ... Background color selectable from palette.

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;
 - Sunken.

Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat or Text is not empty.

Font Name found in
Resources Font used for drawing the label in object.

Refresh TRUE, FALSE,
var_name

Continuous redraw of the object:
 - FALSE: the chart is updated only when
opening page or when a child page is
closed;

 - TRUE: the chart object is always updated,
synchronized with others objects;

 - var_name: the chart is drawn on rising edge
of boolean variable. This value TRUE of this
variable is the moment when the char adds
the samples.

(Len Data <> internal HMI index of data).

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

Format X String as printf Format of X axis as c printf function.

EIO0000002036 09/2014 399

SoMachine HVAC - UserInterface

Properties Available values Description

X Data >=0, var_name

X-Axis array values. If there is a constant
value in this property each Y sample has a X
value equal to the product among X Data and
the index in array.
Ex. Y= track[3] = 20 X = 3* X Data

X Color ... Color of X-Axis label.

Grid Step Value Space among two points of grid in pixel. The
property is sensible if the grid is visible.

Sample
Buffer Value

Number of samples that the runtime can
store. The older are deleted if the size has
exceeded.

Grid Color ... Color of grid if it is visible.
Bord. Color ... Color of border grid.

Vertical
Bar 1 >=0, var_name

Name	of	variable	for	drawing	a	vertical	fixed	
bar on chart. It is allowed also a constant
value. The * symbol means that there is not
this vertical bar.

Color bar 1 ... Color of vertical bar 1 if different from *.
Vertical
Bar 2 As Vert. Bar 1, but relative to bar 2.

Color bar 2 As Color bar 1, but relative to bar 2.
Vertical
Bar 3 As Vert. Bar 1, but relative to bar 3.

Color bar 3 As Color bar 1, but relative to bar 3.

Clear Data var_name Boolean variable. If it is TRUE and Refresh is
TRUE the chart deletes all the previous data.

5.14.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

5.15 TREND
5.15.1 PROPERTIES

Properties Available values Description
XPos >= 0 Top-left 'x coordinate' edge relative to page.
YPos >= 0 Top-left 'y coordinate' edge relative to page.
XDim > 0 Width (#pixel).
YDim > 0 Height (#pixel).
Name Not empty Name of object.

400 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description

Track 1 var_name

Open a dialog with the following options:
 - the variable will be sampled each Sampling
Time seconds;

 - the visibility condition of the track (TRUE or
boolean variable);

 - color of the track;
 - the scale factor (range among two
horizontal divisions);

 - the offset (displacement of the track 0-Y);
 - step of print label for Y axis;
 - three horizontal bars with name, value and
colors.

If var_name	is	empty	the	track	is	not	defined	
and not drawn.

Track 2 var_name As Track 1, but for track 2.
Track 3 var_name As Track 1, but for track 3.
Track 4 var_name As Track 1, but for track 4.
Track 5 var_name As Track 1, but for track 5.
Track 6 var_name As Track 1, but for track 6.
Track 7 var_name As Track 1, but for track 7.
Track 8 var_name As Track 1, but for track 8.

Track Left >=0, var_name

Integer value that is the track for Y axis left.
It is admitted a constant value (ex. 1). If
empty means that the chart must not draw
the label for Y axis left.

Track Right >=0, var_name As Track Left for the right side.
Format Left String as printf Format of Y axis left as c printf function.
Format Right String as printf As Format Left for the right side.

XLabel >=0, var_name Step for X-axis labels. How many divisions of
horizontal bar must have labels.

X Scale var_name
Scale factor of x-Axis. Value range among two
divisions of horizontal bars. An empty value
indicates that the chart is in autoscale mode.

Sampling
Time >0

Sampling time measured in seconds. Every
Sampling Time seconds the trend sample
the value even if the chart is not shown.

X Offset var_name
Variable name for the deviation of 0 for
x-Axis, left or right. A positive value moves
the chart values to left.

Grid Yes, No Visibility of the grid.

X Div. Grid Value
Number of division on horizontal bar, used
with scale factor and offset for drawing the
chart tracks.

Y Div. Grid Value
Number of division on vertical bar, used with
scale factor and offset for drawing the chart
tracks.

Background
color ... Background color selectable from palette.

EIO0000002036 09/2014 401

SoMachine HVAC - UserInterface

Properties Available values Description

Appearance Flat, Raised,
Sunken

 - Flat: plain with use of Border pts and
Border col;

 - Raised;

 - Sunken.
Border
points >= 0 Border thickness (#pixel). This property is

sensible only if Appearance is set to Flat.

Border color ...
Border color selectable from palette. This
property is sensible only if Appearance is set
to Flat or Text is not empty.

Font Name found in
Resources Font used for drawing the label in object.

Refresh TRUE, FALSE,
var_name

Continuous redraw of the object:
 - FALSE: the chart is updated only when
opening page or when a child page is
closed;

 - TRUE: the chart object is always updated,
synchronized with others objects;

 - var_name: the chart is drawn on rising edge
of boolean variable. This value TRUE of this
variable is the moment when the char adds
the samples.

(Len Data <> internal HMI index of data)

Visible TRUE, FALSE,
var_name

Visible status of the object. It can be constant
(TRUE or FALSE) or linked with a boolean
variable var_name: if var_name is TRUE the
object is visible, otherwise it is hidden.

Format Time Default list

Format for X-axis label. The choices are:
 - ss: seconds;
 - mm.ss: minutes, seconds;
 - hh.mm: hours, minutes;
 - hh.mm.ss: hours, minutes, seconds.

X Color ... Color of X-Axis label.

Grid Step Value Space among two points of grid in pixel. The
property is sensible if the grid is visible.

Sample
buffer Value

Number of samples that the runtime can
store. The older are deleted if the size has
exceeded.

Grid Color ... Color of grid if it is visible.
Bord. Color ... Color of border grid.

Vertical
Bar 1 >=0, var_name

Name	of	variable	for	drawing	a	vertical	fixed	
bar on chart. It is allowed also a constant
value. The * symbol means that there is not
this vertical bar.

Color bar 1 ... Color of vertical bar 1 if different from *.
Vertical
Bar 2 As Vert. Bar 1, but relative to bar 2.

Color bar 2 As Color bar 1, but relative to bar 2.

402 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Properties Available values Description
Vertical
Bar 3 As Vert. Bar 1, but relative to bar 3.

Color bar 3 As Color bar 1, but relative to bar 3.

Clear Data var_name Boolean variable. If it is TRUE and Refresh is
TRUE the chart deletes all the previous data.

5.15.2 EVENTS

Event Description
BeforeUpdate Before the object is redrawn.
AfterUpdate Immediately after the object is redrawn.

EIO0000002036 09/2014 403

SoMachine HVAC - UserInterface

6. APPENDIX II: FILE FOR TARGET DESCRIPTION

The .def	files	contain	some	definitions	of	 target	environment.	UserInterface	uses	 this	
information for generating custom code.
The .def file	consists	of	two	sections.	It	is	allowed	comment,	that	starts	with	a	semico-
lon.(;).
This	file	is	included	in	pajx file.

6.1 TARGET PROPERTIES
6.1.1 DESCRIPTION

This	section	consist	of	five	records,	which	support	one	or	more	parameters.	Each	record	
is on new line and the elements must be separated with spaces or tabs.

Record Structure
Header Param. 1 Param. 2 Description

SCREEN dimX dimY

Screen dimension of target measured
in pixel:
 - DimX: width;
 - DimY: height.

SAVESCREEN 0/1 ---

Target board can save and restore
video memory:
 - 0: no save;
 - 1: save and restore.

TOUCHSCREEN 0/1 ---

Target board has touchscreen, i.e.
can use the pressure events:
 - 0: no touchscreen;
 - 1: exists touchscreen.

REFRESH msec --- Refresh time of all objects in page,
measured in milliseconds.

FONT_FORMAT “HH”/“VH” --- Font encoding.
ColorSET “RGB” ---

BMP_FORMAT “SIMULAB” --- Image encoding.

UNICODE 0/1 --- Target board has support for unicode
fonts.

JOYPAD 0/1 ---

Target board has a joypad that can
be used for moving among elements
of page and can be connected to
actions.

INIT 0/1 ---

If set to 1 says that HMI run-time
has Video_InitHMI(), invoked on
target start-up. Typically it is used for
custom commands on start-up.

BMPFULL 0/1 ---
If set to 1 generates PLC code
extended for bitmap instead binary
bitmap.

404 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

6.2 OBJECT VERSION
The graphical objects (editbox, textbox, static, bitmap, etc.) can have a version, or cannot
exist. The syntax is:
CTRL “Name” “Version”

where:
 - Name: name of graphical object. Ex. Editbox;
 - Version: version of HMI run-time objects.
If this value is set to -1, UserInterface does not make available this object.

6.3 SYSTEM ENUMERATIVES
Enumeratives of .def file	are	maps	for	binding	among	numeric	values	and	strings,	or	
other numeric values.
Each	enumerative	has	an	identifier,	that	specifies	a	function	in	the	map	with	this	syntax:
ENUM id en_key en_val

where:
 - id:	enumerative	identifier;
 - en_key: value-key of record, must be a number;
 - en_val: value of value-key, can be a number or string.

6.3.1 DESCRIPTIONS

This paragraph describes the values for system enumeratives.
 - Enumerative 100
With	this	key	you	can	define	new	buttons	(the	names	will	be	shown	in	the	Key field	of	
actions table (see paragraph 4.8.5).
The	number	of	lines	is	not	limited.	But	the	user	must	define	at	least	all	the	elements	of	
102 enumerative.

 ∙ id: 100;
 ∙ en_key: key encoding, one byte;
 ∙ en_val: string with key name.

 - Enumerative 101
With	this	key	you	can	define	new	actions	(the	names	will	be	shown	in	Action field	of	
actions table).

 ∙ id: 101;
 ∙ en_key:	action	identifier;
 ∙ en_val: string with action name.

EIO0000002036 09/2014 405

SoMachine HVAC - UserInterface

This	enumerative	has	a	well	defined	number	of	lines.	The	following	table	shows	you	the	
corresponding actions.

en_key Action
0 Calls local or global procedures.
1 Opens child page.
2 Closes current page.
3 Selects next object Edit Box, Button, etc..
4 Selects previous object Edit Box, Button, etc..
9 Enters editing-mode (Edit Box, Button).
10 Leaving (not implemented).

The string en_val is arbitrary.
 - Enumerative 102
Selection and edit functions:

 ∙ id: 102;
 ∙ en_key:	identifier	of	edit	function;
 ∙ en_val: string with the name of associated string.

The	name	of	this	field	en_val must be the same of en_val of 100 enumerative, so that
UserInterface associates an edit function with a key.
This	enumerative	has	a	well	defined	number	of	lines.	See	the	actionsin	the	table	below:

en_key Edit function
0 Confirms	modifications	and	leaves	editing-mode.
1 Loses	modification	and	leaves	editing-mode.
2 Deletes selected character.
3 Moves cursor left.
4 Moves cursor right.

5 Selects the previous element of an enumerative associated with an
Editbox.

6 Selects the next element of an enumerative associated with an Editbox.
7 Deletes	the	first	character	on	the	left.
8 Inserts tab character.
9 Switching to uppercase alphanumeric characters for a single character.
10 Transition to permanent uppercase alphanumeric characters.

 - Enumerative 103
Define	a	color	palette,	the	encoding	is	RGB:

 ∙ id: 103;
 ∙ en_key: index of the color inside palette;
 ∙ en_val: RGB color encoding.

RGB encoding represents 24 bit of colors: 0x00bbggrr where bb (1 byte) intensity of
blue, gg (1 byte) the green and rr (1 byte) the red. The intensity is at least 0 and at most
0xff.

The	number	of	lines	is	not	limited.	The	user	can	define	which	colors	he	wants.

406 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

 - Enumerative 104
Names of object styles (shown on Appearance property):

 ∙ id: 104;
 ∙ en_key: style;
 ∙ en_val: string with the name of style.

This enumerative contains at most 3 records, supported by UserInterface.

en_key Style
0 Flat, plane.
1 Raised.
2 Sunken.

