Modicon M241 Logic Controller PTOPWM Library Guide

03/2018

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2018 Schneider Electric. All Rights Reserved.

Table of Contents

	Safety Information	
	About the Book	1
Part I	Introduction	1
Chapter 1	Expert Function Introduction	1
•	Expert Functions Overview	1
	Embedded Expert I/O Assignment	2
Chapter 2	Generalities	2
<u>-</u>	Dedicated Features	2
	General Information on Function Block Management	2
Part II	Pulse Train Output (PTO)	2
Chapter 3	Overview	2
<u>-</u>	Pulse Train Output (PTO)	2
Chapter 4	Configuration	3
4.1	Configuration	3
	PTO Configuration	3
	Pulse Output Modes	4
	Acceleration / Deceleration Ramp	4
	Probe Event	4
	Backlash Compensation (Only Available in Quadrature Mode)	4
	Positioning Limits	5
4.2	Home Modes	5
	Homing Modes	5
	Position Setting	5
	Long Reference	5
	Long Reference & Index	5
	Short Reference Reversal	6
	Short Reference No Reversal	6
	Short Reference & Index Outside	6
	Short Reference & Index Inside	6
	Home Offset	7

Chapter 5	Data Unit Types
•	AXIS_REF_PTO Data Type
	MC_BUFFER_MODE
	MC_DIRECTION
	PTO_HOMING_MODE
	PTO_PARAMETER
	PTO_ERROR
Chapter 6	Motion Function Blocks
6.1	Operation Modes
	Motion State Diagram
	Buffer Mode
	Timing Diagram Examples
6.2	MC_Power_PTO Function Block
0.2	Description
	MC_Power_PTO: Manage the Power of the Axis State
6.3	MC_MoveVelocity_PTO Function Block
0.0	Description
	MC_MoveVelocity_PTO: Control the Speed of the Axis
6.4	MC_MoveRelative_PTO Function Block
0.4	Description
	MC_MoveRelative_PTO: Command Relative Axis Movement
6.5	MC_MoveAbsolute_PTO Function Block
0.5	Description
	·
6.6	MC_MoveAbsolute_PTO: Command Movement to Absolute Position. MC Home PTO Function Block
0.0	
	Description
6.7	MC_Home_PTO: Command the Axis to Move to a Reference Position
6.7	MC_SetPosition_PTO Function Block
	Description
0.0	MC_SetPosition_PTO: Force the Reference Position of the Axis
6.8	MC_Stop_PTO Function Block.
	Description
	MC_Stop_PTO: Command a Controlled Motion Stop
6.9	MC_Halt_PTO Function Block
	Description
	MC_Halt_PTO: Command a Controlled Motion Stop until the Velocity
	equals Zero

6.10	Adding a Motion Function Block
	Adding a Motion Function Block
Chapter 7	Administrative Function Blocks
7.1	Status Function Blocks
	MC_ReadActualVelocity_PTO: Get the Commanded Velocity of the
	Axis
	MC_ReadActualPosition_PTO: Get the Position of the Axis
	MC_ReadStatus_PTO: Get the State of the Axis
7.0	MC_ReadMotionState_PTO: Get the Motion Status of the Axis
7.2	Parameters Function Blocks
	MC_ReadParameter_PTO: Get Parameters from the PTO
	MC_WriteParameter_PTO: Write Parameters to the PTO
	MC_ReadBoolParameter_PTO: Get BOOL Parameters from the PTO
7.0	MC_WriteBoolParameter_PTO: Write BOOL Parameters to the PTO .
7.3	Probe Function Blocks
	MC_TouchProbe_PTO: Activate a Trigger Event
	MC_AbortTrigger_PTO: Abort/Deactivate Function Blocks
7.4	Error Handling Function Blocks
	MC_ReadAxisError_PTO: Get the Axis Control Error
	MC_Reset_PTO: Reset All Axis-Related Errors
7.5	Adding an Administrative Function Block
	Adding an Administrative Function Block
Part III	Pulse Width Modulation (PWM)
Chapter 8	Introduction
	Description
	FreqGen/PWM Naming Convention
	Synchronization and Enable Functions
Chapter 9	Configuration and Programming
	Configuration
	PWM_M241: Command a Pulse Width Modulation Signal
	Programming the PWM Function Block
Chapter 10	Data Types
	FREQGEN_PWM_ERR_TYPE
Part IV	Frequency Generator (FreqGen)
Chapter 11	Introduction
-	Description
	FreqGen Naming Convention
	Synchronization and Enable Functions

Chapter 12	Configuration and Programming
	FrequencyGenerator_M241: Commanding a Square Wave Signal
	Programming
Appendices	
Appendix A	Function and Function Block Representation Differences Between a Function and a Function Block
	How to Use a Function or a Function Block in IL Language
	How to Use a Function or a Function Block in ST Language
Glossary	
Index	

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

▲ WARNING

UNGUARDED EQUIPMENT

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine and, therefore, can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, you should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as pointof-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

START-UP AND TEST

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check be made and that enough time is allowed to perform complete and satisfactory testing.

A WARNING

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary grounds that are not installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- Close the equipment enclosure door.
- Remove all temporary grounds from incoming power lines.
- Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments.
 Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

About the Book

At a Glance

Document Scope

This documentation acquaints you with the pulse train output (PTO), pulse width modulation (PWM) and frequency generator (FreqGen) functions offered within the Modicon M241 Logic Controller.

This document describes the data types and functions of the M241 PTOPWM Library.

In order to use this manual, you must:

- Have a thorough understanding of the M241, including its design, functionality, and implementation within control systems.
- Be proficient in the use of the following IEC 61131-3 PLC programming languages:
 - Function Block Diagram (FBD)
 - Ladder Diagram (LD)
 - Structured Text (ST)
 - Instruction List (IL)
 - Sequential Function Chart (SFC)
 - Continuous Function Chart (CFC)

Validity Note

This document has been updated for the release of TM3TI4D Add-on for SoMachine V4.3.

Related Documents

Title of Documentation	Reference Number
Modicon M241 Logic Controller Programming Guide	<i>EIO000001432 (ENG)</i> ,
	<i>EIO000001433 (FRE)</i> ,
	<i>EIO000001434 (GER)</i> ,
	<i>EIO000001435 (SPA)</i> ,
	<i>EIO000001436 (ITA)</i> ,
	EIO000001437 (CHS)

You can download these technical publications and other technical information from our website at https://www.schneider-electric.com/en/download

Product Related Information

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths
 and, for certain critical control functions, provide a means to achieve a safe state during and
 after a path failure. Examples of critical control functions are emergency stop and overtravel
 stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as *safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous*, etc.

Among others, these standards include:

Standard	Description
EN 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2008	Safety of machinery: Safety related parts of control systems. General principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
EN 1088:2008 ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2006	Safety of machinery - Emergency stop - Principles for design
EN/IEC 62061:2005	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Software requirements.
IEC 61784-3:2008	Digital data communication for measurement and control: Functional safety field buses.
2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term *zone of operation* may be used in conjunction with the description of specific hazards, and is defined as it is for a *hazard zone* or *danger zone* in the *Machinery Directive* (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Part I

Introduction

Overview

This part provides an overview description, available modes, functionality and performances of the different functions.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
1	Expert Function Introduction	17
2	Generalities	23

Chapter 1

Expert Function Introduction

Overview

This chapter provides an overview description, functionality, and performances of:

- High Speed Counter (HSC)
- Pulse Train Output (PTO)
- Pulse Width Modulation (PWM)
- Frequency Generator (FreqGen)

What Is in This Chapter?

This chapter contains the following topics:

Торіс	
Expert Functions Overview	18
Embedded Expert I/O Assignment	20

Expert Functions Overview

Introduction

The inputs and outputs available on the M241 logic controller can be connected to expert functions.

NOTE:

- When an input is used as Run/Stop, it cannot be used by an expert function.
- When an output is used as Alarm, it cannot be used by an expert function.

For more details, refer to Embedded Functions Configuration (see Modicon M241 Logic Controller, Programming Guide).

Maximum Number of Expert Functions

The maximum number of expert functions that can be configured depends on:

- **1.** The logic controller reference.
- 2. The expert function types and number of optional functions (see Modicon M241 Logic Controller, High Speed Counting, HSC Library Guide) configured. Refer to Embedded Expert I/O Assignment (see page 20).
- 3. The number of I/Os that are available.

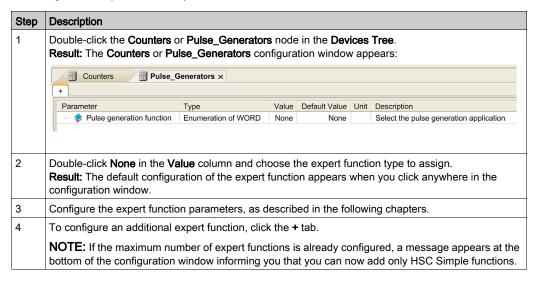
Maximum number of expert functions by logic controller reference:

Expert Function Type		24 I/O References (TM241•24•)	40 I/O References (TM241•40•)
Total number of HSC functions		14	16
HSC	Simple	14	16
	Main Single Phase	4	
	Main Dual Phase		
	Frequency Meter ⁽¹⁾		
	Period Meter		
PTO	•		
PWM			
FreqGen			
(1) When the maximum number is configured, only 12 additional HSC Simple functions can be added.			

The maximum number of expert functions possible may be further limited by the number of I/Os used by each expert function.

Example configurations:

- 4 PTO⁽²⁾ + 14 HSC Simple on 24 I/O controller references
- 4 FreqGen⁽²⁾ + 16 HSC Simple on 40 I/O controller references
- 4 HSC Main Single Phase + 10 HSC Simple on 24 I/O controller references
- 4 HSC Main Dual Phase + 8 HSC Simple on 40 I/O controller references


2 PTO⁽²⁾ + 2 HSC Main Single Phase + 14 HSC Simple on 40 I/O controller references
 (2) With no optional I/O configured

The performance of the expert function is limited by the I/Os used:

- HSC with fast inputs: 100 kHz/200 kHz
- HSC with regular inputs: 1 kHz

Configuring an Expert Function

To configure an expert function, proceed as follows:

Regular I/O Configured as Expert Function

When regular I/Os are configured as expert functions, note the following:

- Inputs can be read through memory variables.
- An input cannot be configured as an expert function if it has already been configured as a Run/Stop input.
- An output cannot be configured in an expert function if it has already been configured as an alarm.
- Short-Circuit management applies on the outputs. Status of outputs are available.
- The I/O that are not used by expert functions can be used as any other regular I/O.
- When inputs are used in expert functions (Latch, HSC,...), integrator filter is replaced by antibounce filter. Filter value is configured in the configuration screen.

Embedded Expert I/O Assignment

I/O Assignment

The following regular or fast I/Os can be configured for use by expert functions:

	24 I/O References		40 I/O References	
	TM241•24T, TM241•24U	TM241•24R	TM241•40T, TM241•40U	TM241•40R
Inputs	8 fast inputs (I0I7) 6 regular inputs (I8I13)		8 fast inputs (I0I7) 8 regular inputs (I8	.l15)
Outputs	4 fast outputs (Q0Q3) 4 regular outputs (Q4Q7)	4 fast outputs (Q0Q3)	4 fast outputs (Q0Q3) 4 regular outputs (Q4Q7)	4 fast outputs (Q0Q3)

When an I/O has been assigned to an expert function, it is no longer available for selection with other expert functions.

NOTE: All I/Os are by default disabled in the configuration window.

The following table shows the I/Os that can be configured for expert functions:

Expert Function	Name	Input (Fast or Regular)	Output (Fast or Regular)	
HSC Simple	Input	М		
HSC Main	Input A	М		
	Input B/EN	С		
	SYNC	С		
	CAP	С		
	Reflex 0		С	
	Reflex 1		С	
Frequency Meter/Period Meter	Input A	М		
	EN	С		
PWM/FreqGen	Output A		М	
	SYNC	С		
	EN	С		
M Mandatory C Optionally configurable				

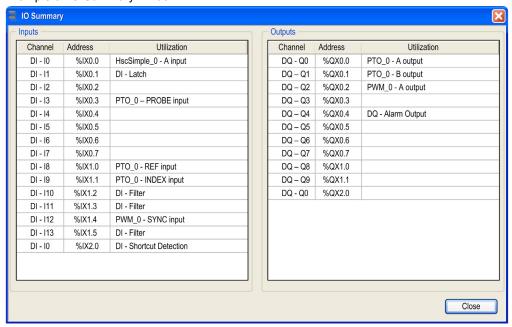
Expert Function	Name	Input (Fast or Regular)	Output (Fast or Regular)
PTO	Output A/CW/Pulse		M
	Output B/CCW/Dir		С
	REF (Origin)	С	
	INDEX (Proximity)	С	
	PROBE	С	
M Mandatory C Optionally configurable			

Using Regular I/O with Expert Functions

Expert function I/O within regular I/O:

- Inputs can be read through standard memory variables even if configured as expert functions.
- All I/Os that are not used by expert functions can be used as regular I/Os.
- An I/O can only be used by one expert function; once configured, the I/O is no longer available for other expert functions.
- If no more fast I/Os are available, a regular I/O can be configured instead. In this case, however, the maximum frequency of the expert function is limited to 1 kHz.
- You cannot configure an input in an expert function and use it as a Run/Stop, Event, or Latch input at a same time.
- An output cannot be configured in an expert function if it has already been configured as an alarm.
- Short-circuit management still applies on all outputs. Status of outputs are available. For more information, refer to Output Management.
- When inputs are used in expert functions (PTO, HSC,...), the integrator filter is replaced by an anti-bounce filter (see page 25). The filter value is configured in the configuration window.

For more details, refer to Embedded Functions Configuration.


I/O Summary

The IO Summary window displays the I/Os used by the expert functions.

To display the IO Summary window:

Step	Action
1	In the Devices tree tab, right-click the MyController node and choose IO Summary .

Example of IO Summary window:

Chapter 2 Generalities

Overview

This chapter provides general information of the Frequency Generator (FreqGen), Pulse Train Output (PTO), and Pulse Width Modulation (PWM) functions.

The functions provide simple, yet powerful solutions for your application. In particular, they are useful for controlling movement. However, the use and application of the information contained herein require expertise in the design and programming of automated control systems. Only you, the user, machine builder or integrator, can be aware of all the conditions and factors present during installation and setup, operation, and maintenance of the machine or related processes, and can therefore determine the automation and associated equipment and the related safeties and interlocks which can be effectively and properly used. When selecting automation and control equipment, and any other related equipment or software, for a particular application, you must also consider any applicable local, regional, or national standards and/or regulations.

A WARNING

REGULATORY INCOMPATIBILITY

Ensure that all equipment applied and systems designed comply with all applicable local, regional, and national regulations and standards.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The functions provided by the expert functions libraries were conceived and designed assuming that you incorporate the necessary safety hardware into your application architecture, such as, but not limited to, appropriate limit switches and emergency stop hardware and controlling circuitry. It is implicitly assumed that functional safety measures are present in your machine design to prevent undesirable machine behavior such as over-travel or other forms of uncontrolled movement. Further, it is assumed that you have performed a functional safety analysis and risk assessment appropriate to your machine or process.

▲ WARNING

UNINTENDED EQUIPMENT OPERATION

Ensure that a risk assessment is conducted and respected according to EN/ISO 12100 during the design of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Dedicated Features	25
General Information on Function Block Management	26

Dedicated Features

Bounce Filter

This table shows the maximum counter frequencies determined by the filtering values used to reduce the bounce effect on the input:

Input	Bounce Filter Value (ms)	Maximum Counter Frequency Expert	Maximum Counter Frequency Regular
Α	0.000	200 kHz	1 kHz
В	0.001	200 kHz	1 kHz
	0.002	200 kHz	1 kHz
	0.005	100 kHz	1 kHz
	0.010	50 kHz	1 kHz
	0.05	25 kHz	1 kHz
	0.1	5 kHz	1 kHz
	0.5	1 kHz	1 kHz
	1	500 Hz	500 Hz
	5	100 Hz	100 Hz
	ounting input of the counter. ounting input of the dual phase	se counter.	

Dedicated Outputs

Outputs used by the high speed expert functions can only be accessed through the function block. They cannot be read or written directly within the application.

▲ WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not use the same function block instance in different program tasks.
- Do not modify or otherwise change the function block reference (AXIS) while the function block is executing.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

General Information on Function Block Management

Management of Input Variables

The variables are used with the rising edge of the Execute input. To modify any variable, it is necessary to change the input variables and to trigger the function block again.

The function blocks managed by an <code>Enable</code> input are executed when this input is true. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When the <code>Enable</code> input is false, the function block execution is terminated and its outputs are reseted.

According to IEC 61131-3, if any variable of a function block input is missing (= open), then the value from the previous invocation of this instance will be used. In the first invocation the initial value is applied.

Management of Output Variables

The Done, Error, Busy, and CommandAborted outputs are mutually exclusive; only one of them can be TRUE on one function block. When the Execute input is TRUE, one of these outputs is TRUE.

At the rising edge of the Execute input, the Busy output is set. It remains set during the execution of the function block and is reset at the rising edge of one of the other outputs (Done, Error).

The Done output is set when the execution of the function block is successfully completed.

If an error is detected, the function block terminates by setting the Error output, and the error code is contained within the ErrId output.

The Done, Error, ErrID, and CommandAborted outputs are set or reset with the falling edge of Execute input:

- reset if the function block execution is finished.
- set for at least one task cycle if the function block execution is not finished.

When an instance of a function block receives a new Execute before it is finished (as a series of commands on the same instance), the function block does not return any feedback, like Done, for the previous action.

Error Handling

All blocks have two outputs that can report error detection during the execution of the function block:

- Error= The rising edge of this bit informs that an error was detected.
- ErrID= The error code of the error detected.

When an Error occurs, the other output signals, such as Done are reset.

Part II

Pulse Train Output (PTO)

Overview

This part describes the Pulse Train Output function.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	
3	Overview	29
4	Configuration	33
5	Data Unit Types	75
6	Motion Function Blocks	85
7	Administrative Function Blocks	143

Chapter 3 Overview

Pulse Train Output (PTO)

Introduction

The PTO function provides up to four pulse train output channels for a specified number of pulses and a specified velocity (frequency). The PTO function is used to control the positioning or speed of up to four independent linear single-axis stepper or servo drives in open loop mode (for example, with Lexium 28).

