PacDrive Logic Motion Controller
LMC Eco
Hardware Guide

(Original Document)

04/2018
The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an “as is” basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2018 Schneider Electric. All Rights Reserved.
Table of Contents

Safety Information ................................................. 7
About the Book .................................................. 9

Chapter 1 Specific Safety Information .......................... 13
Product Related Information .................................... 14
Proper Use ......................................................... 18

Chapter 2 System Overview ...................................... 21
System Overview .................................................. 22
Logic Motion Controller ......................................... 23
Lexium 62 Drive System ........................................ 24
Lexium 52 .......................................................... 28
Lexium 62 .......................................................... 29
Lexium SH3 Servo Motor ......................................... 30
TM5 System ......................................................... 30
Type Code .......................................................... 31
Nameplate Descriptions .......................................... 32

Chapter 3 Planning ................................................. 33
3.1 Electromagnetic Compatibility (EMC) ...................... 34
Electromagnetic Compatibility, EMC ......................... 34
3.2 Control Cabinet Planning ................................... 38
Degree of Protection (IP) ........................................ 39
Mechanical and Climatic Environmental Conditions in the Control Cabinet ........................................ 39
Using Cooling Units ............................................. 40
3.3 Information about Wiring .................................... 42
General Information about Wiring ............................. 43
Cable Characteristics ............................................ 44
Configuring and Coding the Cables ......................... 44
ESD Protection Measures ....................................... 45

Chapter 4 Installation and Maintenance ....................... 47
4.1 Commissioning ............................................... 48
Prerequisites for Commissioning .............................. 49
Preparing Commissioning ..................................... 50
Preparing the Control Cabinet ............................... 52
Mechanical Mounting .............................................. 55
Wiring of the Controller ....................................... 56
Completion of Commissioning ................................. 59
Performing the Function Test ................................ 60
4.2 Maintenance, Repair, Cleaning, Replacement Equipment Inventory ........................................ 61
Prerequisites for Maintenance, Repair, and Cleaning ......................................................... 62
Repair .......................................................... 63
Cleaning ....................................................... 63
Battery, Real-Time Clock ....................................... 64
Replacement Equipment Inventory ......................... 64
4.3 Replacing Components and Cables ..................... 65
Prerequisites for Replacing Components and Cables ......................................................... 66
Device Replacement ............................................. 68
Fast Device Replacement (FDR) - Introduction .......... 69
Fast Device Replacement - Usage ............................ 70
Fast Device Replacement - Controller Display .......... 72
Fast Device Replacement - Application .................... 75
Cable Replacement ............................................. 80
Chapter 5 Indicators and Control Elements ............... 83
Indicators of the Controller .................................... 84
Menu Navigation .................................................. 89
SD Card Slot ..................................................... 93
USB Connection .................................................. 96
Chapter 6 Integrated Communication Ports ............... 97
Electrical Connections Overview ............................. 98
Connection Details Controller ................................. 101
Chapter 7 Technical Data ....................................... 109
Ambient Conditions ............................................. 110
Standards and Regulations ...................................... 111
Mechanical and Electrical Data ............................... 112
Dimensions ...................................................... 115
Chapter 8 Optional Modules .................................... 117
8.1 Communication Module Realtime Ethernet ............. 118
Overview ....................................................... 119
Mechanical Installation .......................................... 121
Electrical Connections ........................................... 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Communication Module PROFIBUS DP</td>
<td>134</td>
</tr>
<tr>
<td>Overview</td>
<td>135</td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td>136</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>139</td>
</tr>
<tr>
<td><strong>Appendices</strong></td>
<td></td>
</tr>
<tr>
<td>Appendix A Further Information on the Manufacturer</td>
<td>143</td>
</tr>
<tr>
<td>Contact Addresses</td>
<td>144</td>
</tr>
<tr>
<td>Product Training Courses</td>
<td>144</td>
</tr>
<tr>
<td>Appendix B Disposal</td>
<td>145</td>
</tr>
<tr>
<td>Disposal</td>
<td>145</td>
</tr>
<tr>
<td>Appendix C Units and Conversion Tables</td>
<td>147</td>
</tr>
<tr>
<td>Units and Conversion Tables</td>
<td>147</td>
</tr>
<tr>
<td><strong>Index</strong></td>
<td>151</td>
</tr>
</tbody>
</table>
Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

⚠️ The addition of this symbol to a “Danger” or “Warning” safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

⚠️ This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

⚠️ **DANGER**

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ **WARNING**

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ **CAUTION**

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

⚠️ **NOTICE**

NOTICE is used to address practices not related to physical injury.
PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

QUALIFICATION OF PERSONNEL

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product.

The qualified person must be able to detect possible hazards that may arise from parameterization, modifying parameter values and generally from mechanical, electrical, or electronic equipment. The qualified person must be familiar with the standards, provisions, and regulations for the prevention of industrial accidents, which they must observe when designing and implementing the system.

INTENDED USE

The products described or affected by this document, together with software, accessories, and options, are programmable logic controllers (referred to herein as “logic controllers”), intended for industrial use according to the instructions, directions, examples, and safety information contained in the present document and other supporting documentation.

The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements, and the technical data.

Prior to using the product, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety-related measures must be implemented.

Since the product is used as a component in an overall machine or process, you must ensure the safety of persons by means of the design of this overall system.

Operate the product only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in unanticipated hazards.
About the Book

At a Glance

Document Scope

Read and understand the material contained in this manual before you work on the controller for the first time. Take particular note of the safety information (see page 13). As described in the section Qualification of Personnel (see page 8), only those persons who meet the Selection and qualification of employees are allowed to work at the controller.

A copy of this manual must be available for personnel who work at the controller.

This manual is supposed to help you use the capabilities of the controller safely and properly.

Follow the instructions within this manual to:

- Avoid risks
- Reduce repair costs and downtime of the controller
- Increase the service life of the controller
- Increase reliability of the controller

Validity Note

This document has been updated for the release of SoMachine Motion V4.4 SP1.

The technical characteristics of the devices described in the present document also appear online. To access the information online:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Go to the Schneider Electric home page <a href="http://www.schneider-electric.com">www.schneider-electric.com</a>.</td>
</tr>
</tbody>
</table>
| 2    | In the Search box type the reference of a product or the name of a product range.  
Do not include blank spaces in the reference or product range.  
To get information on grouping similar modules, use asterisks (*). |
| 3    | If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you.  
If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you. |
| 4    | If more than one reference appears in the Products search results, click on the reference that interests you. |
| 5    | Depending on the size of your screen, you may need to scroll down to see the data sheet. |
| 6    | To save or print a data sheet as a .pdf file, click Download XXX product datasheet. |
The characteristics that are presented in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

For product compliance and environmental information (RoHS, REACH, PEP, EOLI, etc.), go to www.schneider-electric.com/green-premium.

**Related Documents**

<table>
<thead>
<tr>
<th>Document title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexium 62 Hardware Guide</td>
<td>EIO0000001349 (ENG); EIO0000001350 (GER)</td>
</tr>
<tr>
<td>Lexium 52 Hardware Guide</td>
<td>EIO0000001347 (ENG); EIO0000001348 (GER)</td>
</tr>
<tr>
<td>Lexium 62 ILM Hardware Guide</td>
<td>EIO0000001351 (ENG); EIO0000001352 (GER)</td>
</tr>
<tr>
<td>SH3 Servo motor, Motor manual</td>
<td>0198441113987 (ENG); 0198441113988 (FRE); 0198441113986 (GER); 0198441113990 (SPA); 0198441113989 (ITA); 0198441113991 (CHS)</td>
</tr>
</tbody>
</table>

You can download these technical publications and other technical information from our website at www.schneider-electric.com/en/download.

**Terminology Derived from Standards**

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as *safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous*, etc.

Among others, these standards include:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61131-2:2007</td>
<td>Programmable controllers, part 2: Equipment requirements and tests.</td>
</tr>
</tbody>
</table>
In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 12100:2010</td>
<td>Safety of machinery - General principles for design - Risk assessment and risk reduction</td>
</tr>
<tr>
<td>EN 60204-1:2006</td>
<td>Safety of machinery - Electrical equipment of machines - Part 1: General requirements</td>
</tr>
<tr>
<td>ISO 13850:2006</td>
<td>Safety of machinery - Emergency stop - Principles for design</td>
</tr>
<tr>
<td>2006/42/EC</td>
<td>Machinery Directive</td>
</tr>
<tr>
<td>2014/30/EU</td>
<td>Electromagnetic Compatibility Directive</td>
</tr>
<tr>
<td>2014/35/EU</td>
<td>Low Voltage Directive</td>
</tr>
</tbody>
</table>

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60034 series</td>
<td>Rotating electrical machines</td>
</tr>
<tr>
<td>IEC 61800 series</td>
<td>Adjustable speed electrical power drive systems</td>
</tr>
<tr>
<td>IEC 61158 series</td>
<td>Digital data communications for measurement and control – Fieldbus for use in industrial control systems</td>
</tr>
</tbody>
</table>

Finally, the term zone of operation may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.
Chapter 1
Specific Safety Information

Overview
This chapter contains important safety information regarding working with the controller. The controller conforms to recognized technical safety regulations.

What Is in This Chapter?
This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Related Information</td>
<td>14</td>
</tr>
<tr>
<td>Proper Use</td>
<td>18</td>
</tr>
</tbody>
</table>


Specific Safety Information

Product Related Information

Overview

Health and safety risks arising from the controller have been reduced. However, a residual risk remains, since the controller works with electrical voltage and electrical currents. If activities involve residual risks, a safety message is made at the appropriate points. This includes potential hazard(s) that may arise, their possible consequences, and describes preventive measures to avoid the hazard(s).

Electrical Parts

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH</td>
</tr>
<tr>
<td>• Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires except under the specific conditions specified in the appropriate hardware guide for this equipment.</td>
</tr>
<tr>
<td>• Always use a properly rated voltage sensing device to confirm the power is off where and when indicated.</td>
</tr>
<tr>
<td>• Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.</td>
</tr>
<tr>
<td>• Use only the specified voltage when operating this equipment and any associated products.</td>
</tr>
<tr>
<td><strong>Failure to follow these instructions will result in death or serious injury.</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH</td>
</tr>
<tr>
<td>• Operate electrical components only with a connected protective ground (earth) cable.</td>
</tr>
<tr>
<td>• After the installation, verify the secure connection of the protective ground (earth) cable to all electrical devices to ensure that connection complies with the connection diagram.</td>
</tr>
<tr>
<td>• Before enabling the device, safely cover the live components to prevent contact.</td>
</tr>
<tr>
<td>• Do not touch the electrical connection points of the components when the module is energized.</td>
</tr>
<tr>
<td>• Provide protection against indirect contact (EN 50178).</td>
</tr>
<tr>
<td>• Connect and disconnect cables and terminals only after you have verified that the power has been removed from the system.</td>
</tr>
<tr>
<td><strong>Failure to follow these instructions will result in death or serious injury.</strong></td>
</tr>
</tbody>
</table>
Assembly and Handling

This product has a leakage (touch) current greater than 3.5 mA. If the protective ground connection is interrupted, a hazardous leakage (touch) current may flow if the housing is touched.

DANGER

INSUFFICIENT GROUNDING

- Use a protective ground conductor with at least 10 mm² (AWG 6) or two protective ground conductors with the same or larger cross section of the conductors supplying the power terminals.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.

Failure to follow these instructions will result in death or serious injury.

WARNING

CRUSHING, SHEARING, CUTTING AND HITTING DURING HANDLING

- Observe the general construction and safety regulations for handling and assembly.
- Use appropriate mounting and transport equipment and use appropriate tools.
- Prevent clamping and crushing by taking appropriate precautions.
- Cover edges and angles to protect against cutting damage.
- Wear appropriate protective clothing (for example, protective goggles, protective boots, protective gloves).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Hazardous Movements

There can be different sources of hazardous movements:
- No, or incorrect, homing of the drive
- Wiring or cabling errors
- Errors in the application program
- Component errors
- Error in the measured value and signal transmitter

NOTE: Provide for personal safety by primary equipment monitoring or measures. Do not rely only on the internal monitoring of the drive components. Adapt the monitoring or other arrangements and measures to the specific conditions of the installation in accordance with a risk and error analysis.
Specific Safety Information

### DANGER

**UNAVAILABLE OR INADEQUATE PROTECTION DEVICE(S)**

- Prevent entry to a zone of operation with, for example, protective fencing, mesh guards, protective coverings, or light barriers.
- Dimension the protective devices properly and do not remove them.
- Do not make any modifications that can degrade, incapacitate, or in any way invalidate protection devices.
- Before accessing the drives or entering the zone of operation, bring the drives and the motors they control to a stop.
- Protect existing workstations and operating terminals against unauthorized operation.
- Position EMERGENCY STOP switches so that they are easily accessible and can be reached quickly.
- Validate the functionality of EMERGENCY STOP equipment before start-up and during maintenance periods.
- Prevent unintentional start-up by disconnecting the power connection of the drive using the EMERGENCY STOP circuit or using an appropriate lock-out tag-out sequence.
- Validate the system and installation before the initial start-up.
- Avoid operating high-frequency, remote control, and radio devices close to the system electronics and their feed lines, and perform, if necessary, an EMC validation of the system.

**Failure to follow these instructions will result in death or serious injury.**

Drive systems may perform unanticipated movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

### WARNING

**UNINTENDED MOVEMENT OR MACHINE OPERATION**

- Carefully install the wiring in accordance with the EMC requirements.
- Do not operate the product with undetermined settings and data.
- Perform comprehensive commissioning tests that include verification of configuration settings and data that determine position and movement.

**Failure to follow these instructions can result in death, serious injury, or equipment damage.**

**PELV Circuits**

The signal voltage and the control voltage of the devices are less than 30 Vdc and have to be designed as PELV (Protective Extra Low Voltage) circuits. In this range, the specification as PELV system, according to IEC 61800-5-1 requires a protective measure against direct and indirect contact with hazardous voltage through an implemented separation in the system/machine of the primary and the secondary side. Separate high and low voltage wiring and respect the standard IEC 61800-5-1, Adjustable speed electrical power drive systems - safety requirements.
### DANGER

**ELECTRIC SHOCK BY INADEQUATE PROTECTIVE SEPARATION**

Only connect devices, electrical components, or lines to the signal voltage connectors of these products that feature a sufficient, protective separation from the connected circuits in accordance with the standards (IEC 61800-5-1: Adjustable speed electrical power drive systems - safety requirements).

Failure to follow these instructions will result in death or serious injury.

### WARNING

**UNAUTHENTICATED ACCESS AND SUBSEQUENT UNAUTHORIZED MACHINE OPERATION**

- Evaluate whether your environment or your machines are connected to your critical infrastructure and, if so, take appropriate steps in terms of prevention, based on Defense-in-Depth, before connecting the automation system to any network.
- Limit the number of devices connected to a network to the minimum necessary.
- Isolate your industrial network from other networks inside your company.
- Protect any network against unintended access by using firewalls, VPN, or other, proven security measures.
- Monitor activities within your systems.
- Prevent subject devices from direct access or direct link by unauthorized parties or unauthenticated actions.
- Prepare a recovery plan including backup of your system and process information.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Specific Safety Information

Proper Use

Installation
Install and operate this equipment in an enclosure appropriately rated for its intended environment and secured by a keyed or tooled locking mechanism.

Provide for Protective Measures
Before installing the device, provide for appropriate protective devices in compliance with local and national standards. Do not commission components without appropriate protective devices. After installation, commissioning, or repair, test the protective devices used.
Perform a risk evaluation concerning the specific use before operating the product and take appropriate security measures.

⚠️ WARNING

UNINTENDED EQUIPMENT OPERATION
Ensure that a risk assessment is conducted and respected according to EN/ISO 12100 during the design of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If circumstances occur that affect the safety or cause changes to the operating behavior of the controllers, then immediately shut down the controllers and contact your Schneider Electric representative.

Use Original Equipment Only
Use only the accessories and mounting parts specified in the documentation and no third-party devices or components that have not been expressly approved by Schneider Electric.

There are no user-serviceable parts within the PacDrive LMC Eco components. Either replace the component or contact the Schneider Electric Customer Service (for contact addresses, refer to the Appendix (see page 144)).