6.3.2 EXAMPLE

;

; Target properties

;

SCREEN 128 64

SAVESCREEN 1

REFRESH 50

FONT_FORMAT “VH”

JOYPAD 1

INIT 1

BMPFULL 1

UNICODE 1

;

; Versions of controls

;

CTRL “Static” 1

CTRL “EditBox” 1

CTRL “TextBox” -1

CTRL “Button” 2

CTRL “Progress” 0

CTRL “Animation” 0

CTRL “Image” 0

CTRL “CustomCtrl” -1

CTRL “Chart” -1

CTRL “Trend” -1

;

; Enumeratives

;

; ENUM 100: key codes

EIO0000002036 09/2014 407

SoMachine HVAC - UserInterface

;

ENUM 100 13 “Enter”

ENUM 100 8 “Left”

ENUM 100 12 “Right”

ENUM 100 11 “Up”

ENUM 100 10 “Down”

ENUM 100 19 “LongEnter”

ENUM 100 15 “LongLeft”

ENUM 100 16 “LongRight”

ENUM 100 17 “LongUp”

ENUM 100 18 “LongDown”

ENUM 100 30 “VK_F1”

ENUM 100 31 “VK_F2”

ENUM 100 32 “VK_F3”

ENUM 100 33 “VK_F4”

ENUM 100 34 “VK_F5”

ENUM 100 35 “VK_F6”

ENUM 100 36 “VK_F7”

ENUM 100 37 “VK_F8”

ENUM 100 38 “VK_F9”

ENUM 100 39 “VK_F10”

;

; ENUM 101: key-related actions

;

ENUM 101 0 “Call”

ENUM 101 1 “OpenPage”

ENUM 101 2 “Close”

ENUM 101 3 “NextField”

ENUM 101 4 “PrevField”

ENUM 101 9 “Edit”

;

; ENUM 102: editing-mode keys

;

ENUM 102 0 “Enter”

ENUM 102 1 “LongLeft”

ENUM 102 3 “Left”

ENUM 102 4 “Right”

ENUM 102 5 “Up”

ENUM 102 6 “Down”

;

; ENUM 103: color codes

; BBGGRR

ENUM 103 0 “0x00000000” ; Bianco

ENUM 103 1 “0x00FFFFFF” ; Nero

408 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

;

; ENUM 104: controls appearance

;

ENUM 104 0 “Flat”

ENUM 104 1 “Raised”

ENUM 104 2 “Sunken”

EIO0000002036 09/2014 409

SoMachine HVAC - UserInterface

7. APPENDIX III: DESCRIPTION OF PARAMETER FILE

As described in section 2.8.4 it is possible to link in UserInterface some variables from
external device.
In	some	objects		you	can	define	an	explicit	or	implicit	syntax	in	order	to	use	the	parameter	
mode.
To use the implicit syntax, @Device.Parametro, UserInterface requires a .PARX	file	 in	
xml format.
For example:
<parameters>

<par ipa=”10100” name=”Par_TAB” descr=”Tab (map code)” defval=”0” min=”0”
max=”65535” um=”num” typetarg=”unsignedShort”>

 <protocol name=”Modbus” commaddr=”15716” commsubindex=”0”/>

 <protocol name=”CanOpen” commaddr=”15716” commsubindex=”0”/>

</par>

<par ipa=”10001” name=”Gain_Ntc_AI2” descr=”NTC calibration gain AI2” de-
fval=”32768” min=”0” max=”65535” um=”num” typetarg=”unsignedShort”>

 <protocol name=”Modbus” commaddr=”15617” commsubindex=”0”/>

 <protocol name=”CanOpen” commaddr=”15617” commsubindex=”0”/>

</par>

<par ipa=”11308” readonly=”false” name=”Modem_InitStr1” defval=”” descr=”Init
String (1st part)” typetarg=”string” strsize=”19”>

 <protocol name=”Modbus” commaddr=”15821” commsubindex=”0”/>

 <protocol name=”CanOpen” commaddr=”15821” commsubindex=”0”/>

</par>

</parameters>

Where	each	parameter	has	these	fields.
 - ipa: parameter index used as input value of Video_SetParam(), Video_GetParam(). If
there are nodes with protocol type, they have more priority than ipa, so UserInterface
uses them.

 - Name: parameter name.
 - descr: complete description of parameter.
 - defval: default value of parameter.
 - min: minimum value of parameter.
 - max: maximum value of parameter.
 - um: measure unit of parameter.
 - typetarg: type of parameter.
The available values with the translation in PLC are:

 ∙ char: SINT;
 ∙ unsignedChar: USINT;
 ∙ short: INT;
 ∙ unsignedShort: UINT;
 ∙ int: DINT;
 ∙ unsignedInt: UDINT;
 ∙ boolean: BOOL;

410 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

 ∙ digitalInput: BOOL;
 ∙ digitalOutput: BOOL;
 ∙ float: REAL;
 ∙ double: REAL;
 ∙ string: STRING.

 - strsize: number of character if it is a string type.

EIO0000002036 09/2014 411

SoMachine HVAC - UserInterface

8. APPENDIX IV: ELEMENTS OF HMI RUNTIME

8.1 FUNCTIONS
This chapter lists all the functions that HMI run-time exports to UserInterface and so the
user can use them into script and procedures.
These functions are divided into several categories which are shown in details in the fol-
lowing paragraphs.

8.1.1 SYSTEM FUNCTIONS: HARDWARE AND OPERATING SYSTEM

unsigned char Video_InitHMI (unsigned char dmy)

Function of initialization for HMI runtime

Parameter Description
dmy Reserved. Set 0.

Return Value Description
Video_InitHMI TRUE if successful, FALSE otherwise.

unsigned char Video_Switch (unsigned char on);
Turn on/off the display

Parameter Description

on TRUE: turns on the display.
FALSE: turns of the display.

Return Value Description
Video_Switch Not sensible (always TRUE).

unsigned char Video_LCDContrast(unsigned char more);

Display contrast

Parameter Description

more TRUE: increases display contrast.
FALSE: decreases display contrast.

Return Value Description
Video_LCDContrast Not sensible (always TRUE).

unsigned char Video_SaveRect(unsigned short x1, unsigned short y1, unsigned
short x2, unsigned short y2);

Save display area to memory

Parameter Description
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.
y2 Bottom-down 'y coordinate' edge relative to full page.

412 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Return Value Description
Video_SaveRect Not sensible (always TRUE).

unsigned char Video_WriteFromBuff(unsigned short x1,unsigned short y1, un-
signed short x2,unsigned short y2);

Restore display area from memory (previously saved with Video_SaveRect).

Parameter Description
x1 Not sensible (saved area has the original coordinates).
y1 Not sensible (saved area has the original coordinates).
x2 Not sensible (saved area has the original coordinates).
y2 Not sensible (saved area has the original coordinates).

Return Value Description
Video_WriteFromBuff Not sensible (always TRUE).

unsigned char Video_Lock(unsigned char res);

Lock the display resources for exclusive access

Parameter Description
res Reserved. Set 0.

Return Value Description
Video_Lock Not sensible (return input parameter res).

unsigned char Video_Unlock(unsigned char res);

Unlock the display resource after exclusive access

Parameter Description
res Reserved. Set 0.

Return Value Description
Video_Unlock Not sensible (return input parameter res).

unsigned char Video_Sleep(unsigned short msec);

Suspend the task where the function is used

Parameter Description
msec Suspends time measured in milliseconds.

Return Value Description
Video_Unlock Not sensible (always TRUE).

EIO0000002036 09/2014 413

SoMachine HVAC - UserInterface

8.1.2 FUNCTION FOR MANAGING PROJECT RESOURCES AND COMMON
PROPERTIES

unsigned char Video_SetWndSysProps(unsigned long pFont, unsigned long col-
Fore, unsigned long colBack);

Set common properties for all pages in the project

Parameter Description

pFont Address of font for printing text in title bar (the font
must be added with Video_AddFont function).

colFore Text color of Title Bar.
colBack Background color of Title Bar.

Return Value Description
Video_SetWndSysProps Not sensible (always TRUE).

unsigned char Video_SetEditKey(unsigned char id, unsigned char code);

Set key-code for editing functions

Parameter Description

id Identifier	of	editing	function	(see.	Enumerative	table	
102, par. 6.3.1).

code Key code associated with editing function.
Return Value Description

Video_SetEditKey Not sensible (always TRUE).

unsigned char Video_AddFont(unsigned long pFont, unsigned char charLen,
unsigned char charHei, unsigned char offs);

Publish a new font in HMI run-time

Parameter Description
pFont Address	of	first	byte	of	font.
charLen Character width of font (#pixel).
charHei Character height of font (#pixel).

offs Byte offset of a font that starts with ASCII 0x00
(subset of characters).

Return Value Description
Video_AddFont TRUE if successful, FALSE otherwise.

414 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

unsigned char Video_AddFontUnicode(unsigned long pFont, unsigned char char-
Len, unsigned char charHei);

Publish a new unicode font in HMI run-time

Parameter Description
pFont Address	of	first	byte	of	font.
charLen Character width of font (#pixel).
charHei Character height of font (#pixel).

Return Value Description
Video_AddFontUnicode TRUE if successful, FALSE otherwise.

unsigned char Video_LoadLanguage(unsigned long pResStrings, unsigned long
pEnums);

Load strings and enumeratives of any language

Parameter Description
pResStrings Address	of	first	resources	string	for	current	language.

pEnums Address	of	first	resources	string	for	current	language.
Return Value Description

Video_LoadLanguage TRUE if successful, FALSE otherwise.

unsigned char Video_DrawFrames(unsigned short left, unsigned short top, un-
signed short right, unsigned short bottom,

unsigned long colBack, unsigned char fBar,

unsigned long pTitle, unsigned char fResStr,

unsigned char fSysBtn, unsigned char style);

Function for draw frame-set

Parameter Description
left Width of left frame (#pixel).
top Height of top frame (#pixel).
right Width of right frame (#pixel).
bottom Height of bottom frame (#pixel).
colBack Background color.

fBar
 - TRUE: shows title bar;
 - FALSE: hides title-bar.

pTitle
Text of title bar:
NULL: No string in title.

fResStr
 - TRUE: pTitle is a resource string;
 - FALSE: pTitle is an address of constant string.

fSysBtn
 - TRUE: shows system;
 - FALSE: hides system button.

style

 - 0: Flat;
 - 1: Raised;
 - 2: Sunken.

EIO0000002036 09/2014 415

SoMachine HVAC - UserInterface

Return Value Description
Video_DrawFrames Not sensible (always TRUE).

8.1.3 FUNCTIONS FOR OPERATING WITH PAGES

unsigned char Video_InitPage(unsigned short x1, unsigned short y1, unsigned
short x2, unsigned short y2,

unsigned long pTitle, unsigned short wData);

Show a page on display

Parameter Description
x1 Top-left ‘x coordinate’ edge relative to full page.
y1 Top-left ‘y coordinate’ edge relative to full page.
x2 Bottom-down ‘x coordinate’ edge relative to full page.
y2 Bottom-down ‘y coordinate’ edge relative to full page.

pTitle
Address of Text of title bar:
 - NULL: no text in title bar.

wData

Feature declaration:
b0..b7:
 - 0: Flat;
 - 1: Raised;
 - 2: Sunken.

b8:
 - 0: no title bar;
 - 1: shows title bar.

b9:
 - 0: pTitle is an address of constant string;
 - 1= pTitle is a resource string.

b10:
 - 0: no system button;
 - 1: shows system button.

b11:
 - 0: window not modal;
 - 1: modal window (sensible only for pop-ups
windows).

Return Value Description
Video_InitPage Not sensible (always TRUE).

416 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

unsigned char Video_SetPageColors(unsigned long colFore, unsigned long col-
Back);

Assign all colors for current page

Parameter Description
colFore Color of the text of page.
colBack Background color of page.

Return Value Description
Video_SetPageColors Not sensible (always TRUE).

unsigned char Video_ClrScreen();

Delete	entire	display	area	and	fill	with	background	color	defined	with	Video_SetPage-
Colors

Return Value Description
Video_ClrScreen TRUE if successful, FALSE otherwise.

unsigned char Video_ClrRect(unsigned short x1, unsigned short y1, unsigned
short x2, unsigned short y2);

Delete	only	a	portion	of	display	and	fill	with	background	color	defined	with	Video_Set-
PageColors

Parameter Description
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.
y2 Bottom-down 'y coordinate' edge relative to full page.

Return Value Description
Video_ClrRect TRUE if successful, FALSE otherwise.

unsigned char Video_SetFont(unsigned long fontPtr);

Load a font as current font for drawing objects. To correctly execute this function, the font
must be declared with Video_AddFont.

Parameter Description
fontPtr Address	of	first	byte	of	font.

Return Value Description
Video_SetFont TRUE if successful, FALSE otherwise.

EIO0000002036 09/2014 417

SoMachine HVAC - UserInterface

unsigned char Video_SetColors(unsigned long colForeTxt, unsigned long col-
BackTxt, unsigned long colForeSel, unsigned long colBackSel);

Assign the current colors for drawing objects

Parameter Description
colForeTxt Text color.
colBackTxt Background color.
colForeSel Text color for selection.
colBackSel Background color for selection.

Return Value Description
Video_SetColors TRUE if successful, FALSE otherwise.

unsigned char Video_ResetMaps(unsigned char res);

Delete the maps saved for every object. The maps are created adding an object at once,
with access mode kACS_INIT.

Parameter Description
res Reserved. Set 0.

Return Value Description
Video_ResetMaps Not sensible (return input parameter res).

8.1.4 FUNCTION FOR OBJECTS

unsigned char Video_NextEdit(unsigned char fRWOnly);

Enable	selection	for	next	objects	identified	by	Sel. Order attribute.

Parameter Description

fRWOnly

Limit for selecting the next edit-box:
 - FALSE: next edit-box must be selectable;
 - TRUE: the next edit-box must be selectable and
writable.

Return Value Description

Video_NextEdit Handle of selected objects; if -1 the function has an
error.

unsigned char Video_PrevEdit(unsigned char fRWOnly);

Enable	selection	for	previous	objects	identified	by	Sel. Order attribute.

Parameter Description

fRWOnly

Limit for selecting the next edit-box:
 - FALSE: the next edit-box must be selectable;
 - TRUE: the next edit-box must be selectable and
writable.

Return Value Description

Video_PrevEdit Handle of selected objects; if -1 the function has an
error.

418 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

unsigned char Video_EnterEdit(unsigned short wHnd);

Enter edit-mode of an Edit Box otherwise execute the action for a button. The object holds
the task until exits from edit-mode.

Parameter Description

wHnd Handle of object that must be edited or execute his
action.

Return Value Description

Video_EnterEdit Return pressed key code for exiting edit-mode. If
return -1 is an error only if the object is an edit-box.

unsigned char Video_EnterEditSel(unsigned short wHnd, unsigned char onlySe-
lect)

Select object or enter edit-mode of an Edit box otherwise execute the action for a button.
The object holds the task until exit from edit-mode.

Parameter Description

wHnd Handle of object that must be edited or execute his
action.

OnlySelect
 - FALSE: as VideoEnterEdit();
 - TRUE: enables only the selection without entering
edit-mode.

Return Value Description

Video_EnterEditSel Return pressed key code for exiting edit-mode. If
return -1 is an error only if the object is an edit-box.

unsigned char Video_PushButton(unsigned short wHnd);

Enter press-mode for buttons. The object holds the task until exit from press-mode. This
function is sensible only for touchscreen systems.

Parameter Description
wHnd Handle of button.