The PTO function does not have any position feedback information from the process.

The PTO function can be configured on any output channel of the logic controller not already configured for use by another expert function.

Each PTO channel can use up to:

- Six inputs, if optional interface signals for homing (ref/index), event (probe), limits (limP, limN), or drive interface (driveReady) are used.
- Three physical outputs, if optional drive interface signal is used (driveEnable).

Automatic origin offset and backlash compensation are also managed to improve positioning accuracy. Diagnostics are available for status monitoring, providing comprehensive and quick troubleshooting.

Supported Functions

The four PTO channels support the following functions:

- Four output modes, including quadrature
- Single axis moves (velocity and position)
- Relative and absolute positioning
- Automatic trapezoidal and S-curve acceleration and deceleration
- Homing (seven modes with offset compensation)
- Dynamic acceleration, deceleration, velocity, and position modification
- Switch from velocity to position mode and vice versa
- Move gueuing (buffer of one move)
- Position capture and move trigger on event (using probe input)
- Backlash compensation (in quadrature mode)
- Limits (hardware and software)
- Diagnostics

PTO Function Blocks

The PTO function is programmed in SoMachine using the following function blocks, available in the **M241 PTOPWM** library:

Category	Subcategory	Function Block
Motion (single axis)	Power	MC_Power_PTO (see page 100)
	Discrete	MC_MoveAbsolute_PTO (see page 117)
		MC_MoveRelative_PTO (see page 111)
		MC_Halt_PTO <i>(see page 136)</i>
		MC_SetPosition_PTO <i>(see page 128)</i>
	Continuous	MC_MoveVelocity_PTO <i>(see page 105)</i>
	Homing	MC_Home_PTO (see page 123)
	Stopping	MC_Stop_PTO (see page 131)
Administrative	Status	MC_ReadActualVelocity_PTO (see page 145)
		MC_ReadActualPosition_PTO (see page 146)
		MC_ReadStatus_PTO <i>(see page 147)</i>
		MC_ReadMotionState_PTO (see page 149)
	Parameters	MC_ReadParameter_PTO (see page 152)
		MC_WriteParameter_PTO (see page 154)
		MC_ReadBoolParameter_PTO (see page 156)
		MC_WriteBoolParameter_PTO (see page 158)
	Probe	MC_TouchProbe_PTO (see page 161)
		MC_AbortTrigger_PTO (see page 163)
	Error handling	MC_ReadAxisError_PTO (see page 165)
		MC_Reset_PTO <i>(see page 167)</i>

NOTE: The motion function blocks act on the position of the axis according to the motion state diagram *(see page 87)*. The administrative function blocks do not influence the motion state.

 $\textbf{NOTE:} \ \texttt{MC_Power_PTO} \ function \ block \ is \ mandatory \ before \ a \ move \ command \ can \ be \ issued.$

▲ WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not use the same function block instance in different program tasks.
- Do not change the function block reference (AXIS) while the function block is executing.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

PTO Characteristics

The PTO function has the following characteristics:

Characteristic	Value
Number of channels	4
Number of axes	1 per channel
Position range	-2,147,483,6482,147,483,647 (32 bits)
Minimum velocity	1 Hz
Maximum velocity	For a 40/60 duty cycle and max. 200 mA: Fast outputs (Q0Q3): 100 kHz Regular outputs (Q4Q7): 1 kHz
Minimum step	1 Hz
Acceleration / deceleration min	1 Hz/ms
Acceleration / deceleration max	100,000 Hz/ms
Start move IEC	300 µs + 1 pulse output time
Start move on probe event	
Change move parameter	
Accuracy on velocity	0.5 %
Accuracy in position	Depends on the pulse output time

Chapter 4 Configuration

Overview

This chapter describes how to configure a PTO channel and the associated parameters.

What Is in This Chapter?

This chapter contains the following sections:

Section	Topic	Page
4.1	Configuration	34
4.2	Home Modes	53

Section 4.1 Configuration

Overview

This section describes how to configure a PTO channel and the associated parameters.

What Is in This Section?

This section contains the following topics:

Topic	
PTO Configuration	35
Pulse Output Modes	40
Acceleration / Deceleration Ramp	42
Probe Event	45
Backlash Compensation (Only Available in Quadrature Mode)	
Positioning Limits	50

PTO Configuration

Hardware Configuration

There are up to six inputs for a PTO channel:

- Three physical inputs are associated to the PTO function through configuration and are taken into account immediately on a rising edge on the input:
 - REF input
 - INDEX input
 - PROBE input
- Three inputs are associated with the MC_Power_PTO function block. They have no fixed
 assignment (they are freely assigned; that is, they are not configured in the configuration
 screen), and are read as any other input:
 - Drive ready input
 - Limit positive input
 - Limit negative input

NOTE: These inputs are managed as any other input, but are used by the PTO controller when used by the MC Power PTO function block.

NOTE: The positive and negative limit inputs are required to help prevent over-travel.

▲ WARNING

UNINTENDED EQUIPMENT OPERATION

- Ensure that controller hardware limit switches are integrated in the design and logic of your application.
- Mount the controller hardware limit switches in a position that allows for an adequate braking distance.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

There are up to three outputs for a PTO channel:

- Either one physical output to manage pulse only, or two physical outputs to manage both pulse and direction; they must be enabled by configuration:
 - O A / CW / Pulse
 - O B / CCW / Direction
- The other output, DriveEnable, is used through the MC Power PTO function block.

Configuration Window Description

The figure provides an example of a configuration window on channel PTO_0:

Parameter	Туре	Value	Default Value	Unit	Description
Pulse generation function	Enumeration of WORD	PTO	None		Select the pulse ge
General					
··· 🎓 Instance name	STRING	'PTO_0'	"		Name the Axis conf
··· 🥏 Output Mode	Enumeration of BYTE	Quadrature	A ClockWise / B CounterClockWise		Select the pulse ou
··· 🧽 A output location	Enumeration of SINT	Q0	Disabled		Select the PLC out
B output location	Enumeration of SINT	Q1	Disabled		Select the PLC out
Mechanics					
Backlash Compensation	DWORD(0255)	0	0		Amount of motion n
Position Limits					
Software Limits					
··· 🎓 Enable Software Limits	Enumeration of BYTE	Enabled	Enabled		Select whether or n
··· 🥏 SW Low Limit	DINT(-214748364821474	-2147483648	-2147483648		Set the software lin
SW High Limit	DINT(-214748364821474	2147483647	2147483647		Set the software lin
Motion					
🖃 🦳 General					
Maximum Velocity	DWORD(0100000)	100000	100000	Hz	Set the pulse output
Start Velocity	DWORD(0100000)	0	0	Hz	Set the pulse outpu
Stop Velocity	DWORD(0100000)	0	0	Hz	Set the pulse outpu
Acc./Dec. Unit	Enumeration of BYTE	Hz/ms	Hz/ms		Set acceleration/de
···- 🧽 Maximum Acceleration	DWORD(1100000)	100000	100000		Set the acceleratio
Maximum Deceleration	DWORD(1100000)	100000	100000		Set the deceleration
Fast Stop					
Fast Stop Deceleration	DWORD(1100000)	5000	5000		Set the deceleration
Homing					
REF input					
··· 🎓 Location	Enumeration of SINT	18	Disabled		Select the PLC inpu
···🎓 Bounce filter	Enumeration of BYTE	0.005	0.005	ms	Set the filtering value
···-⊘ Type	Enumeration of WORD	Normally opened	Normally opened		Select whether the
INDEX input					
··· 🎓 Location	Enumeration of SINT	19	Disabled		Select the PLC inp
··· 🥏 Bounce filter	Enumeration of BYTE	0.005	0.005	ms	Set the filtering value
Type	Enumeration of WORD	Normally opened	Normally opened		Select whether the
Registration					
PROBE input					
	Enumeration of SINT	I10	Disabled		Select the PLC inp
Bounce filter	Enumeration of BYTE	0.005	0.005	ms	Set the filtering valu

The table describes each parameter available when the channel is configured in PTO mode:

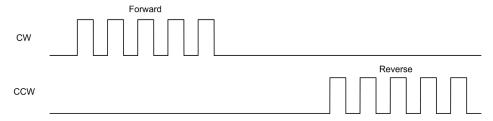
Parameter		Value	Default	Description	
General	Instance name	-	PTO_0PTO_3	Name of the axis controlled by this PTO channel. It is used as input of the PTO function blocks.	
	Output Mode (see page 40)	A ClockWise / B CounterClockWise A Pulse / B Direction A Pulse Quadrature	A ClockWise / B CounterClockWise	Select the pulse output mode.	
	A output location	Disabled Q0Q3 (fast outputs) Q4Q7 (regular outputs) ⁽¹⁾	Disabled	Select the controller output used for the signal A.	
	B output location	Disabled Q0Q3 (fast outputs) Q4Q7 (regular outputs) ⁽¹⁾	Disabled	Select the controller output used for the signal B.	
Mechanics	Backlash Compensation (see page 48)	0255	0	In quadrature mode, amount of motion needed to compensate the mechanical clearance when movement is reversed.	
Position Limits / Software Limits	Enable Software Limits (see page 51)	Enabled Disabled	Enabled	Select whether to use the software limits.	
	SW Low Limit	-2,147,483,648 2,147,483,647	-2,147,483,648	Set the software limit position to be detected in the negative direction.	
	SW High Limit	-2,147,483,648 2,147,483,647	2,147,483,647	Set the software limit position to be detected in the positive direction.	
(1) Not available for M241 Logic Controller references with relay outputs.					

Parameter		Value	Default	Description	
Motion / General	Maximum Velocity	0100000 (fast outputs) 01000 (regular outputs)	100000 (fast outputs) 1000 (regular outputs)	Set the pulse output maximum velocity (in Hz).	
	Start Velocity (see page 42)	Start Velocity100000 (fast outputs) Start Velocity1000 (regular outputs)	0	Set the pulse output start velocity (in Hz). 0 if not used.	
	Stop Velocity (see page 42)	0100000 (fast outputs) 01,000 (regular outputs)	0	Set the pulse output stop velocity (in Hz). 0 if not used.	
	Acc./Dec. Unit (see page 43)	Hz/ms ms	Hz/ms	Set acceleration/deceleration as rates (Hz/ms) or as time constants from 0 to Maximum Velocity (ms).	
	Maximum Acceleration	1100000	100000	Set the acceleration maximum value (in Acc./Dec. Unit).	
	Maximum Deceleration	1100000	100000	Set the deceleration maximum value (in Acc./Dec. Unit).	
Motion / Fast Stop	Fast Stop Deceleration	1100000	5000	Set the deceleration value in case an error is detected (in Acc./Dec. Unit)	
Homing / REF input	Location	Disabled I0I7 (fast inputs) I8I15 (regular inputs)	Disabled	Select the controller input used for the REF signal (see page 53).	
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.05 0.1 0.5 1	0.005	Set the filtering value to reduce the bounce effect on the REF input (in ms).	
	Туре	Normally opened Normally closed	Normally opened	Select whether the switch contact default state is open or closed.	
(1) Not available for M241 Logic Controller references with relay outputs.					

Parameter		Value	Default	Description
Homing / INDEX input	Location	Disabled I0I7 (fast inputs) I8I15 (regular inputs)	Disabled	Select the controller input used for the INDEX signal (see page 53).
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.05 0.1 0.5 1	0.005	Set the filtering value to reduce the bounce effect on the INDEX input (in ms).
	Туре	Normally opened Normally closed	Normally opened	Select whether the switch contact default state is open or closed.
Registration / PROBE input	Location	Disabled I0I7 (fast inputs) I8I15 (regular inputs)	Disabled	Select the controller input used for the PROBE signal (see page 45).
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.05 0.1 0.5 1	0.005	Set the filtering value to reduce the bounce effect on the PROBE input (in ms).

⁽¹⁾ Not available for M241 Logic Controller references with relay outputs.

Pulse Output Modes


Overview

There are four possible output modes:

- A ClockWise / B CounterClockwise
- A Pulse
- A Pulse / B direction
- Quadrature

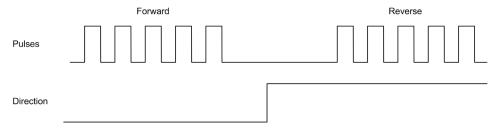
A ClockWise (CW) / B CounterClockwise (CCW) Mode

This mode generates a signal that defines the motor operating speed and direction. This signal is implemented either on the PTO output A or on PTO output B depending on the motor rotation direction.

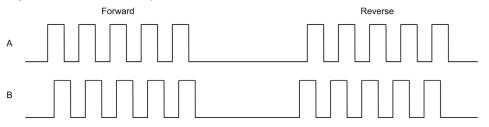
A Pulse Mode

This mode generates one signal on the PTO outputs:

• Output A: pulse which provides the motor operating speed.


NOTE: The corresponding function block generates an "Invalid Direction" error if you specify a negative direction value.

A Pulse / B Direction Mode


This mode generates two signals on the PTO outputs:

- Output A: pulse which provides the motor operating speed.
- Output B: direction which provides the motor rotation direction.

Quadrature Mode

This mode generates two signals in quadrature phase on the PTO outputs (the phase sign depends on motor direction).

Acceleration / Deceleration Ramp

Start Velocity

The **Start Velocity** is the minimum frequency at which a stepper motor can produce movement, with a load applied, without the loss of steps.

Start Velocity parameter is used when starting a motion from velocity 0.

Start Velocity must be in the range 0...MaxVelocityAppl (see page 81).

Value 0 means that the **Start Velocity** parameter is not used. In this case, the motion starts at a velocity = acceleration rate x 1 ms.

Stop Velocity

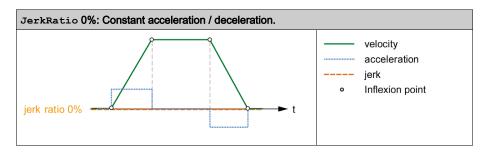
The **Stop Velocity** is the maximum frequency at which a stepper motor stops producing movement, with a load applied, without loss of steps.

Stop Velocity is only used when moving from a higher velocity than **Stop Velocity**, down to velocity 0.

Stop Velocity must be in the range 0...MaxVelocityAppl (see page 81).

Value 0 means that the **Stop Velocity** parameter is not used. In this case, the motion stops at a velocity = deceleration rate x 1 ms.

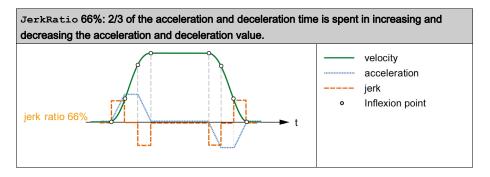
Acceleration / Deceleration

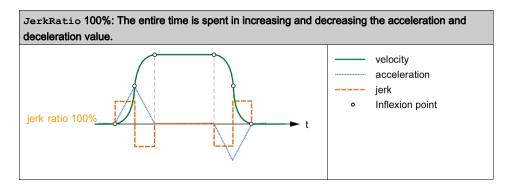

Acceleration is the rate of velocity change, starting from **Start Velocity** to target velocity. Deceleration is the rate of velocity change, starting from target velocity to **Stop Velocity**. These velocity changes are implicitly managed by the PTO function in accordance with Acceleration, Deceleration and JerkRatio parameters following a **trapezoidal** or an **S-curve** profile.

Acceleration / Deceleration Ramp with a Trapezoidal Profile

When the jerk ratio parameter is set to 0, the acceleration / deceleration ramp has a trapezoidal profile.

Expressed in Hz/ms, the acceleration and deceleration parameters represent the rate of velocity change.


Expressed in ms, they represent the time to go from 0 to Maximum velocity.



Acceleration / Deceleration Ramp with an S-curve Profile

When the jerk ratio parameter is greater than 0, the acceleration / deceleration ramp has an Scurve profile.

The S-curve ramp is used in applications controlling high inertia, or in those that manipulate fragile objects or liquids. The S-curve ramp enables a smoother and progressive acceleration / deceleration, as demonstrated in the following graphics:

NOTE: The JerkRatio parameter value is common for acceleration and deceleration so that concave time and convex time are equal.

Affect of the S-Curve Ramp on Acceleration / Deceleration

The duration for the acceleration / deceleration is maintained, whatever the <code>JerkRatio</code> parameter may be. To maintain this duration, the acceleration or deceleration is other than that configured in the function block (<code>Acceleration</code> or <code>Deceleration</code> parameters).

When the JerkRatio is applied, the acceleration / deceleration is affected.

When the JerkRatio is applied at 100%, the acceleration / deceleration is two times that of the configured Acceleration/Deceleration parameters.

NOTE: If the JerkRatio parameter value is invalid, the value is re-calculated to respect the MaxAccelerationAppl and MaxDecelerationAppl parameters.

JerkRatio is invalid when:

- its value is greater than 100. In this case, a Jerkratio of 100 is applied.
- its value is less than 0. In this case, a Jerkratio of 0 is applied.

Probe Event

Description

The Probe input is enabled by configuration, and activated using the MC_TouchProbe_PTO function block.

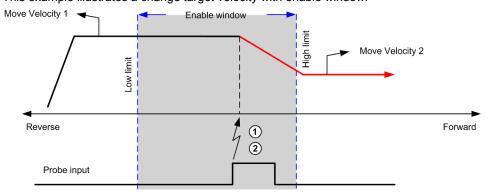
The Probe input is used as an event to:

- · capture the position,
- start a move independently of the task.

Both functions can be active at the same time, that is, the same event captures the position and start a motion function block (see page 85).

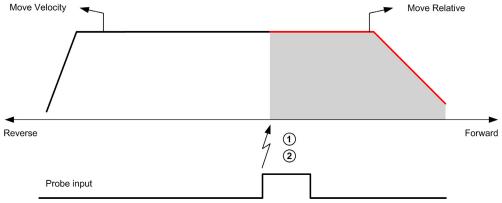
The Probe input event can be defined to be enabled within a predefined window that is demarcated by position limits (refer to MC_TouchProbe_PTO (see page 161).

NOTE: Only the first event after the rising edge at the MC_TouchProbe_PTO function block Busy pin is valid. Once the Done output pin is set, subsequent events are ignored. The function block needs to be reactivated to respond to other events.