⚠️ WARNING

UNINTENDED EQUIPMENT OPERATION
- Only use software and hardware components approved by Schneider Electric for use with this equipment.
- Do not attempt to service this equipment outside of authorized Schneider Electric service centers.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Environment Restrictions
The components must not be used in the following environments:
- In hazardous (explosive) atmospheres
- In mobile, movable, or floating systems
- In life support systems
- In domestic appliances
- Underground

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

⚠️ DANGER
POTENTIAL FOR EXPLOSION
Install and use this equipment in non-hazardous locations only.
Failure to follow these instructions will result in death or serious injury.
## Chapter 2
### System Overview

### What Is in This Chapter?

This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Overview</td>
<td>22</td>
</tr>
<tr>
<td>Logic Motion Controller</td>
<td>23</td>
</tr>
<tr>
<td>Lexium 62 Drive System</td>
<td>24</td>
</tr>
<tr>
<td>Lexium 52</td>
<td>28</td>
</tr>
<tr>
<td>Lexium 62</td>
<td>29</td>
</tr>
<tr>
<td>Lexium SH3 Servo Motor</td>
<td>30</td>
</tr>
<tr>
<td>TM5 System</td>
<td>30</td>
</tr>
<tr>
<td>Type Code</td>
<td>31</td>
</tr>
<tr>
<td>Nameplate Descriptions</td>
<td>32</td>
</tr>
</tbody>
</table>
The control system consists of several components, depending on its application.

PacDrive 3 system overview

* Safety Logic Controller according to IEC 61508:2010 and EN ISO 13849:2008
Logic Motion Controller

Overview

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacDrive LMC (Logic Motion Controller), with a VxWorks real-time operating system, centrally implements the Logic Controller and motion functions. A PacDrive LMC synchronizes, coordinates, and creates the motion functions of a machine for a maximum of:</td>
<td></td>
</tr>
<tr>
<td>● 0 Sercos servo drives for the controller PacDrive LMC100</td>
<td></td>
</tr>
<tr>
<td>● 4 Sercos servo drives for the controller PacDrive LMC101</td>
<td></td>
</tr>
<tr>
<td>● 6 Sercos servo drives for the controller PacDrive LMC106</td>
<td></td>
</tr>
<tr>
<td>● 8 Sercos servo drives for the controller PacDrive LMC201</td>
<td></td>
</tr>
<tr>
<td>● 12 Sercos servo drives for the controller PacDrive LMC212</td>
<td></td>
</tr>
<tr>
<td>● 16 Sercos servo drives for the controller PacDrive LMC216</td>
<td></td>
</tr>
<tr>
<td>● 8 Sercos servo drives for the controller PacDrive LMC300</td>
<td></td>
</tr>
<tr>
<td>● 16 Sercos servo drives for the controller PacDrive LMC400</td>
<td></td>
</tr>
<tr>
<td>● 16 Sercos servo drives for the controller PacDrive LMC402</td>
<td></td>
</tr>
<tr>
<td>● 99 Sercos servo drives for the controller PacDrive LMC600</td>
<td></td>
</tr>
<tr>
<td>● 130 Sercos servo drives for the controller PacDrive LMC802</td>
<td></td>
</tr>
</tbody>
</table>
Lexium 62 Drive System

Overview
The modular servo drive system Lexium 62 Drive System is designed for the operation of servo drives in a multi-axes system.
The power electronic components of the Lexium 62 Drive System are fitted inside the control cabinet.

Lexium 62 Power Supply

Using a common DC bus, the central power supply unit Lexium 62 Power Supply supplies the connected servo converters with the power required.
The central Lexium 62 Power Supply, using a common DC bus, supplies the connected Lexium 62 Cabinet Drives with the power required.

Lexium 62 Connection Module

The Lexium 62 Connection Module supplies the Lexium 62 ILMs with DC voltage from the DC bus via a hybrid cable or via a power cable (daisy chain wiring). Additionally, the Lexium 62 Connection Module provides the Inverter Enable and Sercos interface.

The Lexium 62 Drive System helps simplify the wiring of the devices in relation to the initial start-up and in service cases. This also applies to the cable connection of the enclosed devices to the field. All the connectors that can be connected from the outside (power input, DC bus, 24 Vdc supply, Sercos, Ready, and Inverter Enable) are designed such, that a fast and simple configuration without tools can be realized on the device.
**Lexium 62 Distribution Box**

The Lexium 62 Distribution Box is the link between Lexium 62 Connection Module and Lexium 62 ILM. Depending on the number of drives, 1 to 4 Lexium 62 ILMs or daisy chain lines can be connected. When operating more than four drives, simply expand the system using one or more Lexium 62 Distribution Box.

The highlights:
- 1...4 connections for Lexium 62 ILMs or daisy chain lines or further Lexium 62 Distribution Box
- Easy wiring using pre-assembled hybrid cables or power cables (daisy chain wiring)
- Easy to expand

**Lexium 62 ILM**

The innovative Lexium 62 ILM combines motor, power stage, and digital servo controller for an axis in a space-saving housing. Due to its compact construction with the integrated controller, it is perfectly suitable for peripheral setup. It is available with individual or multi-turn encoders and configures itself with the aid of the electronic nameplate in the Lexium 62 ILM.

The Lexium 62 ILMs are available in three different flange sizes:
- ILM070
- ILM100
- ILM140

The highlights:
- Compact type of construction
- 3.5 times peak torque
- Integrated Sercos interface
- High-resolution single or multi-turn encoder
- Degree of protection IP65
- Simple wiring
**System Overview**

**ILM62DC-000 Daisy Chain Connector Box**

The ILM62DC-000 Daisy Chain Connector Box is mounted on a standard Lexium 62 ILM in order to enable a daisy chain wiring. The Lexium 62 ILMs can be either directly connected to the Lexium 62 Distribution Box or via a Lexium 62 Connection Module. When connecting via a Lexium 62 Distribution Box, a larger number of drives can be connected. At this first Lexium 62 Distribution Box another Lexium 62 Distribution Box can be connected.

Power (DC bus voltage/24V/Inverter Enable signals) and Sercos signals are distributed via separate cables. Each Lexium 62 ILM must be extended by a Daisy Chain Connector Box. If only one Lexium 62 Distribution Box is used, then up to four daisy chain lines can be connected to it. If several Lexium 62 Distribution Box are used, then on the first, up to the second to last Lexium 62 Distribution Box respectively up to three daisy chain lines can be connected and on the last Lexium 62 Distribution Box up to four daisy chain lines. A daisy chain line can consist of up to 9 Lexium 62 ILMs.

<table>
<thead>
<tr>
<th>ILM62DCA000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILM62DCB000</td>
</tr>
<tr>
<td>ILM62DCC000</td>
</tr>
</tbody>
</table>
The connection between the Lexium 62 ILMs is established as follows:

- Power cable for power distribution (DC bus voltage/24 V/Inverter Enable signals) with an M23 connector
- Sercos cable for distribution of the Sercos signals via M12 connector

The following Lexium 62 ILMs can be equipped with the Daisy Chain Connector Box in order to implement a daisy chain wiring:

- ILM070**
- ILM100**
- ILM140**

The Daisy Chain Connector Box is available in the following variants:

- ILM62DCA000 (suitable for ILM070**, ILM100** and ILM140**)
- ILM62DCB000 (suitable for ILM070** only)
- ILM62DCC000 (suitable for ILM100** only)
Lexium 52

Overview

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The stand-alone Lexium 52 Sercos servo amplifier is designed for servo drive solutions with independent single axes, or other applications involving asynchronous motors. The power electronic components of the Lexium 52 are fitted inside the control cabinet. The drive provides the phase currents required for the position control of the connected motors. According to the different requirements in relation to the individual servo axes of the application, the Lexium 52 is available in different current classes. The Lexium 52 helps simplify the wiring in relation to the initial start-up and service cases. This also applies to the cable connection of the enclosed devices to the field. All the connectors that can be connected from the outside (power input, DC bus, 24 Vdc supply, Sercos, motor, encoder, I/Os, I/O supply, Ready and Inverter Enable (STO)) are designed so that a fast, simple configuration on the device can be realized.</td>
</tr>
</tbody>
</table>
Lexium 62

Overview

The modular servo drive system Lexium 62 is designed for the operation of servo drives in a multi-axis group.

The power electronic components of the Lexium 62 are fitted inside the control cabinet.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Lexium 62 Power Supply" /></td>
<td>The central Lexium 62 Power Supply, using a common DC bus, supplies the connected Lexium 62 Cabinet Drives with the power required.</td>
</tr>
<tr>
<td><img src="image2" alt="Lexium 62 Cabinet Drives" /></td>
<td>The servo converters, Lexium 62 Cabinet Drives, provide the necessary phase currents for the position control of the connected servo motors. In addition, Lexium 62 Cabinet Drives are suitable for applications involving asynchronous motors. According to the different requirements in relation to the individual servo axes of the application, the Lexium 62 Cabinet Drives are available in different current classes. The Lexium 62 helps simplify the wiring of the devices. This also applies to the cable connection of the enclosed devices to the field. All the connectors that can be connected from the outside (power input, DC bus, 24 Vdc supply, Sercos, motor, encoder, I/Os, I/O supply, Ready and Inverter Enable) are designed so that a fast, simple configuration on the device can be realized.</td>
</tr>
</tbody>
</table>
Lexium SH3 Servo Motor

Overview

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The servo motors meet rigorous requirements of dynamics and precision. Five flange sizes with different torque outputs offer the correct drive solution for your application.</td>
</tr>
</tbody>
</table>

High Dynamic AC Servo Motors

Because of the low inertia and a high overload capability, the motor Lexium SH3 fulfills the requirements concerning the accuracy, dynamics, and efficiency.

The Lexium SH3 motors are available in five different flange sizes:
- SH3-055
- SH3-070
- SH3-100
- SH3-140
- SH3-205

The highlights:
- Developed for high dynamics and precision
- Single tooth winding
- Compact size
- High-power density
- Low internal moment of inertia
- High overload capability
- Low detent torque

TM5 System

Overview

The direct connection of the TM5 System to the PacDrive LMC Eco is not possible. The TM5 System can be connected via the Sercos bus interface.
# Type Code

## Overview

The graphic shows the type code PacDrive LMC Eco:

<table>
<thead>
<tr>
<th>Family</th>
<th>Size</th>
<th>Type</th>
<th>Modules</th>
<th>PW/Version</th>
<th>Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Family:**
- LMC = Lexium Controller

**Size:**
- 100 = 0 servo axis
- 101 = max. 4 servo axis
- 106 = max. 8 servo axis
- 201 = max. 8 servo axis
- 212 = max. 12 servo axis
- 216 = max. 16 servo axis

**Type:**
- 0 = controller based

**Modules:**
- AA = None

**Hardware - Release:**
- 1

**Internal:**
- 0000 = Standard (no customer-ID, standard firmware, no LC-points)
# Nameplate Descriptions

## Overview

The technical nameplate of the Logic Motion Controller (LMC) drive is located on the left bottom side of the housing.

Explanation of the technical nameplate entries:

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMCxxxxxxxxxx</td>
<td>Device type and Unicode</td>
</tr>
<tr>
<td>Input d.c.</td>
<td>Digital inputs / input voltage and input current (per input)</td>
</tr>
<tr>
<td>Output d.c.</td>
<td>Digital outputs / output voltage and rated current (per input)</td>
</tr>
<tr>
<td>IP20</td>
<td>Degree of protection</td>
</tr>
<tr>
<td>CE (symbol)</td>
<td>CE mark</td>
</tr>
</tbody>
</table>

The logistical nameplate of the LMC is located on top of the housing.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC101CAA10000</td>
<td>Device type and Unicode</td>
</tr>
<tr>
<td>907156.0010</td>
<td>Serial number</td>
</tr>
<tr>
<td>RS:02</td>
<td>Hardware revision (1)</td>
</tr>
<tr>
<td>DOM</td>
<td>Date of manufacture</td>
</tr>
</tbody>
</table>

(1) When replacing the controller *(see page 68)*, the hardware revision for the previous and the new device should be identical to help avoid potential compatibility issues with the equipment. The hardware revision can also be read from the hardware code in the device *(see page 91)*. For more information on the compatibility of different hardware revisions, contact your local Schneider Electric representative.
Chapter 3
Planning

What Is in This Chapter?

This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Electromagnetic Compatibility (EMC)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Control Cabinet Planning</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Information about Wiring</td>
<td>42</td>
</tr>
</tbody>
</table>
Section 3.1
Electromagnetic Compatibility (EMC)

Electromagnetic Compatibility, EMC

Electromagnetic Disturbances of Signals and Devices
This product meets the EMC requirements in accordance with the standard IEC 61131-2, provided that the EMC measures described in this manual are complied with during installation.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTROMAGNETIC DISTURBANCES OF SIGNALS AND DEVICES</td>
</tr>
<tr>
<td>Use proper EMC shielding techniques to help prevent unintended device operation in accordance with the standard IEC 61800-3.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in death, serious injury, or equipment damage.</td>
</tr>
</tbody>
</table>

These types of devices are not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if used in such a network.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIO INTERFERENCE</td>
</tr>
<tr>
<td>Do not use these products in domestic electrical networks.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in death, serious injury, or equipment damage.</td>
</tr>
</tbody>
</table>
Enclosure Layout

The prerequisite for compliance with the specified limit values is an EMC compatible layout. Depending on the application, the following measures can improve the EMC-dependent values:

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use galvanized or chromium-plated sub plates, bond metallic parts across large surface areas, remove paint layer from contact surfaces.</td>
<td>Good conductivity by surface area contact.</td>
</tr>
<tr>
<td>Ground enclosure, door, and sub plates by using grounding strips or grounding cables with a cross-section of 10 mm² (AWG 6).</td>
<td>Reduce emission.</td>
</tr>
<tr>
<td>Supplement switch devices such as contactors, relays, or magnetic valves with interference suppression combinations or spark suppressor elements (for example, diodes, varistors, RC elements).</td>
<td>Reduces mutual interference.</td>
</tr>
<tr>
<td>Fit power and control components separately.</td>
<td>Reduces mutual interference.</td>
</tr>
</tbody>
</table>

Shielded Cables

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place cable shields on the surface, use cable clamps and grounding strips.</td>
<td>Reduce emission.</td>
</tr>
<tr>
<td>Ground shields of digital signal cables on both sides across large surface areas or through conducting connector housings.</td>
<td>Reduce interference action on signal cables, reduce emissions.</td>
</tr>
<tr>
<td>Ground shield of analog signal cables directly on the device (signal input), insulate the shield at the other cable end or ground the same through a capacitor, such as 10 nF.</td>
<td>Reduce grounding loops by low frequency interferences.</td>
</tr>
</tbody>
</table>
## Cable Routing

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not route fieldbus cables and signal cables together with cabling for direct and alternating voltages above 60 V in the same cable duct (fieldbus cables can be routed together with signal cables and analog cables in the same duct). Electromagnetic immunity will improve by routing cables in separated cable ducts with a distance of at least 20 cm (7.84 in).</td>
<td>Reduces mutual interference.</td>
</tr>
<tr>
<td>Keep the cables as short as possible. Do not install any unnecessary cable loops, short cable routing from a central grounding point in the control cabinet to the external grounding connection.</td>
<td>Reduce capacitive and inductive interference couplings.</td>
</tr>
<tr>
<td>Insert a potential equalization for:</td>
<td>Reduce current on cable shield, reduce emissions.</td>
</tr>
<tr>
<td>- Large surface installation</td>
<td></td>
</tr>
<tr>
<td>- Different voltage infeeds</td>
<td></td>
</tr>
<tr>
<td>- Networking across buildings</td>
<td></td>
</tr>
<tr>
<td>Use fine wire potential equalization conductor.</td>
<td>Discharging of high frequency interference currents.</td>
</tr>
<tr>
<td>If motor and machine are not connected in a conducting fashion, for example, due to an insulated flange or a connection not across a full surface, the motor must be grounded via a grounding cable with a minimum 10 mm² (AWG 6) cross-section or a grounding strip with a length as short as possible.</td>
<td>Reduce emissions, increase interference resistance.</td>
</tr>
<tr>
<td>Use twisted pair for 24 Vdc signals.</td>
<td>Reduce interference action on signal cables, reduce emissions.</td>
</tr>
</tbody>
</table>

## Voltage Supply

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate product on mains with a grounded neutral.</td>
<td>Enable the effect of the integrated mains filter.</td>
</tr>
<tr>
<td>Protection circuit if there is a risk of overvoltage.</td>
<td>Reduce risk of damage due to overvoltages.</td>
</tr>
</tbody>
</table>
Motor and Encoder Cables
From an EMC perspective, motor supply cables and encoder cables are particularly important. Only use pre-configured cables, or cables with the prescribed properties, and comply with the following EMC measures.

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not install switching elements in motor cables or encoder cables.</td>
<td>Reduces interference.</td>
</tr>
<tr>
<td>Route motor cable with a distance of at least 20 cm (7.84 in) to the signal cables or insert shield plates between the motor supply cable and the signal cable.</td>
<td>Reduces mutual interference.</td>
</tr>
<tr>
<td>For cabling that approaches the maximum cable distance specification (75 m/ 246.06 ft.), use potential equalization cables.</td>
<td>Reduce current on cable shield.</td>
</tr>
<tr>
<td>Route motor supply cables and encoder cables without any separation point(1).</td>
<td>Reduces emission.</td>
</tr>
</tbody>
</table>

(1) If a cable must be cut through for installation purposes, the cables must be connected at the point of separation by using screen connections and metal housing.