Return Value Description

Video_PushButton

 - TRUE: last pressure event was in button area;
 - FALSE: last pressure event was outside button area;
 - -1: error.

short Video_FirstLastEdit(unsigned char rwReq, unsigned char last)

Return	the	handle	of	first	or	last	selectable	controls.

Parameter Description

rwReq Boolean parameter. It indicates if the function checks
for the objects that have read-write access mode.

last
 - TRUE: last selectable object;
 - FALSE:	first	selectable	object.

Return Value Description

Video_FirstLastEdit Handle of the object; -1 if errors or do not exist
selectable objects

EIO0000002036 09/2014 419

SoMachine HVAC - UserInterface

8.1.5 DRAWING FUNCTIONS

unsigned char Video_Line(unsigned short x1, unsigned short y1, unsigned
short x2, unsigned short y2, unsigned char pts, unsigned long color);

Draw a line

Parameter Description
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.
y2 Bottom-down 'y coordinate' edge relative to full page.
pts Thickness.
color Line color.

Return Value Description
Video_Line TRUE if successful, FALSE otherwise.

unsigned char Video_Rectangle(unsigned short x1, unsigned short y1, un-
signed short x2, unsigned short y2, unsigned char pts, unsigned char transp,
unsigned long bordCol, unsigned long fillCol);

Draw a rectangle

Parameter Description
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.
y2 Bottom-down 'y coordinate' edge relative to full page.
pts Border thickness.

transp
 - TRUE: transparent square;
 - FALSE: solid square.

bordCol Border color.
fillCol Fill color. The value is not sensible if transp is TRUE.

Return Value Description
Video_Rectangle TRUE if successful, FALSE otherwise.

unsigned char Video_DrawBorder(unsigned char style, unsigned short x1, un-
signed short y1, unsigned short x2, unsigned short y2, unsigned char pts,
unsigned char color);

Draw a border outside the rectangle area

Parameter Description

style

 - 0:	flat;
 - 1: raised;
 - 2: sunken.

x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.

420 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

y2 Bottom-down 'y coordinate' edge relative to full page.
pts Border thickness. It is sensible only if style = 0.

color Border color. It is sensible only if style = 0.
Return Value Description

Video_DrawBorder TRUE if successful, FALSE otherwise.

unsigned char Video_DelBorder(unsigned char style, unsigned short x1, un-
signed short y1, unsigned short x2, unsigned short y2, unsigned char pts
);

Delete	a	border	outside	the	rectangle	area.	The	color	of	fill	is	the	page	color	assigned	with	
Video_SetPageColors

Parameter Description

style

 - 0:	flat;
 - 1: raised;
 - 2: sunken.

x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.
x2 Bottom-down 'x coordinate' edge relative to full page.
y2 Bottom-down 'y coordinate' edge relative to full page.
pts Border thickness It's sensible only if style = 0

Return Value Description
Video_DelBorder TRUE if successful, FALSE otherwise.

unsigned char Video_PrintBitmap(unsigned long ptrBmp, unsigned short x,
unsigned short y);

Print a bitmap coded with run-time HMI format

Parameter Description
ptrBmp Address	of	first	byte	of	bitmap.

x Top-left 'x coordinate' edge relative to full page.
y Top-left 'y coordinate' edge relative to full page.

Return Value Description
Video_PrintBitmap Not sensible (always TRUE).

unsigned char Video_DelBitmap(unsigned long ptrBmp, unsigned short x, un-
signed short y);

Delete a bitmap where it is not transparent, coded with run-time HMI format

Parameter Description
ptrBmp Address	of	first	byte	of	bitmap.

x Top-left 'x coordinate' edge relative to full page.
y Top-left 'y coordinate' edge relative to full page.

Return Value Description
Video_DelBitmap Not sensible (always TRUE).

EIO0000002036 09/2014 421

SoMachine HVAC - UserInterface

unsigned long Video_InitBmpTreeRefresh(unsigned short x1,

unsigned short y1, unsigned short x2, unsigned short y2);

Switch context of drawing area. With this call all the next drawing functions uses the in-
visible device context

Parameter Description
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.

x2 Bottom-down 'x coordinate' edge relative to full
page.

y2 Bottom-down 'y coordinate' edge relative to full
page.

Return Value Description
Video_InitBmpTreeRefresh Address of invisible device context.

unsigned long Video_EndBmpTreeRefresh(unsigned short pDC,

unsigned short x1, unsigned short y1,

unsigned short x2, unsigned short y2);

Restore original device context and copy the area from invisible context to display con-
text

Parameter Description
pDC Address of invisible device context.
x1 Top-left 'x coordinate' edge relative to full page.
y1 Top-left 'y coordinate' edge relative to full page.

x2 Bottom-down 'x coordinate' edge relative to full
page.

y2 Bottom-down 'y coordinate' edge relative to full
page.

Return Value Description
Video_EndBmpTreeRefresh Not sensible (always TRUE).

8.1.6 FUNCTIONS FOR TEXT

unsigned char Video_PrintStr(char * str, unsigned short x, unsigned short
y);

Print a string using the current font set with SetFont and current colors set with Set-
Colors()

Parameter Description
str Text to print.
x Top-left 'x coordinate' edge relative to full page.
y Top-left 'y coordinate' edge relative to full page.

Return Value Description
Video_PrintStr Number of chars printed.

422 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

unsigned char Video_PrintResStr(unsigned short idRes, unsigned short x,
unsigned short y);

Print a resources string using the current font set with SetFont and current colors set with
SetColors()

Parameter Description
idRes Identifiers	of	resource.
x Top-left 'x coordinate' edge relative to full page.
y Top-left 'y coordinate' edge relative to full page.

Return Value Description
Video_PrintResStr Number of chars printed.

unsigned char Video_PrintNChar(char * str, unsigned char accMode, unsigned
short x, unsigned short y, unsigned char nChar, unsigned long format);

Print at most nChar characters of a string, using the current font set with SetFont and
current colors set with SetColors(). It uses also a format for drawing the text.
If nChar is less than string length, it truncates the string; otherwise apply the alignment.

Parameter Description
str Text to print.

accMode

 - kACS_PRINT: print with colForeTxt and colBackTxt
colors.

 - kACS_SELECT: print with colForeSel and
colBackSel colors.

x Top-left 'x coordinate' edge relative to full page.

y Top-left 'y coordinate' edge relative to full page.

nChar Maximum number of chars to print.

format

Alignment of text. It is sensible only if nChar > length
of str:
 - 0x08 = right alignment;
 - 0x10 = center alignment;
 - 0x20 = left alignment.

Return Value Description
Video_PrintNChar Number of chars of truncated string.

8.1.7 FUNCTIONS FOR PARAMETER ACCESS

unsigned short Video_GetParam(unsigned char idxDevice, unsigned short idx-
Param, unsigned char subIdxParam, unsigned long pVal, unsigned char type)

Read a parameter from a device

Parameter Description
idxDevice Index of device connected.
idxParam Index of parameter.

subIdxParam Sub-index of parameter.

EIO0000002036 09/2014 423

SoMachine HVAC - UserInterface

pVal Address of variable that contains the read value.

type

Parameter type. Available values:
tyBool, tySInt, tyUSInt, tyByte, tyInt,
tyUInt, tyWord, tyDInt, tyUDInt, tyDWord,
tyReal,tyString.

Return Value Description

Video_GetParam

Integer values:
 - 0 = successful;
 - 1 = index of parameter not found;
 - 2,8,9 = system errors;
 - 3 = type not valid.

unsigned short Video_SetParam(unsigned char idxDevice, unsigned short idx-
Param, unsigned char subIdxParam, unsigned long pVal, unsigned char type)

Write a parameter to a device.

Parameter Description
idxDevice Index of device connected.
idxParam Index of parameter.

subIdxParam Sub-index of parameter.
pVal Address of variable that contains the value to write.

type

Parameter type. Available values:
tyBool, tySInt, tyUSInt, tyByte, tyInt, tyUInt,
tyWord, tyDInt, tyUDInt, tyDWord, tyReal,
tyString.

Return Value Description

Video_SetParam

Integer values:
 - 0 = successful;
 - 1 = index of parameter not found;
 - 2,8,9 = system errors;
 - 3 = type not valid;
 - 4 = read-only parameter;
 - 5 = cannot write now;
 - 6 = the value is less than the min value;
 - 7 = the value is more than the max value.

424 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

8.1.8 FUNCTIONS FOR EVENTS

unsigned char Video_SendEvent(unsigned short msgID, unsigned short wParam
);

Send an event from code

Parameter Description

msgID

Available values:
 - kWM_NULL = no event;
 - kWM_KEY = key pressure;
 - kWM_MSG = open message;
 - kWM_SELECT = select an edit-box, a button;
 - kWM_PUSH = pressure on button.

wParam

Event parameter. It has a different meaning according
to msgID:
 - if kWM_NULL= not sensible;
 - if kWM_KEY= pressed key.

For the key a constant value exists. The syntax is:
kKEY_<key> Ex. LongLeft -> kKEY_LongLeft

 - if kWM_MSG =ID of message page to open;
 - if kWM_SELECT= handle of selected edit-box, button;
 - if kWM_PUSH= handle of pressed button.

Return Value Description
Video_SendEvent TRUE if successful, FALSE otherwise.

unsigned long Video_GetEvent(unsigned char dmy);

Pop an event from queue

Parameter Description
dmy Reserved. Set 0.

Return Value Description

Video_GetEvent

Double word with inside the encoding.
16 low bit = type of event:
 - kWM_NULL = no event;
 - kWM_KEY = key pressure;
 - kWM_MSG = open message;
 - kWM_SELECT = select an edit-box, a button;
 - kWM_PUSH = pressure on button.

16 high bit = event parameter:
 - if kWM_NULL= not sensible;
 - if kWM_KEY= pressed key;
 - if kWM_MSG= ID of message page to open;
 - if kWM_SELECT= handle of selected edit-box, button;
 - if kWM_PUSH= handle of pressed button.

EIO0000002036 09/2014 425

SoMachine HVAC - UserInterface

8.2 FUNCTION BLOCKS
FUNCTION BLOCK: Video_GetPageColors

Get the page colors of the page where called

Frame structure: FB_VIDEO_GETPAGEColorS
Local variables Type Description

Input variables Type Description

Output variables Type Description

color word32 Text color in the page.
back word32 Background of the page.

FUNCTION BLOCK: Static01

Text strings with variable visibility

Frame structure: FB_STATIC01
Local variables Type Description

memVis byte Visibility status of the previous execution.
Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
static objects.

x word16 Top-left 'x coordinate' edge relative to full
page.

y word16 Top-left 'y coordinate' edge relative to full
page.

accMode byte

 - kACS_IDLE = no effect;
 - kACS_INIT =	first	draw	on	display;
 - kACS_PRINT = update draw on display.

fResStr byte

Boolean value:
 - FALSE = pString is the address of string
to draw;

 - TRUE = pString	is	the	identifier	of	
resource string.

pString word32 Text to draw. It is different according to
fResStr.

pFont word32 Address of font for drawing text. The font
must be initialized with Video_AddFont.

foreCol word32 Text color.
bckCol word32 Background color.

pVisVar word32

Visibility. Available values:
 - FALSE = text not visible;
 - TRUE = text always visible;
 - var_addr = address of boolean variable.

426 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_STATIC01

format word16

Format for numeric values, encoded in 32
bit:
b3
1= right alignment
b4
1= center alignment
b5
1= left alignment

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

bordPts byte
Border thickness. It is sensible only if
style = 0

bordCol word32 Border color. It is sensible when style = 0
bordPts > 0 and not pSelVar	=	1	fixed.

selBackCol word32 Background color when object is selected.It
is not sensible if pSelVar	=	0	fixed.

selForeCol word32 Text color when selected. It is not sensible if
pSelVar	=	0	fixed.

pRefrVar word32

Variable for update:
 - FALSE = the object is redrawn only when
the page is opening or when returning
from child page;

 - TRUE = the object is always redrawn.

pSelVar word32

Selection	flag	for	the	object.	Suggest	if	the	
object must uses {‘selBackCol’ } and
{‘selForeCol’}. Available values:
 - FALSE = object is never selected;
 - TRUE = object is always selected;
 - var_addr = address of boolean variable.

numChars word16
Number of max characters. 0 indicates that
the string is drawn with the entire value of
pString.

Output variables Type Description

FUNCTION BLOCK: Image

Image object

Frame structure: FB_IMAGE
Local variables Type Description

memVis byte Visibility status of the previous execution.
memSel byte Selection status of the previous execution.

Input variables Type Description

wHnd word16 Handle of the object. Must be unique
among image objects.

EIO0000002036 09/2014 427

SoMachine HVAC - UserInterface

Frame structure: FB_IMAGE

x1 word16 Top-left 'x coordinate' edge relative to full
page.

y1 word16 Top-left 'y coordinate' edge relative to full
page.

px1 word32
Address of variable for moving image on
X-Axis. It is sensible only if
floating = TRUE

py1 word32
Address of variable for moving image on
Y-Axis. It is sensible only if
floating = TRUE

type_x byte

Type for px1. Available values:
tySInt; tyUSInt; tyByte; tyInt;
tyUInt; tyWord; tyDInt; tyUDInt;
tyDWord.
It is sensible only if floating = TRUE and
px1 <> NULL

type_y byte

Type for py1. Available values:
tySInt; tyUSInt; tyByte; tyInt;
tyUInt; tyWord; tyDInt; tyUDInt;
tyDWord.
It is sensible only if floating = TRUE and
py1 <> NULL

dx word16 Width (#pixel).
dy word16 Height (#pixel).