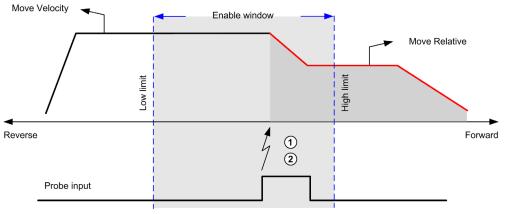

Position Capture

The position captured is available in MC_TouchProbe_PTO.RecordedPosition.

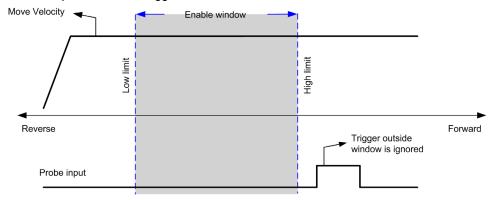
Motion Trigger


The BufferMode input of a motion function block must be set to seTrigger.

This example illustrates a change target velocity with enable window:

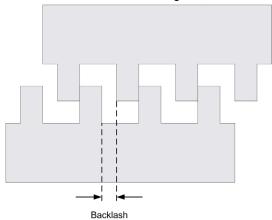

- 1 Capture the position counter value
- 2 Trigger Move Velocity function block

This example illustrates a move of pre-programmed distance, with simple profile and no enable window:


- 1 Capture the position counter value
- 2 Trigger Move Relative function block

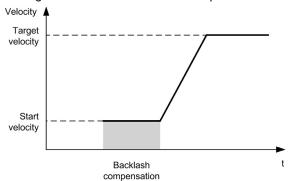
This example illustrates a move of pre-programmed distance, with complex profile and enable window:

- 1 Capture the position counter value
- 2 Trigger Move Relative function block


This example illustrates a trigger event out of enable window:

Backlash Compensation (Only Available in Quadrature Mode)

Description


The **Backlash Compensation** parameter is defined as the amount of motion needed to compensate for the mechanical clearance in gears, when movement is reversed and the axis is homed:

NOTE: The function does not take into account any external sources of movement, such as inertia movement or other forms of induced movement.

Backlash compensation is set in number of pulses (0...255, default value is 0). When set, at each direction reversal, the specified number of pulses is first output at start velocity, and then the programmed movement is executed. The backlash compensation pulses are not added to the position counter.

This figure illustrates the backlash compensation:

NOTE:

- Before the initial movement is started, the function cannot determine the amount of backlash to compensate for. Therefore, the backlash compensation is only active after a homing is successfully performed. If the homing is performed without movement, it is assumed that the initial movement applies no compensation, and the compensation is applied at the first direction reversal.
- Once started, the compensation pulses are output until completion, even if an aborting command is received in the meantime. In this case, the aborting command is buffered and will start as soon as compensation pulses are output. No additional buffered command is accepted in this case.
- If the axis is stopped by an error detected before all the compensation pulses are output, the backlash compensation is reset. A new homing procedure is needed to reinitialize the backlash compensation.
- Backlash timeout of 80 s: The system does not accept to configure a movement of more than 80 s. So if a backlash is configured, it may for example not be more than 80 pulses to 1 Hz. The error detected in case of this timeout is "Internal error" (code 1000).

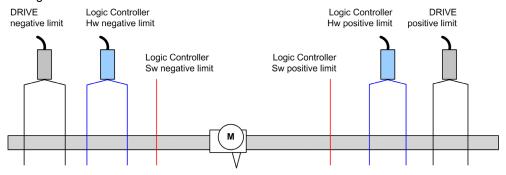
Positioning Limits

Introduction

Positive and negative limits can be set to control the movement boundaries in both directions. Both hardware and software limits are managed by the controller.

Hardware and software limit switches are used to manage boundaries in the controller application only. They are not intended to replace any functional safety limit switches wired to the drive. The controller application limit switches must necessarily be activated before the functional safety limit switches wired to the drive. In any case, the type of functional safety architecture, which is beyond the scope of the present document, that you deploy depends on your safety analysis, including, but not limited to:

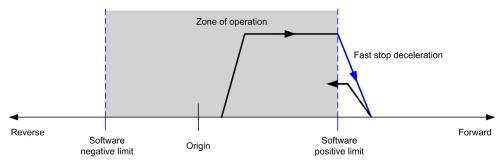
- risk assessment according to EN/ISO 12100
- FMEA according to EN 60812


A WARNING

UNINTENDED EQUIPMENT OPERATION

Ensure that a risk assessment is conducted and respected according to EN/ISO 12100 during the design of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.


The figure illustrates hardware and software limit switches:

Once either the controller hardware or software limits are crossed, an error is detected and a Fast stop deceleration is performed:

- the axis switches to ErrorStop state, with ErrorId 1002 to 1005 (PTO ERROR (see page 82)),
- the function block under execution detects the error state.
- status bits on other applicable function blocks are set to CommandAborted.

To clear the axis error state, and return to a **Standstill** state, execution of MC_Reset_PTO is required as any motion command will be rejected (refer to PTO parameters EnableDirPos or EnableDirNeg) while the axis remains outside the limits (function block terminates with ErrorId=InvalidDirectionValue). It is only possible to execute a motion command in the opposite direction under these circumstances.

Software Limits

Software limits can be set to control the movement boundaries in both directions.

Limit values are enabled and set in the configuration screen, such that:

- Positive limit > Negative limit
- Values in the range -2,147,483,648 to 2,147,483,647

They can also be enabled, disabled, or modified in the application program (MC_WriteParameter_PTO (see page 154) and PTO_PARAMETER (see page 81)).

NOTE: When enabled, the software limits are valid after an initial homing is successfully performed (that is, the axis is homed, MC Home PTO (see page 123)).

NOTE: An error is only detected when the software limit is physically reached, not at the initiation of the movement.

Hardware Limits

Hardware limits are required for the homing procedure, and for helping to prevent damage to the machine. The appropriate inputs must be used on the MC_Power_PTO.LimP and

MC_Power_PTO.LimN input bits. The hardware limit devices must be of a normally closed type such that the input to the function block is FALSE when the respective limit is reached.

NOTE: The restrictions over movement are valid while the limit inputs are FALSE and regardless of the sense of direction. When they return to TRUE, movement restrictions are removed and the hardware limits are functionnally rearmed. Therefore, use falling edge contacts leading to RESET output instructions prior to the function block. Then use those bits to control these function block inputs. When operations are complete, SET the bits to restore normal operation.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Ensure that controller hardware limit switches are integrated in the design and logic of your application.
- Mount the controller hardware limit switches in a position that allows for an adequate braking distance.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Adequate braking distance is dependent on the maximum velocity, maximum load (mass) of the equipment being moved, and the value of the Fast stop deceleration parameter.

Section 4.2 Home Modes

Overview

This section describes the PTO home modes.

What Is in This Section?

This section contains the following topics:

Торіс	Page	
Homing Modes	54	
Position Setting		
Long Reference	57	
Long Reference & Index	59	
Short Reference Reversal	61	
Short Reference No Reversal	63	
Short Reference & Index Outside		
Short Reference & Index Inside		
Home Offset	73	

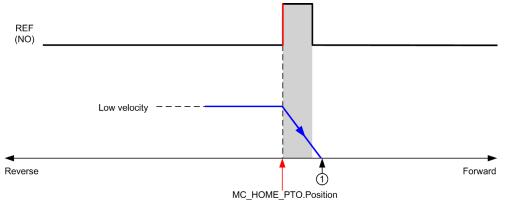
Homing Modes

Description

Homing is the method used to establish the reference point or origin for absolute movement.

A homing movement can be made using different methods. The M241 PTO channels provide several standard homing movement types:

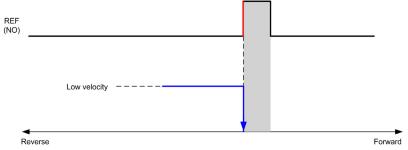
- position setting (see page 56),
- long reference (see page 57),
- long reference and index (see page 59),
- short reference reversal (see page 61),
- short reference no reversal (see page 63),
- short reference and index outside (see page 65),
- short reference and index inside (see page 69).


A homing movement must be terminated without interruption for the new reference point to be valid. If the reference movement is interrupted, it needs to be started again.

Refer to MC Home PTO (see page 123) and PTO_HOMING_MODE (see page 80).

Home Position

Homing is done with an external switch and the homing position is defined on the switch edge. Then the motion is decelerated until stop.


The actual position of the axis at the end of the motion sequence may therefore differ from the position parameter set on the function block:

REF (NO) Reference point (Normally Open)

1 Position at the end of motion = MC HOME PTO.Position + "deceleration to stop" distance.

To simplify the representation of a stop in the homing mode diagrams, the following presentation is made to represent the actual position of the axis:

REF (NO) Reference point (Normally Open)

Limits

Hardware limits are necessary for the correct functioning of the MC_Home_PTO function block (Positioning Limits (see page 50) and MC_Power_PTO (see page 100)). Depending on the movement type you request with the homing mode, the hardware limits help assure that the end of travel is respected by the function block.

When a homing action is initiated in a direction away from the reference switch, the hardware limits serve to either:

- indicate a reversal of direction is required to move the axis toward the reference switch or,
- indicate that an error has been detected as the reference switch was not found before reaching the end of travel.

For homing movement types that allow for reversal of direction, when the movement reaches the hardware limit the axis stops using the configured deceleration, and resumes motion in a reversed direction.

In homing movement types that do not allow for the reversal of direction, when the movement reaches the hardware limit, the homing procedure is aborted and the axis stops with the Fast stop deceleration.

A WARNING

UNINTENDED EQUIPMENT OPERATION

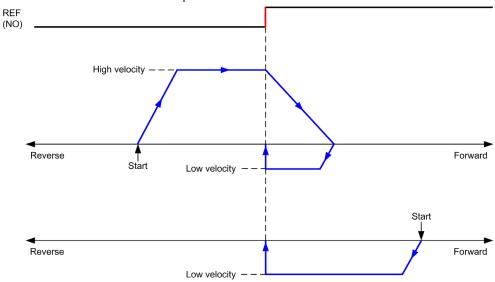
- Ensure that controller hardware limit switches are integrated in the design and logic of your application.
- Mount the controller hardware limit switches in a position that allows for an adequate braking distance.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: Adequate braking distance is dependent on the maximum velocity, maximum load (mass) of the equipment being moved, and the value of the Fast stop deceleration parameter.

Position Setting

Description

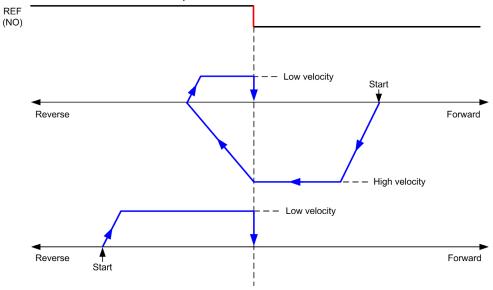

In the case of position setting, the current position is set to the specified position value. No move is performed.

Long Reference

Long Reference: Positive Direction

Homes to the reference switch falling edge in reverse direction.

The initial direction of motion is dependent on the state of the reference switch:

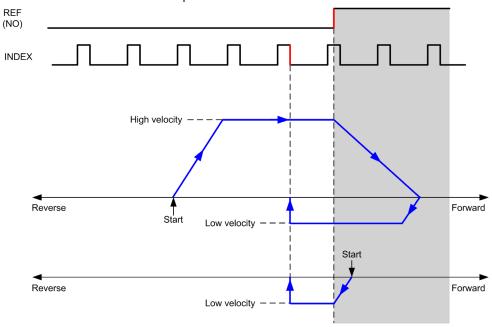

REF (NO) Reference point (Normally Open)

REF

Long Reference: Negative Direction

Homes to the reference switch falling edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

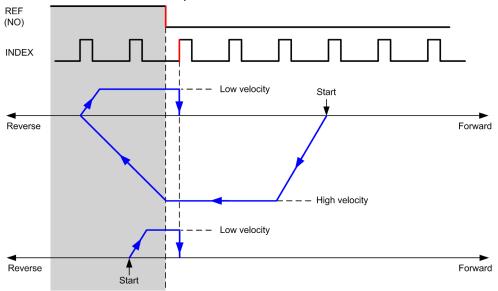

REF (NO) Reference point (Normally Open)

Long Reference & Index

Long Reference & Index: Positive Direction

Homes to the first index, after the reference switch falling edge in reverse direction.

The initial direction of motion is dependent on the state of the reference switch:

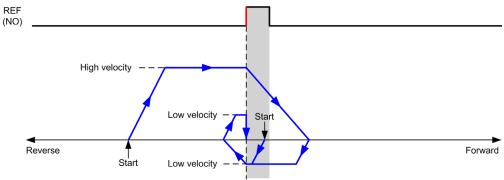


REF (NO) Reference point (Normally Open)

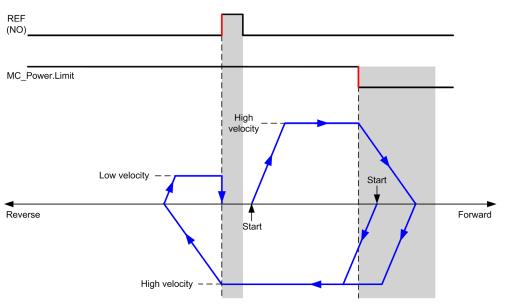
Long Reference & Index: Negative Direction

Homes to the first index, after the reference switch falling edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:


REF (NO) Reference point (Normally Open)

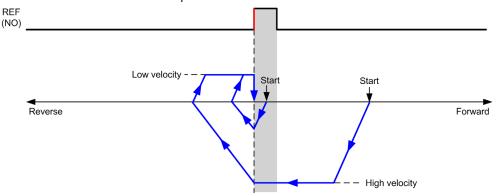
Short Reference Reversal


Short Reference Reversal: Positive Direction

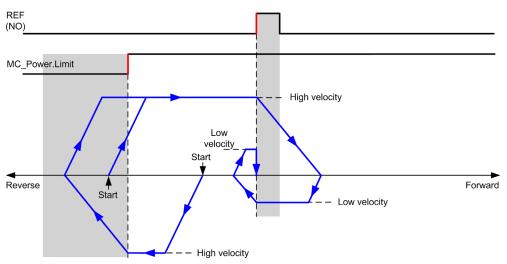
Homes to the reference switch rising edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)



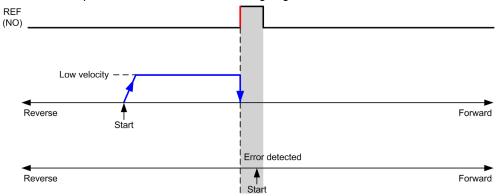
REF (NO) Reference point (Normally Open)


Short Reference Reversal: Negative Direction

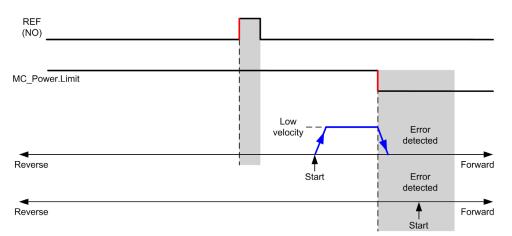
Homes to the reference switch rising edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)

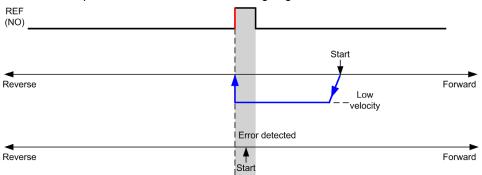


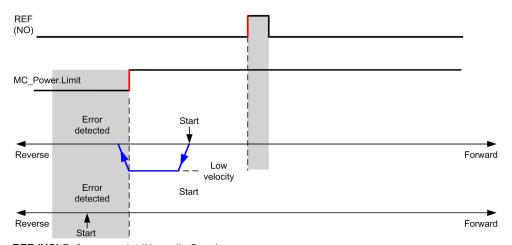
REF (NO) Reference point (Normally Open)


Short Reference No Reversal

Short Reference No Reversal: Positive Direction

Homes at low speed to the reference switch rising edge in forward direction, with no reversal:

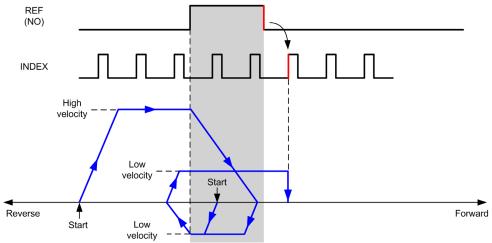

REF (NO) Reference point (Normally Open)


REF (NO) Reference point (Normally Open)

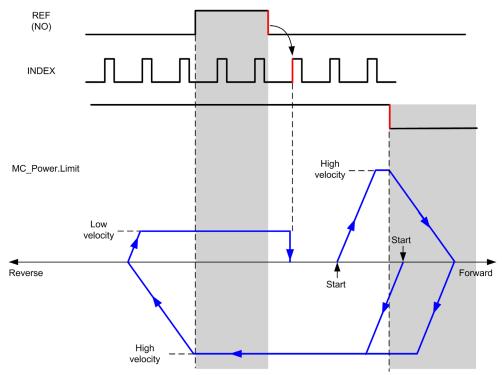
Short Reference No Reversal: Negative Direction

Homes at low speed to the reference switch falling edge in reverse direction, with no reversal:

REF (NO) Reference point (Normally Open)


REF (NO) Reference point (Normally Open)

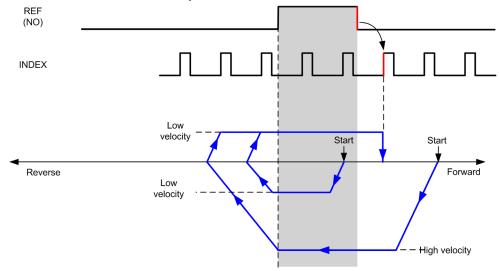
Short Reference & Index Outside


Short Reference & Index Outside: Positive Direction

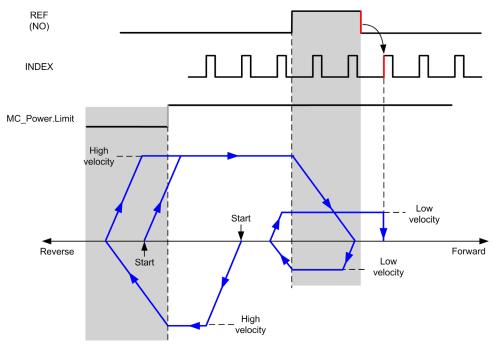
Homes to the first index, after the reference switch transitions on and off in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)