Additional Measures for Improving the EMC
Depending on the respective application, the following measures may lead to an EMC compatible layout:

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream connection of mains line reactor (choke)</td>
<td>Reduction of the harmonic network oscillations, extension of the service life of the product.</td>
</tr>
<tr>
<td>Upstream connection of external mains filters</td>
<td>Improvement of the EMC limit values.</td>
</tr>
<tr>
<td>Special EMC-appropriate layout, for example, within an enclosed control cabinet complete with 15 dB attenuation of the interferences emitted</td>
<td>Improvement of the EMC limit values.</td>
</tr>
</tbody>
</table>
## Section 3.2
Control Cabinet Planning

### What Is in This Section?

This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of Protection (IP)</td>
<td>39</td>
</tr>
<tr>
<td>Mechanical and Climatic Environmental Conditions in the Control Cabinet</td>
<td>39</td>
</tr>
<tr>
<td>Using Cooling Units</td>
<td>40</td>
</tr>
</tbody>
</table>
Degree of Protection (IP)

Overview
Install components such that a degree of protection corresponding to the actual operational environment is set up.

For more information on the degree of protection of the component, refer to Ambient Conditions (see page 110).

The following ambient conditions may damage the components:
- Oil
- Moisture
- Electromagnetic interference
- Ambient temperature
- Metal dust deposits

**WARNING**

**UNINTENDED EQUIPMENT OPERATION**
- Prevent the formation of moisture during the operation, storage and transport of individual components.
- Conform to the vibration and shock requirements specified in the operating manuals for the components when operating, storing and transporting system components.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Mechanical and Climatic Environmental Conditions in the Control Cabinet

Overview

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Observe the climatic and mechanical ambient conditions. For more information on the general climatic and mechanical environmental conditions according to IEC/EN 60721, refer to Ambient Conditions (see page 110).</td>
</tr>
<tr>
<td>2</td>
<td>Verify the technical data of the device whether the permitted deviations (for example, higher shock load or higher temperature) are specified.</td>
</tr>
</tbody>
</table>
Using Cooling Units

Installing a Cooling Unit

How to proceed when installing a cooling unit:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position the cooling units so that no condensate drips out of the cooling unit onto electronic components or is sprayed by the cooling air flow.</td>
</tr>
<tr>
<td>2</td>
<td>Provide specially designed control cabinets for cooling units on the top of the control cabinet.</td>
</tr>
<tr>
<td>3</td>
<td>Design the control cabinet so that the cooling unit fan cannot spray any accumulated condensate onto the electronic components when it restarts after a pause.</td>
</tr>
<tr>
<td>4</td>
<td>When using cooling units, use only well-sealed control cabinets so that warm, humid outside air, which causes condensation, does not enter the cabinet.</td>
</tr>
<tr>
<td>5</td>
<td>When operating control cabinets with open doors during commissioning or maintenance, ensure that the electronic components are at no time cooler than the air in the control cabinet after the doors are shut, in order to avoid any condensation.</td>
</tr>
<tr>
<td>6</td>
<td>Continue to operate the cooling unit even when the system is switched off, so that the temperature of the air in the control cabinet and the air in the electronic components remains the same.</td>
</tr>
<tr>
<td>7</td>
<td>Set cooling unit to a fixed temperature of 40 °C (104 °F).</td>
</tr>
<tr>
<td>8</td>
<td>For cooling units with temperature monitoring, set the temperature limit to 40 °C (104 °F) so that the internal temperature of the control cabinet does not fall below the external air temperature.</td>
</tr>
</tbody>
</table>

**WARNING**

**UNINTENDED EQUIPMENT OPERATION**

Follow the installation instructions such that the condensation from the cooling unit can not enter electronic components.

_Failure to follow these instructions can result in death, serious injury, or equipment damage._
Installing a cooling unit
Section 3.3
Information about Wiring

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information about Wiring</td>
<td>43</td>
</tr>
<tr>
<td>Cable Characteristics</td>
<td>44</td>
</tr>
<tr>
<td>Configuring and Coding the Cables</td>
<td>44</td>
</tr>
<tr>
<td>ESD Protection Measures</td>
<td>45</td>
</tr>
</tbody>
</table>
General Information about Wiring

Overview

Use only Schneider Electric approved devices in your application, and especially Schneider Electric pre-fabricated cables wherever and whenever possible.

For information on the tightening torques and cable cross-sections, refer to Integrated Communication Ports (see page 97).

Observe the following points when wiring:
1. Observe the minimum cross-sections of the cables necessary for the load carrying capacity of the equipment being connected.
2. Verify the integrity of cable shields to ensure continuity to ground.
3. Ensure that there is a proper connection to ground for all interconnected equipment.
4. Eliminate any ground loops.
5. Do not disconnect cable connections terminals when under power.
6. Ensure that all ground connections have sufficient surface area continuity.

Example

If, for example, two parallel conductors are shown as coming from one point, you may not run just one conductor and then branch it off at a later point. If it is wired this way, induction loops (interference emitters and antennas) as well as interfering potential shifts may occur.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCORRECT OR UNAVAILABLE GROUNDING</td>
</tr>
<tr>
<td>Remove paint across a large surface at the installation points before installing the devices (bare metal connection).</td>
</tr>
<tr>
<td>Failure to follow these instructions will result in death or serious injury.</td>
</tr>
</tbody>
</table>
Cable Characteristics

Characteristics
Cable characteristics of the Sercos cable (see the Schneider Electric catalog for the various cables available):

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage isolation (jacket)</td>
<td>300 Vdc</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20... +60 °C / -4...+140 °F</td>
</tr>
<tr>
<td>Cable diameter</td>
<td>5.8 ± 0.2 mm (0.23 ± 0.008 in.)</td>
</tr>
<tr>
<td>Bending radius</td>
<td>8 x diameter (fixed routing)</td>
</tr>
<tr>
<td>Sheath</td>
<td>PVC, flame-retardant</td>
</tr>
<tr>
<td>Cable type and shielding</td>
<td>CAT6 with S/FTP (Sercos III)</td>
</tr>
</tbody>
</table>

Configuring and Coding the Cables

Overview
For configuring and coding the cables, use the appropriate connector kit supplied with the device.

<table>
<thead>
<tr>
<th>Accessory part</th>
<th>Number</th>
<th>Connection designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector digital inputs</td>
<td>2</td>
<td>CN7</td>
</tr>
<tr>
<td>Connector digital outputs</td>
<td>2</td>
<td>CN8</td>
</tr>
<tr>
<td>Connector supply voltage</td>
<td>1</td>
<td>CN9</td>
</tr>
<tr>
<td>Connector TM5 (not used)</td>
<td>1</td>
<td>CN10</td>
</tr>
<tr>
<td>Sercos cable 130 mm (5.11 in)</td>
<td>1</td>
<td>CN5, CN6</td>
</tr>
<tr>
<td>Coding pin</td>
<td>6</td>
<td>CN7, CN8, CN9, CN10</td>
</tr>
</tbody>
</table>
ESD Protection Measures

General
Observe the following instructions to help avoid damages due to electrostatic discharge:

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTROSTATIC DISCHARGE</td>
</tr>
<tr>
<td>● Do not touch any of the electrical connections or components.</td>
</tr>
<tr>
<td>● Prevent electrostatic charges, for example, by wearing appropriate clothing.</td>
</tr>
<tr>
<td>● If you must touch circuit boards, do so only on the edges.</td>
</tr>
<tr>
<td>● Move the circuit boards as little as possible.</td>
</tr>
<tr>
<td>● Remove existing static charge by touching a grounded, metallic surface.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in equipment damage.
Chapter 4
Installation and Maintenance

General Information
Proceed with care during the following steps in order to help to avoid the following points:
- Injuries and material damage
- Incorrect installation and programming of components
- Incorrect operation of components
- Use of non-authorized cables or modified components

What Is in This Chapter?
This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Commissioning</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance, Repair, Cleaning, Replacement Equipment Inventory</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Replacing Components and Cables</td>
<td>65</td>
</tr>
</tbody>
</table>
Section 4.1
Commissioning

What Is in This Section?

This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for Commissioning</td>
<td>49</td>
</tr>
<tr>
<td>Preparing Commissioning</td>
<td>50</td>
</tr>
<tr>
<td>Preparing the Control Cabinet</td>
<td>52</td>
</tr>
<tr>
<td>Mechanical Mounting</td>
<td>55</td>
</tr>
<tr>
<td>Wiring of the Controller</td>
<td>56</td>
</tr>
<tr>
<td>Completion of Commissioning</td>
<td>59</td>
</tr>
<tr>
<td>Performing the Function Test</td>
<td>60</td>
</tr>
</tbody>
</table>
## Prerequisites for Commissioning

### Prerequisites

<table>
<thead>
<tr>
<th>DANGER</th>
<th>HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires except under the specific conditions specified in the appropriate hardware guide for this equipment.</td>
<td></td>
</tr>
<tr>
<td>• Always use a properly rated voltage sensing device to confirm the power is off where and when indicated.</td>
<td></td>
</tr>
<tr>
<td>• Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.</td>
<td></td>
</tr>
<tr>
<td>• Use only the specified voltage when operating this equipment and any associated products.</td>
<td></td>
</tr>
</tbody>
</table>

**Failure to follow these instructions will result in death or serious injury.**

<table>
<thead>
<tr>
<th>DANGER</th>
<th>ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Operate electrical components only with a connected protective ground (earth) cable.</td>
<td></td>
</tr>
<tr>
<td>• After the installation, verify the secure connection of the protective ground (earth) cable to all electrical devices to ensure that connection complies with the connection diagram.</td>
<td></td>
</tr>
<tr>
<td>• Before enabling the device, safely cover the live components to prevent contact.</td>
<td></td>
</tr>
<tr>
<td>• Do not touch the electrical connection points of the components when the module is energized.</td>
<td></td>
</tr>
<tr>
<td>• Provide protection against indirect contact (EN 50178).</td>
<td></td>
</tr>
<tr>
<td>• Connect and disconnect cables and terminals only after you have verified that the power has been removed from the system.</td>
<td></td>
</tr>
</tbody>
</table>

**Failure to follow these instructions will result in death or serious injury.**
Preparing Commissioning

Prerequisite
Verify safety-related circuits for proper function, if applicable.

ESD Protection
Observe the following instructions to help avoid damages due to electrostatic discharge:

<table>
<thead>
<tr>
<th>ELECTROSTATIC DISCHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not touch any of the electrical connections or components.</td>
</tr>
<tr>
<td>• Prevent electrostatic charges, for example, by wearing appropriate clothing.</td>
</tr>
<tr>
<td>• If you must touch circuit boards, do so only on the edges.</td>
</tr>
<tr>
<td>• Move the circuit boards as little as possible.</td>
</tr>
<tr>
<td>• Remove existing static charge by touching a grounded, metallic surface.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in equipment damage.

Unpacking
How to unpack the device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove packaging</td>
</tr>
<tr>
<td>2</td>
<td>Dispose of the packaging material in accordance with the relevant local regulations.</td>
</tr>
</tbody>
</table>

Verifying
How to verify the device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify that the delivery is complete on the basis of the delivery slip.</td>
</tr>
<tr>
<td>2</td>
<td>Closely inspect the device for any signs of damage.</td>
</tr>
<tr>
<td>3</td>
<td>Verify the data with the help of the nameplates.</td>
</tr>
<tr>
<td>4</td>
<td>Observe requirements for the installation location.</td>
</tr>
<tr>
<td>5</td>
<td>Then install LMC.</td>
</tr>
</tbody>
</table>
WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not mount or commission damaged drive systems.
- Do not modify the drive systems.
- Send back inoperative devices.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Preparing the Control Cabinet

Overview

⚠️ DANGER

INCORRECT OR UNAVAILABLE GROUNDING
Remove paint across a large surface at the installation points before installing the devices (bare metal connection).
Failure to follow these instructions will result in death or serious injury.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If necessary to maintain and respect the maximum ambient operating temperature, install additional fan in the control cabinet.</td>
</tr>
<tr>
<td>2</td>
<td>Do not block the fan air inlet of the product.</td>
</tr>
<tr>
<td>3</td>
<td>Keep a distance of at least 100 mm (3.94 in) above and below the products.</td>
</tr>
<tr>
<td>4</td>
<td>Mount the controller vertically inside the control cabinet.</td>
</tr>
</tbody>
</table>
Assembly Distances, Ventilation

Assembly distances and air circulation:

<table>
<thead>
<tr>
<th>Distance</th>
<th>Air circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a ≥ 100 mm (3.94 in)</td>
<td>Clearance above the device.</td>
</tr>
<tr>
<td>b ≥ 100 mm (3.94 in)</td>
<td>Clearance below the device.</td>
</tr>
<tr>
<td>c ≥ 60 mm (2.36 in)</td>
<td>Clearance in front of the device.</td>
</tr>
<tr>
<td>d ≥ 0 mm (0 in)</td>
<td>Clearance between the device.</td>
</tr>
</tbody>
</table>
**Required Distances**

Required distances in the control cabinet for the PacDrive LMC Eco, Lexium 62 Power Supply, Lexium 62 Cabinet Drive:

- **Thread**
  - (1) 100 (± 0.2) 3.94 (± 0.01) M6
  - (2) 258 (+ 0.5 / -0) 10.16 (± 0.02 / -0) M6
  - (3) 22 (± 0.2) 0.87 (± 0.01) M5
  - (4) 55 (± 0.2) 2.17 (± 0.01) M6
  - (5) 45 (± 0.2) 1.77 (± 0.01) M6
  - (6) 296 (+ 0.5 / -0) 11.65 (± 0.02 / -0) M6

**NOTE:** For the shield plates (external shield connections), additional holes are required.
Mechanical Mounting

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screw the pan-head screws M5 (socket head cap screws) into the prepared mounting holes.</td>
</tr>
<tr>
<td>2</td>
<td>Keep a distance of 10 mm (0.39 in) between the screw head and the mounting plate.</td>
</tr>
<tr>
<td>3</td>
<td>Hook in device and verify the vertical mounting arrangement.</td>
</tr>
<tr>
<td>4</td>
<td>Tighten the mounting screws (torque: 2.8 Nm (24.78 lbf in)).</td>
</tr>
</tbody>
</table>
Wiring of the Controller

Before Applying Power to Your Controller for the First Time

For information on the connections mentioned hereafter, refer to the Electrical Connections Overview (see page 98).

To wire the controller, proceed as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Be sure that the controller is first connected to the ground (functional earth) before proceeding with other connections.</td>
</tr>
<tr>
<td>2</td>
<td>Verify the continuity of the grounding system of your application.</td>
</tr>
<tr>
<td>3</td>
<td>Verify that all cable shields are properly connected to the functional earth of the application.</td>
</tr>
<tr>
<td>4</td>
<td>Verify that the memory card has been inserted.</td>
</tr>
<tr>
<td>5</td>
<td>Eliminate the possibility of short circuits and interruptions.</td>
</tr>
<tr>
<td>6</td>
<td>Verify that the terminals are fastened securely and the cable cross sections (gauge) are as required.</td>
</tr>
<tr>
<td>7</td>
<td>Connect the <strong>CN9</strong> connection of the controller to an appropriate power supply.</td>
</tr>
</tbody>
</table>
| 8    | Establish a Sercos connection via the **CN5** and/or **CN6** connections. **NOTE:**<br>  
If Sercos devices are assigned via the topological addresses (**IdentificationMode** = **TopologyAddress**) to the PacDrive LMC Eco, then consider the following:<br>  
- Connect your Sercos device to the PacDrive LMC Eco either completely via Sercos port 1 (**CN5**) in line topology or in ring topology using Sercos port 1 and 2 (**CN5/CN6**).<br>  
- Do not connect the Sercos devices to the PacDrive LMC Eco via double line topology (**CN5/CN6**).<br>  
- Do not connect the Sercos devices to the PacDrive LMC Eco only via Sercos port 2 (**CN6**). |
| 9    | Connect all further connections according to the requirements of your application. |
| 10   | Power on the supply voltage to the controller. **Result:** The LMC is initialized and the LEDs show the following condition:<br>  
- LED status during initialization: **State** LED: red<br>  
- LED status after initialization: **State** LED: green |
Configure the Output CN8 as Watchdog

On the connection CN8, it is possible to configure the output DQ7 as watchdog output. By default, the output is configured as standard output.

**WARNING**

**NON-CONFORMANCE TO SAFETY FUNCTION REQUIREMENTS**

Do not use the watchdog output to realize any safety function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.


For further information on this, see the online help of SoMachine Motion.