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

floating byte

Position of object:
 - FALSE = docking
 - TRUE	=	floating

bordPts byte Border thickness. It is sensible only if
style = 0

bordCol word32 Border color. It is sensible when style = 0
bordPts > 0 and not pSelVar	=	1	fixed.

bordSelCol word32
Border color for selected object. It is
sensible when style = 0 and bordPts > 0
and not pSelVar	=	0	fixed

accMode byte

 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display
 - kACS_QUERY = request for updating
output variables

 - kACS_BCKQUERY = request for updating
output variables when the object is in
background pages

 - kACS_DELETE = delete object

pBmp word32 Address	of	first	byte	of	bitmap	to	view.	It	is	
not sensible if pSelBmp	=	1	fixed.

428 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_IMAGE

pSelBmp word32
Address	of	first	byte	of	bitmap	to	view	
when selected. It is not sensible if
pSelBmp =	0	fixed.

pSelVar word32

Selection	flag	for	the	object.	Suggest	if	the	
object must uses {‘bordCol’, ‘pBmp’}
or {‘bordSelCol’, ‘pSelBmp’}. Available
values:
 - FALSE = object is never selected
 - TRUE = object is always selected
 - var_addr = address of boolean variable

pVisVar word32

Flag of visibility. Available values:
 - FALSE = image not visible
 - TRUE = image always visible
 - var_addr = address of boolean variable

Output variable Type Description

reqRefr byte
Request refresh, updated when the object
is called with accMode = kACS_QUERY or
accMode = kACS_BCKQUERY.

abs_x1 word16

Top-left 'x coordinate' edge relative to full
page obtained with the sum among ‘x1’ and
‘px1’. The value is updated when the object
is called with accMode = kACS_INIT or
accMode = kACS_QUERY.

abs_y1 word16

Top-left 'y coordinate' edge relative to full
page obtained with the sum among ‘y1’ and
‘py1’. The value is updated when the object
is called with accMode = kACS_INIT or
accMode = kACS_QUERY.

mem_x1 word16
Value read from abs_x1 when the object
is called with accMode = kACS_INIT or
accMode = kACS_PRINT.

mem_y1 word16
Value read from abs_y1 when the object
is called with accMode = kACS_INIT or
accMode = kACS_PRINT.

FUNCTION BLOCK: Animation

Animation object

Frame structure: FB_ANIMATION
Local variables Type Description

memBmp word32 Address of bitmap of the previous execution
Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
animation objects.

x1 word16 Top-left 'x coordinate' edge relative to full
page.

y1 word16 Top-left 'y coordinate' edge relative to full
page.

EIO0000002036 09/2014 429

SoMachine HVAC - UserInterface

Frame structure: FB_ANIMATION

x2 word16 Bottom-right 'x coordinate' edge relative to
full page.

y2 word16 Bottom-right 'y coordinate' edge relative to
full page

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

bordPts byte Border thickness. It is sensible only if
style = 0

bordCol word32
Border color. It is sensible when
style = 0 bordPts > 0 and not
pSelVar	=	1	fixed

accMode byte

 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display

pBmpArr word32 Address	of	first	image	to	view.
pCaseArr word32 Address	of	first	element	of	selection.
nArrEl byte Number of elements in image list.

pBmpDef word32 Address of bitmap to view pSelVar not in
pCaseArr.

pSelVar word32 Address of variable for selection.

type byte

Type of pSelVar. Available values:
tyBool; tySInt; tyUSInt; tyByte;
tyInt; tyUInt; tyWord; tyDInt;
tyUDInt; tyDWord.

pVisVar word32

Flag of visibility. Available values:
 - FALSE = image not visible
 - TRUE = image always visible
 - var_addr = address of boolean variable

Output variable Type Description

FUNCTION BLOCK: Button02

Button object

Frame structure: FB_BUTTON02
Local variables Type Description

memVis byte Visibility status of the previous execution.

memTransp byte Transparency status of the previous
execution.

memSel byte Selection status of the previous execution.
Input variables Type Description

wHnd word16 Handle of the object. Must be unique
among buttons objects.

x1 word16 Top-left 'x coordinate' edge relative to full
page.

430 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_BUTTON02

y1 word16 Top-left 'y coordinate' edge relative to full
page.

x2 word16 Bottom-right 'x coordinate' edge relative to
full page.

y2 word16 Bottom-right 'y coordinate' edge relative to
full page.

fResStr byte

Boolean value:
 - FALSE = pString is the address of string
to draw

 - TRUE = pString is	the	identifier	of	
resource string

pText word32
Text to draw on the button. It has different
meaning according to fResStr.	If	this	field	
is NULL, no text is drawn.

pFont word32 Address of font for drawing text. The font
must be initialized with Video_AddFont.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

bordPts byte Border thickness. It is sensible only if
style = 0

bordCol word32

Border color and text color. It is sensible
only if style = 0 and bordPts > 0, or
pString different as NULL, and not pSelVar
=	1	fixed.

fillCol word32
Color of button area. It is sensible only
if pTransp	different	as	1	fixed,	and	not	
pSelVar	=	1	fixed.

bordSelCol word32

Border color and text color when selected.
It is sensible only if style = 0 and bordPts
> 0, or pString different as NULL, and not
pSelVar	=	0	fixed.

fillSelCol word32
Color of button area when selected. It is
sensible only if pTransp	different	as	1	fixed,	
and not pSelVar =	0	fixed.

accMode byte

 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display

pVisVar word32

Flag of visibility. Available values:
 - FALSE = image not visible
 - TRUE = image always visible
 - var_addr = address of boolean variable

pTransp word32

Flag of transparency. Available values:
 - FALSE = button always solid
 - TRUE = button always transparent
 - var_addr = address of boolean variable

EIO0000002036 09/2014 431

SoMachine HVAC - UserInterface

Frame structure: FB_BUTTON02

pPressVar word32

Address of a boolean variable.
Pressed button= *pPressVar = TRUE
Released button= *pPressVar = FALSE.
If	the	field	is	NULL there is no variable.

pSelVar word32

Selection	flag	for	the	object.	Suggest	if	the	
object must uses {‘bordCol’, ‘fillCol’}
or {‘bordSelCol’, ‘fillSelCol’}.
Available values:
 - FALSE = object is never selected
 - TRUE = object is always selected
 - var_addr = address of boolean variable

format word16

Format of numeric values encoded with 16
bit:
b4
1= right alignment
b5
1= center alignment
b6
1=left alignment

order word16 Number for establishing a sequential
selection

Output variable Type Description

FUNCTION BLOCK: EditBox01

Edit object

Frame structure: FB_EDITBOX01
Local variables Type Description

memVis byte Visibility status of the previous execution.
Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
edit-box objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.
y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full
page.

y2 word16 Bottom-right 'y coordinate' edge relative to full
page.

pFont word32 Address of font for drawing text. The font must
be initialized with Video_AddFont.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

foreCol word32 Text color.

432 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_EDITBOX01
bckCol word32 Background color.

foreSelCol word32 Text color when selected. It is sensible only if
pCanSel	is	not	0	fixed.

bckSelCol word32 Background color when selected. It is sensible
only if pCanSel is not 0 constant.

bordPts byte Border thickness. It is sensible only if
style = 0

bordCol word32 Border color. It is sensible when style = 0
bordPts> 0

rw byte
 - FALSE = read-only mode
 - TRUE = read-write mode

refr byte

Request refresh:
 - FALSE = the object is redrawn only when the
page is opening or return from child page

 - TRUE = the object is always redrawn

pVar word32

Address of variable or parameter according to
format. It cannot be NULL.
If it is a parameter is encoded in this way:
b0..b7 = Subindex parameter
b8..b23 = IPA parameter
b24..b32 = Device address

type byte

Type of data. Available values:
tyBool; tySInt; tyUSInt; tyByte; tyInt;
tyUInt; tyWord; tyDInt; tyUDInt;
tyDWord,tyReal

pVarMin word32

Min value for edit-box variable.
If	bit	b16-b17	(LSB)	of	field	format contains 0
the limit is not set, if contains 1 is a constant
limit, if contains 2 it is a variable limit.

pVarMax word32

Max value for edit-box variable.
If	bit	b14-b15	(LSB)	of	field	format contains 0
the limit is not set, if contains 1 is a constant
limit, if contains 2 it’s a variable limit.

enumId int16 Identifier	of	enumerative.	If	0	no	enumerative	
associated	with	this	field	exists.

EIO0000002036 09/2014 433

SoMachine HVAC - UserInterface

Frame structure: FB_EDITBOX01

format word32

View format encoded in 32 bit:
b0
 - 0 = draw sign only if number is negative
 - 1 = draw sign also for positive numbers

b1
 - 0	=	does	not	print	most	significant	null	digits
 - 1	=	draw	zeroes	on	most	significant	null	digits

b2
 - 0 = ‘pVar’ is a variable
 - 1 = ‘pVar’ is a parameter

b3
1 = right alignment
b4
1 = center alignment
b5
1 = left alignment
b10
Exadecimal format, with a..f lowercase
b11
Exadecimal format, with A..F uppercase
b14..b15
 - 0=no max limit
 - 1=constant max limit
 - 2=variable max limit

b16..b17
 - 0=no min limit
 - 1=constant min limit
 - 2=variable min limit

b24..b26
Precision (real numbers)
b27..b31
Width (cfr. § 1.7.2)

pVisVar word32

Flag of visibility. Available values:
 - FALSE = object not visible
 - TRUE = object always visible
 - var_addr = address of boolean variable

pCanSel word32

Available values:
 - FALSE = object not selected
 - TRUE = object always selected
 - var_addr = address of boolean variable

order byte Number for establish a sequential selection.

434 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_EDITBOX01

accMode byte

 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display
 - kACS_SELECT = update draw on display when
selected

 - kACS_MODIFY = enter in editing mode
Output
variable Type Description

outKey char Key code for exiting editing-mode.

FUNCTION BLOCK: TextBox

Text box object

Frame structure: FB_TEXTBOX
Local variables Type Description

memVis byte Visibility status of the previous execution.
base word16 Number	of	first	line	seen	in	object.

Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
textbox objects.

x1 word16 Top-left 'x coordinate' edge relative to full
page.

y1 word16 Top-left 'y coordinate' edge relative to full
page.

x2 word16 Bottom-right 'x coordinate' edge relative to
full page.

y2 word16 Bottom-right 'y coordinate' edge relative to
full page.

pFont word32 Address of font for drawing text. The font
must be initialized with Video_AddFont.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

foreCol byte Text color.
bckCol byte Background color.

bordPts byte Border thickness It is sensible only if
style = 0

bordCol byte Border color. It is sensible when style = 0
bordPts > 0

LineNr byte
 - FALSE = hide line number
 - TRUE = show line number

rw byte
 - FALSE= read-only mode
 - TRUE= read-write mode

pVar word32 Address of string variable. It cannot be NULL.
szpVar word32 Size of pVar.

EIO0000002036 09/2014 435

SoMachine HVAC - UserInterface

Frame structure: FB_TEXTBOX

pVisVar word32

Flag of visibility. Available values:
 - FALSE= object not visible
 - TRUE= object always visible
 - var_addr= address of boolean variable

order byte Number for establishing a sequential selection.

accMode byte

Access mode. Available values:
 - kACS_IDLE = no effect
 - kACS_INIT =	first	draw	on	display
 - kACS_PRINT = update draw on display
 - kACS_SELECT = update draw on display
when selected

 - kACS_MODIFY = enter editing mode
 - kACS_SCROLLUP= scroll up one line
 - kACS_SCROLLDW= scroll down one line

rqCursPos word16 Char Index where move the cursor.
rqCursRow word16 Row to select.

dispCurs byte

 - TRUE= the cursor is always visible even if it
is not enabled editing mode

 - FALSE= the cursor is visible only if it is
enabled editing mode.

dispRow byte

 - TRUE= the row selection is always visible
even if it is not enabled editing mode

 - FALSE= the row selection is visible only if it
is enabled editing mode

bckSelCol word32 Future developments.
wParam word32 Future developments.
IParam word32 Future developments.

Output variable Type Description
outKey char Key code for exiting editing-mode.

outCursPos word16 Char index where there is the cursor.
outCursRow word16 Index of selected row.

FUNCTION BLOCK: Progress

Progress bar object

Frame structure: FB_PROGRESS
Local variables Type Description

memVis byte Visibility status of the previous execution
memVal word32 Progress status of the previous execution

Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
progress objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.
y1 word16 Top-left 'y coordinate' edge relative to full page.

436 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_PROGRESS

x2 word16 Bottom-right 'x coordinate' edge relative to full
page.

y2 word16 Bottom-right 'y coordinate' edge relative to full
page.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

barCol word32 Color of step bar.
bckCol word32 Background color.
bordPts byte Border thickness. It is sensible only if style = 0

bordCol word32 Border color. It is sensible when style = 0
bordPts > 0

pVar word32
Step	variable.	This	is	the	filling	percentage	of	bar	
in relation with the range assigned by pMin and
pMax.

type byte
Type of pVar. Assigned values:
tyBool; tySInt; tyUSInt; tyByte; tyInt; tyUInt;
tyWord; tyDInt; tyUDInt; tyDWord

pMin word32
Min value for edit-box variable.
If	bit	b0	(LSB)	of	field	format contain 0 is a
constant limit, if contain 1 it is a variable limit.

pMax word32
Min value for edit-box variable.
If	bit	b1	(LSB)	of	field	format contain 0 is a
constant limit, if contain 1 it is a variable limit.

format word32

View format encoded in bit:
b0
 - 0 = pMin contains a constant value of Type
‘type’

 - 1 = pMin contains the address of variable of
Type ‘type’

b1
 - 0 = pMax contains a constant value of Type
type

 - 1 = pMax contains the address of variable of
Type type

b2
 - 0 = horizontal orientation
 - 1 = vertical orientation

pVisVar word32

Flag of visibility. Available values:
 - FALSE = object not visible
 - TRUE = object always visible
 - var_addr = address of boolean variable

accMode byte

Access mode. Available values:
 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display

EIO0000002036 09/2014 437

SoMachine HVAC - UserInterface

Frame structure: FB_PROGRESS
Output variable Type Description

FUNCTION BLOCK: CustomCtrl

Embedded function block which implements custom control

Frame structure: FB_CUSTOMCTRL
Local variables Type Description

memVis byte Visibility status of the previous execution.

ptrFunct word32 Address of function that implements Type
wCtrlID.

data0 word32 Local variable.
data1 word32 Local variable.
data2 word32 Local variable.
data3 word32 Local variable.

Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
custom control objects.

x1 word16 Top-left 'x coordinate' edge relative to full page.
y1 word16 Top-left 'y coordinate' edge relative to full page.

x2 word16 Bottom-right 'x coordinate' edge relative to full
page.

y2 word16 Bottom-right 'y coordinate' edge relative to full
page.

wCtrlID word16 Identifier	of	custom	control.

pVisVar word32

Flag of visibility. Available values:
 - FALSE = object not visible
 - TRUE = object always visible
 - var_addr = address of boolean variable

refr byte

Request refresh:
 - FALSE = the object is redrawn only when the
page is opening or return from child page

 - TRUE = the object is always redrawn

accMode byte

Access mode. Available values:
 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display

The value greater than 200 can be used for
custom purpose.

wParam word16 16 bit data without sign, used for custom purpose
lParam int32 32 bit data with sign, used for custom purpose

rParam float 32 bit real data with sign, used for custom
purpose

Output variable Type Description

438 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

FUNCTION BLOCK: Chart

Chart object

Frame structure: FB_CHART
Local variables Type Description

memVis byte Visibility status of the previous execution

grx1 word16 Top-left 'x coordinate' edge relative to full
page.

gry1 word16 Top-left 'y coordinate' edge relative to full
page.

grx2 word16 Bottom-right 'x coordinate' edge relative to
full page.

gry2 word16 Bottom-right 'y coordinate' edge relative to
full page.

pChart word32 Handle of the chart created after ACS_INIT.
lastIdxSamples word32 Actual index of inserted track data.
Input variables Type Description

wHnd word16 Handle of the object. Must be unique among
chart objects.

x1 word16 Top-left 'x coordinate' edge relative to full
page.

y1 word16 Top-left 'y coordinate' edge relative to full
page.

x2 word16 Bottom-right 'x coordinate' edge relative to
full page.

y2 word16 Bottom-right 'y coordinate' edge relative to
full page.

pFont word32 Address of font for drawing text. The font
must be initialized with Video_AddFont.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

bordPts byte Border thickness. It is sensible only if style
= 0

bordCol byte Border color. It is sensible when style = 0
bordPts > 0

backCol byte Background color.

pNSamples word32
Address of the number of available samples
to add in the chart. This value is used only
when refresh is TRUE.

tyNSamples byte Type of the number of samples.
tyXOffset byte Type of the offset of X-axis.

pXOffset word32 Address of the offset of X-axis. (move right-
left the chart in order to 0).

tyTrackRight word16 Type of default track for right Y-Axis

pTrackRight word32 Address of the track of right Y-Axis. (if 0 the
right label will not drawn).

tyTrackLeft word16 Type of default track for left Y-Axis.

EIO0000002036 09/2014 439

SoMachine HVAC - UserInterface

Frame structure: FB_CHART

pTrackLeft word32 Address of the track of left Y-Axis. (if 0 the
left label will not drawn).

formatLeft word32 Label format of left Y-Axis.
formatRight word32 Label format of right Y-Axis.

format Word32 Label format of X-Axis.

iDivGridX word16

Number of division on horizontal bar , used
with scale factor and offset for drawing the
chart tracks (Ex. scale X=1, iDivGridX = 5
value between 0 and 5). Sensible even if
the grid is not visible.

iDivGridY word16

Number of division on vertical bar , used
with scale factor and offset for drawing the
chart tracks (Ex. scale Y=1, iDivGridY = 5
value between 0 and 5).
Sensible even if the grid is not visible.

fGrid byte

Draw grid:
 - FALSE = grid not visible
 - TRUE = grid visible

iXLabelDiv word16 Step for X-axis labels. How many division of
horizontal bar must have labels.

tyXScaleType byte Type of X-Axis scale.

pXScale word32

Address of Scale factor of x-Axis. Value
range among two division of horizontal bars.
0 value indicate that the chart is in auto-
scale mode.

pClearVar Word32 Address of boolean variable. If it is TRUE the
chart delete all the previous data.

accMode byte

Access mode. Available values:
 - kACS_IDLE = no effect
 - kACS_INIT =	first	draw	on	display
 - kACS_PRINT = update draw on display
 - kACS_CLOSE = close the chart and delete
all the data

pXData word32

Address	or	constant	for	X-Axis	definition.
Available values:
 - constant: number of samples * constant
start with 0

 - variable = array that contains pNSamples
samples with X-axis value

tyXData byte Type of ‘pXData’ array. If tyXData =
tyUndefined	is	a	constant.

XlabelCol word32 Color of X-Axis label.

iDotStep word16 Space among two points of grid in pixel. The
property is sensible if the grid is visible.

iSampleBuffer word16
Number of samples that the run-time can
store. The older ones are deleted if the size
is exceeded.

440 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_CHART

arXBars word32[3]
Array of addresses of vertical bars. If 0 the
vertical	bar	is	not	defined,	otherwise	the	
address of variable or constant value.

arXBarsType word16[3]

Type of variable that indicates the value
of vertical bars. If arXBarsType[n] =
tyUndefined and arXBars[n] is not NULL,
the value of arXBars[n] is a numeric
costant.

arXBarsCol word32[3] Colors of vertical bars.
GridCol word32 Color of grid.

BorderGridColor word32 Color of border of grid.

pVisVar word32

Flag of visibility. Available values:
 - FALSE = object not visible
 - TRUE = object always visible
 - var_addr = address of boolean variable

arTrkData word32[8]

Array of addresses of data. The nth of
arTrkData	contains	the	address	of	first	
elements of array of nth track. If address is
NULL the	track	is	not	define.

arTrkType byte[8]

Array of data. The nth of arTrkType contains
the type of nth elements of arTrkData.
This value is sensible only if the element of
arTrkData is not NULL.

arTrkCol byte[8]
Array of track colors. This value is sensible
only if the element of arTrkData is not
NULL.

arTrkVis word32[8]

Array	of	visibility	flags.	The	nth	element	of	
arTrkMinY determines the visibility of the
track:
 - FALSE = track not visible
 - TRUE = track always visible
 - var_addr = address of boolean variable

This value is sensible only if the element of
arTrkData is not NULL.

arTrkScaleY word32[8] Array of Y-axis scale. The range of samples
for every horizontal division.

arTrkScaleType word16[8] Type of variable of Y-Axis scale. If constant
value arTrkScaleType[n] = tyUndefined.

arTrkOffset word32[8]
Array of offset of Y-Axis for every track. The
displacement of the track from 0 high and
low.

arTrkOffsetType word16[8]
Type array of offset of Y-Axis for every track.
If constant value arTrkOffsetType[n] =
tyUndefined.

iYLabelDiv word16[8] Array that contains on every step draw the
Y-Axis label.

arTrkBarValue word32[8*3] Array of addresses of variables for horizontal
bars.

arTrkBarValueType word16[8*3] Array of types of variable for horizontal bars.

EIO0000002036 09/2014 441

SoMachine HVAC - UserInterface

Frame structure: FB_CHART
arTrackBarName word32[8*3] Array of names for horizontal bars.
arTrkBarCol word32[8*3] Array of colors for horizontal bars.

Output variable Type Description

FUNCTION BLOCK: Trend

Trend object

Frame structure: FB_TREND
Local variables Type Description

memVis byte Visibility status of the previous execution.

grx1 word16 Top-left 'x coordinate' edge relative to full
page.

gry1 word16 Top-left 'y coordinate' edge relative to full
page.

grx2 word16 Bottom-right 'x coordinate' edge relative
to full page.

gry2 word16 Bottom-right 'y coordinate' edge relative
to full page.

pChart word32 Handle of the chart created after ACS_
INIT.

FirstSamplingTimeS word32 Sampling time in seconds take on ACS_
INIT or when cleared.

FirstSamplingTimeMS word16 Sampling time in milli-seconds take on
ACS_INIT or when cleared.

LastSamplingTimeS word32 Sampling time in seconds take every
acquisition.

LastSamplingTimeMS word16 Sampling time in millisecond take every
acquisition.

InitDraw Byte If TRUE the trend is just drawn.
Input variables Type Description

wHnd word16 Handle of the object. Must be unique
among chart objects.

x1 word16 Top-left 'x coordinate' edge relative to full
page.

y1 word16 Top-left 'y coordinate' edge relative to full
page.

x2 word16 Bottom-right 'x coordinate' edge relative
to full page.

y2 word16 Bottom-right 'y coordinate' edge relative
to full page.

pFont word32 Address of font for drawing text. The font
must be initialized with Video_AddFont.

style byte

 - 0	=	flat
 - 1 = raised
 - 2 = sunken

442 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_TREND

bordPts byte Border thickness It is sensible only if
style = 0

bordCol byte Border color. It is sensible when
style = 0 bordPts > 0

backCol byte Background color.

pNSamples word32 Inherited from chart but contains
acquisition time in seconds.

tyNSamples byte Not used.
tyXOffset byte Type of the offset of X-axis.

pXOffset word32 Address of the offset of X-axis (move
right-left the chart in order to 0)

tyTrackRight word16 Type of default track for right Y-Axis.

pTrackRight word32 Address of the track of right Y-Axis (if 0
the right label will not drawn).

tyTrackLeft word16 Type of default track for left Y-Axis.

pTrackLeft word32 Address of the track of left Y-Axis (if 0 the
left label will not drawn).

formatLeft word32 Label format of left Y-Axis.
formatRight word32 Label format of right Y-Axis.

format Word32

Label format of X-Axis. Available values:
 - 0 = ss
 - 1 = mm.ss
 - 2 = hh.mm
 - 3 = hh.mm.ss

iDivGridX word16

Number of division on horizontal bar,
used with scale factor and offset for
drawing the chart tracks. (Ex. scale X=1,
iDivGridX = 5 value between 0 and 5).
Sensible even if the grid is not visible.

iDivGridY word16

Number of division on vertical bar, used
with scale factor and offset for drawing
the chart tracks (Ex. scale Y=1, iDivGridY
= 5 value between 0 and 5). Sensible
even if the grid is not visible.

fGrid byte

Draw grid:
 - FALSE = grid not visible
 - TRUE = grid visible

iXLabelDiv word16 Step for X-axis labels. How many division
of horizontal bar must have labels.

tyXScaleType byte Type of X-Axis scale.

pXScale word32

Address of Scale factor of x-Axis. Value
range among two division of horizontal
bars. 0 value indicate that the chart is in
auto-scale mode.

pClearVar Word32 Address of boolean variable. If it is TRUE
the chart delete all the previous data.

EIO0000002036 09/2014 443

SoMachine HVAC - UserInterface

Frame structure: FB_TREND

accMode byte

Access mode. Available values:
 - kACS_IDLE = no effect
 - kACS_INIT	=	first	draw	on	display
 - kACS_PRINT = update draw on display
 - kACS_CLOSE = close the chart and
delete all the data

XlabelCol word32

Address	or	constant	for	X-Axis	definition.
Available values:
 - constant: number of samples * constant
start with 0

 - variable: array that contains pNSamples
samples with X-axis value

iDotStep word16 Type of pXData array.
If tyXData = tyUndefined is a constant.

iSampleBuffer word16 Color of X-Axis label.

arXBars word32[3]
Space among two points of grid in pixel.
The property is sensible if the grid is
visible.

arXBarsType word16[3]
Number of samples that the run-time can
store. The older ones are deleted if the
size exceeds.

arXBarsCol word32[3]
Array of addresses of vertical bars. If 0
the	vertical	bar	is	not	defined,	otherwise	
the address of variable or constant value.

GridCol word32

Type of variable that indicates the value
of vertical bars. If arXBarsType[n] =
tyUndefined and arXBars[n] is not NULL,
the value of arXBars[n] is a numeric
costant.

BorderGridColor word32 Colors of vertical bars.
pVisVar word32 Color of grid.
arTrkData word32[8] Color of broder of grid.

arTrkType byte[8]

Flag of visibility. Available values:
 - FALSE = object not visible
 - TRUE = object always visible
 - var_addr = address of boolean variable

arTrkCol byte[8]

Array of addresses of data. The nth of
arTrkData	contains	the	address	of	first	
elements of array of nth track. If address
is NULL the	track	is	not	define.

arTrkVis word32[8]

Array of data. The nth of arTrkType
contains the type of nth elements of
arTrkData. This value is sensible only if
the element of arTrkData is not NULL.

arTrkScaleY word32[8]
Array of track colors. This value is sensible
only if the element of arTrkData is not
NULL.

444 EIO0000002036 09/2014

SoMachine HVAC - UserInterface

Frame structure: FB_TREND

arTrkScaleType word16[8]

Array	of	visibility	flags.	The	nth	element	of	
arTrkMinY determines the visibility of the
track:
 - FALSE = track not visible
 - TRUE = track always visible
 - var_addr = address of boolean variable

This value is sensible only if the element
of arTrkData is not NULL.

arTrkOffset word32[8] Array of Y-axis scale. The range of
samples for every horizontal division.

arTrkOffsetType word16[8]
Type of variable of Y-Axis scale.
If constant value arTrkScaleType[n] =
tyUndefined

iYLabelDiv word16[8]
Array of offset of Y-Axis for every track.
The displacement of the track from 0 high
and low.

arTrkBarValue word32[8*3]
Type array of offset of Y-Axis for
every track. If constant value
arTrkOffsetType[n] = tyUndefined

arTrkBarValueType word16[8*3] Array that contains on every step draw
the Y-Axis label.

arTrackBarName word32[8*3] Array of addresses of variables for
horizontal bars.

arTrkBarCol word32[8*3] Array of types of variable for horizontal
bars.