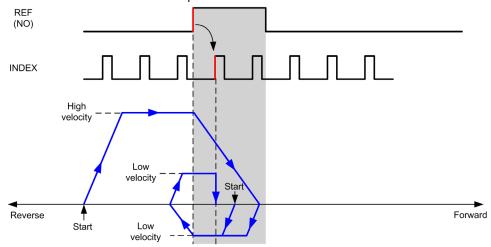
REF (NO) Reference point (Normally Open)


Short Reference & Index Outside: Negative Direction

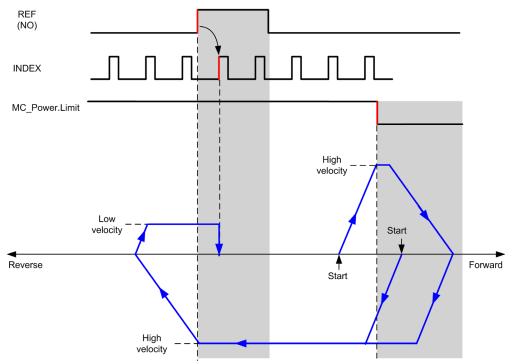
Homes to the first index, after the reference switch transitions on and off in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)


REF (NO) Reference point (Normally Open)

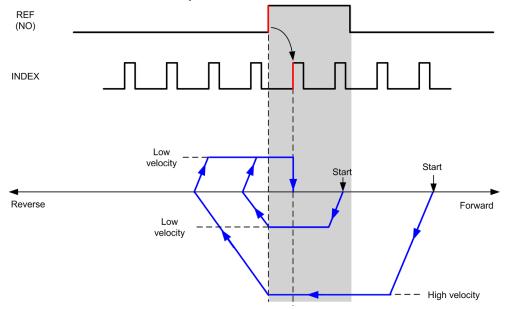
Short Reference & Index Inside


Short Reference & Index Inside: Positive Direction

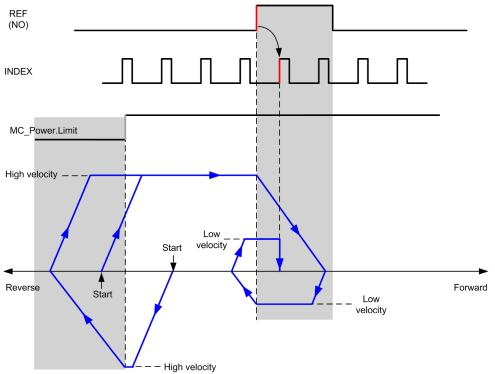
Homes to the first index, after the reference switch rising edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)



REF (NO) Reference point (Normally Open)


Short Reference & Index Inside: Negative Direction

Homes to the first index, after the reference switch rising edge in forward direction.

The initial direction of motion is dependent on the state of the reference switch:

REF (NO) Reference point (Normally Open)

REF (NO) Reference point (Normally Open)

Home Offset

Description

If the origin cannot be defined by switches with enough accuracy, it is possible to make the axis move to a specific position away from the origin switch. Home offset allows making a difference between mechanical origin and electrical origin.

Home offset is set in number of pulses (-2,147,483,648...2,147,483,647, default value 0). When set by configuration, the MC_Home_PTO (see page 123) command is executed first, and then the specified number of pulses is output at the home low velocity in the specified direction. The parameter is only effective during a reference movement without index pulse.

NOTE: The wait time between MC_Home_PTO command stop on origin switch and start of offset movement is fixed, set to 500 ms. The MC_Home_PTO command busy flag is only released after origin offset has been completed.

Chapter 5 Data Unit Types

Overview

This chapter describes the data unit types of the M241 PTO Library.

What Is in This Chapter?

This chapter contains the following topics:

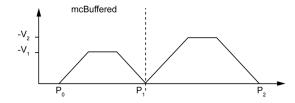
Topic	Page
AXIS_REF_PTO Data Type	76
MC_BUFFER_MODE	77
MC_DIRECTION	79
PTO_HOMING_MODE	08
PTO_PARAMETER	81
PTO_ERROR	82

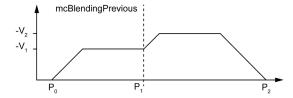
AXIS_REF_PTO Data Type

Data Type Description

The AXIS_REF_PTO type is a data type that contains information on the corresponding axis. It is used as a VAR_IN_OUT in all function blocks of the PTO library.

MC_BUFFER_MODE


Buffer Mode Enumeration


This table lists the values for the MC_BUFFER_MODE enumeration:

Enumerator	Value	Description
mcAborting	0	Start FB immediately (default mode). Any ongoing motion is aborted. The move queue is cleared.
mcBuffered	1	Start FB after current move has finished (Done or InVelocity bit is set). There is no blending.
mcBlendingPrevious	3	The velocity is blended with the velocity of the first FB (blending with the velocity of FB1 at end-position of FB1).
seTrigger	10	Start FB immediately when an event on the probe input is detected. Any ongoing motion is aborted. The move queue is cleared.
seBufferedDelay	11	Start FB after current motion has finished (Done or InVelocity bit is set) and the time delay has elapsed. There is no blending. The Delay parameter is set using MC_WriteParameter_PTO (see page 154), with ParameterNumber 1000.

Examples

The examples below show a movement executed by two motion commands. The axis moves from the position P_0 to P_1 and then P_2 . The second command is passed while the axis is executing the first command but before the stopping ramp is reached. For each motion profile below, P_1 is the reference point for the blending calculation. The buffer mode determines whether velocity V_1 or V_2 is reached at position P_1 .

MC_DIRECTION

Move Direction Enumeration

This table lists the values for the MC_DIRECTION enumeration:

Enumerator	Value	Description
mcPositiveDirection	1	CW, forward, positive (according to Output Mode configuration setting).
mcNegativeDirection	-1	CCW, backward, reverse, negative (according to Output Mode configuration setting).
mcCurrentDirection	2	Move in the last used direction.

PTO_HOMING_MODE

Homing Mode Enumeration

This table lists the values for the PTO_HOMING_MODE enumeration:

Enumerator	Value	Description
PositionSetting	0	Position.
LongReference	1	Long reference.
LongReferenceAndIndex	10	Long reference and index.
ShortReference_Reversal	20	Short reference.
ShortReference_NoReversal	21	Short reference no reversal.
ShortReferenceAndIndex_Outside	30	Short reference and index outside.
ShortReferenceAndIndex_Inside	31	Short reference and index inside.

PTO_PARAMETER

PTO Parameter Enumeration

This table lists the values for the PTO_PARAMETER enumeration:

Parameter Name	Parameter Number	Туре	Standard	R/W	Description	
CommandedPosition	1	DINT	Mandatory	R	Commanded position.	
SWLimitPos	2	DINT	Optional	R/W	Positive software limit switch position.	
SWLimitNeg	3	DINT	Optional	R/W	Negative software limit switch position.	
EnableLimitPos	4	BOOL	Optional	R/W	Enable positive software limit switch.	
EnableLimitNeg	5	BOOL	Optional	R/W	Enable negative software limit switch.	
MaxVelocityAppl	9	DINT	Mandatory R/W Maximal allowed velocity of the ax application.		Maximal allowed velocity of the axis in the application.	
ActualVelocity	10	DINT	Mandatory R Actual velocity.		Actual velocity.	
CommandedVelocity	11	DINT	Mandatory R C		Commanded velocity.	
MaxAccelerationAppl	13	DINT			Maximal allowed acceleration of the axis in the application.	
MaxDecelerationAppl	15	DINT	Optional R/W Maximal allowed deceleration of the the application.		Maximal allowed deceleration of the axis in the application.	
Reserved	to 999	-	-	-	Reserved for the PLCopen standard.	
Delay	1000	DINT	Optional	R/W	Time in ms (065,535) Default value: 0	

PTO_ERROR

PTO Error Enumeration

This table lists the values for the PTO_ERROR enumeration:

Enumerator	Value	Description
NoError	0	No error detected.
Axis Control Alerts		
InternalError	1000	Motion controller internal error detected.
DisabledAxis	1001	The move could not be started or has been aborted because the axis is not ready.
HwPositionLimitP	1002	Hardware positive position limit limP exceeded.
HwPositionLimitN	1003	Hardware negative position limit limN exceeded.
SwPositionLimitP	1004	Software positive position limit exceeded.
SwPositionLimitN	1005	Software negative position limit exceeded.
ApplicationStopped	1006	Application execution has been stoppped (power cycle, controller in STOPPED or HALT state).
OutputProtection	1007	Short-circuit output protection is active on the PTO channels.
Axis Control Advisories		
WarningVelocityValue	1100	Commanded Velocity parameter is out of range.
WarningAccelerationValue	1101	Commanded Acceleration parameter is out of range.
WarningDecelerationValue	1102	Commanded Deceleration parameter is out of range.
WarningDelayedMove	1103	Not enough time to stop the active move, so the requested move is delayed.
WarningJerkRatioValue	1104	Commanded jerk ratio parameter is limited by the configured maximum acceleration or deceleration. In this case, the jerk ratio is recalculated to respect these maximums.
Motion State Advisories		
ErrorStopActive	2000	The move could not be started or has been aborted because motion is prohibited by an ErrorStop condition.
StoppingActive	2001	The move could not be started because motion is prohibited by MC_Stop_PTO having control of the axis (either the axis is stopping, or MC_Stop_PTO.Execute input is held high).
InvalidTransition	2002	Transition not allowed, refer to the Motion State Diagram (see page 87).

Enumerator	Value	Description
InvalidSetPosition	2003	MC_SetPosition_PTO cannot be executed while the axis is moving.
HomingError	2004	Homing sequence cannot start on reference cam in this mode.
InvalidProbeConf	2005	The Probe input must be configured.
InvalidHomingConf	2006	The home inputs (Ref, Index) must be configured for this homing mode.
InvalidAbsolute	2007	An absolute move cannot be executed while the axis is not successfully homed to an origin position. A homing sequence must be executed first (MC_Home_PTO (see page 123)).
MotionQueueFull	2008	The move could not be buffered because the motion queue is full.
Range Advisories	·	
InvalidAxis	3000	The function block is not applicable for the specified axis.
InvalidPositionValue	3001	Position parameter is out of limits, or distance parameter gives an out of limits position.
InvalidVelocityValue	3002	Velocity parameter is out of range. The value must be greater than the start velocity and less than the maximum velocity.
InvalidAccelerationValue	3003	Acceleration parameter is out of range.
InvalidDecelerationValue	3004	Deceleration parameter is out of range.
InvalidBufferModeValue	3005	Buffer mode does not correspond to a valid value.
InvalidDirectionValue	3006	Direction does not correspond to a valid value, or direction is invalid due to software position limit exceeded.
InvalidHomeMode	3007	Home mode is not applicable.
InvalidParameter	3008	The parameter number does not exist for the specified axis.
InvalidParameterValue	3009	Parameter value is out of range.
ReadOnlyParameter	3010	Parameter is read-only.

An Axis Control Alert switches the axis in ErrorStop state (MC_Reset_PTO is mandatory to get out of ErrorStop state). The resulting axis status is reflected by $MC_ReadStatus_PTO$ and $MC_ReadAxisError_PTO$.

A **Motion State Advisory** or a **Range Advisory** does not affect the axis state, nor any ongoing move, nor the move queue. In this case, the error is only local to the applicable function block: the Error output is set, and the ErrorId pin is set to the appropriate PTO_ERROR value.

Chapter 6 Motion Function Blocks

Overview

This chapter describes the motion function blocks.

A motion function block acts on the diagram of axis state, to modify the motion of the axis. These function blocks can return a status to the application before the move is complete. The application program uses these status bits to determine the move status (Done, Busy, Active,

 ${\tt CommandAborted}, \textbf{and detected} \, {\tt Error}). \, \textbf{For axis status}, \textbf{you can use the} \, {\tt MC_ReadStatus_PTO} \, \textbf{function block}.$

What Is in This Chapter?

This chapter contains the following sections:

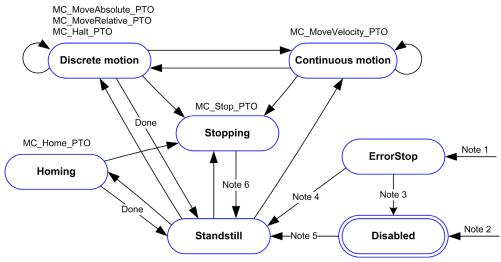
Section	Topic	Page
6.1	Operation Modes	86
6.2	MC_Power_PTO Function Block	100
6.3	MC_MoveVelocity_PTO Function Block	105
6.4	MC_MoveRelative_PTO Function Block	111
6.5	MC_MoveAbsolute_PTO Function Block	117
6.6	MC_Home_PTO Function Block	123
6.7	MC_SetPosition_PTO Function Block	128
6.8	MC_Stop_PTO Function Block	131
6.9	MC_Halt_PTO Function Block	136
6.10	Adding a Motion Function Block	141

Section 6.1 Operation Modes

Overview

This section describes the operation modes.

What Is in This Section?


This section contains the following topics:

Topic	Page
Motion State Diagram	87
Buffer Mode	89
Timing Diagram Examples	91

Motion State Diagram

State Diagram

The axis is always in one of the defined states in this diagram:

Note 1 From any state, when an error is detected.

Note 2 From any state except ErrorStop, when MC Power PTO.Status = FALSE.

Note 3 MC Reset PTO.Done = TRUE and MC Power PTO.Status = FALSE.

Note 4 MC Reset PTO.Done = TRUE and MC Power PTO.Status = TRUE.

Note 5 MC Power PTO.Status = TRUE.

Note 6 MC Stop PTO.Done = TRUE and MC Stop PTO.Execute = FALSE.

The table describes the axis states:

State	Description		
Disabled	Initial state of the axis, no motion command is allowed. The axis is not homed.		
Standstill	Power is on, there is no error detected, and there are no motion commands active on the axis. Motion command is allowed.		
ErrorStop	Highest priority, applicable when an error is detected on the axis or in the controller. Any ongoing move is aborted by a Fast Stop Deceleration . Error pin is set on applicable function blocks, and an ErrorId sets the error code. No further motion command is accepted until a reset has been done using MC Reset PTO.		
Homing	Applicable when MC_Home_PTO controls the axis.		
Discrete	Applicable when MC_MoveRelative_PTO, MC_MoveAbsolute_PTO, or MC_Halt_PTO controls the axis.		

State	Description
Continuous	Applicable when MC_MoveVelocity_PTO controls the axis.
Stopping	Applicable when MC_Stop_PTO controls the axis.

NOTE: Function blocks which are not listed in the state diagram do not affect a change of state of the axis.

The entire motion command including acceleration and deceleration ramps cannot exceed 4,294,967,295 pulses. At the maximum frequency of 100 kHz, the acceleration and deceleration ramps are limited to 80 seconds.

Motion Transition Table

The PTO channel can respond to a new command while executing (and before completing) the ongoing command according to the following table:

Command		Next						
		Home	MoveVelocity	MoveRelative	MoveAbsolute	Halt	Stop	
Ongoing	Ongoing Standstill Allowed		Allowed (1)	Allowed (1)	Allowed (1)	Allowed	Allowed	
	Home	Rejected	Rejected	Rejected	Rejected	Rejected	Allowed	
	MoveVelocity		Allowed	Allowed	Allowed	Allowed	Allowed	
	MoveRelative	Rejected	Allowed	Allowed	Allowed	Allowed	Allowed	
	MoveAbsolute	Rejected	Allowed	Allowed	Allowed	Allowed	Allowed	
	Halt	Rejected	Allowed	Allowed	Allowed	Allowed	Allowed	
	Stop	Rejected	Rejected	Rejected	Rejected	Rejected	Rejected	

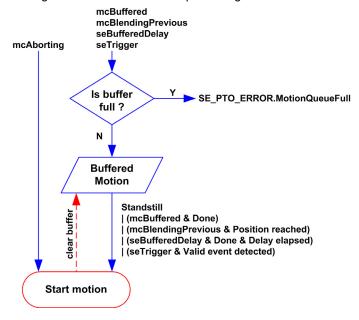
⁽¹⁾ When the axis is at standstill, for the buffer modes mcAborting/mcBuffered/mcBlendingPrevious, the move starts immediately.

Allowed the new command begins execution even if the previous command has not completed execution. **Rejected** the new command is ignored and results in the declaration of an error.

NOTE: When an error is detected in the motion transition, the axis goes into **ErrorStop** state. The ErrorId is set to InvalidTransition.

Buffer Mode

Description


Some of the motion function blocks have an input called <code>BufferMode</code>. With this input, the function block can either start immediately, start on probe event, or be buffered.

The available options are defined in the enumeration of type MC BUFFER MODE (see page 77):

- An aborting motion (mcAborting) starts immediately, aborting any ongoing move, and clearing the motion queue.
- A buffered motion (mcBuffered, mcBlendingPrevious, seBufferedDelay) is queued, that is, appended to any moves currently executing or waiting to execute, and will start when the previous motion is done.
- An event motion (seTrigger) is a buffered motion, starting on probe event (see page 45).

Motion Queue Diagram

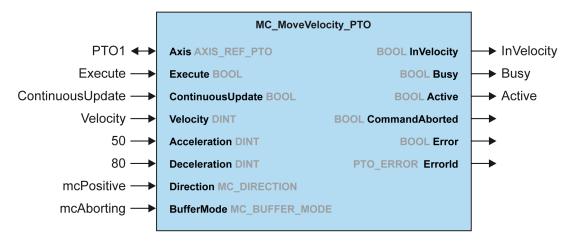
The figure illustrates the motion queue diagram:

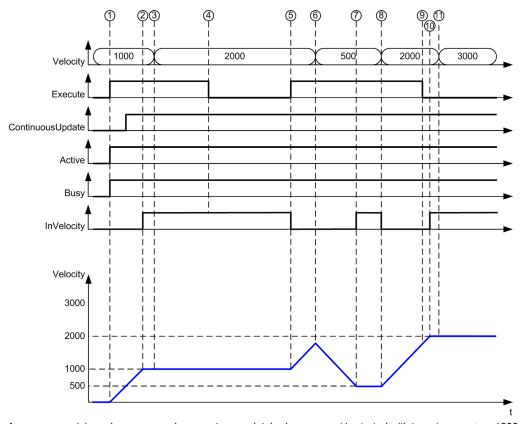
The buffer can contain only one motion function block.