**Grounding Screw Connection**

Tighten the grounding screw with a 1.4 Nm (12.4 ibf in) torque.
External UPS

The controller saves data up to 25 ms after a power outage. To avoid data loss, an external uninterruptible power supply (UPS) should be used.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSS OF DATA</td>
</tr>
<tr>
<td>Use an external UPS to avoid data loss in case of a power outage.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in equipment damage.</td>
</tr>
</tbody>
</table>
Completion of Commissioning

Transferring the Configuration and the Program
   Transfer project with the SoMachine Motion Logic Builder automation toolkit to the PacDrive controller.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZARDOUS MOVEMENTS</td>
</tr>
<tr>
<td>● Ensure that no persons are in the zone of operation.</td>
</tr>
<tr>
<td>● Remove all tools, loose parts, and other working aids not belonging to the axis/machine/system from the area of movement.</td>
</tr>
<tr>
<td>● Engage the engine only after the function test has been successfully performed.</td>
</tr>
<tr>
<td>Failure to follow these instructions can result in death, serious injury, or equipment damage.</td>
</tr>
</tbody>
</table>

Adjust Real-Time Clock
   The real-time clock is not adjusted at the time of delivery of the device. Summer and winter time is not considered by the device. If the real-time clock is not adjusted, the time and date specifications in the message logger will not be correct. Make certain that the real-time clock is adjusted correctly.
Performing the Function Test

Overview

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify devices and wiring again.</td>
</tr>
<tr>
<td>2</td>
<td>If you have not already done so, connect the power supply.</td>
</tr>
<tr>
<td>3</td>
<td>Carry out function test using a checklist for axis/machine/system functions.</td>
</tr>
<tr>
<td>4</td>
<td>Resume system operation according to the operating manual (from the machine manufacturer and servo amplifier).</td>
</tr>
</tbody>
</table>
Section 4.2
Maintenance, Repair, Cleaning, Replacement Equipment Inventory

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for Maintenance, Repair, and Cleaning</td>
<td>62</td>
</tr>
<tr>
<td>Repair</td>
<td>63</td>
</tr>
<tr>
<td>Cleaning</td>
<td>63</td>
</tr>
<tr>
<td>Battery, Real-Time Clock</td>
<td>64</td>
</tr>
<tr>
<td>Replacement Equipment Inventory</td>
<td>64</td>
</tr>
</tbody>
</table>
Introduction

Observe the following instructions before carrying out maintenance on the controller.

De-Energize the System

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set main switch to OFF position, or otherwise disconnect all power to the system.</td>
</tr>
<tr>
<td>2</td>
<td>Prevent main switch from being switched back on.</td>
</tr>
<tr>
<td>3</td>
<td>In the case of any drives, servos or other equipment with high capacity capacitors, wait at least 15 minutes after removing power (switching off) to allow the DC bus capacitors to discharge.</td>
</tr>
<tr>
<td>4</td>
<td>Verify whether the <strong>DC-BUS</strong> LED indicator has turned off on all components located in the axis group.</td>
</tr>
<tr>
<td>5</td>
<td>Verify with an appropriate measuring instrument that the voltages between DC+ to PE (Protective Earth/ground), DC- to PE and DC+ to DC- are all less than 42.4 Vdc.</td>
</tr>
</tbody>
</table>
Repair

Overview
There are no user-serviceable parts within the PacDrive LMC Eco controller. Either replace the controller or contact your local Schneider Electric service representative.

Cleaning

To Clean the Controller

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>De-energize the controller (see page 62).</td>
</tr>
<tr>
<td>2</td>
<td>Remove the controller.</td>
</tr>
<tr>
<td>3</td>
<td>Blow out the controller with dry pressurized air (maximum 1 bar (14.5 PSI)).</td>
</tr>
</tbody>
</table>

Care must be taken with cleaning products as some active agents may have deleterious effects on plastics and stainless steel welds.

**NOTICE**

CORROSION CAUSED BY CLEANING AGENTS
- Before using a cleaning agent, carry out a compatibility test in relation to the cleaning agent and the component affected.
- Do not use alkaline detergent.
- Do not use any chlorid-containing cleaning agents.

Failure to follow these instructions can result in equipment damage.

For more information on the material properties of your component, refer to Mechanical and Electrical Data (see page 112).
Battery, Real-Time Clock

Overview
The battery must be replaced every 10 years. After this time has elapsed, the battery must be
replaced. Only Schneider Electric personnel are authorized to replace the battery. The contact
addresses can be found in the chapter Contact Addresses (see page 144).

If the battery is getting low, then the message Empty Battery appears on the display.

NOTE: When the battery is empty and the 24 Vdc mains supply is disconnected then data (retain
variables and all the data on the NVRAM) is not saved anymore.

NOTE: When the battery is empty, the real-time clock is set to a default value by every start and
you have to set the real-time clock to the current value.

Replacement Equipment Inventory

Presentation
Keep a stock of the most important components to make certain your machine is functioning and
ready for operation.

Replace devices with the same hardware configuration to help ensure compatibility.

Indicate the following information on the replacement equipment order:

• Unicode: for example, LMC101C
• Hardware revision: for example, RS:02

This information can be found on the logistic nameplate (see page 32).

For more information concerning the replacement of components, refer to Replacing Components
and Cables (see page 65).
Section 4.3
Replacing Components and Cables

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for Replacing Components and Cables</td>
<td>66</td>
</tr>
<tr>
<td>Device Replacement</td>
<td>68</td>
</tr>
<tr>
<td>Fast Device Replacement (FDR) - Introduction</td>
<td>69</td>
</tr>
<tr>
<td>Fast Device Replacement - Usage</td>
<td>70</td>
</tr>
<tr>
<td>Fast Device Replacement - Controller Display</td>
<td>72</td>
</tr>
<tr>
<td>Fast Device Replacement - Application</td>
<td>75</td>
</tr>
<tr>
<td>Cable Replacement</td>
<td>80</td>
</tr>
</tbody>
</table>
Prerequisites for Replacing Components and Cables

De-Energize the System

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set main switch to OFF position, or otherwise disconnect all power to the system.</td>
</tr>
<tr>
<td>2</td>
<td>Prevent main switch from being switched back on.</td>
</tr>
<tr>
<td>3</td>
<td>In the case of any drives, servos or other equipment with high capacity capacitors, wait at least 15 minutes after removing power (switching off) to allow the DC bus capacitors to discharge.</td>
</tr>
<tr>
<td>4</td>
<td>Verify whether the DC-BUS LED indicator has turned off on all components located in the axis group.</td>
</tr>
<tr>
<td>5</td>
<td>Verify with an appropriate measuring instrument that the voltages between DC+ to PE (Protective Earth/ground), DC- to PE and DC+ to DC- are all less than 42.4 Vdc.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions will result in death or serious injury.
Other Prerequisites

**DANGER**

**ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH**

- Operate electrical components only with a connected protective ground (earth) cable.
- After the installation, verify the secure connection of the protective ground (earth) cable to all electrical devices to ensure that connection complies with the connection diagram.
- Before enabling the device, safely cover the live components to prevent contact.
- Do not touch the electrical connection points of the components when the module is energized.
- Provide protection against indirect contact (EN 50178).
- Connect and disconnect cables and terminals only after you have verified that the power has been removed from the system.

Failure to follow these instructions will result in death or serious injury.

**WARNING**

**UNINTENDED EQUIPMENT OPERATION**

- Only use software and hardware components approved by Schneider Electric for use with this equipment.
- Do not attempt to service this equipment outside of authorized Schneider Electric service centers.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 65 °C (149 °F) (for bare metal) during operation.

**WARNING**

**HOT SURFACES**

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Device Replacement

How to Replace the Controller

Before beginning the replacement of specific components, read thoroughly the Prerequisites for Replacing Components and Cables (see page 66).

**DANGER**

**INOPERABLE SAFETY FUNCTION**
Test the proper functioning of the safety functions after every device replacement and every change of the wiring.

**Failure to follow these instructions will result in death or serious injury.**

Observe the following instructions to replace the controller.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In order to maintain compatibility with your application and machine, replace the existing controller with that of the same hardware revision (for example, RS:02 on the logistical nameplate (see page 32) or 02 in the hardware code (see page 85)).</td>
</tr>
<tr>
<td>2</td>
<td>Contact your Schneider Electric representative if the replacement controller is of a different hardware revision.</td>
</tr>
<tr>
<td>3</td>
<td>When replacing the controller, in addition to the following instructions, the specifications of the original machine manufacturer must also be observed.</td>
</tr>
<tr>
<td>4</td>
<td>Disconnect cables from the controller.</td>
</tr>
<tr>
<td>5</td>
<td>Loosen the mounting screws from the top and bottom of the housing brackets.</td>
</tr>
<tr>
<td>6</td>
<td>Remove the controller and replace the complete unit.</td>
</tr>
<tr>
<td>7</td>
<td>Install the new controller and tighten the mounting screws.</td>
</tr>
<tr>
<td>8</td>
<td>Connect the controller according to the circuit diagram of the machine.</td>
</tr>
<tr>
<td>9</td>
<td>Following replacement of the controller, proceed as for the initial start-up.</td>
</tr>
</tbody>
</table>

**NOTICE**

**IMPROPER REPLACEMENT / COMMISSIONING**

Do not open the controller for commissioning or replacement.

**Failure to follow these instructions can result in equipment damage.**
How to Start-Up

Proceed as follows to start up:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Import the user project again using a PC on which the automation toolkit SoMachine Motion Logic Builder is installed. Or Remove the already used flash disk from the controller that has to be repaired and insert it into the new controller.</td>
</tr>
<tr>
<td>2</td>
<td>Ensure that the CompactFlash card is functional.</td>
</tr>
<tr>
<td>3</td>
<td>Store the PacDrive controller in a suitable transport packaging.</td>
</tr>
<tr>
<td>4</td>
<td>Put the system back in operation.</td>
</tr>
</tbody>
</table>

Fast Device Replacement (FDR) - Introduction

Introduction

With the help of the fast device replacement, the Lexium 62, Lexium 52 and ILM devices that are in the configuration of a SoMachine Motion project on the controller can be replaced.

There are certain parameters that have to be set in SoMachine Motion first. Information on this can be found in the online help of SoMachine Motion.

Subsequently, certain settings on the display of the controller have to be made which are described in the following.

The controller interface for FDR gives the possibility to manually access the assignment between logical devices in the controller configuration (SoMachine Motion Logic Builder) and the physical connected devices.
Fast Device Replacement - Usage

Error Detected During the Manual Device Assignment
If two or more devices of the same type (or a double drive) are replaced, it is possible that an incorrect manual assignment of the logical devices to the physical connected devices is made.

**WARNING**

**UNINTENDED OPERATING STATE OF THE DEVICE**
- Make sure that the assignment of the logical devices to the physical connected devices is exactly the same as the device assignment before the device replacement.
- Before putting the machine back into service, you have to verify that the application is addressing the physical drives correctly.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Different Device Types
The controller interface for FDR does not consider the device type of physical devices. **NOTE:** If the logical device type is not the same as the assigned physical device type, then a device assignment with the controller interface for FDR is possible. However, it leads to an error being detected during the Sercos phase start-up (8501 Sercos slave not found). If **FDRStartMode** is set to the value **Phase start-up/2**, then the controller interface for FDR is restarted.

Further information on the parameters can be found under *Fast Device Replacement* in the online help of SoMachine Motion.

Device Replacement
If the requirements are fulfilled (see chapter *Fast Device Replacement* in the SoMachine Motion online help) and you are replacing a device, then the controller display automatically shows the start picture of the controller interface for FDR.
Confirmation or Cancel

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can exit the controller interface for FDR with the Enter key (if the arrow pointing right is on No).</td>
<td>The controller interface for FDR is ended.</td>
</tr>
<tr>
<td>You can also switch to <strong>Yes</strong> with the arrow pointing down key (arrow pointing right on <strong>Yes</strong>), and then confirm the <strong>Yes</strong> with Enter.</td>
<td>Now you can navigate through the menu like described in the chapter Controller Display (see page 72). For more information, refer to the chapter Application (see page 75).</td>
</tr>
</tbody>
</table>

Timeout (5 Minutes)
If no button is pressed at the display for 5 minutes, the controller interface for FDR is terminated (timeout = 5 minutes). The system then behaves as if you have terminated the FDR mechanism as described above. If you press a display button within the 5 minutes, the time for the timeout is reset.

Behavior After Repeated Download
If after the controller interface for FDR a download of a project is made, then the saved changes of the parameter **ConfiguredSerialNumber** are reset and set to the values that are saved in the project that was downloaded.

For devices that are identified via **Identification mode → Device number (SerialNumberController / 0)** and were allocated via FDR, the system acts as if the controller interface for FDR had not been performed.

Further information on the parameters can be found under **Fast Device Replacement** in the online help of SoMachine Motion.
Fast Device Replacement - Controller Display

Overview

When the controller interface for FDR is active, the controller display shows the corresponding menu.

The following describes the menu in general. For more information, refer to the section Application (see page 75).

General Menu Description

<table>
<thead>
<tr>
<th>Arrow / Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up/Down</td>
<td>If up/down arrows are displayed at the right menu edge, you can scroll up and down using these arrow keys. Scrolling starts only after the right arrow is displayed at the lower or upper menu edge. If the right arrow is displayed in a line in between, you can move it using the up/down arrow keys.</td>
</tr>
</tbody>
</table>

The command that is in the line that is marked with the arrow pointing right can be confirmed/executed with the Enter key.

In the following example, FDR SNRC stands for addressing a device via the device serial number. Instead of FDR SNRC, the FDR ATYP (for application type) or FDR SADR (for Sercos address) can also be used.
NOTE: Devices that were assigned via the menu item/command Assign device (see below) cannot be removed again via a menu item/command.

<table>
<thead>
<tr>
<th>Placeholders</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x/y]</td>
<td>Number of the logic device (x) which currently has to be processed and the total number of the assigned devices (y). If, for example, 20 devices cannot be assigned by default addressing and you have already assigned 11 devices via the controller interface for FDR, then 12/20 is displayed. If this line (for example, FDR SNRC[x/y] [TA]) contains more than 18 characters, then the first 16 characters are displayed, followed by ... Via the menu item Details, you can switch to a display mode that displays the complete line (see below).</td>
</tr>
<tr>
<td>[TA]</td>
<td>Topological address of the physical device that is currently displayed.</td>
</tr>
<tr>
<td>[log.device]</td>
<td>Name of the logical device in the controller configuration (SoMachine Motion Logic Builder) that shall be assigned to the physical device at the topological address [TA]. If the device name consists of more than 18 characters, the first 16 characters of the device name are displayed, followed by ... Via the menu item Details, you can switch to a display mode that displays the complete logical device name (see below).</td>
</tr>
<tr>
<td>[SNRC]</td>
<td>Serial number of the currently displayed physical device on the topological address [TA]. If the serial number has more than 18 characters, then the first 16 characters of the serial number are displayed, followed by ... Via the menu item Details, you can switch to a display mode that displays the complete serial number (see below).</td>
</tr>
</tbody>
</table>

**NOTE:** Devices that were assigned via the menu item/command Assign device (see below) cannot be removed again via a menu item/command.

<table>
<thead>
<tr>
<th>Menu item/Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| Assign device     | With this command, you confirm the assignment between the logical device [log.device] and the physical device at the topological address [TA].  
  - In the case of Identification mode → Device serial number, the serial number of the physical device is copied to the parameter ConfiguredSerialNumber of the logical device.  
  - In the case of Identification mode → Application type, the application type is written to the respective device via the Sercos bus  
  - By Identification mode → sercos address, the Sercos address is written to the respective device via the Sercos bus.  
  After assigning a device, the x (see placeholder [x/y]) is increased. If no other devices without an assignment are existent, then the mechanism is completed and the Sercos phase start-up continues. |
| next phys.        | With this command, the next physical device to the logical device (x) that currently has to be processed is displayed. |
Further information on the parameters can be found under *Fast Device Replacement* in the online help of SoMachine Motion.

<table>
<thead>
<tr>
<th>Menu item/Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>With this command, it is possible to switch to a display mode that displays the complete lines (multi-line). This is helpful if in the standard view lines cannot be displayed completely (see above). For a logical device, a maximum of 40 characters can be displayed.</td>
</tr>
<tr>
<td>back</td>
<td>With this command, it is possible to switch back to the standard view (maximum 16 characters followed by . . . are displayed).</td>
</tr>
<tr>
<td>Exit FDR</td>
<td>With this command, the controller interface for FDR is canceled. The cancelation has to be confirmed once again <em>(Really exit? → Exit FDR).</em></td>
</tr>
</tbody>
</table>
Fast Device Replacement - Application

Starting Conditions

The following example shows a typical application for the controller interface for FDR. For the displayed example, the following applies:

- All the devices are operational.
- The Sercos bus is started up.
- For all the devices, the Device addressing via the Identification mode → Device serial number was made (parameter SerialNumberController / 0).
- The parameter FDRConfirmationMode of the controller was set to the value by Display / 0.