Output variable Type Description

“(1)”	Available	figures	and	colors	depend	on	target’s	features.

EIO0000002036 09/2014 445

SoMachine HVAC - UserInterface

446 EIO0000002036 09/2014

SoMachine HVAC - Simulation

Contents
1. Overview 449

2. Environment components 451

3. Operating modes 453

3.1 Full simulation 453

3.2	 Simplified	simulation	 453

4. Using the simulator 455

4.1 Simulation with Application 455

4.2	 Simplified	simulation	with	Application	 457

4.3	 Simulation	with	UserInterface	 457

4.4	 Simulation	with	both	Application	and	UserInterface	 459

5. Program interface 461

5.1	 Control	panel	 461
5.1.1	 Manual	workspace	editing	 462

5.2	 Target	panel	 462

5.3	 I/O	panels	 463
5.3.1	 Adding	elements	to	panels	 463
5.3.2	 Editing	panel	elements	 464
5.3.3	 Removing	elements	from	panels	 464

5.4	 I/O	panels	list	 464
5.4.1	 Adding	a	new	panel	 464
5.4.2	 Editing	a	panel	 464
5.4.3	 Removing	a	panel	 465

EIO0000002036 09/2014 447

SoMachine HVAC - Simulation

SAFETY INFORMATION

Important Information
Read	these	instructions	carefully,	and	look	at	the	equipment	to	become	familiar	with	the	device	
before	trying	to	install,	operate,	or	maintain	it.	The	following	special	messages	may	appear	
throughout	this	documentation	or	on	the	equipment	to	inform	of	potential	hazards	or	to	call	
attention	to	information	that	clarifies	or	simplifies	a	procedure.

The	addition	of	this	symbol	to	a	Danger	safety	label	indicates	that	an	electrical	hazard	
exists,	which	will	result	in	personal	injury	if	the	instructions	are	not	followed.

This	is	the	safety	alert	symbol.	It	is	used	to	alert	you	to	potential	personal	injury	
hazards.
Obey	all	safety	messages	that	follow	this	symbol	to	avoid	possible	injury	or	death.

 DANGER
DANGER indicates	an	imminently	hazardous	situation	which,	if	not	avoided, results in	death	
or	serious	injury.

 WARNING
WARNING	indicates	a	potentially	hazardous	situation	which,	if	not	avoided,	can result in
death	or	serious	injury.

 CAUTION
CAUTION	indicates	a	potentially	hazardous	situation	which,	if	not	avoided,	can result in
minor	or	moderate	injury.

NOTICE
NOTICE	is	used	to	address	practices	not	related	to	physical	injury.

PLEASE NOTE

Electrical	equipment	should	be	installed,	operated,	serviced,	and	maintained	only	by	qualified	
personnel.

No	responsibility	is	assumed	by	Schneider	Electric	for	any	consequences	arising	out	of	the	use	of	
this	material.
You	can	download	these	technical	publications	and	other	technical	information	from	our	website	at:

www.schneider-electric.com

http://www.schneider-electric.com

448 EIO0000002036 09/2014

SoMachine HVAC - Simulation

PRODUCT RELATED INFORMATION

 WARNING
LOSS OF CONTROL
• The	designer	 of	 any	 control	 scheme	must	 consider	 the	potential	 failure	modes	of	 control	
paths	 and,	 for	 certain	 critical	 control	 functions,	 provide	 a	means	 to	 achieve	 a	 safe	 state	
during	and	after	a	path	failure.	Examples	of	critical	control	functions	are	emergency	stop	and	
overtravel	stop,	power	outage	and	restart.

• Separate	or	redundant	control	paths	must	be	provided	for	critical	control	functions.
• System	control	paths	may	include	communication	links.	Consideration	must	be	given	to	the	
implications	of	unanticipated	transmission	delays	or	failures	of	the	link.

• Observe	all	accident	prevention	regulations	and	local	safety	guidelines.(1)

• Each	implementation	of	this	equipment	must	be	individually	and	thoroughly	tested	for	proper	
operation	before	being	placed	into	service.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

(1)	For	additional	information,	refer	to	NEMA	ICS	1.1	(latest	edition),	“Safety	Guidelines	for	the	
Application,	Installation,	and	Maintenance	of	Solid	State	Control”	and	to	NEMA	ICS	7.1	(latest	
edition),	“Safety	Standards	for	Construction	and	Guide	for	Selection,	Installation	and	Operation	
of	Adjustable-Speed	Drive	Systems”	or	their	equivalent	governing	your	particular	location.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Only	use	software	approved	by	Schneider	Electric	for	use	with	this	equipment.
• Update	your	application	program	every	time	you	change	the	physical	hardware	configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EIO0000002036 09/2014 449

SoMachine HVAC - Simulation

1. OVERVIEW

The	main	purpose	of	Simulation	is	to	execute	PLC	applications	and	HMI	pages	simultane-
ously	in	a	simulated	environment.
Simulation	can	simulate	execution	of:
 - PLC	applications,	IEC	61131-3	(made	with	Application).
 - HMI	pages	(made	with	UserInterface).
The	execution	can	thus	take	place	on	the	same	PC	used	for	the	development	process,	with	
the	advantage	of	a	faster	and	simpler	testing	and	debugging	phase,	because	the	real	final	
hardware	is	not	necessary.
NOTE:	The	simulation	is	not	intended	as	a	substitute	for	real,	empirical	testing	during	

commissioning.	It	is	a	means	for	the	programmer	to	submit	his	application,	or	
parts	of	application,	to	unit	testing	and	verification.
Only	empirical	testing	with	live	equipment	in	the	complete	application	can	be	
considered	a	valid	mechanism	for	validation.

 WARNING
UNINTENDED EQUIPMENT OPERATION
• Always	empirically	test	your	application	during	commissioning	before	placing	your	application	
and	associated	equipment	into	service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

450 EIO0000002036 09/2014

SoMachine HVAC - Simulation

EIO0000002036 09/2014 451

SoMachine HVAC - Simulation

2. ENVIRONMENT COMPONENTS

The	following	paragraph	shows	you	the	main	components	of	the	simulated	environment.

 - Simulation:	program	that	runs	the	simulator	on	the	PC.
 - Application:	PLC	development	environment	connected	to	the	simulator.
 - UserInterface:	HMI	development	environment	connected	to	the	simulator.
 - TCP/IP	connection:	localhost	connection	between	the	development	environments.
 - Catalog:	repository	of	all	target	definitions,	used	by	all	software	components.
 - Simulation	targets:	Catalog	components	that	define	the	targets	to	simulate;	these	files	
have	TGSX	extension.	All	targets	supporting	the	simulation	have	a	TGSX	file	linked	in	
their	PCT.

 - Workspace:	user	file	with	WKSX	extension	that	contains	all	the	elements	of	a	working	
session	of	the	simulator	(I/O	panels,	source	PLC	and	HMI	project,	etc.).	Each	PLC	and	
HMI	project	can	have	multiple	simulation	workspace	files,	and	the	user	can	manage	
them	freely.

452 EIO0000002036 09/2014

SoMachine HVAC - Simulation

EIO0000002036 09/2014 453

SoMachine HVAC - Simulation

3. OPERATING MODES

Simulation	can	work	with	the	two	following	operating	modes.

3.1 FULL SIMULATION
Full	simulation	is	activated	when	the	target	simulation	file	(TGSX)	is	available	in	the	cata-
log.
The	correct	TGSX	file	is	selected	automatically	by	the	calling	program,	depending	on	the	
current	active	target	in	the	PLC	or	HMI	project.
The	full	simulation	has	the	following	features:
 - simultaneous	simulation	of	both	PLC	application	and	HMI	pages;
 - availability	of	the	target	panel,	to	have	a	visual	and	realistic	representation	of	the	target	
to	run	and	interact	with	HMI	pages;

 - execution	of	the	simulated	application	tasks	handled	by	a	scheduler	that	can	reproduce	
the	real	target	scheduler	policy;

 - the	simulated	target	can	have	some	parts	implemented	in	C	and/or	IEC	to	implement	
the	 real	 target	behaviour	and	characteristics,	 to	 react	 to	PLC	application	as	 the	 real	
target	would	do;

 - use	of	the	I/O	panels,	that	the	user	can	configure	to	view	and/or	modify	the	simulated	
status	and	I/O	variables	of	the	target.

3.2 SIMPLIFIED SIMULATION
Simplified	simulation	is	available	only	for	PLC	projects	made	with	Application.
It	lets	you	simulate	the	application	immediately	without	having	a	prepared	TGSX	target	
file;	in	brief	it	is	a	simple	cyclic	execution	of	all	the	PLC	tasks	on	the	development	PC,	
without	the	more	advanced	and	graphical	features	of	the	full	simulation.
Application	will	automatically	create	a	temporary	TGSX	file,	to	be	used	with	the	simulator.
It	will	be	possible	to	view	and/or	modify	the	simulated	status	and	I/O	variables	of	the	
target	with	the	I/O	panels,	as	in	the	full	simulation mode.

454 EIO0000002036 09/2014

SoMachine HVAC - Simulation

EIO0000002036 09/2014 455

SoMachine HVAC - Simulation

4. USING THE SIMULATOR

4.1 SIMULATION WITH APPLICATION
Application	has	a	button	in	the	toolbar	that	lets	you	activate	a	simulation	session.
Follow	the	instructions	below	in	order	to	carry	out	a	simulation	session:
1) Write	your	PLC	code	with	Application.
2) Check	the	correctness	of	the	code	by	compiling	the	project.
3) Activate	the	simulation	with	the	appropriate	button	in	the	toolbar.
4) If	there	are	already	running	instances	of	the	simulator,	Application	will	ask	you		if	you	

want	to	create	a	new	instance	or	attach	to	an	existing	compatible	instance,	showing	
a	list	of	them;	if	there	are	no	running	instances,	a	new	instance	will	be	automatically	
run.

5) You	can	choose	to	open	a	recently	used	simulator	workspace	(WKSX)	or	create	a	new	
one	if	it	is	the	first	simulation	session	with	this	PLC	project;	the	last	used	workspace		
will	be	then	proposed	as	the	default	choice.	The	list	of	all	used	workspaces	is	saved	
inside	the	PLC	project	itself.

456 EIO0000002036 09/2014

SoMachine HVAC - Simulation

6) Application	will	choose	the	right	simulation	target	file	(TGSX)	from	the	Catalog,	de-
pending	on	the	target	of	the	current	PLC	project.

7) Application	can	now	activate	the	simulation	status,	that	will	be	similar	to	the	normal	
connection	to	a	physical	target	device,	with	a	different	connection	status	indicator.	
While	 in	simulation	status,	 the	PLC	project	will	be	built	 for	 the	x86	processor	and	
the	connection	will	take	place	using	the	GDB	protocol	over	TCP/IP	on	the	localhost	
(127.0.0.1).

8) Then	you	can	compile	and	download	the	code	inside	the	simulated	target.
9) In	 Application	 you	 can	 debug	 the	 code	 as	 if	 you	 were	 connected	 the	 real	 target	

(watchwindow,	triggers,	breakpoints);	it	is	worth	to	note	that	you	will	be	able	to	de-
bug	with	all	Application	debugging	features,	independently	of	the	real	target	capabili-
ties.

10) In	Simulation	you	can	operate	in	the	target	panel	(if	there	is	one)	to	simulate	the	lo-
cal	I/O.

11) In	Simulation	you	can	operate	with	the	I/O	panels	to	change	values	of	the	application	
parameters.

12) The	simulation	session	is	terminated	when	the	user	deactivates	the	simulation	mode	
inside	Application	(and	the	simulator	will	be	automatically	closed)	or	the	user	manu-
ally	closes	Simulation	(in	this	case	the	communication	in	Application	will	go	in	the	
timeout	state,	as	in	the	real	situation	when	the	physical	target	is	powered	off	or	dis-
connected).

13) When	Simulation	is	closed	everything	will	be	saved	inside	the	current	workspace	(I/O	
panels,	window	positions,	etc.).

14) Application	will	save	the	list	of	recently	used	workspaces	inside	the	PLC	project	for	
further	use.

EIO0000002036 09/2014 457

SoMachine HVAC - Simulation

4.2 SIMPLIFIED SIMULATION WITH APPLICATION
The	simplified	simulation	is	almost	identical	to	the	full	simulation,	except	for	the	following	
points:
6) Because	the	TGSX	file	is	not	available	in	the	Catalog,	Application	will	self-generate	a	

temporary	one	by	examining	the	PLC	project	and	its	TGT	and	IMG	files,	and	pass	it	
to	the	simulator.

10) The	target	panel	will	not	be	available,	you	can	interact	with	I/O	panels	and/or	watch-
window	only.

4.3 SIMULATION WITH USERINTERFACE
UserInterface	has	a	button	in	the	toolbar	that	lets	you	activate	a	simulation	session,	like	
in Application.
Perform	the	following	steps	for	a	simulation	session,	very	similar	to	Application	ones:
1) Write	your	HMI	pages	with	UserInterface.
2) Check	the	correctness	of	the	code	by	compiling	the	project.
3) Activate	the	simulation	with	the	appropriate	button	in	the	toolbar.
4) If	 there	are	already	running	 instances	of	 the	simulator,	UserInterface	will	ask	you	

if	you	want	to	create	a	new	instance	or	attach	to	an	existing	compatible	 instance,	
showing	a	list	of	them;	if	there	are	no	running	instances,	a	new	instance	will	be	au-
tomatically	run.