The execution condition of the motion function block present in the buffer is:

- mcBuffered: when the current continuous motion is InVelocity, resp. when the current discrete motion stops.
- seBufferedDelay: when the specified delay has elapsed, from the current continuous motion is InVelocity, resp. from the current discrete motion stops.
- mcBlendingPrevious: when the position and velocity targets of current function block are reached.
- seTrigger: when a valid event is detected on the probe input.

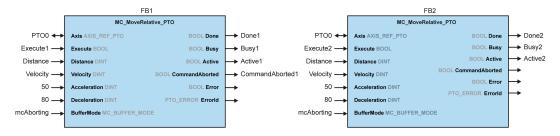
The motion queue is cleared (all buffered motions are deleted):

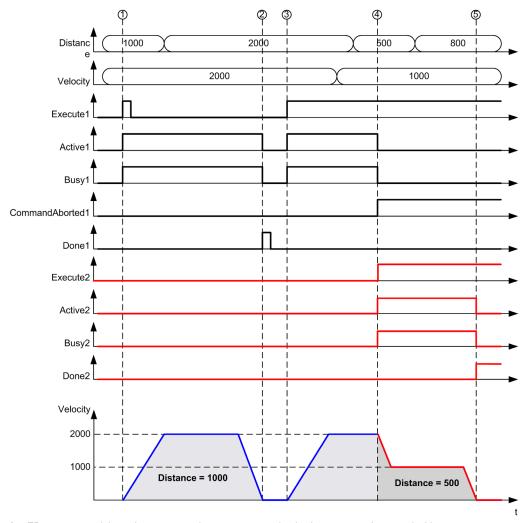

- When an aborting move is triggered (mcAborting): CommandAborted pin is set on buffered function blocks.
- When a MC_Stop_PTO function is executed: Error pin is set on cleared buffered function blocks, with ErrorId=StoppingActive (see page 82).
- When a transition to ErrorStop state is detected: Error pin is set on buffered function blocks, with ErrorId=ErrorStopActive (see page 82).


NOTE:

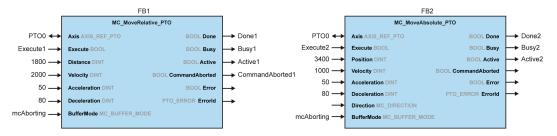
- Only a valid motion can be queued. If the function block execution terminates with the Error output set, the move is not queued, any move currently executing is not affected, and the queue is not cleared.
- When the queue is already full, the Error output is set on the applicable function block, and ErrorId output returns the error MotionQueueFull (see page 82).

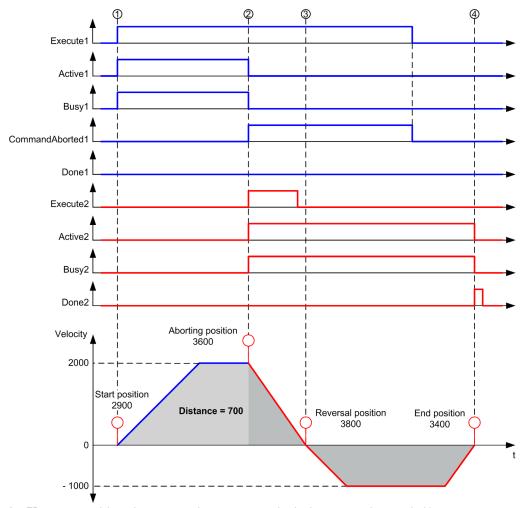
Timing Diagram Examples


Move Velocity to Move Velocity with mcAborting

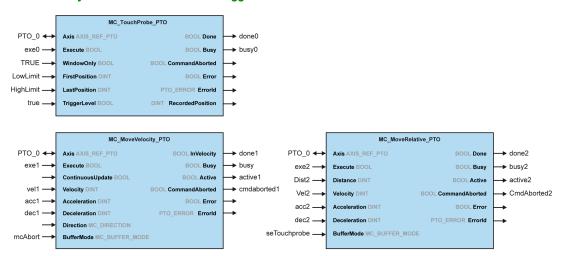


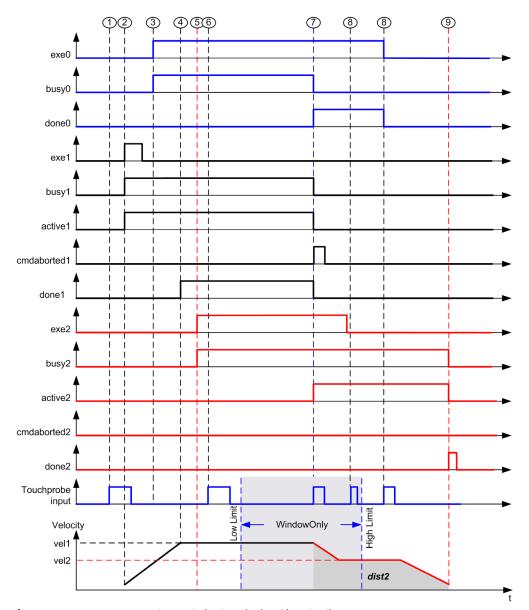
- 1 Execute rising edge: command parameters are latched, movement is started with target velocity 1000.
- 2 Target velocity 1000 is reached.
- 3 Velocity parameter changed to 2000: not applied (no rising edge on Execute input, and ContinuousUpdate was latched with value 0 at start of the movement).
- 4 Execute falling edge: status bits are cleared.
- 5 Execute rising edge: command parameters are latched, movement is started with target <code>velocity 2000</code> and <code>ContinuousUpdate active</code>.
- 6 Velocity parameter changed to 500: applied ContinuousUpdate is true). Note: previous target velocity 2000 is not reached.
- 7 Target velocity 500 is reached.
- **8** Velocity parameter changed to 2000: applied ContinuousUpdate is true).
- **9** Execute falling edge: status bits are cleared.
- 10 Target velocity 2000 is reached, InVelocity is set for 1 cycle (Execute pin is reset).
- 11 Velocity parameter changed to 3000: not applied (movement is still active, but no longer busy).


Move Relative to Move Relative with mcAborting



- 1 FB1 Execute rising edge: command parameters are latched, movement is started with target velocity 2000 and distance 1000.
- 2 Movement ends: distance traveled is 1000.
- 3 FB1 Execute rising edge: command parameters are latched, movement is started with target velocity 2000 and distance 2000.
- 4 FB2 Execute rising edge: command parameters are latched, movement is started with target velocity 1000 and distance 500. Note: FB1 is aborted.
- 5 Movement ends.


Move Relative to Move Absolute with mcAborting



- 1 FB1 Execute rising edge: command parameters are latched, movement is started with target velocity 2000 and distance 1800.
- 2 FB2 Execute rising edge: command parameters are latched, FB1 is aborted, and movement continues with target velocity 1000 and targetposition 3400. Automatic direction management: direction reversal is needed to reach target position, move to stop at deceleration of FB2.
- 3 Velocity 0, direction reversal, movement resumes with target velocity 1000 and target position 3400.
- 4 Movement ends: target position 3400 reached.

Move Velocity to Move Relative with seTrigger

- 1 MC TouchProbe PTO not executed yet: probe input is not active.
- 2 MC_MoveVelocity_PTO Execute rising edge: command parameters are latched, movement is started with target velocity vel1.
- 3 MC TouchProbe PTO Execute rising edge: probe input is active.
- 4 vel1 is reached.

- **5** MC_MoveRelative_PTO Execute rising edge: command parameters are latched, waiting for probe event to start.
- **6** Probe event outside of enable windows: event is ignored.
- 7 A valid event is detected. MC_MoveRelative_PTO aborts MC_MoveVelocity_PTO, and probe input is deactivated.
- 8 Following events are ignored.
- 9 Movement ends.

Section 6.2 MC_Power_PTO Function Block

Overview

This section describes the $\mbox{MC}_{\mbox{\tt Power}_{\mbox{\tt PTO}}}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page
Description	101
MC_Power_PTO: Manage the Power of the Axis State	102

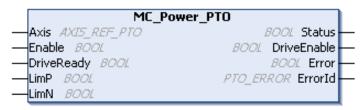
Description

Overview

The \texttt{MC}_Power_PTO function block is mandatory for execution of the other PTO function blocks. It allows enabling power and control to the axis, switching the axis state from **Disabled** to **Standstill**.

This function block must always be the first PTO function block called.

No motion function block is allowed to affect the axis until the MC_Power_PTO.Status bit is TRUE.


Disabling power (MC Power PTO.Enable = FALSE) switches the axis:

- from Standstill, back to Disabled state.
- from any ongoing move, to **ErrorStop**, and then **Disabled** when the error is reset.

If DriveReady input is reset, the axis state switches to ErrorStop.

MC_Power_PTO: Manage the Power of the Axis State

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

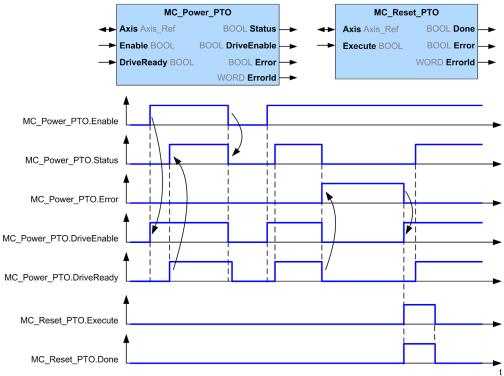
Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_ PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared under the controller configuration.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified and the outputs updated continuously. When FALSE, terminates the function block execution and resets its outputs.
DriveReady ⁽¹⁾	BOOL	FALSE	Drive ready information from the drive. Must be TRUE when the drive is ready to start executing motion. If the drive signal is connected to the controller, use the appropriate %Ix input. If the drive does not provide this signal, you can select the value TRUE for this input.
Limp ⁽¹⁾	BOOL	TRUE	Hardware limit switch information, in positive direction. It must be FALSE when the hardware limit switch is reached. If the hardware limit switch signal is connected to the controller, use the appropriate %Ix input. If this signal is not available, you can leave this input unused or set to TRUE.

Input	Туре	Initial Value	Description
LimN(1)	BOOL	TRUE	Hardware limit switch information, in negative direction. It must be FALSE when the hardware limit switch is reached. If the hardware limit switch signal is connected to the controller, use the appropriate %Ix. If this signal is not available, you can leave this input unused or set to TRUE.

 $^{^{(1)}}$ DriveReady, LimP, and LimN are read at the task cycle time.


Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
Status	BOOL	FALSE	When TRUE, power is enabled, motion commands are possible.
DriveEnable	BOOL	FALSE	Enables the drive to accept commands. If the drive does not use this signal, you can leave this output unused.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

Timing Diagram Example

The diagram illustrates the function block operation:

Section 6.3 MC_MoveVelocity_PTO Function Block

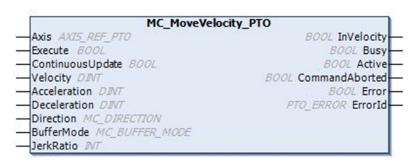
Overview

This section describes the ${\tt MC_MoveVelocity_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page		
Description	106		
MC_MoveVelocity_PTO: Control the Speed of the Axis			


Description

Overview

This function causes the specified axis to move at the specified speed, and transfers the axis to the state **Continuous**. This continuous movement is maintained until a software limit is reached, an aborting move is triggered, or a transition to **ErrorStop** state is detected.

MC_MoveVelocity_PTO: Control the Speed of the Axis

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

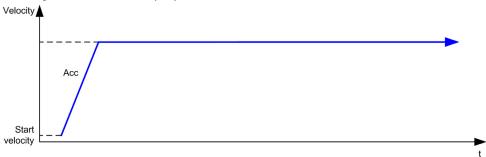
Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates. Later changes in the function block input parameters do not affect the ongoing command, unless the input ContinuousUpdate is used. If a second rising edge is detected during the execution of the function block, the ongoing execution is aborted and the function block is restarted with the values of the parameters at the time.

Input	Туре	Initial Value	Description
Continuou- sUpdate	BOOL	FALSE	At TRUE, makes the function block use the values of the input variables (Velocity, Acceleration, Deceleration, and Direction), and apply it to the ongoing command regardless of their original values. The impact of the input ContinuousUpdate begins when the function block is triggered by a rising edge on the Execute pin, and ends as soon as the function block is no longer Busy or the input ContinuousUpdate is set to FALSE.
Velocity	DINT	0	Target velocity in Hz, not necessarily reached. Range: 0MaxVelocityAppl (see page 81)
Acceleration	DINT	0	Acceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxAccelerationAppl (see page 81) Range (ms): MaxAccelerationAppl (see page 81)100,000
Deceleration	DINT	0	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000
Direction	MC_DIRECTION	mcPositiveDir ection	Direction of the movement (see page 79).
BufferMode	MC_BUFFER_ MODE	mcAborting	Transition mode from ongoing move (see page 77).
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile <i>(see page 43)</i> . Range: 0100

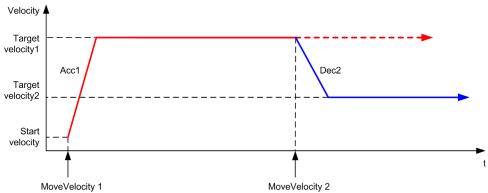
Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
InVelocity	BOOL	FALSE	If TRUE, indicates that the target velocity is reached.
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
Active	BOOL	FALSE	The function block controls the \texttt{Axis} . Only one function block at a time can set \texttt{Active} TRUE for a defined \texttt{Axis} .
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected.

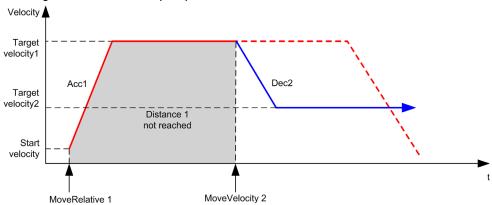

Output	Туре	Initial Value	Description
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

NOTE:


- To stop the motion, the function block has to be interrupted by another function block issuing a new command.
- If a motion is ongoing, and the direction is reversed, first the motion is halted with the
 deceleration of the MC_MoveVelocity_PTO function block, and then the motion resumes
 backwards.
- The acceleration/deceleration duration of the segment block must not exceed 80 seconds.

Timing Diagram Example

The diagram illustrates a simple profile from Standstill state:


The diagram illustrates a complex profile from **Continuous** state:

The diagram illustrates a complex profile from **Continuous** state with change of direction:

The diagram illustrates a complex profile from **Discrete** state:

Section 6.4 MC_MoveRelative_PTO Function Block

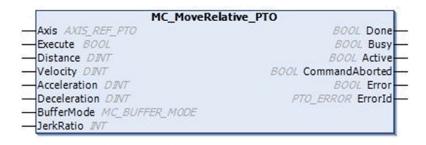
Overview

This section describes the ${\tt MC_MoveRelative_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page		
Description	112		
MC_MoveRelative_PTO: Command Relative Axis Movement			


Description

Overview

This function causes the specified axis to move of an incremental distance, and transfers the axis to the state **Discrete**. The target position is referenced from the current position at execution time, incremented by a distance.

MC_MoveRelative_PTO: Command Relative Axis Movement

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203)*.

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Distance	DINT	0	Relative distance of the motion in number of pulses. The sign specifies the direction.
Velocity	DINT	0	Target velocity in Hz, not necessarily reached. Range: 1MaxVelocityAppl (see page 81)
Acceleration	DINT	0	Acceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxAccelerationAppl (see page 81) Range (ms): MaxAccelerationAppl (see page 81)100,000

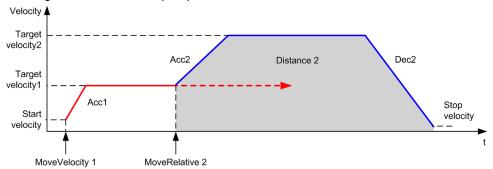
Input	Туре	Initial Value	Description
Deceleration	DINT	0	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000
BufferMode	MC_BUFFER_ MODE	mcAborting	Transition mode from ongoing move (see page 77).
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile (see page 43). Range: 0100

Output Variables

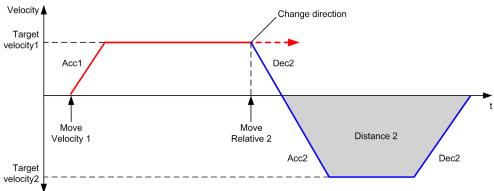
This table describes the output variables:


Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected.
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
Active	BOOL	FALSE	The function block controls the Axis. Only one function block at a time can set Active TRUE for a defined Axis.
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

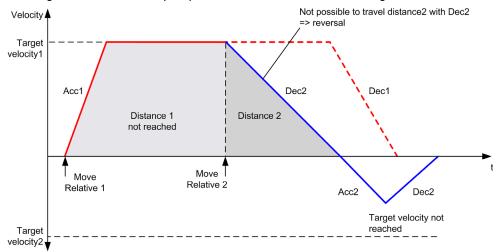
NOTE:


- The function block completes with velocity zero if no further blocks are pending.
- If the distance is too short for the target velocity to be reached, the movement profile is triangular, rather than trapezoidal.
- If a motion is ongoing, and the commanded distance is exceeded due to the motion parameters, the direction reversal is automatically managed: the motion is first halted with the deceleration of the MC_MoveRelative_PTO function block, and then the motion resumes backwards.
- The acceleration/deceleration duration of the segment block must not exceed 80 seconds.

Timing Diagram Example


The diagram illustrates a simple profile from Standstill state:

The diagram illustrates a complex profile from **Continuous** state:


The diagram illustrates a complex profile from **Continuous** state with change of direction:

The diagram illustrates a complex profile from **Discrete** state:

The diagram illustrates a complex profile from **Discrete** state with change of direction:

Section 6.5 MC_MoveAbsolute_PTO Function Block

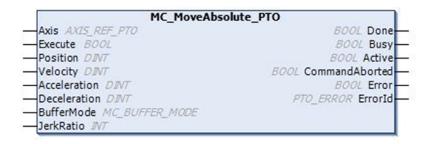
Overview

This section describes the ${\tt MC_MoveAbsolute_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page		
Description	118		
MC_MoveAbsolute_PTO: Command Movement to Absolute Position			


Description

Overview

This function causes the specified axis to move towards a given position at the specified speed, and transfers the axis to the state **Discrete**. To use the MC_MoveAbsolute_PTO function block, you must first home the axis. If not the function block will terminate in error (Error set to 1 and ErrorId set to InvalidAbsolute).