Further information on the parameters can be found under Fast Device Replacement in the online help of SoMachine Motion.
Device Replacement

The following devices have to be replaced because of maintenance:

- The device at the topology address 2 (TA:2) with the logical device name DEV_02 and the serial number SNRC phy: xxx-02 has to be replaced by the new device that has the serial number SNRC phy: xxx-15.
- The device at the topology address 5 (TA:5) with the logical device name DEV_05 and the serial number SNRC phy xxx-05 has to be replaced by the new device that has the serial number SNRC phy xxx-16.

After the Device Replacement

After the physical replacement of the devices the machine has to be restarted again. In order for the controller interface for FDR to be started, the parameter FDRStartMode has to be set to Start/1 or Phase start-up/2 and the parameter FDRConfirmationMode to by display / 0.

Now the controller interface for FDR has to find the correct assignment of the two logical devices DEV_02 and DEV_05 to the new physically connected devices at topology address 2 and 5.
Further information on the parameters can be found under *Fast Device Replacement* in the online help of SoMachine Motion.

**Process**

The controller interface for FDR verifies all the logical devices one after another which would trigger the diagnostic message 8501 *Sercos slave not found* during the Sercos phase start-up. Afterwards, to the respective logical device all the physical devices are checked until one device is acknowledged.

Due to space constraints, the sequence for device 1 and device 2 is displayed one beneath the other.
Cable Replacement

Introduction

NOTE: In addition to the following instructions, you must observe the specifications of the machine manufacturer when replacing the cables.

De-Energize the System

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set main switch to OFF position, or otherwise disconnect all power to the system.</td>
</tr>
<tr>
<td>2</td>
<td>Prevent main switch from being switched back on.</td>
</tr>
<tr>
<td>3</td>
<td>In the case of any drives, servos or other equipment with high capacity capacitors, wait at least 15 minutes after removing power (switching off) to allow the DC bus capacitors to discharge.</td>
</tr>
<tr>
<td>4</td>
<td>Verify whether the <strong>DC-BUS</strong> LED indicator has turned off on all components located in the axis group.</td>
</tr>
<tr>
<td>5</td>
<td>Verify with an appropriate measuring instrument that the voltages between DC+ to PE (Protective Earth/ground), DC- to PE and DC+ to DC- are all less than 42.4 Vdc.</td>
</tr>
</tbody>
</table>
Procedure
Proceed as follows for cable replacement:
- Be sure that the cables clearly indicate their connections before disconnecting.
- Replace cables with an identical type and length.
- Refer to any documentation from the original machine manufacturer before replacing cables.
- Disconnect/Attach the cable from the equipment components involved.

DANGER
ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Verify with a correctly calibrated measuring instrument that the DC bus is de-energized (less than 42.4 Vdc) before replacing, maintaining or cleaning machine components.
Failure to follow these instructions will result in death or serious injury.

DANGER
INCORRECT ASSIGNMENT OF CABLES
Verify that the assignment of the cables conforms to their previous connector assignments.
Failure to follow these instructions will result in death or serious injury.
Chapter 5
Indicators and Control Elements

What Is in This Chapter?
This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicators of the Controller</td>
<td>84</td>
</tr>
<tr>
<td>Menu Navigation</td>
<td>89</td>
</tr>
<tr>
<td>SD Card Slot</td>
<td>93</td>
</tr>
<tr>
<td>USB Connection</td>
<td>96</td>
</tr>
</tbody>
</table>
Indicators and Control Elements

Indicators of the Controller

Overview

Operating unit of the PacDrive LMC Eco

1  Liquid Crystal Display (LCD) (see page 85)
2  State LED indicator (see page 85)
3  PRG LED indicator (see page 85)
4  Ethernet status LED indicators (see page 87)
5  S3 (Sercos III) LED indicator (see page 86)
6  CAN LED indicator (see page 86)
7  TMS LED indicator (see page 87)
8  Sercos status LED indicators (see page 87)
Liquid Crystal Display (LCD)

In addition to the LED indicators, further information about the operating status of the controller is given on the 4-line Liquid Crystal Display (LCD).

<table>
<thead>
<tr>
<th>Line 1</th>
<th>Controller type and firmware version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 2</td>
<td>Current IP address of the controller</td>
</tr>
<tr>
<td>Line 3</td>
<td>–</td>
</tr>
<tr>
<td>Line 4</td>
<td>FPFGA version/SFPGA version/BIOS version</td>
</tr>
</tbody>
</table>

State LED Indicator

The State LED indicator indicates whether a control voltage is applied, whether errors are detected by the controller and whether the controller performs a minimum boot.

<table>
<thead>
<tr>
<th>LED indicator color / status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The control voltage (24 Vdc) is missing or too low.</td>
</tr>
<tr>
<td>Green</td>
<td>Normal operation, control voltage in normal range</td>
</tr>
<tr>
<td>Red</td>
<td>System error detected, error is shown on the display</td>
</tr>
<tr>
<td></td>
<td>Initialization active after power-on</td>
</tr>
<tr>
<td></td>
<td>An error is detected by the controller after initialization, for further information on the detected error, see the message logger.</td>
</tr>
<tr>
<td>Quickly flashes red</td>
<td>The controller performs a minimal boot</td>
</tr>
</tbody>
</table>

PRG LED Indicator

The PRG LED indicator indicates the state of the USB communication on the programming port (CN1).

<table>
<thead>
<tr>
<th>LED indicator color / status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No USB communication on the programming port.</td>
</tr>
<tr>
<td>Green</td>
<td>USB communication detected.</td>
</tr>
</tbody>
</table>

NOTE: The function to establish a connection to the controller via USB is not implemented.
S3 (Sercos III) LED Indicator

The S3 LED indicator indicates the state and the phases of the Sercos communication.

<table>
<thead>
<tr>
<th>LED indicator color / status</th>
<th>Meaning</th>
<th>Instructions/information for the user</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Sercos communication</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Orange</td>
<td>The device is in a communication phase CP0 up to and including CP3.</td>
<td>--</td>
<td>SERC3.State = 0..3</td>
</tr>
<tr>
<td>Green</td>
<td>Sercos communication in communication phase CP4 without error detected.</td>
<td>--</td>
<td>SERC3.State = 4</td>
</tr>
</tbody>
</table>

CAN LED Indicator

CAN LED indicator is a two-color light-emitting diode (LED), alternating between two states: a run state (green color) and an error state (red color). CAN LED indicator colors can be flashing (different sequences), or steady, as described below.

<table>
<thead>
<tr>
<th>State</th>
<th>Color display mode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>--</td>
<td>No power</td>
</tr>
<tr>
<td>Flashing green</td>
<td>50 ms/50 ms</td>
<td>The LED indicator repeatedly flashes according to the following sequence: on for 50 ms, then off for 50 ms.</td>
</tr>
<tr>
<td>Flashing green</td>
<td>200 ms/200 ms</td>
<td>The LED indicator repeatedly flashes according to the following sequence: on for 200 ms, then off for 200 ms</td>
</tr>
<tr>
<td>Flashing green</td>
<td>200 ms/1000 ms</td>
<td>Single flash: The LED indicator flashes according to the following sequence: on for 200 ms, then off for 1000 ms</td>
</tr>
<tr>
<td>Green</td>
<td>Steady</td>
<td>Operating state.</td>
</tr>
<tr>
<td>Flashing red</td>
<td>Single flash: The LED indicator flashes according to the following sequence: on for 200 ms, then off for 1000 ms</td>
<td>Limit to trigger diagnostic message reached</td>
</tr>
<tr>
<td></td>
<td>Double flash: The LED indicator flashes according to the following sequence: on for 200 ms, off for 200 ms, on for 200 ms, then off for 1000 ms</td>
<td>A cyclic checking has detected an error</td>
</tr>
<tr>
<td></td>
<td>Triple flash: The LED indicator flashes according to the following sequence: on for 200 ms, off for 200 ms, on for 200 ms, off for 200 ms, on for 200 ms, then off for 1000 ms</td>
<td>Synchronization error detected. no Sync message received within the configured communication cycle timeout</td>
</tr>
<tr>
<td>Red</td>
<td>Steady</td>
<td>Bus off</td>
</tr>
</tbody>
</table>

86
**Indicators and Control Elements**

**TM5 LED Indicator**

*NOTE:* The TM5 LED indicator and TM5 connector CN10 are not implemented.

**Ethernet Status LED Indicators**

The Ethernet connector has two LED indicators. One LED indicator is green, the other is yellow.

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>On</td>
<td>Connection established</td>
</tr>
<tr>
<td>Green</td>
<td>Flashing</td>
<td>Data traffic</td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>No connection, for example, no cable connected, or connected device has no power</td>
</tr>
<tr>
<td>Yellow</td>
<td>On</td>
<td>1 GBit/s connection</td>
</tr>
<tr>
<td>Yellow</td>
<td>Off</td>
<td>100 MBit/s connection</td>
</tr>
</tbody>
</table>

**Sercos Status LED indicators**

Each Sercos connector has two LED indicators. One LED indicator is green, the other is yellow.

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>On</td>
<td>Connection established</td>
</tr>
<tr>
<td>Yellow</td>
<td>Off</td>
<td>No cable connected or connected device has no power.</td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>Active network traffic</td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>No active network traffic</td>
</tr>
</tbody>
</table>

**Protocol-specific Status LED Indicators**

LED indicators PROFINET device

<table>
<thead>
<tr>
<th>SF Name in the device drawing: COM 0</th>
<th>red / green LED Indicator</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>On</td>
<td>Watchdog timeout</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detected error on a channel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detected system error.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Flashes at 2 Hz. (for 3 s)</td>
<td>DCP signal service is initiated via the bus.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>No error.</td>
<td></td>
</tr>
</tbody>
</table>
### Indicators and Control Elements

<table>
<thead>
<tr>
<th>LED indicator</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF Name in the device drawing: COM 1</td>
<td><strong>red / green LED indicator</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>On</td>
<td>• No configuration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low speed physical link</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No physical link</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Flashes at 2 Hz.</td>
<td>No data exchange</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>No error</td>
<td></td>
</tr>
<tr>
<td>LINK/RJ45 Ch0 &amp; Ch1</td>
<td><strong>green LED indicator</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>A connection to Ethernet exists.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The device has no connection to Ethernet.</td>
<td></td>
</tr>
<tr>
<td>RX/TX/RJ45 Ch0 &amp; Ch1</td>
<td><strong>yellow LED indicator</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashes</td>
<td>The device sends/receives Ethernet frames.</td>
<td></td>
</tr>
</tbody>
</table>
Menu Navigation

Menu Buttons

Three menu buttons are located on the front side of the controller. With these menu buttons, the user can open and navigate through the menu.

1. Up arrow button
2. Enter button
3. Down arrow button

Functions of the Menu Buttons

Under the Liquid Crystal Display (LCD), three menu buttons are located through which the user can open and navigate in the menu. The menu buttons feature the following functions:

<table>
<thead>
<tr>
<th>Buttons</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>First (\uparrow) and then simultaneously Enter</td>
<td>Access of the menu</td>
</tr>
<tr>
<td>(\uparrow)</td>
<td>Cursor up</td>
</tr>
<tr>
<td>(\downarrow)</td>
<td>Cursor down</td>
</tr>
<tr>
<td>Enter</td>
<td>Open menu item</td>
</tr>
<tr>
<td>First (\uparrow) and then simultaneously Enter</td>
<td>One level up in the menu</td>
</tr>
</tbody>
</table>
If an up or down arrow is displayed on the right display edge, this indicates that the current menu has more lines than can be shown on the display. In this case, you can use the arrow buttons \( \uparrow \) and \( \downarrow \) to scroll up or down.

**Menu Navigation**
Description of the Menu Navigation

The submenu **Versions** provides an overview of all the software and hardware versions installed on the controller.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
<td>Currently used firmware version.</td>
</tr>
<tr>
<td>PFPGA</td>
<td>Version of the PacDrive FPGA software</td>
</tr>
<tr>
<td>SFPGA</td>
<td>Version of the System FPGA software</td>
</tr>
<tr>
<td>BIOS</td>
<td>BIOS version</td>
</tr>
</tbody>
</table>

In the submenu **HCode/SN**, a serial number and the hardware code are displayed. The serial number is a unique number which is used to identify the controller. The hardware code indicates the hardware revision.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number</td>
<td>Controller serial number</td>
</tr>
<tr>
<td>Hardware code</td>
<td>Hardware code of the controller(1)</td>
</tr>
</tbody>
</table>

(1) The first two digits of the hardware code indicate the hardware revision (for example, 02). The hardware revision is also indicated on the logistical nameplate (see page 32) (for example, RS:02). In order to maintain compatibility with your application and machine, replace the existing controller with that of the same hardware code.

In the submenu **IP address**, the IP address, the subnet mask, and the gateway are displayed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>IP address of the controller</td>
</tr>
<tr>
<td>MASK</td>
<td>Subnet mask</td>
</tr>
<tr>
<td>GW</td>
<td>Gateway</td>
</tr>
</tbody>
</table>

The MAC address is specified in the submenu **MAC address**. The MAC address is a clear address of the device to identify the device in the network.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC address</td>
<td>MAC address</td>
</tr>
</tbody>
</table>
In the submenu **Inputs**, the user can prompt the logic state of each input. The digital inputs correspond to the standard IEC61131-2 type 1. Touchprobes and fast inputs have a resolution of 10 µs. Fast inputs can be used to trigger an interrupt.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>Digital input</td>
</tr>
<tr>
<td>ADI</td>
<td>Advanced digital input</td>
</tr>
</tbody>
</table>

In the submenu **Outputs**, the user can prompt the logic state of each output.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQ</td>
<td>Outputs</td>
</tr>
</tbody>
</table>

In the submenu **DiagMessage**, the diagnostic class, the diagnostic code, and the diagnostic text are displayed. The system assigns each diagnostic message a specific diagnostic class when enabled. The diagnostic code is a code that encrypts a certain diagnostic. In the diagnostic text, a diagnostic is described in detail.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A: Diagnostic class</td>
</tr>
<tr>
<td>BBBB</td>
<td>BBBB: Diagnostic code</td>
</tr>
<tr>
<td>C...C</td>
<td>C...C: Diagnostic text</td>
</tr>
</tbody>
</table>

In the submenu **Select language**, the user can choose the display language.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select language:</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>Display language is German.</td>
</tr>
<tr>
<td>English</td>
<td>Display language is English.</td>
</tr>
</tbody>
</table>
### SD Card Slot

#### Overview

The SD card slot is located on the front side of the controller. The SD card slot is the receptacle for the permanent data storage (SD card) of the controller.

#### General Information on the SD Card

When handling the SD card, follow the instructions below to help prevent internal data on the SD card from being corrupted or lost or a SD card malfunction from occurring:

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LOSS OF APPLICATION DATA</strong></td>
</tr>
<tr>
<td>● Do not store the SD card where there is static electricity or probable electromagnetic fields.</td>
</tr>
<tr>
<td>● Do not store the SD card in direct sunlight, near a heater, or other locations where high temperatures can occur.</td>
</tr>
<tr>
<td>● Do not bend the SD card.</td>
</tr>
<tr>
<td>● Do not drop or strike the SD card against another object.</td>
</tr>
<tr>
<td>● Keep the SD card dry.</td>
</tr>
<tr>
<td>● Do not touch the SD card connectors.</td>
</tr>
<tr>
<td>● Do not disassemble or modify the SD card.</td>
</tr>
<tr>
<td>● Use only SD cards formatted using FAT or FAT32.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in equipment damage.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LOSS OF APPLICATION DATA</strong></td>
</tr>
<tr>
<td>● Backup SD card data regularly.</td>
</tr>
<tr>
<td>● Do not remove power or reset the controller, and do not insert or remove the SD card while it is being accessed.</td>
</tr>
</tbody>
</table>

Failure to follow these instructions can result in equipment damage.
**Indicators and Control Elements**

**NOTE:** To bridge power outages, use an uninterruptible power supply (UPS) if the data being written to the SD card is critical to your application.

The controller saves data up to 25 ms after a power outage. To help to avoid data loss, use an external UPS.

**NOTICE**

**LOSS OF DATA**

Use an external UPS to avoid data loss in case of a power outage.

**Failure to follow these instructions can result in equipment damage.**

**Function of the SD Card**

The Schneider Electric firmware is stored on the SD card supplied with the controller. After the system start-up, the firmware is loaded on the controller. You can transfer a SoMachine Motion project to the SD card. It is also possible to store license points for libraries on the SD card.

**NOTE:** Only use SD cards supplied by Schneider Electric for this device.

**NOTE:** There is no display that shows that the SD card has been accessed.

**Write Protection of the SD Card**

With the slide switch on the side of the SD card, the write protection of the SD card can be activated.