458 EIO0000002036 09/2014

SoMachine HVAC - Simulation

5) The	user	can	choose	to	open	a	recently	used	simulator	workspace	(WKSX)	or	cre-
ate	a	new	one	if	it	is	the	first	simulation	session	with	this	HMI	project;	the	last	used	
workspace	will	be	then	proposed	as	the	default	choice.	The	list	of	all	used	workspaces	
is	saved	inside	the	HMI	project	itself.

6) UserInterface	will	choose	the	right	simulation	target	file	(TGSX)	from	the	Catalog,	
depending	on	the	target	of	the	current	HMI	project.

7) UserInterface	can	now	activate	the	simulation	status.	While	in	simulation	status,	the	
HMI	project	will	be	built	for	the	x86	processor	and	the	connection	will	take	place	using	
the	GDB	protocol	over	TCP/IP	on	the	localhost	(127.0.0.1).

8) You	can	then	compile	and	download	the	code	inside	the	simulated	target.
9) In	Simulation	you	can	operate	on	the	target	panel	and	work	on	the	pages	with	the	

mouse	and	the	keyboard,	and	operate	on	the	local	I/O.
10) In	Simulation	you	can	operate	with	the	I/O	panels	to	change	values	of	the	application	

parameters.
11) The	simulation	session	is	terminated	when	the	user	deactivates	the	simulation	mode	

inside	UserInterface	(and	the	simulator	will	be	automatically	closed)	or	the	user	man-
ually	closes	Simulation	(in	this	case	next	downloads	will	go	in	the	timeout	state,	as	in	
the	real	situation	when	the	physical	target	is	powered	off	or	disconnected).

12) When	Simulation	is	closed	everything	will	be	saved	inside	the	current	workspace	(I/O	
panels,	window	positions,	etc.).

13) UserInterface	will	save	the	list	of	recently	used	workspaces	inside	the	HMI	project	for	
further	use.

EIO0000002036 09/2014 459

SoMachine HVAC - Simulation

4.4 SIMULATION WITH BOTH APPLICATION AND
USERINTERFACE
It	is	possible	to	use	Simulation	with	a	simultaneous	connection	to	both	Application	and	
UserInterface;	to	do	so	it	is	required	that	the	target	is	the	same	for	both	PLC	and	HMI	
projects:	in	this	case	the	second	program	will	connect	to	the	same	instance	without	run-
ning	a	new	simulator.
Otherwise,	if	the	targets	are	different	it	will	be	necessary	to	run	two	different	simulator	
instances,	each	one	connected	to	a	different	program	(one	to	Application	and	one	to	Use-
rInterface).
When	all	 the	connected	clients	 (Application	and/or	UserInterface)	will	be	disconnected	
from	the	simulator,	it	will	be	automatically	closed.

460 EIO0000002036 09/2014

SoMachine HVAC - Simulation

EIO0000002036 09/2014 461

SoMachine HVAC - Simulation

5. PROGRAM INTERFACE

Simulation	is	dialog-based	Windows	program,	that	is	one	or	more	independent	windows	
that	can	be	moved	and	placed	on	the	screen.
The	following	picture	shows	you	the	main	windows.

5.1 CONTROL PANEL
This	is	the	main	window	of	the	simulator.	When	you	launch	the	simulator,	the	control	panel	
is	shown	in	a	“compact”	form,	with	only	the	5	main	buttons	and	no	menu	bar.
When	you	click	the	Expand button,	it	will	be	expanded	to	show	the	Menu bar	with	the	
standard	new/load/save/exit commands,	a	central	panel	showing	the	main	character-
istics	of	the	current	workspace,	an	output	window	showing	execution	logs,	and	the	I/O	
panels	list.
With	the	control	panel	you	can	control	and	monitor	the	state	of	the	simulated	PLC	runt-
ime,	choose	which	other	windows	to	show	or	hide	(and	their	 topmost	behaviour),	and	
manage	I/O	panels.

462 EIO0000002036 09/2014

SoMachine HVAC - Simulation

5.1.1 MANUAL WORKSPACE EDITING

With	the	menu	command	Edit/Edit workspace...	you	can	manually	edit	your	work-
space,	explicitly	by	inserting	which	TGSX	file	to	use	by	choosing	it	from	disk,	which	PLC	
and	HMI	projects	should	be	simulated,	and	eventually	a	“simulation	PLC”.
This	is	a	special	type	of	PLC	application	used	to	simulate	the	behaviour	of	the	real	hard-
ware,	that	shares	the	same	data-blocks	of	the	PLC	to	simulate	to	react	to	its	actions	as	
the	real	target	would	do.
Each	time	the	simulator	is	run,	the	“simulation	PLC”	is	compiled	and	downloaded	along	
with	the	main	application.

5.2 TARGET PANEL
This	is	a	floating	window	that	shows	a	visual	representation	of	the	simulated	physical	tar-
get;	its	presence	and	layout	is	defined	inside	the	target	definition	file	(TGSX).
This	window	typically	has	an	image	of	the	real	target,	with	some	sensible	areas	that	show	
simulated	inputs	or	outputs	(for	example	LEDs	for	digital	outputs)	and	a	simulated	LCD	
graphic	display	where	the	HMI	pages	will	be	drawn.
The	user	can	 interact	with	 this	window	with	 the	mouse	or	with	 the	PC	keyboard,	 that	
emulates	the	real	device	keys.
This	window	is	activated	with	the	proper	button	in	the	control	panel;	you	can	right-click	
on	it	to	open	its	context	menu,	by	which	you	can	activate	the	topmost	state	(it	will	stay	
always	above	any	other	window)	or	close	it.	Finally,	you	can	drag	and	move	it	around	the	
screen	anywhere	you	want.

EIO0000002036 09/2014 463

SoMachine HVAC - Simulation

5.3 I/O PANELS
These	small	floating	windows	lets	you	monitor	and	change	the	values	of	all	the	various	
I/O	and	status	variables	of	the	simulated	target;	the	only	requirement	is	that	the	object	
to	watch	is	allocated	on	data-block.
The	user	can	create	how	many	panels	he	wants,	and	decide	which	objects	to	put	on	each	
panel	freely;	they	are	complementary	to	the	target panel,	because	with	them	you	can	
watch	and	edit	the	I/Os	that	are	not	already	visible	there.
The	I/O	panels	can	be	put	in	topmost	mode,	that	is	always	above	all	visible	windows;	this	
is	useful	for	example	while	debugging	with	Application	at	full	screen;	all	the	configuration	
is	then	saved	inside	the	workspace	file.
See	the	section	I/O	panels	list	to	see	how	to	add	and	delete	panels.

5.3.1 ADDING ELEMENTS TO PANELS

To	add	an	element	(or	“signal”)	to	an	existing	panel	to	watch	or	edit	its	value,	you	can	
drag&drop	 it	 from	Application	 inside	 the	panel	 itself.	You	can	drag	 it	 from	 the	Target
variables	panel,	from	the	Workspace	tree	or	from	a	Variables	grid	inside	an	editor.
Depending	on	the	type	of	the	source	variables,	an	analog	(slider	or	progress	bar)	or	digital	
(LED	or	button)	control	will	be	generated,	and	associated	with	the	original	signal.

It	is	possible	to	add	only	PLC	variables	that	reside	on	a	DataBlock,	with	an	explicit	address	
(for	example	%MW1.0);	you	can	not	add	to	a	panel	automatic	variables,	local	or	global.

464 EIO0000002036 09/2014

SoMachine HVAC - Simulation

5.3.2 EDITING PANEL ELEMENTS

You	can	edit	the	more	advanced	options	of	each	signal	by	clicking	the	small	icon	on	the	
left	of	each	name.
For	a	digital	I/O	the	options	are:
 - label	to	be	viewed	on	the	panel;
 - name	of	the	associated	source	variable,	and	its	index	if	it	is	an	array;
 - read-only	attribute:	the	control	will	be	a	LED	(output,	read-only)	or	a	button	(input,	
read-write);

 - selector	attribute:	it	is	valid	only	for	read-write	variables	(buttons),	if	active	the	button	
will	keep	its	value	(pressed	or	not	pressed),	otherwise	it	will	keep	the	new	value	only	as	
long	as	the	mouse	button	is	pressed,	then	it	will	go	back	to	its	previous	value.

For	an	analog	I/O	the	options	are:
 - label	to	be	viewed	on	the	panel;
 - name	of	the	associated	source	variable,	and	its	index	if	it	is	an	array;
 - read-only	attribute:	the	control	will	be	a	progress-bar	(output,	read-only)	or	a	slider	
(input,	read-write);

 - minimum	and	maximum	limits:	if	not	set,	absolute	minimum	and	maximum	limits	of	the	
original	data	type	will	be	used.	The	progress	and	slider	will	use	these	limits;	they	can	
be	individually	activated	or	not.

5.3.3 REMOVING ELEMENTS FROM PANELS

To	remove	a	signal,	click	on	the	small	button	described	above	for	the	editing	and	then	
choose	the	Remove button	to	delete	it	(see	the	above	images).

5.4 I/O PANELS LIST
When	the	Control	panel	is	expanded,	you	can	manage	(add/remove/rename)	all	the	I/O	
panels.

5.4.1 ADDING A NEW PANEL

To	add	a	new	empty	panel	click	the	apposite	Add	button	in	the	Control panel.
A	new	empty	panel	without	name	will	be	created	and	placed	next	to	the	button.

5.4.2 EDITING A PANEL

In	order	to	rename	the	panel	select	it	in	the	list	and	click	the	Rename	button;	you	will	be	
asked	for	the	name	to	give	to	the	window,	that	will	be	shown	in	its	title	bar.
Any	panel	can	be	drag	around	the	screen	in	any	place;	to	temporary	hide	it	you	can	toggle	

EIO0000002036 09/2014 465

SoMachine HVAC - Simulation

the	check	next	to	its	name	in	the	list.
You	can	also	toggle	the	topmost	button	to	bring	the	panels	above	all	other	windows	(this	
is	a	global	setting	that	applies	to	all	panels).

5.4.3 REMOVING A PANEL

In	order	to	remove	a	panel	select	it	in	the	list	and	click	the	Remove button;	the	panel	and	
all	its	signals	and	settings	will	be	permanently	removed.

466 EIO0000002036 09/2014

SoMachine HVAC - Simulation

	ConnManual_CC.pdf
	1.	Basic concepts
	1.1	Entry point and container
	1.2	Composite applications and Field I/O
	1.3	Distributed applications and Binding I/O

	2.	Using the environment
	2.1	The workspace
	2.1.1	The main window
	2.1.2	The output window
	2.1.3	The project window
	2.1.4	The catalog window

	2.2	Layout customization
	2.3	Toolbars and docking windows
	2.3.1	Showing/hiding
	2.3.2	Moving toolbars
	2.3.3	Moving docking windows

	3.	Managing projects
	3.1	Creating a new project and main page
	3.2	Saving the project
	3.3	Managing existing projects
	3.3.1	Opening an existing project
	3.3.2	Closing the project

	3.4	Building projects
	3.5	Distributing projects
	3.5.1	Distributing to other developers
	3.5.2	Distributing to users or installers

	4.	Managing project elements
	4.1	M171 Perf. Display
	4.1.1	PLC
	4.1.2	HMI
	4.1.3	CANopen
	4.1.4	RS485
	4.1.5	Ethernet

	4.2	M171 Perf. Blind
	4.3	Generic Modbus
	4.3.1	Modbus messages

	4.4	Modbus Custom
	4.4.1	Creating a new Modbus custom device
	4.4.2	Editing an existing Modbus custom device
	4.4.3	Deleting a Modbus custom device
	4.4.4	Using a Modbus custom device

	4.5	CAN custom
	4.5.1	Importing a new CAN custom device
	4.5.2	Deleting a CAN Custom device
	4.5.3	Using a CAN custom device

	4.6	Display for M171 Perf.
	4.6.1	CANopen

	4.7	M171 Perf. Flush Mounting
	4.7.1	PLC
	4.7.2	HMI
	4.7.3	Providing HMI pages
	4.7.4	CANopen
	4.7.5	RS485
	4.7.6	Ethernet

	4.8	Modicon M171 Perf. Expansion 27 I/Os
	4.8.1	Using Modicon M171 Perf. Expansion 27 I/Os as CANopen field slave
	4.8.2	Using Modicon M171 Perf. Expansion 27 I/Os as RS485 field slave

	4.9	Virtual channels assignment criteria
	4.9.1	CANopen network - virtual SDO servers
	4.9.2	Ethernet - TCP Slave Channels
	4.9.3	CANopen field - virtual master channels

	5.	Technical reference
	5.1	CANopen protocol
	5.1.1	Overview
	5.1.2	Physical structure of a CANopen network
	5.1.3	COB and COB-ID
	5.1.4	The object Dictionary
	5.1.5	The Service Data Objects (SDO)
	5.1.6	The Process Data Objects (PDO)
	5.1.7	PDO transmission modes
	5.1.8	The Emergency Object
	5.1.9	SYNC Object and Time Stamp Object
	5.1.10	Error Control: Node guarding
	5.1.11	Error control: Heartbeat
	5.1.12	The Network Behavior
	5.1.13	The Boot-up Message
	5.1.14	The CANopen Device Profiles

	5.2	Modbus protocol
	5.2.1	Overview
	5.2.2	Data types
	5.2.3	Function codes
	5.2.4	Error detection and CRC
	5.2.5	Protocol versions

	AppManual_CC.pdf
	1.	Overview
	1.1	The workspace
	1.1.1	The output window
	1.1.2	The status bar
	1.1.3	The document bar
	1.1.4	The watch window
	1.1.5	The library window
	1.1.6	The workspace window
	1.1.7	The source code editors

	2.	Using the environment
	2.1	Layout customization
	2.2	Toolbars
	2.2.1	Showing/hiding toolbars
	2.2.2	Moving toolbars

	2.3	Docking windows
	2.3.1	Showing/hiding tool windows
	2.3.2	Moving tool windows

	2.4	Working with windows
	2.4.1	The document bar
	2.4.2	The window menu

	2.5	Full screen mode
	2.6	Environment options

	3.	Managing projects
	3.1	Creating a new project
	3.2	Uploading the project from the target device
	3.3	Saving the project
	3.3.1	Persisting changes to the project
	3.3.2	Saving to an alternative location