MC_MoveAbsolute_PTO: Command Movement to Absolute Position

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

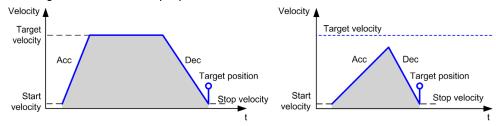
This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Position	DINT	0	Target absolute position.
Velocity	DINT	0	Target velocity in Hz, not necessarily reached. Range: 1MaxVelocityAppl (see page 81)
Acceleration	DINT	0	Acceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxAccelerationAppl (see page 81) Range (ms): MaxAccelerationAppl (see page 81)100,000
Deceleration	DINT	0	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000

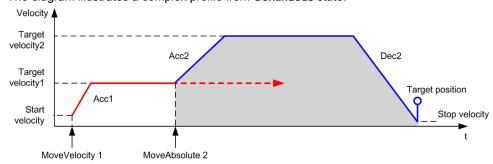
Input	Туре	Initial Value	Description
Direction	MC_DIRECTION	mcPositive- Direction	Direction of the movement.
BufferMode	MC_BUFFER_ MODE	mcAborting	Transition mode from ongoing move (see page 77).
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile (see page 43). Range: 0100

Output Variables

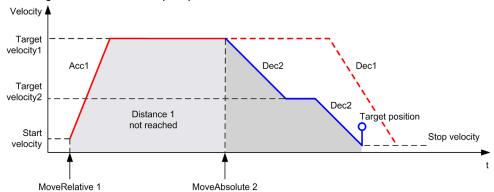
This table describes the output variables:

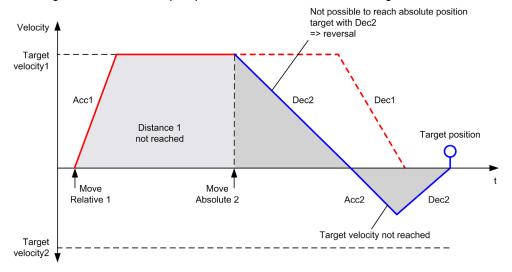

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected.
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
Active	BOOL	FALSE	The function block controls the Axis. Only one function block at a time can set Active TRUE for a defined Axis.
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

NOTE:


- The function block completes with velocity zero if no further blocks are pending.
- The motion direction is automatically set, according to the present and targeted positions.
- If the distance is too short for the target velocity to be reached, the movement profile is triangular, rather than trapezoidal.
- If the position cannot be reached with the ongoing direction, the direction reversal is automatically managed. If a motion is ongoing, it is first halted with the deceleration of the MC MoveAbsolute PTO function block, and then the motion resumes backwards.
- The acceleration/deceleration duration of the segment block must not exceed 80 seconds.

Timing Diagram Example


The diagram illustrates a simple profile from Standstill state:


The diagram illustrates a complex profile from **Continuous** state:

The diagram illustrates a complex profile from **Discrete** state:

The diagram illustrates a complex profile from **Discrete** state with change of direction:

Section 6.6 MC_Home_PTO Function Block

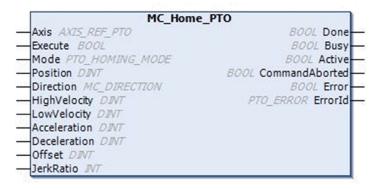
Overview

This section describes the $\texttt{MC_Home_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page
Description	124
MC_Home_PTO: Command the Axis to Move to a Reference Position	125


Description

Overview

This function block commands the axis to move to the reference absolute position, and transfers the axis to the state **Homing**. The details of this sequence depend on homing configuration parameter settings.

MC_Home_PTO: Command the Axis to Move to a Reference Position

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Mode	PTO_HOMING_ MODE	mcPositionSet- ting	Predefined home mode (see page 80) type.
Position	DINT	0	Position value is set as absolute position at the reference point switch detection, when the homing has been successfully executed.
Direction	MC_DIRECTION	mcPositiveDi- rection	Starting direction. For Homing, only mcPositiveDirection and mcNegativeDirection are valid.
HighVelocity	DINT	0	Target homing velocity for searching the limit or reference switch. Range Hz: 1MaxVelocityAppl (see page 81)

Input	Туре	Initial Value	Description
LowVelocity	DINT	0	Target homing velocity for searching the reference switch or index signal. The movement stop when switching point is detected. Range Hz: 1HighVelocity
Acceleration	DINT	0	Acceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxAccelerationAppl (see page 81) Range (ms): MaxAccelerationAppl (see page 81)100,000
Deceleration	DINT	0	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000
Offset	DINT	0	Distance from origin point. When the origin point is reached, the motion resumes until the distance is covered. Direction depends on the sign (Home offset (see page 73)). Range: -2,147,483,6482,147,483,647
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile (see page 43). Range: 0100

Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected .
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
Active	BOOL	FALSE	The function block controls the \texttt{Axis} . Only one function block at a time can set \texttt{Active} TRUE for a defined \texttt{Axis} .
CommandAbort-ed	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected .

Output	Туре	Initial Value	Description
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

NOTE: The acceleration/deceleration duration of the segment block must not exceed 80 seconds.

Timing Diagram Example

Home modes (see page 54)

Section 6.7 MC_SetPosition_PTO Function Block

Overview

This section describes the $\texttt{MC}_\texttt{SetPosition}_\texttt{PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page
Description	129
MC_SetPosition_PTO: Force the Reference Position of the Axis	130

Description

Overview

This function block modifies the coordinates of the actual position of the axis without any physical movement. This function block can only be used while the axis is a **Standstill** state.

MC_SetPosition_PTO: Force the Reference Position of the Axis

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Position	DINT	0	New value of absolute position of the Axis.

Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected .
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: type of the error detected (see page 82).

Section 6.8 MC_Stop_PTO Function Block

Overview

This section describes the $\texttt{MC_Stop_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page
Description	132
MC_Stop_PTO: Command a Controlled Motion Stop	133

Description

Overview

This function block commands a controlled motion stop and transfers the axis to the state **Stopping**. It aborts any ongoing move execution and the move queue is cleared. While the axis is in state **Stopping**, no other function block can perform any motion on the same axis. This function block is primarily intended for exception situations, or fast stop functionality.

MC_Stop_PTO: Command a Controlled Motion Stop

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

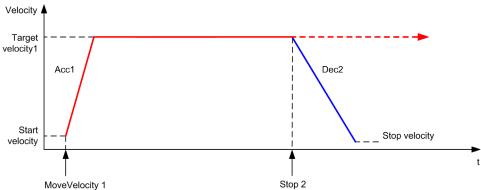
Input Variables

This table describes the input variables:

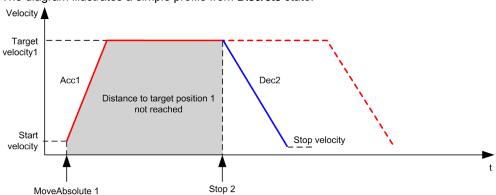
Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Deceleration	DINT	20	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile (see page 43). Range: 0100

Output Variables

This table describes the output variables:


Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected .
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected .
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: type of the error detected (see page 82).

NOTE:


- Calling this function block in state **Standstill** changes the state to **Stopping**, and back to **Standstill** when Execute is FALSE.
- The state Stopping is kept as long as the input Execute is true.
- TheDone output is set when the stop ramp is finished.
- If Deceleration = 0, the fast stop deceleration is used.
- The function block completes with velocity zero.
- The deceleration duration of the segment block must not exceed 80 seconds.

Timing Diagram Example

The diagram illustrates a simple profile from **Continuous** state:

The diagram illustrates a simple profile from **Discrete** state:

Section 6.9 MC_Halt_PTO Function Block

Overview

This section describes the ${\tt MC_Halt_PTO}$ function block.

What Is in This Section?

This section contains the following topics:

Topic	Page
Description	137
MC_Halt_PTO: Command a Controlled Motion Stop until the Velocity equals Zero	138

Description

Overview

This function block commands a controlled motion stop until the velocity is zero, and transfers the axis to the state **Discrete**. With the <code>Done</code> output set, the state is transferred to **Standstill**.

MC_Halt_PTO: Command a Controlled Motion Stop until the Velocity equals Zero

Graphical Representation

IL and ST Representation

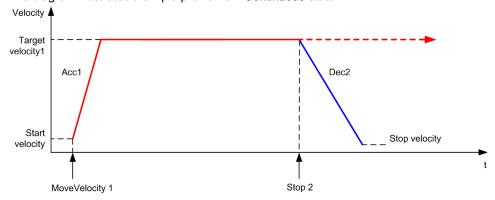
To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

Input Variables

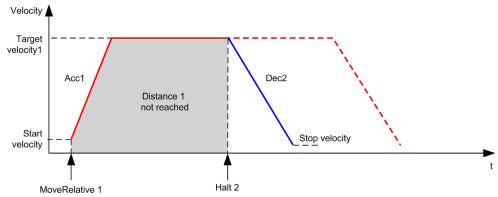
This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
Deceleration	DINT	20	Deceleration in Hz/ms or in ms (according to configuration). Range (Hz/ms): 1MaxDecelerationAppl (see page 81) Range (ms): MaxDecelerationAppl (see page 81)100,000
BufferMode	MC_BUFFER_MODE	mcAborting	Transition mode from ongoing move (see page 77).
JerkRatio	INT	0	Percentage of acceleration / deceleration adjustment used to create the S-curve profile (see page 43). Range: 0100

Output Variables


This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected .
Busy	BOOL	FALSE If TRUE, indicates that the function block execution progress.	
Active	BOOL	FALSE	The function block controls the Axis. Only one function block at a time can set Active TRUE for a defined Axis.
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or an error detected .
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: type of the error detected (see page 82).


NOTE: The function block completes with velocity zero.

Timing Diagram Example

The diagram illustrates a simple profile from Continuous state:

The diagram illustrates a simple profile from **Discrete** state:

Section 6.10 Adding a Motion Function Block

Adding a Motion Function Block

Procedure

Follow these steps to add and create the instance of a motion function block:

Step	Action
1	Add a POU (see SoMachine, Programming Manual,) in the Applications tree.
2	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller → M241 → M241 PTOPWM → PTO → Motion → MC_xxxxxx_PTO in the list, drag-and-drop the item onto the POU window.
3	Create the function block instance by clicking:
4	Associate the input/output variables (see page 85) of the function block.

Chapter 7

Administrative Function Blocks

Overview

This chapter describes the administrative function blocks.

Administrative function blocks do not influence the state diagram (see page 87).

What Is in This Chapter?

This chapter contains the following sections:

Section	Topic	Page
7.1	Status Function Blocks	144
7.2	Parameters Function Blocks	151
7.3	Probe Function Blocks	160
7.4	Error Handling Function Blocks	164
7.5	Adding an Administrative Function Block	168

Section 7.1 Status Function Blocks

Overview

This section describes the status function blocks.

What Is in This Section?

This section contains the following topics:

Topic	Page
MC_ReadActualVelocity_PTO: Get the Commanded Velocity of the Axis	
MC_ReadActualPosition_PTO: Get the Position of the Axis	
MC_ReadStatus_PTO: Get the State of the Axis	
MC_ReadMotionState_PTO: Get the Motion Status of the Axis	

MC_ReadActualVelocity_PTO: Get the Commanded Velocity of the Axis

Function Block Description

This function block returns the value of the commanded velocity of the axis.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.

Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	Valid data is available at the function block output pin.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
Velocity	DINT	0	Actual velocity of the axis (in Hz).

MC_ReadActualPosition_PTO: Get the Position of the Axis

Function Block Description

This function block returns the value of the commanded position of the axis.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

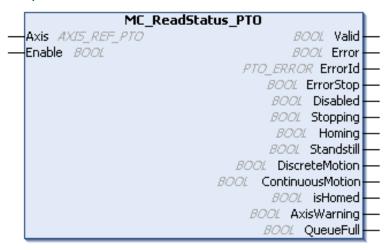
Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.

Output Variables

This table describes the output variables:


Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	Valid data is available at the function block output pin.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
Position	DINT	0	Actual position of the axis.

MC_ReadStatus_PTO: Get the State of the Axis

Function Block Description

This function block returns the state diagram (see page 87) status of the axis.

Graphical Representation

IL and ST Representation

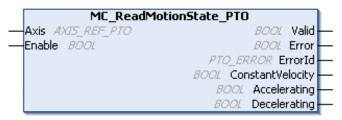
To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.

This table describes the output variables:


Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	The set of outputs is valid.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
ErrorStop	BOOL	FALSE	If TRUE, the state is active (Motion state diagram
Disabled	BOOL	FALSE	(see page 87)).
Stoppping	BOOL	FALSE	
Homing	BOOL	FALSE	
Stanstill	BOOL	FALSE	
DiscreteMotion	BOOL	FALSE	
ContinuousMotion	BOOL	FALSE	
IsHomed	BOOL	FALSE	If TRUE, the reference point is valid, absolute motion is allowed.
AxisWarning	BOOL	FALSE	If TRUE, an alert is present on the axis (call MC_ReadAxisError_PTO (see page 165) for detailed information).
QueueFull	BOOL	FALSE	If TRUE, the motion queue is full, no additional move is allowed in the buffer.

MC_ReadMotionState_PTO: Get the Motion Status of the Axis

Function Block Description

This function block returns the actual motion status of the axis.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.

This table describes the output variables:

Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	Valid data is available at the function block output pin.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
ConstantVelocity	BOOL	FALSE	The actual velocity is constant.
Accelerating	BOOL	FALSE	The actual velocity is increasing.
Decelerating	BOOL	FALSE	The actual velocity is decreasing.

Section 7.2 Parameters Function Blocks

Overview

This section describes the parameters function blocks.

What Is in This Section?

This section contains the following topics:

Topic	Page
MC_ReadParameter_PTO: Get Parameters from the PTO	152
MC_WriteParameter_PTO: Write Parameters to the PTO	154
MC_ReadBoolParameter_PTO: Get BOOL Parameters from the PTO	156
MC_WriteBoolParameter_PTO: Write BOOL Parameters to the PTO	158

MC_ReadParameter_PTO: Get Parameters from the PTO

Function Block Description

This function block is used to get parameters from the PTO.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.
ParameterNumber	INT	0	ID of the requested parameter (PTO_PARAMETER (see page 81))

This table describes the output variables:

Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	Valid data is available at the function block output pin.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
Value	DINT	0	Value of the requested parameter.

MC_WriteParameter_PTO: Write Parameters to the PTO

Function Block Description

This function block is used to write parameters to the PTO.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration,.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
ParameterNumber	INT	0	ID of the requested parameter (PTO_PARAMETER (see page 81))
Value	DINT	0	Value to be written to the requested parameter.

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR.NoE	When Error is TRUE: code of the error detected (see page 82).

MC_ReadBoolParameter_PTO: Get BOOL Parameters from the PTO

Function Block Description

This function block is used to get BOOL parameters from the PTO.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the other function block inputs can be modified continuously, and the function block outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.
ParameterNumber	INT	0	ID of the requested parameter (PTO_PARAMETER (see page 81))

This table describes the output variables:

Output	Туре	Initial Value	Description
Valid	BOOL	FALSE	Valid data is available at the function block output pin.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
Value	BOOL	FALSE	Value of the requested parameter.

MC_WriteBoolParameter_PTO: Write BOOL Parameters to the PTO

Function Block Description

This function block is used to write BOOL parameters to the PTO.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
ParameterNumber	INT	0	ID of the requested parameter (PTO_PARAMETER (see page 81))
Value	BOOL	FALSE	Value to be written to the requested parameter.

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

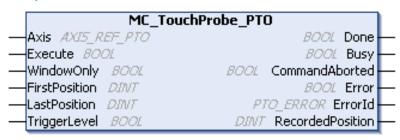
Section 7.3 Probe Function Blocks

Overview

This section describes the probe function blocks.

What Is in This Section?

This section contains the following topics:


Topic	Page
MC_TouchProbe_PTO: Activate a Trigger Event	161
MC_AbortTrigger_PTO: Abort/Deactivate Function Blocks	163

MC_TouchProbe_PTO: Activate a Trigger Event

Function Block Description

This function block is used to activate a trigger event on the probe input. This trigger event allows to record the axis position, and/or to start a buffered move.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203)*.

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_ PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.
WindowOnly	BOOL	FALSE	If TRUE, only use the window defined by FirstPosition and LastPosition to accept trigger events.
FirstPosition	DINT	0	Start absolute position from where (positive direction) trigger events are accepted (value included in window).
LastPosition	DINT	0	Stop absolute position until where (positive direction) trigger events are accepted (value included in window).
TriggerLevel	BOOL	FALSE	If FALSE, position capture at falling edge. If TRUE, position capture at rising edge.

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected.
Busy	BOOL	FALSE	If TRUE, indicates that the function block execution is in progress.
CommandAborted	BOOL	FALSE	Function block execution is finished, by aborting due to another move command or a error detected.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).
RecordedPosition	DINT	0	Position where trigger event was detected.


NOTE: Only the first event after the rising edge at the MC_TouchProbe_PTO function block Busy pin is valid. Once the Done output pin is set, subsequent events are ignored. The function block needs to be reactivated to respond to other events.

MC_AbortTrigger_PTO: Abort/Deactivate Function Blocks

Function Block Description

This function block is used to abort function blocks which are connected to trigger events (for example, MC TouchProbe PTO).

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.

Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description
Done	BOOL	FALSE	If TRUE, indicates that the function block execution is finished with no error detected.
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).

Section 7.4 Error Handling Function Blocks

Overview

This section describes the error handling function blocks.

What Is in This Section?

This section contains the following topics:

Topic	Page
MC_ReadAxisError_PTO: Get the Axis Control Error	165
MC_Reset_PTO: Reset All Axis-Related Errors	167

MC_ReadAxisError_PTO: Get the Axis Control Error

Function Block Description

This function block retrieves the axis control error. If no axis control error is pending, the function block returns AxisErrorId = 0.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation (see page 203).