Slide switch SD card:

![Slide switch SD card](image)

1 Slide switch

To activate the write protection, the slide switch has to be set to the position **LOCK**. To deactivate the write protection, the slide switch has to be set to the opposite position.

**NOTE:** With an activated write protection, a download of a SoMachine Motion project onto the controller or writing of parameters on the SD card is not possible during the operation.
**Insert SD Card**

Pre-requisite: The controller must be switched off.

**NOTICE**

**INCORRECTLY INSERTED SD CARD**

- Do not insert the SD card when the controller is under power.
- Verify that you insert the SD card into the SD card slot correctly with the beveled corner forward and facing downwards.

Failure to follow these instructions can result in equipment damage.

Insert the SD card carefully into the SD card slot with the beveled corner forward and directed downwards as shown on the figure until it snaps into place:

1 SD card slot
2 SD card
3 Beveled corner forward and directed downwards
**Indicators and Control Elements**

**Remove SD Card**

Pre-requisite: The controller must be switched off.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Push the SD card slightly inside until it disengages.</td>
</tr>
<tr>
<td>2</td>
<td>Remove the SD card from the SD card slot.</td>
</tr>
</tbody>
</table>

**NOTICE**

**INCORRECTLY REMOVED SD CARD**

Do not remove the SD card when the controller is under power.

Failure to follow these instructions can result in equipment damage.

**USB Connection**

**Overview**

It is possible to connect storage media for the extension of the memory to the connection CN2 (USB-A). Only a storage medium and no USB-hubs may be connected to the connection.

**NOTE:** The storage medium must only be inserted if the firmware controller is started up. Otherwise the firmware of the controller does not start up.
Chapter 6
Integrated Communication Ports

What Is in This Chapter?
This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Connections Overview</td>
<td>98</td>
</tr>
<tr>
<td>Connection Details Controller</td>
<td>101</td>
</tr>
</tbody>
</table>
Electrical Connections Overview

Front Panel

Connection overview front panel

<table>
<thead>
<tr>
<th>Connection</th>
<th>Meaning</th>
<th>Connection cross-section [mm²] / [AWG]</th>
<th>Tightening torque [Nm] / [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>Prog port (USB mini-b), not active</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN2</td>
<td>USB A</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN3</td>
<td>Ethernet connection</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN4</td>
<td>Serial link (COM)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Integrated Communication Ports

<table>
<thead>
<tr>
<th>Connection</th>
<th>Meaning</th>
<th>Connection cross-section [mm²] / [AWG]</th>
<th>Tightening torque [Nm] / [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN5</td>
<td>Sercos, port 1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN6</td>
<td>Sercos, port 2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN7</td>
<td>Digital inputs</td>
<td>0.2…1.5 / 24…16</td>
<td>–</td>
</tr>
<tr>
<td>CN8</td>
<td>Digital outputs</td>
<td>0.2…1.5 / 24…16</td>
<td>–</td>
</tr>
</tbody>
</table>

**Top Side**

Connection overview top side

<table>
<thead>
<tr>
<th>Connection</th>
<th>Meaning</th>
<th>Connection cross-section [mm²] / [AWG]</th>
<th>Tightening torque [Nm] / [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN9</td>
<td>24 Vdc</td>
<td>0.2…1.5 / 24…16</td>
<td>–</td>
</tr>
<tr>
<td>CN10</td>
<td>TM5 (not active)</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

EIO0000001501 04/2018 99
### Bottom Side

Connection overview bottom side

<table>
<thead>
<tr>
<th>Connection</th>
<th>Meaning</th>
<th>Connection cross-section [mm²] / [AWG]</th>
<th>Tightening torque [Nm] / [lbf in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN11</td>
<td>CAN</td>
<td>–</td>
<td>0.4 Nm / 3.54 lbf in</td>
</tr>
<tr>
<td>CN12</td>
<td>Master encoder input</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CN16</td>
<td>Option</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ground (functional earth FE)</td>
<td>minimum 2.5 / minimum 13</td>
<td>1.4 / 12.39</td>
</tr>
</tbody>
</table>
Connection Details Controller

CN1 - Prog Port (USB mini-B)

**NOTE:** Prog port (USB mini-B) is not active.

CN2 - USB-A

Connection CN2 USB - A

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS / +5V</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>D- / Data-</td>
<td>Data line -</td>
</tr>
<tr>
<td>3</td>
<td>D+ / Data+</td>
<td>Data line +</td>
</tr>
<tr>
<td>4</td>
<td>GND / Ground</td>
<td>–</td>
</tr>
</tbody>
</table>

CN3 - Ethernet

Connection CN3

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D1+ (Tx+)</td>
</tr>
<tr>
<td>2</td>
<td>D1- (Tx-)</td>
</tr>
<tr>
<td>3</td>
<td>D2+ (Rx+)</td>
</tr>
<tr>
<td>4</td>
<td>D3+</td>
</tr>
<tr>
<td>5</td>
<td>D3-</td>
</tr>
<tr>
<td>6</td>
<td>D2- (Rx-)</td>
</tr>
<tr>
<td>7</td>
<td>D4+</td>
</tr>
<tr>
<td>8</td>
<td>D4-</td>
</tr>
</tbody>
</table>
Integrated Communication Ports

### CN3 LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Function</th>
<th>Off</th>
<th>On</th>
<th>Flashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>State</td>
<td>No connection</td>
<td>Connection, no activity</td>
<td>Connection and activity</td>
</tr>
<tr>
<td>Yellow</td>
<td>Velocity</td>
<td>10 MBit</td>
<td>100 MBit / 1 GBit</td>
<td>–</td>
</tr>
</tbody>
</table>

### CN4 - Serial Link (COM)

Connection CN4

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxD</td>
<td>RS-232, transmit data</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>RS-232, receive data</td>
</tr>
<tr>
<td>3</td>
<td>CTS</td>
<td>RS-232, clear to send</td>
</tr>
<tr>
<td>4</td>
<td>D1 / B</td>
<td>Modbus D1, RS-485 B</td>
</tr>
<tr>
<td>5</td>
<td>D0 / A</td>
<td>Modbus D0, RS-485 A</td>
</tr>
<tr>
<td>6</td>
<td>RTS</td>
<td>RS-232, request to send</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>0 V</td>
<td>Signal and power common</td>
</tr>
</tbody>
</table>

### CN5 - Sercos

Connection CN5

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>Transmit data +</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
<td>Transmit data -</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>Receive data +</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
<td>Receive data -</td>
</tr>
</tbody>
</table>
The Sercos LEDs indicate the state of the Sercos connection:

<table>
<thead>
<tr>
<th>LED</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Activity</td>
</tr>
<tr>
<td>Yellow</td>
<td>Connection</td>
</tr>
</tbody>
</table>

### CN6 - Sercos

Connection **CN6**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>Transmit data +</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
<td>Transmit data -</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>Receive data +</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
<td>Receive data -</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

The Sercos LEDs indicate the state of the Sercos connection:

<table>
<thead>
<tr>
<th>LED</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Activity</td>
</tr>
<tr>
<td>Yellow</td>
<td>Connection</td>
</tr>
</tbody>
</table>
Integrated Communication Ports

**CN7 - Digital Input**

Connection CN7

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DI0</td>
<td>Digital inputs</td>
</tr>
<tr>
<td>2</td>
<td>DI1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DI2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DI3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DI4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DI5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0V1</td>
<td>Reference potential DI0...DI11</td>
</tr>
<tr>
<td>8</td>
<td>DI6</td>
<td>Digital inputs</td>
</tr>
<tr>
<td>9</td>
<td>DI7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DI8 (FI.0)</td>
<td>Expanded inputs</td>
</tr>
<tr>
<td>11</td>
<td>DI9 (FI.1)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DI10 (FI.2)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DI11 (FI.3)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0V2</td>
<td>Reference potential DI0...DI11</td>
</tr>
</tbody>
</table>

**CN8 - Digital Output**
### Integrated Communication Ports

#### Connection CN8

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DQ0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>DQ1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>DQ2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>DQ3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>24V1</td>
<td>Supply voltage DQ0 - DQ7</td>
<td>-15% / +25%</td>
</tr>
<tr>
<td>6</td>
<td>0V3</td>
<td>Supply voltage DQ0 - DQ7</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>DQ4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>DQ5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>DQ6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>DQ7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>24V2</td>
<td>Supply voltage DQ0 - DQ7</td>
<td>-15% / +25%</td>
</tr>
<tr>
<td>12</td>
<td>0V4</td>
<td>Supply voltage DQ0 - DQ7</td>
<td>–</td>
</tr>
</tbody>
</table>

#### CN9 - Supply Voltage

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0V</td>
<td>Supply voltage</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+24V</td>
<td>Supply voltage</td>
<td>-15% / +25%</td>
</tr>
</tbody>
</table>

#### Connection CN9

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0V</td>
<td>Supply voltage</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+24V</td>
<td>Supply voltage</td>
<td>-15% / +25%</td>
</tr>
</tbody>
</table>

#### CN10 - TM5

**NOTE:** TM5 connection is not active.
Integrated Communication Ports

CN11 - CAN

Connection CN11

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>CAN_L</td>
<td>Bus line (low)</td>
</tr>
<tr>
<td>3</td>
<td>CAN GND</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>CAN GND</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>CAN_H</td>
<td>Bus line (high)</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

**NOTE:** TM5 System can only be connected to the Sercos bus, this means, the connection of the TM5 System to the PacDrive controller can only occur via a Sercos bus interface TM5NS31. A connection of TM5 System via CAN bus and a CANopen interface module is not supported.

CN12 - Master Encoder Input (Hiperface)

The Hiperface connection consists of a standard, differential, digital connection (RS-485 = 2 wires), a differential, analog connection (sine- and cosine signal = 4 wires), and a mains connection to supply the encoder (+10V, GND = 2 wires).
Connection **CN12** - Master encoder input (Hiperface)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COS</td>
<td>Cosine track</td>
</tr>
<tr>
<td>2</td>
<td>REFCOS</td>
<td>Reference signal cosinus</td>
</tr>
<tr>
<td>3</td>
<td>SIN</td>
<td>Sinusoidal trace</td>
</tr>
<tr>
<td>4</td>
<td>RS485+</td>
<td>Parameter channel +</td>
</tr>
<tr>
<td>5</td>
<td>RS485-</td>
<td>Parameter channel -</td>
</tr>
<tr>
<td>6</td>
<td>REFSIN</td>
<td>Reference signal sine</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>A</td>
<td>Encoder supply (+)</td>
<td>–</td>
</tr>
<tr>
<td>B</td>
<td>GND</td>
<td>–</td>
</tr>
</tbody>
</table>

Connection **CN12** - Master Encoder Input (Incremental)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trace B+</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Trace B-</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Trace A+</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Trace N+</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Trace N-</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Trace A-</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>A</td>
<td>Encoder supply (+)</td>
<td>–</td>
</tr>
<tr>
<td>B</td>
<td>GND</td>
<td>–</td>
</tr>
</tbody>
</table>
Chapter 7
Technical Data

What Is in This Chapter?

This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Conditions</td>
<td>110</td>
</tr>
<tr>
<td>Standards and Regulations</td>
<td>111</td>
</tr>
<tr>
<td>Mechanical and Electrical Data</td>
<td>112</td>
</tr>
<tr>
<td>Dimensions</td>
<td>115</td>
</tr>
</tbody>
</table>
## Ambient Conditions

### Ambient Conditions for Control Cabinet Devices:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Parameter</th>
<th>Value</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Operation</strong></td>
<td>Class 3K3</td>
<td></td>
<td>IEC/EN 60721-3-3</td>
</tr>
<tr>
<td></td>
<td>Degree of protection housing</td>
<td>IP 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollution degree</td>
<td>2 (according to IEC 61131-2, UL508)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient temperature</td>
<td>+5...+55 °C / +41...+131 °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icing</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>5%...95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation height 0...2000 m (0...6561 ft)</td>
<td>No derating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation height 2000...3000 m (6561...9842 ft)</td>
<td>40 °C / 104 °F maximum ambient temperature</td>
<td></td>
</tr>
<tr>
<td><strong>Transport</strong></td>
<td>Class 2K3</td>
<td></td>
<td>IEC/EN 60721-3-2</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature</td>
<td>-25...+70 °C / -13...+158 °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icing</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>5%...95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum altitude of transport</td>
<td>10000 m (32808 ft)</td>
<td></td>
</tr>
<tr>
<td><strong>Long-term storage in transport packaging</strong></td>
<td>Class 1K4</td>
<td></td>
<td>IEC/EN 60721-3-1</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature</td>
<td>-25...+55 °C / -13...+131 °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icing</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative humidity</td>
<td>5%...95%</td>
<td></td>
</tr>
</tbody>
</table>

(1) The installation height is defined as height above sea level.
## Standards and Regulations

### Overview

Declarations and certifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>EMC Directive 2014/30/EU</td>
</tr>
<tr>
<td></td>
<td>- EN 61131-2-2:2007 (Zone B)</td>
</tr>
<tr>
<td>cULus</td>
<td>UL 508: Industrial Control Equipment</td>
</tr>
<tr>
<td></td>
<td>CSA 22.2 No. 142: Process Control Equipment</td>
</tr>
<tr>
<td>CSA</td>
<td>Process Control Equipment</td>
</tr>
<tr>
<td></td>
<td>- CSA 22.2 No. 142</td>
</tr>
<tr>
<td>China RoHS</td>
<td>Marking for the Restricted Use of Hazardous</td>
</tr>
<tr>
<td></td>
<td>Substances in Electronic and Electrical Products</td>
</tr>
<tr>
<td></td>
<td>- SJ/T 11364</td>
</tr>
</tbody>
</table>
## Technical Data PacDrive LMC Eco

### Mechanical and Electrical Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product configuration</td>
<td>Type code</td>
<td>LMC 100C</td>
</tr>
</tbody>
</table>
| Configuration | Processor | CPU Intel Atom 1.66 GHz  
512 KB L2 cache                                                                 |
| | Random access memory | ≥512 MB RAM                                                                 |
| | NV RAM | 128 KB                                                                 |
| | Battery for NVRAM and RTC | Yes (internal, data retention > 10 years)                                                                 |
| | SD card | At least 512 MB (accessible from the outside)                                                                 |
| | Control buttons | 3                                                                 |
| | On/off button | No                                                                 |
| | Reset button | No                                                                 |
| | Cooling | Passive                                                                 |
| | Real Time Clock (RTC) | Yes (deviation maximum ± 1 s in 24 h)                                                                 |
| | Maximum number of drives (servo axes) | 0 4 6 8 12 16                                                                 |
| Operating system | Real-time operating system | VxWorks and SEA Automation kernel                                                                 |
| Diagnostics | Watchdog | Yes (configurable output)                                                                 |
| | Diagnostic display | Liquid Crystal Display (LCD) 128 x 64 (with background lighting)                                                                 |
| | Status LED's | State / CAN / TM5 / S3 / PRG                                                                 |
| | Integrated data logger for diagnostic messages | Yes                                                                 |
| | Integrated trace recorder (software oscilloscope) | Yes                                                                 |
| Bus connections | Integrated automation bus | Sercos (master)                                                                 |
| | Integrated additional fieldbus | CAN (master/slave)                                                                 |
| | TMS5 bus | Expandability for future interfaces, under preparation                                                                 |
## Technical Data

### Communication / interfaces

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial interfaces</td>
<td>1 x COM: RS-232 / RS-485 (RJ45)</td>
</tr>
<tr>
<td>Modbus</td>
<td>Yes (RJ45)</td>
</tr>
<tr>
<td>Network connection</td>
<td>1 x Ethernet 10/100/1000 Base-T (RJ45)</td>
</tr>
<tr>
<td>USB connection</td>
<td>1 x USB-A (host for storage medium)</td>
</tr>
<tr>
<td></td>
<td>1 x USB mini-B (client for engineering), not active</td>
</tr>
<tr>
<td>Optional slot for another fieldbus</td>
<td>1 x communication module realtime Ethernet or 1 x communication module PROFIBUS DP</td>
</tr>
</tbody>
</table>

### Programming languages

- **IEC 61131-3**
  - Continuous function chart (CFC)
  - Function block diagram (FBD)
  - Instruction list (IL)
  - Structured text (ST)
  - Ladder diagram (LD)
  - Sequential function chart (SFC)

### Touchprobe + fast inputs (interrupt)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 (TP &amp; fast inputs) (IEC6131-2 type1)</td>
</tr>
<tr>
<td>Range $U_{IN}$ 0 voltage</td>
<td>-3...5 Vdc</td>
</tr>
<tr>
<td>Range $U_{IN}$ 1 voltage</td>
<td>15...30 Vdc</td>
</tr>
<tr>
<td>Input current $I_{IN}$</td>
<td>$4 , mA \text{ at } U_{IN} = 24 , Vdc}$</td>
</tr>
<tr>
<td>Polarized</td>
<td>Yes</td>
</tr>
<tr>
<td>Input filter DI8...DI11</td>
<td>100 µs - 4.29 s</td>
</tr>
<tr>
<td>Touchprobe resolution DI8 to DI11</td>
<td>10 µs at a Sercos cycle time of 1, 2, 4 ms</td>
</tr>
</tbody>
</table>