	3.4	Managing existing projects
	3.4.1	Opening an existing Application project
	3.4.2	Editing the project
	3.4.3	Closing the project

	3.5	Distributing projects
	3.6	Project options
	3.6.1	Project info
	3.6.2	Code generation
	3.6.3	Build output
	3.6.4	Download
	3.6.5	Debug
	3.6.6	Build events

	3.7	Selecting the target device
	3.8	Working with libraries
	3.8.1	The library manager
	3.8.2	Exporting to a library
	3.8.3	Importing from a library or another source
	3.8.4	Updating existing libraries

	4.	Managing project elements
	4.1	Program Organization Units
	4.1.1	Creating a new Program Organization Unit
	4.1.2	Editing POUs
	4.1.3	Deleting POUs
	4.1.4	Source code encryption

	4.2	Variables
	4.2.1	Global variables
	4.2.2	Local variables
	4.2.3	Create multiple

	4.3	Tasks
	4.3.1	Assigning a program to a task
	4.3.2	Task configuration

	4.4	Derived data types
	4.4.1	Typedefs
	4.4.2	Structures
	4.4.3	Enumerations
	4.4.4	Subranges

	4.5	Browsing the project
	4.5.1	object browser
	4.5.2	Searching with the Find in project command

	4.6	Working with Application extensions

	5.	Editing the source code
	5.1	Instruction List (IL) editor
	5.1.1	Editing functions
	5.1.2	Reference to PLC objects
	5.1.3	Automatic error location
	5.1.4	Bookmarks

	5.2	Structured Text (ST) Editor
	5.2.1	Creating and editing ST objects
	5.2.2	Editing functions
	5.2.3	Reference to PLC objects
	5.2.4	Automatic error location
	5.2.5	Bookmarks

	5.3	Ladder Diagram (LD) editor
	5.3.1	Creating a new LD document
	5.3.2	Adding/Removing networks
	5.3.3	Labeling networks
	5.3.4	Inserting contacts
	5.3.5	Inserting coils
	5.3.6	Inserting blocks
	5.3.7	Editing coils and contacts properties
	5.3.8	Editing networks
	5.3.9	Modifying properties of blocks
	5.3.10	Getting information on a block
	5.3.11	Automatic error retrieval

	5.4	Function Block Diagram (FBD) editor
	5.4.1	Creating a new FBD document
	5.4.2	Adding/Removing networks
	5.4.3	Labeling networks
	5.4.4	Inserting and connecting blocks
	5.4.5	Editing networks
	5.4.6	Modifying properties of blocks
	5.4.7	Getting information on a block
	5.4.8	Automatic error retrieval

	5.5	Sequential Function Chart (SFC) Editor
	5.5.1	Creating a new SFC document
	5.5.2	Inserting a new SFC element
	5.5.3	Connecting SFC elements
	5.5.4	Assigning an action to a step
	5.5.5	Specifying a constant/a variable as the condition of a transition
	5.5.6	Assigning conditional code to a transition
	5.5.7	Specifying the destination of a jump
	5.5.8	Editing SFC networks

	5.6	Variables editor
	5.6.1	Opening a variables editor
	5.6.2	Creating a new variable
	5.6.3	Editing variables
	5.6.4	Deleting variables
	5.6.5	Sorting variables
	5.6.6	Copying variables

	6.	Compiling
	6.1	Compiling the project
	6.1.1	Image file loading

	6.2	Compiler output
	6.2.1	Compiler errors

	6.3	Command-line compiler

	7.	Launching the application
	7.1	Setting up the communication
	7.1.1	Saving the last used communication port

	7.2	On-line status
	7.2.1	Connection status
	7.2.2	Application status

	7.3	Downloading the application
	7.3.1	Controlling source code download

	7.4	Simulation
	7.5	Control the PLC execution
	7.5.1	Halt
	7.5.2	Cold restart
	7.5.3	Warm restart
	7.5.4	Hot restart
	7.5.5	Reboot target

	8.	Debugging
	8.1	Watch window
	8.1.1	Opening and closing the watch window
	8.1.2	Adding items to the watch window
	8.1.3	Removing a variable
	8.1.4	Refreshment of values
	8.1.5	Changing the format of data
	8.1.6	Working with watch lists
	8.1.7	Autosave watch list

	8.2	Oscilloscope
	8.2.1	Opening and closing the oscilloscope
	8.2.2	Adding items to the oscilloscope
	8.2.3	Removing a variable
	8.2.4	Variables sampling
	8.2.5	Controlling data acquisition and display
	8.2.6	Changing the polling rate
	8.2.7	Saving and printing the graph

	8.3	Edit and debug mode
	8.4	Live debug
	8.4.1	SFC animation
	8.4.2	LD animation
	8.4.3	FBD animation
	8.4.4	IL and ST animation

	8.5	Triggers
	8.5.1	Trigger window
	8.5.2	Debugging with trigger windows

	8.6	Graphic triggers
	8.6.1	Graphic trigger window
	8.6.2	Debugging with the graphic trigger window

	9.	Application reference
	9.1	Menus reference
	9.1.1	File menu
	9.1.2	Edit menu
	9.1.3	View menu
	9.1.4	Project menu
	9.1.5	Debug menu
	9.1.6	On-line menu
	9.1.7	Scheme menu
	9.1.8	Variables menu
	9.1.9	Window menu
	9.1.10	Help menu

	9.2	Toolbars reference
	9.2.1	Main toolbar
	9.2.2	FBD toolbar
	9.2.3	LD toolbar
	9.2.4	SFC toolbar
	9.2.5	Project toolbar
	9.2.6	Network toolbar
	9.2.7	Debug toolbar

	10.	Language reference
	10.1	Common elements
	10.1.1	Basic elements
	10.1.2	Elementary data types
	10.1.3	Derived data types
	10.1.4	Literals
	10.1.5	Variables
	10.1.6	Program Organization Units
	10.1.7	IEC 61131-3 standard functions

	10.2	Instruction List (IL)
	10.2.1	Syntax and semantics
	10.2.2	Standard operators
	10.2.3	Calling Functions and Function blocks

	10.3	Function Block Diagram (FBD)
	10.3.1	Representation of lines and blocks
	10.3.2	Direction of flow in networks
	10.3.3	Evaluation of networks
	10.3.4	Execution control elements

	10.4	Ladder Diagram (LD)
	10.4.1	Power rails
	10.4.2	Link elements and states
	10.4.3	Contacts
	10.4.4	Coils
	10.4.5	Operators, functions and function blocks

	10.5	Structured Text (ST)
	10.5.1	Expressions
	10.5.2	Statements in ST

	10.6	Sequential Function Chart (SFC)
	10.6.1	Steps
	10.6.2	Transitions
	10.6.3	Rules of evolution

	10.7	Application Language Extensions
	10.7.1	Macros
	10.7.2	Pointers
	10.7.3	Waiting statement

	11.	ERRORS REFERENCE
	11.1	Compile time error messages

	UIManual_CC.pdf
	1.	Overview
	1.1	Main elements
	1.2	Run-time functionalities
	1.3	Communicating with the target

	2.	Creating a simple UserInterface project
	2.1	Purpose of this chapter
	2.2	Creating a new project
	2.3	Inserting the first page in the project
	2.3.1	Creating a new page
	2.3.2	Editing the colors of the page

	2.4	Inserting a secondary page
	2.4.1	Creating a secondary page
	2.4.2	Dimensioning and setting the secondary page
	2.4.3	Viewing the title bar and the system button
	2.4.4	Assigning a style to the window
	2.4.5	Choosing the start window

	2.5	Inserting static controls
	2.5.1	Inserting a line
	2.5.2	Inserting a rectangle in the page

	2.6	Inserting static images
	2.6.1	Importing a bitmap in the project
	2.6.2	Associating an imported bitmap with an image control

	2.7	Text strings
	2.7.1	Inserting a text string

	2.8	Data management in UserInterface
	2.8.1	Declaring a local variable
	2.8.2	Declaring a global variable
	2.8.3	Importing the PLC variables in the UserInterface project
	2.8.4	Inserting field parameters

	2.9	Inserting edit box
	2.9.1	Inserting an edit box in the page
	2.9.2	Edit box and UserInterface local variable association
	2.9.3	Edit box and UserInterface global variable association
	2.9.4	Linking an edit box with a target (or system) variable
	2.9.5	Linking an edit box with a PLC Application variable
	2.9.6	Linking an edit box to a parameter
	2.9.7	Linking an edit box to a variable by dragging and dropping

	2.10	Inserting buttons
	2.10.1	Inserting a led-button
	2.10.2	Inserting a boolean variable command button
	2.10.3	Inserting a button to open a child page
	2.10.4	Inserting a button aimed at launching a procedure of the user

	2.11	Visibility and updating of controls
	2.11.1	The visibility property
	2.11.2	The refresh property

	2.12	Compiling and downloading the project on the target
	2.12.1	Connecting to the target
	2.12.2	Compiling pages for the target
	2.12.3	Downloading and executing the compiled pages on the target
	2.12.4	Simulation

	3.	UserInterface layout
	3.1	Project window
	3.2	Embedded editors
	3.3	Properties window
	3.4	Toolbars
	3.5	The output window
	3.6	Target variables and parameters
	3.7	Table of keys-actions associations

	4.	HMI project in UserInterface
	4.1	Project properties
	4.1.1	General
	4.1.2	System options
	4.1.3	Language selection
	4.1.4	Global periodic procedure

	4.2	Frame set
	4.3	Pages
	4.3.1	Navigating between pages
	4.3.2	Child Pages
	4.3.3	Pop-up pages
	4.3.4	Asynchronous messages

	4.4	Controls
	4.4.1	Static
	4.4.2	Graphic element
	4.4.3	Edit box
	4.4.4	Text box
	4.4.5	Image
	4.4.6	Animation
	4.4.7	Button
	4.4.8	Chart
	4.4.9	Trend
	4.4.10	Progress bar
	4.4.11	Combo box
	4.4.12	Checkbox
	4.4.13	Custom control

	4.5	Variables
	4.5.1	Local variables
	4.5.2	Global variables
	4.5.3	Variables imported from PLC
	4.5.4	System variables

	4.6	Multiple pages management
	4.6.1	Association of elements of a set
	4.6.2	Navigation of the elements of a set
	4.6.3	Pages numbering

	4.7	Advanced operations on pages
	4.7.1	Export/import of pages to/from files
	4.7.2	Export/import procedures and variables
	4.7.3	Copy/paste of pages in the project
	4.7.4	Rename pages
	4.7.5	Templates of page management

	4.8	Events
	4.8.1	Page or control events
	4.8.2	Key pressure events
	4.8.3	Events raised by software
	4.8.4	Procedures that can be associated to events
	4.8.5	Actions that can be associated to key pressure

	4.9	Resources
	4.9.1	Fonts
	4.9.2	Bitmaps
	4.9.3	Strings table
	4.9.4	Enumeratives
	4.9.5	Images lists
	4.9.6	Sets

	4.10	Automatic documentation
	4.11	Managing projects
	4.11.1	Selecting the target device

	5.	Appendix I: page properties and object properties
	5.1	Frame set
	5.1.1	Properties

	5.2	Child page
	5.2.1	Properties
	5.2.2	Events

	5.3	Pop-up page
	5.3.1	Properties
	5.3.2	Events

	5.4	Static
	5.4.1	Properties
	5.4.2	Events

	5.5	Line
	5.5.1	Properties

	5.6	Rectangle
	5.6.1	Properties

	5.7	Edit box
	5.7.1	Properties
	5.7.2	Format specification - printf
	5.7.3	Events

	5.8	Text box
	5.8.1	Properties
	5.8.2	Events

	5.9	Image
	5.9.1	Properties

	5.10	Animation
	5.10.1	Properties
	5.10.2	Events

	5.11	Button
	5.11.1	Properties
	5.11.2	Events

	5.12	Progress bar
	5.12.1	Properties
	5.12.2	Events

	5.13	Custom control
	5.13.1	Properties
	5.13.2	Events

	5.14	Chart
	5.14.1	Properties
	5.14.2	Events

	5.15	Trend
	5.15.1	Properties
	5.15.2	Events

	6.	APPENDIX II: FILE FOR TARGET DESCRIPTION
	6.1	Target properties
	6.1.1	Description

	6.2	Object version
	6.3	System enumeratives
	6.3.1	Descriptions
	6.3.2	Example

	7.	Appendix III: Description of parameter file
	8.	Appendix IV: elements of HMI runtime
	8.1	Functions
	8.1.1	System functions: hardware and operating system
	8.1.2	Function for managing project resources and common properties
	8.1.3	Functions for operating with pages
	8.1.4	Function for objects
	8.1.5	Drawing functions
	8.1.6	Functions for text
	8.1.7	Functions for parameter access
	8.1.8	Functions for events

	8.2	Function Blocks

	SimulationManual_CC.pdf
	1.	Overview
	2.	Environment components
	3.	Operating modes
	3.1	Full simulation
	3.2	Simplified simulation

	4.	Using the simulator
	4.1	Simulation with Application
	4.2	Simplified simulation with Application
	4.3	Simulation with UserInterface
	4.4	Simulation with both Application and UserInterface

	5.	Program interface
	5.1	Control panel
	5.1.1	Manual workspace editing

	5.2	Target panel
	5.3	I/O panels
	5.3.1	Adding elements to panels
	5.3.2	Editing panel elements
	5.3.3	Removing elements from panels

	5.4	I/O panels list
	5.4.1	Adding a new panel
	5.4.2	Editing a panel
	5.4.3	Removing a panel

	Pagina vuota