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Enable	BOOL	FALSE	When TRUE, the function block is executed. The values of the function block inputs can be modified continuously, and the outputs are updated continuously. When FALSE, terminates the function block execution and resets its outputs.

This table describes the output variables:


Output	Туре	Initial Value	Description	
Valid	BOOL	FALSE	Valid data is available at the function block output pin.	
Error	BOOL	FALSE	If TRUE, indicates that an error was detected. Function block execution is finished.	
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).	
AxisErrorId	PTO_ERROR	PTO_ERROR. NoError	Index 1000 of PTO_ERROR (see page 82).	

MC_Reset_PTO: Reset All Axis-Related Errors

Function Block Description

This function block resets all axis-related errors, conditions permitting, allowing a transition from the state **ErrorStop** to **Standstill**. It does not affect the output of the function blocks instances.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the chapter Function and Function Block Representation *(see page 203).*

Input Variables

This table describes the input variables:

Input	Туре	Initial Value	Description
Axis	AXIS_REF_PTO	-	Name of the axis (instance) for which the function block is to be executed. In the devices tree, the name is declared in the controller configuration.
Execute	BOOL	FALSE	On rising edge, starts the function block execution. On falling edge, resets the outputs of the function block when its execution terminates.

Output Variables

This table describes the output variables:

Output	Туре	Initial Value	Description	
Done	BOOL	FALSE If TRUE, indicates that the function block ex finished with no error detected.		
Error	BOOL	FALSE If TRUE, indicates that an error was detected block execution is finished.		
ErrorId	PTO_ERROR	PTO_ERROR. NoError	When Error is TRUE: code of the error detected (see page 82).	

Section 7.5

Adding an Administrative Function Block

Adding an Administrative Function Block

Procedure

Follow these steps to add and create the instance of an administrative function block:

Step	Action
1	Add a POU (see SoMachine, Programming Manual,) in the Applications tree.
2	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller → M241 → M241 PTOPWM → PTO → Administrative → MC_xxxxx_PTO in the list, drag-and-drop the item onto the POU window.
3	Create the function block instance by clicking:
4	Associate the input/output variables (see page 143) of the function block.

Part III

Pulse Width Modulation (PWM)

Overview

This part describes the Pulse Width Modulation function.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name		
8	Introduction		
9	Configuration and Programming		
10	Data Types		

Chapter 8Introduction

Overview

This chapter provides a description of the PWM functions.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page	
Description	172	
FreqGen/PWM Naming Convention		
Synchronization and Enable Functions		

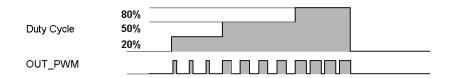
Description

Overview

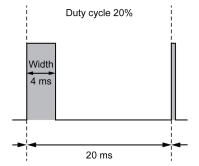
The pulse width modulation function generates a programmable pulse wave signal on a dedicated output with adjustable duty cycle and frequency.

Signal Form

The signal form depends on the following input parameters:


- Frequency configurable:
 - o from 0.1 Hz to 20 kHz with a 0.1 Hz step (fast outputs: Q0...Q3)
 - o from 0.1 Hz to 1 kHz with a 0.1 Hz step (regular outputs: Q4...Q7)
- **Duty Cycle** of the output signal from 0% to 100% with 1% step or 0.1% step with HighPrecision.

Duty Cycle=Tp/T


Tp pulse width

T pulse period (1/Frequency)

Modifying the duty cycle in the program modulates the width of the signal. Below is an illustration of an output signal with varying duty cycles.

The following illustration shows a duty cycle of 20%:

FreqGen/PWM Naming Convention

Definition

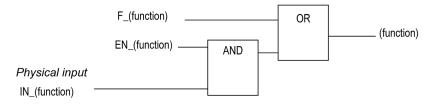
Frequency Generator and Pulse Width Modulation uses 1 fast physical output and up to 2 physical inputs.

In this document, use the following naming convention:

Name	Description		
SYNC	Synchronization function (see page 175).		
EN	Enable function (see page 175).		
IN_SYNC	Physical input dedicated to the SYNC function.		
IN_EN	Physical input dedicated to the EN function.		
OUT_PWM	Physical output dedicated to the FreqGen or PWM.		

Synchronization and Enable Functions

Introduction


This section presents the functions used by the FreqGen/PWM:

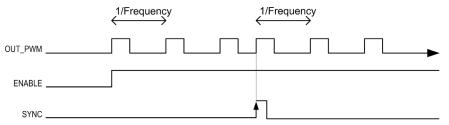
- Synchronization function
- Enable function

Each function uses the 2 following function block bits:

- EN_(function) bit: Setting this bit to 1 allows the (function) to operate on an external physical input if configured.
- **F_(function)** bit: Setting this bit to 1 forces the (function).

The following diagram explains how the function is managed:

NOTE: (function) stands either for **Enable** (for Enable function) or **Sync** (for Synchronization function).


If the physical input is required, enable it in the configuration screen (see page 178).

Synchronization Function

The **Synchronization** function is used to interrupt the current FreqGen/PWM cycle and then restart a new cycle.

Enable Function

The **Enable** function is used to activate the FregGen/PWM:

Chapter 9

Configuration and Programming

Overview

This chapter provides configuration and programming guidelines for using PWM functions.

What Is in This Chapter?

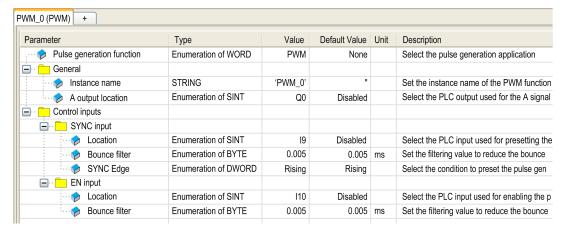
This chapter contains the following topics:

Topic	Page		
Configuration	178		
PWM_M241: Command a Pulse Width Modulation Signal			
Programming the PWM Function Block			

Configuration

Overview

Four pulse width modulation functions can be configured on the controller.


Adding a Pulse Width Modulation Function

To add a pulse width modulation function, proceed as follows:

Step	Action
1	Double-click the Pulse Generators node of your controller in the Devices Tree .
2	Double-click the Pulse generation function value and select PWM . Result: The PWM configuration parameters appear.

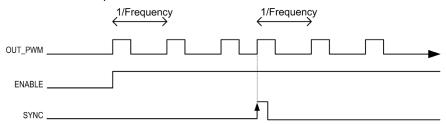
Parameters

The figure provides an example of a PWM configuration window:

The pulse width modulation function has the following parameters:

Parameter		Value	Default	Description
General	Instance name	-	PWM_0PWM_3	Set the instance name of the PWM function.
	A output location	Disabled Q0Q3 (fast outputs) Q4Q7 (regular outputs) ⁽¹⁾	Disabled	Select the controller output used for the A signal.
Control inputs / SYNC input	Location	Disabled 1017 (fast inputs) 1813 (TM241•24• regular inputs) 1815 (TM241•40• regular inputs)	Disabled	Select the controller input used for presetting the PWM function.
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.1 1.5	0.005	Set the filtering value to reduce the bounce effect on the SYNC input (in ms).
	SYNC Edge	Rising Falling Both	Rising	Select the condition to preset the PWM function with the SYNC input.

⁽¹⁾ Not available for M241 Logic Controller references with relay outputs.

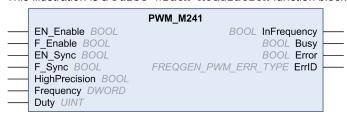

Parameter		Value	Default	Description
Control inputs / EN input	Location	Disabled 1017 (fast inputs) 18115 (TM241•40• regular inputs) 1813 (TM241•24• regular inputs)	Disabled	Select the controller input used for enabling the PWM function.
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.1 1.5 1	0.005	Set the filtering value to reduce the bounce effect on the EN input (in ms).

⁽¹⁾ Not available for M241 Logic Controller references with relay outputs.

Synchronizing with an External Event

On a rising edge on the IN_SYNC physical input (with EN_Sync = 1), the current cycle is interrupted and the PWM restarts a new cycle.

This illustration provides a pulse diagram for the $Pulse\ Width\ Modulation\ function\ block\ with\ use\ of\ IN_SYNC\ input:$


PWM_M241: Command a Pulse Width Modulation Signal

Overview

The Pulse Width Modulation function block commands a pulse width modulated signal output at the specified frequency and duty cycle.

Graphical Representation

This illustration is a Pulse Width Modulation function block:

IL and ST Representation

To see the general representation in IL or ST language, refer to the *Differences Between a Function and a Function Block (see page 204)* chapter.

Input Variables

This table describes the input variables:

Inputs	Туре	Comment
EN_Enable	BOOL	TRUE = authorizes the PWM enable via the IN_EN input (if configured).
F_Enable	BOOL	TRUE = enables the Pulse Width Modulation.
EN_SYNC	BOOL	TRUE = authorizes the restart via the IN_Sync input of the internal timer relative to the time base (if configured).
F_SYNC	BOOL	On a rising edge, forces a restart of the internal timer relative to the time base.
HighPrecision	BOOL	If FALSE (the default), the duty cycle is specified in units of 1%. See Duty below. If TRUE, the duty cycle <i>(see page 172)</i> is specified in units of 0.1%.
		NOTE: The value of the Duty parameter is automatically updated to 0100 or 01000 according to the value selected.

Inputs	Туре	Comment	
Frequency	DWORD	Frequency of the Pulse Width Modulation output signal in tenths of Hz (range: 1 (0.1 Hz)200,000 (20 kHz)).	
Duty	UINT	Duty cycle of the Pulse Width Modulation output signal, in units of 1% (range: 0100 (0%100%)).	
		NOTE: If the HighPrecision input is set to TRUE, the duty cycle is in units of 0.1% (range: 01000 (0%100%)).	

Output Variables

This table describes the output variables:

Outputs	Туре	Comment
InFrequency	BOOL	TRUE = the Pulse Width Modulation signal is currently being output at the specified frequency and duty cycle. FALSE = The required frequency cannot be reached for any reason. F_Enable is set to False. EN_Enable is set to False or no signal detected on the physical input EN Input (if configured).
Busy	BOOL	Busy is used to indicate that a command change is in progress: the frequency is changed. Set to TRUE when the Enable command is set and the frequency or duty is changed. Reset to FALSE when InFrequency or Error is set, or when the Enable command is reset.
Error	BOOL	TRUE = indicates that an error was detected.
ErrID	FREQGEN_PWM_ ERR_TYPE (see page 185)	When Error is set: type of the detected error.

NOTE: When the required frequency cannot be reached for any reason, the InFrequency output is not set to TRUE, but Error stays to FALSE.

Programming the PWM Function Block

Procedure

Follow these steps to program a **PWM** function block:

Step	Action
1	Select the Libraries tab in the Software Catalog and click Libraries . Select Controller → M241 → M241 PTOPWM → PWM → PWM_M241 in the list, drag-and-drop the item onto the POU window.
2	Select the function block instance by clicking The Input Assistant dialog is displayed. Select the global variable which references to the added PWM (see page 178) during the configuration and confirm.
	NOTE: If the function block instance is not visible, verify if the PWM is configured.
3	The inputs/outputs are detailed in the function block (see page 181).

Chapter 10 Data Types

FREQGEN_PWM_ERR_TYPE

Error Type Enumeration

This table lists the values for the ${\tt FREQGEN_PWM_ERR_TYPE}$ enumeration:

Enumerator	Value	Description
FREQGEN_PWM_NO_ERROR	0	No error detected.
FREQGEN_PWM_UNKNOWN_REF	1	The reference to the FreqGen / PWM is not valid.
FREQGEN_PWM_UNKNOWN_PARAMETER	2	The parameter type is unknown in the current mode.
FREQGEN_PWM_INVALID_PARAMETER	3	A parameter value is not valid or the combination of parameter values is not valid.
FREQGEN_PWM_COM_ERROR	4	Communication error with the FreqGen / PWM.
FREQGEN_PWM_AXIS_ERROR	5	PWM is in error state ("PWMError" is set on PTOSimple instance). No move is possible until the error is reset.

Part IV

Frequency Generator (FreqGen)

Overview

This part describes the Frequency Generator function.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
11	Introduction	189
12	Configuration and Programming	193

Chapter 11 Introduction

Overview

This chapter provides a description of the FreqGen functions.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Description	190
FreqGen Naming Convention	191
Synchronization and Enable Functions	

Description

Overview

The frequency generator function generates a square wave signal on dedicated output channels with a fixed duty cycle (50%).

Frequency is configurable from 0.1 Hz to 100 kHz with a 0.1 Hz step.

FreqGen Naming Convention

Description

FreqGen/PWM Naming Convention (see page 174)

Synchronization and Enable Functions

Description

Synchronization and Enable Functions (see page 175)

Chapter 12

Configuration and Programming

Overview

This chapter provides configuration and programming guidelines for using FreqGen functions.

What Is in This Chapter?

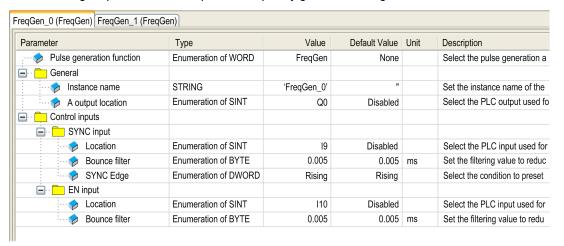
This chapter contains the following topics:

Topic	Page	
Configuration	194	
FrequencyGenerator_M241: Commanding a Square Wave Signal	197	
Programming		

Configuration

Overview

Up to 4 frequency generator functions can be configured on the controller.


Adding a Frequency Generator Function

To add a frequency generator function, proceed as follows:

Step	Action
1	Double-click the Pulse Generators node of your controller in the Devices Tree .
2	Double-click the Pulse generation function value and select FreqGen . Result: The frequency generator configuration parameters are displayed.

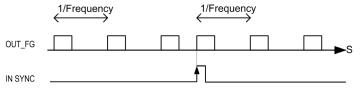
Parameters

The figure provides an example of a frequency generator configuration window:

The frequency generator function has the following parameters:

Parameter		Value	Default	Description	
General	Instance name	-	FreqGen0Fre qGen3	Set the instance name of the frequency generator function.	
	A output location	Disabled Q0Q3 (fast outputs) Q4Q7 (regular outputs) ⁽¹⁾	Disabled	Select the controller output used for the A signal.	
inputs / SYNC input	Location	Disabled 1017 (fast inputs) 18113 (TM241•24• regular inputs) 18115 (TM241•40• regular inputs)	Disabled	Select the controller input used for presetting the frequency generator function.	
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.1 1.5	0.005	Set the filtering value to reduce the bounce effect on the SYNC input (in ms).	
	SYNC Edge	Rising Falling Both	Rising	Select the condition to preset the frequency generator function with the SYNC input.	

⁽¹⁾ Not available for M241 Logic Controller references with relay outputs.


Parameter		Value	Default	Description
Control inputs / EN input	Location	Disabled 1017 (fast inputs) 18115 (TM241•40• regular inputs) 1813 (TM241•24• regular inputs)	Disabled	Select the controller input used for enabling the frequency generator function.
	Bounce filter	0.000 0.001 0.002 0.005 0.010 0.1 1.5 1	0.005	Set the filtering value to reduce the bounce effect on the EN input (in ms).

⁽¹⁾ Not available for M241 Logic Controller references with relay outputs.

Synchronizing with an External Event

On a rising edge on the IN_SYNC physical input (with EN_Sync = 1), the current cycle is interrupted and the FreqGen restarts a new cycle.

This illustration provides a pulse diagram for the frequency generator function block with use of IN_SYNC input:

FrequencyGenerator_M241: Commanding a Square Wave Signal

Overview

The Frequency Generator function block commands a square wave signal output at the specified frequency.

Graphical Representation (LD/FBD)

This illustration is a Frequency Generator function block:

IL and ST Representation

To see the general representation in IL or ST language, refer to the *Differences Between a Function and a Function Block (see page 204)* chapter.

Input Variables

This table describes the input variables:

Inputs	Туре	Comment
EN_Enable	BOOL	TRUE = authorizes the Frequency Generator enable via the IN_EN input (if configured).
F_Enable	BOOL	TRUE = enables the Frequency Generator.
EN_SYNC	BOOL	TRUE = authorizes the restart via the IN_SYNC input of the internal timer relative to the time base (if configured).
F_SYNC	BOOL	On rising edge, forces a restart of the internal timer relative to the time base.
Frequency	DWORD	Frequency of the Frequency Generator output signal in tenths of Hz. (Range: min 1 (0.1Hz)max 1,000,000 (100kHz)

Output Variables

This table describes the output variables:

Outputs	Туре	Comment
InFrequency	BOOL	TRUE = the Frequency Generator signal is output at the specified Frequency. FALSE = The required frequency cannot be reached for any reason. F_Enable is set to False. EN_Enable is set to False or no signal detected on the physical input EN Input (if configured).
Busy	BOOL	Busy is used to indicate that a command change is in progress: the frequency is changed. Set to TRUE when the Enable command is set and the frequency is changed. Reset to FALSE when InFrequency or Error is set, or when the Enable command is reset.
Error	BOOL	TRUE = indicates that an error was detected.
ErrID	FREQGEN_PWM_ ERR_TYPE (see page 185)	When Error is set: type of the detected error.

NOTE: When the required frequency cannot be reached for any reason, the InFrequency output is not set to TRUE, but Error stays to FALSE.

NOTE: Outputs are forced to 0 when the logic controller is in the STOPPED state.

Programming

Procedure

Follow these steps to program a Frequency Generator function block:

Step	Action
1	Select the Libraries tab in the Software Catalog and click Libraries. Select Controller → M241 → M241 PTOPWM → Frequency Generator → FrequencyGenerator_M241 in the list; drag-and-drop the item onto the POU window.
2	Select the function block instance by clicking The Input Assistant screen appears. Select the global variable which references to the added FreqGen (see page 194) during the configuration and confirm.
	NOTE: If the function block instance is not visible, verify if the frequency generator is configured.
3	The inputs/outputs are detailed in the function block (see page 197).