### Digital inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>8 (IEC6131-2 type1)</td>
</tr>
<tr>
<td>Range $U_{IN}$ 0 voltage</td>
<td>-3...5 Vdc</td>
</tr>
<tr>
<td>Range $U_{IN}$ 1 voltage</td>
<td>15...30 Vdc</td>
</tr>
<tr>
<td>Input current $I_{IN}$</td>
<td>$4 , mA \text{ at } U_{IN} = 24 , Vdc}$</td>
</tr>
<tr>
<td>Polarized</td>
<td>Yes</td>
</tr>
<tr>
<td>Input filter DI0...DI7</td>
<td>100 µs - 4.29 s</td>
</tr>
</tbody>
</table>
### Technical Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Digital outputs</strong></td>
<td>Type code</td>
<td>LMC 100C  LMC 101C  LMC 106C  LMC 201C  LMC 212C  LMC 216C</td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td>8 (IEC61131-2 type1)</td>
</tr>
<tr>
<td></td>
<td>Output voltage</td>
<td>(+UL-3 V) &lt; U_{OUT} &lt; +UL</td>
</tr>
<tr>
<td></td>
<td>Rated current</td>
<td>I_e = 500 mA rated per output and 2 A maximum for all outputs at once (for example, 8 outputs with 250 mA)</td>
</tr>
<tr>
<td></td>
<td>Inrush current</td>
<td>I_{emax} &lt; 2 A for 1 s</td>
</tr>
<tr>
<td></td>
<td>Leakage current with 0 signal</td>
<td>≤ 0.5 mA</td>
</tr>
<tr>
<td></td>
<td>Transmission time</td>
<td>&lt;100 µs</td>
</tr>
<tr>
<td></td>
<td>Short circuit protection</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Open circuit detection</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Openload failure detection</td>
<td>R_{load} &gt; 150 kΩ</td>
</tr>
<tr>
<td></td>
<td>Overload failure detection</td>
<td>U_{DQ+24V} - U_{DQx} &gt; 4.0 V</td>
</tr>
<tr>
<td><strong>Master encoder input</strong></td>
<td>Hiperface®</td>
<td>Voltage output: 10 V / 200 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analog channel 0.9 V...1.1 V_{pp} / 2.2...2.8 V_{offset} (maximum 250 KHz)</td>
</tr>
<tr>
<td></td>
<td>INC</td>
<td>Voltage output: 5 V / 300 mA</td>
</tr>
<tr>
<td></td>
<td>Power consumption of power supply</td>
<td>20.4 Vdc...30 Vdc</td>
</tr>
<tr>
<td></td>
<td>Inrush current</td>
<td>maximum 27 W</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
<td>Dimensions of housing D_{xWxH} (mm): 222 x 44 x 270</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>Weight (with packaging) 2.2 kg (4.9 lbs)</td>
</tr>
</tbody>
</table>
Dimensions

Dimensions of the PacDrive LMC Eco:
# Chapter 8
## Optional Modules

**What Is in This Chapter?**

This chapter contains the following sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Communication Module Realtime Ethernet</td>
<td>118</td>
</tr>
<tr>
<td>8.2</td>
<td>Communication Module PROFIBUS DP</td>
<td>134</td>
</tr>
</tbody>
</table>
Section 8.1
Communication Module Realtime Ethernet

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>119</td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td>121</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>124</td>
</tr>
</tbody>
</table>
Overview

General Information

The communication module Realtime Ethernet is an optional module that provides a PROFINET, EtherNet/IP, or EtherCAT slave interface.

Communication module Realtime Ethernet - connections

1 Ethernet channel 0
2 Ethernet channel 1

After installing the optional module, the controller will automatically detect the module. Then configure it by using the PLC configuration in SoMachine Motion Logic Builder.

LED Labels of the Realtime Ethernet Communication Module

With the Realtime Ethernet communication modules, it is possible to use different protocols. The meaning of the LEDs depends on the protocol selected.

The three LED labels for the Realtime Ethernet communication module are enclosed in the package.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>

INOPERABLE EQUIPMENT

Do not touch the contacts when unpacking or installing the communication module.

Failure to follow these instructions can result in equipment damage.
Affix the LED label which corresponds to the protocol selected:
Optional Modules

Mechanical Installation

Consideration

### NOTICE

**INOPERABLE EQUIPMENT**

Do not touch the contacts when unpacking or installing the optional module.

Failure to follow these instructions can result in equipment damage.

#### How to Open the Controller

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the cover of input <strong>CN16</strong> option at the bottom side of the housing. To do this, push the locking of the cover backward. <strong>Result</strong>: The cover folds down.</td>
</tr>
<tr>
<td>2</td>
<td>Pull the cover to the front and remove it.</td>
</tr>
</tbody>
</table>

#### How to Install the Optional Module

### NOTICE

**INCORRECT INSERTION OF OPTIONAL MODULE**

- Do not insert the optional module when the controller is under power.
- Verify that the springs at the bottom side of the module are located at the printed circuit board side when you insert the module into the slot.

Failure to follow these instructions can result in equipment damage.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ensure that the controller is switched off.</td>
</tr>
</tbody>
</table>
Optional Modules

How to Remove the Optional Module

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 2    | Insert the module into the slot and push against the printed circuit board until both front springs at the bottom side lower into the openings on the printed circuit board.  
|      | **Result:** The module rests on the lower edge of the slot. |
| 3    | Slightly apply pressure and push the module further inside until it is flush at the edge.  
|      | **Result:** The springs at the bottom side reach into the openings of the printed circuit board. |

NOTE: Ensure that the module is flush at the edge.

**NOTICE**

INOPERABLE EQUIPMENT
Do not remove the optional module when the controller is under power.

**Failure to follow these instructions can result in equipment damage.**
**Step** | **Action**
---|---
1 | Take the protruding part of the handle of the flap and pull the handle out the optional module.

![Flap handle]

1 Flap handle

2 | Pull at the strap handle and pull the optional module out of the slot until its latching releases.

3 | Completely remove the optional module from the slot.

4 | Push the flap handle back into the module.

5 | Insert the protective cover in the resulting opening for the optional module and push it upward until it latches.

6 | Push the cover locking mechanism to the front until it latches.
Optional Modules

Electrical Connections

Connection Details Communication Module Realtime Ethernet

NOTE: The Realtime Ethernet communication module can be programmed differently. Depending on the protocol selected, you need to affix a label to the LEDs. Refer to LED Labels of the Realtime Ethernet Communication Module (see page 119).

Connection details Realtime Ethernet

1 Ethernet channel 0
2 Ethernet channel 1

Ethernet outlet

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>Transmit data +</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
<td>Transmit data -</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>Receive data +</td>
</tr>
<tr>
<td>4</td>
<td>TERM</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>TERM</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
<td>Receive data -</td>
</tr>
<tr>
<td>7</td>
<td>TERM</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>TERM</td>
<td>–</td>
</tr>
</tbody>
</table>
LED Description PROFINET

LEDs PROFINET

**1 SYS = System LED**
**2 SF = System error**
**3 BF = Bus error**

### System LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>Duo LED yellow/green</td>
<td></td>
<td><strong>Yellow</strong> Static: Bootloader netX (= roomloader) is waiting for second stage bootloader.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Green/yellow</strong> Flashing green/yellow Second stage bootloader is waiting for firmware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green On</td>
<td>Operating system running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>No power supply.</td>
</tr>
</tbody>
</table>

### LEDs PROFINET IO RT controller

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>Duo LED red/green</td>
<td></td>
<td><strong>Red On</strong> (Together with BF red = on:) No valid master license.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red Flashing cyclic at 2 Hz</td>
<td>System error detected: Invalid configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>BF</td>
<td>Duo LED red/green</td>
<td></td>
<td><strong>Red On</strong> No connection: No Link. Or (together with SF red = on) No valid master license.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red Flashing cyclic at 2 Hz</td>
<td>Configuration error detected: not all configured I/O devices are connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>Normal operation.</td>
</tr>
</tbody>
</table>
### Optional Modules

**LEDs PROFINET IO RT device**

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK/RJ45 Ch0 &amp; Ch1</td>
<td>LED green</td>
<td>Green</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>RX/TX/RJ45 Ch0 &amp; Ch1</td>
<td>LED yellow</td>
<td>Yellow</td>
<td>Flashes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>Duo LED red/green</td>
<td>Red On</td>
<td>Watchdog timeout, channel, generic or extended diagnostic present; system error detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red Flashing cyclic at 2 Hz (for 3 s)</td>
<td>DCP signal service is initiated via the bus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>BF</td>
<td>Duo LED red/green</td>
<td>Red On</td>
<td>No configuration; or low speed physical link; or no physical link.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red Flashing cyclic at 2 Hz</td>
<td>No data exchange.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>LINK/RJ45 Ch0 &amp; Ch1</td>
<td>LED green</td>
<td>Green</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off Off</td>
<td>The device has no connection to Ethernet.</td>
</tr>
<tr>
<td>RX/TX/RJ45 Ch0 &amp; Ch1</td>
<td>LED yellow</td>
<td>Yellow</td>
<td>Flashes</td>
</tr>
</tbody>
</table>
LED Description EtherNet/IP

LEDs EtherNet/IP

1  SYS = System LED
2  MS = Module Status
3  NS = Network Status

System LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>Duo LED yellow/green</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Static</td>
<td>Bootloader netX (= roomloader) is waiting for second stage bootloader.</td>
</tr>
<tr>
<td></td>
<td>Green/yellow</td>
<td>Flashing green/yellow</td>
<td>Second stage bootloader is waiting for firmware.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>Operating system running.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td>No power supply.</td>
</tr>
</tbody>
</table>
# LEDs EtherNet/IP Scanner (master)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Duo LED red/green</td>
<td></td>
<td><strong>Device operational</strong>: If the device is operating correctly, the module status indicator is steady green.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td><strong>Standby</strong>: If the device has not been configured, the module status indicator is flashing green.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Flashes</td>
<td><strong>Major error detected</strong>: If the device has detected a non-recoverable error, the module status indicator is steady red.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>On</td>
<td><strong>Minor error detected</strong>: If the device has detected a recoverable error, the module status indicator is flashing red. <strong>NOTE</strong>: An incorrect or inconsistent configuration is a minor error.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Flashes</td>
<td><strong>Self-test</strong>: While the device is performing its power-up testing, the module status indicator is flashing green/red.</td>
</tr>
<tr>
<td></td>
<td>Red/green</td>
<td>Flashes</td>
<td><strong>No power</strong>: If no power is supplied to the device, the module status indicator is steady off.</td>
</tr>
<tr>
<td>LED</td>
<td>Color</td>
<td>State</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NS</td>
<td>Duo LED red/green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>Connected: If the device has at least one established connection (even to the Message Router), the network status indicator is steady green.</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Flashes</td>
<td>No connections: The device has no established connections, but has obtained an IP address. In this case, the network status indicator flashes green.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>On</td>
<td>Duplicate IP: If the device has detected that its IP address is already in use, the network status indicator is steady red.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Flashes</td>
<td>Connection timeout: If one or more connections in which this device is the target has timed out, the network status indicator is flashing red. This is left only if all timed out connections are re-established or if the device is reset.</td>
<td></td>
</tr>
<tr>
<td>Red/green</td>
<td>Flashes</td>
<td>Self-test: While the device is performing its power-up testing, the network status indicator is flashing green/red.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Not powered, no IP address: If the device does not have an IP address (or is powered off), the network status indicator is off.</td>
<td></td>
</tr>
<tr>
<td>LINK/RJ45 Ch0 &amp; Ch1</td>
<td>LED green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>A connection to Ethernet exists.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The device has no connection to Ethernet.</td>
<td></td>
</tr>
<tr>
<td>ACT/RJ45 Ch0 &amp; Ch1</td>
<td>LED yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashes</td>
<td>The device sends/receives Ethernet frames.</td>
<td></td>
</tr>
</tbody>
</table>
### LEDs EtherNet/IP Adapter (slave)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Duo LED red/green</td>
<td></td>
<td><strong>Device operational:</strong> If the device is operating correctly, the module status indicator is steady green.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td><strong>Standby:</strong> If the device has not been configured, the module status indicator is flashing green.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Flashes</td>
<td><strong>Major error detected:</strong> If the device has detected a non-recoverable error, the module status indicator is steady red.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>On</td>
<td><strong>Minor error detected:</strong> If the device has detected a recoverable error, the module status indicator is flashing red. <strong>NOTE:</strong> An incorrect or inconsistent configuration is a minor error.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Flashes</td>
<td><strong>Self-test:</strong> While the device is performing its power-up testing, the module status indicator is flashing green/red.</td>
</tr>
<tr>
<td></td>
<td>Red/green</td>
<td>Flashes</td>
<td><strong>No power:</strong> If no power is supplied to the device, the module status indicator is off.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>
### Optional Modules

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NS</strong></td>
<td>Duo LED red/green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td><strong>Connected</strong>: If the device has at least one established connection (even to the Message Router), the network status indicator is steady green.</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Flashes</td>
<td><strong>No connections</strong>: If the device has no established connections, but has obtained an IP address, the network status indicator is flashing green.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>On</td>
<td><strong>Duplicate IP</strong>: If the device has detected that its IP address is already in use, the network status indicator is steady red.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Flashes</td>
<td><strong>Connection timeout</strong>: If one or more connections in which this device is the target has timed out, the network status indicator is flashing red. This is left only if all timed out connections are re-established or if the device is reset.</td>
<td></td>
</tr>
<tr>
<td>Red/green</td>
<td>Flashes</td>
<td><strong>Self-test</strong>: While the device is performing its power-up testing, the network status indicator is flashing green/red.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td><strong>Not powered, no IP address</strong>: If the device does not have an IP address (or is powered off), the network status indicator is off.</td>
<td></td>
</tr>
<tr>
<td><strong>LINK/RJ45 Ch0 &amp; Ch1</strong></td>
<td><strong>LED green</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>On</td>
<td>A connection to Ethernet exists.</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The device has no connection to Ethernet.</td>
<td></td>
</tr>
<tr>
<td><strong>ACT/RJ45 Ch0 &amp; Ch1</strong></td>
<td><strong>LED yellow</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashes</td>
<td>The device sends/receives Ethernet frames.</td>
<td></td>
</tr>
</tbody>
</table>
LED Description EtherCat-Slave

LEDs EtherCAT-Slave

1. SYS = System LED
2. RUN = Run
3. ERR = Error
4. Ethernet channel 0 - input port*
5. Ethernet channel 0 - output port*

* Input port and output port are predetermined by firmware and are not configurable.

System LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>Duo LED yellow/green</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Static</td>
<td>Bootloader netX (= roomloader) is waiting for second stage bootloader.</td>
</tr>
<tr>
<td></td>
<td>Green/yellow</td>
<td>Flashing green/yellow</td>
<td>Second stage bootloader is waiting for firmware.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>Operating system running.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td>Power supply of the device is missing.</td>
</tr>
</tbody>
</table>
### LEDs EtherCAT-Slave

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RUN</strong></td>
<td>Duo LED red/green</td>
<td></td>
<td>Operational: The device is in the OPERATIONAL state.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>Pre-operational: The device is in the PRE_OPERATIONAL state as defined for EtherCAT.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Flashing cyclic with 2.5 Hz</td>
<td>Pre-operational: The device is in the PRE_OPERATIONAL state as defined for EtherCAT.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Single flash(^{(1)})</td>
<td>Safe-operational: The device is in the SAFE-OPERATIONAL state as defined for EtherCAT.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td>Init: The device is in the initialization state.</td>
</tr>
<tr>
<td><strong>ERR</strong></td>
<td>Duo LED red/green</td>
<td></td>
<td><strong>Invalid configuration</strong>: General configuration error.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Flashing cyclic with 2.5 Hz</td>
<td>Possible cause: A status change specified by the master is not possible due to register- or object settings.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Single flash(^{(1)})</td>
<td><strong>Local error</strong>: The slave device application changed the EtherCAT status itself.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Double flash(^{(2)})</td>
<td><strong>Process data watchdog timeout</strong>: A process data watchdog timeout occurred.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td><strong>No error</strong>: The EtherCAT communication of the device is in operation.</td>
</tr>
<tr>
<td><strong>LINK/RJ45 Ch0 &amp; Ch1</strong></td>
<td>LED green</td>
<td></td>
<td>A connection to Ethernet exists.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>The device sends/receives Ethernet frames.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Off</td>
<td>The device has no connection to Ethernet.</td>
</tr>
<tr>
<td><strong>RJ45 Ch0 &amp; Ch1</strong></td>
<td>LED yellow</td>
<td></td>
<td><strong>This LED is not being used.</strong></td>
</tr>
</tbody>
</table>

\(^{(1)}\) The display shows a short flash (200 ms) followed by a long off phase (1000 ms).