Appendices

Appendix A

Function and Function Block Representation

Overview

Each function can be represented in the following languages:

- IL: Instruction List
- ST: Structured Text
- LD: Ladder Diagram
- FBD: Function Block Diagram
- CFC: Continuous Function Chart

This chapter provides functions and function blocks representation examples and explains how to use them for IL and ST languages.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Differences Between a Function and a Function Block	204
How to Use a Function or a Function Block in IL Language	205
How to Use a Function or a Function Block in ST Language	209

Differences Between a Function and a Function Block

Function

A function:

- is a POU (Program Organization Unit) that returns one immediate result.
- is directly called with its name (not through an instance).
- has no persistent state from one call to the other.
- can be used as an operand in other expressions.

Examples: boolean operators (AND), calculations, conversion (BYTE TO INT)

Function Block

A function block:

- is a POU (Program Organization Unit) that returns one or more outputs.
- needs to be called by an instance (function block copy with dedicated name and variables).
- each instance has a persistent state (outputs and internal variables) from one call to the other from a function block or a program.

Examples: timers, counters

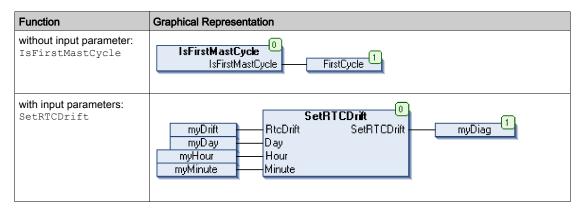
In the example, Timer ON is an instance of the function block TON:

```
1
    PROGRAM MyProgram ST
z
    VAR
3
        Timer ON: TON; // Function Block Instance
        Timer RunCd: BOOL;
4
5
        Timer PresetValue: TIME := T#5S;
6
        Timer Output: BOOL;
7
        Timer ElapsedTime: TIME;
8
    END VAR
    Timer ON(
2
         IN:=Timer RunCd,
3
         PT:=Timer_PresetValue,
         Q=>Timer Output,
5
        ET=>Timer ElapsedTime);
```

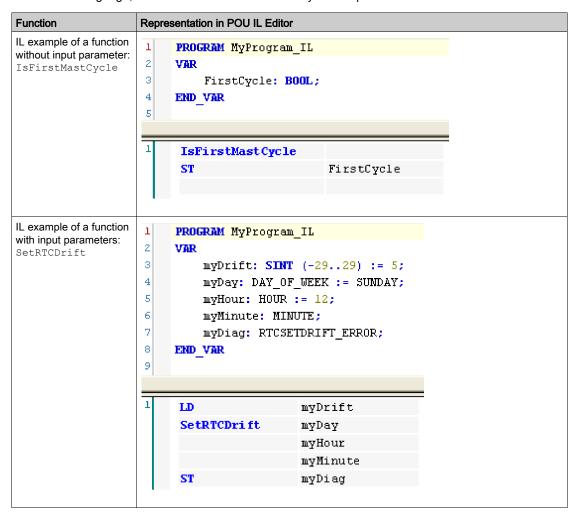
How to Use a Function or a Function Block in IL Language

General Information

This part explains how to implement a function and a function block in IL language.


Functions IsFirstMastCycle and SetRTCDrift and Function Block TON are used as examples to show implementations.

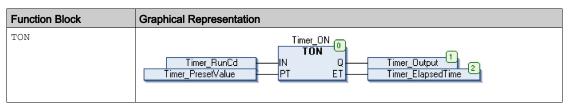
Using a Function in IL Language


This procedure describes how to insert a function in IL language:

Step	Action	
1	Open or create a new POU in Instruction List language.	
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs (see SoMachine, Programming Manual,).	
2	Create the variables that the function requires.	
3	If the function has 1 or more inputs, start loading the first input using LD instruction.	
4	Insert a new line below and: • type the name of the function in the operator column (left field), or • use the Input Assistant to select the function (select Insert Box in the context menu).	
5	If the function has more than 1 input and when Input Assistant is used, the necessary number of lines is automatically created with ??? in the fields on the right. Replace the ??? with the appropriate value or variable that corresponds to the order of inputs.	
6	Insert a new line to store the result of the function into the appropriate variable: type ST instruction in the operator column (left field) and the variable name in the field on the right.	

To illustrate the procedure, consider the Functions IsFirstMastCycle (without input parameter) and SetRTCDrift (with input parameters) graphically presented below:

In IL language, the function name is used directly in the operator column:



Using a Function Block in IL Language

This procedure describes how to insert a function block in IL language:

Step	Action	
1	Open or create a new POU in Instruction List language.	
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs (see SoMachine, Programming Manual,).	
2	Create the variables that the function block requires, including the instance name.	
3	 Function Blocks are called using a CAL instruction: Use the Input Assistant to select the FB (right-click and select Insert Box in the context menu). Automatically, the CAL instruction and the necessary I/O are created. 	
	 Each parameter (I/O) is an instruction: Values to inputs are set by ":=". Values to outputs are set by "=>". 	
4	In the CAL right-side field, replace ??? with the instance name.	
5	Replace other ??? with an appropriate variable or immediate value.	

To illustrate the procedure, consider this example with the ${\tt TON}$ Function Block graphically presented below:

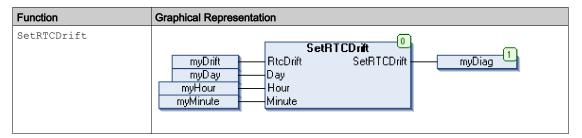
In IL language, the function block name is used directly in the operator column:

```
Function Block
                     Representation in POU IL Editor
TON
                      1
                          PROGRAM MyProgram_IL
                      2
                          VAR
                      3
                              Timer_ON: TON; // Function Block instance declaration
                      4
                              Timer RunCd: BOOL;
                      5
                              Timer_PresetValue: TIME := T#5S;
                      6
                              Timer Output: BOOL;
                      7
                              Timer_ElapsedTime: TIME;
                      8
                          END VAR
                      9
                                             Timer_ON(
                           CAL
                                        IN: = Timer RunCd,
                                        PT: = Timer_PresetValue,
                                         Q=> Timer_Output,
                                        ET=> Timer_ElapsedTime)
```

How to Use a Function or a Function Block in ST Language

General Information

This part explains how to implement a Function and a Function Block in ST language.


Function SetRTCDrift and Function Block TON are used as examples to show implementations.

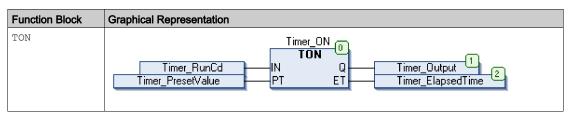
Using a Function in ST Language

This procedure describes how to insert a function in ST language:

Step	Action	
1	Open or create a new POU in Structured Text language.	
	NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and Calling POUs (see SoMachine, Programming Manual,).	
2	Create the variables that the function requires.	
3	Use the general syntax in the POU ST Editor for the ST language of a function. The general syntax is: FunctionResult:= FunctionName(VarInput1, VarInput2, VarInputx);	

To illustrate the procedure, consider the function SetRTCDrift graphically presented below:

The ST language of this function is the following:


Function	Representation in POU ST Editor
SetRTCDrift	PROGRAM MyProgram_ST
	VAR myDrift: SINT(-2929) := 5;
	<pre>myDay: DAY_OF_WEEK := SUNDAY;</pre>
	myHour: HOUR := 12;
	myMinute: MINUTE;
	myRTCAdjust: RTCDRIFT ERROR;
	END VAR
	<pre>myRTCAdjust:= SetRTCDrift(myDrift, myDay, myHour, myMinute);</pre>

Using a Function Block in ST Language

This procedure describes how to insert a function block in ST language:

Step	Action
1	Open or create a new POU in Structured Text language.
	NOTE: The procedure to create a POU is not detailed here. For more information on adding, declaring and calling POUs, refer to the related documentation (see SoMachine, Programming Manual,).
2	Create the input and output variables and the instance required for the function block: Input variables are the input parameters required by the function block Output variables receive the value returned by the function block
3	Use the general syntax in the POU ST Editor for the ST language of a Function Block. The general syntax is: FunctionBlock_InstanceName(Input1:=VarInput1, Input2:=VarInput2,Ouput1=>VarOutput1, Ouput2=>VarOutput2,);

To illustrate the procedure, consider this example with the ${\tt TON}$ function block graphically presented below:

This table shows examples of a function block call in ST language:

```
Function Block
                   Representation in POU ST Editor
TON
                    1
                         PROGRAM MyProgram ST
                    2
                             Timer ON: TON; // Function Block Instance
                    3
                    4
                             Timer RunCd: BOOL;
                             Timer_PresetValue: TIME := T#5S;
                    5
                             Timer Output: BOOL;
                    6
                    7
                             Timer ElapsedTime: TIME;
                    8
                         END VAR
                         Timer ON(
                    2
                             IN:=Timer RunCd,
                    3
                             PT:=Timer PresetValue,
                             Q=>Timer_Output,
                    4
                             ET=>Timer_ElapsedTime);
                    5
```

Glossary

A

absolute movement

A movement to a position defined from a reference point.

acceleration / deceleration

Acceleration is the rate of velocity change, starting from **Start Velocity** to target velocity. Deceleration is the rate of velocity change, starting from target velocity to **Stop Velocity**. These velocity changes are implicitly managed by the PTO function in accordance with acceleration, deceleration, and jerk ratio parameters following a trapezoidal or an S-curve profile.

application

A program including configuration data, symbols, and documentation.

В

byte

A type that is encoded in an 8-bit format, ranging from 00 hex to FF hex.

C

CFC

(continuous function chart) A graphical programming language (an extension of the IEC 61131-3 standard) based on the function block diagram language that works like a flowchart. However, no networks are used and free positioning of graphic elements is possible, which allows feedback loops. For each block, the inputs are on the left and the outputs on the right. You can link the block outputs to the inputs of other blocks to create complex expressions.

controller

Automates industrial processes (also known as programmable logic controller or programmable controller).

F

FΒ

(function block) A convenient programming mechanism that consolidates a group of programming instructions to perform a specific and normalized action, such as speed control, interval control, or counting. A function block may comprise configuration data, a set of internal or external operating parameters and usually 1 or more data inputs and outputs.

function

A programming unit that has 1 input and returns 1 immediate result. However, unlike FBs, it is directly called with its name (as opposed to through an instance), has no persistent state from one call to the next and can be used as an operand in other programming expressions.

Examples: boolean (AND) operators, calculations, conversions (BYTE_TO_INT)

function block diagram

One of the 5 languages for logic or control supported by the standard IEC 61131-3 for control systems. Function block diagram is a graphically oriented programming language. It works with a list of networks where each network contains a graphical structure of boxes and connection lines representing either a logical or arithmetic expression, the call of a function block, a jump, or a return instruction.

Н

homing

The method used to establish the reference point for absolute movement.

ı

IEC 61131-3

Part 3 of a 3-part IEC standard for industrial automation equipment. IEC 61131-3 is concerned with controller programming languages and defines 2 graphical and 2 textual programming language standards. The graphical programming languages are ladder diagram and function block diagram. The textual programming languages include structured text and instruction list.

IL

(*instruction list*) A program written in the language that is composed of a series of text-based instructions executed sequentially by the controller. Each instruction includes a line number, an instruction code, and an operand (refer to IEC 61131-3).

INT

(integer) A whole number encoded in 16 bits.

J

jerk ratio

The proportion of change of the acceleration and deceleration as a function of time.

L

LD

(*ladder diagram*) A graphical representation of the instructions of a controller program with symbols for contacts, coils, and blocks in a series of rungs executed sequentially by a controller (refer to IEC 61131-3).

P

POU

(*program organization unit*) A variable declaration in source code and a corresponding instruction set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once declared, POUs are available to one another.

S

S-curve ramp

An acceleration / deceleration ramp with a JerkRatio parameter greater than 0%.

ST

(*structured text*) A language that includes complex statements and nested instructions (such as iteration loops, conditional executions, or functions). ST is compliant with IEC 61131-3.

start velocity

The minimum frequency at which a stepper motor can produce movement, with a load applied, without the loss of steps.

stop velocity

The maximum frequency at which a stepper motor stops producing movement, with a load applied, without the loss of steps.

Т

trapezoidal ramp

An acceleration / deceleration ramp with a JerkRatio parameter set to 0%.

V

variable

A memory unit that is addressed and modified by a program.

Index

A	E
acceleration ramp, 42	error handling
axis	ErrID, <i>26</i>
MC_AbortTrigger_PTO, 163	Error, <i>26</i>
MC_Halt_PTO, 138	
MC_Home_PTO, 125	_
MC_MoveAbsolute_PTO, 119	F
MC_MoveRelative_PTO, 113	FregGen
MC_MoveVelocity_PTO, 107	FrequencyGenerator_M241, <i>197</i>
MC_Power_PTO, 102	programming FrequencyGenera-
MC_ReadActualPosition_PTO, 146	tor_M241, <i>199</i>
MC_ReadActualVelocity_PTO, 145	FREQGEN_PWM_ERR_TYPE, 185
MC_ReadAxisError_PTO, 165	frequency generator
MC_ReadBoolParameter_PTO, 156	configuration, 194
MC_ReadMotionState_PTO, 149	description, 190
MC_ReadParameter_PTO, 152	programming FrequencyGenera-
MC_ReadStatus_PTO, 147	tor_M241, <i>199</i>
MC_Reset_PTO, 167	FrequencyGenerator_M241
MC_SetPosition_PTO, 130	commanding a square wave signal, 197
MC_Stop_PTO, 133	programming, 199
MC_TouchProbe_PTO, 161	function blocks
MC_WriteBoolParameter_PTO, 158	FrequencyGenerator_M241, 197
MC_WriteParameter_PTO, 154	PWM_M241, <i>181</i>
AXIS_REF_PTO, <i>76</i>	functionalities
	PTO, <i>29</i>
D	functions
D	differences between a function and a
data unit types	function block, 204
AXIS_REF_PTO, 76	enable, <i>175</i>
FREQGEN_PWM_ERR_TYPE, 185	how to use a function or a function block
MC_BUFFER_MODE, 77	in IL language, <i>205</i>
MC_DIRECTION, 79	how to use a function or a function block
PTO_ERROR, 82	in ST language, <i>209</i>
PTO_HOMING_MODE, 80	synchronization, 175
PTO_PARAMETER, 81	
deceleration ramp, 42	1
dedicated features, <i>25</i>	J
	JerkRatio 42

M	MC_MoveAbsolute_PTO
M241 PTOPWM	commanding the axis to absolute position,
FrequencyGenerator_M241, 197	119
MC_AbortTrigger_PTO, 163	MC_MoveRelative_PTO
MC_Halt_PTO, 138	commanding the relative axis movement,
MC_Home_PTO, <i>125</i>	113
MC_MoveAbsolute_PTO, 119	MC_MoveVelocity_PTO
MC_MoveRelative_PTO, 113	controlling the speed of the axis, 107
MC_MoveVelocity_PTO, 107	MC_Power_PTO
MC_Power_PTO, 102	managing the power of the axis state, 102
MC_ReadActualPosition_PTO, <i>146</i>	MC_ReadActualPosition_PTO
MC_ReadActualVelocity_PTO, 145	getting the position of the axis, 146
MC_ReadAxisError_PTO, 165	MC_ReadActualVelocity_PTO
MC_ReadBoolParameter_PTO, 156	getting the velocity of the axis, 145
MC_ReadMotionState_PTO, 149	MC_ReadAxisError_PTO
MC_ReadParameter_PTO, 152	getting the axis control error, 165
MC_ReadStatus_PTO, 147	MC_ReadBoolParameter_PTO
MC_Reset_PTO, 167	getting boolean parameters from the
MC_SetPosition_PTO, 130	PTO, <i>156</i> MC_ReadMotionState_PTO
MC_Stop_PTO, 133	getting the motion status of the axis, 149
MC_TouchProbe_PTO, 161	MC_ReadParameter_PTO
MC_WriteBoolParameter_PTO, 158	getting parameters from the PTO, <i>152</i>
MC_WriteParameter_PTO, 154	MC_ReadStatus_PTO
programming FrequencyGenera-	getting the motion status of the axis, 147
tor_M241, <i>199</i>	MC_Reset_PTO
programming PWM_M241, <i>183</i>	resetting axis-related errors, <i>167</i>
management of status variables	MC_SetPosition_PTO
Busy, <i>26</i>	forcing the reference position of the axis,
CommandAborted, 26	130
Done, <i>26</i>	MC_Stop_PTO
ErrID, <i>26</i>	commanding a controlled motion stop,
Error, <i>26</i>	133
Execute, 26	MC_TouchProbe_PTO
MC_AbortTrigger_PTO	activating a trigger event on the PTO
aborting or deactivating PTO function	probe input, 161
blocks, 163	MC_WriteBoolParameter_PTO
MC_BUFFER_MODE, 77	setting boolean parameters to the PTO,
MC_DIRECTION, 79	158
MC_Halt_PTO	MC_WriteParameter_PTO
commanding a controlled PTO motion	setting parameters to the PTO, <i>154</i>
halt, 138	.
MC_Home_PTO	
commanding the axis to move to a refer-	
ence position, 125	

P

```
Programming
   PWM, 183
PTO
   configuration, 35
  functionalities, 29
   MC_AbortTrigger_PTO, 163
   MC_Halt_PTO, 138
   MC_Home_PTO, 125
   MC MoveAbsolute PTO, 119
   MC MoveRelative PTO, 113
   MC_MoveVelocity_PTO, 107
   MC_Power_PTO, 102
   MC_ReadActualPosition_PTO, 146
   MC_ReadActualVelocity_PTO, 145
   MC_ReadAxisError_PTO, 165
   MC_ReadBoolParameter_PTO, 156
   MC_ReadMotionState_PTO, 149
   MC_ReadParameter_PTO, 152
   MC ReadStatus PTO, 147
   MC_Reset_PTO, 167
   MC_SetPosition_PTO, 130
   MC Stop PTO, 133
   MC_TouchProbe_PTO, 161
   MC_WriteBoolParameter_PTO, 158
   MC_WriteParameter_PTO, 154
PTO_ERROR, 82
PTO HOMING MODE, 80
PTO_PARAMETER, 81
pulse width modulation
   configuration, 178
   description, 172
   programming PWM_M241, 183
  PWM_M241, 181
PWM
   programming PWM_M241, 183
   PWM_M241, 181
PWM_M241
   commanding a pulse width modulation
   signal, 181
   programming, 183
```