\(^{(2)}\) The display shows a sequence of two short flashes (each 200 ms), interrupted by a short off phase (200 ms). The sequence is completed with a long off phase (1000 ms).
Section 8.2
Communication Module PROFIBUS DP

What Is in This Section?
This section contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>135</td>
</tr>
<tr>
<td>Mechanical Installation</td>
<td>136</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>139</td>
</tr>
</tbody>
</table>
Overview

General Information
The communication module PROFIBUS DP provides a PROFIBUS interface.
Communication module PROFIBUS DP - connection

After installing the optional module, the controller will automatically detect the module. Then configure it by using the PLC configuration in SoMachine Motion Logic Builder.
Optional Modules

Mechanical Installation

Consideration

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove the cover of input CN16 option at the bottom side of the housing. To do this, push the locking of the cover backward. <strong>Result</strong>: The cover folds down.</td>
</tr>
<tr>
<td>2</td>
<td>Pull the cover to the front and remove it.</td>
</tr>
</tbody>
</table>

**NOTICE**

INOPERABLE EQUIPMENT

Do not touch the contacts when unpacking or installing the optional module.

Failure to follow these instructions can result in equipment damage.

How to Open the Controller

**NOTICE**

INCORRECT INSERTION OF OPTIONAL MODULE

- Do not insert the optional module when the controller is under power.
- Verify that the springs at the bottom side of the module are located at the printed circuit board side when you insert the module into the slot.

Failure to follow these instructions can result in equipment damage.

How to Install the Optional Module
### Optional Modules

**How to Remove the Optional Module**

**NOTE:** Ensure that the module is flush at the edge.

#### Step 1
Ensure that the controller is switched off.

#### Step 2
Insert the module into the slot and push against the printed circuit board until both front springs at the bottom side lower into the openings on the printed circuit board.

**Result:** The module rests on the lower edge of the slot.

#### Step 3
Slightly apply pressure and push the module further inside until it is flush at the edge.

**Result:** The springs at the bottom side reach into the openings of the printed circuit board.

**INOPERABLE EQUIPMENT**

Do not remove the optional module when the controller is under power.

Failure to follow these instructions can result in equipment damage.
## Optional Modules

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Take the protruding part of the handle of the flap and pull the handle out the optional module.</td>
</tr>
<tr>
<td>2</td>
<td>Pull at the strap handle and pull the optional module out of the slot until its latching releases.</td>
</tr>
<tr>
<td>3</td>
<td>Completely remove the optional module from the slot.</td>
</tr>
<tr>
<td>4</td>
<td>Push the flap handle back into the module.</td>
</tr>
<tr>
<td>5</td>
<td>Insert the protective cover in the resulting opening for the optional module and push it upward until it latches.</td>
</tr>
<tr>
<td>6</td>
<td>Push the cover locking mechanism to the front until it latches.</td>
</tr>
</tbody>
</table>

![Image of Flap handle]
Optional Modules

Electrical Connections

Connection Details Communication Module PROFIBUS DP
Connection details PROFIBUS DP

Connection assignment PROFIBUS DP

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Rx/Tx+(PB-B)</td>
<td>PROFIBUS DP - data line B (positive)</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>Return to send line for line control</td>
</tr>
<tr>
<td>5</td>
<td>PB-GND</td>
<td>Ground for PROFIBUS DP</td>
</tr>
<tr>
<td>6</td>
<td>PB-5V</td>
<td>5 V power line for PROFIBUS DP</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Rx/Tx-(PB-A)</td>
<td>PROFIBUS DP - data line A (negative)</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

LED Description PROFIBUS DP
LEDs PROFIBUS DP

1  SYS = System LED
2  COM = Communication
## System LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>Duo LED yellow/green</td>
<td>Yellow, Static</td>
<td>Bootloader netX (= roomloader) is waiting for second stage bootloader.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green/yellow</td>
<td>Second stage bootloader is waiting for firmware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green</td>
<td>Operating system running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No power supply.</td>
</tr>
</tbody>
</table>

### LEDs PROFIBUS DP master - 1 communication LED (current hardware revision)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Duo LED red/green</td>
<td>Flashing acyclic</td>
<td>No configuration or stack error detected.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Flashing cyclic</td>
<td>PROFIBUS is configured, but bus communication is not yet released from the application.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>Communication to all slaves is established.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Flashing cyclic</td>
<td>Communication to at least one slave is disconnected.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>On</td>
<td>Communication to one/all slaves is disconnected.</td>
</tr>
</tbody>
</table>

### LEDs PROFIBUS DP slave - 1 communication LED (current hardware revision)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>Duo LED red/green</td>
<td>On</td>
<td>RUN, cyclic communication.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Flashing cyclic</td>
<td>STOP, no communication, connection error detected.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Flashing acyclic</td>
<td>Not configured.</td>
</tr>
</tbody>
</table>
Appendices

What Is in This Appendix?
The appendix contains the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Chapter Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Further Information on the Manufacturer</td>
<td>143</td>
</tr>
<tr>
<td>B</td>
<td>Disposal</td>
<td>145</td>
</tr>
<tr>
<td>C</td>
<td>Units and Conversion Tables</td>
<td>147</td>
</tr>
</tbody>
</table>
Appendix A  
Further Information on the Manufacturer

What Is in This Chapter?
This chapter contains the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Addresses</td>
<td>144</td>
</tr>
<tr>
<td>Product Training Courses</td>
<td>144</td>
</tr>
</tbody>
</table>
Further Information on the Manufacturer

Contact Addresses

**Schneider Electric Automation GmbH**
Schneiderplatz 1
97828 Marktheidenfeld, Germany
Phone: +49 (0) 9391 / 606 - 0
Fax: +49 (0) 9391 / 606 - 4000
Email: info-marktheidenfeld@schneider-electric.com
Internet: [www.schneider-electric.com](http://www.schneider-electric.com)

**Machine Solution Service**
Schneiderplatz 1
97828 Marktheidenfeld, Germany
Phone: +49 (0) 9391 / 606 - 3265
Fax: +49 (0) 9391 / 606 - 3340
Email: automation.support.de@schneider-electric.com
Internet: [www.schneider-electric.com](http://www.schneider-electric.com)

**Additional Contact Addresses**
See the homepage for additional contact addresses:
[www.schneider-electric.com](http://www.schneider-electric.com)

**Product Training Courses**

**Product Training Courses**
Schneider Electric offers a number of product training courses.
The Schneider Electric training instructors will help you take advantage of the extensive possibilities offered by the system.
See the website ([www.schneider-electric.com](http://www.schneider-electric.com)) for further information and the seminar schedule.
Appendix B
Disposal

Disposal

Information on the Disposal of Schneider Electric Products

NOTE: The components consist of different materials which can be recycled and must be disposed of separately.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dispose of the packaging in accordance with the relevant national regulations.</td>
</tr>
<tr>
<td>2</td>
<td>Dispose of the packaging at the disposal sites provided for this purpose.</td>
</tr>
<tr>
<td>3</td>
<td>Dispose of controller in accordance with the applicable national regulations.</td>
</tr>
</tbody>
</table>
### Appendix C

Units and Conversion Tables

#### Units and Conversion Tables

<table>
<thead>
<tr>
<th>Length</th>
<th>–</th>
<th>in</th>
<th>ft</th>
<th>yd</th>
<th>m</th>
<th>cm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>–</td>
<td>/ 12</td>
<td>/ 36</td>
<td>* 0.0254</td>
<td>* 2.54</td>
<td>* 25.4</td>
<td></td>
</tr>
<tr>
<td>ft</td>
<td>* 12</td>
<td>–</td>
<td>/ 3</td>
<td>* 0.30479</td>
<td>* 30.479</td>
<td>* 304.79</td>
<td></td>
</tr>
<tr>
<td>yd</td>
<td>* 36</td>
<td>–</td>
<td>–</td>
<td>* 0.9144</td>
<td>* 91.44</td>
<td>* 914.4</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>/ 0.0254</td>
<td>/ 0.30479</td>
<td>/ 0.9144</td>
<td>–</td>
<td>*100</td>
<td>*1000</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>/ 2.54</td>
<td>/ 30.479</td>
<td>/ 91.44</td>
<td>/ 100</td>
<td>–</td>
<td>* 10</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>/ 25.4</td>
<td>/ 304.79</td>
<td>/ 914.4</td>
<td>/ 1000</td>
<td>/ 10</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>–</th>
<th>lb</th>
<th>oz</th>
<th>slug</th>
<th>0.22 kg</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb</td>
<td>–</td>
<td>* 16</td>
<td>* 0.03108095</td>
<td>* 0.4535924</td>
<td>* 453.5924</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>/ 16</td>
<td>–</td>
<td>* 1.942559*10^-3</td>
<td>* 0.02834952</td>
<td>* 28.34952</td>
<td></td>
</tr>
<tr>
<td>slug</td>
<td>/ 0.03108095</td>
<td>/ 1.942559*10^-3</td>
<td>–</td>
<td>* 14.5939</td>
<td>* 14593.9</td>
<td></td>
</tr>
<tr>
<td>0.22 kg</td>
<td>/ 0.45359237</td>
<td>/ 0.02834952</td>
<td>/ 14.5939</td>
<td>–</td>
<td>*1000</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>/ 453.59237</td>
<td>/ 28.34952</td>
<td>/ 14593.9</td>
<td>/ 1000</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Force</th>
<th>–</th>
<th>lb</th>
<th>oz</th>
<th>p</th>
<th>dyne</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb</td>
<td>–</td>
<td>* 16</td>
<td>* 453.55358</td>
<td>* 444822.2</td>
<td>* 4.448222</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>/ 16</td>
<td>–</td>
<td>* 28.349524</td>
<td>* 27801</td>
<td>* 0.27801</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>/ 453.55358</td>
<td>/ 28.349524</td>
<td>–</td>
<td>* 980.7</td>
<td>* 9.807*10^-3</td>
<td></td>
</tr>
<tr>
<td>dyne</td>
<td>/ 444822.2</td>
<td>/ 27801</td>
<td>/ 980.7</td>
<td>–</td>
<td>/ 100*10^3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>/ 4.448222</td>
<td>/ 0.27801</td>
<td>/ 9.807*10^-3</td>
<td>* 100*10^3</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
### Units and Conversion Tables

#### Power

<table>
<thead>
<tr>
<th>Units</th>
<th>HP</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>–</td>
<td>* 746</td>
</tr>
<tr>
<td>W</td>
<td>/ 746</td>
<td>–</td>
</tr>
</tbody>
</table>

#### Rotation

<table>
<thead>
<tr>
<th>Units</th>
<th>min⁻¹(rpm)</th>
<th>rad/s</th>
<th>deg./s</th>
</tr>
</thead>
<tbody>
<tr>
<td>min⁻¹(rpm)</td>
<td>–</td>
<td>* π / 30</td>
<td>* 6</td>
</tr>
<tr>
<td>rad/s</td>
<td>* 30 / π</td>
<td>–</td>
<td>* 57.295</td>
</tr>
<tr>
<td>deg./s</td>
<td>/ 6</td>
<td>/ 57.295</td>
<td>–</td>
</tr>
</tbody>
</table>

#### Torque

<table>
<thead>
<tr>
<th>Units</th>
<th>lb•in</th>
<th>lb•ft</th>
<th>oz•in</th>
<th>Nm</th>
<th>kp•m</th>
<th>kp•cm</th>
<th>dyne•cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb•in</td>
<td>–</td>
<td>/ 12</td>
<td>* 16</td>
<td>* 0.112985</td>
<td>* 0.011521</td>
<td>* 1.1521</td>
<td>* 1.129*10⁶</td>
</tr>
<tr>
<td>lb•ft</td>
<td>* 12</td>
<td>–</td>
<td>* 192</td>
<td>* 1.355822</td>
<td>* 0.138255</td>
<td>* 13.8255</td>
<td>* 13.558*10⁶</td>
</tr>
<tr>
<td>oz•in</td>
<td>/ 16</td>
<td>/ 192</td>
<td>–</td>
<td>* 7.0616*10⁻³</td>
<td>* 720.07*10⁻³</td>
<td>* 72.007*10⁻³</td>
<td>* 70615.5</td>
</tr>
<tr>
<td>Nm</td>
<td>/ 0.112985</td>
<td>/ 1.355822</td>
<td>/ 7.0616*10⁻³</td>
<td>–</td>
<td>* 0.101972</td>
<td>* 10.1972</td>
<td>* 10*10⁶</td>
</tr>
<tr>
<td>kp•m</td>
<td>/ 0.011521</td>
<td>/ 0.138255</td>
<td>/ 720.07*10⁻³</td>
<td>/ 0.101972</td>
<td>–</td>
<td>* 100</td>
<td>* 98.066*10⁶</td>
</tr>
<tr>
<td>kp•cm</td>
<td>/ 1.1521</td>
<td>/ 13.8255</td>
<td>/ 72.007*10⁻³</td>
<td>/ 10.1972</td>
<td>/ 100</td>
<td>–</td>
<td>* 0.9806*10⁶</td>
</tr>
<tr>
<td>dyne•cm</td>
<td>/ 1.129*10⁶</td>
<td>/ 13.558*10⁶</td>
<td>/ 70615.5</td>
<td>/ 10*10⁶</td>
<td>/ 98.066*10⁶</td>
<td>/ 0.9806*10⁶</td>
<td>–</td>
</tr>
</tbody>
</table>

#### Moment of Inertia

<table>
<thead>
<tr>
<th>Units</th>
<th>lb•in²</th>
<th>lb•ft²</th>
<th>kg•m²</th>
<th>kg•m²</th>
<th>kg•cm²</th>
<th>kg•cm²•s²</th>
<th>oz•in²</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb•in²</td>
<td>–</td>
<td>/ 144</td>
<td>/ 341.16</td>
<td>/ 0.341716</td>
<td>/ 335.109</td>
<td>* 16</td>
<td></td>
</tr>
<tr>
<td>lb•ft²</td>
<td>* 144</td>
<td>–</td>
<td>/ 3</td>
<td>* 0.30479</td>
<td>* 30.479</td>
<td>* 304.79</td>
<td></td>
</tr>
<tr>
<td>kg•m²</td>
<td>* 341.16</td>
<td>/ 0.04214</td>
<td>–</td>
<td>* 0.9144</td>
<td>* 91.44</td>
<td>* 914.4</td>
<td></td>
</tr>
<tr>
<td>kg•cm²</td>
<td>* 0.341716</td>
<td>/ 421.4</td>
<td>/ 0.9144</td>
<td>–</td>
<td>* 100</td>
<td>* 1000</td>
<td></td>
</tr>
<tr>
<td>kg•cm²•s²</td>
<td>* 335.109</td>
<td>/ 0.429711</td>
<td>/ 91.44</td>
<td>/ 100</td>
<td>–</td>
<td>* 10</td>
<td></td>
</tr>
<tr>
<td>oz•in²</td>
<td>/ 16</td>
<td>/ 2304</td>
<td>/ 54674</td>
<td>/ 5.46</td>
<td>/ 5361.74</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
### Temperature

|-----|------|---------------------|-------------------------------|------|-------------|-------------|------|--------------------------|-----------|

### Conductor Cross-section

<table>
<thead>
<tr>
<th>AWG</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>42.4</td>
<td>33.6</td>
<td>26.7</td>
<td>21.2</td>
<td>16.8</td>
<td>13.3</td>
<td>10.5</td>
<td>8.4</td>
<td>6.6</td>
<td>5.3</td>
<td>4.2</td>
<td>3.3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AWG</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>2.1</td>
<td>1.7</td>
<td>1.3</td>
<td>1.0</td>
<td>0.82</td>
<td>0.65</td>
<td>0.52</td>
<td>0.41</td>
<td>0.33</td>
<td>0.26</td>
<td>0.20</td>
<td>0.16</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Index

B
bending cycles, 44

C
certifications, 111
climatic, 39
condensate, 40
contact addresses, 144
cooling units, 40

D
daisy chain connector box, 26
daisy chain wiring, 26
degree of protection, 39
domestic appliances, 18

F
floating systems, 18

H
hazardous, explosive atmospheres, 18
homepage, 144

I
intended use, 8
IP, 39

L
life support system, 18

M
machine grounding, 43
mechanical, 39

minimum bending radius, 44
minimum cross sections, 43
mobile systems, 19

P
portable systems, 19
product related information, 14

Q
qualification of personnel, 8

S
seminars, 144
service addresses, 144

T
temperature limit, 40
training courses, 144

U
underground, 18

W
wiring, 43